xref: /dflybsd-src/sys/kern/vfs_journal.c (revision e6f30c11b835a7878a0ca02133e6bbb9abfad4ab)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/vfs_journal.c,v 1.17 2005/07/06 06:02:22 dillon Exp $
35  */
36 /*
37  * Each mount point may have zero or more independantly configured journals
38  * attached to it.  Each journal is represented by a memory FIFO and worker
39  * thread.  Journal events are streamed through the FIFO to the thread,
40  * batched up (typically on one-second intervals), and written out by the
41  * thread.
42  *
43  * Journal vnode ops are executed instead of mnt_vn_norm_ops when one or
44  * more journals have been installed on a mount point.  It becomes the
45  * responsibility of the journal op to call the underlying normal op as
46  * appropriate.
47  *
48  * The journaling protocol is intended to evolve into a two-way stream
49  * whereby transaction IDs can be acknowledged by the journaling target
50  * when the data has been committed to hard storage.  Both implicit and
51  * explicit acknowledgement schemes will be supported, depending on the
52  * sophistication of the journaling stream, plus resynchronization and
53  * restart when a journaling stream is interrupted.  This information will
54  * also be made available to journaling-aware filesystems to allow better
55  * management of their own physical storage synchronization mechanisms as
56  * well as to allow such filesystems to take direct advantage of the kernel's
57  * journaling layer so they don't have to roll their own.
58  *
59  * In addition, the worker thread will have access to much larger
60  * spooling areas then the memory buffer is able to provide by e.g.
61  * reserving swap space, in order to absorb potentially long interruptions
62  * of off-site journaling streams, and to prevent 'slow' off-site linkages
63  * from radically slowing down local filesystem operations.
64  *
65  * Because of the non-trivial algorithms the journaling system will be
66  * required to support, use of a worker thread is mandatory.  Efficiencies
67  * are maintained by utilitizing the memory FIFO to batch transactions when
68  * possible, reducing the number of gratuitous thread switches and taking
69  * advantage of cpu caches through the use of shorter batched code paths
70  * rather then trying to do everything in the context of the process
71  * originating the filesystem op.  In the future the memory FIFO can be
72  * made per-cpu to remove BGL or other locking requirements.
73  */
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/buf.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/queue.h>
80 #include <sys/lock.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/unistd.h>
84 #include <sys/vnode.h>
85 #include <sys/poll.h>
86 #include <sys/mountctl.h>
87 #include <sys/journal.h>
88 #include <sys/file.h>
89 #include <sys/proc.h>
90 #include <sys/msfbuf.h>
91 
92 #include <machine/limits.h>
93 
94 #include <vm/vm.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pager.h>
98 #include <vm/vnode_pager.h>
99 
100 #include <sys/file2.h>
101 #include <sys/thread2.h>
102 
103 static int journal_attach(struct mount *mp);
104 static void journal_detach(struct mount *mp);
105 static int journal_install_vfs_journal(struct mount *mp, struct file *fp,
106 			    const struct mountctl_install_journal *info);
107 static int journal_remove_vfs_journal(struct mount *mp,
108 			    const struct mountctl_remove_journal *info);
109 static int journal_destroy(struct mount *mp, struct journal *jo, int flags);
110 static int journal_resync_vfs_journal(struct mount *mp, const void *ctl);
111 static int journal_status_vfs_journal(struct mount *mp,
112 		       const struct mountctl_status_journal *info,
113 		       struct mountctl_journal_ret_status *rstat,
114 		       int buflen, int *res);
115 static void journal_wthread(void *info);
116 static void journal_rthread(void *info);
117 
118 static void *journal_reserve(struct journal *jo,
119 			    struct journal_rawrecbeg **rawpp,
120 			    int16_t streamid, int bytes);
121 static void *journal_extend(struct journal *jo,
122 			    struct journal_rawrecbeg **rawpp,
123 			    int truncbytes, int bytes, int *newstreamrecp);
124 static void journal_abort(struct journal *jo,
125 			    struct journal_rawrecbeg **rawpp);
126 static void journal_commit(struct journal *jo,
127 			    struct journal_rawrecbeg **rawpp,
128 			    int bytes, int closeout);
129 
130 static void jrecord_init(struct journal *jo,
131 			    struct jrecord *jrec, int16_t streamid);
132 static struct journal_subrecord *jrecord_push(
133 			    struct jrecord *jrec, int16_t rectype);
134 static void jrecord_pop(struct jrecord *jrec, struct journal_subrecord *parent);
135 static struct journal_subrecord *jrecord_write(struct jrecord *jrec,
136 			    int16_t rectype, int bytes);
137 static void jrecord_data(struct jrecord *jrec, const void *buf, int bytes);
138 static void jrecord_done(struct jrecord *jrec, int abortit);
139 
140 static int journal_setattr(struct vop_setattr_args *ap);
141 static int journal_write(struct vop_write_args *ap);
142 static int journal_fsync(struct vop_fsync_args *ap);
143 static int journal_putpages(struct vop_putpages_args *ap);
144 static int journal_setacl(struct vop_setacl_args *ap);
145 static int journal_setextattr(struct vop_setextattr_args *ap);
146 static int journal_ncreate(struct vop_ncreate_args *ap);
147 static int journal_nmknod(struct vop_nmknod_args *ap);
148 static int journal_nlink(struct vop_nlink_args *ap);
149 static int journal_nsymlink(struct vop_nsymlink_args *ap);
150 static int journal_nwhiteout(struct vop_nwhiteout_args *ap);
151 static int journal_nremove(struct vop_nremove_args *ap);
152 static int journal_nmkdir(struct vop_nmkdir_args *ap);
153 static int journal_nrmdir(struct vop_nrmdir_args *ap);
154 static int journal_nrename(struct vop_nrename_args *ap);
155 
156 static struct vnodeopv_entry_desc journal_vnodeop_entries[] = {
157     { &vop_default_desc,		vop_journal_operate_ap },
158     { &vop_mountctl_desc,		(void *)journal_mountctl },
159     { &vop_setattr_desc,		(void *)journal_setattr },
160     { &vop_write_desc,			(void *)journal_write },
161     { &vop_fsync_desc,			(void *)journal_fsync },
162     { &vop_putpages_desc,		(void *)journal_putpages },
163     { &vop_setacl_desc,			(void *)journal_setacl },
164     { &vop_setextattr_desc,		(void *)journal_setextattr },
165     { &vop_ncreate_desc,		(void *)journal_ncreate },
166     { &vop_nmknod_desc,			(void *)journal_nmknod },
167     { &vop_nlink_desc,			(void *)journal_nlink },
168     { &vop_nsymlink_desc,		(void *)journal_nsymlink },
169     { &vop_nwhiteout_desc,		(void *)journal_nwhiteout },
170     { &vop_nremove_desc,		(void *)journal_nremove },
171     { &vop_nmkdir_desc,			(void *)journal_nmkdir },
172     { &vop_nrmdir_desc,			(void *)journal_nrmdir },
173     { &vop_nrename_desc,		(void *)journal_nrename },
174     { NULL, NULL }
175 };
176 
177 static MALLOC_DEFINE(M_JOURNAL, "journal", "Journaling structures");
178 static MALLOC_DEFINE(M_JFIFO, "journal-fifo", "Journal FIFO");
179 
180 int
181 journal_mountctl(struct vop_mountctl_args *ap)
182 {
183     struct mount *mp;
184     int error = 0;
185 
186     mp = ap->a_head.a_ops->vv_mount;
187     KKASSERT(mp);
188 
189     if (mp->mnt_vn_journal_ops == NULL) {
190 	switch(ap->a_op) {
191 	case MOUNTCTL_INSTALL_VFS_JOURNAL:
192 	    error = journal_attach(mp);
193 	    if (error == 0 && ap->a_ctllen != sizeof(struct mountctl_install_journal))
194 		error = EINVAL;
195 	    if (error == 0 && ap->a_fp == NULL)
196 		error = EBADF;
197 	    if (error == 0)
198 		error = journal_install_vfs_journal(mp, ap->a_fp, ap->a_ctl);
199 	    if (TAILQ_EMPTY(&mp->mnt_jlist))
200 		journal_detach(mp);
201 	    break;
202 	case MOUNTCTL_REMOVE_VFS_JOURNAL:
203 	case MOUNTCTL_RESYNC_VFS_JOURNAL:
204 	case MOUNTCTL_STATUS_VFS_JOURNAL:
205 	    error = ENOENT;
206 	    break;
207 	default:
208 	    error = EOPNOTSUPP;
209 	    break;
210 	}
211     } else {
212 	switch(ap->a_op) {
213 	case MOUNTCTL_INSTALL_VFS_JOURNAL:
214 	    if (ap->a_ctllen != sizeof(struct mountctl_install_journal))
215 		error = EINVAL;
216 	    if (error == 0 && ap->a_fp == NULL)
217 		error = EBADF;
218 	    if (error == 0)
219 		error = journal_install_vfs_journal(mp, ap->a_fp, ap->a_ctl);
220 	    break;
221 	case MOUNTCTL_REMOVE_VFS_JOURNAL:
222 	    if (ap->a_ctllen != sizeof(struct mountctl_remove_journal))
223 		error = EINVAL;
224 	    if (error == 0)
225 		error = journal_remove_vfs_journal(mp, ap->a_ctl);
226 	    if (TAILQ_EMPTY(&mp->mnt_jlist))
227 		journal_detach(mp);
228 	    break;
229 	case MOUNTCTL_RESYNC_VFS_JOURNAL:
230 	    if (ap->a_ctllen != 0)
231 		error = EINVAL;
232 	    error = journal_resync_vfs_journal(mp, ap->a_ctl);
233 	    break;
234 	case MOUNTCTL_STATUS_VFS_JOURNAL:
235 	    if (ap->a_ctllen != sizeof(struct mountctl_status_journal))
236 		error = EINVAL;
237 	    if (error == 0) {
238 		error = journal_status_vfs_journal(mp, ap->a_ctl,
239 					ap->a_buf, ap->a_buflen, ap->a_res);
240 	    }
241 	    break;
242 	default:
243 	    error = EOPNOTSUPP;
244 	    break;
245 	}
246     }
247     return (error);
248 }
249 
250 /*
251  * High level mount point setup.  When a
252  */
253 static int
254 journal_attach(struct mount *mp)
255 {
256     vfs_add_vnodeops(mp, &mp->mnt_vn_journal_ops, journal_vnodeop_entries);
257     return(0);
258 }
259 
260 static void
261 journal_detach(struct mount *mp)
262 {
263     if (mp->mnt_vn_journal_ops)
264 	vfs_rm_vnodeops(&mp->mnt_vn_journal_ops);
265 }
266 
267 /*
268  * Install a journal on a mount point.  Each journal has an associated worker
269  * thread which is responsible for buffering and spooling the data to the
270  * target.  A mount point may have multiple journals attached to it.  An
271  * initial start record is generated when the journal is associated.
272  */
273 static int
274 journal_install_vfs_journal(struct mount *mp, struct file *fp,
275 			    const struct mountctl_install_journal *info)
276 {
277     struct journal *jo;
278     struct jrecord jrec;
279     int error = 0;
280     int size;
281 
282     jo = malloc(sizeof(struct journal), M_JOURNAL, M_WAITOK|M_ZERO);
283     bcopy(info->id, jo->id, sizeof(jo->id));
284     jo->flags = info->flags & ~(MC_JOURNAL_WACTIVE | MC_JOURNAL_RACTIVE |
285 				MC_JOURNAL_STOP_REQ);
286 
287     /*
288      * Memory FIFO size, round to nearest power of 2
289      */
290     if (info->membufsize) {
291 	if (info->membufsize < 65536)
292 	    size = 65536;
293 	else if (info->membufsize > 128 * 1024 * 1024)
294 	    size = 128 * 1024 * 1024;
295 	else
296 	    size = (int)info->membufsize;
297     } else {
298 	size = 1024 * 1024;
299     }
300     jo->fifo.size = 1;
301     while (jo->fifo.size < size)
302 	jo->fifo.size <<= 1;
303 
304     /*
305      * Other parameters.  If not specified the starting transaction id
306      * will be the current date.
307      */
308     if (info->transid) {
309 	jo->transid = info->transid;
310     } else {
311 	struct timespec ts;
312 	getnanotime(&ts);
313 	jo->transid = ((int64_t)ts.tv_sec << 30) | ts.tv_nsec;
314     }
315 
316     jo->fp = fp;
317 
318     /*
319      * Allocate the memory FIFO
320      */
321     jo->fifo.mask = jo->fifo.size - 1;
322     jo->fifo.membase = malloc(jo->fifo.size, M_JFIFO, M_WAITOK|M_ZERO|M_NULLOK);
323     if (jo->fifo.membase == NULL)
324 	error = ENOMEM;
325 
326     /*
327      * Create the worker threads and generate the association record.
328      */
329     if (error) {
330 	free(jo, M_JOURNAL);
331     } else {
332 	fhold(fp);
333 	jo->flags |= MC_JOURNAL_WACTIVE;
334 	lwkt_create(journal_wthread, jo, NULL, &jo->wthread,
335 			TDF_STOPREQ, -1, "journal w:%.*s", JIDMAX, jo->id);
336 	lwkt_setpri(&jo->wthread, TDPRI_KERN_DAEMON);
337 	lwkt_schedule(&jo->wthread);
338 
339 	if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) {
340 	    jo->flags |= MC_JOURNAL_RACTIVE;
341 	    lwkt_create(journal_rthread, jo, NULL, &jo->rthread,
342 			TDF_STOPREQ, -1, "journal r:%.*s", JIDMAX, jo->id);
343 	    lwkt_setpri(&jo->rthread, TDPRI_KERN_DAEMON);
344 	    lwkt_schedule(&jo->rthread);
345 	}
346 	jrecord_init(jo, &jrec, JREC_STREAMID_DISCONT);
347 	jrecord_write(&jrec, JTYPE_ASSOCIATE, 0);
348 	jrecord_done(&jrec, 0);
349 	TAILQ_INSERT_TAIL(&mp->mnt_jlist, jo, jentry);
350     }
351     return(error);
352 }
353 
354 /*
355  * Disassociate a journal from a mount point and terminate its worker thread.
356  * A final termination record is written out before the file pointer is
357  * dropped.
358  */
359 static int
360 journal_remove_vfs_journal(struct mount *mp,
361 			   const struct mountctl_remove_journal *info)
362 {
363     struct journal *jo;
364     int error;
365 
366     TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
367 	if (bcmp(jo->id, info->id, sizeof(jo->id)) == 0)
368 	    break;
369     }
370     if (jo)
371 	error = journal_destroy(mp, jo, info->flags);
372     else
373 	error = EINVAL;
374     return (error);
375 }
376 
377 /*
378  * Remove all journals associated with a mount point.  Usually called
379  * by the umount code.
380  */
381 void
382 journal_remove_all_journals(struct mount *mp, int flags)
383 {
384     struct journal *jo;
385 
386     while ((jo = TAILQ_FIRST(&mp->mnt_jlist)) != NULL) {
387 	journal_destroy(mp, jo, flags);
388     }
389 }
390 
391 static int
392 journal_destroy(struct mount *mp, struct journal *jo, int flags)
393 {
394     struct jrecord jrec;
395     int wcount;
396 
397     TAILQ_REMOVE(&mp->mnt_jlist, jo, jentry);
398 
399     jrecord_init(jo, &jrec, JREC_STREAMID_DISCONT);
400     jrecord_write(&jrec, JTYPE_DISASSOCIATE, 0);
401     jrecord_done(&jrec, 0);
402 
403     jo->flags |= MC_JOURNAL_STOP_REQ | (flags & MC_JOURNAL_STOP_IMM);
404     wakeup(&jo->fifo);
405     wcount = 0;
406     while (jo->flags & (MC_JOURNAL_WACTIVE | MC_JOURNAL_RACTIVE)) {
407 	tsleep(jo, 0, "jwait", hz);
408 	if (++wcount % 10 == 0) {
409 	    printf("Warning: journal %s waiting for descriptors to close\n",
410 		jo->id);
411 	}
412     }
413     lwkt_free_thread(&jo->wthread); /* XXX SMP */
414     if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX)
415 	lwkt_free_thread(&jo->rthread); /* XXX SMP */
416     if (jo->fp)
417 	fdrop(jo->fp, curthread);
418     if (jo->fifo.membase)
419 	free(jo->fifo.membase, M_JFIFO);
420     free(jo, M_JOURNAL);
421     return(0);
422 }
423 
424 static int
425 journal_resync_vfs_journal(struct mount *mp, const void *ctl)
426 {
427     return(EINVAL);
428 }
429 
430 static int
431 journal_status_vfs_journal(struct mount *mp,
432 		       const struct mountctl_status_journal *info,
433 		       struct mountctl_journal_ret_status *rstat,
434 		       int buflen, int *res)
435 {
436     struct journal *jo;
437     int error = 0;
438     int index;
439 
440     index = 0;
441     *res = 0;
442     TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
443 	if (info->index == MC_JOURNAL_INDEX_ID) {
444 	    if (bcmp(jo->id, info->id, sizeof(jo->id)) != 0)
445 		continue;
446 	} else if (info->index >= 0) {
447 	    if (info->index < index)
448 		continue;
449 	} else if (info->index != MC_JOURNAL_INDEX_ALL) {
450 	    continue;
451 	}
452 	if (buflen < sizeof(*rstat)) {
453 	    if (*res)
454 		rstat[-1].flags |= MC_JOURNAL_STATUS_MORETOCOME;
455 	    else
456 		error = EINVAL;
457 	    break;
458 	}
459 	bzero(rstat, sizeof(*rstat));
460 	rstat->recsize = sizeof(*rstat);
461 	bcopy(jo->id, rstat->id, sizeof(jo->id));
462 	rstat->index = index;
463 	rstat->membufsize = jo->fifo.size;
464 	rstat->membufused = jo->fifo.windex - jo->fifo.xindex;
465 	rstat->membufunacked = jo->fifo.rindex - jo->fifo.xindex;
466 	rstat->bytessent = jo->total_acked;
467 	rstat->fifostalls = jo->fifostalls;
468 	++rstat;
469 	++index;
470 	*res += sizeof(*rstat);
471 	buflen -= sizeof(*rstat);
472     }
473     return(error);
474 }
475 
476 /*
477  * The per-journal worker thread is responsible for writing out the
478  * journal's FIFO to the target stream.
479  */
480 static void
481 journal_wthread(void *info)
482 {
483     struct journal *jo = info;
484     struct journal_rawrecbeg *rawp;
485     int bytes;
486     int error;
487     int avail;
488     int res;
489 
490     for (;;) {
491 	/*
492 	 * Calculate the number of bytes available to write.  This buffer
493 	 * area may contain reserved records so we can't just write it out
494 	 * without further checks.
495 	 */
496 	bytes = jo->fifo.windex - jo->fifo.rindex;
497 
498 	/*
499 	 * sleep if no bytes are available or if an incomplete record is
500 	 * encountered (it needs to be filled in before we can write it
501 	 * out), and skip any pad records that we encounter.
502 	 */
503 	if (bytes == 0) {
504 	    if (jo->flags & MC_JOURNAL_STOP_REQ)
505 		break;
506 	    tsleep(&jo->fifo, 0, "jfifo", hz);
507 	    continue;
508 	}
509 
510 	/*
511 	 * Sleep if we can not go any further due to hitting an incomplete
512 	 * record.  This case should occur rarely but may have to be better
513 	 * optimized XXX.
514 	 */
515 	rawp = (void *)(jo->fifo.membase + (jo->fifo.rindex & jo->fifo.mask));
516 	if (rawp->begmagic == JREC_INCOMPLETEMAGIC) {
517 	    tsleep(&jo->fifo, 0, "jpad", hz);
518 	    continue;
519 	}
520 
521 	/*
522 	 * Skip any pad records.  We do not write out pad records if we can
523 	 * help it.
524 	 */
525 	if (rawp->streamid == JREC_STREAMID_PAD) {
526 	    if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
527 		if (jo->fifo.rindex == jo->fifo.xindex) {
528 		    jo->fifo.xindex += (rawp->recsize + 15) & ~15;
529 		    jo->total_acked += (rawp->recsize + 15) & ~15;
530 		}
531 	    }
532 	    jo->fifo.rindex += (rawp->recsize + 15) & ~15;
533 	    jo->total_acked += bytes;
534 	    KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
535 	    continue;
536 	}
537 
538 	/*
539 	 * 'bytes' is the amount of data that can potentially be written out.
540 	 * Calculate 'res', the amount of data that can actually be written
541 	 * out.  res is bounded either by hitting the end of the physical
542 	 * memory buffer or by hitting an incomplete record.  Incomplete
543 	 * records often occur due to the way the space reservation model
544 	 * works.
545 	 */
546 	res = 0;
547 	avail = jo->fifo.size - (jo->fifo.rindex & jo->fifo.mask);
548 	while (res < bytes && rawp->begmagic == JREC_BEGMAGIC) {
549 	    res += (rawp->recsize + 15) & ~15;
550 	    if (res >= avail) {
551 		KKASSERT(res == avail);
552 		break;
553 	    }
554 	    rawp = (void *)((char *)rawp + ((rawp->recsize + 15) & ~15));
555 	}
556 
557 	/*
558 	 * Issue the write and deal with any errors or other conditions.
559 	 * For now assume blocking I/O.  Since we are record-aware the
560 	 * code cannot yet handle partial writes.
561 	 *
562 	 * We bump rindex prior to issuing the write to avoid racing
563 	 * the acknowledgement coming back (which could prevent the ack
564 	 * from bumping xindex).  Restarts are always based on xindex so
565 	 * we do not try to undo the rindex if an error occurs.
566 	 *
567 	 * XXX EWOULDBLOCK/NBIO
568 	 * XXX notification on failure
569 	 * XXX permanent verses temporary failures
570 	 * XXX two-way acknowledgement stream in the return direction / xindex
571 	 */
572 	bytes = res;
573 	jo->fifo.rindex += bytes;
574 	error = fp_write(jo->fp,
575 			jo->fifo.membase + ((jo->fifo.rindex - bytes) & jo->fifo.mask),
576 			bytes, &res);
577 	if (error) {
578 	    printf("journal_thread(%s) write, error %d\n", jo->id, error);
579 	    /* XXX */
580 	} else {
581 	    KKASSERT(res == bytes);
582 	}
583 
584 	/*
585 	 * Advance rindex.  If the journal stream is not full duplex we also
586 	 * advance xindex, otherwise the rjournal thread is responsible for
587 	 * advancing xindex.
588 	 */
589 	if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
590 	    jo->fifo.xindex += bytes;
591 	    jo->total_acked += bytes;
592 	}
593 	KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
594 	if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
595 	    if (jo->flags & MC_JOURNAL_WWAIT) {
596 		jo->flags &= ~MC_JOURNAL_WWAIT;	/* XXX hysteresis */
597 		wakeup(&jo->fifo.windex);
598 	    }
599 	}
600     }
601     jo->flags &= ~MC_JOURNAL_WACTIVE;
602     wakeup(jo);
603     wakeup(&jo->fifo.windex);
604 }
605 
606 /*
607  * A second per-journal worker thread is created for two-way journaling
608  * streams to deal with the return acknowledgement stream.
609  */
610 static void
611 journal_rthread(void *info)
612 {
613     struct journal_rawrecbeg *rawp;
614     struct journal_ackrecord ack;
615     struct journal *jo = info;
616     int64_t transid;
617     int error;
618     int count;
619     int bytes;
620 
621     transid = 0;
622     error = 0;
623 
624     for (;;) {
625 	/*
626 	 * We have been asked to stop
627 	 */
628 	if (jo->flags & MC_JOURNAL_STOP_REQ)
629 		break;
630 
631 	/*
632 	 * If we have no active transaction id, get one from the return
633 	 * stream.
634 	 */
635 	if (transid == 0) {
636 	    error = fp_read(jo->fp, &ack, sizeof(ack), &count, 1);
637 #if 0
638 	    printf("fp_read ack error %d count %d\n", error, count);
639 #endif
640 	    if (error || count != sizeof(ack))
641 		break;
642 	    if (error) {
643 		printf("read error %d on receive stream\n", error);
644 		break;
645 	    }
646 	    if (ack.rbeg.begmagic != JREC_BEGMAGIC ||
647 		ack.rend.endmagic != JREC_ENDMAGIC
648 	    ) {
649 		printf("bad begmagic or endmagic on receive stream\n");
650 		break;
651 	    }
652 	    transid = ack.rbeg.transid;
653 	}
654 
655 	/*
656 	 * Calculate the number of unacknowledged bytes.  If there are no
657 	 * unacknowledged bytes then unsent data was acknowledged, report,
658 	 * sleep a bit, and loop in that case.  This should not happen
659 	 * normally.  The ack record is thrown away.
660 	 */
661 	bytes = jo->fifo.rindex - jo->fifo.xindex;
662 
663 	if (bytes == 0) {
664 	    printf("warning: unsent data acknowledged transid %08llx\n", transid);
665 	    tsleep(&jo->fifo.xindex, 0, "jrseq", hz);
666 	    transid = 0;
667 	    continue;
668 	}
669 
670 	/*
671 	 * Since rindex has advanced, the record pointed to by xindex
672 	 * must be a valid record.
673 	 */
674 	rawp = (void *)(jo->fifo.membase + (jo->fifo.xindex & jo->fifo.mask));
675 	KKASSERT(rawp->begmagic == JREC_BEGMAGIC);
676 	KKASSERT(rawp->recsize <= bytes);
677 
678 	/*
679 	 * The target can acknowledge several records at once.
680 	 */
681 	if (rawp->transid < transid) {
682 #if 1
683 	    printf("ackskip %08llx/%08llx\n", rawp->transid, transid);
684 #endif
685 	    jo->fifo.xindex += (rawp->recsize + 15) & ~15;
686 	    jo->total_acked += (rawp->recsize + 15) & ~15;
687 	    if (jo->flags & MC_JOURNAL_WWAIT) {
688 		jo->flags &= ~MC_JOURNAL_WWAIT;	/* XXX hysteresis */
689 		wakeup(&jo->fifo.windex);
690 	    }
691 	    continue;
692 	}
693 	if (rawp->transid == transid) {
694 #if 1
695 	    printf("ackskip %08llx/%08llx\n", rawp->transid, transid);
696 #endif
697 	    jo->fifo.xindex += (rawp->recsize + 15) & ~15;
698 	    jo->total_acked += (rawp->recsize + 15) & ~15;
699 	    if (jo->flags & MC_JOURNAL_WWAIT) {
700 		jo->flags &= ~MC_JOURNAL_WWAIT;	/* XXX hysteresis */
701 		wakeup(&jo->fifo.windex);
702 	    }
703 	    transid = 0;
704 	    continue;
705 	}
706 	printf("warning: unsent data(2) acknowledged transid %08llx\n", transid);
707 	transid = 0;
708     }
709     jo->flags &= ~MC_JOURNAL_RACTIVE;
710     wakeup(jo);
711     wakeup(&jo->fifo.windex);
712 }
713 
714 /*
715  * This builds a pad record which the journaling thread will skip over.  Pad
716  * records are required when we are unable to reserve sufficient stream space
717  * due to insufficient space at the end of the physical memory fifo.
718  *
719  * Even though the record is not transmitted, a normal transid must be
720  * assigned to it so link recovery operations after a failure work properly.
721  */
722 static
723 void
724 journal_build_pad(struct journal_rawrecbeg *rawp, int recsize, int64_t transid)
725 {
726     struct journal_rawrecend *rendp;
727 
728     KKASSERT((recsize & 15) == 0 && recsize >= 16);
729 
730     rawp->streamid = JREC_STREAMID_PAD;
731     rawp->recsize = recsize;	/* must be 16-byte aligned */
732     rawp->transid = transid;
733     /*
734      * WARNING, rendp may overlap rawp->seqno.  This is necessary to
735      * allow PAD records to fit in 16 bytes.  Use cpu_ccfence() to
736      * hopefully cause the compiler to not make any assumptions.
737      */
738     rendp = (void *)((char *)rawp + rawp->recsize - sizeof(*rendp));
739     rendp->endmagic = JREC_ENDMAGIC;
740     rendp->check = 0;
741     rendp->recsize = rawp->recsize;
742 
743     /*
744      * Set the begin magic last.  This is what will allow the journal
745      * thread to write the record out.  Use a store fence to prevent
746      * compiler and cpu reordering of the writes.
747      */
748     cpu_sfence();
749     rawp->begmagic = JREC_BEGMAGIC;
750 }
751 
752 /*
753  * Wake up the worker thread if the FIFO is more then half full or if
754  * someone is waiting for space to be freed up.  Otherwise let the
755  * heartbeat deal with it.  Being able to avoid waking up the worker
756  * is the key to the journal's cpu performance.
757  */
758 static __inline
759 void
760 journal_commit_wakeup(struct journal *jo)
761 {
762     int avail;
763 
764     avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
765     KKASSERT(avail >= 0);
766     if ((avail < (jo->fifo.size >> 1)) || (jo->flags & MC_JOURNAL_WWAIT))
767 	wakeup(&jo->fifo);
768 }
769 
770 /*
771  * Create a new BEGIN stream record with the specified streamid and the
772  * specified amount of payload space.  *rawpp will be set to point to the
773  * base of the new stream record and a pointer to the base of the payload
774  * space will be returned.  *rawpp does not need to be pre-NULLd prior to
775  * making this call.  The raw record header will be partially initialized.
776  *
777  * A stream can be extended, aborted, or committed by other API calls
778  * below.  This may result in a sequence of potentially disconnected
779  * stream records to be output to the journaling target.  The first record
780  * (the one created by this function) will be marked JREC_STREAMCTL_BEGIN,
781  * while the last record on commit or abort will be marked JREC_STREAMCTL_END
782  * (and possibly also JREC_STREAMCTL_ABORTED).  The last record could wind
783  * up being the same as the first, in which case the bits are all set in
784  * the first record.
785  *
786  * The stream record is created in an incomplete state by setting the begin
787  * magic to JREC_INCOMPLETEMAGIC.  This prevents the worker thread from
788  * flushing the fifo past our record until we have finished populating it.
789  * Other threads can reserve and operate on their own space without stalling
790  * but the stream output will stall until we have completed operations.  The
791  * memory FIFO is intended to be large enough to absorb such situations
792  * without stalling out other threads.
793  */
794 static
795 void *
796 journal_reserve(struct journal *jo, struct journal_rawrecbeg **rawpp,
797 		int16_t streamid, int bytes)
798 {
799     struct journal_rawrecbeg *rawp;
800     int avail;
801     int availtoend;
802     int req;
803 
804     /*
805      * Add header and trailer overheads to the passed payload.  Note that
806      * the passed payload size need not be aligned in any way.
807      */
808     bytes += sizeof(struct journal_rawrecbeg);
809     bytes += sizeof(struct journal_rawrecend);
810 
811     for (;;) {
812 	/*
813 	 * First, check boundary conditions.  If the request would wrap around
814 	 * we have to skip past the ending block and return to the beginning
815 	 * of the FIFO's buffer.  Calculate 'req' which is the actual number
816 	 * of bytes being reserved, including wrap-around dead space.
817 	 *
818 	 * Neither 'bytes' or 'req' are aligned.
819 	 *
820 	 * Note that availtoend is not truncated to avail and so cannot be
821 	 * used to determine whether the reservation is possible by itself.
822 	 * Also, since all fifo ops are 16-byte aligned, we can check
823 	 * the size before calculating the aligned size.
824 	 */
825 	availtoend = jo->fifo.size - (jo->fifo.windex & jo->fifo.mask);
826 	KKASSERT((availtoend & 15) == 0);
827 	if (bytes > availtoend)
828 	    req = bytes + availtoend;	/* add pad to end */
829 	else
830 	    req = bytes;
831 
832 	/*
833 	 * Next calculate the total available space and see if it is
834 	 * sufficient.  We cannot overwrite previously buffered data
835 	 * past xindex because otherwise we would not be able to restart
836 	 * a broken link at the target's last point of commit.
837 	 */
838 	avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
839 	KKASSERT(avail >= 0 && (avail & 15) == 0);
840 
841 	if (avail < req) {
842 	    /* XXX MC_JOURNAL_STOP_IMM */
843 	    jo->flags |= MC_JOURNAL_WWAIT;
844 	    ++jo->fifostalls;
845 	    tsleep(&jo->fifo.windex, 0, "jwrite", 0);
846 	    continue;
847 	}
848 
849 	/*
850 	 * Create a pad record for any dead space and create an incomplete
851 	 * record for the live space, then return a pointer to the
852 	 * contiguous buffer space that was requested.
853 	 *
854 	 * NOTE: The worker thread will not flush past an incomplete
855 	 * record, so the reserved space can be filled in at-will.  The
856 	 * journaling code must also be aware the reserved sections occuring
857 	 * after this one will also not be written out even if completed
858 	 * until this one is completed.
859 	 *
860 	 * The transaction id must accomodate real and potential pad creation.
861 	 */
862 	rawp = (void *)(jo->fifo.membase + (jo->fifo.windex & jo->fifo.mask));
863 	if (req != bytes) {
864 	    journal_build_pad(rawp, availtoend, jo->transid);
865 	    ++jo->transid;
866 	    rawp = (void *)jo->fifo.membase;
867 	}
868 	rawp->begmagic = JREC_INCOMPLETEMAGIC;	/* updated by abort/commit */
869 	rawp->recsize = bytes;			/* (unaligned size) */
870 	rawp->streamid = streamid | JREC_STREAMCTL_BEGIN;
871 	rawp->transid = jo->transid;
872 	jo->transid += 2;
873 
874 	/*
875 	 * Issue a memory barrier to guarentee that the record data has been
876 	 * properly initialized before we advance the write index and return
877 	 * a pointer to the reserved record.  Otherwise the worker thread
878 	 * could accidently run past us.
879 	 *
880 	 * Note that stream records are always 16-byte aligned.
881 	 */
882 	cpu_sfence();
883 	jo->fifo.windex += (req + 15) & ~15;
884 	*rawpp = rawp;
885 	return(rawp + 1);
886     }
887     /* not reached */
888     *rawpp = NULL;
889     return(NULL);
890 }
891 
892 /*
893  * Attempt to extend the stream record by <bytes> worth of payload space.
894  *
895  * If it is possible to extend the existing stream record no truncation
896  * occurs and the record is extended as specified.  A pointer to the
897  * truncation offset within the payload space is returned.
898  *
899  * If it is not possible to do this the existing stream record is truncated
900  * and committed, and a new stream record of size <bytes> is created.  A
901  * pointer to the base of the new stream record's payload space is returned.
902  *
903  * *rawpp is set to the new reservation in the case of a new record but
904  * the caller cannot depend on a comparison with the old rawp to determine if
905  * this case occurs because we could end up using the same memory FIFO
906  * offset for the new stream record.  Use *newstreamrecp instead.
907  */
908 static void *
909 journal_extend(struct journal *jo, struct journal_rawrecbeg **rawpp,
910 		int truncbytes, int bytes, int *newstreamrecp)
911 {
912     struct journal_rawrecbeg *rawp;
913     int16_t streamid;
914     int availtoend;
915     int avail;
916     int osize;
917     int nsize;
918     int wbase;
919     void *rptr;
920 
921     *newstreamrecp = 0;
922     rawp = *rawpp;
923     osize = (rawp->recsize + 15) & ~15;
924     nsize = (rawp->recsize + bytes + 15) & ~15;
925     wbase = (char *)rawp - jo->fifo.membase;
926 
927     /*
928      * If the aligned record size does not change we can trivially adjust
929      * the record size.
930      */
931     if (nsize == osize) {
932 	rawp->recsize += bytes;
933 	return((char *)(rawp + 1) + truncbytes);
934     }
935 
936     /*
937      * If the fifo's write index hasn't been modified since we made the
938      * reservation and we do not hit any boundary conditions, we can
939      * trivially make the record smaller or larger.
940      */
941     if ((jo->fifo.windex & jo->fifo.mask) == wbase + osize) {
942 	availtoend = jo->fifo.size - wbase;
943 	avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex) + osize;
944 	KKASSERT((availtoend & 15) == 0);
945 	KKASSERT((avail & 15) == 0);
946 	if (nsize <= avail && nsize <= availtoend) {
947 	    jo->fifo.windex += nsize - osize;
948 	    rawp->recsize += bytes;
949 	    return((char *)(rawp + 1) + truncbytes);
950 	}
951     }
952 
953     /*
954      * It was not possible to extend the buffer.  Commit the current
955      * buffer and create a new one.  We manually clear the BEGIN mark that
956      * journal_reserve() creates (because this is a continuing record, not
957      * the start of a new stream).
958      */
959     streamid = rawp->streamid & JREC_STREAMID_MASK;
960     journal_commit(jo, rawpp, truncbytes, 0);
961     rptr = journal_reserve(jo, rawpp, streamid, bytes);
962     rawp = *rawpp;
963     rawp->streamid &= ~JREC_STREAMCTL_BEGIN;
964     *newstreamrecp = 1;
965     return(rptr);
966 }
967 
968 /*
969  * Abort a journal record.  If the transaction record represents a stream
970  * BEGIN and we can reverse the fifo's write index we can simply reverse
971  * index the entire record, as if it were never reserved in the first place.
972  *
973  * Otherwise we set the JREC_STREAMCTL_ABORTED bit and commit the record
974  * with the payload truncated to 0 bytes.
975  */
976 static void
977 journal_abort(struct journal *jo, struct journal_rawrecbeg **rawpp)
978 {
979     struct journal_rawrecbeg *rawp;
980     int osize;
981 
982     rawp = *rawpp;
983     osize = (rawp->recsize + 15) & ~15;
984 
985     if ((rawp->streamid & JREC_STREAMCTL_BEGIN) &&
986 	(jo->fifo.windex & jo->fifo.mask) ==
987 	 (char *)rawp - jo->fifo.membase + osize)
988     {
989 	jo->fifo.windex -= osize;
990 	*rawpp = NULL;
991     } else {
992 	rawp->streamid |= JREC_STREAMCTL_ABORTED;
993 	journal_commit(jo, rawpp, 0, 1);
994     }
995 }
996 
997 /*
998  * Commit a journal record and potentially truncate it to the specified
999  * number of payload bytes.  If you do not want to truncate the record,
1000  * simply pass -1 for the bytes parameter.  Do not pass rawp->recsize, that
1001  * field includes header and trailer and will not be correct.  Note that
1002  * passing 0 will truncate the entire data payload of the record.
1003  *
1004  * The logical stream is terminated by this function.
1005  *
1006  * If truncation occurs, and it is not possible to physically optimize the
1007  * memory FIFO due to other threads having reserved space after ours,
1008  * the remaining reserved space will be covered by a pad record.
1009  */
1010 static void
1011 journal_commit(struct journal *jo, struct journal_rawrecbeg **rawpp,
1012 		int bytes, int closeout)
1013 {
1014     struct journal_rawrecbeg *rawp;
1015     struct journal_rawrecend *rendp;
1016     int osize;
1017     int nsize;
1018 
1019     rawp = *rawpp;
1020     *rawpp = NULL;
1021 
1022     KKASSERT((char *)rawp >= jo->fifo.membase &&
1023 	     (char *)rawp + rawp->recsize <= jo->fifo.membase + jo->fifo.size);
1024     KKASSERT(((intptr_t)rawp & 15) == 0);
1025 
1026     /*
1027      * Truncate the record if necessary.  If the FIFO write index as still
1028      * at the end of our record we can optimally backindex it.  Otherwise
1029      * we have to insert a pad record to cover the dead space.
1030      *
1031      * We calculate osize which is the 16-byte-aligned original recsize.
1032      * We calculate nsize which is the 16-byte-aligned new recsize.
1033      *
1034      * Due to alignment issues or in case the passed truncation bytes is
1035      * the same as the original payload, nsize may be equal to osize even
1036      * if the committed bytes is less then the originally reserved bytes.
1037      */
1038     if (bytes >= 0) {
1039 	KKASSERT(bytes >= 0 && bytes <= rawp->recsize - sizeof(struct journal_rawrecbeg) - sizeof(struct journal_rawrecend));
1040 	osize = (rawp->recsize + 15) & ~15;
1041 	rawp->recsize = bytes + sizeof(struct journal_rawrecbeg) +
1042 			sizeof(struct journal_rawrecend);
1043 	nsize = (rawp->recsize + 15) & ~15;
1044 	KKASSERT(nsize <= osize);
1045 	if (osize == nsize) {
1046 	    /* do nothing */
1047 	} else if ((jo->fifo.windex & jo->fifo.mask) == (char *)rawp - jo->fifo.membase + osize) {
1048 	    /* we are able to backindex the fifo */
1049 	    jo->fifo.windex -= osize - nsize;
1050 	} else {
1051 	    /* we cannot backindex the fifo, emplace a pad in the dead space */
1052 	    journal_build_pad((void *)((char *)rawp + nsize), osize - nsize,
1053 				rawp->transid + 1);
1054 	}
1055     }
1056 
1057     /*
1058      * Fill in the trailer.  Note that unlike pad records, the trailer will
1059      * never overlap the header.
1060      */
1061     rendp = (void *)((char *)rawp +
1062 	    ((rawp->recsize + 15) & ~15) - sizeof(*rendp));
1063     rendp->endmagic = JREC_ENDMAGIC;
1064     rendp->recsize = rawp->recsize;
1065     rendp->check = 0;		/* XXX check word, disabled for now */
1066 
1067     /*
1068      * Fill in begmagic last.  This will allow the worker thread to proceed.
1069      * Use a memory barrier to guarentee write ordering.  Mark the stream
1070      * as terminated if closeout is set.  This is the typical case.
1071      */
1072     if (closeout)
1073 	rawp->streamid |= JREC_STREAMCTL_END;
1074     cpu_sfence();		/* memory and compiler barrier */
1075     rawp->begmagic = JREC_BEGMAGIC;
1076 
1077     journal_commit_wakeup(jo);
1078 }
1079 
1080 /************************************************************************
1081  *			TRANSACTION SUPPORT ROUTINES			*
1082  ************************************************************************
1083  *
1084  * JRECORD_*() - routines to create subrecord transactions and embed them
1085  *		 in the logical streams managed by the journal_*() routines.
1086  */
1087 
1088 static int16_t sid = JREC_STREAMID_JMIN;
1089 
1090 /*
1091  * Initialize the passed jrecord structure and start a new stream transaction
1092  * by reserving an initial build space in the journal's memory FIFO.
1093  */
1094 static void
1095 jrecord_init(struct journal *jo, struct jrecord *jrec, int16_t streamid)
1096 {
1097     bzero(jrec, sizeof(*jrec));
1098     jrec->jo = jo;
1099     if (streamid < 0) {
1100 	streamid = sid++;	/* XXX need to track stream ids! */
1101 	if (sid == JREC_STREAMID_JMAX)
1102 	    sid = JREC_STREAMID_JMIN;
1103     }
1104     jrec->streamid = streamid;
1105     jrec->stream_residual = JREC_DEFAULTSIZE;
1106     jrec->stream_reserved = jrec->stream_residual;
1107     jrec->stream_ptr =
1108 	journal_reserve(jo, &jrec->rawp, streamid, jrec->stream_reserved);
1109 }
1110 
1111 /*
1112  * Push a recursive record type.  All pushes should have matching pops.
1113  * The old parent is returned and the newly pushed record becomes the
1114  * new parent.  Note that the old parent's pointer may already be invalid
1115  * or may become invalid if jrecord_write() had to build a new stream
1116  * record, so the caller should not mess with the returned pointer in
1117  * any way other then to save it.
1118  */
1119 static
1120 struct journal_subrecord *
1121 jrecord_push(struct jrecord *jrec, int16_t rectype)
1122 {
1123     struct journal_subrecord *save;
1124 
1125     save = jrec->parent;
1126     jrec->parent = jrecord_write(jrec, rectype|JMASK_NESTED, 0);
1127     jrec->last = NULL;
1128     KKASSERT(jrec->parent != NULL);
1129     ++jrec->pushcount;
1130     ++jrec->pushptrgood;	/* cleared on flush */
1131     return(save);
1132 }
1133 
1134 /*
1135  * Pop a previously pushed sub-transaction.  We must set JMASK_LAST
1136  * on the last record written within the subtransaction.  If the last
1137  * record written is not accessible or if the subtransaction is empty,
1138  * we must write out a pad record with JMASK_LAST set before popping.
1139  *
1140  * When popping a subtransaction the parent record's recsize field
1141  * will be properly set.  If the parent pointer is no longer valid
1142  * (which can occur if the data has already been flushed out to the
1143  * stream), the protocol spec allows us to leave it 0.
1144  *
1145  * The saved parent pointer which we restore may or may not be valid,
1146  * and if not valid may or may not be NULL, depending on the value
1147  * of pushptrgood.
1148  */
1149 static void
1150 jrecord_pop(struct jrecord *jrec, struct journal_subrecord *save)
1151 {
1152     struct journal_subrecord *last;
1153 
1154     KKASSERT(jrec->pushcount > 0);
1155     KKASSERT(jrec->residual == 0);
1156 
1157     /*
1158      * Set JMASK_LAST on the last record we wrote at the current
1159      * level.  If last is NULL we either no longer have access to the
1160      * record or the subtransaction was empty and we must write out a pad
1161      * record.
1162      */
1163     if ((last = jrec->last) == NULL) {
1164 	jrecord_write(jrec, JLEAF_PAD|JMASK_LAST, 0);
1165 	last = jrec->last;	/* reload after possible flush */
1166     } else {
1167 	last->rectype |= JMASK_LAST;
1168     }
1169 
1170     /*
1171      * pushptrgood tells us how many levels of parent record pointers
1172      * are valid.  The jrec only stores the current parent record pointer
1173      * (and it is only valid if pushptrgood != 0).  The higher level parent
1174      * record pointers are saved by the routines calling jrecord_push() and
1175      * jrecord_pop().  These pointers may become stale and we determine
1176      * that fact by tracking the count of valid parent pointers with
1177      * pushptrgood.  Pointers become invalid when their related stream
1178      * record gets pushed out.
1179      *
1180      * If no pointer is available (the data has already been pushed out),
1181      * then no fixup of e.g. the length field is possible for non-leaf
1182      * nodes.  The protocol allows for this situation by placing a larger
1183      * burden on the program scanning the stream on the other end.
1184      *
1185      * [parentA]
1186      *	  [node X]
1187      *    [parentB]
1188      *	     [node Y]
1189      *	     [node Z]
1190      *    (pop B)	see NOTE B
1191      * (pop A)		see NOTE A
1192      *
1193      * NOTE B:	This pop sets LAST in node Z if the node is still accessible,
1194      *		else a PAD record is appended and LAST is set in that.
1195      *
1196      *		This pop sets the record size in parentB if parentB is still
1197      *		accessible, else the record size is left 0 (the scanner must
1198      *		deal with that).
1199      *
1200      *		This pop sets the new 'last' record to parentB, the pointer
1201      *		to which may or may not still be accessible.
1202      *
1203      * NOTE A:	This pop sets LAST in parentB if the node is still accessible,
1204      *		else a PAD record is appended and LAST is set in that.
1205      *
1206      *		This pop sets the record size in parentA if parentA is still
1207      *		accessible, else the record size is left 0 (the scanner must
1208      *		deal with that).
1209      *
1210      *		This pop sets the new 'last' record to parentA, the pointer
1211      *		to which may or may not still be accessible.
1212      *
1213      * Also note that the last record in the stream transaction, which in
1214      * the above example is parentA, does not currently have the LAST bit
1215      * set.
1216      *
1217      * The current parent becomes the last record relative to the
1218      * saved parent passed into us.  It's validity is based on
1219      * whether pushptrgood is non-zero prior to decrementing.  The saved
1220      * parent becomes the new parent, and its validity is based on whether
1221      * pushptrgood is non-zero after decrementing.
1222      *
1223      * The old jrec->parent may be NULL if it is no longer accessible.
1224      * If pushptrgood is non-zero, however, it is guarenteed to not
1225      * be NULL (since no flush occured).
1226      */
1227     jrec->last = jrec->parent;
1228     --jrec->pushcount;
1229     if (jrec->pushptrgood) {
1230 	KKASSERT(jrec->last != NULL && last != NULL);
1231 	if (--jrec->pushptrgood == 0) {
1232 	    jrec->parent = NULL;	/* 'save' contains garbage or NULL */
1233 	} else {
1234 	    KKASSERT(save != NULL);
1235 	    jrec->parent = save;	/* 'save' must not be NULL */
1236 	}
1237 
1238 	/*
1239 	 * Set the record size in the old parent.  'last' still points to
1240 	 * the original last record in the subtransaction being popped,
1241 	 * jrec->last points to the old parent (which became the last
1242 	 * record relative to the new parent being popped into).
1243 	 */
1244 	jrec->last->recsize = (char *)last + last->recsize - (char *)jrec->last;
1245     } else {
1246 	jrec->parent = NULL;
1247 	KKASSERT(jrec->last == NULL);
1248     }
1249 }
1250 
1251 /*
1252  * Write out a leaf record, including associated data.
1253  */
1254 static
1255 void
1256 jrecord_leaf(struct jrecord *jrec, int16_t rectype, void *ptr, int bytes)
1257 {
1258     jrecord_write(jrec, rectype, bytes);
1259     jrecord_data(jrec, ptr, bytes);
1260 }
1261 
1262 /*
1263  * Write a leaf record out and return a pointer to its base.  The leaf
1264  * record may contain potentially megabytes of data which is supplied
1265  * in jrecord_data() calls.  The exact amount must be specified in this
1266  * call.
1267  *
1268  * THE RETURNED SUBRECORD POINTER IS ONLY VALID IMMEDIATELY AFTER THE
1269  * CALL AND MAY BECOME INVALID AT ANY TIME.  ONLY THE PUSH/POP CODE SHOULD
1270  * USE THE RETURN VALUE.
1271  */
1272 static
1273 struct journal_subrecord *
1274 jrecord_write(struct jrecord *jrec, int16_t rectype, int bytes)
1275 {
1276     struct journal_subrecord *last;
1277     int pusheditout;
1278 
1279     /*
1280      * Try to catch some obvious errors.  Nesting records must specify a
1281      * size of 0, and there should be no left-overs from previous operations
1282      * (such as incomplete data writeouts).
1283      */
1284     KKASSERT(bytes == 0 || (rectype & JMASK_NESTED) == 0);
1285     KKASSERT(jrec->residual == 0);
1286 
1287     /*
1288      * Check to see if the current stream record has enough room for
1289      * the new subrecord header.  If it doesn't we extend the current
1290      * stream record.
1291      *
1292      * This may have the side effect of pushing out the current stream record
1293      * and creating a new one.  We must adjust our stream tracking fields
1294      * accordingly.
1295      */
1296     if (jrec->stream_residual < sizeof(struct journal_subrecord)) {
1297 	jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1298 				jrec->stream_reserved - jrec->stream_residual,
1299 				JREC_DEFAULTSIZE, &pusheditout);
1300 	if (pusheditout) {
1301 	    /*
1302 	     * If a pushout occured, the pushed out stream record was
1303 	     * truncated as specified and the new record is exactly the
1304 	     * extension size specified.
1305 	     */
1306 	    jrec->stream_reserved = JREC_DEFAULTSIZE;
1307 	    jrec->stream_residual = JREC_DEFAULTSIZE;
1308 	    jrec->parent = NULL;	/* no longer accessible */
1309 	    jrec->pushptrgood = 0;	/* restored parents in pops no good */
1310 	} else {
1311 	    /*
1312 	     * If no pushout occured the stream record is NOT truncated and
1313 	     * IS extended.
1314 	     */
1315 	    jrec->stream_reserved += JREC_DEFAULTSIZE;
1316 	    jrec->stream_residual += JREC_DEFAULTSIZE;
1317 	}
1318     }
1319     last = (void *)jrec->stream_ptr;
1320     last->rectype = rectype;
1321     last->reserved = 0;
1322 
1323     /*
1324      * We may not know the record size for recursive records and the
1325      * header may become unavailable due to limited FIFO space.  Write
1326      * -1 to indicate this special case.
1327      */
1328     if ((rectype & JMASK_NESTED) && bytes == 0)
1329 	last->recsize = -1;
1330     else
1331 	last->recsize = sizeof(struct journal_subrecord) + bytes;
1332     jrec->last = last;
1333     jrec->residual = bytes;		/* remaining data to be posted */
1334     jrec->residual_align = -bytes & 7;	/* post-data alignment required */
1335     jrec->stream_ptr += sizeof(*last);	/* current write pointer */
1336     jrec->stream_residual -= sizeof(*last); /* space remaining in stream */
1337     return(last);
1338 }
1339 
1340 /*
1341  * Write out the data associated with a leaf record.  Any number of calls
1342  * to this routine may be made as long as the byte count adds up to the
1343  * amount originally specified in jrecord_write().
1344  *
1345  * The act of writing out the leaf data may result in numerous stream records
1346  * being pushed out.   Callers should be aware that even the associated
1347  * subrecord header may become inaccessible due to stream record pushouts.
1348  */
1349 static void
1350 jrecord_data(struct jrecord *jrec, const void *buf, int bytes)
1351 {
1352     int pusheditout;
1353     int extsize;
1354 
1355     KKASSERT(bytes >= 0 && bytes <= jrec->residual);
1356 
1357     /*
1358      * Push out stream records as long as there is insufficient room to hold
1359      * the remaining data.
1360      */
1361     while (jrec->stream_residual < bytes) {
1362 	/*
1363 	 * Fill in any remaining space in the current stream record.
1364 	 */
1365 	bcopy(buf, jrec->stream_ptr, jrec->stream_residual);
1366 	buf = (const char *)buf + jrec->stream_residual;
1367 	bytes -= jrec->stream_residual;
1368 	/*jrec->stream_ptr += jrec->stream_residual;*/
1369 	jrec->residual -= jrec->stream_residual;
1370 	jrec->stream_residual = 0;
1371 
1372 	/*
1373 	 * Try to extend the current stream record, but no more then 1/4
1374 	 * the size of the FIFO.
1375 	 */
1376 	extsize = jrec->jo->fifo.size >> 2;
1377 	if (extsize > bytes)
1378 	    extsize = (bytes + 15) & ~15;
1379 
1380 	jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1381 				jrec->stream_reserved - jrec->stream_residual,
1382 				extsize, &pusheditout);
1383 	if (pusheditout) {
1384 	    jrec->stream_reserved = extsize;
1385 	    jrec->stream_residual = extsize;
1386 	    jrec->parent = NULL;	/* no longer accessible */
1387 	    jrec->last = NULL;		/* no longer accessible */
1388 	    jrec->pushptrgood = 0;	/* restored parents in pops no good */
1389 	} else {
1390 	    jrec->stream_reserved += extsize;
1391 	    jrec->stream_residual += extsize;
1392 	}
1393     }
1394 
1395     /*
1396      * Push out any remaining bytes into the current stream record.
1397      */
1398     if (bytes) {
1399 	bcopy(buf, jrec->stream_ptr, bytes);
1400 	jrec->stream_ptr += bytes;
1401 	jrec->stream_residual -= bytes;
1402 	jrec->residual -= bytes;
1403     }
1404 
1405     /*
1406      * Handle data alignment requirements for the subrecord.  Because the
1407      * stream record's data space is more strictly aligned, it must already
1408      * have sufficient space to hold any subrecord alignment slop.
1409      */
1410     if (jrec->residual == 0 && jrec->residual_align) {
1411 	KKASSERT(jrec->residual_align <= jrec->stream_residual);
1412 	bzero(jrec->stream_ptr, jrec->residual_align);
1413 	jrec->stream_ptr += jrec->residual_align;
1414 	jrec->stream_residual -= jrec->residual_align;
1415 	jrec->residual_align = 0;
1416     }
1417 }
1418 
1419 /*
1420  * We are finished with the transaction.  This closes the transaction created
1421  * by jrecord_init().
1422  *
1423  * NOTE: If abortit is not set then we must be at the top level with no
1424  *	 residual subrecord data left to output.
1425  *
1426  *	 If abortit is set then we can be in any state, all pushes will be
1427  *	 popped and it is ok for there to be residual data.  This works
1428  *	 because the virtual stream itself is truncated.  Scanners must deal
1429  *	 with this situation.
1430  *
1431  * The stream record will be committed or aborted as specified and jrecord
1432  * resources will be cleaned up.
1433  */
1434 static void
1435 jrecord_done(struct jrecord *jrec, int abortit)
1436 {
1437     KKASSERT(jrec->rawp != NULL);
1438 
1439     if (abortit) {
1440 	journal_abort(jrec->jo, &jrec->rawp);
1441     } else {
1442 	KKASSERT(jrec->pushcount == 0 && jrec->residual == 0);
1443 	journal_commit(jrec->jo, &jrec->rawp,
1444 			jrec->stream_reserved - jrec->stream_residual, 1);
1445     }
1446 
1447     /*
1448      * jrec should not be used beyond this point without another init,
1449      * but clean up some fields to ensure that we panic if it is.
1450      *
1451      * Note that jrec->rawp is NULLd out by journal_abort/journal_commit.
1452      */
1453     jrec->jo = NULL;
1454     jrec->stream_ptr = NULL;
1455 }
1456 
1457 /************************************************************************
1458  *			LOW LEVEL RECORD SUPPORT ROUTINES		*
1459  ************************************************************************
1460  *
1461  * These routine create low level recursive and leaf subrecords representing
1462  * common filesystem structures.
1463  */
1464 
1465 /*
1466  * Write out a filename path relative to the base of the mount point.
1467  * rectype is typically JLEAF_PATH{1,2,3,4}.
1468  */
1469 static void
1470 jrecord_write_path(struct jrecord *jrec, int16_t rectype, struct namecache *ncp)
1471 {
1472     char buf[64];	/* local buffer if it fits, else malloced */
1473     char *base;
1474     int pathlen;
1475     int index;
1476     struct namecache *scan;
1477 
1478     /*
1479      * Pass 1 - figure out the number of bytes required.  Include terminating
1480      * 	       \0 on last element and '/' separator on other elements.
1481      */
1482 again:
1483     pathlen = 0;
1484     for (scan = ncp;
1485 	 scan && (scan->nc_flag & NCF_MOUNTPT) == 0;
1486 	 scan = scan->nc_parent
1487     ) {
1488 	pathlen += scan->nc_nlen + 1;
1489     }
1490 
1491     if (pathlen <= sizeof(buf))
1492 	base = buf;
1493     else
1494 	base = malloc(pathlen, M_TEMP, M_INTWAIT);
1495 
1496     /*
1497      * Pass 2 - generate the path buffer
1498      */
1499     index = pathlen;
1500     for (scan = ncp;
1501 	 scan && (scan->nc_flag & NCF_MOUNTPT) == 0;
1502 	 scan = scan->nc_parent
1503     ) {
1504 	if (scan->nc_nlen >= index) {
1505 	    if (base != buf)
1506 		free(base, M_TEMP);
1507 	    goto again;
1508 	}
1509 	if (index == pathlen)
1510 	    base[--index] = 0;
1511 	else
1512 	    base[--index] = '/';
1513 	index -= scan->nc_nlen;
1514 	bcopy(scan->nc_name, base + index, scan->nc_nlen);
1515     }
1516     jrecord_leaf(jrec, rectype, base + index, pathlen - index);
1517     if (base != buf)
1518 	free(base, M_TEMP);
1519 }
1520 
1521 /*
1522  * Write out a file attribute structure.  While somewhat inefficient, using
1523  * a recursive data structure is the most portable and extensible way.
1524  */
1525 static void
1526 jrecord_write_vattr(struct jrecord *jrec, struct vattr *vat)
1527 {
1528     void *save;
1529 
1530     save = jrecord_push(jrec, JTYPE_VATTR);
1531     if (vat->va_type != VNON)
1532 	jrecord_leaf(jrec, JLEAF_VTYPE, &vat->va_type, sizeof(vat->va_type));
1533     if (vat->va_mode != (mode_t)VNOVAL)
1534 	jrecord_leaf(jrec, JLEAF_MODES, &vat->va_mode, sizeof(vat->va_mode));
1535     if (vat->va_nlink != VNOVAL)
1536 	jrecord_leaf(jrec, JLEAF_NLINK, &vat->va_nlink, sizeof(vat->va_nlink));
1537     if (vat->va_uid != VNOVAL)
1538 	jrecord_leaf(jrec, JLEAF_UID, &vat->va_uid, sizeof(vat->va_uid));
1539     if (vat->va_gid != VNOVAL)
1540 	jrecord_leaf(jrec, JLEAF_GID, &vat->va_gid, sizeof(vat->va_gid));
1541     if (vat->va_fsid != VNOVAL)
1542 	jrecord_leaf(jrec, JLEAF_FSID, &vat->va_fsid, sizeof(vat->va_fsid));
1543     if (vat->va_fileid != VNOVAL)
1544 	jrecord_leaf(jrec, JLEAF_INUM, &vat->va_fileid, sizeof(vat->va_fileid));
1545     if (vat->va_size != VNOVAL)
1546 	jrecord_leaf(jrec, JLEAF_SIZE, &vat->va_size, sizeof(vat->va_size));
1547     if (vat->va_atime.tv_sec != VNOVAL)
1548 	jrecord_leaf(jrec, JLEAF_ATIME, &vat->va_atime, sizeof(vat->va_atime));
1549     if (vat->va_mtime.tv_sec != VNOVAL)
1550 	jrecord_leaf(jrec, JLEAF_MTIME, &vat->va_mtime, sizeof(vat->va_mtime));
1551     if (vat->va_ctime.tv_sec != VNOVAL)
1552 	jrecord_leaf(jrec, JLEAF_CTIME, &vat->va_ctime, sizeof(vat->va_ctime));
1553     if (vat->va_gen != VNOVAL)
1554 	jrecord_leaf(jrec, JLEAF_GEN, &vat->va_gen, sizeof(vat->va_gen));
1555     if (vat->va_flags != VNOVAL)
1556 	jrecord_leaf(jrec, JLEAF_FLAGS, &vat->va_flags, sizeof(vat->va_flags));
1557     if (vat->va_rdev != VNOVAL)
1558 	jrecord_leaf(jrec, JLEAF_UDEV, &vat->va_rdev, sizeof(vat->va_rdev));
1559 #if 0
1560     if (vat->va_filerev != VNOVAL)
1561 	jrecord_leaf(jrec, JLEAF_FILEREV, &vat->va_filerev, sizeof(vat->va_filerev));
1562 #endif
1563     jrecord_pop(jrec, save);
1564 }
1565 
1566 /*
1567  * Write out the creds used to issue a file operation.  If a process is
1568  * available write out additional tracking information related to the
1569  * process.
1570  *
1571  * XXX additional tracking info
1572  * XXX tty line info
1573  */
1574 static void
1575 jrecord_write_cred(struct jrecord *jrec, struct thread *td, struct ucred *cred)
1576 {
1577     void *save;
1578     struct proc *p;
1579 
1580     save = jrecord_push(jrec, JTYPE_CRED);
1581     jrecord_leaf(jrec, JLEAF_UID, &cred->cr_uid, sizeof(cred->cr_uid));
1582     jrecord_leaf(jrec, JLEAF_GID, &cred->cr_gid, sizeof(cred->cr_gid));
1583     if (td && (p = td->td_proc) != NULL) {
1584 	jrecord_leaf(jrec, JLEAF_PID, &p->p_pid, sizeof(p->p_pid));
1585 	jrecord_leaf(jrec, JLEAF_COMM, p->p_comm, sizeof(p->p_comm));
1586     }
1587     jrecord_pop(jrec, save);
1588 }
1589 
1590 /*
1591  * Write out information required to identify a vnode
1592  *
1593  * XXX this needs work.  We should write out the inode number as well,
1594  * and in fact avoid writing out the file path for seqential writes
1595  * occuring within e.g. a certain period of time.
1596  */
1597 static void
1598 jrecord_write_vnode_ref(struct jrecord *jrec, struct vnode *vp)
1599 {
1600     struct namecache *ncp;
1601 
1602     TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1603 	if ((ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1604 	    break;
1605     }
1606     if (ncp)
1607 	jrecord_write_path(jrec, JLEAF_PATH_REF, ncp);
1608 }
1609 
1610 static void
1611 jrecord_write_vnode_link(struct jrecord *jrec, struct vnode *vp,
1612 			 struct namecache *notncp)
1613 {
1614     struct namecache *ncp;
1615 
1616     TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1617 	if (ncp == notncp)
1618 	    continue;
1619 	if ((ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1620 	    break;
1621     }
1622     if (ncp)
1623 	jrecord_write_path(jrec, JLEAF_PATH_REF, ncp);
1624 }
1625 
1626 #if 0
1627 /*
1628  * Write out the current contents of the file within the specified
1629  * range.  This is typically called from within an UNDO section.  A
1630  * locked vnode must be passed.
1631  */
1632 static int
1633 jrecord_write_filearea(struct jrecord *jrec, struct vnode *vp,
1634 			off_t begoff, off_t endoff)
1635 {
1636 }
1637 #endif
1638 
1639 /*
1640  * Write out the data represented by a pagelist
1641  */
1642 static void
1643 jrecord_write_pagelist(struct jrecord *jrec, int16_t rectype,
1644 			struct vm_page **pglist, int *rtvals, int pgcount,
1645 			off_t offset)
1646 {
1647     struct msf_buf *msf;
1648     int error;
1649     int b;
1650     int i;
1651 
1652     i = 0;
1653     while (i < pgcount) {
1654 	/*
1655 	 * Find the next valid section.  Skip any invalid elements
1656 	 */
1657 	if (rtvals[i] != VM_PAGER_OK) {
1658 	    ++i;
1659 	    offset += PAGE_SIZE;
1660 	    continue;
1661 	}
1662 
1663 	/*
1664 	 * Figure out how big the valid section is, capping I/O at what the
1665 	 * MSFBUF can represent.
1666 	 */
1667 	b = i;
1668 	while (i < pgcount && i - b != XIO_INTERNAL_PAGES &&
1669 	       rtvals[i] == VM_PAGER_OK
1670 	) {
1671 	    ++i;
1672 	}
1673 
1674 	/*
1675 	 * And write it out.
1676 	 */
1677 	if (i - b) {
1678 	    error = msf_map_pagelist(&msf, pglist + b, i - b, 0);
1679 	    if (error == 0) {
1680 		printf("RECORD PUTPAGES %d\n", msf_buf_bytes(msf));
1681 		jrecord_leaf(jrec, JLEAF_SEEKPOS, &offset, sizeof(offset));
1682 		jrecord_leaf(jrec, rectype,
1683 			     msf_buf_kva(msf), msf_buf_bytes(msf));
1684 		msf_buf_free(msf);
1685 	    } else {
1686 		printf("jrecord_write_pagelist: mapping failure\n");
1687 	    }
1688 	    offset += (off_t)(i - b) << PAGE_SHIFT;
1689 	}
1690     }
1691 }
1692 
1693 /*
1694  * Write out the data represented by a UIO.
1695  */
1696 struct jwuio_info {
1697     struct jrecord *jrec;
1698     int16_t rectype;
1699 };
1700 
1701 static int jrecord_write_uio_callback(void *info, char *buf, int bytes);
1702 
1703 static void
1704 jrecord_write_uio(struct jrecord *jrec, int16_t rectype, struct uio *uio)
1705 {
1706     struct jwuio_info info = { jrec, rectype };
1707     int error;
1708 
1709     if (uio->uio_segflg != UIO_NOCOPY) {
1710 	jrecord_leaf(jrec, JLEAF_SEEKPOS, &uio->uio_offset,
1711 		     sizeof(uio->uio_offset));
1712 	error = msf_uio_iterate(uio, jrecord_write_uio_callback, &info);
1713 	if (error)
1714 	    printf("XXX warning uio iterate failed %d\n", error);
1715     }
1716 }
1717 
1718 static int
1719 jrecord_write_uio_callback(void *info_arg, char *buf, int bytes)
1720 {
1721     struct jwuio_info *info = info_arg;
1722 
1723     jrecord_leaf(info->jrec, info->rectype, buf, bytes);
1724     return(0);
1725 }
1726 
1727 /************************************************************************
1728  *			JOURNAL VNOPS					*
1729  ************************************************************************
1730  *
1731  * These are function shims replacing the normal filesystem ops.  We become
1732  * responsible for calling the underlying filesystem ops.  We have the choice
1733  * of executing the underlying op first and then generating the journal entry,
1734  * or starting the journal entry, executing the underlying op, and then
1735  * either completing or aborting it.
1736  *
1737  * The journal is supposed to be a high-level entity, which generally means
1738  * identifying files by name rather then by inode.  Supplying both allows
1739  * the journal to be used both for inode-number-compatible 'mirrors' and
1740  * for simple filesystem replication.
1741  *
1742  * Writes are particularly difficult to deal with because a single write may
1743  * represent a hundred megabyte buffer or more, and both writes and truncations
1744  * require the 'old' data to be written out as well as the new data if the
1745  * log is reversable.  Other issues:
1746  *
1747  * - How to deal with operations on unlinked files (no path available),
1748  *   but which may still be filesystem visible due to hard links.
1749  *
1750  * - How to deal with modifications made via a memory map.
1751  *
1752  * - Future cache coherency support will require cache coherency API calls
1753  *   both prior to and after the call to the underlying VFS.
1754  *
1755  * ALSO NOTE: We do not have to shim compatibility VOPs like MKDIR which have
1756  * new VFS equivalents (NMKDIR).
1757  */
1758 
1759 /*
1760  * Journal vop_settattr { a_vp, a_vap, a_cred, a_td }
1761  */
1762 static
1763 int
1764 journal_setattr(struct vop_setattr_args *ap)
1765 {
1766     struct mount *mp;
1767     struct journal *jo;
1768     struct jrecord jrec;
1769     void *save;		/* warning, save pointers do not always remain valid */
1770     int error;
1771 
1772     error = vop_journal_operate_ap(&ap->a_head);
1773     mp = ap->a_head.a_ops->vv_mount;
1774     if (error == 0) {
1775 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1776 	    jrecord_init(jo, &jrec, -1);
1777 	    save = jrecord_push(&jrec, JTYPE_SETATTR);
1778 	    jrecord_write_cred(&jrec, ap->a_td, ap->a_cred);
1779 	    jrecord_write_vnode_ref(&jrec, ap->a_vp);
1780 	    jrecord_write_vattr(&jrec, ap->a_vap);
1781 	    jrecord_pop(&jrec, save);
1782 	    jrecord_done(&jrec, 0);
1783 	}
1784     }
1785     return (error);
1786 }
1787 
1788 /*
1789  * Journal vop_write { a_vp, a_uio, a_ioflag, a_cred }
1790  */
1791 static
1792 int
1793 journal_write(struct vop_write_args *ap)
1794 {
1795     struct mount *mp;
1796     struct journal *jo;
1797     struct jrecord jrec;
1798     struct uio uio_copy;
1799     struct iovec uio_one_iovec;
1800     void *save;		/* warning, save pointers do not always remain valid */
1801     int error;
1802 
1803     /*
1804      * This is really nasty.  UIO's don't retain sufficient information to
1805      * be reusable once they've gone through the VOP chain.  The iovecs get
1806      * cleared, so we have to copy the UIO.
1807      *
1808      * XXX fix the UIO code to not destroy iov's during a scan so we can
1809      *     reuse the uio over and over again.
1810      *
1811      * XXX UNDO code needs to journal the old data prior to the write.
1812      */
1813     uio_copy = *ap->a_uio;
1814     if (uio_copy.uio_iovcnt == 1) {
1815 	uio_one_iovec = ap->a_uio->uio_iov[0];
1816 	uio_copy.uio_iov = &uio_one_iovec;
1817     } else {
1818 	uio_copy.uio_iov = malloc(uio_copy.uio_iovcnt * sizeof(struct iovec),
1819 				    M_JOURNAL, M_WAITOK);
1820 	bcopy(ap->a_uio->uio_iov, uio_copy.uio_iov,
1821 		uio_copy.uio_iovcnt * sizeof(struct iovec));
1822     }
1823 
1824     error = vop_journal_operate_ap(&ap->a_head);
1825 
1826     /*
1827      * XXX bad hack to figure out the offset for O_APPEND writes (note:
1828      * uio field state after the VFS operation).
1829      */
1830     uio_copy.uio_offset = ap->a_uio->uio_offset -
1831 				(uio_copy.uio_resid - ap->a_uio->uio_resid);
1832 
1833     mp = ap->a_head.a_ops->vv_mount;
1834     if (error == 0) {
1835 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1836 	    jrecord_init(jo, &jrec, -1);
1837 	    save = jrecord_push(&jrec, JTYPE_WRITE);
1838 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
1839 	    jrecord_write_vnode_ref(&jrec, ap->a_vp);
1840 	    jrecord_write_uio(&jrec, JLEAF_FILEDATA, &uio_copy);
1841 	    jrecord_pop(&jrec, save);
1842 	    jrecord_done(&jrec, 0);
1843 	}
1844     }
1845 
1846     if (uio_copy.uio_iov != &uio_one_iovec)
1847 	free(uio_copy.uio_iov, M_JOURNAL);
1848 
1849 
1850     return (error);
1851 }
1852 
1853 /*
1854  * Journal vop_fsync { a_vp, a_waitfor, a_td }
1855  */
1856 static
1857 int
1858 journal_fsync(struct vop_fsync_args *ap)
1859 {
1860     struct mount *mp;
1861     struct journal *jo;
1862     int error;
1863 
1864     error = vop_journal_operate_ap(&ap->a_head);
1865     mp = ap->a_head.a_ops->vv_mount;
1866     if (error == 0) {
1867 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1868 	    /* XXX synchronize pending journal records */
1869 	}
1870     }
1871     return (error);
1872 }
1873 
1874 /*
1875  * Journal vop_putpages { a_vp, a_m, a_count, a_sync, a_rtvals, a_offset }
1876  *
1877  * note: a_count is in bytes.
1878  */
1879 static
1880 int
1881 journal_putpages(struct vop_putpages_args *ap)
1882 {
1883     struct mount *mp;
1884     struct journal *jo;
1885     struct jrecord jrec;
1886     void *save;		/* warning, save pointers do not always remain valid */
1887     int error;
1888 
1889     error = vop_journal_operate_ap(&ap->a_head);
1890     mp = ap->a_head.a_ops->vv_mount;
1891     if (error == 0 && ap->a_count > 0) {
1892 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1893 	    jrecord_init(jo, &jrec, -1);
1894 	    save = jrecord_push(&jrec, JTYPE_PUTPAGES);
1895 	    jrecord_write_vnode_ref(&jrec, ap->a_vp);
1896 	    jrecord_write_pagelist(&jrec, JLEAF_FILEDATA,
1897 			ap->a_m, ap->a_rtvals, btoc(ap->a_count), ap->a_offset);
1898 	    jrecord_pop(&jrec, save);
1899 	    jrecord_done(&jrec, 0);
1900 	}
1901     }
1902     return (error);
1903 }
1904 
1905 /*
1906  * Journal vop_setacl { a_vp, a_type, a_aclp, a_cred, a_td }
1907  */
1908 static
1909 int
1910 journal_setacl(struct vop_setacl_args *ap)
1911 {
1912     struct mount *mp;
1913     struct journal *jo;
1914     struct jrecord jrec;
1915     void *save;		/* warning, save pointers do not always remain valid */
1916     int error;
1917 
1918     error = vop_journal_operate_ap(&ap->a_head);
1919     mp = ap->a_head.a_ops->vv_mount;
1920     if (error == 0) {
1921 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1922 	    jrecord_init(jo, &jrec, -1);
1923 	    save = jrecord_push(&jrec, JTYPE_SETACL);
1924 	    jrecord_write_cred(&jrec, ap->a_td, ap->a_cred);
1925 	    jrecord_write_vnode_ref(&jrec, ap->a_vp);
1926 	    /* XXX type, aclp */
1927 	    jrecord_pop(&jrec, save);
1928 	    jrecord_done(&jrec, 0);
1929 	}
1930     }
1931     return (error);
1932 }
1933 
1934 /*
1935  * Journal vop_setextattr { a_vp, a_name, a_uio, a_cred, a_td }
1936  */
1937 static
1938 int
1939 journal_setextattr(struct vop_setextattr_args *ap)
1940 {
1941     struct mount *mp;
1942     struct journal *jo;
1943     struct jrecord jrec;
1944     void *save;		/* warning, save pointers do not always remain valid */
1945     int error;
1946 
1947     error = vop_journal_operate_ap(&ap->a_head);
1948     mp = ap->a_head.a_ops->vv_mount;
1949     if (error == 0) {
1950 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1951 	    jrecord_init(jo, &jrec, -1);
1952 	    save = jrecord_push(&jrec, JTYPE_SETEXTATTR);
1953 	    jrecord_write_cred(&jrec, ap->a_td, ap->a_cred);
1954 	    jrecord_write_vnode_ref(&jrec, ap->a_vp);
1955 	    jrecord_leaf(&jrec, JLEAF_ATTRNAME, ap->a_name, strlen(ap->a_name));
1956 	    jrecord_write_uio(&jrec, JLEAF_FILEDATA, ap->a_uio);
1957 	    jrecord_pop(&jrec, save);
1958 	    jrecord_done(&jrec, 0);
1959 	}
1960     }
1961     return (error);
1962 }
1963 
1964 /*
1965  * Journal vop_ncreate { a_ncp, a_vpp, a_cred, a_vap }
1966  */
1967 static
1968 int
1969 journal_ncreate(struct vop_ncreate_args *ap)
1970 {
1971     struct mount *mp;
1972     struct journal *jo;
1973     struct jrecord jrec;
1974     void *save;		/* warning, save pointers do not always remain valid */
1975     int error;
1976 
1977     error = vop_journal_operate_ap(&ap->a_head);
1978     mp = ap->a_head.a_ops->vv_mount;
1979     if (error == 0) {
1980 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1981 	    jrecord_init(jo, &jrec, -1);
1982 	    save = jrecord_push(&jrec, JTYPE_CREATE);
1983 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
1984 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1985 	    if (*ap->a_vpp)
1986 		jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
1987 	    jrecord_write_vattr(&jrec, ap->a_vap);
1988 	    jrecord_pop(&jrec, save);
1989 	    jrecord_done(&jrec, 0);
1990 	}
1991     }
1992     return (error);
1993 }
1994 
1995 /*
1996  * Journal vop_nmknod { a_ncp, a_vpp, a_cred, a_vap }
1997  */
1998 static
1999 int
2000 journal_nmknod(struct vop_nmknod_args *ap)
2001 {
2002     struct mount *mp;
2003     struct journal *jo;
2004     struct jrecord jrec;
2005     void *save;		/* warning, save pointers do not always remain valid */
2006     int error;
2007 
2008     error = vop_journal_operate_ap(&ap->a_head);
2009     mp = ap->a_head.a_ops->vv_mount;
2010     if (error == 0) {
2011 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
2012 	    jrecord_init(jo, &jrec, -1);
2013 	    save = jrecord_push(&jrec, JTYPE_MKNOD);
2014 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
2015 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
2016 	    jrecord_write_vattr(&jrec, ap->a_vap);
2017 	    if (*ap->a_vpp)
2018 		jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
2019 	    jrecord_pop(&jrec, save);
2020 	    jrecord_done(&jrec, 0);
2021 	}
2022     }
2023     return (error);
2024 }
2025 
2026 /*
2027  * Journal vop_nlink { a_ncp, a_vp, a_cred }
2028  */
2029 static
2030 int
2031 journal_nlink(struct vop_nlink_args *ap)
2032 {
2033     struct mount *mp;
2034     struct journal *jo;
2035     struct jrecord jrec;
2036     void *save;		/* warning, save pointers do not always remain valid */
2037     int error;
2038 
2039     error = vop_journal_operate_ap(&ap->a_head);
2040     mp = ap->a_head.a_ops->vv_mount;
2041     if (error == 0) {
2042 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
2043 	    jrecord_init(jo, &jrec, -1);
2044 	    save = jrecord_push(&jrec, JTYPE_LINK);
2045 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
2046 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
2047 	    /* XXX PATH to VP and inode number */
2048 	    /* XXX this call may not record the correct path when
2049 	     * multiple paths are available */
2050 	    jrecord_write_vnode_link(&jrec, ap->a_vp, ap->a_ncp);
2051 	    jrecord_pop(&jrec, save);
2052 	    jrecord_done(&jrec, 0);
2053 	}
2054     }
2055     return (error);
2056 }
2057 
2058 /*
2059  * Journal vop_symlink { a_ncp, a_vpp, a_cred, a_vap, a_target }
2060  */
2061 static
2062 int
2063 journal_nsymlink(struct vop_nsymlink_args *ap)
2064 {
2065     struct mount *mp;
2066     struct journal *jo;
2067     struct jrecord jrec;
2068     void *save;		/* warning, save pointers do not always remain valid */
2069     int error;
2070 
2071     error = vop_journal_operate_ap(&ap->a_head);
2072     mp = ap->a_head.a_ops->vv_mount;
2073     if (error == 0) {
2074 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
2075 	    jrecord_init(jo, &jrec, -1);
2076 	    save = jrecord_push(&jrec, JTYPE_SYMLINK);
2077 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
2078 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
2079 	    jrecord_leaf(&jrec, JLEAF_SYMLINKDATA,
2080 			ap->a_target, strlen(ap->a_target));
2081 	    if (*ap->a_vpp)
2082 		jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
2083 	    jrecord_pop(&jrec, save);
2084 	    jrecord_done(&jrec, 0);
2085 	}
2086     }
2087     return (error);
2088 }
2089 
2090 /*
2091  * Journal vop_nwhiteout { a_ncp, a_cred, a_flags }
2092  */
2093 static
2094 int
2095 journal_nwhiteout(struct vop_nwhiteout_args *ap)
2096 {
2097     struct mount *mp;
2098     struct journal *jo;
2099     struct jrecord jrec;
2100     void *save;		/* warning, save pointers do not always remain valid */
2101     int error;
2102 
2103     error = vop_journal_operate_ap(&ap->a_head);
2104     mp = ap->a_head.a_ops->vv_mount;
2105     if (error == 0) {
2106 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
2107 	    jrecord_init(jo, &jrec, -1);
2108 	    save = jrecord_push(&jrec, JTYPE_WHITEOUT);
2109 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
2110 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
2111 	    jrecord_pop(&jrec, save);
2112 	    jrecord_done(&jrec, 0);
2113 	}
2114     }
2115     return (error);
2116 }
2117 
2118 /*
2119  * Journal vop_nremove { a_ncp, a_cred }
2120  */
2121 static
2122 int
2123 journal_nremove(struct vop_nremove_args *ap)
2124 {
2125     struct mount *mp;
2126     struct journal *jo;
2127     struct jrecord jrec;
2128     void *save;		/* warning, save pointers do not always remain valid */
2129     int error;
2130 
2131     error = vop_journal_operate_ap(&ap->a_head);
2132     mp = ap->a_head.a_ops->vv_mount;
2133     if (error == 0) {
2134 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
2135 	    jrecord_init(jo, &jrec, -1);
2136 	    save = jrecord_push(&jrec, JTYPE_REMOVE);
2137 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
2138 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
2139 	    jrecord_pop(&jrec, save);
2140 	    jrecord_done(&jrec, 0);
2141 	}
2142     }
2143     return (error);
2144 }
2145 
2146 /*
2147  * Journal vop_nmkdir { a_ncp, a_vpp, a_cred, a_vap }
2148  */
2149 static
2150 int
2151 journal_nmkdir(struct vop_nmkdir_args *ap)
2152 {
2153     struct mount *mp;
2154     struct journal *jo;
2155     struct jrecord jrec;
2156     void *save;		/* warning, save pointers do not always remain valid */
2157     int error;
2158 
2159     error = vop_journal_operate_ap(&ap->a_head);
2160     mp = ap->a_head.a_ops->vv_mount;
2161     if (error == 0) {
2162 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
2163 	    jrecord_init(jo, &jrec, -1);
2164 	    if (jo->flags & MC_JOURNAL_WANT_REVERSABLE) {
2165 		save = jrecord_push(&jrec, JTYPE_UNDO);
2166 		/* XXX undo operations */
2167 		jrecord_pop(&jrec, save);
2168 	    }
2169 #if 0
2170 	    if (jo->flags & MC_JOURNAL_WANT_AUDIT) {
2171 		jrecord_write_audit(&jrec);
2172 	    }
2173 #endif
2174 	    save = jrecord_push(&jrec, JTYPE_MKDIR);
2175 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
2176 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
2177 	    jrecord_write_vattr(&jrec, ap->a_vap);
2178 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
2179 	    if (*ap->a_vpp)
2180 		jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
2181 	    jrecord_pop(&jrec, save);
2182 	    jrecord_done(&jrec, 0);
2183 	}
2184     }
2185     return (error);
2186 }
2187 
2188 /*
2189  * Journal vop_nrmdir { a_ncp, a_cred }
2190  */
2191 static
2192 int
2193 journal_nrmdir(struct vop_nrmdir_args *ap)
2194 {
2195     struct mount *mp;
2196     struct journal *jo;
2197     struct jrecord jrec;
2198     void *save;		/* warning, save pointers do not always remain valid */
2199     int error;
2200 
2201     error = vop_journal_operate_ap(&ap->a_head);
2202     mp = ap->a_head.a_ops->vv_mount;
2203     if (error == 0) {
2204 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
2205 	    jrecord_init(jo, &jrec, -1);
2206 	    save = jrecord_push(&jrec, JTYPE_RMDIR);
2207 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
2208 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
2209 	    jrecord_pop(&jrec, save);
2210 	    jrecord_done(&jrec, 0);
2211 	}
2212     }
2213     return (error);
2214 }
2215 
2216 /*
2217  * Journal vop_nrename { a_fncp, a_tncp, a_cred }
2218  */
2219 static
2220 int
2221 journal_nrename(struct vop_nrename_args *ap)
2222 {
2223     struct mount *mp;
2224     struct journal *jo;
2225     struct jrecord jrec;
2226     void *save;		/* warning, save pointers do not always remain valid */
2227     int error;
2228 
2229     error = vop_journal_operate_ap(&ap->a_head);
2230     mp = ap->a_head.a_ops->vv_mount;
2231     if (error == 0) {
2232 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
2233 	    jrecord_init(jo, &jrec, -1);
2234 	    save = jrecord_push(&jrec, JTYPE_RENAME);
2235 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
2236 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_fncp);
2237 	    jrecord_write_path(&jrec, JLEAF_PATH2, ap->a_tncp);
2238 	    jrecord_pop(&jrec, save);
2239 	    jrecord_done(&jrec, 0);
2240 	}
2241     }
2242     return (error);
2243 }
2244 
2245