xref: /dflybsd-src/sys/kern/vfs_mount.c (revision 6938d9ab5938f24b49d1757b7426edfe267ce063)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  * $DragonFly: src/sys/kern/vfs_mount.c,v 1.37 2008/09/17 21:44:18 dillon Exp $
71  */
72 
73 /*
74  * External virtual filesystem routines
75  */
76 #include "opt_ddb.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
89 
90 #include <machine/limits.h>
91 
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_object.h>
98 
99 struct mountscan_info {
100 	TAILQ_ENTRY(mountscan_info) msi_entry;
101 	int msi_how;
102 	struct mount *msi_node;
103 };
104 
105 struct vmntvnodescan_info {
106 	TAILQ_ENTRY(vmntvnodescan_info) entry;
107 	struct vnode *vp;
108 };
109 
110 struct vnlru_info {
111 	int	pass;
112 };
113 
114 static int vnlru_nowhere = 0;
115 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
116 	    &vnlru_nowhere, 0,
117 	    "Number of times the vnlru process ran without success");
118 
119 
120 static struct lwkt_token mntid_token;
121 static struct mount dummymount;
122 
123 /* note: mountlist exported to pstat */
124 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
125 static TAILQ_HEAD(,mountscan_info) mountscan_list;
126 static struct lwkt_token mountlist_token;
127 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
128 struct lwkt_token mntvnode_token;
129 
130 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
131 
132 /*
133  * Called from vfsinit()
134  */
135 void
136 vfs_mount_init(void)
137 {
138 	lwkt_token_init(&mountlist_token, "mntlist");
139 	lwkt_token_init(&mntvnode_token, "mntvnode");
140 	lwkt_token_init(&mntid_token, "mntid");
141 	TAILQ_INIT(&mountscan_list);
142 	TAILQ_INIT(&mntvnodescan_list);
143 	mount_init(&dummymount);
144 	dummymount.mnt_flag |= MNT_RDONLY;
145 	dummymount.mnt_kern_flag |= MNTK_ALL_MPSAFE;
146 }
147 
148 /*
149  * Support function called with mntvnode_token held to remove a vnode
150  * from the mountlist.  We must update any list scans which are in progress.
151  */
152 static void
153 vremovevnodemnt(struct vnode *vp)
154 {
155         struct vmntvnodescan_info *info;
156 
157 	TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
158 		if (info->vp == vp)
159 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
160 	}
161 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
162 }
163 
164 /*
165  * Allocate a new vnode and associate it with a tag, mount point, and
166  * operations vector.
167  *
168  * A VX locked and refd vnode is returned.  The caller should setup the
169  * remaining fields and vx_put() or, if he wishes to leave a vref,
170  * vx_unlock() the vnode.
171  */
172 int
173 getnewvnode(enum vtagtype tag, struct mount *mp,
174 		struct vnode **vpp, int lktimeout, int lkflags)
175 {
176 	struct vnode *vp;
177 
178 	KKASSERT(mp != NULL);
179 
180 	vp = allocvnode(lktimeout, lkflags);
181 	vp->v_tag = tag;
182 	vp->v_data = NULL;
183 
184 	/*
185 	 * By default the vnode is assigned the mount point's normal
186 	 * operations vector.
187 	 */
188 	vp->v_ops = &mp->mnt_vn_use_ops;
189 
190 	/*
191 	 * Placing the vnode on the mount point's queue makes it visible.
192 	 * VNON prevents it from being messed with, however.
193 	 */
194 	insmntque(vp, mp);
195 
196 	/*
197 	 * A VX locked & refd vnode is returned.
198 	 */
199 	*vpp = vp;
200 	return (0);
201 }
202 
203 /*
204  * This function creates vnodes with special operations vectors.  The
205  * mount point is optional.
206  *
207  * This routine is being phased out but is still used by vfs_conf to
208  * create vnodes for devices prior to the root mount (with mp == NULL).
209  */
210 int
211 getspecialvnode(enum vtagtype tag, struct mount *mp,
212 		struct vop_ops **ops,
213 		struct vnode **vpp, int lktimeout, int lkflags)
214 {
215 	struct vnode *vp;
216 
217 	vp = allocvnode(lktimeout, lkflags);
218 	vp->v_tag = tag;
219 	vp->v_data = NULL;
220 	vp->v_ops = ops;
221 
222 	if (mp == NULL)
223 		mp = &dummymount;
224 
225 	/*
226 	 * Placing the vnode on the mount point's queue makes it visible.
227 	 * VNON prevents it from being messed with, however.
228 	 */
229 	insmntque(vp, mp);
230 
231 	/*
232 	 * A VX locked & refd vnode is returned.
233 	 */
234 	*vpp = vp;
235 	return (0);
236 }
237 
238 /*
239  * Interlock against an unmount, return 0 on success, non-zero on failure.
240  *
241  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
242  * is in-progress.
243  *
244  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
245  * are used.  A shared locked will be obtained and the filesystem will not
246  * be unmountable until the lock is released.
247  */
248 int
249 vfs_busy(struct mount *mp, int flags)
250 {
251 	int lkflags;
252 
253 	atomic_add_int(&mp->mnt_refs, 1);
254 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
255 		if (flags & LK_NOWAIT) {
256 			atomic_add_int(&mp->mnt_refs, -1);
257 			return (ENOENT);
258 		}
259 		/* XXX not MP safe */
260 		mp->mnt_kern_flag |= MNTK_MWAIT;
261 		/*
262 		 * Since all busy locks are shared except the exclusive
263 		 * lock granted when unmounting, the only place that a
264 		 * wakeup needs to be done is at the release of the
265 		 * exclusive lock at the end of dounmount.
266 		 */
267 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
268 		atomic_add_int(&mp->mnt_refs, -1);
269 		return (ENOENT);
270 	}
271 	lkflags = LK_SHARED;
272 	if (lockmgr(&mp->mnt_lock, lkflags))
273 		panic("vfs_busy: unexpected lock failure");
274 	return (0);
275 }
276 
277 /*
278  * Free a busy filesystem.
279  *
280  * Decrement refs before releasing the lock so e.g. a pending umount
281  * doesn't give us an unexpected busy error.
282  */
283 void
284 vfs_unbusy(struct mount *mp)
285 {
286 	atomic_add_int(&mp->mnt_refs, -1);
287 	lockmgr(&mp->mnt_lock, LK_RELEASE);
288 }
289 
290 /*
291  * Lookup a filesystem type, and if found allocate and initialize
292  * a mount structure for it.
293  *
294  * Devname is usually updated by mount(8) after booting.
295  */
296 int
297 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
298 {
299 	struct vfsconf *vfsp;
300 	struct mount *mp;
301 
302 	if (fstypename == NULL)
303 		return (ENODEV);
304 
305 	vfsp = vfsconf_find_by_name(fstypename);
306 	if (vfsp == NULL)
307 		return (ENODEV);
308 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
309 	mount_init(mp);
310 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
311 
312 	vfs_busy(mp, 0);
313 	mp->mnt_vfc = vfsp;
314 	mp->mnt_op = vfsp->vfc_vfsops;
315 	vfsp->vfc_refcount++;
316 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
317 	mp->mnt_flag |= MNT_RDONLY;
318 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
319 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
320 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
321 	*mpp = mp;
322 	return (0);
323 }
324 
325 /*
326  * Basic mount structure initialization
327  */
328 void
329 mount_init(struct mount *mp)
330 {
331 	lockinit(&mp->mnt_lock, "vfslock", 0, 0);
332 	lwkt_token_init(&mp->mnt_token, "permnt");
333 
334 	TAILQ_INIT(&mp->mnt_nvnodelist);
335 	TAILQ_INIT(&mp->mnt_reservedvnlist);
336 	TAILQ_INIT(&mp->mnt_jlist);
337 	mp->mnt_nvnodelistsize = 0;
338 	mp->mnt_flag = 0;
339 	mp->mnt_iosize_max = MAXPHYS;
340 }
341 
342 /*
343  * Lookup a mount point by filesystem identifier.
344  */
345 struct mount *
346 vfs_getvfs(fsid_t *fsid)
347 {
348 	struct mount *mp;
349 
350 	lwkt_gettoken(&mountlist_token);
351 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
352 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
353 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
354 			break;
355 		}
356 	}
357 	lwkt_reltoken(&mountlist_token);
358 	return (mp);
359 }
360 
361 /*
362  * Get a new unique fsid.  Try to make its val[0] unique, since this value
363  * will be used to create fake device numbers for stat().  Also try (but
364  * not so hard) make its val[0] unique mod 2^16, since some emulators only
365  * support 16-bit device numbers.  We end up with unique val[0]'s for the
366  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
367  *
368  * Keep in mind that several mounts may be running in parallel.  Starting
369  * the search one past where the previous search terminated is both a
370  * micro-optimization and a defense against returning the same fsid to
371  * different mounts.
372  */
373 void
374 vfs_getnewfsid(struct mount *mp)
375 {
376 	static u_int16_t mntid_base;
377 	fsid_t tfsid;
378 	int mtype;
379 
380 	lwkt_gettoken(&mntid_token);
381 	mtype = mp->mnt_vfc->vfc_typenum;
382 	tfsid.val[1] = mtype;
383 	mtype = (mtype & 0xFF) << 24;
384 	for (;;) {
385 		tfsid.val[0] = makeudev(255,
386 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
387 		mntid_base++;
388 		if (vfs_getvfs(&tfsid) == NULL)
389 			break;
390 	}
391 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
392 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
393 	lwkt_reltoken(&mntid_token);
394 }
395 
396 /*
397  * Set the FSID for a new mount point to the template.  Adjust
398  * the FSID to avoid collisions.
399  */
400 int
401 vfs_setfsid(struct mount *mp, fsid_t *template)
402 {
403 	int didmunge = 0;
404 
405 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
406 	for (;;) {
407 		if (vfs_getvfs(template) == NULL)
408 			break;
409 		didmunge = 1;
410 		++template->val[1];
411 	}
412 	mp->mnt_stat.f_fsid = *template;
413 	return(didmunge);
414 }
415 
416 /*
417  * This routine is called when we have too many vnodes.  It attempts
418  * to free <count> vnodes and will potentially free vnodes that still
419  * have VM backing store (VM backing store is typically the cause
420  * of a vnode blowout so we want to do this).  Therefore, this operation
421  * is not considered cheap.
422  *
423  * A number of conditions may prevent a vnode from being reclaimed.
424  * the buffer cache may have references on the vnode, a directory
425  * vnode may still have references due to the namei cache representing
426  * underlying files, or the vnode may be in active use.   It is not
427  * desireable to reuse such vnodes.  These conditions may cause the
428  * number of vnodes to reach some minimum value regardless of what
429  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
430  */
431 
432 /*
433  * This is a quick non-blocking check to determine if the vnode is a good
434  * candidate for being (eventually) vgone()'d.  Returns 0 if the vnode is
435  * not a good candidate, 1 if it is.
436  */
437 static __inline int
438 vmightfree(struct vnode *vp, int page_count, int pass)
439 {
440 	if (vp->v_flag & VRECLAIMED)
441 		return (0);
442 #if 0
443 	if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
444 		return (0);
445 #endif
446 	if (sysref_isactive(&vp->v_sysref))
447 		return (0);
448 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
449 		return (0);
450 
451 	/*
452 	 * XXX horrible hack.  Up to four passes will be taken.  Each pass
453 	 * makes a larger set of vnodes eligible.  For now what this really
454 	 * means is that we try to recycle files opened only once before
455 	 * recycling files opened multiple times.
456 	 */
457 	switch(vp->v_flag & (VAGE0 | VAGE1)) {
458 	case 0:
459 		if (pass < 3)
460 			return(0);
461 		break;
462 	case VAGE0:
463 		if (pass < 2)
464 			return(0);
465 		break;
466 	case VAGE1:
467 		if (pass < 1)
468 			return(0);
469 		break;
470 	case VAGE0 | VAGE1:
471 		break;
472 	}
473 	return (1);
474 }
475 
476 /*
477  * The vnode was found to be possibly vgone()able and the caller has locked it
478  * (thus the usecount should be 1 now).  Determine if the vnode is actually
479  * vgone()able, doing some cleanups in the process.  Returns 1 if the vnode
480  * can be vgone()'d, 0 otherwise.
481  *
482  * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
483  * in the namecache topology and (B) this vnode has buffer cache bufs.
484  * We cannot remove vnodes with non-leaf namecache associations.  We do a
485  * tentitive leaf check prior to attempting to flush out any buffers but the
486  * 'real' test when all is said in done is that v_auxrefs must become 0 for
487  * the vnode to be freeable.
488  *
489  * We could theoretically just unconditionally flush when v_auxrefs != 0,
490  * but flushing data associated with non-leaf nodes (which are always
491  * directories), just throws it away for no benefit.  It is the buffer
492  * cache's responsibility to choose buffers to recycle from the cached
493  * data point of view.
494  */
495 static int
496 visleaf(struct vnode *vp)
497 {
498 	struct namecache *ncp;
499 
500 	spin_lock(&vp->v_spin);
501 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
502 		if (!TAILQ_EMPTY(&ncp->nc_list)) {
503 			spin_unlock(&vp->v_spin);
504 			return(0);
505 		}
506 	}
507 	spin_unlock(&vp->v_spin);
508 	return(1);
509 }
510 
511 /*
512  * Try to clean up the vnode to the point where it can be vgone()'d, returning
513  * 0 if it cannot be vgone()'d (or already has been), 1 if it can.  Unlike
514  * vmightfree() this routine may flush the vnode and block.  Vnodes marked
515  * VFREE are still candidates for vgone()ing because they may hold namecache
516  * resources and could be blocking the namecache directory hierarchy (and
517  * related vnodes) from being freed.
518  */
519 static int
520 vtrytomakegoneable(struct vnode *vp, int page_count)
521 {
522 	if (vp->v_flag & VRECLAIMED)
523 		return (0);
524 	if (vp->v_sysref.refcnt > 1)
525 		return (0);
526 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
527 		return (0);
528 	if (vp->v_auxrefs && visleaf(vp)) {
529 		vinvalbuf(vp, V_SAVE, 0, 0);
530 #if 0	/* DEBUG */
531 		kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
532 			"vrecycle: vp %p succeeded: %s\n"), vp,
533 			(TAILQ_FIRST(&vp->v_namecache) ?
534 			    TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
535 #endif
536 	}
537 
538 	/*
539 	 * This sequence may seem a little strange, but we need to optimize
540 	 * the critical path a bit.  We can't recycle vnodes with other
541 	 * references and because we are trying to recycle an otherwise
542 	 * perfectly fine vnode we have to invalidate the namecache in a
543 	 * way that avoids possible deadlocks (since the vnode lock is being
544 	 * held here).  Finally, we have to check for other references one
545 	 * last time in case something snuck in during the inval.
546 	 */
547 	if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
548 		return (0);
549 	if (cache_inval_vp_nonblock(vp))
550 		return (0);
551 	return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
552 }
553 
554 /*
555  * Reclaim up to 1/10 of the vnodes associated with a mount point.  Try
556  * to avoid vnodes which have lots of resident pages (we are trying to free
557  * vnodes, not memory).
558  *
559  * This routine is a callback from the mountlist scan.  The mount point
560  * in question will be busied.
561  *
562  * NOTE: The 1/10 reclamation also ensures that the inactive data set
563  *	 (the vnodes being recycled by the one-time use) does not degenerate
564  *	 into too-small a set.  This is important because once a vnode is
565  *	 marked as not being one-time-use (VAGE0/VAGE1 both 0) that vnode
566  *	 will not be destroyed EXCEPT by this mechanism.  VM pages can still
567  *	 be cleaned/freed by the pageout daemon.
568  */
569 static int
570 vlrureclaim(struct mount *mp, void *data)
571 {
572 	struct vnlru_info *info = data;
573 	struct vnode *vp;
574 	int done;
575 	int trigger;
576 	int usevnodes;
577 	int count;
578 	int trigger_mult = vnlru_nowhere;
579 
580 	/*
581 	 * Calculate the trigger point for the resident pages check.  The
582 	 * minimum trigger value is approximately the number of pages in
583 	 * the system divded by the number of vnodes.  However, due to
584 	 * various other system memory overheads unrelated to data caching
585 	 * it is a good idea to double the trigger (at least).
586 	 *
587 	 * trigger_mult starts at 0.  If the recycler is having problems
588 	 * finding enough freeable vnodes it will increase trigger_mult.
589 	 * This should not happen in normal operation, even on machines with
590 	 * low amounts of memory, but extraordinary memory use by the system
591 	 * verses the amount of cached data can trigger it.
592 	 */
593 	usevnodes = desiredvnodes;
594 	if (usevnodes <= 0)
595 		usevnodes = 1;
596 	trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
597 
598 	done = 0;
599 	lwkt_gettoken(&mntvnode_token);
600 	count = mp->mnt_nvnodelistsize / 10 + 1;
601 
602 	while (count && mp->mnt_syncer) {
603 		/*
604 		 * Next vnode.  Use the special syncer vnode to placemark
605 		 * the LRU.  This way the LRU code does not interfere with
606 		 * vmntvnodescan().
607 		 */
608 		vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
609 		TAILQ_REMOVE(&mp->mnt_nvnodelist, mp->mnt_syncer, v_nmntvnodes);
610 		if (vp) {
611 			TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp,
612 					   mp->mnt_syncer, v_nmntvnodes);
613 		} else {
614 			TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, mp->mnt_syncer,
615 					  v_nmntvnodes);
616 			vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
617 			if (vp == NULL)
618 				break;
619 		}
620 
621 		/*
622 		 * __VNODESCAN__
623 		 *
624 		 * The VP will stick around while we hold mntvnode_token,
625 		 * at least until we block, so we can safely do an initial
626 		 * check, and then must check again after we lock the vnode.
627 		 */
628 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
629 		    !vmightfree(vp, trigger, info->pass) /* critical path opt */
630 		) {
631 			--count;
632 			continue;
633 		}
634 
635 		/*
636 		 * VX get the candidate vnode.  If the VX get fails the
637 		 * vnode might still be on the mountlist.  Our loop depends
638 		 * on us at least cycling the vnode to the end of the
639 		 * mountlist.
640 		 */
641 		if (vx_get_nonblock(vp) != 0) {
642 			--count;
643 			continue;
644 		}
645 
646 		/*
647 		 * Since we blocked locking the vp, make sure it is still
648 		 * a candidate for reclamation.  That is, it has not already
649 		 * been reclaimed and only has our VX reference associated
650 		 * with it.
651 		 */
652 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
653 		    (vp->v_flag & VRECLAIMED) ||
654 		    vp->v_mount != mp ||
655 		    !vtrytomakegoneable(vp, trigger)	/* critical path opt */
656 		) {
657 			--count;
658 			vx_put(vp);
659 			continue;
660 		}
661 
662 		/*
663 		 * All right, we are good, move the vp to the end of the
664 		 * mountlist and clean it out.  The vget will have returned
665 		 * an error if the vnode was destroyed (VRECLAIMED set), so we
666 		 * do not have to check again.  The vput() will move the
667 		 * vnode to the free list if the vgone() was successful.
668 		 */
669 		KKASSERT(vp->v_mount == mp);
670 		vgone_vxlocked(vp);
671 		vx_put(vp);
672 		++done;
673 		--count;
674 	}
675 	lwkt_reltoken(&mntvnode_token);
676 	return (done);
677 }
678 
679 /*
680  * Attempt to recycle vnodes in a context that is always safe to block.
681  * Calling vlrurecycle() from the bowels of file system code has some
682  * interesting deadlock problems.
683  */
684 static struct thread *vnlruthread;
685 static int vnlruproc_sig;
686 
687 void
688 vnlru_proc_wait(void)
689 {
690 	tsleep_interlock(&vnlruproc_sig, 0);
691 	if (vnlruproc_sig == 0) {
692 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
693 		wakeup(vnlruthread);
694 	}
695 	tsleep(&vnlruproc_sig, PINTERLOCKED, "vlruwk", hz);
696 }
697 
698 static void
699 vnlru_proc(void)
700 {
701 	struct thread *td = curthread;
702 	struct vnlru_info info;
703 	int done;
704 
705 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
706 			      SHUTDOWN_PRI_FIRST);
707 
708 	for (;;) {
709 		kproc_suspend_loop();
710 
711 		/*
712 		 * Try to free some vnodes if we have too many
713 		 */
714 		if (numvnodes > desiredvnodes &&
715 		    freevnodes > desiredvnodes * 2 / 10) {
716 			int count = numvnodes - desiredvnodes;
717 
718 			if (count > freevnodes / 100)
719 				count = freevnodes / 100;
720 			if (count < 5)
721 				count = 5;
722 			freesomevnodes(count);
723 		}
724 
725 		/*
726 		 * Nothing to do if most of our vnodes are already on
727 		 * the free list.
728 		 */
729 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
730 			vnlruproc_sig = 0;
731 			wakeup(&vnlruproc_sig);
732 			tsleep(vnlruthread, 0, "vlruwt", hz);
733 			continue;
734 		}
735 		cache_hysteresis();
736 
737 		/*
738 		 * The pass iterates through the four combinations of
739 		 * VAGE0/VAGE1.  We want to get rid of aged small files
740 		 * first.
741 		 */
742 		info.pass = 0;
743 		done = 0;
744 		while (done == 0 && info.pass < 4) {
745 			done = mountlist_scan(vlrureclaim, &info,
746 					      MNTSCAN_FORWARD);
747 			++info.pass;
748 		}
749 
750 		/*
751 		 * The vlrureclaim() call only processes 1/10 of the vnodes
752 		 * on each mount.  If we couldn't find any repeat the loop
753 		 * at least enough times to cover all available vnodes before
754 		 * we start sleeping.  Complain if the failure extends past
755 		 * 30 second, every 30 seconds.
756 		 */
757 		if (done == 0) {
758 			++vnlru_nowhere;
759 			if (vnlru_nowhere % 10 == 0)
760 				tsleep(vnlruthread, 0, "vlrup", hz * 3);
761 			if (vnlru_nowhere % 100 == 0)
762 				kprintf("vnlru_proc: vnode recycler stopped working!\n");
763 			if (vnlru_nowhere == 1000)
764 				vnlru_nowhere = 900;
765 		} else {
766 			vnlru_nowhere = 0;
767 		}
768 	}
769 }
770 
771 /*
772  * MOUNTLIST FUNCTIONS
773  */
774 
775 /*
776  * mountlist_insert (MP SAFE)
777  *
778  * Add a new mount point to the mount list.
779  */
780 void
781 mountlist_insert(struct mount *mp, int how)
782 {
783 	lwkt_gettoken(&mountlist_token);
784 	if (how == MNTINS_FIRST)
785 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
786 	else
787 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
788 	lwkt_reltoken(&mountlist_token);
789 }
790 
791 /*
792  * mountlist_interlock (MP SAFE)
793  *
794  * Execute the specified interlock function with the mountlist token
795  * held.  The function will be called in a serialized fashion verses
796  * other functions called through this mechanism.
797  */
798 int
799 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
800 {
801 	int error;
802 
803 	lwkt_gettoken(&mountlist_token);
804 	error = callback(mp);
805 	lwkt_reltoken(&mountlist_token);
806 	return (error);
807 }
808 
809 /*
810  * mountlist_boot_getfirst (DURING BOOT ONLY)
811  *
812  * This function returns the first mount on the mountlist, which is
813  * expected to be the root mount.  Since no interlocks are obtained
814  * this function is only safe to use during booting.
815  */
816 
817 struct mount *
818 mountlist_boot_getfirst(void)
819 {
820 	return(TAILQ_FIRST(&mountlist));
821 }
822 
823 /*
824  * mountlist_remove (MP SAFE)
825  *
826  * Remove a node from the mountlist.  If this node is the next scan node
827  * for any active mountlist scans, the active mountlist scan will be
828  * adjusted to skip the node, thus allowing removals during mountlist
829  * scans.
830  */
831 void
832 mountlist_remove(struct mount *mp)
833 {
834 	struct mountscan_info *msi;
835 
836 	lwkt_gettoken(&mountlist_token);
837 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
838 		if (msi->msi_node == mp) {
839 			if (msi->msi_how & MNTSCAN_FORWARD)
840 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
841 			else
842 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
843 		}
844 	}
845 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
846 	lwkt_reltoken(&mountlist_token);
847 }
848 
849 /*
850  * mountlist_exists (MP SAFE)
851  *
852  * Checks if a node exists in the mountlist.
853  * This function is mainly used by VFS quota code to check if a
854  * cached nullfs struct mount pointer is still valid at use time
855  *
856  * FIXME: there is no warranty the mp passed to that function
857  * will be the same one used by VFS_ACCOUNT() later
858  */
859 int
860 mountlist_exists(struct mount *mp)
861 {
862 	int node_exists = 0;
863 	struct mount* lmp;
864 
865 	lwkt_gettoken(&mountlist_token);
866 	TAILQ_FOREACH(lmp, &mountlist, mnt_list) {
867 		if (lmp == mp) {
868 			node_exists = 1;
869 			break;
870 		}
871 	}
872 	lwkt_reltoken(&mountlist_token);
873 	return(node_exists);
874 }
875 
876 /*
877  * mountlist_scan (MP SAFE)
878  *
879  * Safely scan the mount points on the mount list.  Unless otherwise
880  * specified each mount point will be busied prior to the callback and
881  * unbusied afterwords.  The callback may safely remove any mount point
882  * without interfering with the scan.  If the current callback
883  * mount is removed the scanner will not attempt to unbusy it.
884  *
885  * If a mount node cannot be busied it is silently skipped.
886  *
887  * The callback return value is aggregated and a total is returned.  A return
888  * value of < 0 is not aggregated and will terminate the scan.
889  *
890  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
891  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
892  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
893  *			  the mount node.
894  */
895 int
896 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
897 {
898 	struct mountscan_info info;
899 	struct mount *mp;
900 	int count;
901 	int res;
902 
903 	lwkt_gettoken(&mountlist_token);
904 
905 	info.msi_how = how;
906 	info.msi_node = NULL;	/* paranoia */
907 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
908 
909 	res = 0;
910 
911 	if (how & MNTSCAN_FORWARD) {
912 		info.msi_node = TAILQ_FIRST(&mountlist);
913 		while ((mp = info.msi_node) != NULL) {
914 			if (how & MNTSCAN_NOBUSY) {
915 				count = callback(mp, data);
916 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
917 				count = callback(mp, data);
918 				if (mp == info.msi_node)
919 					vfs_unbusy(mp);
920 			} else {
921 				count = 0;
922 			}
923 			if (count < 0)
924 				break;
925 			res += count;
926 			if (mp == info.msi_node)
927 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
928 		}
929 	} else if (how & MNTSCAN_REVERSE) {
930 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
931 		while ((mp = info.msi_node) != NULL) {
932 			if (how & MNTSCAN_NOBUSY) {
933 				count = callback(mp, data);
934 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
935 				count = callback(mp, data);
936 				if (mp == info.msi_node)
937 					vfs_unbusy(mp);
938 			} else {
939 				count = 0;
940 			}
941 			if (count < 0)
942 				break;
943 			res += count;
944 			if (mp == info.msi_node)
945 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
946 		}
947 	}
948 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
949 	lwkt_reltoken(&mountlist_token);
950 	return(res);
951 }
952 
953 /*
954  * MOUNT RELATED VNODE FUNCTIONS
955  */
956 
957 static struct kproc_desc vnlru_kp = {
958 	"vnlru",
959 	vnlru_proc,
960 	&vnlruthread
961 };
962 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
963 
964 /*
965  * Move a vnode from one mount queue to another.
966  *
967  * MPSAFE
968  */
969 void
970 insmntque(struct vnode *vp, struct mount *mp)
971 {
972 	lwkt_gettoken(&mntvnode_token);
973 	/*
974 	 * Delete from old mount point vnode list, if on one.
975 	 */
976 	if (vp->v_mount != NULL) {
977 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
978 			("bad mount point vnode list size"));
979 		vremovevnodemnt(vp);
980 		vp->v_mount->mnt_nvnodelistsize--;
981 	}
982 	/*
983 	 * Insert into list of vnodes for the new mount point, if available.
984 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
985 	 */
986 	if ((vp->v_mount = mp) == NULL) {
987 		lwkt_reltoken(&mntvnode_token);
988 		return;
989 	}
990 	if (mp->mnt_syncer) {
991 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
992 	} else {
993 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
994 	}
995 	mp->mnt_nvnodelistsize++;
996 	lwkt_reltoken(&mntvnode_token);
997 }
998 
999 
1000 /*
1001  * Scan the vnodes under a mount point and issue appropriate callbacks.
1002  *
1003  * The fastfunc() callback is called with just the mountlist token held
1004  * (no vnode lock).  It may not block and the vnode may be undergoing
1005  * modifications while the caller is processing it.  The vnode will
1006  * not be entirely destroyed, however, due to the fact that the mountlist
1007  * token is held.  A return value < 0 skips to the next vnode without calling
1008  * the slowfunc(), a return value > 0 terminates the loop.
1009  *
1010  * The slowfunc() callback is called after the vnode has been successfully
1011  * locked based on passed flags.  The vnode is skipped if it gets rearranged
1012  * or destroyed while blocking on the lock.  A non-zero return value from
1013  * the slow function terminates the loop.  The slow function is allowed to
1014  * arbitrarily block.  The scanning code guarentees consistency of operation
1015  * even if the slow function deletes or moves the node, or blocks and some
1016  * other thread deletes or moves the node.
1017  *
1018  * NOTE: We hold vmobj_token to prevent a VM object from being destroyed
1019  *	 out from under the fastfunc()'s vnode test.  It will not prevent
1020  *	 v_object from getting NULL'd out but it will ensure that the
1021  *	 pointer (if we race) will remain stable.
1022  */
1023 int
1024 vmntvnodescan(
1025     struct mount *mp,
1026     int flags,
1027     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
1028     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
1029     void *data
1030 ) {
1031 	struct vmntvnodescan_info info;
1032 	struct vnode *vp;
1033 	int r = 0;
1034 	int maxcount = mp->mnt_nvnodelistsize * 2;
1035 	int stopcount = 0;
1036 	int count = 0;
1037 
1038 	lwkt_gettoken(&mntvnode_token);
1039 	lwkt_gettoken(&vmobj_token);
1040 
1041 	/*
1042 	 * If asked to do one pass stop after iterating available vnodes.
1043 	 * Under heavy loads new vnodes can be added while we are scanning,
1044 	 * so this isn't perfect.  Create a slop factor of 2x.
1045 	 */
1046 	if (flags & VMSC_ONEPASS)
1047 		stopcount = mp->mnt_nvnodelistsize;
1048 
1049 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1050 	TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
1051 	while ((vp = info.vp) != NULL) {
1052 		if (--maxcount == 0) {
1053 			kprintf("Warning: excessive fssync iteration\n");
1054 			maxcount = mp->mnt_nvnodelistsize * 2;
1055 		}
1056 
1057 		/*
1058 		 * Skip if visible but not ready, or special (e.g.
1059 		 * mp->mnt_syncer)
1060 		 */
1061 		if (vp->v_type == VNON)
1062 			goto next;
1063 		KKASSERT(vp->v_mount == mp);
1064 
1065 		/*
1066 		 * Quick test.  A negative return continues the loop without
1067 		 * calling the slow test.  0 continues onto the slow test.
1068 		 * A positive number aborts the loop.
1069 		 */
1070 		if (fastfunc) {
1071 			if ((r = fastfunc(mp, vp, data)) < 0) {
1072 				r = 0;
1073 				goto next;
1074 			}
1075 			if (r)
1076 				break;
1077 		}
1078 
1079 		/*
1080 		 * Get a vxlock on the vnode, retry if it has moved or isn't
1081 		 * in the mountlist where we expect it.
1082 		 */
1083 		if (slowfunc) {
1084 			int error;
1085 
1086 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1087 			case VMSC_GETVP:
1088 				error = vget(vp, LK_EXCLUSIVE);
1089 				break;
1090 			case VMSC_GETVP|VMSC_NOWAIT:
1091 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
1092 				break;
1093 			case VMSC_GETVX:
1094 				vx_get(vp);
1095 				error = 0;
1096 				break;
1097 			default:
1098 				error = 0;
1099 				break;
1100 			}
1101 			if (error)
1102 				goto next;
1103 			/*
1104 			 * Do not call the slow function if the vnode is
1105 			 * invalid or if it was ripped out from under us
1106 			 * while we (potentially) blocked.
1107 			 */
1108 			if (info.vp == vp && vp->v_type != VNON)
1109 				r = slowfunc(mp, vp, data);
1110 
1111 			/*
1112 			 * Cleanup
1113 			 */
1114 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1115 			case VMSC_GETVP:
1116 			case VMSC_GETVP|VMSC_NOWAIT:
1117 				vput(vp);
1118 				break;
1119 			case VMSC_GETVX:
1120 				vx_put(vp);
1121 				break;
1122 			default:
1123 				break;
1124 			}
1125 			if (r != 0)
1126 				break;
1127 		}
1128 
1129 next:
1130 		/*
1131 		 * Yield after some processing.  Depending on the number
1132 		 * of vnodes, we might wind up running for a long time.
1133 		 * Because threads are not preemptable, time critical
1134 		 * userland processes might starve.  Give them a chance
1135 		 * now and then.
1136 		 */
1137 		if (++count == 10000) {
1138 			/* We really want to yield a bit, so we simply sleep a tick */
1139 			tsleep(mp, 0, "vnodescn", 1);
1140 			count = 0;
1141 		}
1142 
1143 		/*
1144 		 * If doing one pass this decrements to zero.  If it starts
1145 		 * at zero it is effectively unlimited for the purposes of
1146 		 * this loop.
1147 		 */
1148 		if (--stopcount == 0)
1149 			break;
1150 
1151 		/*
1152 		 * Iterate.  If the vnode was ripped out from under us
1153 		 * info.vp will already point to the next vnode, otherwise
1154 		 * we have to obtain the next valid vnode ourselves.
1155 		 */
1156 		if (info.vp == vp)
1157 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1158 	}
1159 	TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
1160 	lwkt_reltoken(&vmobj_token);
1161 	lwkt_reltoken(&mntvnode_token);
1162 	return(r);
1163 }
1164 
1165 /*
1166  * Remove any vnodes in the vnode table belonging to mount point mp.
1167  *
1168  * If FORCECLOSE is not specified, there should not be any active ones,
1169  * return error if any are found (nb: this is a user error, not a
1170  * system error). If FORCECLOSE is specified, detach any active vnodes
1171  * that are found.
1172  *
1173  * If WRITECLOSE is set, only flush out regular file vnodes open for
1174  * writing.
1175  *
1176  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1177  *
1178  * `rootrefs' specifies the base reference count for the root vnode
1179  * of this filesystem. The root vnode is considered busy if its
1180  * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1181  * will call vrele() on the root vnode exactly rootrefs times.
1182  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1183  * be zero.
1184  */
1185 #ifdef DIAGNOSTIC
1186 static int busyprt = 0;		/* print out busy vnodes */
1187 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1188 #endif
1189 
1190 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1191 
1192 struct vflush_info {
1193 	int flags;
1194 	int busy;
1195 	thread_t td;
1196 };
1197 
1198 int
1199 vflush(struct mount *mp, int rootrefs, int flags)
1200 {
1201 	struct thread *td = curthread;	/* XXX */
1202 	struct vnode *rootvp = NULL;
1203 	int error;
1204 	struct vflush_info vflush_info;
1205 
1206 	if (rootrefs > 0) {
1207 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1208 		    ("vflush: bad args"));
1209 		/*
1210 		 * Get the filesystem root vnode. We can vput() it
1211 		 * immediately, since with rootrefs > 0, it won't go away.
1212 		 */
1213 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
1214 			if ((flags & FORCECLOSE) == 0)
1215 				return (error);
1216 			rootrefs = 0;
1217 			/* continue anyway */
1218 		}
1219 		if (rootrefs)
1220 			vput(rootvp);
1221 	}
1222 
1223 	vflush_info.busy = 0;
1224 	vflush_info.flags = flags;
1225 	vflush_info.td = td;
1226 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1227 
1228 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1229 		/*
1230 		 * If just the root vnode is busy, and if its refcount
1231 		 * is equal to `rootrefs', then go ahead and kill it.
1232 		 */
1233 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1234 		KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1235 		if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1236 			vx_lock(rootvp);
1237 			vgone_vxlocked(rootvp);
1238 			vx_unlock(rootvp);
1239 			vflush_info.busy = 0;
1240 		}
1241 	}
1242 	if (vflush_info.busy)
1243 		return (EBUSY);
1244 	for (; rootrefs > 0; rootrefs--)
1245 		vrele(rootvp);
1246 	return (0);
1247 }
1248 
1249 /*
1250  * The scan callback is made with an VX locked vnode.
1251  */
1252 static int
1253 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1254 {
1255 	struct vflush_info *info = data;
1256 	struct vattr vattr;
1257 
1258 	/*
1259 	 * Skip over a vnodes marked VSYSTEM.
1260 	 */
1261 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1262 		return(0);
1263 	}
1264 
1265 	/*
1266 	 * If WRITECLOSE is set, flush out unlinked but still open
1267 	 * files (even if open only for reading) and regular file
1268 	 * vnodes open for writing.
1269 	 */
1270 	if ((info->flags & WRITECLOSE) &&
1271 	    (vp->v_type == VNON ||
1272 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1273 	    vattr.va_nlink > 0)) &&
1274 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1275 		return(0);
1276 	}
1277 
1278 	/*
1279 	 * If we are the only holder (refcnt of 1) or the vnode is in
1280 	 * termination (refcnt < 0), we can vgone the vnode.
1281 	 */
1282 	if (vp->v_sysref.refcnt <= 1) {
1283 		vgone_vxlocked(vp);
1284 		return(0);
1285 	}
1286 
1287 	/*
1288 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1289 	 * it to a dummymount structure so vop_*() functions don't deref
1290 	 * a NULL pointer.
1291 	 */
1292 	if (info->flags & FORCECLOSE) {
1293 		vhold(vp);
1294 		vgone_vxlocked(vp);
1295 		if (vp->v_mount == NULL)
1296 			insmntque(vp, &dummymount);
1297 		vdrop(vp);
1298 		return(0);
1299 	}
1300 #ifdef DIAGNOSTIC
1301 	if (busyprt)
1302 		vprint("vflush: busy vnode", vp);
1303 #endif
1304 	++info->busy;
1305 	return(0);
1306 }
1307 
1308 void
1309 add_bio_ops(struct bio_ops *ops)
1310 {
1311 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1312 }
1313 
1314 void
1315 rem_bio_ops(struct bio_ops *ops)
1316 {
1317 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1318 }
1319 
1320 /*
1321  * This calls the bio_ops io_sync function either for a mount point
1322  * or generally.
1323  *
1324  * WARNING: softdeps is weirdly coded and just isn't happy unless
1325  * io_sync is called with a NULL mount from the general syncing code.
1326  */
1327 void
1328 bio_ops_sync(struct mount *mp)
1329 {
1330 	struct bio_ops *ops;
1331 
1332 	if (mp) {
1333 		if ((ops = mp->mnt_bioops) != NULL)
1334 			ops->io_sync(mp);
1335 	} else {
1336 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1337 			ops->io_sync(NULL);
1338 		}
1339 	}
1340 }
1341 
1342 /*
1343  * Lookup a mount point by nch
1344  */
1345 struct mount *
1346 mount_get_by_nc(struct namecache *ncp)
1347 {
1348 	struct mount *mp = NULL;
1349 
1350 	lwkt_gettoken(&mountlist_token);
1351 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1352 		if (ncp == mp->mnt_ncmountpt.ncp)
1353 			break;
1354 	}
1355 	lwkt_reltoken(&mountlist_token);
1356 	return (mp);
1357 }
1358 
1359