xref: /dflybsd-src/sys/kern/vfs_journal.c (revision a9656fbcd49c376aba5e04370d8b0f1fa96e063c)
1 /*
2  * Copyright (c) 2004-2006 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/vfs_journal.c,v 1.33 2007/05/09 00:53:34 dillon Exp $
35  */
36 /*
37  * The journaling protocol is intended to evolve into a two-way stream
38  * whereby transaction IDs can be acknowledged by the journaling target
39  * when the data has been committed to hard storage.  Both implicit and
40  * explicit acknowledgement schemes will be supported, depending on the
41  * sophistication of the journaling stream, plus resynchronization and
42  * restart when a journaling stream is interrupted.  This information will
43  * also be made available to journaling-aware filesystems to allow better
44  * management of their own physical storage synchronization mechanisms as
45  * well as to allow such filesystems to take direct advantage of the kernel's
46  * journaling layer so they don't have to roll their own.
47  *
48  * In addition, the worker thread will have access to much larger
49  * spooling areas then the memory buffer is able to provide by e.g.
50  * reserving swap space, in order to absorb potentially long interruptions
51  * of off-site journaling streams, and to prevent 'slow' off-site linkages
52  * from radically slowing down local filesystem operations.
53  *
54  * Because of the non-trivial algorithms the journaling system will be
55  * required to support, use of a worker thread is mandatory.  Efficiencies
56  * are maintained by utilitizing the memory FIFO to batch transactions when
57  * possible, reducing the number of gratuitous thread switches and taking
58  * advantage of cpu caches through the use of shorter batched code paths
59  * rather then trying to do everything in the context of the process
60  * originating the filesystem op.  In the future the memory FIFO can be
61  * made per-cpu to remove BGL or other locking requirements.
62  */
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/buf.h>
66 #include <sys/conf.h>
67 #include <sys/kernel.h>
68 #include <sys/queue.h>
69 #include <sys/lock.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/unistd.h>
73 #include <sys/vnode.h>
74 #include <sys/poll.h>
75 #include <sys/mountctl.h>
76 #include <sys/journal.h>
77 #include <sys/file.h>
78 #include <sys/proc.h>
79 #include <sys/xio.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 
83 #include <machine/limits.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vnode_pager.h>
90 
91 #include <sys/file2.h>
92 #include <sys/thread2.h>
93 #include <sys/spinlock2.h>
94 
95 static void journal_wthread(void *info);
96 static void journal_rthread(void *info);
97 
98 static void *journal_reserve(struct journal *jo,
99                         struct journal_rawrecbeg **rawpp,
100                         int16_t streamid, int bytes);
101 static void *journal_extend(struct journal *jo,
102                         struct journal_rawrecbeg **rawpp,
103                         int truncbytes, int bytes, int *newstreamrecp);
104 static void journal_abort(struct journal *jo,
105                         struct journal_rawrecbeg **rawpp);
106 static void journal_commit(struct journal *jo,
107                         struct journal_rawrecbeg **rawpp,
108                         int bytes, int closeout);
109 static void jrecord_data(struct jrecord *jrec,
110 			void *buf, int bytes, int dtype);
111 
112 
113 MALLOC_DEFINE(M_JOURNAL, "journal", "Journaling structures");
114 MALLOC_DEFINE(M_JFIFO, "journal-fifo", "Journal FIFO");
115 
116 void
117 journal_create_threads(struct journal *jo)
118 {
119 	jo->flags &= ~(MC_JOURNAL_STOP_REQ | MC_JOURNAL_STOP_IMM);
120 	jo->flags |= MC_JOURNAL_WACTIVE;
121 	lwkt_create(journal_wthread, jo, NULL, &jo->wthread,
122 			TDF_STOPREQ, -1, "journal w:%.*s", JIDMAX, jo->id);
123 	lwkt_setpri(&jo->wthread, TDPRI_KERN_DAEMON);
124 	lwkt_schedule(&jo->wthread);
125 
126 	if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) {
127 	    jo->flags |= MC_JOURNAL_RACTIVE;
128 	    lwkt_create(journal_rthread, jo, NULL, &jo->rthread,
129 			TDF_STOPREQ, -1, "journal r:%.*s", JIDMAX, jo->id);
130 	    lwkt_setpri(&jo->rthread, TDPRI_KERN_DAEMON);
131 	    lwkt_schedule(&jo->rthread);
132 	}
133 }
134 
135 void
136 journal_destroy_threads(struct journal *jo, int flags)
137 {
138     int wcount;
139 
140     jo->flags |= MC_JOURNAL_STOP_REQ | (flags & MC_JOURNAL_STOP_IMM);
141     wakeup(&jo->fifo);
142     wcount = 0;
143     while (jo->flags & (MC_JOURNAL_WACTIVE | MC_JOURNAL_RACTIVE)) {
144 	tsleep(jo, 0, "jwait", hz);
145 	if (++wcount % 10 == 0) {
146 	    kprintf("Warning: journal %s waiting for descriptors to close\n",
147 		jo->id);
148 	}
149     }
150 
151     /*
152      * XXX SMP - threads should move to cpu requesting the restart or
153      * termination before finishing up to properly interlock.
154      */
155     tsleep(jo, 0, "jwait", hz);
156     lwkt_free_thread(&jo->wthread);
157     if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX)
158 	lwkt_free_thread(&jo->rthread);
159 }
160 
161 /*
162  * The per-journal worker thread is responsible for writing out the
163  * journal's FIFO to the target stream.
164  */
165 static void
166 journal_wthread(void *info)
167 {
168     struct journal *jo = info;
169     struct journal_rawrecbeg *rawp;
170     int error;
171     size_t avail;
172     size_t bytes;
173     size_t res;
174 
175     for (;;) {
176 	/*
177 	 * Calculate the number of bytes available to write.  This buffer
178 	 * area may contain reserved records so we can't just write it out
179 	 * without further checks.
180 	 */
181 	bytes = jo->fifo.windex - jo->fifo.rindex;
182 
183 	/*
184 	 * sleep if no bytes are available or if an incomplete record is
185 	 * encountered (it needs to be filled in before we can write it
186 	 * out), and skip any pad records that we encounter.
187 	 */
188 	if (bytes == 0) {
189 	    if (jo->flags & MC_JOURNAL_STOP_REQ)
190 		break;
191 	    tsleep(&jo->fifo, 0, "jfifo", hz);
192 	    continue;
193 	}
194 
195 	/*
196 	 * Sleep if we can not go any further due to hitting an incomplete
197 	 * record.  This case should occur rarely but may have to be better
198 	 * optimized XXX.
199 	 */
200 	rawp = (void *)(jo->fifo.membase + (jo->fifo.rindex & jo->fifo.mask));
201 	if (rawp->begmagic == JREC_INCOMPLETEMAGIC) {
202 	    tsleep(&jo->fifo, 0, "jpad", hz);
203 	    continue;
204 	}
205 
206 	/*
207 	 * Skip any pad records.  We do not write out pad records if we can
208 	 * help it.
209 	 */
210 	if (rawp->streamid == JREC_STREAMID_PAD) {
211 	    if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
212 		if (jo->fifo.rindex == jo->fifo.xindex) {
213 		    jo->fifo.xindex += (rawp->recsize + 15) & ~15;
214 		    jo->total_acked += (rawp->recsize + 15) & ~15;
215 		}
216 	    }
217 	    jo->fifo.rindex += (rawp->recsize + 15) & ~15;
218 	    jo->total_acked += bytes;
219 	    KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
220 	    continue;
221 	}
222 
223 	/*
224 	 * 'bytes' is the amount of data that can potentially be written out.
225 	 * Calculate 'res', the amount of data that can actually be written
226 	 * out.  res is bounded either by hitting the end of the physical
227 	 * memory buffer or by hitting an incomplete record.  Incomplete
228 	 * records often occur due to the way the space reservation model
229 	 * works.
230 	 */
231 	res = 0;
232 	avail = jo->fifo.size - (jo->fifo.rindex & jo->fifo.mask);
233 	while (res < bytes && rawp->begmagic == JREC_BEGMAGIC) {
234 	    res += (rawp->recsize + 15) & ~15;
235 	    if (res >= avail) {
236 		KKASSERT(res == avail);
237 		break;
238 	    }
239 	    rawp = (void *)((char *)rawp + ((rawp->recsize + 15) & ~15));
240 	}
241 
242 	/*
243 	 * Issue the write and deal with any errors or other conditions.
244 	 * For now assume blocking I/O.  Since we are record-aware the
245 	 * code cannot yet handle partial writes.
246 	 *
247 	 * We bump rindex prior to issuing the write to avoid racing
248 	 * the acknowledgement coming back (which could prevent the ack
249 	 * from bumping xindex).  Restarts are always based on xindex so
250 	 * we do not try to undo the rindex if an error occurs.
251 	 *
252 	 * XXX EWOULDBLOCK/NBIO
253 	 * XXX notification on failure
254 	 * XXX permanent verses temporary failures
255 	 * XXX two-way acknowledgement stream in the return direction / xindex
256 	 */
257 	bytes = res;
258 	jo->fifo.rindex += bytes;
259 	error = fp_write(jo->fp,
260 			jo->fifo.membase +
261 			 ((jo->fifo.rindex - bytes) & jo->fifo.mask),
262 			bytes, &res, UIO_SYSSPACE);
263 	if (error) {
264 	    kprintf("journal_thread(%s) write, error %d\n", jo->id, error);
265 	    /* XXX */
266 	} else {
267 	    KKASSERT(res == bytes);
268 	}
269 
270 	/*
271 	 * Advance rindex.  If the journal stream is not full duplex we also
272 	 * advance xindex, otherwise the rjournal thread is responsible for
273 	 * advancing xindex.
274 	 */
275 	if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
276 	    jo->fifo.xindex += bytes;
277 	    jo->total_acked += bytes;
278 	}
279 	KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
280 	if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) {
281 	    if (jo->flags & MC_JOURNAL_WWAIT) {
282 		jo->flags &= ~MC_JOURNAL_WWAIT;	/* XXX hysteresis */
283 		wakeup(&jo->fifo.windex);
284 	    }
285 	}
286     }
287     fp_shutdown(jo->fp, SHUT_WR);
288     jo->flags &= ~MC_JOURNAL_WACTIVE;
289     wakeup(jo);
290     wakeup(&jo->fifo.windex);
291 }
292 
293 /*
294  * A second per-journal worker thread is created for two-way journaling
295  * streams to deal with the return acknowledgement stream.
296  */
297 static void
298 journal_rthread(void *info)
299 {
300     struct journal_rawrecbeg *rawp;
301     struct journal_ackrecord ack;
302     struct journal *jo = info;
303     int64_t transid;
304     int error;
305     size_t count;
306     size_t bytes;
307 
308     transid = 0;
309     error = 0;
310 
311     for (;;) {
312 	/*
313 	 * We have been asked to stop
314 	 */
315 	if (jo->flags & MC_JOURNAL_STOP_REQ)
316 		break;
317 
318 	/*
319 	 * If we have no active transaction id, get one from the return
320 	 * stream.
321 	 */
322 	if (transid == 0) {
323 	    error = fp_read(jo->fp, &ack, sizeof(ack), &count,
324 			    1, UIO_SYSSPACE);
325 #if 0
326 	    kprintf("fp_read ack error %d count %d\n", error, count);
327 #endif
328 	    if (error || count != sizeof(ack))
329 		break;
330 	    if (error) {
331 		kprintf("read error %d on receive stream\n", error);
332 		break;
333 	    }
334 	    if (ack.rbeg.begmagic != JREC_BEGMAGIC ||
335 		ack.rend.endmagic != JREC_ENDMAGIC
336 	    ) {
337 		kprintf("bad begmagic or endmagic on receive stream\n");
338 		break;
339 	    }
340 	    transid = ack.rbeg.transid;
341 	}
342 
343 	/*
344 	 * Calculate the number of unacknowledged bytes.  If there are no
345 	 * unacknowledged bytes then unsent data was acknowledged, report,
346 	 * sleep a bit, and loop in that case.  This should not happen
347 	 * normally.  The ack record is thrown away.
348 	 */
349 	bytes = jo->fifo.rindex - jo->fifo.xindex;
350 
351 	if (bytes == 0) {
352 	    kprintf("warning: unsent data acknowledged transid %08llx\n",
353 		    (long long)transid);
354 	    tsleep(&jo->fifo.xindex, 0, "jrseq", hz);
355 	    transid = 0;
356 	    continue;
357 	}
358 
359 	/*
360 	 * Since rindex has advanced, the record pointed to by xindex
361 	 * must be a valid record.
362 	 */
363 	rawp = (void *)(jo->fifo.membase + (jo->fifo.xindex & jo->fifo.mask));
364 	KKASSERT(rawp->begmagic == JREC_BEGMAGIC);
365 	KKASSERT(rawp->recsize <= bytes);
366 
367 	/*
368 	 * The target can acknowledge several records at once.
369 	 */
370 	if (rawp->transid < transid) {
371 #if 1
372 	    kprintf("ackskip %08llx/%08llx\n",
373 		    (long long)rawp->transid,
374 		    (long long)transid);
375 #endif
376 	    jo->fifo.xindex += (rawp->recsize + 15) & ~15;
377 	    jo->total_acked += (rawp->recsize + 15) & ~15;
378 	    if (jo->flags & MC_JOURNAL_WWAIT) {
379 		jo->flags &= ~MC_JOURNAL_WWAIT;	/* XXX hysteresis */
380 		wakeup(&jo->fifo.windex);
381 	    }
382 	    continue;
383 	}
384 	if (rawp->transid == transid) {
385 #if 1
386 	    kprintf("ackskip %08llx/%08llx\n",
387 		    (long long)rawp->transid,
388 		    (long long)transid);
389 #endif
390 	    jo->fifo.xindex += (rawp->recsize + 15) & ~15;
391 	    jo->total_acked += (rawp->recsize + 15) & ~15;
392 	    if (jo->flags & MC_JOURNAL_WWAIT) {
393 		jo->flags &= ~MC_JOURNAL_WWAIT;	/* XXX hysteresis */
394 		wakeup(&jo->fifo.windex);
395 	    }
396 	    transid = 0;
397 	    continue;
398 	}
399 	kprintf("warning: unsent data(2) acknowledged transid %08llx\n",
400 		(long long)transid);
401 	transid = 0;
402     }
403     jo->flags &= ~MC_JOURNAL_RACTIVE;
404     wakeup(jo);
405     wakeup(&jo->fifo.windex);
406 }
407 
408 /*
409  * This builds a pad record which the journaling thread will skip over.  Pad
410  * records are required when we are unable to reserve sufficient stream space
411  * due to insufficient space at the end of the physical memory fifo.
412  *
413  * Even though the record is not transmitted, a normal transid must be
414  * assigned to it so link recovery operations after a failure work properly.
415  */
416 static
417 void
418 journal_build_pad(struct journal_rawrecbeg *rawp, int recsize, int64_t transid)
419 {
420     struct journal_rawrecend *rendp;
421 
422     KKASSERT((recsize & 15) == 0 && recsize >= 16);
423 
424     rawp->streamid = JREC_STREAMID_PAD;
425     rawp->recsize = recsize;	/* must be 16-byte aligned */
426     rawp->transid = transid;
427     /*
428      * WARNING, rendp may overlap rawp->transid.  This is necessary to
429      * allow PAD records to fit in 16 bytes.  Use cpu_ccfence() to
430      * hopefully cause the compiler to not make any assumptions.
431      */
432     rendp = (void *)((char *)rawp + rawp->recsize - sizeof(*rendp));
433     rendp->endmagic = JREC_ENDMAGIC;
434     rendp->check = 0;
435     rendp->recsize = rawp->recsize;
436 
437     /*
438      * Set the begin magic last.  This is what will allow the journal
439      * thread to write the record out.  Use a store fence to prevent
440      * compiler and cpu reordering of the writes.
441      */
442     cpu_sfence();
443     rawp->begmagic = JREC_BEGMAGIC;
444 }
445 
446 /*
447  * Wake up the worker thread if the FIFO is more then half full or if
448  * someone is waiting for space to be freed up.  Otherwise let the
449  * heartbeat deal with it.  Being able to avoid waking up the worker
450  * is the key to the journal's cpu performance.
451  */
452 static __inline
453 void
454 journal_commit_wakeup(struct journal *jo)
455 {
456     int avail;
457 
458     avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
459     KKASSERT(avail >= 0);
460     if ((avail < (jo->fifo.size >> 1)) || (jo->flags & MC_JOURNAL_WWAIT))
461 	wakeup(&jo->fifo);
462 }
463 
464 /*
465  * Create a new BEGIN stream record with the specified streamid and the
466  * specified amount of payload space.  *rawpp will be set to point to the
467  * base of the new stream record and a pointer to the base of the payload
468  * space will be returned.  *rawpp does not need to be pre-NULLd prior to
469  * making this call.  The raw record header will be partially initialized.
470  *
471  * A stream can be extended, aborted, or committed by other API calls
472  * below.  This may result in a sequence of potentially disconnected
473  * stream records to be output to the journaling target.  The first record
474  * (the one created by this function) will be marked JREC_STREAMCTL_BEGIN,
475  * while the last record on commit or abort will be marked JREC_STREAMCTL_END
476  * (and possibly also JREC_STREAMCTL_ABORTED).  The last record could wind
477  * up being the same as the first, in which case the bits are all set in
478  * the first record.
479  *
480  * The stream record is created in an incomplete state by setting the begin
481  * magic to JREC_INCOMPLETEMAGIC.  This prevents the worker thread from
482  * flushing the fifo past our record until we have finished populating it.
483  * Other threads can reserve and operate on their own space without stalling
484  * but the stream output will stall until we have completed operations.  The
485  * memory FIFO is intended to be large enough to absorb such situations
486  * without stalling out other threads.
487  */
488 static
489 void *
490 journal_reserve(struct journal *jo, struct journal_rawrecbeg **rawpp,
491 		int16_t streamid, int bytes)
492 {
493     struct journal_rawrecbeg *rawp;
494     int avail;
495     int availtoend;
496     int req;
497 
498     /*
499      * Add header and trailer overheads to the passed payload.  Note that
500      * the passed payload size need not be aligned in any way.
501      */
502     bytes += sizeof(struct journal_rawrecbeg);
503     bytes += sizeof(struct journal_rawrecend);
504 
505     for (;;) {
506 	/*
507 	 * First, check boundary conditions.  If the request would wrap around
508 	 * we have to skip past the ending block and return to the beginning
509 	 * of the FIFO's buffer.  Calculate 'req' which is the actual number
510 	 * of bytes being reserved, including wrap-around dead space.
511 	 *
512 	 * Neither 'bytes' or 'req' are aligned.
513 	 *
514 	 * Note that availtoend is not truncated to avail and so cannot be
515 	 * used to determine whether the reservation is possible by itself.
516 	 * Also, since all fifo ops are 16-byte aligned, we can check
517 	 * the size before calculating the aligned size.
518 	 */
519 	availtoend = jo->fifo.size - (jo->fifo.windex & jo->fifo.mask);
520 	KKASSERT((availtoend & 15) == 0);
521 	if (bytes > availtoend)
522 	    req = bytes + availtoend;	/* add pad to end */
523 	else
524 	    req = bytes;
525 
526 	/*
527 	 * Next calculate the total available space and see if it is
528 	 * sufficient.  We cannot overwrite previously buffered data
529 	 * past xindex because otherwise we would not be able to restart
530 	 * a broken link at the target's last point of commit.
531 	 */
532 	avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
533 	KKASSERT(avail >= 0 && (avail & 15) == 0);
534 
535 	if (avail < req) {
536 	    /* XXX MC_JOURNAL_STOP_IMM */
537 	    jo->flags |= MC_JOURNAL_WWAIT;
538 	    ++jo->fifostalls;
539 	    tsleep(&jo->fifo.windex, 0, "jwrite", 0);
540 	    continue;
541 	}
542 
543 	/*
544 	 * Create a pad record for any dead space and create an incomplete
545 	 * record for the live space, then return a pointer to the
546 	 * contiguous buffer space that was requested.
547 	 *
548 	 * NOTE: The worker thread will not flush past an incomplete
549 	 * record, so the reserved space can be filled in at-will.  The
550 	 * journaling code must also be aware the reserved sections occuring
551 	 * after this one will also not be written out even if completed
552 	 * until this one is completed.
553 	 *
554 	 * The transaction id must accomodate real and potential pad creation.
555 	 */
556 	rawp = (void *)(jo->fifo.membase + (jo->fifo.windex & jo->fifo.mask));
557 	if (req != bytes) {
558 	    journal_build_pad(rawp, availtoend, jo->transid);
559 	    ++jo->transid;
560 	    rawp = (void *)jo->fifo.membase;
561 	}
562 	rawp->begmagic = JREC_INCOMPLETEMAGIC;	/* updated by abort/commit */
563 	rawp->recsize = bytes;			/* (unaligned size) */
564 	rawp->streamid = streamid | JREC_STREAMCTL_BEGIN;
565 	rawp->transid = jo->transid;
566 	jo->transid += 2;
567 
568 	/*
569 	 * Issue a memory barrier to guarentee that the record data has been
570 	 * properly initialized before we advance the write index and return
571 	 * a pointer to the reserved record.  Otherwise the worker thread
572 	 * could accidently run past us.
573 	 *
574 	 * Note that stream records are always 16-byte aligned.
575 	 */
576 	cpu_sfence();
577 	jo->fifo.windex += (req + 15) & ~15;
578 	*rawpp = rawp;
579 	return(rawp + 1);
580     }
581     /* not reached */
582     *rawpp = NULL;
583     return(NULL);
584 }
585 
586 /*
587  * Attempt to extend the stream record by <bytes> worth of payload space.
588  *
589  * If it is possible to extend the existing stream record no truncation
590  * occurs and the record is extended as specified.  A pointer to the
591  * truncation offset within the payload space is returned.
592  *
593  * If it is not possible to do this the existing stream record is truncated
594  * and committed, and a new stream record of size <bytes> is created.  A
595  * pointer to the base of the new stream record's payload space is returned.
596  *
597  * *rawpp is set to the new reservation in the case of a new record but
598  * the caller cannot depend on a comparison with the old rawp to determine if
599  * this case occurs because we could end up using the same memory FIFO
600  * offset for the new stream record.  Use *newstreamrecp instead.
601  */
602 static void *
603 journal_extend(struct journal *jo, struct journal_rawrecbeg **rawpp,
604 		int truncbytes, int bytes, int *newstreamrecp)
605 {
606     struct journal_rawrecbeg *rawp;
607     int16_t streamid;
608     int availtoend;
609     int avail;
610     int osize;
611     int nsize;
612     int wbase;
613     void *rptr;
614 
615     *newstreamrecp = 0;
616     rawp = *rawpp;
617     osize = (rawp->recsize + 15) & ~15;
618     nsize = (rawp->recsize + bytes + 15) & ~15;
619     wbase = (char *)rawp - jo->fifo.membase;
620 
621     /*
622      * If the aligned record size does not change we can trivially adjust
623      * the record size.
624      */
625     if (nsize == osize) {
626 	rawp->recsize += bytes;
627 	return((char *)(rawp + 1) + truncbytes);
628     }
629 
630     /*
631      * If the fifo's write index hasn't been modified since we made the
632      * reservation and we do not hit any boundary conditions, we can
633      * trivially make the record smaller or larger.
634      */
635     if ((jo->fifo.windex & jo->fifo.mask) == wbase + osize) {
636 	availtoend = jo->fifo.size - wbase;
637 	avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex) + osize;
638 	KKASSERT((availtoend & 15) == 0);
639 	KKASSERT((avail & 15) == 0);
640 	if (nsize <= avail && nsize <= availtoend) {
641 	    jo->fifo.windex += nsize - osize;
642 	    rawp->recsize += bytes;
643 	    return((char *)(rawp + 1) + truncbytes);
644 	}
645     }
646 
647     /*
648      * It was not possible to extend the buffer.  Commit the current
649      * buffer and create a new one.  We manually clear the BEGIN mark that
650      * journal_reserve() creates (because this is a continuing record, not
651      * the start of a new stream).
652      */
653     streamid = rawp->streamid & JREC_STREAMID_MASK;
654     journal_commit(jo, rawpp, truncbytes, 0);
655     rptr = journal_reserve(jo, rawpp, streamid, bytes);
656     rawp = *rawpp;
657     rawp->streamid &= ~JREC_STREAMCTL_BEGIN;
658     *newstreamrecp = 1;
659     return(rptr);
660 }
661 
662 /*
663  * Abort a journal record.  If the transaction record represents a stream
664  * BEGIN and we can reverse the fifo's write index we can simply reverse
665  * index the entire record, as if it were never reserved in the first place.
666  *
667  * Otherwise we set the JREC_STREAMCTL_ABORTED bit and commit the record
668  * with the payload truncated to 0 bytes.
669  */
670 static void
671 journal_abort(struct journal *jo, struct journal_rawrecbeg **rawpp)
672 {
673     struct journal_rawrecbeg *rawp;
674     int osize;
675 
676     rawp = *rawpp;
677     osize = (rawp->recsize + 15) & ~15;
678 
679     if ((rawp->streamid & JREC_STREAMCTL_BEGIN) &&
680 	(jo->fifo.windex & jo->fifo.mask) ==
681 	 (char *)rawp - jo->fifo.membase + osize)
682     {
683 	jo->fifo.windex -= osize;
684 	*rawpp = NULL;
685     } else {
686 	rawp->streamid |= JREC_STREAMCTL_ABORTED;
687 	journal_commit(jo, rawpp, 0, 1);
688     }
689 }
690 
691 /*
692  * Commit a journal record and potentially truncate it to the specified
693  * number of payload bytes.  If you do not want to truncate the record,
694  * simply pass -1 for the bytes parameter.  Do not pass rawp->recsize, that
695  * field includes header and trailer and will not be correct.  Note that
696  * passing 0 will truncate the entire data payload of the record.
697  *
698  * The logical stream is terminated by this function.
699  *
700  * If truncation occurs, and it is not possible to physically optimize the
701  * memory FIFO due to other threads having reserved space after ours,
702  * the remaining reserved space will be covered by a pad record.
703  */
704 static void
705 journal_commit(struct journal *jo, struct journal_rawrecbeg **rawpp,
706 		int bytes, int closeout)
707 {
708     struct journal_rawrecbeg *rawp;
709     struct journal_rawrecend *rendp;
710     int osize;
711     int nsize;
712 
713     rawp = *rawpp;
714     *rawpp = NULL;
715 
716     KKASSERT((char *)rawp >= jo->fifo.membase &&
717 	     (char *)rawp + rawp->recsize <= jo->fifo.membase + jo->fifo.size);
718     KKASSERT(((intptr_t)rawp & 15) == 0);
719 
720     /*
721      * Truncate the record if necessary.  If the FIFO write index as still
722      * at the end of our record we can optimally backindex it.  Otherwise
723      * we have to insert a pad record to cover the dead space.
724      *
725      * We calculate osize which is the 16-byte-aligned original recsize.
726      * We calculate nsize which is the 16-byte-aligned new recsize.
727      *
728      * Due to alignment issues or in case the passed truncation bytes is
729      * the same as the original payload, nsize may be equal to osize even
730      * if the committed bytes is less then the originally reserved bytes.
731      */
732     if (bytes >= 0) {
733 	KKASSERT(bytes >= 0 && bytes <= rawp->recsize - sizeof(struct journal_rawrecbeg) - sizeof(struct journal_rawrecend));
734 	osize = (rawp->recsize + 15) & ~15;
735 	rawp->recsize = bytes + sizeof(struct journal_rawrecbeg) +
736 			sizeof(struct journal_rawrecend);
737 	nsize = (rawp->recsize + 15) & ~15;
738 	KKASSERT(nsize <= osize);
739 	if (osize == nsize) {
740 	    /* do nothing */
741 	} else if ((jo->fifo.windex & jo->fifo.mask) == (char *)rawp - jo->fifo.membase + osize) {
742 	    /* we are able to backindex the fifo */
743 	    jo->fifo.windex -= osize - nsize;
744 	} else {
745 	    /* we cannot backindex the fifo, emplace a pad in the dead space */
746 	    journal_build_pad((void *)((char *)rawp + nsize), osize - nsize,
747 				rawp->transid + 1);
748 	}
749     }
750 
751     /*
752      * Fill in the trailer.  Note that unlike pad records, the trailer will
753      * never overlap the header.
754      */
755     rendp = (void *)((char *)rawp +
756 	    ((rawp->recsize + 15) & ~15) - sizeof(*rendp));
757     rendp->endmagic = JREC_ENDMAGIC;
758     rendp->recsize = rawp->recsize;
759     rendp->check = 0;		/* XXX check word, disabled for now */
760 
761     /*
762      * Fill in begmagic last.  This will allow the worker thread to proceed.
763      * Use a memory barrier to guarentee write ordering.  Mark the stream
764      * as terminated if closeout is set.  This is the typical case.
765      */
766     if (closeout)
767 	rawp->streamid |= JREC_STREAMCTL_END;
768     cpu_sfence();		/* memory and compiler barrier */
769     rawp->begmagic = JREC_BEGMAGIC;
770 
771     journal_commit_wakeup(jo);
772 }
773 
774 /************************************************************************
775  *			TRANSACTION SUPPORT ROUTINES			*
776  ************************************************************************
777  *
778  * JRECORD_*() - routines to create subrecord transactions and embed them
779  *		 in the logical streams managed by the journal_*() routines.
780  */
781 
782 /*
783  * Initialize the passed jrecord structure and start a new stream transaction
784  * by reserving an initial build space in the journal's memory FIFO.
785  */
786 void
787 jrecord_init(struct journal *jo, struct jrecord *jrec, int16_t streamid)
788 {
789     bzero(jrec, sizeof(*jrec));
790     jrec->jo = jo;
791     jrec->streamid = streamid;
792     jrec->stream_residual = JREC_DEFAULTSIZE;
793     jrec->stream_reserved = jrec->stream_residual;
794     jrec->stream_ptr =
795 	journal_reserve(jo, &jrec->rawp, streamid, jrec->stream_reserved);
796 }
797 
798 /*
799  * Push a recursive record type.  All pushes should have matching pops.
800  * The old parent is returned and the newly pushed record becomes the
801  * new parent.  Note that the old parent's pointer may already be invalid
802  * or may become invalid if jrecord_write() had to build a new stream
803  * record, so the caller should not mess with the returned pointer in
804  * any way other then to save it.
805  */
806 struct journal_subrecord *
807 jrecord_push(struct jrecord *jrec, int16_t rectype)
808 {
809     struct journal_subrecord *save;
810 
811     save = jrec->parent;
812     jrec->parent = jrecord_write(jrec, rectype|JMASK_NESTED, 0);
813     jrec->last = NULL;
814     KKASSERT(jrec->parent != NULL);
815     ++jrec->pushcount;
816     ++jrec->pushptrgood;	/* cleared on flush */
817     return(save);
818 }
819 
820 /*
821  * Pop a previously pushed sub-transaction.  We must set JMASK_LAST
822  * on the last record written within the subtransaction.  If the last
823  * record written is not accessible or if the subtransaction is empty,
824  * we must write out a pad record with JMASK_LAST set before popping.
825  *
826  * When popping a subtransaction the parent record's recsize field
827  * will be properly set.  If the parent pointer is no longer valid
828  * (which can occur if the data has already been flushed out to the
829  * stream), the protocol spec allows us to leave it 0.
830  *
831  * The saved parent pointer which we restore may or may not be valid,
832  * and if not valid may or may not be NULL, depending on the value
833  * of pushptrgood.
834  */
835 void
836 jrecord_pop(struct jrecord *jrec, struct journal_subrecord *save)
837 {
838     struct journal_subrecord *last;
839 
840     KKASSERT(jrec->pushcount > 0);
841     KKASSERT(jrec->residual == 0);
842 
843     /*
844      * Set JMASK_LAST on the last record we wrote at the current
845      * level.  If last is NULL we either no longer have access to the
846      * record or the subtransaction was empty and we must write out a pad
847      * record.
848      */
849     if ((last = jrec->last) == NULL) {
850 	jrecord_write(jrec, JLEAF_PAD|JMASK_LAST, 0);
851 	last = jrec->last;	/* reload after possible flush */
852     } else {
853 	last->rectype |= JMASK_LAST;
854     }
855 
856     /*
857      * pushptrgood tells us how many levels of parent record pointers
858      * are valid.  The jrec only stores the current parent record pointer
859      * (and it is only valid if pushptrgood != 0).  The higher level parent
860      * record pointers are saved by the routines calling jrecord_push() and
861      * jrecord_pop().  These pointers may become stale and we determine
862      * that fact by tracking the count of valid parent pointers with
863      * pushptrgood.  Pointers become invalid when their related stream
864      * record gets pushed out.
865      *
866      * If no pointer is available (the data has already been pushed out),
867      * then no fixup of e.g. the length field is possible for non-leaf
868      * nodes.  The protocol allows for this situation by placing a larger
869      * burden on the program scanning the stream on the other end.
870      *
871      * [parentA]
872      *	  [node X]
873      *    [parentB]
874      *	     [node Y]
875      *	     [node Z]
876      *    (pop B)	see NOTE B
877      * (pop A)		see NOTE A
878      *
879      * NOTE B:	This pop sets LAST in node Z if the node is still accessible,
880      *		else a PAD record is appended and LAST is set in that.
881      *
882      *		This pop sets the record size in parentB if parentB is still
883      *		accessible, else the record size is left 0 (the scanner must
884      *		deal with that).
885      *
886      *		This pop sets the new 'last' record to parentB, the pointer
887      *		to which may or may not still be accessible.
888      *
889      * NOTE A:	This pop sets LAST in parentB if the node is still accessible,
890      *		else a PAD record is appended and LAST is set in that.
891      *
892      *		This pop sets the record size in parentA if parentA is still
893      *		accessible, else the record size is left 0 (the scanner must
894      *		deal with that).
895      *
896      *		This pop sets the new 'last' record to parentA, the pointer
897      *		to which may or may not still be accessible.
898      *
899      * Also note that the last record in the stream transaction, which in
900      * the above example is parentA, does not currently have the LAST bit
901      * set.
902      *
903      * The current parent becomes the last record relative to the
904      * saved parent passed into us.  It's validity is based on
905      * whether pushptrgood is non-zero prior to decrementing.  The saved
906      * parent becomes the new parent, and its validity is based on whether
907      * pushptrgood is non-zero after decrementing.
908      *
909      * The old jrec->parent may be NULL if it is no longer accessible.
910      * If pushptrgood is non-zero, however, it is guarenteed to not
911      * be NULL (since no flush occured).
912      */
913     jrec->last = jrec->parent;
914     --jrec->pushcount;
915     if (jrec->pushptrgood) {
916 	KKASSERT(jrec->last != NULL && last != NULL);
917 	if (--jrec->pushptrgood == 0) {
918 	    jrec->parent = NULL;	/* 'save' contains garbage or NULL */
919 	} else {
920 	    KKASSERT(save != NULL);
921 	    jrec->parent = save;	/* 'save' must not be NULL */
922 	}
923 
924 	/*
925 	 * Set the record size in the old parent.  'last' still points to
926 	 * the original last record in the subtransaction being popped,
927 	 * jrec->last points to the old parent (which became the last
928 	 * record relative to the new parent being popped into).
929 	 */
930 	jrec->last->recsize = (char *)last + last->recsize - (char *)jrec->last;
931     } else {
932 	jrec->parent = NULL;
933 	KKASSERT(jrec->last == NULL);
934     }
935 }
936 
937 /*
938  * Write out a leaf record, including associated data.
939  */
940 void
941 jrecord_leaf(struct jrecord *jrec, int16_t rectype, void *ptr, int bytes)
942 {
943     jrecord_write(jrec, rectype, bytes);
944     jrecord_data(jrec, ptr, bytes, JDATA_KERN);
945 }
946 
947 void
948 jrecord_leaf_uio(struct jrecord *jrec, int16_t rectype,
949 		 struct uio *uio)
950 {
951     struct iovec *iov;
952     int i;
953 
954     for (i = 0; i < uio->uio_iovcnt; ++i) {
955 	iov = &uio->uio_iov[i];
956 	if (iov->iov_len == 0)
957 	    continue;
958 	if (uio->uio_segflg == UIO_SYSSPACE) {
959 	    jrecord_write(jrec, rectype, iov->iov_len);
960 	    jrecord_data(jrec, iov->iov_base, iov->iov_len, JDATA_KERN);
961 	} else { /* UIO_USERSPACE */
962 	    jrecord_write(jrec, rectype, iov->iov_len);
963 	    jrecord_data(jrec, iov->iov_base, iov->iov_len, JDATA_USER);
964 	}
965     }
966 }
967 
968 void
969 jrecord_leaf_xio(struct jrecord *jrec, int16_t rectype, xio_t xio)
970 {
971     int bytes = xio->xio_npages * PAGE_SIZE;
972 
973     jrecord_write(jrec, rectype, bytes);
974     jrecord_data(jrec, xio, bytes, JDATA_XIO);
975 }
976 
977 /*
978  * Write a leaf record out and return a pointer to its base.  The leaf
979  * record may contain potentially megabytes of data which is supplied
980  * in jrecord_data() calls.  The exact amount must be specified in this
981  * call.
982  *
983  * THE RETURNED SUBRECORD POINTER IS ONLY VALID IMMEDIATELY AFTER THE
984  * CALL AND MAY BECOME INVALID AT ANY TIME.  ONLY THE PUSH/POP CODE SHOULD
985  * USE THE RETURN VALUE.
986  */
987 struct journal_subrecord *
988 jrecord_write(struct jrecord *jrec, int16_t rectype, int bytes)
989 {
990     struct journal_subrecord *last;
991     int pusheditout;
992 
993     /*
994      * Try to catch some obvious errors.  Nesting records must specify a
995      * size of 0, and there should be no left-overs from previous operations
996      * (such as incomplete data writeouts).
997      */
998     KKASSERT(bytes == 0 || (rectype & JMASK_NESTED) == 0);
999     KKASSERT(jrec->residual == 0);
1000 
1001     /*
1002      * Check to see if the current stream record has enough room for
1003      * the new subrecord header.  If it doesn't we extend the current
1004      * stream record.
1005      *
1006      * This may have the side effect of pushing out the current stream record
1007      * and creating a new one.  We must adjust our stream tracking fields
1008      * accordingly.
1009      */
1010     if (jrec->stream_residual < sizeof(struct journal_subrecord)) {
1011 	jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1012 				jrec->stream_reserved - jrec->stream_residual,
1013 				JREC_DEFAULTSIZE, &pusheditout);
1014 	if (pusheditout) {
1015 	    /*
1016 	     * If a pushout occured, the pushed out stream record was
1017 	     * truncated as specified and the new record is exactly the
1018 	     * extension size specified.
1019 	     */
1020 	    jrec->stream_reserved = JREC_DEFAULTSIZE;
1021 	    jrec->stream_residual = JREC_DEFAULTSIZE;
1022 	    jrec->parent = NULL;	/* no longer accessible */
1023 	    jrec->pushptrgood = 0;	/* restored parents in pops no good */
1024 	} else {
1025 	    /*
1026 	     * If no pushout occured the stream record is NOT truncated and
1027 	     * IS extended.
1028 	     */
1029 	    jrec->stream_reserved += JREC_DEFAULTSIZE;
1030 	    jrec->stream_residual += JREC_DEFAULTSIZE;
1031 	}
1032     }
1033     last = (void *)jrec->stream_ptr;
1034     last->rectype = rectype;
1035     last->reserved = 0;
1036 
1037     /*
1038      * We may not know the record size for recursive records and the
1039      * header may become unavailable due to limited FIFO space.  Write
1040      * -1 to indicate this special case.
1041      */
1042     if ((rectype & JMASK_NESTED) && bytes == 0)
1043 	last->recsize = -1;
1044     else
1045 	last->recsize = sizeof(struct journal_subrecord) + bytes;
1046     jrec->last = last;
1047     jrec->residual = bytes;		/* remaining data to be posted */
1048     jrec->residual_align = -bytes & 7;	/* post-data alignment required */
1049     jrec->stream_ptr += sizeof(*last);	/* current write pointer */
1050     jrec->stream_residual -= sizeof(*last); /* space remaining in stream */
1051     return(last);
1052 }
1053 
1054 /*
1055  * Write out the data associated with a leaf record.  Any number of calls
1056  * to this routine may be made as long as the byte count adds up to the
1057  * amount originally specified in jrecord_write().
1058  *
1059  * The act of writing out the leaf data may result in numerous stream records
1060  * being pushed out.   Callers should be aware that even the associated
1061  * subrecord header may become inaccessible due to stream record pushouts.
1062  */
1063 static void
1064 jrecord_data(struct jrecord *jrec, void *buf, int bytes, int dtype)
1065 {
1066     int pusheditout;
1067     int extsize;
1068     int xio_offset = 0;
1069 
1070     KKASSERT(bytes >= 0 && bytes <= jrec->residual);
1071 
1072     /*
1073      * Push out stream records as long as there is insufficient room to hold
1074      * the remaining data.
1075      */
1076     while (jrec->stream_residual < bytes) {
1077 	/*
1078 	 * Fill in any remaining space in the current stream record.
1079 	 */
1080 	switch (dtype) {
1081 	case JDATA_KERN:
1082 	    bcopy(buf, jrec->stream_ptr, jrec->stream_residual);
1083 	    break;
1084 	case JDATA_USER:
1085 	    copyin(buf, jrec->stream_ptr, jrec->stream_residual);
1086 	    break;
1087 	case JDATA_XIO:
1088 	    xio_copy_xtok((xio_t)buf, xio_offset, jrec->stream_ptr,
1089 			  jrec->stream_residual);
1090 	    xio_offset += jrec->stream_residual;
1091 	    break;
1092 	}
1093 	if (dtype != JDATA_XIO)
1094 	    buf = (char *)buf + jrec->stream_residual;
1095 	bytes -= jrec->stream_residual;
1096 	/*jrec->stream_ptr += jrec->stream_residual;*/
1097 	jrec->residual -= jrec->stream_residual;
1098 	jrec->stream_residual = 0;
1099 
1100 	/*
1101 	 * Try to extend the current stream record, but no more then 1/4
1102 	 * the size of the FIFO.
1103 	 */
1104 	extsize = jrec->jo->fifo.size >> 2;
1105 	if (extsize > bytes)
1106 	    extsize = (bytes + 15) & ~15;
1107 
1108 	jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1109 				jrec->stream_reserved - jrec->stream_residual,
1110 				extsize, &pusheditout);
1111 	if (pusheditout) {
1112 	    jrec->stream_reserved = extsize;
1113 	    jrec->stream_residual = extsize;
1114 	    jrec->parent = NULL;	/* no longer accessible */
1115 	    jrec->last = NULL;		/* no longer accessible */
1116 	    jrec->pushptrgood = 0;	/* restored parents in pops no good */
1117 	} else {
1118 	    jrec->stream_reserved += extsize;
1119 	    jrec->stream_residual += extsize;
1120 	}
1121     }
1122 
1123     /*
1124      * Push out any remaining bytes into the current stream record.
1125      */
1126     if (bytes) {
1127 	switch (dtype) {
1128 	case JDATA_KERN:
1129 	    bcopy(buf, jrec->stream_ptr, bytes);
1130 	    break;
1131 	case JDATA_USER:
1132 	    copyin(buf, jrec->stream_ptr, bytes);
1133 	    break;
1134 	case JDATA_XIO:
1135 	    xio_copy_xtok((xio_t)buf, xio_offset, jrec->stream_ptr, bytes);
1136 	    break;
1137 	}
1138 	jrec->stream_ptr += bytes;
1139 	jrec->stream_residual -= bytes;
1140 	jrec->residual -= bytes;
1141     }
1142 
1143     /*
1144      * Handle data alignment requirements for the subrecord.  Because the
1145      * stream record's data space is more strictly aligned, it must already
1146      * have sufficient space to hold any subrecord alignment slop.
1147      */
1148     if (jrec->residual == 0 && jrec->residual_align) {
1149 	KKASSERT(jrec->residual_align <= jrec->stream_residual);
1150 	bzero(jrec->stream_ptr, jrec->residual_align);
1151 	jrec->stream_ptr += jrec->residual_align;
1152 	jrec->stream_residual -= jrec->residual_align;
1153 	jrec->residual_align = 0;
1154     }
1155 }
1156 
1157 /*
1158  * We are finished with the transaction.  This closes the transaction created
1159  * by jrecord_init().
1160  *
1161  * NOTE: If abortit is not set then we must be at the top level with no
1162  *	 residual subrecord data left to output.
1163  *
1164  *	 If abortit is set then we can be in any state, all pushes will be
1165  *	 popped and it is ok for there to be residual data.  This works
1166  *	 because the virtual stream itself is truncated.  Scanners must deal
1167  *	 with this situation.
1168  *
1169  * The stream record will be committed or aborted as specified and jrecord
1170  * resources will be cleaned up.
1171  */
1172 void
1173 jrecord_done(struct jrecord *jrec, int abortit)
1174 {
1175     KKASSERT(jrec->rawp != NULL);
1176 
1177     if (abortit) {
1178 	journal_abort(jrec->jo, &jrec->rawp);
1179     } else {
1180 	KKASSERT(jrec->pushcount == 0 && jrec->residual == 0);
1181 	journal_commit(jrec->jo, &jrec->rawp,
1182 			jrec->stream_reserved - jrec->stream_residual, 1);
1183     }
1184 
1185     /*
1186      * jrec should not be used beyond this point without another init,
1187      * but clean up some fields to ensure that we panic if it is.
1188      *
1189      * Note that jrec->rawp is NULLd out by journal_abort/journal_commit.
1190      */
1191     jrec->jo = NULL;
1192     jrec->stream_ptr = NULL;
1193 }
1194 
1195 /************************************************************************
1196  *			LOW LEVEL RECORD SUPPORT ROUTINES		*
1197  ************************************************************************
1198  *
1199  * These routine create low level recursive and leaf subrecords representing
1200  * common filesystem structures.
1201  */
1202 
1203 /*
1204  * Write out a filename path relative to the base of the mount point.
1205  * rectype is typically JLEAF_PATH{1,2,3,4}.
1206  */
1207 void
1208 jrecord_write_path(struct jrecord *jrec, int16_t rectype, struct namecache *ncp)
1209 {
1210     char buf[64];	/* local buffer if it fits, else malloced */
1211     char *base;
1212     int pathlen;
1213     int index;
1214     struct namecache *scan;
1215 
1216     /*
1217      * Pass 1 - figure out the number of bytes required.  Include terminating
1218      * 	       \0 on last element and '/' separator on other elements.
1219      *
1220      * The namecache topology terminates at the root of the filesystem
1221      * (the normal lookup code would then continue by using the mount
1222      * structure to figure out what it was mounted on).
1223      */
1224 again:
1225     pathlen = 0;
1226     for (scan = ncp; scan; scan = scan->nc_parent) {
1227 	if (scan->nc_nlen > 0)
1228 	    pathlen += scan->nc_nlen + 1;
1229     }
1230 
1231     if (pathlen <= sizeof(buf))
1232 	base = buf;
1233     else
1234 	base = kmalloc(pathlen, M_TEMP, M_INTWAIT);
1235 
1236     /*
1237      * Pass 2 - generate the path buffer
1238      */
1239     index = pathlen;
1240     for (scan = ncp; scan; scan = scan->nc_parent) {
1241 	if (scan->nc_nlen == 0)
1242 	    continue;
1243 	if (scan->nc_nlen >= index) {
1244 	    if (base != buf)
1245 		kfree(base, M_TEMP);
1246 	    goto again;
1247 	}
1248 	if (index == pathlen)
1249 	    base[--index] = 0;
1250 	else
1251 	    base[--index] = '/';
1252 	index -= scan->nc_nlen;
1253 	bcopy(scan->nc_name, base + index, scan->nc_nlen);
1254     }
1255     jrecord_leaf(jrec, rectype, base + index, pathlen - index);
1256     if (base != buf)
1257 	kfree(base, M_TEMP);
1258 }
1259 
1260 /*
1261  * Write out a file attribute structure.  While somewhat inefficient, using
1262  * a recursive data structure is the most portable and extensible way.
1263  */
1264 void
1265 jrecord_write_vattr(struct jrecord *jrec, struct vattr *vat)
1266 {
1267     void *save;
1268 
1269     save = jrecord_push(jrec, JTYPE_VATTR);
1270     if (vat->va_type != VNON)
1271 	jrecord_leaf(jrec, JLEAF_VTYPE, &vat->va_type, sizeof(vat->va_type));
1272     if (vat->va_mode != (mode_t)VNOVAL)
1273 	jrecord_leaf(jrec, JLEAF_MODES, &vat->va_mode, sizeof(vat->va_mode));
1274     if (vat->va_nlink != VNOVAL)
1275 	jrecord_leaf(jrec, JLEAF_NLINK, &vat->va_nlink, sizeof(vat->va_nlink));
1276     if (vat->va_uid != VNOVAL)
1277 	jrecord_leaf(jrec, JLEAF_UID, &vat->va_uid, sizeof(vat->va_uid));
1278     if (vat->va_gid != VNOVAL)
1279 	jrecord_leaf(jrec, JLEAF_GID, &vat->va_gid, sizeof(vat->va_gid));
1280     if (vat->va_fsid != VNOVAL)
1281 	jrecord_leaf(jrec, JLEAF_FSID, &vat->va_fsid, sizeof(vat->va_fsid));
1282     if (vat->va_fileid != VNOVAL)
1283 	jrecord_leaf(jrec, JLEAF_INUM, &vat->va_fileid, sizeof(vat->va_fileid));
1284     if (vat->va_size != VNOVAL)
1285 	jrecord_leaf(jrec, JLEAF_SIZE, &vat->va_size, sizeof(vat->va_size));
1286     if (vat->va_atime.tv_sec != VNOVAL)
1287 	jrecord_leaf(jrec, JLEAF_ATIME, &vat->va_atime, sizeof(vat->va_atime));
1288     if (vat->va_mtime.tv_sec != VNOVAL)
1289 	jrecord_leaf(jrec, JLEAF_MTIME, &vat->va_mtime, sizeof(vat->va_mtime));
1290     if (vat->va_ctime.tv_sec != VNOVAL)
1291 	jrecord_leaf(jrec, JLEAF_CTIME, &vat->va_ctime, sizeof(vat->va_ctime));
1292     if (vat->va_gen != VNOVAL)
1293 	jrecord_leaf(jrec, JLEAF_GEN, &vat->va_gen, sizeof(vat->va_gen));
1294     if (vat->va_flags != VNOVAL)
1295 	jrecord_leaf(jrec, JLEAF_FLAGS, &vat->va_flags, sizeof(vat->va_flags));
1296     if (vat->va_rmajor != VNOVAL) {
1297 	udev_t rdev = makeudev(vat->va_rmajor, vat->va_rminor);
1298 	jrecord_leaf(jrec, JLEAF_UDEV, &rdev, sizeof(rdev));
1299 	jrecord_leaf(jrec, JLEAF_UMAJOR, &vat->va_rmajor, sizeof(vat->va_rmajor));
1300 	jrecord_leaf(jrec, JLEAF_UMINOR, &vat->va_rminor, sizeof(vat->va_rminor));
1301     }
1302 #if 0
1303     if (vat->va_filerev != VNOVAL)
1304 	jrecord_leaf(jrec, JLEAF_FILEREV, &vat->va_filerev, sizeof(vat->va_filerev));
1305 #endif
1306     jrecord_pop(jrec, save);
1307 }
1308 
1309 /*
1310  * Write out the creds used to issue a file operation.  If a process is
1311  * available write out additional tracking information related to the
1312  * process.
1313  *
1314  * XXX additional tracking info
1315  * XXX tty line info
1316  */
1317 void
1318 jrecord_write_cred(struct jrecord *jrec, struct thread *td, struct ucred *cred)
1319 {
1320     void *save;
1321     struct proc *p;
1322 
1323     save = jrecord_push(jrec, JTYPE_CRED);
1324     jrecord_leaf(jrec, JLEAF_UID, &cred->cr_uid, sizeof(cred->cr_uid));
1325     jrecord_leaf(jrec, JLEAF_GID, &cred->cr_gid, sizeof(cred->cr_gid));
1326     if (td && (p = td->td_proc) != NULL) {
1327 	jrecord_leaf(jrec, JLEAF_PID, &p->p_pid, sizeof(p->p_pid));
1328 	jrecord_leaf(jrec, JLEAF_COMM, p->p_comm, sizeof(p->p_comm));
1329     }
1330     jrecord_pop(jrec, save);
1331 }
1332 
1333 /*
1334  * Write out information required to identify a vnode
1335  *
1336  * XXX this needs work.  We should write out the inode number as well,
1337  * and in fact avoid writing out the file path for seqential writes
1338  * occuring within e.g. a certain period of time.
1339  */
1340 void
1341 jrecord_write_vnode_ref(struct jrecord *jrec, struct vnode *vp)
1342 {
1343     struct nchandle nch;
1344 
1345     nch.mount = vp->v_mount;
1346     spin_lock_wr(&vp->v_spinlock);
1347     TAILQ_FOREACH(nch.ncp, &vp->v_namecache, nc_vnode) {
1348 	if ((nch.ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1349 	    break;
1350     }
1351     if (nch.ncp) {
1352 	cache_hold(&nch);
1353 	spin_unlock_wr(&vp->v_spinlock);
1354 	jrecord_write_path(jrec, JLEAF_PATH_REF, nch.ncp);
1355 	cache_drop(&nch);
1356     } else {
1357 	spin_unlock_wr(&vp->v_spinlock);
1358     }
1359 }
1360 
1361 void
1362 jrecord_write_vnode_link(struct jrecord *jrec, struct vnode *vp,
1363 			 struct namecache *notncp)
1364 {
1365     struct nchandle nch;
1366 
1367     nch.mount = vp->v_mount;
1368     spin_lock_wr(&vp->v_spinlock);
1369     TAILQ_FOREACH(nch.ncp, &vp->v_namecache, nc_vnode) {
1370 	if (nch.ncp == notncp)
1371 	    continue;
1372 	if ((nch.ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1373 	    break;
1374     }
1375     if (nch.ncp) {
1376 	cache_hold(&nch);
1377 	spin_unlock_wr(&vp->v_spinlock);
1378 	jrecord_write_path(jrec, JLEAF_PATH_REF, nch.ncp);
1379 	cache_drop(&nch);
1380     } else {
1381 	spin_unlock_wr(&vp->v_spinlock);
1382     }
1383 }
1384 
1385 /*
1386  * Write out the data represented by a pagelist
1387  */
1388 void
1389 jrecord_write_pagelist(struct jrecord *jrec, int16_t rectype,
1390 			struct vm_page **pglist, int *rtvals, int pgcount,
1391 			off_t offset)
1392 {
1393     struct xio xio;
1394     int error;
1395     int b;
1396     int i;
1397 
1398     i = 0;
1399     xio_init(&xio);
1400     while (i < pgcount) {
1401 	/*
1402 	 * Find the next valid section.  Skip any invalid elements
1403 	 */
1404 	if (rtvals[i] != VM_PAGER_OK) {
1405 	    ++i;
1406 	    offset += PAGE_SIZE;
1407 	    continue;
1408 	}
1409 
1410 	/*
1411 	 * Figure out how big the valid section is, capping I/O at what the
1412 	 * MSFBUF can represent.
1413 	 */
1414 	b = i;
1415 	while (i < pgcount && i - b != XIO_INTERNAL_PAGES &&
1416 	       rtvals[i] == VM_PAGER_OK
1417 	) {
1418 	    ++i;
1419 	}
1420 
1421 	/*
1422 	 * And write it out.
1423 	 */
1424 	if (i - b) {
1425 	    error = xio_init_pages(&xio, pglist + b, i - b, XIOF_READ);
1426 	    if (error == 0) {
1427 		jrecord_leaf(jrec, JLEAF_SEEKPOS, &offset, sizeof(offset));
1428 		jrecord_leaf_xio(jrec, rectype, &xio);
1429 	    } else {
1430 		kprintf("jrecord_write_pagelist: xio init failure\n");
1431 	    }
1432 	    xio_release(&xio);
1433 	    offset += (off_t)(i - b) << PAGE_SHIFT;
1434 	}
1435     }
1436 }
1437 
1438 /*
1439  * Write out the data represented by a UIO.
1440  */
1441 void
1442 jrecord_write_uio(struct jrecord *jrec, int16_t rectype, struct uio *uio)
1443 {
1444     if (uio->uio_segflg != UIO_NOCOPY) {
1445 	jrecord_leaf(jrec, JLEAF_SEEKPOS, &uio->uio_offset,
1446 		     sizeof(uio->uio_offset));
1447 	jrecord_leaf_uio(jrec, rectype, uio);
1448     }
1449 }
1450 
1451 void
1452 jrecord_file_data(struct jrecord *jrec, struct vnode *vp,
1453 		  off_t off, off_t bytes)
1454 {
1455     const int bufsize = 8192;
1456     char *buf;
1457     int error;
1458     int n;
1459 
1460     buf = kmalloc(bufsize, M_JOURNAL, M_WAITOK);
1461     jrecord_leaf(jrec, JLEAF_SEEKPOS, &off, sizeof(off));
1462     while (bytes) {
1463 	n = (bytes > bufsize) ? bufsize : (int)bytes;
1464 	error = vn_rdwr(UIO_READ, vp, buf, n, off, UIO_SYSSPACE, IO_NODELOCKED,
1465 			proc0.p_ucred, NULL);
1466 	if (error) {
1467 	    jrecord_leaf(jrec, JLEAF_ERROR, &error, sizeof(error));
1468 	    break;
1469 	}
1470 	jrecord_leaf(jrec, JLEAF_FILEDATA, buf, n);
1471 	bytes -= n;
1472 	off += n;
1473     }
1474     kfree(buf, M_JOURNAL);
1475 }
1476 
1477