xref: /dflybsd-src/sys/kern/vfs_mount.c (revision 872a09d51adf63b4bdae6adb1d96a53f76e161e2)
1 /*
2  * Copyright (c) 2004,2013-2019 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 /*
68  * External virtual filesystem routines
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mount.h>
76 #include <sys/proc.h>
77 #include <sys/vnode.h>
78 #include <sys/spinlock2.h>
79 #include <sys/eventhandler.h>
80 #include <sys/kthread.h>
81 #include <sys/sysctl.h>
82 
83 #include <machine/limits.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_object.h>
87 
88 struct mountscan_info {
89 	TAILQ_ENTRY(mountscan_info) msi_entry;
90 	int msi_how;
91 	struct mount *msi_node;
92 };
93 
94 struct vmntvnodescan_info {
95 	TAILQ_ENTRY(vmntvnodescan_info) entry;
96 	struct vnode *vp;
97 };
98 
99 struct vnlru_info {
100 	int	pass;
101 };
102 
103 static int
104 mount_cmp(struct mount *mnt1, struct mount *mnt2)
105 {
106 	if (mnt1->mnt_stat.f_fsid.val[0] < mnt2->mnt_stat.f_fsid.val[0])
107 		return -1;
108 	if (mnt1->mnt_stat.f_fsid.val[0] > mnt2->mnt_stat.f_fsid.val[0])
109 		return 1;
110 	if (mnt1->mnt_stat.f_fsid.val[1] < mnt2->mnt_stat.f_fsid.val[1])
111 		return -1;
112 	if (mnt1->mnt_stat.f_fsid.val[1] > mnt2->mnt_stat.f_fsid.val[1])
113 		return 1;
114 	return 0;
115 }
116 
117 static int
118 mount_fsid_cmp(fsid_t *fsid, struct mount *mnt)
119 {
120 	if (fsid->val[0] < mnt->mnt_stat.f_fsid.val[0])
121 		return -1;
122 	if (fsid->val[0] > mnt->mnt_stat.f_fsid.val[0])
123 		return 1;
124 	if (fsid->val[1] < mnt->mnt_stat.f_fsid.val[1])
125 		return -1;
126 	if (fsid->val[1] > mnt->mnt_stat.f_fsid.val[1])
127 		return 1;
128 	return 0;
129 }
130 
131 RB_HEAD(mount_rb_tree, mount);
132 RB_PROTOTYPEX(mount_rb_tree, FSID, mount, mnt_node, mount_cmp, fsid_t *);
133 RB_GENERATE(mount_rb_tree, mount, mnt_node, mount_cmp);
134 RB_GENERATE_XLOOKUP(mount_rb_tree, FSID, mount, mnt_node,
135 			mount_fsid_cmp, fsid_t *);
136 
137 static int vnlru_nowhere = 0;
138 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
139 	    &vnlru_nowhere, 0,
140 	    "Number of times the vnlru process ran without success");
141 
142 
143 static struct lwkt_token mntid_token;
144 static struct mount dummymount;
145 
146 /* note: mountlist exported to pstat */
147 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
148 struct mount_rb_tree mounttree = RB_INITIALIZER(dev_tree_mounttree);
149 static TAILQ_HEAD(,mountscan_info) mountscan_list;
150 static struct lwkt_token mountlist_token;
151 
152 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
153 
154 /*
155  * Called from vfsinit()
156  */
157 void
158 vfs_mount_init(void)
159 {
160 	lwkt_token_init(&mountlist_token, "mntlist");
161 	lwkt_token_init(&mntid_token, "mntid");
162 	TAILQ_INIT(&mountscan_list);
163 	mount_init(&dummymount, NULL);
164 	dummymount.mnt_flag |= MNT_RDONLY;
165 	dummymount.mnt_kern_flag |= MNTK_ALL_MPSAFE;
166 }
167 
168 /*
169  * Support function called to remove a vnode from the mountlist and
170  * deal with side effects for scans in progress.
171  *
172  * Target mnt_token is held on call.
173  */
174 static void
175 vremovevnodemnt(struct vnode *vp)
176 {
177         struct vmntvnodescan_info *info;
178 	struct mount *mp = vp->v_mount;
179 
180 	TAILQ_FOREACH(info, &mp->mnt_vnodescan_list, entry) {
181 		if (info->vp == vp)
182 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
183 	}
184 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
185 }
186 
187 /*
188  * Allocate a new vnode and associate it with a tag, mount point, and
189  * operations vector.
190  *
191  * A VX locked and refd vnode is returned.  The caller should setup the
192  * remaining fields and vx_put() or, if he wishes to leave a vref,
193  * vx_unlock() the vnode.
194  */
195 int
196 getnewvnode(enum vtagtype tag, struct mount *mp,
197 		struct vnode **vpp, int lktimeout, int lkflags)
198 {
199 	struct vnode *vp;
200 
201 	KKASSERT(mp != NULL);
202 
203 	vp = allocvnode(lktimeout, lkflags);
204 	vp->v_tag = tag;
205 	vp->v_data = NULL;
206 
207 	/*
208 	 * By default the vnode is assigned the mount point's normal
209 	 * operations vector.
210 	 */
211 	vp->v_ops = &mp->mnt_vn_use_ops;
212 	vp->v_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
213 
214 	/*
215 	 * Placing the vnode on the mount point's queue makes it visible.
216 	 * VNON prevents it from being messed with, however.
217 	 */
218 	insmntque(vp, mp);
219 
220 	/*
221 	 * A VX locked & refd vnode is returned.
222 	 */
223 	*vpp = vp;
224 	return (0);
225 }
226 
227 /*
228  * This function creates vnodes with special operations vectors.  The
229  * mount point is optional.
230  *
231  * This routine is being phased out but is still used by vfs_conf to
232  * create vnodes for devices prior to the root mount (with mp == NULL).
233  */
234 int
235 getspecialvnode(enum vtagtype tag, struct mount *mp,
236 		struct vop_ops **ops,
237 		struct vnode **vpp, int lktimeout, int lkflags)
238 {
239 	struct vnode *vp;
240 
241 	vp = allocvnode(lktimeout, lkflags);
242 	vp->v_tag = tag;
243 	vp->v_data = NULL;
244 	vp->v_ops = ops;
245 
246 	if (mp == NULL)
247 		mp = &dummymount;
248 
249 	/*
250 	 * Placing the vnode on the mount point's queue makes it visible.
251 	 * VNON prevents it from being messed with, however.
252 	 */
253 	insmntque(vp, mp);
254 
255 	/*
256 	 * A VX locked & refd vnode is returned.
257 	 */
258 	*vpp = vp;
259 	return (0);
260 }
261 
262 /*
263  * Interlock against an unmount, return 0 on success, non-zero on failure.
264  *
265  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
266  * is in-progress.
267  *
268  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
269  * are used.  A shared locked will be obtained and the filesystem will not
270  * be unmountable until the lock is released.
271  */
272 int
273 vfs_busy(struct mount *mp, int flags)
274 {
275 	int lkflags;
276 
277 	atomic_add_int(&mp->mnt_refs, 1);
278 	lwkt_gettoken(&mp->mnt_token);
279 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
280 		if (flags & LK_NOWAIT) {
281 			lwkt_reltoken(&mp->mnt_token);
282 			atomic_add_int(&mp->mnt_refs, -1);
283 			return (ENOENT);
284 		}
285 		/* XXX not MP safe */
286 		mp->mnt_kern_flag |= MNTK_MWAIT;
287 
288 		/*
289 		 * Since all busy locks are shared except the exclusive
290 		 * lock granted when unmounting, the only place that a
291 		 * wakeup needs to be done is at the release of the
292 		 * exclusive lock at the end of dounmount.
293 		 *
294 		 * WARNING! mp can potentially go away once we release
295 		 *	    our ref.
296 		 */
297 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
298 		lwkt_reltoken(&mp->mnt_token);
299 		atomic_add_int(&mp->mnt_refs, -1);
300 		return (ENOENT);
301 	}
302 	lkflags = LK_SHARED;
303 	if (lockmgr(&mp->mnt_lock, lkflags))
304 		panic("vfs_busy: unexpected lock failure");
305 	lwkt_reltoken(&mp->mnt_token);
306 	return (0);
307 }
308 
309 /*
310  * Free a busy filesystem.
311  *
312  * Once refs is decremented the mount point can potentially get ripped
313  * out from under us, but we want to clean up our refs before unlocking
314  * so do a hold/drop around the whole mess.
315  *
316  * This is not in the critical path (I hope).
317  */
318 void
319 vfs_unbusy(struct mount *mp)
320 {
321 	mount_hold(mp);
322 	atomic_add_int(&mp->mnt_refs, -1);
323 	lockmgr(&mp->mnt_lock, LK_RELEASE);
324 	mount_drop(mp);
325 }
326 
327 /*
328  * Lookup a filesystem type, and if found allocate and initialize
329  * a mount structure for it.
330  *
331  * Devname is usually updated by mount(8) after booting.
332  */
333 int
334 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
335 {
336 	struct vfsconf *vfsp;
337 	struct mount *mp;
338 
339 	if (fstypename == NULL)
340 		return (ENODEV);
341 
342 	vfsp = vfsconf_find_by_name(fstypename);
343 	if (vfsp == NULL)
344 		return (ENODEV);
345 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
346 	mount_init(mp, vfsp->vfc_vfsops);
347 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
348 
349 	vfs_busy(mp, 0);
350 	mp->mnt_vfc = vfsp;
351 	mp->mnt_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
352 	vfsp->vfc_refcount++;
353 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
354 	mp->mnt_flag |= MNT_RDONLY;
355 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
356 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
357 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
358 
359 	/*
360 	 * Pre-set MPSAFE flags for VFS_MOUNT() call.
361 	 */
362 	if (vfsp->vfc_flags & VFCF_MPSAFE)
363 		mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;
364 
365 	*mpp = mp;
366 
367 	return (0);
368 }
369 
370 /*
371  * Basic mount structure initialization
372  */
373 void
374 mount_init(struct mount *mp, struct vfsops *ops)
375 {
376 	lockinit(&mp->mnt_lock, "vfslock", hz*5, 0);
377 	lwkt_token_init(&mp->mnt_token, "permnt");
378 
379 	TAILQ_INIT(&mp->mnt_vnodescan_list);
380 	TAILQ_INIT(&mp->mnt_nvnodelist);
381 	TAILQ_INIT(&mp->mnt_reservedvnlist);
382 	TAILQ_INIT(&mp->mnt_jlist);
383 	mp->mnt_nvnodelistsize = 0;
384 	mp->mnt_flag = 0;
385 	mp->mnt_hold = 1;		/* hold for umount last drop */
386 	mp->mnt_iosize_max = MAXPHYS;
387 	mp->mnt_op = ops;
388 	if (ops == NULL || (ops->vfs_flags & VFSOPSF_NOSYNCERTHR) == 0)
389 		vn_syncer_thr_create(mp);
390 }
391 
392 void
393 mount_hold(struct mount *mp)
394 {
395 	atomic_add_int(&mp->mnt_hold, 1);
396 }
397 
398 void
399 mount_drop(struct mount *mp)
400 {
401 	if (atomic_fetchadd_int(&mp->mnt_hold, -1) == 1) {
402 		KKASSERT(mp->mnt_refs == 0);
403 		kfree(mp, M_MOUNT);
404 	}
405 }
406 
407 /*
408  * Lookup a mount point by filesystem identifier.
409  *
410  * If not NULL, the returned mp is held and the caller is expected to drop
411  * it via mount_drop().
412  */
413 struct mount *
414 vfs_getvfs(fsid_t *fsid)
415 {
416 	struct mount *mp;
417 
418 	lwkt_gettoken_shared(&mountlist_token);
419 	mp = mount_rb_tree_RB_LOOKUP_FSID(&mounttree, fsid);
420 	if (mp)
421 		mount_hold(mp);
422 	lwkt_reltoken(&mountlist_token);
423 	return (mp);
424 }
425 
426 /*
427  * Generate a FSID based on the mountpt.  The FSID will be adjusted to avoid
428  * collisions when the mount is added to mountlist.
429  *
430  * May only be called prior to the mount succeeding.
431  *
432  * OLD:
433  *
434  * Get a new unique fsid.  Try to make its val[0] unique, since this value
435  * will be used to create fake device numbers for stat().  Also try (but
436  * not so hard) make its val[0] unique mod 2^16, since some emulators only
437  * support 16-bit device numbers.  We end up with unique val[0]'s for the
438  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
439  */
440 void
441 vfs_getnewfsid(struct mount *mp)
442 {
443 	fsid_t tfsid;
444 	int mtype;
445 	int error;
446 	char *retbuf;
447 	char *freebuf;
448 
449 	mtype = mp->mnt_vfc->vfc_typenum;
450 	tfsid.val[1] = mtype;
451 	error = cache_fullpath(NULL, &mp->mnt_ncmounton, NULL,
452 			       &retbuf, &freebuf, 0);
453 	if (error) {
454 		tfsid.val[0] = makeudev(255, 0);
455 	} else {
456 		tfsid.val[0] = makeudev(255,
457 					iscsi_crc32(retbuf, strlen(retbuf)) &
458 					~makeudev(255, 0));
459 		kfree(freebuf, M_TEMP);
460 	}
461 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
462 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
463 }
464 
465 /*
466  * Set the FSID for a new mount point to the template.
467  *
468  * The FSID will be adjusted to avoid collisions when the mount is
469  * added to mountlist.
470  *
471  * May only be called prior to the mount succeeding.
472  */
473 void
474 vfs_setfsid(struct mount *mp, fsid_t *template)
475 {
476 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
477 
478 #if 0
479 	struct mount *mptmp;
480 
481 	lwkt_gettoken(&mntid_token);
482 	for (;;) {
483 		mptmp = vfs_getvfs(template);
484 		if (mptmp == NULL)
485 			break;
486 		mount_drop(mptmp);
487 		++template->val[1];
488 	}
489 	lwkt_reltoken(&mntid_token);
490 #endif
491 	mp->mnt_stat.f_fsid = *template;
492 }
493 
494 /*
495  * This routine is called when we have too many vnodes.  It attempts
496  * to free <count> vnodes and will potentially free vnodes that still
497  * have VM backing store (VM backing store is typically the cause
498  * of a vnode blowout so we want to do this).  Therefore, this operation
499  * is not considered cheap.
500  *
501  * A number of conditions may prevent a vnode from being reclaimed.
502  * the buffer cache may have references on the vnode, a directory
503  * vnode may still have references due to the namei cache representing
504  * underlying files, or the vnode may be in active use.   It is not
505  * desireable to reuse such vnodes.  These conditions may cause the
506  * number of vnodes to reach some minimum value regardless of what
507  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
508  */
509 
510 /*
511  * Attempt to recycle vnodes in a context that is always safe to block.
512  * Calling vlrurecycle() from the bowels of file system code has some
513  * interesting deadlock problems.
514  */
515 static struct thread *vnlruthread;
516 
517 static void
518 vnlru_proc(void)
519 {
520 	struct thread *td = curthread;
521 
522 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
523 			      SHUTDOWN_PRI_FIRST);
524 
525 	for (;;) {
526 		int ncachedandinactive;
527 
528 		kproc_suspend_loop();
529 
530 		/*
531 		 * Try to free some vnodes if we have too many.  Trigger based
532 		 * on potentially freeable vnodes but calculate the count
533 		 * based on total vnodes.
534 		 *
535 		 * (long) -> deal with 64 bit machines, intermediate overflow
536 		 */
537 		synchronizevnodecount();
538 		ncachedandinactive = countcachedandinactivevnodes();
539 		if (numvnodes >= maxvnodes * 9 / 10 &&
540 		    ncachedandinactive >= maxvnodes * 5 / 10) {
541 			int count = numvnodes - maxvnodes * 9 / 10;
542 
543 			if (count > (ncachedandinactive) / 100)
544 				count = (ncachedandinactive) / 100;
545 			if (count < 5)
546 				count = 5;
547 			freesomevnodes(count);
548 		}
549 
550 		/*
551 		 * Do non-critical-path (more robust) cache cleaning,
552 		 * even if vnode counts are nominal, to try to avoid
553 		 * having to do it in the critical path.
554 		 */
555 		cache_hysteresis(0);
556 
557 		/*
558 		 * Nothing to do if most of our vnodes are already on
559 		 * the free list.
560 		 */
561 		synchronizevnodecount();
562 		ncachedandinactive = countcachedandinactivevnodes();
563 		if (numvnodes <= maxvnodes * 9 / 10 ||
564 		    ncachedandinactive <= maxvnodes * 5 / 10) {
565 			tsleep(vnlruthread, 0, "vlruwt", hz);
566 			continue;
567 		}
568 	}
569 }
570 
571 /*
572  * MOUNTLIST FUNCTIONS
573  */
574 
575 /*
576  * mountlist_insert (MP SAFE)
577  *
578  * Add a new mount point to the mount list.  Filesystem should attempt to
579  * supply a unique fsid but if a duplicate occurs adjust the fsid to ensure
580  * uniqueness.
581  */
582 void
583 mountlist_insert(struct mount *mp, int how)
584 {
585 	int lim = 0x01000000;
586 
587 	lwkt_gettoken(&mountlist_token);
588 	if (how == MNTINS_FIRST)
589 		TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
590 	else
591 		TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
592 	while (mount_rb_tree_RB_INSERT(&mounttree, mp)) {
593 		int32_t val;
594 
595 		/*
596 		 * minor device mask: 0xFFFF00FF
597 		 */
598 		val = mp->mnt_stat.f_fsid.val[0];
599 		val = ((val & 0xFFFF0000) >> 8) | (val & 0x000000FF);
600 		++val;
601 		val = ((val << 8) & 0xFFFF0000) | (val & 0x000000FF);
602 		mp->mnt_stat.f_fsid.val[0] = val;
603 		if (--lim == 0) {
604 			lim = 0x01000000;
605 			mp->mnt_stat.f_fsid.val[1] += 0x0100;
606 			kprintf("mountlist_insert: fsid collision, "
607 				"too many mounts\n");
608 		}
609 	}
610 	lwkt_reltoken(&mountlist_token);
611 }
612 
613 /*
614  * mountlist_interlock (MP SAFE)
615  *
616  * Execute the specified interlock function with the mountlist token
617  * held.  The function will be called in a serialized fashion verses
618  * other functions called through this mechanism.
619  *
620  * The function is expected to be very short-lived.
621  */
622 int
623 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
624 {
625 	int error;
626 
627 	lwkt_gettoken(&mountlist_token);
628 	error = callback(mp);
629 	lwkt_reltoken(&mountlist_token);
630 	return (error);
631 }
632 
633 /*
634  * mountlist_boot_getfirst (DURING BOOT ONLY)
635  *
636  * This function returns the first mount on the mountlist, which is
637  * expected to be the root mount.  Since no interlocks are obtained
638  * this function is only safe to use during booting.
639  */
640 
641 struct mount *
642 mountlist_boot_getfirst(void)
643 {
644 	return(TAILQ_FIRST(&mountlist));
645 }
646 
647 /*
648  * mountlist_remove (MP SAFE)
649  *
650  * Remove a node from the mountlist.  If this node is the next scan node
651  * for any active mountlist scans, the active mountlist scan will be
652  * adjusted to skip the node, thus allowing removals during mountlist
653  * scans.
654  */
655 void
656 mountlist_remove(struct mount *mp)
657 {
658 	struct mountscan_info *msi;
659 
660 	lwkt_gettoken(&mountlist_token);
661 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
662 		if (msi->msi_node == mp) {
663 			if (msi->msi_how & MNTSCAN_FORWARD)
664 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
665 			else
666 				msi->msi_node = TAILQ_PREV(mp, mntlist,
667 							   mnt_list);
668 		}
669 	}
670 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
671 	mount_rb_tree_RB_REMOVE(&mounttree, mp);
672 	lwkt_reltoken(&mountlist_token);
673 }
674 
675 /*
676  * mountlist_exists (MP SAFE)
677  *
678  * Checks if a node exists in the mountlist.
679  * This function is mainly used by VFS quota code to check if a
680  * cached nullfs struct mount pointer is still valid at use time
681  *
682  * FIXME: there is no warranty the mp passed to that function
683  * will be the same one used by VFS_ACCOUNT() later
684  */
685 int
686 mountlist_exists(struct mount *mp)
687 {
688 	int node_exists = 0;
689 	struct mount* lmp;
690 
691 	lwkt_gettoken_shared(&mountlist_token);
692 	TAILQ_FOREACH(lmp, &mountlist, mnt_list) {
693 		if (lmp == mp) {
694 			node_exists = 1;
695 			break;
696 		}
697 	}
698 	lwkt_reltoken(&mountlist_token);
699 
700 	return(node_exists);
701 }
702 
703 /*
704  * mountlist_scan
705  *
706  * Safely scan the mount points on the mount list.  Each mountpoint
707  * is held across the callback.  The callback is responsible for
708  * acquiring any further tokens or locks.
709  *
710  * Unless otherwise specified each mount point will be busied prior to the
711  * callback and unbusied afterwords.  The callback may safely remove any
712  * mount point without interfering with the scan.  If the current callback
713  * mount is removed the scanner will not attempt to unbusy it.
714  *
715  * If a mount node cannot be busied it is silently skipped.
716  *
717  * The callback return value is aggregated and a total is returned.  A return
718  * value of < 0 is not aggregated and will terminate the scan.
719  *
720  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
721  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
722  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
723  *			  the mount node.
724  * MNTSCAN_NOUNLOCK	- Do not unlock mountlist_token across callback
725  *
726  * NOTE: mountlist_token is not held across the callback.
727  */
728 int
729 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
730 {
731 	struct mountscan_info info;
732 	struct mount *mp;
733 	int count;
734 	int res;
735 	int dounlock = ((how & MNTSCAN_NOUNLOCK) == 0);
736 
737 	lwkt_gettoken(&mountlist_token);
738 	info.msi_how = how;
739 	info.msi_node = NULL;	/* paranoia */
740 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
741 	lwkt_reltoken(&mountlist_token);
742 
743 	res = 0;
744 	lwkt_gettoken_shared(&mountlist_token);
745 
746 	if (how & MNTSCAN_FORWARD) {
747 		info.msi_node = TAILQ_FIRST(&mountlist);
748 		while ((mp = info.msi_node) != NULL) {
749 			mount_hold(mp);
750 			if (how & MNTSCAN_NOBUSY) {
751 				if (dounlock)
752 					lwkt_reltoken(&mountlist_token);
753 				count = callback(mp, data);
754 				if (dounlock)
755 					lwkt_gettoken_shared(&mountlist_token);
756 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
757 				if (dounlock)
758 					lwkt_reltoken(&mountlist_token);
759 				count = callback(mp, data);
760 				if (dounlock)
761 					lwkt_gettoken_shared(&mountlist_token);
762 				if (mp == info.msi_node)
763 					vfs_unbusy(mp);
764 			} else {
765 				count = 0;
766 			}
767 			mount_drop(mp);
768 			if (count < 0)
769 				break;
770 			res += count;
771 			if (mp == info.msi_node)
772 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
773 		}
774 	} else if (how & MNTSCAN_REVERSE) {
775 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
776 		while ((mp = info.msi_node) != NULL) {
777 			mount_hold(mp);
778 			if (how & MNTSCAN_NOBUSY) {
779 				if (dounlock)
780 					lwkt_reltoken(&mountlist_token);
781 				count = callback(mp, data);
782 				if (dounlock)
783 					lwkt_gettoken_shared(&mountlist_token);
784 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
785 				if (dounlock)
786 					lwkt_reltoken(&mountlist_token);
787 				count = callback(mp, data);
788 				if (dounlock)
789 					lwkt_gettoken_shared(&mountlist_token);
790 				if (mp == info.msi_node)
791 					vfs_unbusy(mp);
792 			} else {
793 				count = 0;
794 			}
795 			mount_drop(mp);
796 			if (count < 0)
797 				break;
798 			res += count;
799 			if (mp == info.msi_node)
800 				info.msi_node = TAILQ_PREV(mp, mntlist,
801 							   mnt_list);
802 		}
803 	}
804 	lwkt_reltoken(&mountlist_token);
805 
806 	lwkt_gettoken(&mountlist_token);
807 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
808 	lwkt_reltoken(&mountlist_token);
809 
810 	return(res);
811 }
812 
813 /*
814  * MOUNT RELATED VNODE FUNCTIONS
815  */
816 
817 static struct kproc_desc vnlru_kp = {
818 	"vnlru",
819 	vnlru_proc,
820 	&vnlruthread
821 };
822 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp);
823 
824 /*
825  * Move a vnode from one mount queue to another.
826  */
827 void
828 insmntque(struct vnode *vp, struct mount *mp)
829 {
830 	struct mount *omp;
831 
832 	/*
833 	 * Delete from old mount point vnode list, if on one.
834 	 */
835 	if ((omp = vp->v_mount) != NULL) {
836 		lwkt_gettoken(&omp->mnt_token);
837 		KKASSERT(omp == vp->v_mount);
838 		KASSERT(omp->mnt_nvnodelistsize > 0,
839 			("bad mount point vnode list size"));
840 		vremovevnodemnt(vp);
841 		omp->mnt_nvnodelistsize--;
842 		lwkt_reltoken(&omp->mnt_token);
843 	}
844 
845 	/*
846 	 * Insert into list of vnodes for the new mount point, if available.
847 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
848 	 */
849 	if (mp == NULL) {
850 		vp->v_mount = NULL;
851 		return;
852 	}
853 	lwkt_gettoken(&mp->mnt_token);
854 	vp->v_mount = mp;
855 	if (mp->mnt_syncer) {
856 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
857 	} else {
858 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
859 	}
860 	mp->mnt_nvnodelistsize++;
861 	lwkt_reltoken(&mp->mnt_token);
862 }
863 
864 
865 /*
866  * Scan the vnodes under a mount point and issue appropriate callbacks.
867  *
868  * The fastfunc() callback is called with just the mountlist token held
869  * (no vnode lock).  It may not block and the vnode may be undergoing
870  * modifications while the caller is processing it.  The vnode will
871  * not be entirely destroyed, however, due to the fact that the mountlist
872  * token is held.  A return value < 0 skips to the next vnode without calling
873  * the slowfunc(), a return value > 0 terminates the loop.
874  *
875  * WARNING! The fastfunc() should not indirect through vp->v_object, the vp
876  *	    data structure is unstable when called from fastfunc().
877  *
878  * The slowfunc() callback is called after the vnode has been successfully
879  * locked based on passed flags.  The vnode is skipped if it gets rearranged
880  * or destroyed while blocking on the lock.  A non-zero return value from
881  * the slow function terminates the loop.  The slow function is allowed to
882  * arbitrarily block.  The scanning code guarentees consistency of operation
883  * even if the slow function deletes or moves the node, or blocks and some
884  * other thread deletes or moves the node.
885  */
886 int
887 vmntvnodescan(
888     struct mount *mp,
889     int flags,
890     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
891     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
892     void *data
893 ) {
894 	struct vmntvnodescan_info info;
895 	struct vnode *vp;
896 	int r = 0;
897 	int maxcount = mp->mnt_nvnodelistsize * 2;
898 	int stopcount = 0;
899 	int count = 0;
900 
901 	lwkt_gettoken(&mp->mnt_token);
902 
903 	/*
904 	 * If asked to do one pass stop after iterating available vnodes.
905 	 * Under heavy loads new vnodes can be added while we are scanning,
906 	 * so this isn't perfect.  Create a slop factor of 2x.
907 	 */
908 	if (flags & VMSC_ONEPASS)
909 		stopcount = mp->mnt_nvnodelistsize;
910 
911 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
912 	TAILQ_INSERT_TAIL(&mp->mnt_vnodescan_list, &info, entry);
913 
914 	while ((vp = info.vp) != NULL) {
915 		if (--maxcount == 0) {
916 			kprintf("Warning: excessive fssync iteration\n");
917 			maxcount = mp->mnt_nvnodelistsize * 2;
918 		}
919 
920 		/*
921 		 * Skip if visible but not ready, or special (e.g.
922 		 * mp->mnt_syncer)
923 		 */
924 		if (vp->v_type == VNON)
925 			goto next;
926 		KKASSERT(vp->v_mount == mp);
927 
928 		/*
929 		 * Quick test.  A negative return continues the loop without
930 		 * calling the slow test.  0 continues onto the slow test.
931 		 * A positive number aborts the loop.
932 		 */
933 		if (fastfunc) {
934 			if ((r = fastfunc(mp, vp, data)) < 0) {
935 				r = 0;
936 				goto next;
937 			}
938 			if (r)
939 				break;
940 		}
941 
942 		/*
943 		 * Get a vxlock on the vnode, retry if it has moved or isn't
944 		 * in the mountlist where we expect it.
945 		 */
946 		if (slowfunc) {
947 			int error;
948 
949 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
950 			case VMSC_GETVP:
951 				error = vget(vp, LK_EXCLUSIVE);
952 				break;
953 			case VMSC_GETVP|VMSC_NOWAIT:
954 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
955 				break;
956 			case VMSC_GETVX:
957 				vx_get(vp);
958 				error = 0;
959 				break;
960 			default:
961 				error = 0;
962 				break;
963 			}
964 			if (error)
965 				goto next;
966 			/*
967 			 * Do not call the slow function if the vnode is
968 			 * invalid or if it was ripped out from under us
969 			 * while we (potentially) blocked.
970 			 */
971 			if (info.vp == vp && vp->v_type != VNON)
972 				r = slowfunc(mp, vp, data);
973 
974 			/*
975 			 * Cleanup
976 			 */
977 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
978 			case VMSC_GETVP:
979 			case VMSC_GETVP|VMSC_NOWAIT:
980 				vput(vp);
981 				break;
982 			case VMSC_GETVX:
983 				vx_put(vp);
984 				break;
985 			default:
986 				break;
987 			}
988 			if (r != 0)
989 				break;
990 		}
991 
992 next:
993 		/*
994 		 * Yield after some processing.  Depending on the number
995 		 * of vnodes, we might wind up running for a long time.
996 		 * Because threads are not preemptable, time critical
997 		 * userland processes might starve.  Give them a chance
998 		 * now and then.
999 		 */
1000 		if (++count == 10000) {
1001 			/*
1002 			 * We really want to yield a bit, so we simply
1003 			 * sleep a tick
1004 			 */
1005 			tsleep(mp, 0, "vnodescn", 1);
1006 			count = 0;
1007 		}
1008 
1009 		/*
1010 		 * If doing one pass this decrements to zero.  If it starts
1011 		 * at zero it is effectively unlimited for the purposes of
1012 		 * this loop.
1013 		 */
1014 		if (--stopcount == 0)
1015 			break;
1016 
1017 		/*
1018 		 * Iterate.  If the vnode was ripped out from under us
1019 		 * info.vp will already point to the next vnode, otherwise
1020 		 * we have to obtain the next valid vnode ourselves.
1021 		 */
1022 		if (info.vp == vp)
1023 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1024 	}
1025 
1026 	TAILQ_REMOVE(&mp->mnt_vnodescan_list, &info, entry);
1027 	lwkt_reltoken(&mp->mnt_token);
1028 	return(r);
1029 }
1030 
1031 /*
1032  * Remove any vnodes in the vnode table belonging to mount point mp.
1033  *
1034  * If FORCECLOSE is not specified, there should not be any active ones,
1035  * return error if any are found (nb: this is a user error, not a
1036  * system error). If FORCECLOSE is specified, detach any active vnodes
1037  * that are found.
1038  *
1039  * If WRITECLOSE is set, only flush out regular file vnodes open for
1040  * writing.
1041  *
1042  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1043  *
1044  * `rootrefs' specifies the base reference count for the root vnode
1045  * of this filesystem. The root vnode is considered busy if its
1046  * v_refcnt exceeds this value. On a successful return, vflush()
1047  * will call vrele() on the root vnode exactly rootrefs times.
1048  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1049  * be zero.
1050  */
1051 static int debug_busyprt = 0;		/* print out busy vnodes */
1052 SYSCTL_INT(_vfs, OID_AUTO, debug_busyprt, CTLFLAG_RW, &debug_busyprt, 0, "");
1053 
1054 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1055 
1056 struct vflush_info {
1057 	int flags;
1058 	int busy;
1059 	thread_t td;
1060 };
1061 
1062 int
1063 vflush(struct mount *mp, int rootrefs, int flags)
1064 {
1065 	struct thread *td = curthread;	/* XXX */
1066 	struct vnode *rootvp = NULL;
1067 	int error;
1068 	struct vflush_info vflush_info;
1069 
1070 	if (rootrefs > 0) {
1071 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1072 		    ("vflush: bad args"));
1073 		/*
1074 		 * Get the filesystem root vnode. We can vput() it
1075 		 * immediately, since with rootrefs > 0, it won't go away.
1076 		 */
1077 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
1078 			if ((flags & FORCECLOSE) == 0)
1079 				return (error);
1080 			rootrefs = 0;
1081 			/* continue anyway */
1082 		}
1083 		if (rootrefs)
1084 			vput(rootvp);
1085 	}
1086 
1087 	vflush_info.busy = 0;
1088 	vflush_info.flags = flags;
1089 	vflush_info.td = td;
1090 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1091 
1092 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1093 		/*
1094 		 * If just the root vnode is busy, and if its refcount
1095 		 * is equal to `rootrefs', then go ahead and kill it.
1096 		 */
1097 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1098 		KASSERT(VREFCNT(rootvp) >= rootrefs, ("vflush: rootrefs"));
1099 		if (vflush_info.busy == 1 && VREFCNT(rootvp) == rootrefs) {
1100 			vx_lock(rootvp);
1101 			vgone_vxlocked(rootvp);
1102 			vx_unlock(rootvp);
1103 			vflush_info.busy = 0;
1104 		}
1105 	}
1106 	if (vflush_info.busy)
1107 		return (EBUSY);
1108 	for (; rootrefs > 0; rootrefs--)
1109 		vrele(rootvp);
1110 	return (0);
1111 }
1112 
1113 /*
1114  * The scan callback is made with an VX locked vnode.
1115  */
1116 static int
1117 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1118 {
1119 	struct vflush_info *info = data;
1120 	struct vattr vattr;
1121 	int flags = info->flags;
1122 
1123 	/*
1124 	 * Generally speaking try to deactivate on 0 refs (catch-all)
1125 	 */
1126 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1127 
1128 	/*
1129 	 * Skip over a vnodes marked VSYSTEM.
1130 	 */
1131 	if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1132 		return(0);
1133 	}
1134 
1135 	/*
1136 	 * Do not force-close VCHR or VBLK vnodes
1137 	 */
1138 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1139 		flags &= ~(WRITECLOSE|FORCECLOSE);
1140 
1141 	/*
1142 	 * If WRITECLOSE is set, flush out unlinked but still open
1143 	 * files (even if open only for reading) and regular file
1144 	 * vnodes open for writing.
1145 	 */
1146 	if ((flags & WRITECLOSE) &&
1147 	    (vp->v_type == VNON ||
1148 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1149 	    vattr.va_nlink > 0)) &&
1150 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1151 		return(0);
1152 	}
1153 
1154 	/*
1155 	 * If we are the only holder (refcnt of 1) or the vnode is in
1156 	 * termination (refcnt < 0), we can vgone the vnode.
1157 	 */
1158 	if (VREFCNT(vp) <= 1) {
1159 		vgone_vxlocked(vp);
1160 		return(0);
1161 	}
1162 
1163 	/*
1164 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1165 	 * it to a dummymount structure so vop_*() functions don't deref
1166 	 * a NULL pointer.
1167 	 */
1168 	if (flags & FORCECLOSE) {
1169 		vhold(vp);
1170 		vgone_vxlocked(vp);
1171 		if (vp->v_mount == NULL)
1172 			insmntque(vp, &dummymount);
1173 		vdrop(vp);
1174 		return(0);
1175 	}
1176 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1177 		kprintf("vflush: Warning, cannot destroy busy device vnode\n");
1178 	if (debug_busyprt) {
1179 		const char *filename;
1180 
1181 		spin_lock(&vp->v_spin);
1182 		filename = TAILQ_FIRST(&vp->v_namecache) ?
1183 			   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
1184 		spin_unlock(&vp->v_spin);
1185 		kprintf("vflush: busy vnode (%p) %s\n", vp, filename);
1186 	}
1187 	++info->busy;
1188 	return(0);
1189 }
1190 
1191 void
1192 add_bio_ops(struct bio_ops *ops)
1193 {
1194 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1195 }
1196 
1197 void
1198 rem_bio_ops(struct bio_ops *ops)
1199 {
1200 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1201 }
1202 
1203 /*
1204  * This calls the bio_ops io_sync function either for a mount point
1205  * or generally.
1206  *
1207  * WARNING: softdeps is weirdly coded and just isn't happy unless
1208  * io_sync is called with a NULL mount from the general syncing code.
1209  */
1210 void
1211 bio_ops_sync(struct mount *mp)
1212 {
1213 	struct bio_ops *ops;
1214 
1215 	if (mp) {
1216 		if ((ops = mp->mnt_bioops) != NULL)
1217 			ops->io_sync(mp);
1218 	} else {
1219 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1220 			ops->io_sync(NULL);
1221 		}
1222 	}
1223 }
1224 
1225 /*
1226  * Lookup a mount point by nch
1227  */
1228 struct mount *
1229 mount_get_by_nc(struct namecache *ncp)
1230 {
1231 	struct mount *mp = NULL;
1232 
1233 	lwkt_gettoken_shared(&mountlist_token);
1234 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1235 		if (ncp == mp->mnt_ncmountpt.ncp)
1236 			break;
1237 	}
1238 	lwkt_reltoken(&mountlist_token);
1239 
1240 	return (mp);
1241 }
1242 
1243