1 /* 2 * Copyright (c) 2004-2006 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $DragonFly: src/sys/kern/vfs_journal.c,v 1.33 2007/05/09 00:53:34 dillon Exp $ 35 */ 36 /* 37 * The journaling protocol is intended to evolve into a two-way stream 38 * whereby transaction IDs can be acknowledged by the journaling target 39 * when the data has been committed to hard storage. Both implicit and 40 * explicit acknowledgement schemes will be supported, depending on the 41 * sophistication of the journaling stream, plus resynchronization and 42 * restart when a journaling stream is interrupted. This information will 43 * also be made available to journaling-aware filesystems to allow better 44 * management of their own physical storage synchronization mechanisms as 45 * well as to allow such filesystems to take direct advantage of the kernel's 46 * journaling layer so they don't have to roll their own. 47 * 48 * In addition, the worker thread will have access to much larger 49 * spooling areas then the memory buffer is able to provide by e.g. 50 * reserving swap space, in order to absorb potentially long interruptions 51 * of off-site journaling streams, and to prevent 'slow' off-site linkages 52 * from radically slowing down local filesystem operations. 53 * 54 * Because of the non-trivial algorithms the journaling system will be 55 * required to support, use of a worker thread is mandatory. Efficiencies 56 * are maintained by utilitizing the memory FIFO to batch transactions when 57 * possible, reducing the number of gratuitous thread switches and taking 58 * advantage of cpu caches through the use of shorter batched code paths 59 * rather then trying to do everything in the context of the process 60 * originating the filesystem op. In the future the memory FIFO can be 61 * made per-cpu to remove BGL or other locking requirements. 62 */ 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/buf.h> 66 #include <sys/conf.h> 67 #include <sys/kernel.h> 68 #include <sys/queue.h> 69 #include <sys/lock.h> 70 #include <sys/malloc.h> 71 #include <sys/mount.h> 72 #include <sys/unistd.h> 73 #include <sys/vnode.h> 74 #include <sys/poll.h> 75 #include <sys/mountctl.h> 76 #include <sys/journal.h> 77 #include <sys/file.h> 78 #include <sys/proc.h> 79 #include <sys/msfbuf.h> 80 #include <sys/socket.h> 81 #include <sys/socketvar.h> 82 83 #include <machine/limits.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vnode_pager.h> 90 91 #include <sys/file2.h> 92 #include <sys/thread2.h> 93 #include <sys/spinlock2.h> 94 95 static void journal_wthread(void *info); 96 static void journal_rthread(void *info); 97 98 static void *journal_reserve(struct journal *jo, 99 struct journal_rawrecbeg **rawpp, 100 int16_t streamid, int bytes); 101 static void *journal_extend(struct journal *jo, 102 struct journal_rawrecbeg **rawpp, 103 int truncbytes, int bytes, int *newstreamrecp); 104 static void journal_abort(struct journal *jo, 105 struct journal_rawrecbeg **rawpp); 106 static void journal_commit(struct journal *jo, 107 struct journal_rawrecbeg **rawpp, 108 int bytes, int closeout); 109 110 111 MALLOC_DEFINE(M_JOURNAL, "journal", "Journaling structures"); 112 MALLOC_DEFINE(M_JFIFO, "journal-fifo", "Journal FIFO"); 113 114 void 115 journal_create_threads(struct journal *jo) 116 { 117 jo->flags &= ~(MC_JOURNAL_STOP_REQ | MC_JOURNAL_STOP_IMM); 118 jo->flags |= MC_JOURNAL_WACTIVE; 119 lwkt_create(journal_wthread, jo, NULL, &jo->wthread, 120 TDF_STOPREQ, -1, "journal w:%.*s", JIDMAX, jo->id); 121 lwkt_setpri(&jo->wthread, TDPRI_KERN_DAEMON); 122 lwkt_schedule(&jo->wthread); 123 124 if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) { 125 jo->flags |= MC_JOURNAL_RACTIVE; 126 lwkt_create(journal_rthread, jo, NULL, &jo->rthread, 127 TDF_STOPREQ, -1, "journal r:%.*s", JIDMAX, jo->id); 128 lwkt_setpri(&jo->rthread, TDPRI_KERN_DAEMON); 129 lwkt_schedule(&jo->rthread); 130 } 131 } 132 133 void 134 journal_destroy_threads(struct journal *jo, int flags) 135 { 136 int wcount; 137 138 jo->flags |= MC_JOURNAL_STOP_REQ | (flags & MC_JOURNAL_STOP_IMM); 139 wakeup(&jo->fifo); 140 wcount = 0; 141 while (jo->flags & (MC_JOURNAL_WACTIVE | MC_JOURNAL_RACTIVE)) { 142 tsleep(jo, 0, "jwait", hz); 143 if (++wcount % 10 == 0) { 144 kprintf("Warning: journal %s waiting for descriptors to close\n", 145 jo->id); 146 } 147 } 148 149 /* 150 * XXX SMP - threads should move to cpu requesting the restart or 151 * termination before finishing up to properly interlock. 152 */ 153 tsleep(jo, 0, "jwait", hz); 154 lwkt_free_thread(&jo->wthread); 155 if (jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) 156 lwkt_free_thread(&jo->rthread); 157 } 158 159 /* 160 * The per-journal worker thread is responsible for writing out the 161 * journal's FIFO to the target stream. 162 */ 163 static void 164 journal_wthread(void *info) 165 { 166 struct journal *jo = info; 167 struct journal_rawrecbeg *rawp; 168 int error; 169 size_t avail; 170 size_t bytes; 171 size_t res; 172 173 for (;;) { 174 /* 175 * Calculate the number of bytes available to write. This buffer 176 * area may contain reserved records so we can't just write it out 177 * without further checks. 178 */ 179 bytes = jo->fifo.windex - jo->fifo.rindex; 180 181 /* 182 * sleep if no bytes are available or if an incomplete record is 183 * encountered (it needs to be filled in before we can write it 184 * out), and skip any pad records that we encounter. 185 */ 186 if (bytes == 0) { 187 if (jo->flags & MC_JOURNAL_STOP_REQ) 188 break; 189 tsleep(&jo->fifo, 0, "jfifo", hz); 190 continue; 191 } 192 193 /* 194 * Sleep if we can not go any further due to hitting an incomplete 195 * record. This case should occur rarely but may have to be better 196 * optimized XXX. 197 */ 198 rawp = (void *)(jo->fifo.membase + (jo->fifo.rindex & jo->fifo.mask)); 199 if (rawp->begmagic == JREC_INCOMPLETEMAGIC) { 200 tsleep(&jo->fifo, 0, "jpad", hz); 201 continue; 202 } 203 204 /* 205 * Skip any pad records. We do not write out pad records if we can 206 * help it. 207 */ 208 if (rawp->streamid == JREC_STREAMID_PAD) { 209 if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) { 210 if (jo->fifo.rindex == jo->fifo.xindex) { 211 jo->fifo.xindex += (rawp->recsize + 15) & ~15; 212 jo->total_acked += (rawp->recsize + 15) & ~15; 213 } 214 } 215 jo->fifo.rindex += (rawp->recsize + 15) & ~15; 216 jo->total_acked += bytes; 217 KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0); 218 continue; 219 } 220 221 /* 222 * 'bytes' is the amount of data that can potentially be written out. 223 * Calculate 'res', the amount of data that can actually be written 224 * out. res is bounded either by hitting the end of the physical 225 * memory buffer or by hitting an incomplete record. Incomplete 226 * records often occur due to the way the space reservation model 227 * works. 228 */ 229 res = 0; 230 avail = jo->fifo.size - (jo->fifo.rindex & jo->fifo.mask); 231 while (res < bytes && rawp->begmagic == JREC_BEGMAGIC) { 232 res += (rawp->recsize + 15) & ~15; 233 if (res >= avail) { 234 KKASSERT(res == avail); 235 break; 236 } 237 rawp = (void *)((char *)rawp + ((rawp->recsize + 15) & ~15)); 238 } 239 240 /* 241 * Issue the write and deal with any errors or other conditions. 242 * For now assume blocking I/O. Since we are record-aware the 243 * code cannot yet handle partial writes. 244 * 245 * We bump rindex prior to issuing the write to avoid racing 246 * the acknowledgement coming back (which could prevent the ack 247 * from bumping xindex). Restarts are always based on xindex so 248 * we do not try to undo the rindex if an error occurs. 249 * 250 * XXX EWOULDBLOCK/NBIO 251 * XXX notification on failure 252 * XXX permanent verses temporary failures 253 * XXX two-way acknowledgement stream in the return direction / xindex 254 */ 255 bytes = res; 256 jo->fifo.rindex += bytes; 257 error = fp_write(jo->fp, 258 jo->fifo.membase + 259 ((jo->fifo.rindex - bytes) & jo->fifo.mask), 260 bytes, &res, UIO_SYSSPACE); 261 if (error) { 262 kprintf("journal_thread(%s) write, error %d\n", jo->id, error); 263 /* XXX */ 264 } else { 265 KKASSERT(res == bytes); 266 } 267 268 /* 269 * Advance rindex. If the journal stream is not full duplex we also 270 * advance xindex, otherwise the rjournal thread is responsible for 271 * advancing xindex. 272 */ 273 if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) { 274 jo->fifo.xindex += bytes; 275 jo->total_acked += bytes; 276 } 277 KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0); 278 if ((jo->flags & MC_JOURNAL_WANT_FULLDUPLEX) == 0) { 279 if (jo->flags & MC_JOURNAL_WWAIT) { 280 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */ 281 wakeup(&jo->fifo.windex); 282 } 283 } 284 } 285 fp_shutdown(jo->fp, SHUT_WR); 286 jo->flags &= ~MC_JOURNAL_WACTIVE; 287 wakeup(jo); 288 wakeup(&jo->fifo.windex); 289 } 290 291 /* 292 * A second per-journal worker thread is created for two-way journaling 293 * streams to deal with the return acknowledgement stream. 294 */ 295 static void 296 journal_rthread(void *info) 297 { 298 struct journal_rawrecbeg *rawp; 299 struct journal_ackrecord ack; 300 struct journal *jo = info; 301 int64_t transid; 302 int error; 303 size_t count; 304 size_t bytes; 305 306 transid = 0; 307 error = 0; 308 309 for (;;) { 310 /* 311 * We have been asked to stop 312 */ 313 if (jo->flags & MC_JOURNAL_STOP_REQ) 314 break; 315 316 /* 317 * If we have no active transaction id, get one from the return 318 * stream. 319 */ 320 if (transid == 0) { 321 error = fp_read(jo->fp, &ack, sizeof(ack), &count, 322 1, UIO_SYSSPACE); 323 #if 0 324 kprintf("fp_read ack error %d count %d\n", error, count); 325 #endif 326 if (error || count != sizeof(ack)) 327 break; 328 if (error) { 329 kprintf("read error %d on receive stream\n", error); 330 break; 331 } 332 if (ack.rbeg.begmagic != JREC_BEGMAGIC || 333 ack.rend.endmagic != JREC_ENDMAGIC 334 ) { 335 kprintf("bad begmagic or endmagic on receive stream\n"); 336 break; 337 } 338 transid = ack.rbeg.transid; 339 } 340 341 /* 342 * Calculate the number of unacknowledged bytes. If there are no 343 * unacknowledged bytes then unsent data was acknowledged, report, 344 * sleep a bit, and loop in that case. This should not happen 345 * normally. The ack record is thrown away. 346 */ 347 bytes = jo->fifo.rindex - jo->fifo.xindex; 348 349 if (bytes == 0) { 350 kprintf("warning: unsent data acknowledged transid %08llx\n", 351 (long long)transid); 352 tsleep(&jo->fifo.xindex, 0, "jrseq", hz); 353 transid = 0; 354 continue; 355 } 356 357 /* 358 * Since rindex has advanced, the record pointed to by xindex 359 * must be a valid record. 360 */ 361 rawp = (void *)(jo->fifo.membase + (jo->fifo.xindex & jo->fifo.mask)); 362 KKASSERT(rawp->begmagic == JREC_BEGMAGIC); 363 KKASSERT(rawp->recsize <= bytes); 364 365 /* 366 * The target can acknowledge several records at once. 367 */ 368 if (rawp->transid < transid) { 369 #if 1 370 kprintf("ackskip %08llx/%08llx\n", 371 (long long)rawp->transid, 372 (long long)transid); 373 #endif 374 jo->fifo.xindex += (rawp->recsize + 15) & ~15; 375 jo->total_acked += (rawp->recsize + 15) & ~15; 376 if (jo->flags & MC_JOURNAL_WWAIT) { 377 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */ 378 wakeup(&jo->fifo.windex); 379 } 380 continue; 381 } 382 if (rawp->transid == transid) { 383 #if 1 384 kprintf("ackskip %08llx/%08llx\n", 385 (long long)rawp->transid, 386 (long long)transid); 387 #endif 388 jo->fifo.xindex += (rawp->recsize + 15) & ~15; 389 jo->total_acked += (rawp->recsize + 15) & ~15; 390 if (jo->flags & MC_JOURNAL_WWAIT) { 391 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */ 392 wakeup(&jo->fifo.windex); 393 } 394 transid = 0; 395 continue; 396 } 397 kprintf("warning: unsent data(2) acknowledged transid %08llx\n", 398 (long long)transid); 399 transid = 0; 400 } 401 jo->flags &= ~MC_JOURNAL_RACTIVE; 402 wakeup(jo); 403 wakeup(&jo->fifo.windex); 404 } 405 406 /* 407 * This builds a pad record which the journaling thread will skip over. Pad 408 * records are required when we are unable to reserve sufficient stream space 409 * due to insufficient space at the end of the physical memory fifo. 410 * 411 * Even though the record is not transmitted, a normal transid must be 412 * assigned to it so link recovery operations after a failure work properly. 413 */ 414 static 415 void 416 journal_build_pad(struct journal_rawrecbeg *rawp, int recsize, int64_t transid) 417 { 418 struct journal_rawrecend *rendp; 419 420 KKASSERT((recsize & 15) == 0 && recsize >= 16); 421 422 rawp->streamid = JREC_STREAMID_PAD; 423 rawp->recsize = recsize; /* must be 16-byte aligned */ 424 rawp->transid = transid; 425 /* 426 * WARNING, rendp may overlap rawp->transid. This is necessary to 427 * allow PAD records to fit in 16 bytes. Use cpu_ccfence() to 428 * hopefully cause the compiler to not make any assumptions. 429 */ 430 rendp = (void *)((char *)rawp + rawp->recsize - sizeof(*rendp)); 431 rendp->endmagic = JREC_ENDMAGIC; 432 rendp->check = 0; 433 rendp->recsize = rawp->recsize; 434 435 /* 436 * Set the begin magic last. This is what will allow the journal 437 * thread to write the record out. Use a store fence to prevent 438 * compiler and cpu reordering of the writes. 439 */ 440 cpu_sfence(); 441 rawp->begmagic = JREC_BEGMAGIC; 442 } 443 444 /* 445 * Wake up the worker thread if the FIFO is more then half full or if 446 * someone is waiting for space to be freed up. Otherwise let the 447 * heartbeat deal with it. Being able to avoid waking up the worker 448 * is the key to the journal's cpu performance. 449 */ 450 static __inline 451 void 452 journal_commit_wakeup(struct journal *jo) 453 { 454 int avail; 455 456 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex); 457 KKASSERT(avail >= 0); 458 if ((avail < (jo->fifo.size >> 1)) || (jo->flags & MC_JOURNAL_WWAIT)) 459 wakeup(&jo->fifo); 460 } 461 462 /* 463 * Create a new BEGIN stream record with the specified streamid and the 464 * specified amount of payload space. *rawpp will be set to point to the 465 * base of the new stream record and a pointer to the base of the payload 466 * space will be returned. *rawpp does not need to be pre-NULLd prior to 467 * making this call. The raw record header will be partially initialized. 468 * 469 * A stream can be extended, aborted, or committed by other API calls 470 * below. This may result in a sequence of potentially disconnected 471 * stream records to be output to the journaling target. The first record 472 * (the one created by this function) will be marked JREC_STREAMCTL_BEGIN, 473 * while the last record on commit or abort will be marked JREC_STREAMCTL_END 474 * (and possibly also JREC_STREAMCTL_ABORTED). The last record could wind 475 * up being the same as the first, in which case the bits are all set in 476 * the first record. 477 * 478 * The stream record is created in an incomplete state by setting the begin 479 * magic to JREC_INCOMPLETEMAGIC. This prevents the worker thread from 480 * flushing the fifo past our record until we have finished populating it. 481 * Other threads can reserve and operate on their own space without stalling 482 * but the stream output will stall until we have completed operations. The 483 * memory FIFO is intended to be large enough to absorb such situations 484 * without stalling out other threads. 485 */ 486 static 487 void * 488 journal_reserve(struct journal *jo, struct journal_rawrecbeg **rawpp, 489 int16_t streamid, int bytes) 490 { 491 struct journal_rawrecbeg *rawp; 492 int avail; 493 int availtoend; 494 int req; 495 496 /* 497 * Add header and trailer overheads to the passed payload. Note that 498 * the passed payload size need not be aligned in any way. 499 */ 500 bytes += sizeof(struct journal_rawrecbeg); 501 bytes += sizeof(struct journal_rawrecend); 502 503 for (;;) { 504 /* 505 * First, check boundary conditions. If the request would wrap around 506 * we have to skip past the ending block and return to the beginning 507 * of the FIFO's buffer. Calculate 'req' which is the actual number 508 * of bytes being reserved, including wrap-around dead space. 509 * 510 * Neither 'bytes' or 'req' are aligned. 511 * 512 * Note that availtoend is not truncated to avail and so cannot be 513 * used to determine whether the reservation is possible by itself. 514 * Also, since all fifo ops are 16-byte aligned, we can check 515 * the size before calculating the aligned size. 516 */ 517 availtoend = jo->fifo.size - (jo->fifo.windex & jo->fifo.mask); 518 KKASSERT((availtoend & 15) == 0); 519 if (bytes > availtoend) 520 req = bytes + availtoend; /* add pad to end */ 521 else 522 req = bytes; 523 524 /* 525 * Next calculate the total available space and see if it is 526 * sufficient. We cannot overwrite previously buffered data 527 * past xindex because otherwise we would not be able to restart 528 * a broken link at the target's last point of commit. 529 */ 530 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex); 531 KKASSERT(avail >= 0 && (avail & 15) == 0); 532 533 if (avail < req) { 534 /* XXX MC_JOURNAL_STOP_IMM */ 535 jo->flags |= MC_JOURNAL_WWAIT; 536 ++jo->fifostalls; 537 tsleep(&jo->fifo.windex, 0, "jwrite", 0); 538 continue; 539 } 540 541 /* 542 * Create a pad record for any dead space and create an incomplete 543 * record for the live space, then return a pointer to the 544 * contiguous buffer space that was requested. 545 * 546 * NOTE: The worker thread will not flush past an incomplete 547 * record, so the reserved space can be filled in at-will. The 548 * journaling code must also be aware the reserved sections occuring 549 * after this one will also not be written out even if completed 550 * until this one is completed. 551 * 552 * The transaction id must accomodate real and potential pad creation. 553 */ 554 rawp = (void *)(jo->fifo.membase + (jo->fifo.windex & jo->fifo.mask)); 555 if (req != bytes) { 556 journal_build_pad(rawp, availtoend, jo->transid); 557 ++jo->transid; 558 rawp = (void *)jo->fifo.membase; 559 } 560 rawp->begmagic = JREC_INCOMPLETEMAGIC; /* updated by abort/commit */ 561 rawp->recsize = bytes; /* (unaligned size) */ 562 rawp->streamid = streamid | JREC_STREAMCTL_BEGIN; 563 rawp->transid = jo->transid; 564 jo->transid += 2; 565 566 /* 567 * Issue a memory barrier to guarentee that the record data has been 568 * properly initialized before we advance the write index and return 569 * a pointer to the reserved record. Otherwise the worker thread 570 * could accidently run past us. 571 * 572 * Note that stream records are always 16-byte aligned. 573 */ 574 cpu_sfence(); 575 jo->fifo.windex += (req + 15) & ~15; 576 *rawpp = rawp; 577 return(rawp + 1); 578 } 579 /* not reached */ 580 *rawpp = NULL; 581 return(NULL); 582 } 583 584 /* 585 * Attempt to extend the stream record by <bytes> worth of payload space. 586 * 587 * If it is possible to extend the existing stream record no truncation 588 * occurs and the record is extended as specified. A pointer to the 589 * truncation offset within the payload space is returned. 590 * 591 * If it is not possible to do this the existing stream record is truncated 592 * and committed, and a new stream record of size <bytes> is created. A 593 * pointer to the base of the new stream record's payload space is returned. 594 * 595 * *rawpp is set to the new reservation in the case of a new record but 596 * the caller cannot depend on a comparison with the old rawp to determine if 597 * this case occurs because we could end up using the same memory FIFO 598 * offset for the new stream record. Use *newstreamrecp instead. 599 */ 600 static void * 601 journal_extend(struct journal *jo, struct journal_rawrecbeg **rawpp, 602 int truncbytes, int bytes, int *newstreamrecp) 603 { 604 struct journal_rawrecbeg *rawp; 605 int16_t streamid; 606 int availtoend; 607 int avail; 608 int osize; 609 int nsize; 610 int wbase; 611 void *rptr; 612 613 *newstreamrecp = 0; 614 rawp = *rawpp; 615 osize = (rawp->recsize + 15) & ~15; 616 nsize = (rawp->recsize + bytes + 15) & ~15; 617 wbase = (char *)rawp - jo->fifo.membase; 618 619 /* 620 * If the aligned record size does not change we can trivially adjust 621 * the record size. 622 */ 623 if (nsize == osize) { 624 rawp->recsize += bytes; 625 return((char *)(rawp + 1) + truncbytes); 626 } 627 628 /* 629 * If the fifo's write index hasn't been modified since we made the 630 * reservation and we do not hit any boundary conditions, we can 631 * trivially make the record smaller or larger. 632 */ 633 if ((jo->fifo.windex & jo->fifo.mask) == wbase + osize) { 634 availtoend = jo->fifo.size - wbase; 635 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex) + osize; 636 KKASSERT((availtoend & 15) == 0); 637 KKASSERT((avail & 15) == 0); 638 if (nsize <= avail && nsize <= availtoend) { 639 jo->fifo.windex += nsize - osize; 640 rawp->recsize += bytes; 641 return((char *)(rawp + 1) + truncbytes); 642 } 643 } 644 645 /* 646 * It was not possible to extend the buffer. Commit the current 647 * buffer and create a new one. We manually clear the BEGIN mark that 648 * journal_reserve() creates (because this is a continuing record, not 649 * the start of a new stream). 650 */ 651 streamid = rawp->streamid & JREC_STREAMID_MASK; 652 journal_commit(jo, rawpp, truncbytes, 0); 653 rptr = journal_reserve(jo, rawpp, streamid, bytes); 654 rawp = *rawpp; 655 rawp->streamid &= ~JREC_STREAMCTL_BEGIN; 656 *newstreamrecp = 1; 657 return(rptr); 658 } 659 660 /* 661 * Abort a journal record. If the transaction record represents a stream 662 * BEGIN and we can reverse the fifo's write index we can simply reverse 663 * index the entire record, as if it were never reserved in the first place. 664 * 665 * Otherwise we set the JREC_STREAMCTL_ABORTED bit and commit the record 666 * with the payload truncated to 0 bytes. 667 */ 668 static void 669 journal_abort(struct journal *jo, struct journal_rawrecbeg **rawpp) 670 { 671 struct journal_rawrecbeg *rawp; 672 int osize; 673 674 rawp = *rawpp; 675 osize = (rawp->recsize + 15) & ~15; 676 677 if ((rawp->streamid & JREC_STREAMCTL_BEGIN) && 678 (jo->fifo.windex & jo->fifo.mask) == 679 (char *)rawp - jo->fifo.membase + osize) 680 { 681 jo->fifo.windex -= osize; 682 *rawpp = NULL; 683 } else { 684 rawp->streamid |= JREC_STREAMCTL_ABORTED; 685 journal_commit(jo, rawpp, 0, 1); 686 } 687 } 688 689 /* 690 * Commit a journal record and potentially truncate it to the specified 691 * number of payload bytes. If you do not want to truncate the record, 692 * simply pass -1 for the bytes parameter. Do not pass rawp->recsize, that 693 * field includes header and trailer and will not be correct. Note that 694 * passing 0 will truncate the entire data payload of the record. 695 * 696 * The logical stream is terminated by this function. 697 * 698 * If truncation occurs, and it is not possible to physically optimize the 699 * memory FIFO due to other threads having reserved space after ours, 700 * the remaining reserved space will be covered by a pad record. 701 */ 702 static void 703 journal_commit(struct journal *jo, struct journal_rawrecbeg **rawpp, 704 int bytes, int closeout) 705 { 706 struct journal_rawrecbeg *rawp; 707 struct journal_rawrecend *rendp; 708 int osize; 709 int nsize; 710 711 rawp = *rawpp; 712 *rawpp = NULL; 713 714 KKASSERT((char *)rawp >= jo->fifo.membase && 715 (char *)rawp + rawp->recsize <= jo->fifo.membase + jo->fifo.size); 716 KKASSERT(((intptr_t)rawp & 15) == 0); 717 718 /* 719 * Truncate the record if necessary. If the FIFO write index as still 720 * at the end of our record we can optimally backindex it. Otherwise 721 * we have to insert a pad record to cover the dead space. 722 * 723 * We calculate osize which is the 16-byte-aligned original recsize. 724 * We calculate nsize which is the 16-byte-aligned new recsize. 725 * 726 * Due to alignment issues or in case the passed truncation bytes is 727 * the same as the original payload, nsize may be equal to osize even 728 * if the committed bytes is less then the originally reserved bytes. 729 */ 730 if (bytes >= 0) { 731 KKASSERT(bytes >= 0 && bytes <= rawp->recsize - sizeof(struct journal_rawrecbeg) - sizeof(struct journal_rawrecend)); 732 osize = (rawp->recsize + 15) & ~15; 733 rawp->recsize = bytes + sizeof(struct journal_rawrecbeg) + 734 sizeof(struct journal_rawrecend); 735 nsize = (rawp->recsize + 15) & ~15; 736 KKASSERT(nsize <= osize); 737 if (osize == nsize) { 738 /* do nothing */ 739 } else if ((jo->fifo.windex & jo->fifo.mask) == (char *)rawp - jo->fifo.membase + osize) { 740 /* we are able to backindex the fifo */ 741 jo->fifo.windex -= osize - nsize; 742 } else { 743 /* we cannot backindex the fifo, emplace a pad in the dead space */ 744 journal_build_pad((void *)((char *)rawp + nsize), osize - nsize, 745 rawp->transid + 1); 746 } 747 } 748 749 /* 750 * Fill in the trailer. Note that unlike pad records, the trailer will 751 * never overlap the header. 752 */ 753 rendp = (void *)((char *)rawp + 754 ((rawp->recsize + 15) & ~15) - sizeof(*rendp)); 755 rendp->endmagic = JREC_ENDMAGIC; 756 rendp->recsize = rawp->recsize; 757 rendp->check = 0; /* XXX check word, disabled for now */ 758 759 /* 760 * Fill in begmagic last. This will allow the worker thread to proceed. 761 * Use a memory barrier to guarentee write ordering. Mark the stream 762 * as terminated if closeout is set. This is the typical case. 763 */ 764 if (closeout) 765 rawp->streamid |= JREC_STREAMCTL_END; 766 cpu_sfence(); /* memory and compiler barrier */ 767 rawp->begmagic = JREC_BEGMAGIC; 768 769 journal_commit_wakeup(jo); 770 } 771 772 /************************************************************************ 773 * TRANSACTION SUPPORT ROUTINES * 774 ************************************************************************ 775 * 776 * JRECORD_*() - routines to create subrecord transactions and embed them 777 * in the logical streams managed by the journal_*() routines. 778 */ 779 780 /* 781 * Initialize the passed jrecord structure and start a new stream transaction 782 * by reserving an initial build space in the journal's memory FIFO. 783 */ 784 void 785 jrecord_init(struct journal *jo, struct jrecord *jrec, int16_t streamid) 786 { 787 bzero(jrec, sizeof(*jrec)); 788 jrec->jo = jo; 789 jrec->streamid = streamid; 790 jrec->stream_residual = JREC_DEFAULTSIZE; 791 jrec->stream_reserved = jrec->stream_residual; 792 jrec->stream_ptr = 793 journal_reserve(jo, &jrec->rawp, streamid, jrec->stream_reserved); 794 } 795 796 /* 797 * Push a recursive record type. All pushes should have matching pops. 798 * The old parent is returned and the newly pushed record becomes the 799 * new parent. Note that the old parent's pointer may already be invalid 800 * or may become invalid if jrecord_write() had to build a new stream 801 * record, so the caller should not mess with the returned pointer in 802 * any way other then to save it. 803 */ 804 struct journal_subrecord * 805 jrecord_push(struct jrecord *jrec, int16_t rectype) 806 { 807 struct journal_subrecord *save; 808 809 save = jrec->parent; 810 jrec->parent = jrecord_write(jrec, rectype|JMASK_NESTED, 0); 811 jrec->last = NULL; 812 KKASSERT(jrec->parent != NULL); 813 ++jrec->pushcount; 814 ++jrec->pushptrgood; /* cleared on flush */ 815 return(save); 816 } 817 818 /* 819 * Pop a previously pushed sub-transaction. We must set JMASK_LAST 820 * on the last record written within the subtransaction. If the last 821 * record written is not accessible or if the subtransaction is empty, 822 * we must write out a pad record with JMASK_LAST set before popping. 823 * 824 * When popping a subtransaction the parent record's recsize field 825 * will be properly set. If the parent pointer is no longer valid 826 * (which can occur if the data has already been flushed out to the 827 * stream), the protocol spec allows us to leave it 0. 828 * 829 * The saved parent pointer which we restore may or may not be valid, 830 * and if not valid may or may not be NULL, depending on the value 831 * of pushptrgood. 832 */ 833 void 834 jrecord_pop(struct jrecord *jrec, struct journal_subrecord *save) 835 { 836 struct journal_subrecord *last; 837 838 KKASSERT(jrec->pushcount > 0); 839 KKASSERT(jrec->residual == 0); 840 841 /* 842 * Set JMASK_LAST on the last record we wrote at the current 843 * level. If last is NULL we either no longer have access to the 844 * record or the subtransaction was empty and we must write out a pad 845 * record. 846 */ 847 if ((last = jrec->last) == NULL) { 848 jrecord_write(jrec, JLEAF_PAD|JMASK_LAST, 0); 849 last = jrec->last; /* reload after possible flush */ 850 } else { 851 last->rectype |= JMASK_LAST; 852 } 853 854 /* 855 * pushptrgood tells us how many levels of parent record pointers 856 * are valid. The jrec only stores the current parent record pointer 857 * (and it is only valid if pushptrgood != 0). The higher level parent 858 * record pointers are saved by the routines calling jrecord_push() and 859 * jrecord_pop(). These pointers may become stale and we determine 860 * that fact by tracking the count of valid parent pointers with 861 * pushptrgood. Pointers become invalid when their related stream 862 * record gets pushed out. 863 * 864 * If no pointer is available (the data has already been pushed out), 865 * then no fixup of e.g. the length field is possible for non-leaf 866 * nodes. The protocol allows for this situation by placing a larger 867 * burden on the program scanning the stream on the other end. 868 * 869 * [parentA] 870 * [node X] 871 * [parentB] 872 * [node Y] 873 * [node Z] 874 * (pop B) see NOTE B 875 * (pop A) see NOTE A 876 * 877 * NOTE B: This pop sets LAST in node Z if the node is still accessible, 878 * else a PAD record is appended and LAST is set in that. 879 * 880 * This pop sets the record size in parentB if parentB is still 881 * accessible, else the record size is left 0 (the scanner must 882 * deal with that). 883 * 884 * This pop sets the new 'last' record to parentB, the pointer 885 * to which may or may not still be accessible. 886 * 887 * NOTE A: This pop sets LAST in parentB if the node is still accessible, 888 * else a PAD record is appended and LAST is set in that. 889 * 890 * This pop sets the record size in parentA if parentA is still 891 * accessible, else the record size is left 0 (the scanner must 892 * deal with that). 893 * 894 * This pop sets the new 'last' record to parentA, the pointer 895 * to which may or may not still be accessible. 896 * 897 * Also note that the last record in the stream transaction, which in 898 * the above example is parentA, does not currently have the LAST bit 899 * set. 900 * 901 * The current parent becomes the last record relative to the 902 * saved parent passed into us. It's validity is based on 903 * whether pushptrgood is non-zero prior to decrementing. The saved 904 * parent becomes the new parent, and its validity is based on whether 905 * pushptrgood is non-zero after decrementing. 906 * 907 * The old jrec->parent may be NULL if it is no longer accessible. 908 * If pushptrgood is non-zero, however, it is guarenteed to not 909 * be NULL (since no flush occured). 910 */ 911 jrec->last = jrec->parent; 912 --jrec->pushcount; 913 if (jrec->pushptrgood) { 914 KKASSERT(jrec->last != NULL && last != NULL); 915 if (--jrec->pushptrgood == 0) { 916 jrec->parent = NULL; /* 'save' contains garbage or NULL */ 917 } else { 918 KKASSERT(save != NULL); 919 jrec->parent = save; /* 'save' must not be NULL */ 920 } 921 922 /* 923 * Set the record size in the old parent. 'last' still points to 924 * the original last record in the subtransaction being popped, 925 * jrec->last points to the old parent (which became the last 926 * record relative to the new parent being popped into). 927 */ 928 jrec->last->recsize = (char *)last + last->recsize - (char *)jrec->last; 929 } else { 930 jrec->parent = NULL; 931 KKASSERT(jrec->last == NULL); 932 } 933 } 934 935 /* 936 * Write out a leaf record, including associated data. 937 */ 938 void 939 jrecord_leaf(struct jrecord *jrec, int16_t rectype, void *ptr, int bytes) 940 { 941 jrecord_write(jrec, rectype, bytes); 942 jrecord_data(jrec, ptr, bytes); 943 } 944 945 /* 946 * Write a leaf record out and return a pointer to its base. The leaf 947 * record may contain potentially megabytes of data which is supplied 948 * in jrecord_data() calls. The exact amount must be specified in this 949 * call. 950 * 951 * THE RETURNED SUBRECORD POINTER IS ONLY VALID IMMEDIATELY AFTER THE 952 * CALL AND MAY BECOME INVALID AT ANY TIME. ONLY THE PUSH/POP CODE SHOULD 953 * USE THE RETURN VALUE. 954 */ 955 struct journal_subrecord * 956 jrecord_write(struct jrecord *jrec, int16_t rectype, int bytes) 957 { 958 struct journal_subrecord *last; 959 int pusheditout; 960 961 /* 962 * Try to catch some obvious errors. Nesting records must specify a 963 * size of 0, and there should be no left-overs from previous operations 964 * (such as incomplete data writeouts). 965 */ 966 KKASSERT(bytes == 0 || (rectype & JMASK_NESTED) == 0); 967 KKASSERT(jrec->residual == 0); 968 969 /* 970 * Check to see if the current stream record has enough room for 971 * the new subrecord header. If it doesn't we extend the current 972 * stream record. 973 * 974 * This may have the side effect of pushing out the current stream record 975 * and creating a new one. We must adjust our stream tracking fields 976 * accordingly. 977 */ 978 if (jrec->stream_residual < sizeof(struct journal_subrecord)) { 979 jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp, 980 jrec->stream_reserved - jrec->stream_residual, 981 JREC_DEFAULTSIZE, &pusheditout); 982 if (pusheditout) { 983 /* 984 * If a pushout occured, the pushed out stream record was 985 * truncated as specified and the new record is exactly the 986 * extension size specified. 987 */ 988 jrec->stream_reserved = JREC_DEFAULTSIZE; 989 jrec->stream_residual = JREC_DEFAULTSIZE; 990 jrec->parent = NULL; /* no longer accessible */ 991 jrec->pushptrgood = 0; /* restored parents in pops no good */ 992 } else { 993 /* 994 * If no pushout occured the stream record is NOT truncated and 995 * IS extended. 996 */ 997 jrec->stream_reserved += JREC_DEFAULTSIZE; 998 jrec->stream_residual += JREC_DEFAULTSIZE; 999 } 1000 } 1001 last = (void *)jrec->stream_ptr; 1002 last->rectype = rectype; 1003 last->reserved = 0; 1004 1005 /* 1006 * We may not know the record size for recursive records and the 1007 * header may become unavailable due to limited FIFO space. Write 1008 * -1 to indicate this special case. 1009 */ 1010 if ((rectype & JMASK_NESTED) && bytes == 0) 1011 last->recsize = -1; 1012 else 1013 last->recsize = sizeof(struct journal_subrecord) + bytes; 1014 jrec->last = last; 1015 jrec->residual = bytes; /* remaining data to be posted */ 1016 jrec->residual_align = -bytes & 7; /* post-data alignment required */ 1017 jrec->stream_ptr += sizeof(*last); /* current write pointer */ 1018 jrec->stream_residual -= sizeof(*last); /* space remaining in stream */ 1019 return(last); 1020 } 1021 1022 /* 1023 * Write out the data associated with a leaf record. Any number of calls 1024 * to this routine may be made as long as the byte count adds up to the 1025 * amount originally specified in jrecord_write(). 1026 * 1027 * The act of writing out the leaf data may result in numerous stream records 1028 * being pushed out. Callers should be aware that even the associated 1029 * subrecord header may become inaccessible due to stream record pushouts. 1030 */ 1031 void 1032 jrecord_data(struct jrecord *jrec, const void *buf, int bytes) 1033 { 1034 int pusheditout; 1035 int extsize; 1036 1037 KKASSERT(bytes >= 0 && bytes <= jrec->residual); 1038 1039 /* 1040 * Push out stream records as long as there is insufficient room to hold 1041 * the remaining data. 1042 */ 1043 while (jrec->stream_residual < bytes) { 1044 /* 1045 * Fill in any remaining space in the current stream record. 1046 */ 1047 bcopy(buf, jrec->stream_ptr, jrec->stream_residual); 1048 buf = (const char *)buf + jrec->stream_residual; 1049 bytes -= jrec->stream_residual; 1050 /*jrec->stream_ptr += jrec->stream_residual;*/ 1051 jrec->residual -= jrec->stream_residual; 1052 jrec->stream_residual = 0; 1053 1054 /* 1055 * Try to extend the current stream record, but no more then 1/4 1056 * the size of the FIFO. 1057 */ 1058 extsize = jrec->jo->fifo.size >> 2; 1059 if (extsize > bytes) 1060 extsize = (bytes + 15) & ~15; 1061 1062 jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp, 1063 jrec->stream_reserved - jrec->stream_residual, 1064 extsize, &pusheditout); 1065 if (pusheditout) { 1066 jrec->stream_reserved = extsize; 1067 jrec->stream_residual = extsize; 1068 jrec->parent = NULL; /* no longer accessible */ 1069 jrec->last = NULL; /* no longer accessible */ 1070 jrec->pushptrgood = 0; /* restored parents in pops no good */ 1071 } else { 1072 jrec->stream_reserved += extsize; 1073 jrec->stream_residual += extsize; 1074 } 1075 } 1076 1077 /* 1078 * Push out any remaining bytes into the current stream record. 1079 */ 1080 if (bytes) { 1081 bcopy(buf, jrec->stream_ptr, bytes); 1082 jrec->stream_ptr += bytes; 1083 jrec->stream_residual -= bytes; 1084 jrec->residual -= bytes; 1085 } 1086 1087 /* 1088 * Handle data alignment requirements for the subrecord. Because the 1089 * stream record's data space is more strictly aligned, it must already 1090 * have sufficient space to hold any subrecord alignment slop. 1091 */ 1092 if (jrec->residual == 0 && jrec->residual_align) { 1093 KKASSERT(jrec->residual_align <= jrec->stream_residual); 1094 bzero(jrec->stream_ptr, jrec->residual_align); 1095 jrec->stream_ptr += jrec->residual_align; 1096 jrec->stream_residual -= jrec->residual_align; 1097 jrec->residual_align = 0; 1098 } 1099 } 1100 1101 /* 1102 * We are finished with the transaction. This closes the transaction created 1103 * by jrecord_init(). 1104 * 1105 * NOTE: If abortit is not set then we must be at the top level with no 1106 * residual subrecord data left to output. 1107 * 1108 * If abortit is set then we can be in any state, all pushes will be 1109 * popped and it is ok for there to be residual data. This works 1110 * because the virtual stream itself is truncated. Scanners must deal 1111 * with this situation. 1112 * 1113 * The stream record will be committed or aborted as specified and jrecord 1114 * resources will be cleaned up. 1115 */ 1116 void 1117 jrecord_done(struct jrecord *jrec, int abortit) 1118 { 1119 KKASSERT(jrec->rawp != NULL); 1120 1121 if (abortit) { 1122 journal_abort(jrec->jo, &jrec->rawp); 1123 } else { 1124 KKASSERT(jrec->pushcount == 0 && jrec->residual == 0); 1125 journal_commit(jrec->jo, &jrec->rawp, 1126 jrec->stream_reserved - jrec->stream_residual, 1); 1127 } 1128 1129 /* 1130 * jrec should not be used beyond this point without another init, 1131 * but clean up some fields to ensure that we panic if it is. 1132 * 1133 * Note that jrec->rawp is NULLd out by journal_abort/journal_commit. 1134 */ 1135 jrec->jo = NULL; 1136 jrec->stream_ptr = NULL; 1137 } 1138 1139 /************************************************************************ 1140 * LOW LEVEL RECORD SUPPORT ROUTINES * 1141 ************************************************************************ 1142 * 1143 * These routine create low level recursive and leaf subrecords representing 1144 * common filesystem structures. 1145 */ 1146 1147 /* 1148 * Write out a filename path relative to the base of the mount point. 1149 * rectype is typically JLEAF_PATH{1,2,3,4}. 1150 */ 1151 void 1152 jrecord_write_path(struct jrecord *jrec, int16_t rectype, struct namecache *ncp) 1153 { 1154 char buf[64]; /* local buffer if it fits, else malloced */ 1155 char *base; 1156 int pathlen; 1157 int index; 1158 struct namecache *scan; 1159 1160 /* 1161 * Pass 1 - figure out the number of bytes required. Include terminating 1162 * \0 on last element and '/' separator on other elements. 1163 * 1164 * The namecache topology terminates at the root of the filesystem 1165 * (the normal lookup code would then continue by using the mount 1166 * structure to figure out what it was mounted on). 1167 */ 1168 again: 1169 pathlen = 0; 1170 for (scan = ncp; scan; scan = scan->nc_parent) { 1171 if (scan->nc_nlen > 0) 1172 pathlen += scan->nc_nlen + 1; 1173 } 1174 1175 if (pathlen <= sizeof(buf)) 1176 base = buf; 1177 else 1178 base = kmalloc(pathlen, M_TEMP, M_INTWAIT); 1179 1180 /* 1181 * Pass 2 - generate the path buffer 1182 */ 1183 index = pathlen; 1184 for (scan = ncp; scan; scan = scan->nc_parent) { 1185 if (scan->nc_nlen == 0) 1186 continue; 1187 if (scan->nc_nlen >= index) { 1188 if (base != buf) 1189 kfree(base, M_TEMP); 1190 goto again; 1191 } 1192 if (index == pathlen) 1193 base[--index] = 0; 1194 else 1195 base[--index] = '/'; 1196 index -= scan->nc_nlen; 1197 bcopy(scan->nc_name, base + index, scan->nc_nlen); 1198 } 1199 jrecord_leaf(jrec, rectype, base + index, pathlen - index); 1200 if (base != buf) 1201 kfree(base, M_TEMP); 1202 } 1203 1204 /* 1205 * Write out a file attribute structure. While somewhat inefficient, using 1206 * a recursive data structure is the most portable and extensible way. 1207 */ 1208 void 1209 jrecord_write_vattr(struct jrecord *jrec, struct vattr *vat) 1210 { 1211 void *save; 1212 1213 save = jrecord_push(jrec, JTYPE_VATTR); 1214 if (vat->va_type != VNON) 1215 jrecord_leaf(jrec, JLEAF_VTYPE, &vat->va_type, sizeof(vat->va_type)); 1216 if (vat->va_mode != (mode_t)VNOVAL) 1217 jrecord_leaf(jrec, JLEAF_MODES, &vat->va_mode, sizeof(vat->va_mode)); 1218 if (vat->va_nlink != VNOVAL) 1219 jrecord_leaf(jrec, JLEAF_NLINK, &vat->va_nlink, sizeof(vat->va_nlink)); 1220 if (vat->va_uid != VNOVAL) 1221 jrecord_leaf(jrec, JLEAF_UID, &vat->va_uid, sizeof(vat->va_uid)); 1222 if (vat->va_gid != VNOVAL) 1223 jrecord_leaf(jrec, JLEAF_GID, &vat->va_gid, sizeof(vat->va_gid)); 1224 if (vat->va_fsid != VNOVAL) 1225 jrecord_leaf(jrec, JLEAF_FSID, &vat->va_fsid, sizeof(vat->va_fsid)); 1226 if (vat->va_fileid != VNOVAL) 1227 jrecord_leaf(jrec, JLEAF_INUM, &vat->va_fileid, sizeof(vat->va_fileid)); 1228 if (vat->va_size != VNOVAL) 1229 jrecord_leaf(jrec, JLEAF_SIZE, &vat->va_size, sizeof(vat->va_size)); 1230 if (vat->va_atime.tv_sec != VNOVAL) 1231 jrecord_leaf(jrec, JLEAF_ATIME, &vat->va_atime, sizeof(vat->va_atime)); 1232 if (vat->va_mtime.tv_sec != VNOVAL) 1233 jrecord_leaf(jrec, JLEAF_MTIME, &vat->va_mtime, sizeof(vat->va_mtime)); 1234 if (vat->va_ctime.tv_sec != VNOVAL) 1235 jrecord_leaf(jrec, JLEAF_CTIME, &vat->va_ctime, sizeof(vat->va_ctime)); 1236 if (vat->va_gen != VNOVAL) 1237 jrecord_leaf(jrec, JLEAF_GEN, &vat->va_gen, sizeof(vat->va_gen)); 1238 if (vat->va_flags != VNOVAL) 1239 jrecord_leaf(jrec, JLEAF_FLAGS, &vat->va_flags, sizeof(vat->va_flags)); 1240 if (vat->va_rmajor != VNOVAL) { 1241 udev_t rdev = makeudev(vat->va_rmajor, vat->va_rminor); 1242 jrecord_leaf(jrec, JLEAF_UDEV, &rdev, sizeof(rdev)); 1243 jrecord_leaf(jrec, JLEAF_UMAJOR, &vat->va_rmajor, sizeof(vat->va_rmajor)); 1244 jrecord_leaf(jrec, JLEAF_UMINOR, &vat->va_rminor, sizeof(vat->va_rminor)); 1245 } 1246 #if 0 1247 if (vat->va_filerev != VNOVAL) 1248 jrecord_leaf(jrec, JLEAF_FILEREV, &vat->va_filerev, sizeof(vat->va_filerev)); 1249 #endif 1250 jrecord_pop(jrec, save); 1251 } 1252 1253 /* 1254 * Write out the creds used to issue a file operation. If a process is 1255 * available write out additional tracking information related to the 1256 * process. 1257 * 1258 * XXX additional tracking info 1259 * XXX tty line info 1260 */ 1261 void 1262 jrecord_write_cred(struct jrecord *jrec, struct thread *td, struct ucred *cred) 1263 { 1264 void *save; 1265 struct proc *p; 1266 1267 save = jrecord_push(jrec, JTYPE_CRED); 1268 jrecord_leaf(jrec, JLEAF_UID, &cred->cr_uid, sizeof(cred->cr_uid)); 1269 jrecord_leaf(jrec, JLEAF_GID, &cred->cr_gid, sizeof(cred->cr_gid)); 1270 if (td && (p = td->td_proc) != NULL) { 1271 jrecord_leaf(jrec, JLEAF_PID, &p->p_pid, sizeof(p->p_pid)); 1272 jrecord_leaf(jrec, JLEAF_COMM, p->p_comm, sizeof(p->p_comm)); 1273 } 1274 jrecord_pop(jrec, save); 1275 } 1276 1277 /* 1278 * Write out information required to identify a vnode 1279 * 1280 * XXX this needs work. We should write out the inode number as well, 1281 * and in fact avoid writing out the file path for seqential writes 1282 * occuring within e.g. a certain period of time. 1283 */ 1284 void 1285 jrecord_write_vnode_ref(struct jrecord *jrec, struct vnode *vp) 1286 { 1287 struct nchandle nch; 1288 1289 nch.mount = vp->v_mount; 1290 spin_lock_wr(&vp->v_spinlock); 1291 TAILQ_FOREACH(nch.ncp, &vp->v_namecache, nc_vnode) { 1292 if ((nch.ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0) 1293 break; 1294 } 1295 if (nch.ncp) { 1296 cache_hold(&nch); 1297 spin_unlock_wr(&vp->v_spinlock); 1298 jrecord_write_path(jrec, JLEAF_PATH_REF, nch.ncp); 1299 cache_drop(&nch); 1300 } else { 1301 spin_unlock_wr(&vp->v_spinlock); 1302 } 1303 } 1304 1305 void 1306 jrecord_write_vnode_link(struct jrecord *jrec, struct vnode *vp, 1307 struct namecache *notncp) 1308 { 1309 struct nchandle nch; 1310 1311 nch.mount = vp->v_mount; 1312 spin_lock_wr(&vp->v_spinlock); 1313 TAILQ_FOREACH(nch.ncp, &vp->v_namecache, nc_vnode) { 1314 if (nch.ncp == notncp) 1315 continue; 1316 if ((nch.ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0) 1317 break; 1318 } 1319 if (nch.ncp) { 1320 cache_hold(&nch); 1321 spin_unlock_wr(&vp->v_spinlock); 1322 jrecord_write_path(jrec, JLEAF_PATH_REF, nch.ncp); 1323 cache_drop(&nch); 1324 } else { 1325 spin_unlock_wr(&vp->v_spinlock); 1326 } 1327 } 1328 1329 /* 1330 * Write out the data represented by a pagelist 1331 */ 1332 void 1333 jrecord_write_pagelist(struct jrecord *jrec, int16_t rectype, 1334 struct vm_page **pglist, int *rtvals, int pgcount, 1335 off_t offset) 1336 { 1337 struct msf_buf *msf; 1338 int error; 1339 int b; 1340 int i; 1341 1342 i = 0; 1343 while (i < pgcount) { 1344 /* 1345 * Find the next valid section. Skip any invalid elements 1346 */ 1347 if (rtvals[i] != VM_PAGER_OK) { 1348 ++i; 1349 offset += PAGE_SIZE; 1350 continue; 1351 } 1352 1353 /* 1354 * Figure out how big the valid section is, capping I/O at what the 1355 * MSFBUF can represent. 1356 */ 1357 b = i; 1358 while (i < pgcount && i - b != XIO_INTERNAL_PAGES && 1359 rtvals[i] == VM_PAGER_OK 1360 ) { 1361 ++i; 1362 } 1363 1364 /* 1365 * And write it out. 1366 */ 1367 if (i - b) { 1368 error = msf_map_pagelist(&msf, pglist + b, i - b, 0); 1369 if (error == 0) { 1370 kprintf("RECORD PUTPAGES %d\n", msf_buf_bytes(msf)); 1371 jrecord_leaf(jrec, JLEAF_SEEKPOS, &offset, sizeof(offset)); 1372 jrecord_leaf(jrec, rectype, 1373 msf_buf_kva(msf), msf_buf_bytes(msf)); 1374 msf_buf_free(msf); 1375 } else { 1376 kprintf("jrecord_write_pagelist: mapping failure\n"); 1377 } 1378 offset += (off_t)(i - b) << PAGE_SHIFT; 1379 } 1380 } 1381 } 1382 1383 /* 1384 * Write out the data represented by a UIO. 1385 */ 1386 struct jwuio_info { 1387 struct jrecord *jrec; 1388 int16_t rectype; 1389 }; 1390 1391 static int jrecord_write_uio_callback(void *info, char *buf, int bytes); 1392 1393 void 1394 jrecord_write_uio(struct jrecord *jrec, int16_t rectype, struct uio *uio) 1395 { 1396 struct jwuio_info info = { jrec, rectype }; 1397 int error; 1398 1399 if (uio->uio_segflg != UIO_NOCOPY) { 1400 jrecord_leaf(jrec, JLEAF_SEEKPOS, &uio->uio_offset, 1401 sizeof(uio->uio_offset)); 1402 error = msf_uio_iterate(uio, jrecord_write_uio_callback, &info); 1403 if (error) 1404 kprintf("XXX warning uio iterate failed %d\n", error); 1405 } 1406 } 1407 1408 static int 1409 jrecord_write_uio_callback(void *info_arg, char *buf, int bytes) 1410 { 1411 struct jwuio_info *info = info_arg; 1412 1413 jrecord_leaf(info->jrec, info->rectype, buf, bytes); 1414 return(0); 1415 } 1416 1417 void 1418 jrecord_file_data(struct jrecord *jrec, struct vnode *vp, 1419 off_t off, off_t bytes) 1420 { 1421 const int bufsize = 8192; 1422 char *buf; 1423 int error; 1424 int n; 1425 1426 buf = kmalloc(bufsize, M_JOURNAL, M_WAITOK); 1427 jrecord_leaf(jrec, JLEAF_SEEKPOS, &off, sizeof(off)); 1428 while (bytes) { 1429 n = (bytes > bufsize) ? bufsize : (int)bytes; 1430 error = vn_rdwr(UIO_READ, vp, buf, n, off, UIO_SYSSPACE, IO_NODELOCKED, 1431 proc0.p_ucred, NULL); 1432 if (error) { 1433 jrecord_leaf(jrec, JLEAF_ERROR, &error, sizeof(error)); 1434 break; 1435 } 1436 jrecord_leaf(jrec, JLEAF_FILEDATA, buf, n); 1437 bytes -= n; 1438 off += n; 1439 } 1440 kfree(buf, M_JOURNAL); 1441 } 1442 1443