xref: /dflybsd-src/sys/kern/vfs_lock.c (revision 78ce1036881a18b24268ba328cde152be2d1979d)
1 /*
2  * Copyright (c) 2004,2013-2017 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * External lock/ref-related vnode functions
37  *
38  * vs_state transition locking requirements:
39  *
40  *	INACTIVE -> CACHED|DYING	vx_lock(excl) + vi->spin
41  *	DYING    -> CACHED		vx_lock(excl)
42  *	ACTIVE   -> INACTIVE		(none)       + v_spin + vi->spin
43  *	INACTIVE -> ACTIVE		vn_lock(any) + v_spin + vi->spin
44  *	CACHED   -> ACTIVE		vn_lock(any) + v_spin + vi->spin
45  *
46  * NOTE: Switching to/from ACTIVE/INACTIVE requires v_spin and vi->spin,
47  *
48  *	 Switching into ACTIVE also requires a vref and vnode lock, however
49  *	 the vnode lock is allowed to be SHARED.
50  *
51  *	 Switching into a CACHED or DYING state requires an exclusive vnode
52  *	 lock or vx_lock (which is almost the same thing).
53  */
54 
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/malloc.h>
59 #include <sys/mount.h>
60 #include <sys/proc.h>
61 #include <sys/vnode.h>
62 #include <sys/spinlock2.h>
63 #include <sys/sysctl.h>
64 
65 #include <machine/limits.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 
70 #define VACT_MAX	10
71 #define VACT_INC	2
72 
73 static void vnode_terminate(struct vnode *vp);
74 
75 static MALLOC_DEFINE(M_VNODE, "vnodes", "vnode structures");
76 
77 /*
78  * The vnode free list hold inactive vnodes.  Aged inactive vnodes
79  * are inserted prior to the mid point, and otherwise inserted
80  * at the tail.
81  *
82  * The vnode code goes to great lengths to avoid moving vnodes between
83  * lists, but sometimes it is unavoidable.  For this situation we try to
84  * avoid lock contention but we do not try very hard to avoid cache line
85  * congestion.  A modestly sized hash table is used.
86  */
87 #define VLIST_PRIME2	123462047LU
88 #define VLIST_XOR	(uintptr_t)0xab4582fa8322fb71LLU
89 
90 #define VLIST_HASH(vp)	(((uintptr_t)vp ^ VLIST_XOR) % \
91 			 VLIST_PRIME2 % (unsigned)ncpus)
92 
93 static struct vnode_index *vnode_list_hash;
94 
95 int  activevnodes = 0;
96 SYSCTL_INT(_debug, OID_AUTO, activevnodes, CTLFLAG_RD,
97 	&activevnodes, 0, "Number of active nodes");
98 int  cachedvnodes = 0;
99 SYSCTL_INT(_debug, OID_AUTO, cachedvnodes, CTLFLAG_RD,
100 	&cachedvnodes, 0, "Number of total cached nodes");
101 int  inactivevnodes = 0;
102 SYSCTL_INT(_debug, OID_AUTO, inactivevnodes, CTLFLAG_RD,
103 	&inactivevnodes, 0, "Number of inactive nodes");
104 static int batchfreevnodes = 5;
105 SYSCTL_INT(_debug, OID_AUTO, batchfreevnodes, CTLFLAG_RW,
106 	&batchfreevnodes, 0, "Number of vnodes to free at once");
107 #ifdef TRACKVNODE
108 static u_long trackvnode;
109 SYSCTL_ULONG(_debug, OID_AUTO, trackvnode, CTLFLAG_RW,
110 		&trackvnode, 0, "");
111 #endif
112 
113 /*
114  * Called from vfsinit()
115  */
116 void
117 vfs_lock_init(void)
118 {
119 	int i;
120 
121 	kmalloc_raise_limit(M_VNODE, 0);	/* unlimited */
122 	vnode_list_hash = kmalloc(sizeof(*vnode_list_hash) * ncpus,
123 				  M_VNODE, M_ZERO | M_WAITOK);
124 	for (i = 0; i < ncpus; ++i) {
125 		struct vnode_index *vi = &vnode_list_hash[i];
126 
127 		TAILQ_INIT(&vi->inactive_list);
128 		TAILQ_INIT(&vi->active_list);
129 		TAILQ_INSERT_TAIL(&vi->active_list, &vi->active_rover, v_list);
130 		spin_init(&vi->spin, "vfslock");
131 	}
132 }
133 
134 /*
135  * Misc functions
136  */
137 static __inline
138 void
139 _vsetflags(struct vnode *vp, int flags)
140 {
141 	atomic_set_int(&vp->v_flag, flags);
142 }
143 
144 static __inline
145 void
146 _vclrflags(struct vnode *vp, int flags)
147 {
148 	atomic_clear_int(&vp->v_flag, flags);
149 }
150 
151 void
152 vsetflags(struct vnode *vp, int flags)
153 {
154 	_vsetflags(vp, flags);
155 }
156 
157 void
158 vclrflags(struct vnode *vp, int flags)
159 {
160 	_vclrflags(vp, flags);
161 }
162 
163 /*
164  * Place the vnode on the active list.
165  *
166  * Caller must hold vp->v_spin
167  */
168 static __inline
169 void
170 _vactivate(struct vnode *vp)
171 {
172 	struct vnode_index *vi = &vnode_list_hash[VLIST_HASH(vp)];
173 
174 #ifdef TRACKVNODE
175 	if ((u_long)vp == trackvnode)
176 		kprintf("_vactivate %p %08x\n", vp, vp->v_flag);
177 #endif
178 	spin_lock(&vi->spin);
179 
180 	switch(vp->v_state) {
181 	case VS_ACTIVE:
182 		spin_unlock(&vi->spin);
183 		panic("_vactivate: already active");
184 		/* NOT REACHED */
185 		return;
186 	case VS_INACTIVE:
187 		TAILQ_REMOVE(&vi->inactive_list, vp, v_list);
188 		atomic_add_int(&mycpu->gd_inactivevnodes, -1);
189 		break;
190 	case VS_CACHED:
191 	case VS_DYING:
192 		break;
193 	}
194 	TAILQ_INSERT_TAIL(&vi->active_list, vp, v_list);
195 	vp->v_state = VS_ACTIVE;
196 	spin_unlock(&vi->spin);
197 	atomic_add_int(&mycpu->gd_activevnodes, 1);
198 }
199 
200 /*
201  * Put a vnode on the inactive list.
202  *
203  * Caller must hold v_spin
204  */
205 static __inline
206 void
207 _vinactive(struct vnode *vp)
208 {
209 	struct vnode_index *vi = &vnode_list_hash[VLIST_HASH(vp)];
210 
211 #ifdef TRACKVNODE
212 	if ((u_long)vp == trackvnode) {
213 		kprintf("_vinactive %p %08x\n", vp, vp->v_flag);
214 		print_backtrace(-1);
215 	}
216 #endif
217 	spin_lock(&vi->spin);
218 
219 	/*
220 	 * Remove from active list if it is sitting on it
221 	 */
222 	switch(vp->v_state) {
223 	case VS_ACTIVE:
224 		TAILQ_REMOVE(&vi->active_list, vp, v_list);
225 		atomic_add_int(&mycpu->gd_activevnodes, -1);
226 		break;
227 	case VS_INACTIVE:
228 		spin_unlock(&vi->spin);
229 		panic("_vinactive: already inactive");
230 		/* NOT REACHED */
231 		return;
232 	case VS_CACHED:
233 	case VS_DYING:
234 		break;
235 	}
236 
237 	/*
238 	 * Distinguish between basically dead vnodes, vnodes with cached
239 	 * data, and vnodes without cached data.  A rover will shift the
240 	 * vnodes around as their cache status is lost.
241 	 */
242 	if (vp->v_flag & VRECLAIMED) {
243 		TAILQ_INSERT_HEAD(&vi->inactive_list, vp, v_list);
244 	} else {
245 		TAILQ_INSERT_TAIL(&vi->inactive_list, vp, v_list);
246 	}
247 	vp->v_state = VS_INACTIVE;
248 	spin_unlock(&vi->spin);
249 	atomic_add_int(&mycpu->gd_inactivevnodes, 1);
250 }
251 
252 /*
253  * Add a ref to an active vnode.  This function should never be called
254  * with an inactive vnode (use vget() instead), but might be called
255  * with other states.
256  */
257 void
258 vref(struct vnode *vp)
259 {
260 	KASSERT((VREFCNT(vp) > 0 && vp->v_state != VS_INACTIVE),
261 		("vref: bad refcnt %08x %d", vp->v_refcnt, vp->v_state));
262 	atomic_add_int(&vp->v_refcnt, 1);
263 }
264 
265 void
266 synchronizevnodecount(void)
267 {
268 	int nca = 0;
269 	int act = 0;
270 	int ina = 0;
271 	int i;
272 
273 	for (i = 0; i < ncpus; ++i) {
274 		globaldata_t gd = globaldata_find(i);
275 		nca += gd->gd_cachedvnodes;
276 		act += gd->gd_activevnodes;
277 		ina += gd->gd_inactivevnodes;
278 	}
279 	cachedvnodes = nca;
280 	activevnodes = act;
281 	inactivevnodes = ina;
282 }
283 
284 /*
285  * Count number of cached vnodes.  This is middling expensive so be
286  * careful not to make this call in the critical path.  Each cpu tracks
287  * its own accumulator.  The individual accumulators must be summed
288  * together to get an accurate value.
289  */
290 int
291 countcachedvnodes(void)
292 {
293 	int i;
294 	int n = 0;
295 
296 	for (i = 0; i < ncpus; ++i) {
297 		globaldata_t gd = globaldata_find(i);
298 		n += gd->gd_cachedvnodes;
299 	}
300 	return n;
301 }
302 
303 int
304 countcachedandinactivevnodes(void)
305 {
306 	int i;
307 	int n = 0;
308 
309 	for (i = 0; i < ncpus; ++i) {
310 		globaldata_t gd = globaldata_find(i);
311 		n += gd->gd_cachedvnodes + gd->gd_inactivevnodes;
312 	}
313 	return n;
314 }
315 
316 /*
317  * Release a ref on an active or inactive vnode.
318  *
319  * Caller has no other requirements.
320  *
321  * If VREF_FINALIZE is set this will deactivate the vnode on the 1->0
322  * transition, otherwise we leave the vnode in the active list and
323  * do a lockless transition to 0, which is very important for the
324  * critical path.
325  *
326  * (vrele() is not called when a vnode is being destroyed w/kfree)
327  */
328 void
329 vrele(struct vnode *vp)
330 {
331 	int count;
332 
333 #if 1
334 	count = vp->v_refcnt;
335 	cpu_ccfence();
336 
337 	for (;;) {
338 		KKASSERT((count & VREF_MASK) > 0);
339 		KKASSERT(vp->v_state == VS_ACTIVE ||
340 			 vp->v_state == VS_INACTIVE);
341 
342 		/*
343 		 * 2+ case
344 		 */
345 		if ((count & VREF_MASK) > 1) {
346 			if (atomic_fcmpset_int(&vp->v_refcnt,
347 					       &count, count - 1)) {
348 				break;
349 			}
350 			continue;
351 		}
352 
353 		/*
354 		 * 1->0 transition case must handle possible finalization.
355 		 * When finalizing we transition 1->0x40000000.  Note that
356 		 * cachedvnodes is only adjusted on transitions to ->0.
357 		 *
358 		 * WARNING! VREF_TERMINATE can be cleared at any point
359 		 *	    when the refcnt is non-zero (by vget()) and
360 		 *	    the vnode has not been reclaimed.  Thus
361 		 *	    transitions out of VREF_TERMINATE do not have
362 		 *	    to mess with cachedvnodes.
363 		 */
364 		if (count & VREF_FINALIZE) {
365 			vx_lock(vp);
366 			if (atomic_fcmpset_int(&vp->v_refcnt,
367 					      &count, VREF_TERMINATE)) {
368 				vnode_terminate(vp);
369 				break;
370 			}
371 			vx_unlock(vp);
372 		} else {
373 			if (atomic_fcmpset_int(&vp->v_refcnt, &count, 0)) {
374 				atomic_add_int(&mycpu->gd_cachedvnodes, 1);
375 				break;
376 			}
377 		}
378 		cpu_pause();
379 		/* retry */
380 	}
381 #else
382 	/*
383 	 * XXX NOT YET WORKING!  Multiple threads can reference the vnode
384 	 * after dropping their count, racing destruction, because this
385 	 * code is not directly transitioning from 1->VREF_FINALIZE.
386 	 */
387         /*
388          * Drop the ref-count.  On the 1->0 transition we check VREF_FINALIZE
389          * and attempt to acquire VREF_TERMINATE if set.  It is possible for
390          * concurrent vref/vrele to race and bounce 0->1, 1->0, etc, but
391          * only one will be able to transition the vnode into the
392          * VREF_TERMINATE state.
393          *
394          * NOTE: VREF_TERMINATE is *in* VREF_MASK, so the vnode may only enter
395          *       this state once.
396          */
397         count = atomic_fetchadd_int(&vp->v_refcnt, -1);
398         if ((count & VREF_MASK) == 1) {
399                 atomic_add_int(&mycpu->gd_cachedvnodes, 1);
400                 --count;
401                 while ((count & (VREF_MASK | VREF_FINALIZE)) == VREF_FINALIZE) {
402                         vx_lock(vp);
403                         if (atomic_fcmpset_int(&vp->v_refcnt,
404                                                &count, VREF_TERMINATE)) {
405                                 atomic_add_int(&mycpu->gd_cachedvnodes, -1);
406                                 vnode_terminate(vp);
407                                 break;
408                         }
409                         vx_unlock(vp);
410                 }
411         }
412 #endif
413 }
414 
415 /*
416  * Add an auxiliary data structure reference to the vnode.  Auxiliary
417  * references do not change the state of the vnode or prevent deactivation
418  * or reclamation of the vnode, but will prevent the vnode from being
419  * destroyed (kfree()'d).
420  *
421  * WARNING!  vhold() must not acquire v_spin.  The spinlock may or may not
422  *	     already be held by the caller.  vdrop() will clean up the
423  *	     free list state.
424  */
425 void
426 vhold(struct vnode *vp)
427 {
428 	atomic_add_int(&vp->v_auxrefs, 1);
429 }
430 
431 /*
432  * Remove an auxiliary reference from the vnode.
433  */
434 void
435 vdrop(struct vnode *vp)
436 {
437 	atomic_add_int(&vp->v_auxrefs, -1);
438 }
439 
440 /*
441  * This function is called on the 1->0 transition (which is actually
442  * 1->VREF_TERMINATE) when VREF_FINALIZE is set, forcing deactivation
443  * of the vnode.
444  *
445  * Additional vrefs are allowed to race but will not result in a reentrant
446  * call to vnode_terminate() due to refcnt being VREF_TERMINATE.  This
447  * prevents additional 1->0 transitions.
448  *
449  * ONLY A VGET() CAN REACTIVATE THE VNODE.
450  *
451  * Caller must hold the VX lock.
452  *
453  * NOTE: v_mount may be NULL due to assigmment to dead_vnode_vops
454  *
455  * NOTE: The vnode may be marked inactive with dirty buffers
456  *	 or dirty pages in its cached VM object still present.
457  *
458  * NOTE: VS_FREE should not be set on entry (the vnode was expected to
459  *	 previously be active).  We lose control of the vnode the instant
460  *	 it is placed on the free list.
461  *
462  *	 The VX lock is required when transitioning to VS_CACHED but is
463  *	 not sufficient for the vshouldfree() interlocked test or when
464  *	 transitioning away from VS_CACHED.  v_spin is also required for
465  *	 those cases.
466  */
467 static
468 void
469 vnode_terminate(struct vnode *vp)
470 {
471 	KKASSERT(vp->v_state == VS_ACTIVE);
472 
473 	if ((vp->v_flag & VINACTIVE) == 0) {
474 		_vsetflags(vp, VINACTIVE);
475 		if (vp->v_mount)
476 			VOP_INACTIVE(vp);
477 	}
478 	spin_lock(&vp->v_spin);
479 	_vinactive(vp);
480 	spin_unlock(&vp->v_spin);
481 
482 	vx_unlock(vp);
483 }
484 
485 /****************************************************************
486  *			VX LOCKING FUNCTIONS			*
487  ****************************************************************
488  *
489  * These functions lock vnodes for reclamation and deactivation related
490  * activities.  The caller must already be holding some sort of reference
491  * on the vnode.
492  */
493 void
494 vx_lock(struct vnode *vp)
495 {
496 	lockmgr(&vp->v_lock, LK_EXCLUSIVE);
497 }
498 
499 void
500 vx_unlock(struct vnode *vp)
501 {
502 	lockmgr(&vp->v_lock, LK_RELEASE);
503 }
504 
505 /****************************************************************
506  *			VNODE ACQUISITION FUNCTIONS		*
507  ****************************************************************
508  *
509  * These functions must be used when accessing a vnode that has no
510  * chance of being destroyed in a SMP race.  That means the caller will
511  * usually either hold an auxiliary reference (such as the namecache)
512  * or hold some other lock that ensures that the vnode cannot be destroyed.
513  *
514  * These functions are MANDATORY for any code chain accessing a vnode
515  * whos activation state is not known.
516  *
517  * vget() can be called with LK_NOWAIT and will return EBUSY if the
518  * lock cannot be immediately acquired.
519  *
520  * vget()/vput() are used when reactivation is desired.
521  *
522  * vx_get() and vx_put() are used when reactivation is not desired.
523  */
524 int
525 vget(struct vnode *vp, int flags)
526 {
527 	int error;
528 
529 	/*
530 	 * A lock type must be passed
531 	 */
532 	if ((flags & LK_TYPE_MASK) == 0) {
533 		panic("vget() called with no lock specified!");
534 		/* NOT REACHED */
535 	}
536 
537 	/*
538 	 * Reference the structure and then acquire the lock.
539 	 *
540 	 * NOTE: The requested lock might be a shared lock and does
541 	 *	 not protect our access to the refcnt or other fields.
542 	 */
543 	if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
544 		atomic_add_int(&mycpu->gd_cachedvnodes, -1);
545 
546 	if ((error = vn_lock(vp, flags | LK_FAILRECLAIM)) != 0) {
547 		/*
548 		 * The lock failed, undo and return an error.  This will not
549 		 * normally trigger a termination.
550 		 */
551 		vrele(vp);
552 	} else if (vp->v_flag & VRECLAIMED) {
553 		/*
554 		 * The node is being reclaimed and cannot be reactivated
555 		 * any more, undo and return ENOENT.
556 		 */
557 		vn_unlock(vp);
558 		vrele(vp);
559 		error = ENOENT;
560 	} else if (vp->v_state == VS_ACTIVE) {
561 		/*
562 		 * A VS_ACTIVE vnode coupled with the fact that we have
563 		 * a vnode lock (even if shared) prevents v_state from
564 		 * changing.  Since the vnode is not in a VRECLAIMED state,
565 		 * we can safely clear VINACTIVE.
566 		 *
567 		 * It is possible for a shared lock to cause a race with
568 		 * another thread that is also in the process of clearing
569 		 * VREF_TERMINATE, meaning that we might return with it still
570 		 * set and then assert in a later vref().  The solution is to
571 		 * unconditionally clear VREF_TERMINATE here as well.
572 		 *
573 		 * NOTE! Multiple threads may clear VINACTIVE if this is
574 		 *	 shared lock.  This race is allowed.
575 		 */
576 		if (vp->v_flag & VINACTIVE)
577 			_vclrflags(vp, VINACTIVE);	/* SMP race ok */
578 		if (vp->v_act < VACT_MAX) {
579 			vp->v_act += VACT_INC;
580 			if (vp->v_act > VACT_MAX)	/* SMP race ok */
581 				vp->v_act = VACT_MAX;
582 		}
583 		error = 0;
584 		if (vp->v_refcnt & VREF_TERMINATE)	/* SMP race ok */
585 			atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE);
586 	} else {
587 		/*
588 		 * If the vnode is not VS_ACTIVE it must be reactivated
589 		 * in addition to clearing VINACTIVE.  An exclusive spin_lock
590 		 * is needed to manipulate the vnode's list.
591 		 *
592 		 * Because the lockmgr lock might be shared, we might race
593 		 * another reactivation, which we handle.  In this situation,
594 		 * however, the refcnt prevents other v_state races.
595 		 *
596 		 * As with above, clearing VINACTIVE is allowed to race other
597 		 * clearings of VINACTIVE.
598 		 *
599 		 * VREF_TERMINATE and VREF_FINALIZE can only be cleared when
600 		 * the refcnt is non-zero and the vnode has not been
601 		 * reclaimed.  This also means that the transitions do
602 		 * not affect cachedvnodes.
603 		 *
604 		 * It is possible for a shared lock to cause a race with
605 		 * another thread that is also in the process of clearing
606 		 * VREF_TERMINATE, meaning that we might return with it still
607 		 * set and then assert in a later vref().  The solution is to
608 		 * unconditionally clear VREF_TERMINATE here as well.
609 		 */
610 		_vclrflags(vp, VINACTIVE);
611 		vp->v_act += VACT_INC;
612 		if (vp->v_act > VACT_MAX)	/* SMP race ok */
613 			vp->v_act = VACT_MAX;
614 		spin_lock(&vp->v_spin);
615 
616 		switch(vp->v_state) {
617 		case VS_INACTIVE:
618 			_vactivate(vp);
619 			atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE |
620 							VREF_FINALIZE);
621 			spin_unlock(&vp->v_spin);
622 			break;
623 		case VS_CACHED:
624 			_vactivate(vp);
625 			atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE |
626 							VREF_FINALIZE);
627 			spin_unlock(&vp->v_spin);
628 			break;
629 		case VS_ACTIVE:
630 			atomic_clear_int(&vp->v_refcnt, VREF_FINALIZE |
631 							VREF_TERMINATE);
632 			spin_unlock(&vp->v_spin);
633 			break;
634 		case VS_DYING:
635 			spin_unlock(&vp->v_spin);
636 			panic("Impossible VS_DYING state");
637 			break;
638 		}
639 		error = 0;
640 	}
641 	return(error);
642 }
643 
644 #ifdef DEBUG_VPUT
645 
646 void
647 debug_vput(struct vnode *vp, const char *filename, int line)
648 {
649 	kprintf("vput(%p) %s:%d\n", vp, filename, line);
650 	vn_unlock(vp);
651 	vrele(vp);
652 }
653 
654 #else
655 
656 void
657 vput(struct vnode *vp)
658 {
659 	vn_unlock(vp);
660 	vrele(vp);
661 }
662 
663 #endif
664 
665 /*
666  * Acquire the vnode lock unguarded.
667  *
668  * The non-blocking version also uses a slightly different mechanic.
669  * This function will explicitly fail not only if it cannot acquire
670  * the lock normally, but also if the caller already holds a lock.
671  *
672  * The adjusted mechanic is used to close a loophole where complex
673  * VOP_RECLAIM code can circle around recursively and allocate the
674  * same vnode it is trying to destroy from the freelist.
675  *
676  * Any filesystem (aka UFS) which puts LK_CANRECURSE in lk_flags can
677  * cause the incorrect behavior to occur.  If not for that lockmgr()
678  * would do the right thing.
679  *
680  * XXX The vx_*() locks should use auxrefs, not the main reference counter.
681  */
682 void
683 vx_get(struct vnode *vp)
684 {
685 	if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
686 		atomic_add_int(&mycpu->gd_cachedvnodes, -1);
687 	lockmgr(&vp->v_lock, LK_EXCLUSIVE);
688 }
689 
690 int
691 vx_get_nonblock(struct vnode *vp)
692 {
693 	int error;
694 
695 	if (lockinuse(&vp->v_lock))
696 		return(EBUSY);
697 	error = lockmgr(&vp->v_lock, LK_EXCLUSIVE | LK_NOWAIT);
698 	if (error == 0) {
699 		if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
700 			atomic_add_int(&mycpu->gd_cachedvnodes, -1);
701 	}
702 	return(error);
703 }
704 
705 /*
706  * Release a VX lock that also held a ref on the vnode.  vrele() will handle
707  * any needed state transitions.
708  *
709  * However, filesystems use this function to get rid of unwanted new vnodes
710  * so try to get the vnode on the correct queue in that case.
711  */
712 void
713 vx_put(struct vnode *vp)
714 {
715 	if (vp->v_type == VNON || vp->v_type == VBAD)
716 		atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
717 	lockmgr(&vp->v_lock, LK_RELEASE);
718 	vrele(vp);
719 }
720 
721 /*
722  * Try to reuse a vnode from the free list.  This function is somewhat
723  * advisory in that NULL can be returned as a normal case, even if free
724  * vnodes are present.
725  *
726  * The scan is limited because it can result in excessive CPU use during
727  * periods of extreme vnode use.
728  *
729  * NOTE: The returned vnode is not completely initialized.
730  */
731 static
732 struct vnode *
733 cleanfreevnode(int maxcount)
734 {
735 	struct vnode_index *vi;
736 	struct vnode *vp;
737 	int count;
738 	int trigger = (long)vmstats.v_page_count / (activevnodes * 2 + 1);
739 	int ri;
740 	int cpu_count;
741 
742 	/*
743 	 * Try to deactivate some vnodes cached on the active list.
744 	 */
745 	if (countcachedvnodes() < inactivevnodes)
746 		goto skip;
747 
748 	ri = vnode_list_hash[mycpu->gd_cpuid].deac_rover + 1;
749 
750 	for (count = 0; count < maxcount * 2; ++count, ++ri) {
751 		vi = &vnode_list_hash[((unsigned)ri >> 4) % ncpus];
752 
753 		spin_lock(&vi->spin);
754 
755 		vp = TAILQ_NEXT(&vi->active_rover, v_list);
756 		TAILQ_REMOVE(&vi->active_list, &vi->active_rover, v_list);
757 		if (vp == NULL) {
758 			TAILQ_INSERT_HEAD(&vi->active_list,
759 					  &vi->active_rover, v_list);
760 		} else {
761 			TAILQ_INSERT_AFTER(&vi->active_list, vp,
762 					   &vi->active_rover, v_list);
763 		}
764 		if (vp == NULL) {
765 			spin_unlock(&vi->spin);
766 			continue;
767 		}
768 		if ((vp->v_refcnt & VREF_MASK) != 0) {
769 			spin_unlock(&vi->spin);
770 			vp->v_act += VACT_INC;
771 			if (vp->v_act > VACT_MAX)	/* SMP race ok */
772 				vp->v_act = VACT_MAX;
773 			continue;
774 		}
775 
776 		/*
777 		 * decrement by less if the vnode's object has a lot of
778 		 * VM pages.  XXX possible SMP races.
779 		 */
780 		if (vp->v_act > 0) {
781 			vm_object_t obj;
782 			if ((obj = vp->v_object) != NULL &&
783 			    obj->resident_page_count >= trigger) {
784 				vp->v_act -= 1;
785 			} else {
786 				vp->v_act -= VACT_INC;
787 			}
788 			if (vp->v_act < 0)
789 				vp->v_act = 0;
790 			spin_unlock(&vi->spin);
791 			continue;
792 		}
793 
794 		/*
795 		 * Try to deactivate the vnode.
796 		 */
797 		if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
798 			atomic_add_int(&mycpu->gd_cachedvnodes, -1);
799 		atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
800 
801 		spin_unlock(&vi->spin);
802 		vrele(vp);
803 	}
804 
805 	vnode_list_hash[mycpu->gd_cpuid].deac_rover = ri;
806 
807 skip:
808 	/*
809 	 * Loop trying to lock the first vnode on the free list.
810 	 * Cycle if we can't.
811 	 */
812 	cpu_count = ncpus;
813 	ri = vnode_list_hash[mycpu->gd_cpuid].free_rover + 1;
814 
815 	for (count = 0; count < maxcount; ++count, ++ri) {
816 		vi = &vnode_list_hash[((unsigned)ri >> 4) % ncpus];
817 
818 		spin_lock(&vi->spin);
819 
820 		vp = TAILQ_FIRST(&vi->inactive_list);
821 		if (vp == NULL) {
822 			spin_unlock(&vi->spin);
823 			if (--cpu_count == 0)
824 				break;
825 			ri = (ri + 16) & ~15;
826 			--ri;
827 			continue;
828 		}
829 
830 		/*
831 		 * non-blocking vx_get will also ref the vnode on success.
832 		 */
833 		if (vx_get_nonblock(vp)) {
834 			KKASSERT(vp->v_state == VS_INACTIVE);
835 			TAILQ_REMOVE(&vi->inactive_list, vp, v_list);
836 			TAILQ_INSERT_TAIL(&vi->inactive_list, vp, v_list);
837 			spin_unlock(&vi->spin);
838 			continue;
839 		}
840 
841 		/*
842 		 * Because we are holding vfs_spin the vnode should currently
843 		 * be inactive and VREF_TERMINATE should still be set.
844 		 *
845 		 * Once vfs_spin is released the vnode's state should remain
846 		 * unmodified due to both the lock and ref on it.
847 		 */
848 		KKASSERT(vp->v_state == VS_INACTIVE);
849 		spin_unlock(&vi->spin);
850 #ifdef TRACKVNODE
851 		if ((u_long)vp == trackvnode)
852 			kprintf("cleanfreevnode %p %08x\n", vp, vp->v_flag);
853 #endif
854 
855 		/*
856 		 * Do not reclaim/reuse a vnode while auxillary refs exists.
857 		 * This includes namecache refs due to a related ncp being
858 		 * locked or having children, a VM object association, or
859 		 * other hold users.
860 		 *
861 		 * Do not reclaim/reuse a vnode if someone else has a real
862 		 * ref on it.  This can occur if a filesystem temporarily
863 		 * releases the vnode lock during VOP_RECLAIM.
864 		 */
865 		if (vp->v_auxrefs != vp->v_namecache_count ||
866 		    (vp->v_refcnt & ~VREF_FINALIZE) != VREF_TERMINATE + 1) {
867 failed:
868 			if (vp->v_state == VS_INACTIVE) {
869 				spin_lock(&vi->spin);
870 				if (vp->v_state == VS_INACTIVE) {
871 					TAILQ_REMOVE(&vi->inactive_list,
872 						     vp, v_list);
873 					TAILQ_INSERT_TAIL(&vi->inactive_list,
874 							  vp, v_list);
875 				}
876 				spin_unlock(&vi->spin);
877 			}
878 			vx_put(vp);
879 			continue;
880 		}
881 
882 		/*
883 		 * VINACTIVE and VREF_TERMINATE are expected to both be set
884 		 * for vnodes pulled from the inactive list, and cannot be
885 		 * changed while we hold the vx lock.
886 		 *
887 		 * Try to reclaim the vnode.
888 		 *
889 		 * The cache_inval_vp() can fail if any of the namecache
890 		 * elements are actively locked, preventing the vnode from
891 		 * bring reclaimed.  This is desired operation as it gives
892 		 * the namecache code certain guarantees just by holding
893 		 * a ncp.
894 		 */
895 		KKASSERT(vp->v_flag & VINACTIVE);
896 		KKASSERT(vp->v_refcnt & VREF_TERMINATE);
897 
898 		if ((vp->v_flag & VRECLAIMED) == 0) {
899 			if (cache_inval_vp_nonblock(vp))
900 				goto failed;
901 			vgone_vxlocked(vp);
902 			/* vnode is still VX locked */
903 		}
904 
905 		/*
906 		 * At this point if there are no other refs or auxrefs on
907 		 * the vnode with the inactive list locked, and we remove
908 		 * the vnode from the inactive list, it should not be
909 		 * possible for anyone else to access the vnode any more.
910 		 *
911 		 * Since the vnode is in a VRECLAIMED state, no new
912 		 * namecache associations could have been made and the
913 		 * vnode should have already been removed from its mountlist.
914 		 *
915 		 * Since we hold a VX lock on the vnode it cannot have been
916 		 * reactivated (moved out of the inactive list).
917 		 */
918 		KKASSERT(TAILQ_EMPTY(&vp->v_namecache));
919 		spin_lock(&vi->spin);
920 		if (vp->v_auxrefs ||
921 		    (vp->v_refcnt & ~VREF_FINALIZE) != VREF_TERMINATE + 1) {
922 			spin_unlock(&vi->spin);
923 			goto failed;
924 		}
925 		KKASSERT(vp->v_state == VS_INACTIVE);
926 		TAILQ_REMOVE(&vi->inactive_list, vp, v_list);
927 		atomic_add_int(&mycpu->gd_inactivevnodes, -1);
928 		vp->v_state = VS_DYING;
929 		spin_unlock(&vi->spin);
930 
931 		/*
932 		 * Nothing should have been able to access this vp.  Only
933 		 * our ref should remain now.
934 		 */
935 		atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE|VREF_FINALIZE);
936 		KASSERT(vp->v_refcnt == 1,
937 			("vp %p badrefs %08x", vp, vp->v_refcnt));
938 
939 		/*
940 		 * Return a VX locked vnode suitable for reuse.
941 		 */
942 		vnode_list_hash[mycpu->gd_cpuid].free_rover = ri;
943 		return(vp);
944 	}
945 	vnode_list_hash[mycpu->gd_cpuid].free_rover = ri;
946 	return(NULL);
947 }
948 
949 /*
950  * Obtain a new vnode.  The returned vnode is VX locked & vrefd.
951  *
952  * All new vnodes set the VAGE flags.  An open() of the vnode will
953  * decrement the (2-bit) flags.  Vnodes which are opened several times
954  * are thus retained in the cache over vnodes which are merely stat()d.
955  *
956  * We attempt to reuse an already-recycled vnode from our pcpu inactive
957  * queue first, and allocate otherwise.  Attempting to recycle inactive
958  * vnodes here can lead to numerous deadlocks, particularly with
959  * softupdates.
960  */
961 struct vnode *
962 allocvnode(int lktimeout, int lkflags)
963 {
964 	struct vnode *vp;
965 	struct vnode_index *vi;
966 
967 	/*
968 	 * lktimeout only applies when LK_TIMELOCK is used, and only
969 	 * the pageout daemon uses it.  The timeout may not be zero
970 	 * or the pageout daemon can deadlock in low-VM situations.
971 	 */
972 	if (lktimeout == 0)
973 		lktimeout = hz / 10;
974 
975 	/*
976 	 * Do not flag for synchronous recyclement unless there are enough
977 	 * freeable vnodes to recycle and the number of vnodes has
978 	 * significantly exceeded our target.  We want the normal vnlru
979 	 * process to handle the cleaning (at 9/10's) before we are forced
980 	 * to flag it here at 11/10's for userexit path processing.
981 	 */
982 	if (numvnodes >= maxvnodes * 11 / 10 &&
983 	    cachedvnodes + inactivevnodes >= maxvnodes * 5 / 10) {
984 		struct thread *td = curthread;
985 		if (td->td_lwp)
986 			atomic_set_int(&td->td_lwp->lwp_mpflags, LWP_MP_VNLRU);
987 	}
988 
989 	/*
990 	 * Try to trivially reuse a reclaimed vnode from the head of the
991 	 * inactive list for this cpu.  Any vnode cycling which occurs
992 	 * which terminates the vnode will cause it to be returned to the
993 	 * same pcpu structure (e.g. unlink calls).
994 	 */
995 	vi = &vnode_list_hash[mycpuid];
996 	spin_lock(&vi->spin);
997 
998 	vp = TAILQ_FIRST(&vi->inactive_list);
999 	if (vp && (vp->v_flag & VRECLAIMED)) {
1000 		/*
1001 		 * non-blocking vx_get will also ref the vnode on success.
1002 		 */
1003 		if (vx_get_nonblock(vp)) {
1004 			KKASSERT(vp->v_state == VS_INACTIVE);
1005 			TAILQ_REMOVE(&vi->inactive_list, vp, v_list);
1006 			TAILQ_INSERT_TAIL(&vi->inactive_list, vp, v_list);
1007 			spin_unlock(&vi->spin);
1008 			goto slower;
1009 		}
1010 
1011 		/*
1012 		 * Because we are holding vfs_spin the vnode should currently
1013 		 * be inactive and VREF_TERMINATE should still be set.
1014 		 *
1015 		 * Once vfs_spin is released the vnode's state should remain
1016 		 * unmodified due to both the lock and ref on it.
1017 		 */
1018 		KKASSERT(vp->v_state == VS_INACTIVE);
1019 #ifdef TRACKVNODE
1020 		if ((u_long)vp == trackvnode)
1021 			kprintf("allocvnode %p %08x\n", vp, vp->v_flag);
1022 #endif
1023 
1024 		/*
1025 		 * Do not reclaim/reuse a vnode while auxillary refs exists.
1026 		 * This includes namecache refs due to a related ncp being
1027 		 * locked or having children, a VM object association, or
1028 		 * other hold users.
1029 		 *
1030 		 * Do not reclaim/reuse a vnode if someone else has a real
1031 		 * ref on it.  This can occur if a filesystem temporarily
1032 		 * releases the vnode lock during VOP_RECLAIM.
1033 		 */
1034 		if (vp->v_auxrefs ||
1035 		    (vp->v_refcnt & ~VREF_FINALIZE) != VREF_TERMINATE + 1) {
1036 			if (vp->v_state == VS_INACTIVE) {
1037 				TAILQ_REMOVE(&vi->inactive_list,
1038 					     vp, v_list);
1039 				TAILQ_INSERT_TAIL(&vi->inactive_list,
1040 						  vp, v_list);
1041 			}
1042 			spin_unlock(&vi->spin);
1043 			vx_put(vp);
1044 			goto slower;
1045 		}
1046 
1047 		/*
1048 		 * VINACTIVE and VREF_TERMINATE are expected to both be set
1049 		 * for vnodes pulled from the inactive list, and cannot be
1050 		 * changed while we hold the vx lock.
1051 		 *
1052 		 * Try to reclaim the vnode.
1053 		 */
1054 		KKASSERT(vp->v_flag & VINACTIVE);
1055 		KKASSERT(vp->v_refcnt & VREF_TERMINATE);
1056 
1057 		if ((vp->v_flag & VRECLAIMED) == 0) {
1058 			spin_unlock(&vi->spin);
1059 			vx_put(vp);
1060 			goto slower;
1061 		}
1062 
1063 		/*
1064 		 * At this point if there are no other refs or auxrefs on
1065 		 * the vnode with the inactive list locked, and we remove
1066 		 * the vnode from the inactive list, it should not be
1067 		 * possible for anyone else to access the vnode any more.
1068 		 *
1069 		 * Since the vnode is in a VRECLAIMED state, no new
1070 		 * namecache associations could have been made and the
1071 		 * vnode should have already been removed from its mountlist.
1072 		 *
1073 		 * Since we hold a VX lock on the vnode it cannot have been
1074 		 * reactivated (moved out of the inactive list).
1075 		 */
1076 		KKASSERT(TAILQ_EMPTY(&vp->v_namecache));
1077 		KKASSERT(vp->v_state == VS_INACTIVE);
1078 		TAILQ_REMOVE(&vi->inactive_list, vp, v_list);
1079 		atomic_add_int(&mycpu->gd_inactivevnodes, -1);
1080 		vp->v_state = VS_DYING;
1081 		spin_unlock(&vi->spin);
1082 
1083 		/*
1084 		 * Nothing should have been able to access this vp.  Only
1085 		 * our ref should remain now.
1086 		 *
1087 		 * At this point we can kfree() the vnode if we want to.
1088 		 * Instead, we reuse it for the allocation.
1089 		 */
1090 		atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE|VREF_FINALIZE);
1091 		KASSERT(vp->v_refcnt == 1,
1092 			("vp %p badrefs %08x", vp, vp->v_refcnt));
1093 		bzero(vp, sizeof(*vp));
1094 	} else {
1095 		spin_unlock(&vi->spin);
1096 slower:
1097 		vp = kmalloc(sizeof(*vp), M_VNODE, M_ZERO | M_WAITOK);
1098 		atomic_add_int(&numvnodes, 1);
1099 	}
1100 
1101 	lwkt_token_init(&vp->v_token, "vnode");
1102 	lockinit(&vp->v_lock, "vnode", lktimeout, lkflags);
1103 	TAILQ_INIT(&vp->v_namecache);
1104 	RB_INIT(&vp->v_rbclean_tree);
1105 	RB_INIT(&vp->v_rbdirty_tree);
1106 	RB_INIT(&vp->v_rbhash_tree);
1107 	spin_init(&vp->v_spin, "allocvnode");
1108 
1109 	lockmgr(&vp->v_lock, LK_EXCLUSIVE);
1110 	vp->v_refcnt = 1;
1111 	vp->v_flag = VAGE0 | VAGE1;
1112 	vp->v_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
1113 
1114 	KKASSERT(TAILQ_EMPTY(&vp->v_namecache));
1115 	/* exclusive lock still held */
1116 
1117 	vp->v_filesize = NOOFFSET;
1118 	vp->v_type = VNON;
1119 	vp->v_tag = 0;
1120 	vp->v_state = VS_CACHED;
1121 	_vactivate(vp);
1122 
1123 	return (vp);
1124 }
1125 
1126 /*
1127  * Called after a process has allocated a vnode via allocvnode()
1128  * and we detected that too many vnodes were present.
1129  *
1130  * This function is called just prior to a return to userland if the
1131  * process at some point had to allocate a new vnode during the last
1132  * system call and the vnode count was found to be excessive.
1133  *
1134  * This is a synchronous path that we do not normally want to execute.
1135  *
1136  * Flagged at >= 11/10's, runs if >= 10/10, vnlru runs at 9/10.
1137  *
1138  * WARNING: Sometimes numvnodes can blow out due to children being
1139  *	    present under directory vnodes in the namecache.  For the
1140  *	    moment use an if() instead of a while() and note that if
1141  *	    we were to use a while() we would still have to break out
1142  *	    if freesomevnodes() returned 0.  vnlru will also be trying
1143  *	    hard to free vnodes at the same time (with a lower trigger
1144  *	    pointer).
1145  */
1146 void
1147 allocvnode_gc(void)
1148 {
1149 	if (numvnodes >= maxvnodes &&
1150 	    countcachedandinactivevnodes() >= maxvnodes * 5 / 10) {
1151 		freesomevnodes(batchfreevnodes);
1152 	}
1153 }
1154 
1155 int
1156 freesomevnodes(int n)
1157 {
1158 	struct vnode *vp;
1159 	int count = 0;
1160 
1161 	while (n) {
1162 		if ((vp = cleanfreevnode(n)) == NULL)
1163 			break;
1164 		vx_unlock(vp);
1165 		--n;
1166 		++count;
1167 		kfree(vp, M_VNODE);
1168 		atomic_add_int(&numvnodes, -1);
1169 	}
1170 	return(count);
1171 }
1172