xref: /dflybsd-src/sys/kern/vfs_jops.c (revision c6cf4f8f1ebc9e3fe2a8c566f08adfc86122c7bf)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/kern/vfs_jops.c,v 1.11 2005/03/05 05:08:27 dillon Exp $
35  */
36 /*
37  * Each mount point may have zero or more independantly configured journals
38  * attached to it.  Each journal is represented by a memory FIFO and worker
39  * thread.  Journal events are streamed through the FIFO to the thread,
40  * batched up (typically on one-second intervals), and written out by the
41  * thread.
42  *
43  * Journal vnode ops are executed instead of mnt_vn_norm_ops when one or
44  * more journals have been installed on a mount point.  It becomes the
45  * responsibility of the journal op to call the underlying normal op as
46  * appropriate.
47  *
48  * The journaling protocol is intended to evolve into a two-way stream
49  * whereby transaction IDs can be acknowledged by the journaling target
50  * when the data has been committed to hard storage.  Both implicit and
51  * explicit acknowledgement schemes will be supported, depending on the
52  * sophistication of the journaling stream, plus resynchronization and
53  * restart when a journaling stream is interrupted.  This information will
54  * also be made available to journaling-aware filesystems to allow better
55  * management of their own physical storage synchronization mechanisms as
56  * well as to allow such filesystems to take direct advantage of the kernel's
57  * journaling layer so they don't have to roll their own.
58  *
59  * In addition, the worker thread will have access to much larger
60  * spooling areas then the memory buffer is able to provide by e.g.
61  * reserving swap space, in order to absorb potentially long interruptions
62  * of off-site journaling streams, and to prevent 'slow' off-site linkages
63  * from radically slowing down local filesystem operations.
64  *
65  * Because of the non-trivial algorithms the journaling system will be
66  * required to support, use of a worker thread is mandatory.  Efficiencies
67  * are maintained by utilitizing the memory FIFO to batch transactions when
68  * possible, reducing the number of gratuitous thread switches and taking
69  * advantage of cpu caches through the use of shorter batched code paths
70  * rather then trying to do everything in the context of the process
71  * originating the filesystem op.  In the future the memory FIFO can be
72  * made per-cpu to remove BGL or other locking requirements.
73  */
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/buf.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/queue.h>
80 #include <sys/lock.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/unistd.h>
84 #include <sys/vnode.h>
85 #include <sys/poll.h>
86 #include <sys/mountctl.h>
87 #include <sys/journal.h>
88 #include <sys/file.h>
89 #include <sys/proc.h>
90 #include <sys/msfbuf.h>
91 
92 #include <machine/limits.h>
93 
94 #include <vm/vm.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pager.h>
98 #include <vm/vnode_pager.h>
99 
100 #include <sys/file2.h>
101 #include <sys/thread2.h>
102 
103 static int journal_attach(struct mount *mp);
104 static void journal_detach(struct mount *mp);
105 static int journal_install_vfs_journal(struct mount *mp, struct file *fp,
106 			    const struct mountctl_install_journal *info);
107 static int journal_remove_vfs_journal(struct mount *mp,
108 			    const struct mountctl_remove_journal *info);
109 static int journal_resync_vfs_journal(struct mount *mp, const void *ctl);
110 static int journal_status_vfs_journal(struct mount *mp,
111 		       const struct mountctl_status_journal *info,
112 		       struct mountctl_journal_ret_status *rstat,
113 		       int buflen, int *res);
114 static void journal_thread(void *info);
115 
116 static void *journal_reserve(struct journal *jo,
117 			    struct journal_rawrecbeg **rawpp,
118 			    int16_t streamid, int bytes);
119 static void *journal_extend(struct journal *jo,
120 			    struct journal_rawrecbeg **rawpp,
121 			    int truncbytes, int bytes, int *newstreamrecp);
122 static void journal_abort(struct journal *jo,
123 			    struct journal_rawrecbeg **rawpp);
124 static void journal_commit(struct journal *jo,
125 			    struct journal_rawrecbeg **rawpp,
126 			    int bytes, int closeout);
127 
128 static void jrecord_init(struct journal *jo,
129 			    struct jrecord *jrec, int16_t streamid);
130 static struct journal_subrecord *jrecord_push(
131 			    struct jrecord *jrec, int16_t rectype);
132 static void jrecord_pop(struct jrecord *jrec, struct journal_subrecord *parent);
133 static struct journal_subrecord *jrecord_write(struct jrecord *jrec,
134 			    int16_t rectype, int bytes);
135 static void jrecord_data(struct jrecord *jrec, const void *buf, int bytes);
136 static void jrecord_done(struct jrecord *jrec, int abortit);
137 
138 static int journal_setattr(struct vop_setattr_args *ap);
139 static int journal_write(struct vop_write_args *ap);
140 static int journal_fsync(struct vop_fsync_args *ap);
141 static int journal_putpages(struct vop_putpages_args *ap);
142 static int journal_setacl(struct vop_setacl_args *ap);
143 static int journal_setextattr(struct vop_setextattr_args *ap);
144 static int journal_ncreate(struct vop_ncreate_args *ap);
145 static int journal_nmknod(struct vop_nmknod_args *ap);
146 static int journal_nlink(struct vop_nlink_args *ap);
147 static int journal_nsymlink(struct vop_nsymlink_args *ap);
148 static int journal_nwhiteout(struct vop_nwhiteout_args *ap);
149 static int journal_nremove(struct vop_nremove_args *ap);
150 static int journal_nmkdir(struct vop_nmkdir_args *ap);
151 static int journal_nrmdir(struct vop_nrmdir_args *ap);
152 static int journal_nrename(struct vop_nrename_args *ap);
153 
154 static struct vnodeopv_entry_desc journal_vnodeop_entries[] = {
155     { &vop_default_desc,		vop_journal_operate_ap },
156     { &vop_mountctl_desc,		(void *)journal_mountctl },
157     { &vop_setattr_desc,		(void *)journal_setattr },
158     { &vop_write_desc,			(void *)journal_write },
159     { &vop_fsync_desc,			(void *)journal_fsync },
160     { &vop_putpages_desc,		(void *)journal_putpages },
161     { &vop_setacl_desc,			(void *)journal_setacl },
162     { &vop_setextattr_desc,		(void *)journal_setextattr },
163     { &vop_ncreate_desc,		(void *)journal_ncreate },
164     { &vop_nmknod_desc,			(void *)journal_nmknod },
165     { &vop_nlink_desc,			(void *)journal_nlink },
166     { &vop_nsymlink_desc,		(void *)journal_nsymlink },
167     { &vop_nwhiteout_desc,		(void *)journal_nwhiteout },
168     { &vop_nremove_desc,		(void *)journal_nremove },
169     { &vop_nmkdir_desc,			(void *)journal_nmkdir },
170     { &vop_nrmdir_desc,			(void *)journal_nrmdir },
171     { &vop_nrename_desc,		(void *)journal_nrename },
172     { NULL, NULL }
173 };
174 
175 static MALLOC_DEFINE(M_JOURNAL, "journal", "Journaling structures");
176 static MALLOC_DEFINE(M_JFIFO, "journal-fifo", "Journal FIFO");
177 
178 int
179 journal_mountctl(struct vop_mountctl_args *ap)
180 {
181     struct mount *mp;
182     int error = 0;
183 
184     mp = ap->a_head.a_ops->vv_mount;
185     KKASSERT(mp);
186 
187     if (mp->mnt_vn_journal_ops == NULL) {
188 	switch(ap->a_op) {
189 	case MOUNTCTL_INSTALL_VFS_JOURNAL:
190 	    error = journal_attach(mp);
191 	    if (error == 0 && ap->a_ctllen != sizeof(struct mountctl_install_journal))
192 		error = EINVAL;
193 	    if (error == 0 && ap->a_fp == NULL)
194 		error = EBADF;
195 	    if (error == 0)
196 		error = journal_install_vfs_journal(mp, ap->a_fp, ap->a_ctl);
197 	    if (TAILQ_EMPTY(&mp->mnt_jlist))
198 		journal_detach(mp);
199 	    break;
200 	case MOUNTCTL_REMOVE_VFS_JOURNAL:
201 	case MOUNTCTL_RESYNC_VFS_JOURNAL:
202 	case MOUNTCTL_STATUS_VFS_JOURNAL:
203 	    error = ENOENT;
204 	    break;
205 	default:
206 	    error = EOPNOTSUPP;
207 	    break;
208 	}
209     } else {
210 	switch(ap->a_op) {
211 	case MOUNTCTL_INSTALL_VFS_JOURNAL:
212 	    if (ap->a_ctllen != sizeof(struct mountctl_install_journal))
213 		error = EINVAL;
214 	    if (error == 0 && ap->a_fp == NULL)
215 		error = EBADF;
216 	    if (error == 0)
217 		error = journal_install_vfs_journal(mp, ap->a_fp, ap->a_ctl);
218 	    break;
219 	case MOUNTCTL_REMOVE_VFS_JOURNAL:
220 	    if (ap->a_ctllen != sizeof(struct mountctl_remove_journal))
221 		error = EINVAL;
222 	    if (error == 0)
223 		error = journal_remove_vfs_journal(mp, ap->a_ctl);
224 	    if (TAILQ_EMPTY(&mp->mnt_jlist))
225 		journal_detach(mp);
226 	    break;
227 	case MOUNTCTL_RESYNC_VFS_JOURNAL:
228 	    if (ap->a_ctllen != 0)
229 		error = EINVAL;
230 	    error = journal_resync_vfs_journal(mp, ap->a_ctl);
231 	    break;
232 	case MOUNTCTL_STATUS_VFS_JOURNAL:
233 	    if (ap->a_ctllen != sizeof(struct mountctl_status_journal))
234 		error = EINVAL;
235 	    if (error == 0) {
236 		error = journal_status_vfs_journal(mp, ap->a_ctl,
237 					ap->a_buf, ap->a_buflen, ap->a_res);
238 	    }
239 	    break;
240 	default:
241 	    error = EOPNOTSUPP;
242 	    break;
243 	}
244     }
245     return (error);
246 }
247 
248 /*
249  * High level mount point setup.  When a
250  */
251 static int
252 journal_attach(struct mount *mp)
253 {
254     vfs_add_vnodeops(mp, &mp->mnt_vn_journal_ops, journal_vnodeop_entries);
255     return(0);
256 }
257 
258 static void
259 journal_detach(struct mount *mp)
260 {
261     if (mp->mnt_vn_journal_ops)
262 	vfs_rm_vnodeops(&mp->mnt_vn_journal_ops);
263 }
264 
265 /*
266  * Install a journal on a mount point.  Each journal has an associated worker
267  * thread which is responsible for buffering and spooling the data to the
268  * target.  A mount point may have multiple journals attached to it.  An
269  * initial start record is generated when the journal is associated.
270  */
271 static int
272 journal_install_vfs_journal(struct mount *mp, struct file *fp,
273 			    const struct mountctl_install_journal *info)
274 {
275     struct journal *jo;
276     struct jrecord jrec;
277     int error = 0;
278     int size;
279 
280     jo = malloc(sizeof(struct journal), M_JOURNAL, M_WAITOK|M_ZERO);
281     bcopy(info->id, jo->id, sizeof(jo->id));
282     jo->flags = info->flags & ~(MC_JOURNAL_ACTIVE | MC_JOURNAL_STOP_REQ);
283 
284     /*
285      * Memory FIFO size, round to nearest power of 2
286      */
287     if (info->membufsize) {
288 	if (info->membufsize < 65536)
289 	    size = 65536;
290 	else if (info->membufsize > 128 * 1024 * 1024)
291 	    size = 128 * 1024 * 1024;
292 	else
293 	    size = (int)info->membufsize;
294     } else {
295 	size = 1024 * 1024;
296     }
297     jo->fifo.size = 1;
298     while (jo->fifo.size < size)
299 	jo->fifo.size <<= 1;
300 
301     /*
302      * Other parameters.  If not specified the starting transaction id
303      * will be the current date.
304      */
305     if (info->transid) {
306 	jo->transid = info->transid;
307     } else {
308 	struct timespec ts;
309 	getnanotime(&ts);
310 	jo->transid = ((int64_t)ts.tv_sec << 30) | ts.tv_nsec;
311     }
312 
313     jo->fp = fp;
314 
315     /*
316      * Allocate the memory FIFO
317      */
318     jo->fifo.mask = jo->fifo.size - 1;
319     jo->fifo.membase = malloc(jo->fifo.size, M_JFIFO, M_WAITOK|M_ZERO|M_NULLOK);
320     if (jo->fifo.membase == NULL)
321 	error = ENOMEM;
322 
323     /*
324      * Create the worker thread and generate the association record.
325      */
326     if (error) {
327 	free(jo, M_JOURNAL);
328     } else {
329 	fhold(fp);
330 	jo->flags |= MC_JOURNAL_ACTIVE;
331 	lwkt_create(journal_thread, jo, NULL, &jo->thread,
332 			TDF_STOPREQ, -1, "journal %.*s", JIDMAX, jo->id);
333 	lwkt_setpri(&jo->thread, TDPRI_KERN_DAEMON);
334 	lwkt_schedule(&jo->thread);
335 
336 	jrecord_init(jo, &jrec, JREC_STREAMID_DISCONT);
337 	jrecord_write(&jrec, JTYPE_ASSOCIATE, 0);
338 	jrecord_done(&jrec, 0);
339 	TAILQ_INSERT_TAIL(&mp->mnt_jlist, jo, jentry);
340     }
341     return(error);
342 }
343 
344 /*
345  * Disassociate a journal from a mount point and terminate its worker thread.
346  * A final termination record is written out before the file pointer is
347  * dropped.
348  */
349 static int
350 journal_remove_vfs_journal(struct mount *mp,
351 			   const struct mountctl_remove_journal *info)
352 {
353     struct journal *jo;
354     struct jrecord jrec;
355     int error;
356 
357     TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
358 	if (bcmp(jo->id, info->id, sizeof(jo->id)) == 0)
359 	    break;
360     }
361     if (jo) {
362 	error = 0;
363 	TAILQ_REMOVE(&mp->mnt_jlist, jo, jentry);
364 
365 	jrecord_init(jo, &jrec, JREC_STREAMID_DISCONT);
366 	jrecord_write(&jrec, JTYPE_DISASSOCIATE, 0);
367 	jrecord_done(&jrec, 0);
368 
369 	jo->flags |= MC_JOURNAL_STOP_REQ | (info->flags & MC_JOURNAL_STOP_IMM);
370 	wakeup(&jo->fifo);
371 	while (jo->flags & MC_JOURNAL_ACTIVE) {
372 	    tsleep(jo, 0, "jwait", 0);
373 	}
374 	lwkt_free_thread(&jo->thread); /* XXX SMP */
375 	if (jo->fp)
376 	    fdrop(jo->fp, curthread);
377 	if (jo->fifo.membase)
378 	    free(jo->fifo.membase, M_JFIFO);
379 	free(jo, M_JOURNAL);
380     } else {
381 	error = EINVAL;
382     }
383     return (error);
384 }
385 
386 static int
387 journal_resync_vfs_journal(struct mount *mp, const void *ctl)
388 {
389     return(EINVAL);
390 }
391 
392 static int
393 journal_status_vfs_journal(struct mount *mp,
394 		       const struct mountctl_status_journal *info,
395 		       struct mountctl_journal_ret_status *rstat,
396 		       int buflen, int *res)
397 {
398     struct journal *jo;
399     int error = 0;
400     int index;
401 
402     index = 0;
403     *res = 0;
404     TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
405 	if (info->index == MC_JOURNAL_INDEX_ID) {
406 	    if (bcmp(jo->id, info->id, sizeof(jo->id)) != 0)
407 		continue;
408 	} else if (info->index >= 0) {
409 	    if (info->index < index)
410 		continue;
411 	} else if (info->index != MC_JOURNAL_INDEX_ALL) {
412 	    continue;
413 	}
414 	if (buflen < sizeof(*rstat)) {
415 	    if (*res)
416 		rstat[-1].flags |= MC_JOURNAL_STATUS_MORETOCOME;
417 	    else
418 		error = EINVAL;
419 	    break;
420 	}
421 	bzero(rstat, sizeof(*rstat));
422 	rstat->recsize = sizeof(*rstat);
423 	bcopy(jo->id, rstat->id, sizeof(jo->id));
424 	rstat->index = index;
425 	rstat->membufsize = jo->fifo.size;
426 	rstat->membufused = jo->fifo.xindex - jo->fifo.rindex;
427 	rstat->membufiopend = jo->fifo.windex - jo->fifo.rindex;
428 	rstat->bytessent = jo->total_acked;
429 	++rstat;
430 	++index;
431 	*res += sizeof(*rstat);
432 	buflen -= sizeof(*rstat);
433     }
434     return(error);
435 }
436 /*
437  * The per-journal worker thread is responsible for writing out the
438  * journal's FIFO to the target stream.
439  */
440 static void
441 journal_thread(void *info)
442 {
443     struct journal *jo = info;
444     struct journal_rawrecbeg *rawp;
445     int bytes;
446     int error;
447     int avail;
448     int res;
449 
450     for (;;) {
451 	/*
452 	 * Calculate the number of bytes available to write.  This buffer
453 	 * area may contain reserved records so we can't just write it out
454 	 * without further checks.
455 	 */
456 	bytes = jo->fifo.windex - jo->fifo.rindex;
457 
458 	/*
459 	 * sleep if no bytes are available or if an incomplete record is
460 	 * encountered (it needs to be filled in before we can write it
461 	 * out), and skip any pad records that we encounter.
462 	 */
463 	if (bytes == 0) {
464 	    if (jo->flags & MC_JOURNAL_STOP_REQ)
465 		break;
466 	    tsleep(&jo->fifo, 0, "jfifo", hz);
467 	    continue;
468 	}
469 
470 	/*
471 	 * Sleep if we can not go any further due to hitting an incomplete
472 	 * record.  This case should occur rarely but may have to be better
473 	 * optimized XXX.
474 	 */
475 	rawp = (void *)(jo->fifo.membase + (jo->fifo.rindex & jo->fifo.mask));
476 	if (rawp->begmagic == JREC_INCOMPLETEMAGIC) {
477 	    tsleep(&jo->fifo, 0, "jpad", hz);
478 	    continue;
479 	}
480 
481 	/*
482 	 * Skip any pad records.  We do not write out pad records if we can
483 	 * help it.
484 	 *
485 	 * If xindex is caught up to rindex it gets incremented along with
486 	 * rindex.  XXX
487 	 */
488 	if (rawp->streamid == JREC_STREAMID_PAD) {
489 	    if (jo->fifo.rindex == jo->fifo.xindex)
490 		jo->fifo.xindex += (rawp->recsize + 15) & ~15;
491 	    jo->fifo.rindex += (rawp->recsize + 15) & ~15;
492 	    jo->total_acked += bytes;
493 	    KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
494 	    continue;
495 	}
496 
497 	/*
498 	 * 'bytes' is the amount of data that can potentially be written out.
499 	 * Calculate 'res', the amount of data that can actually be written
500 	 * out.  res is bounded either by hitting the end of the physical
501 	 * memory buffer or by hitting an incomplete record.  Incomplete
502 	 * records often occur due to the way the space reservation model
503 	 * works.
504 	 */
505 	res = 0;
506 	avail = jo->fifo.size - (jo->fifo.rindex & jo->fifo.mask);
507 	while (res < bytes && rawp->begmagic == JREC_BEGMAGIC) {
508 	    res += (rawp->recsize + 15) & ~15;
509 	    if (res >= avail) {
510 		KKASSERT(res == avail);
511 		break;
512 	    }
513 	    rawp = (void *)((char *)rawp + ((rawp->recsize + 15) & ~15));
514 	}
515 
516 	/*
517 	 * Issue the write and deal with any errors or other conditions.
518 	 * For now assume blocking I/O.  Since we are record-aware the
519 	 * code cannot yet handle partial writes.
520 	 *
521 	 * XXX EWOULDBLOCK/NBIO
522 	 * XXX notification on failure
523 	 * XXX permanent verses temporary failures
524 	 * XXX two-way acknowledgement stream in the return direction / xindex
525 	 */
526 	bytes = res;
527 	error = fp_write(jo->fp,
528 			jo->fifo.membase + (jo->fifo.rindex & jo->fifo.mask),
529 			bytes, &res);
530 	if (error) {
531 	    printf("journal_thread(%s) write, error %d\n", jo->id, error);
532 	    /* XXX */
533 	} else {
534 	    KKASSERT(res == bytes);
535 	}
536 
537 	/*
538 	 * Advance rindex.  XXX for now also advance xindex, which will
539 	 * eventually be advanced only when the target acknowledges the
540 	 * sequence space.
541 	 */
542 	jo->fifo.rindex += bytes;
543 	jo->fifo.xindex += bytes;
544 	jo->total_acked += bytes;
545 	KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
546 	if (jo->flags & MC_JOURNAL_WWAIT) {
547 	    jo->flags &= ~MC_JOURNAL_WWAIT;	/* XXX hysteresis */
548 	    wakeup(&jo->fifo.windex);
549 	}
550     }
551     jo->flags &= ~MC_JOURNAL_ACTIVE;
552     wakeup(jo);
553     wakeup(&jo->fifo.windex);
554 }
555 
556 /*
557  * This builds a pad record which the journaling thread will skip over.  Pad
558  * records are required when we are unable to reserve sufficient stream space
559  * due to insufficient space at the end of the physical memory fifo.
560  */
561 static
562 void
563 journal_build_pad(struct journal_rawrecbeg *rawp, int recsize)
564 {
565     struct journal_rawrecend *rendp;
566 
567     KKASSERT((recsize & 15) == 0 && recsize >= 16);
568 
569     rawp->streamid = JREC_STREAMID_PAD;
570     rawp->recsize = recsize;	/* must be 16-byte aligned */
571     rawp->seqno = 0;
572     /*
573      * WARNING, rendp may overlap rawp->seqno.  This is necessary to
574      * allow PAD records to fit in 16 bytes.  Use cpu_mb1() to
575      * hopefully cause the compiler to not make any assumptions.
576      */
577     rendp = (void *)((char *)rawp + rawp->recsize - sizeof(*rendp));
578     rendp->endmagic = JREC_ENDMAGIC;
579     rendp->check = 0;
580     rendp->recsize = rawp->recsize;
581 
582     /*
583      * Set the begin magic last.  This is what will allow the journal
584      * thread to write the record out.
585      */
586     cpu_mb1();
587     rawp->begmagic = JREC_BEGMAGIC;
588 }
589 
590 /*
591  * Wake up the worker thread if the FIFO is more then half full or if
592  * someone is waiting for space to be freed up.  Otherwise let the
593  * heartbeat deal with it.  Being able to avoid waking up the worker
594  * is the key to the journal's cpu performance.
595  */
596 static __inline
597 void
598 journal_commit_wakeup(struct journal *jo)
599 {
600     int avail;
601 
602     avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
603     KKASSERT(avail >= 0);
604     if ((avail < (jo->fifo.size >> 1)) || (jo->flags & MC_JOURNAL_WWAIT))
605 	wakeup(&jo->fifo);
606 }
607 
608 /*
609  * Create a new BEGIN stream record with the specified streamid and the
610  * specified amount of payload space.  *rawpp will be set to point to the
611  * base of the new stream record and a pointer to the base of the payload
612  * space will be returned.  *rawpp does not need to be pre-NULLd prior to
613  * making this call.
614  *
615  * A stream can be extended, aborted, or committed by other API calls
616  * below.  This may result in a sequence of potentially disconnected
617  * stream records to be output to the journaling target.  The first record
618  * (the one created by this function) will be marked JREC_STREAMCTL_BEGIN,
619  * while the last record on commit or abort will be marked JREC_STREAMCTL_END
620  * (and possibly also JREC_STREAMCTL_ABORTED).  The last record could wind
621  * up being the same as the first, in which case the bits are all set in
622  * the first record.
623  *
624  * The stream record is created in an incomplete state by setting the begin
625  * magic to JREC_INCOMPLETEMAGIC.  This prevents the worker thread from
626  * flushing the fifo past our record until we have finished populating it.
627  * Other threads can reserve and operate on their own space without stalling
628  * but the stream output will stall until we have completed operations.  The
629  * memory FIFO is intended to be large enough to absorb such situations
630  * without stalling out other threads.
631  */
632 static
633 void *
634 journal_reserve(struct journal *jo, struct journal_rawrecbeg **rawpp,
635 		int16_t streamid, int bytes)
636 {
637     struct journal_rawrecbeg *rawp;
638     int avail;
639     int availtoend;
640     int req;
641 
642     /*
643      * Add header and trailer overheads to the passed payload.  Note that
644      * the passed payload size need not be aligned in any way.
645      */
646     bytes += sizeof(struct journal_rawrecbeg);
647     bytes += sizeof(struct journal_rawrecend);
648 
649     for (;;) {
650 	/*
651 	 * First, check boundary conditions.  If the request would wrap around
652 	 * we have to skip past the ending block and return to the beginning
653 	 * of the FIFO's buffer.  Calculate 'req' which is the actual number
654 	 * of bytes being reserved, including wrap-around dead space.
655 	 *
656 	 * Neither 'bytes' or 'req' are aligned.
657 	 *
658 	 * Note that availtoend is not truncated to avail and so cannot be
659 	 * used to determine whether the reservation is possible by itself.
660 	 * Also, since all fifo ops are 16-byte aligned, we can check
661 	 * the size before calculating the aligned size.
662 	 */
663 	availtoend = jo->fifo.size - (jo->fifo.windex & jo->fifo.mask);
664 	KKASSERT((availtoend & 15) == 0);
665 	if (bytes > availtoend)
666 	    req = bytes + availtoend;	/* add pad to end */
667 	else
668 	    req = bytes;
669 
670 	/*
671 	 * Next calculate the total available space and see if it is
672 	 * sufficient.  We cannot overwrite previously buffered data
673 	 * past xindex because otherwise we would not be able to restart
674 	 * a broken link at the target's last point of commit.
675 	 */
676 	avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
677 	KKASSERT(avail >= 0 && (avail & 15) == 0);
678 
679 	if (avail < req) {
680 	    /* XXX MC_JOURNAL_STOP_IMM */
681 	    jo->flags |= MC_JOURNAL_WWAIT;
682 	    tsleep(&jo->fifo.windex, 0, "jwrite", 0);
683 	    continue;
684 	}
685 
686 	/*
687 	 * Create a pad record for any dead space and create an incomplete
688 	 * record for the live space, then return a pointer to the
689 	 * contiguous buffer space that was requested.
690 	 *
691 	 * NOTE: The worker thread will not flush past an incomplete
692 	 * record, so the reserved space can be filled in at-will.  The
693 	 * journaling code must also be aware the reserved sections occuring
694 	 * after this one will also not be written out even if completed
695 	 * until this one is completed.
696 	 */
697 	rawp = (void *)(jo->fifo.membase + (jo->fifo.windex & jo->fifo.mask));
698 	if (req != bytes) {
699 	    journal_build_pad(rawp, availtoend);
700 	    rawp = (void *)jo->fifo.membase;
701 	}
702 	rawp->begmagic = JREC_INCOMPLETEMAGIC;	/* updated by abort/commit */
703 	rawp->recsize = bytes;			/* (unaligned size) */
704 	rawp->streamid = streamid | JREC_STREAMCTL_BEGIN;
705 	rawp->seqno = 0;			/* set by caller */
706 
707 	/*
708 	 * Issue a memory barrier to guarentee that the record data has been
709 	 * properly initialized before we advance the write index and return
710 	 * a pointer to the reserved record.  Otherwise the worker thread
711 	 * could accidently run past us.
712 	 *
713 	 * Note that stream records are always 16-byte aligned.
714 	 */
715 	cpu_mb1();
716 	jo->fifo.windex += (req + 15) & ~15;
717 	*rawpp = rawp;
718 	return(rawp + 1);
719     }
720     /* not reached */
721     *rawpp = NULL;
722     return(NULL);
723 }
724 
725 /*
726  * Attempt to extend the stream record by <bytes> worth of payload space.
727  *
728  * If it is possible to extend the existing stream record no truncation
729  * occurs and the record is extended as specified.  A pointer to the
730  * truncation offset within the payload space is returned.
731  *
732  * If it is not possible to do this the existing stream record is truncated
733  * and committed, and a new stream record of size <bytes> is created.  A
734  * pointer to the base of the new stream record's payload space is returned.
735  *
736  * *rawpp is set to the new reservation in the case of a new record but
737  * the caller cannot depend on a comparison with the old rawp to determine if
738  * this case occurs because we could end up using the same memory FIFO
739  * offset for the new stream record.  Use *newstreamrecp instead.
740  */
741 static void *
742 journal_extend(struct journal *jo, struct journal_rawrecbeg **rawpp,
743 		int truncbytes, int bytes, int *newstreamrecp)
744 {
745     struct journal_rawrecbeg *rawp;
746     int16_t streamid;
747     int availtoend;
748     int avail;
749     int osize;
750     int nsize;
751     int wbase;
752     void *rptr;
753 
754     *newstreamrecp = 0;
755     rawp = *rawpp;
756     osize = (rawp->recsize + 15) & ~15;
757     nsize = (rawp->recsize + bytes + 15) & ~15;
758     wbase = (char *)rawp - jo->fifo.membase;
759 
760     /*
761      * If the aligned record size does not change we can trivially adjust
762      * the record size.
763      */
764     if (nsize == osize) {
765 	rawp->recsize += bytes;
766 	return((char *)(rawp + 1) + truncbytes);
767     }
768 
769     /*
770      * If the fifo's write index hasn't been modified since we made the
771      * reservation and we do not hit any boundary conditions, we can
772      * trivially make the record smaller or larger.
773      */
774     if ((jo->fifo.windex & jo->fifo.mask) == wbase + osize) {
775 	availtoend = jo->fifo.size - wbase;
776 	avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex) + osize;
777 	KKASSERT((availtoend & 15) == 0);
778 	KKASSERT((avail & 15) == 0);
779 	if (nsize <= avail && nsize <= availtoend) {
780 	    jo->fifo.windex += nsize - osize;
781 	    rawp->recsize += bytes;
782 	    return((char *)(rawp + 1) + truncbytes);
783 	}
784     }
785 
786     /*
787      * It was not possible to extend the buffer.  Commit the current
788      * buffer and create a new one.  We manually clear the BEGIN mark that
789      * journal_reserve() creates (because this is a continuing record, not
790      * the start of a new stream).
791      */
792     streamid = rawp->streamid & JREC_STREAMID_MASK;
793     journal_commit(jo, rawpp, truncbytes, 0);
794     rptr = journal_reserve(jo, rawpp, streamid, bytes);
795     rawp = *rawpp;
796     rawp->streamid &= ~JREC_STREAMCTL_BEGIN;
797     *newstreamrecp = 1;
798     return(rptr);
799 }
800 
801 /*
802  * Abort a journal record.  If the transaction record represents a stream
803  * BEGIN and we can reverse the fifo's write index we can simply reverse
804  * index the entire record, as if it were never reserved in the first place.
805  *
806  * Otherwise we set the JREC_STREAMCTL_ABORTED bit and commit the record
807  * with the payload truncated to 0 bytes.
808  */
809 static void
810 journal_abort(struct journal *jo, struct journal_rawrecbeg **rawpp)
811 {
812     struct journal_rawrecbeg *rawp;
813     int osize;
814 
815     rawp = *rawpp;
816     osize = (rawp->recsize + 15) & ~15;
817 
818     if ((rawp->streamid & JREC_STREAMCTL_BEGIN) &&
819 	(jo->fifo.windex & jo->fifo.mask) ==
820 	 (char *)rawp - jo->fifo.membase + osize)
821     {
822 	jo->fifo.windex -= osize;
823 	*rawpp = NULL;
824     } else {
825 	rawp->streamid |= JREC_STREAMCTL_ABORTED;
826 	journal_commit(jo, rawpp, 0, 1);
827     }
828 }
829 
830 /*
831  * Commit a journal record and potentially truncate it to the specified
832  * number of payload bytes.  If you do not want to truncate the record,
833  * simply pass -1 for the bytes parameter.  Do not pass rawp->recsize, that
834  * field includes header and trailer and will not be correct.  Note that
835  * passing 0 will truncate the entire data payload of the record.
836  *
837  * The logical stream is terminated by this function.
838  *
839  * If truncation occurs, and it is not possible to physically optimize the
840  * memory FIFO due to other threads having reserved space after ours,
841  * the remaining reserved space will be covered by a pad record.
842  */
843 static void
844 journal_commit(struct journal *jo, struct journal_rawrecbeg **rawpp,
845 		int bytes, int closeout)
846 {
847     struct journal_rawrecbeg *rawp;
848     struct journal_rawrecend *rendp;
849     int osize;
850     int nsize;
851 
852     rawp = *rawpp;
853     *rawpp = NULL;
854 
855     KKASSERT((char *)rawp >= jo->fifo.membase &&
856 	     (char *)rawp + rawp->recsize <= jo->fifo.membase + jo->fifo.size);
857     KKASSERT(((intptr_t)rawp & 15) == 0);
858 
859     /*
860      * Truncate the record if necessary.  If the FIFO write index as still
861      * at the end of our record we can optimally backindex it.  Otherwise
862      * we have to insert a pad record to cover the dead space.
863      *
864      * We calculate osize which is the 16-byte-aligned original recsize.
865      * We calculate nsize which is the 16-byte-aligned new recsize.
866      *
867      * Due to alignment issues or in case the passed truncation bytes is
868      * the same as the original payload, nsize may be equal to osize even
869      * if the committed bytes is less then the originally reserved bytes.
870      */
871     if (bytes >= 0) {
872 	KKASSERT(bytes >= 0 && bytes <= rawp->recsize - sizeof(struct journal_rawrecbeg) - sizeof(struct journal_rawrecend));
873 	osize = (rawp->recsize + 15) & ~15;
874 	rawp->recsize = bytes + sizeof(struct journal_rawrecbeg) +
875 			sizeof(struct journal_rawrecend);
876 	nsize = (rawp->recsize + 15) & ~15;
877 	KKASSERT(nsize <= osize);
878 	if (osize == nsize) {
879 	    /* do nothing */
880 	} else if ((jo->fifo.windex & jo->fifo.mask) == (char *)rawp - jo->fifo.membase + osize) {
881 	    /* we are able to backindex the fifo */
882 	    jo->fifo.windex -= osize - nsize;
883 	} else {
884 	    /* we cannot backindex the fifo, emplace a pad in the dead space */
885 	    journal_build_pad((void *)((char *)rawp + nsize), osize - nsize);
886 	}
887     }
888 
889     /*
890      * Fill in the trailer.  Note that unlike pad records, the trailer will
891      * never overlap the header.
892      */
893     rendp = (void *)((char *)rawp +
894 	    ((rawp->recsize + 15) & ~15) - sizeof(*rendp));
895     rendp->endmagic = JREC_ENDMAGIC;
896     rendp->recsize = rawp->recsize;
897     rendp->check = 0;		/* XXX check word, disabled for now */
898 
899     /*
900      * Fill in begmagic last.  This will allow the worker thread to proceed.
901      * Use a memory barrier to guarentee write ordering.  Mark the stream
902      * as terminated if closeout is set.  This is the typical case.
903      */
904     if (closeout)
905 	rawp->streamid |= JREC_STREAMCTL_END;
906     cpu_mb1();			/* memory barrier */
907     rawp->begmagic = JREC_BEGMAGIC;
908 
909     journal_commit_wakeup(jo);
910 }
911 
912 /************************************************************************
913  *			TRANSACTION SUPPORT ROUTINES			*
914  ************************************************************************
915  *
916  * JRECORD_*() - routines to create subrecord transactions and embed them
917  *		 in the logical streams managed by the journal_*() routines.
918  */
919 
920 static int16_t sid = JREC_STREAMID_JMIN;
921 
922 /*
923  * Initialize the passed jrecord structure and start a new stream transaction
924  * by reserving an initial build space in the journal's memory FIFO.
925  */
926 static void
927 jrecord_init(struct journal *jo, struct jrecord *jrec, int16_t streamid)
928 {
929     bzero(jrec, sizeof(*jrec));
930     jrec->jo = jo;
931     if (streamid < 0) {
932 	streamid = sid++;	/* XXX need to track stream ids! */
933 	if (sid == JREC_STREAMID_JMAX)
934 	    sid = JREC_STREAMID_JMIN;
935     }
936     jrec->streamid = streamid;
937     jrec->stream_residual = JREC_DEFAULTSIZE;
938     jrec->stream_reserved = jrec->stream_residual;
939     jrec->stream_ptr =
940 	journal_reserve(jo, &jrec->rawp, streamid, jrec->stream_reserved);
941 }
942 
943 /*
944  * Push a recursive record type.  All pushes should have matching pops.
945  * The old parent is returned and the newly pushed record becomes the
946  * new parent.  Note that the old parent's pointer may already be invalid
947  * or may become invalid if jrecord_write() had to build a new stream
948  * record, so the caller should not mess with the returned pointer in
949  * any way other then to save it.
950  */
951 static
952 struct journal_subrecord *
953 jrecord_push(struct jrecord *jrec, int16_t rectype)
954 {
955     struct journal_subrecord *save;
956 
957     save = jrec->parent;
958     jrec->parent = jrecord_write(jrec, rectype|JMASK_NESTED, 0);
959     jrec->last = NULL;
960     KKASSERT(jrec->parent != NULL);
961     ++jrec->pushcount;
962     ++jrec->pushptrgood;	/* cleared on flush */
963     return(save);
964 }
965 
966 /*
967  * Pop a previously pushed sub-transaction.  We must set JMASK_LAST
968  * on the last record written within the subtransaction.  If the last
969  * record written is not accessible or if the subtransaction is empty,
970  * we must write out a pad record with JMASK_LAST set before popping.
971  *
972  * When popping a subtransaction the parent record's recsize field
973  * will be properly set.  If the parent pointer is no longer valid
974  * (which can occur if the data has already been flushed out to the
975  * stream), the protocol spec allows us to leave it 0.
976  *
977  * The saved parent pointer which we restore may or may not be valid,
978  * and if not valid may or may not be NULL, depending on the value
979  * of pushptrgood.
980  */
981 static void
982 jrecord_pop(struct jrecord *jrec, struct journal_subrecord *save)
983 {
984     struct journal_subrecord *last;
985 
986     KKASSERT(jrec->pushcount > 0);
987     KKASSERT(jrec->residual == 0);
988 
989     /*
990      * Set JMASK_LAST on the last record we wrote at the current
991      * level.  If last is NULL we either no longer have access to the
992      * record or the subtransaction was empty and we must write out a pad
993      * record.
994      */
995     if ((last = jrec->last) == NULL) {
996 	jrecord_write(jrec, JLEAF_PAD|JMASK_LAST, 0);
997 	last = jrec->last;	/* reload after possible flush */
998     } else {
999 	last->rectype |= JMASK_LAST;
1000     }
1001 
1002     /*
1003      * pushptrgood tells us how many levels of parent record pointers
1004      * are valid.  The jrec only stores the current parent record pointer
1005      * (and it is only valid if pushptrgood != 0).  The higher level parent
1006      * record pointers are saved by the routines calling jrecord_push() and
1007      * jrecord_pop().  These pointers may become stale and we determine
1008      * that fact by tracking the count of valid parent pointers with
1009      * pushptrgood.  Pointers become invalid when their related stream
1010      * record gets pushed out.
1011      *
1012      * If no pointer is available (the data has already been pushed out),
1013      * then no fixup of e.g. the length field is possible for non-leaf
1014      * nodes.  The protocol allows for this situation by placing a larger
1015      * burden on the program scanning the stream on the other end.
1016      *
1017      * [parentA]
1018      *	  [node X]
1019      *    [parentB]
1020      *	     [node Y]
1021      *	     [node Z]
1022      *    (pop B)	see NOTE B
1023      * (pop A)		see NOTE A
1024      *
1025      * NOTE B:	This pop sets LAST in node Z if the node is still accessible,
1026      *		else a PAD record is appended and LAST is set in that.
1027      *
1028      *		This pop sets the record size in parentB if parentB is still
1029      *		accessible, else the record size is left 0 (the scanner must
1030      *		deal with that).
1031      *
1032      *		This pop sets the new 'last' record to parentB, the pointer
1033      *		to which may or may not still be accessible.
1034      *
1035      * NOTE A:	This pop sets LAST in parentB if the node is still accessible,
1036      *		else a PAD record is appended and LAST is set in that.
1037      *
1038      *		This pop sets the record size in parentA if parentA is still
1039      *		accessible, else the record size is left 0 (the scanner must
1040      *		deal with that).
1041      *
1042      *		This pop sets the new 'last' record to parentA, the pointer
1043      *		to which may or may not still be accessible.
1044      *
1045      * Also note that the last record in the stream transaction, which in
1046      * the above example is parentA, does not currently have the LAST bit
1047      * set.
1048      *
1049      * The current parent becomes the last record relative to the
1050      * saved parent passed into us.  It's validity is based on
1051      * whether pushptrgood is non-zero prior to decrementing.  The saved
1052      * parent becomes the new parent, and its validity is based on whether
1053      * pushptrgood is non-zero after decrementing.
1054      *
1055      * The old jrec->parent may be NULL if it is no longer accessible.
1056      * If pushptrgood is non-zero, however, it is guarenteed to not
1057      * be NULL (since no flush occured).
1058      */
1059     jrec->last = jrec->parent;
1060     --jrec->pushcount;
1061     if (jrec->pushptrgood) {
1062 	KKASSERT(jrec->last != NULL && last != NULL);
1063 	if (--jrec->pushptrgood == 0) {
1064 	    jrec->parent = NULL;	/* 'save' contains garbage or NULL */
1065 	} else {
1066 	    KKASSERT(save != NULL);
1067 	    jrec->parent = save;	/* 'save' must not be NULL */
1068 	}
1069 
1070 	/*
1071 	 * Set the record size in the old parent.  'last' still points to
1072 	 * the original last record in the subtransaction being popped,
1073 	 * jrec->last points to the old parent (which became the last
1074 	 * record relative to the new parent being popped into).
1075 	 */
1076 	jrec->last->recsize = (char *)last + last->recsize - (char *)jrec->last;
1077     } else {
1078 	jrec->parent = NULL;
1079 	KKASSERT(jrec->last == NULL);
1080     }
1081 }
1082 
1083 /*
1084  * Write out a leaf record, including associated data.
1085  */
1086 static
1087 void
1088 jrecord_leaf(struct jrecord *jrec, int16_t rectype, void *ptr, int bytes)
1089 {
1090     jrecord_write(jrec, rectype, bytes);
1091     jrecord_data(jrec, ptr, bytes);
1092 }
1093 
1094 /*
1095  * Write a leaf record out and return a pointer to its base.  The leaf
1096  * record may contain potentially megabytes of data which is supplied
1097  * in jrecord_data() calls.  The exact amount must be specified in this
1098  * call.
1099  *
1100  * THE RETURNED SUBRECORD POINTER IS ONLY VALID IMMEDIATELY AFTER THE
1101  * CALL AND MAY BECOME INVALID AT ANY TIME.  ONLY THE PUSH/POP CODE SHOULD
1102  * USE THE RETURN VALUE.
1103  */
1104 static
1105 struct journal_subrecord *
1106 jrecord_write(struct jrecord *jrec, int16_t rectype, int bytes)
1107 {
1108     struct journal_subrecord *last;
1109     int pusheditout;
1110 
1111     /*
1112      * Try to catch some obvious errors.  Nesting records must specify a
1113      * size of 0, and there should be no left-overs from previous operations
1114      * (such as incomplete data writeouts).
1115      */
1116     KKASSERT(bytes == 0 || (rectype & JMASK_NESTED) == 0);
1117     KKASSERT(jrec->residual == 0);
1118 
1119     /*
1120      * Check to see if the current stream record has enough room for
1121      * the new subrecord header.  If it doesn't we extend the current
1122      * stream record.
1123      *
1124      * This may have the side effect of pushing out the current stream record
1125      * and creating a new one.  We must adjust our stream tracking fields
1126      * accordingly.
1127      */
1128     if (jrec->stream_residual < sizeof(struct journal_subrecord)) {
1129 	jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1130 				jrec->stream_reserved - jrec->stream_residual,
1131 				JREC_DEFAULTSIZE, &pusheditout);
1132 	if (pusheditout) {
1133 	    /*
1134 	     * If a pushout occured, the pushed out stream record was
1135 	     * truncated as specified and the new record is exactly the
1136 	     * extension size specified.
1137 	     */
1138 	    jrec->stream_reserved = JREC_DEFAULTSIZE;
1139 	    jrec->stream_residual = JREC_DEFAULTSIZE;
1140 	    jrec->parent = NULL;	/* no longer accessible */
1141 	    jrec->pushptrgood = 0;	/* restored parents in pops no good */
1142 	} else {
1143 	    /*
1144 	     * If no pushout occured the stream record is NOT truncated and
1145 	     * IS extended.
1146 	     */
1147 	    jrec->stream_reserved += JREC_DEFAULTSIZE;
1148 	    jrec->stream_residual += JREC_DEFAULTSIZE;
1149 	}
1150     }
1151     last = (void *)jrec->stream_ptr;
1152     last->rectype = rectype;
1153     last->reserved = 0;
1154     last->recsize = sizeof(struct journal_subrecord) + bytes;
1155     jrec->last = last;
1156     jrec->residual = bytes;		/* remaining data to be posted */
1157     jrec->residual_align = -bytes & 7;	/* post-data alignment required */
1158     jrec->stream_ptr += sizeof(*last);	/* current write pointer */
1159     jrec->stream_residual -= sizeof(*last); /* space remaining in stream */
1160     return(last);
1161 }
1162 
1163 /*
1164  * Write out the data associated with a leaf record.  Any number of calls
1165  * to this routine may be made as long as the byte count adds up to the
1166  * amount originally specified in jrecord_write().
1167  *
1168  * The act of writing out the leaf data may result in numerous stream records
1169  * being pushed out.   Callers should be aware that even the associated
1170  * subrecord header may become inaccessible due to stream record pushouts.
1171  */
1172 static void
1173 jrecord_data(struct jrecord *jrec, const void *buf, int bytes)
1174 {
1175     int pusheditout;
1176     int extsize;
1177 
1178     KKASSERT(bytes >= 0 && bytes <= jrec->residual);
1179 
1180     /*
1181      * Push out stream records as long as there is insufficient room to hold
1182      * the remaining data.
1183      */
1184     while (jrec->stream_residual < bytes) {
1185 	/*
1186 	 * Fill in any remaining space in the current stream record.
1187 	 */
1188 	bcopy(buf, jrec->stream_ptr, jrec->stream_residual);
1189 	buf = (const char *)buf + jrec->stream_residual;
1190 	bytes -= jrec->stream_residual;
1191 	/*jrec->stream_ptr += jrec->stream_residual;*/
1192 	jrec->residual -= jrec->stream_residual;
1193 	jrec->stream_residual = 0;
1194 
1195 	/*
1196 	 * Try to extend the current stream record, but no more then 1/4
1197 	 * the size of the FIFO.
1198 	 */
1199 	extsize = jrec->jo->fifo.size >> 2;
1200 	if (extsize > bytes)
1201 	    extsize = (bytes + 15) & ~15;
1202 
1203 	jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1204 				jrec->stream_reserved - jrec->stream_residual,
1205 				extsize, &pusheditout);
1206 	if (pusheditout) {
1207 	    jrec->stream_reserved = extsize;
1208 	    jrec->stream_residual = extsize;
1209 	    jrec->parent = NULL;	/* no longer accessible */
1210 	    jrec->last = NULL;		/* no longer accessible */
1211 	    jrec->pushptrgood = 0;	/* restored parents in pops no good */
1212 	} else {
1213 	    jrec->stream_reserved += extsize;
1214 	    jrec->stream_residual += extsize;
1215 	}
1216     }
1217 
1218     /*
1219      * Push out any remaining bytes into the current stream record.
1220      */
1221     if (bytes) {
1222 	bcopy(buf, jrec->stream_ptr, bytes);
1223 	jrec->stream_ptr += bytes;
1224 	jrec->stream_residual -= bytes;
1225 	jrec->residual -= bytes;
1226     }
1227 
1228     /*
1229      * Handle data alignment requirements for the subrecord.  Because the
1230      * stream record's data space is more strictly aligned, it must already
1231      * have sufficient space to hold any subrecord alignment slop.
1232      */
1233     if (jrec->residual == 0 && jrec->residual_align) {
1234 	KKASSERT(jrec->residual_align <= jrec->stream_residual);
1235 	bzero(jrec->stream_ptr, jrec->residual_align);
1236 	jrec->stream_ptr += jrec->residual_align;
1237 	jrec->stream_residual -= jrec->residual_align;
1238 	jrec->residual_align = 0;
1239     }
1240 }
1241 
1242 /*
1243  * We are finished with the transaction.  This closes the transaction created
1244  * by jrecord_init().
1245  *
1246  * NOTE: If abortit is not set then we must be at the top level with no
1247  *	 residual subrecord data left to output.
1248  *
1249  *	 If abortit is set then we can be in any state, all pushes will be
1250  *	 popped and it is ok for there to be residual data.  This works
1251  *	 because the virtual stream itself is truncated.  Scanners must deal
1252  *	 with this situation.
1253  *
1254  * The stream record will be committed or aborted as specified and jrecord
1255  * resources will be cleaned up.
1256  */
1257 static void
1258 jrecord_done(struct jrecord *jrec, int abortit)
1259 {
1260     KKASSERT(jrec->rawp != NULL);
1261 
1262     if (abortit) {
1263 	journal_abort(jrec->jo, &jrec->rawp);
1264     } else {
1265 	KKASSERT(jrec->pushcount == 0 && jrec->residual == 0);
1266 	journal_commit(jrec->jo, &jrec->rawp,
1267 			jrec->stream_reserved - jrec->stream_residual, 1);
1268     }
1269 
1270     /*
1271      * jrec should not be used beyond this point without another init,
1272      * but clean up some fields to ensure that we panic if it is.
1273      *
1274      * Note that jrec->rawp is NULLd out by journal_abort/journal_commit.
1275      */
1276     jrec->jo = NULL;
1277     jrec->stream_ptr = NULL;
1278 }
1279 
1280 /************************************************************************
1281  *			LOW LEVEL RECORD SUPPORT ROUTINES		*
1282  ************************************************************************
1283  *
1284  * These routine create low level recursive and leaf subrecords representing
1285  * common filesystem structures.
1286  */
1287 
1288 /*
1289  * Write out a filename path relative to the base of the mount point.
1290  * rectype is typically JLEAF_PATH{1,2,3,4}.
1291  */
1292 static void
1293 jrecord_write_path(struct jrecord *jrec, int16_t rectype, struct namecache *ncp)
1294 {
1295     char buf[64];	/* local buffer if it fits, else malloced */
1296     char *base;
1297     int pathlen;
1298     int index;
1299     struct namecache *scan;
1300 
1301     /*
1302      * Pass 1 - figure out the number of bytes required.  Include terminating
1303      * 	       \0 on last element and '/' separator on other elements.
1304      */
1305 again:
1306     pathlen = 0;
1307     for (scan = ncp;
1308 	 scan && (scan->nc_flag & NCF_MOUNTPT) == 0;
1309 	 scan = scan->nc_parent
1310     ) {
1311 	pathlen += scan->nc_nlen + 1;
1312     }
1313 
1314     if (pathlen <= sizeof(buf))
1315 	base = buf;
1316     else
1317 	base = malloc(pathlen, M_TEMP, M_INTWAIT);
1318 
1319     /*
1320      * Pass 2 - generate the path buffer
1321      */
1322     index = pathlen;
1323     for (scan = ncp;
1324 	 scan && (scan->nc_flag & NCF_MOUNTPT) == 0;
1325 	 scan = scan->nc_parent
1326     ) {
1327 	if (scan->nc_nlen >= index) {
1328 	    if (base != buf)
1329 		free(base, M_TEMP);
1330 	    goto again;
1331 	}
1332 	if (index == pathlen)
1333 	    base[--index] = 0;
1334 	else
1335 	    base[--index] = '/';
1336 	index -= scan->nc_nlen;
1337 	bcopy(scan->nc_name, base + index, scan->nc_nlen);
1338     }
1339     jrecord_leaf(jrec, rectype, base + index, pathlen - index);
1340     if (base != buf)
1341 	free(base, M_TEMP);
1342 }
1343 
1344 /*
1345  * Write out a file attribute structure.  While somewhat inefficient, using
1346  * a recursive data structure is the most portable and extensible way.
1347  */
1348 static void
1349 jrecord_write_vattr(struct jrecord *jrec, struct vattr *vat)
1350 {
1351     void *save;
1352 
1353     save = jrecord_push(jrec, JTYPE_VATTR);
1354     if (vat->va_type != VNON)
1355 	jrecord_leaf(jrec, JLEAF_UID, &vat->va_type, sizeof(vat->va_type));
1356     if (vat->va_uid != VNOVAL)
1357 	jrecord_leaf(jrec, JLEAF_UID, &vat->va_mode, sizeof(vat->va_mode));
1358     if (vat->va_nlink != VNOVAL)
1359 	jrecord_leaf(jrec, JLEAF_NLINK, &vat->va_nlink, sizeof(vat->va_nlink));
1360     if (vat->va_uid != VNOVAL)
1361 	jrecord_leaf(jrec, JLEAF_UID, &vat->va_uid, sizeof(vat->va_uid));
1362     if (vat->va_gid != VNOVAL)
1363 	jrecord_leaf(jrec, JLEAF_GID, &vat->va_gid, sizeof(vat->va_gid));
1364     if (vat->va_fsid != VNOVAL)
1365 	jrecord_leaf(jrec, JLEAF_FSID, &vat->va_fsid, sizeof(vat->va_fsid));
1366     if (vat->va_fileid != VNOVAL)
1367 	jrecord_leaf(jrec, JLEAF_INUM, &vat->va_fileid, sizeof(vat->va_fileid));
1368     if (vat->va_size != VNOVAL)
1369 	jrecord_leaf(jrec, JLEAF_SIZE, &vat->va_size, sizeof(vat->va_size));
1370     if (vat->va_atime.tv_sec != VNOVAL)
1371 	jrecord_leaf(jrec, JLEAF_ATIME, &vat->va_atime, sizeof(vat->va_atime));
1372     if (vat->va_mtime.tv_sec != VNOVAL)
1373 	jrecord_leaf(jrec, JLEAF_MTIME, &vat->va_mtime, sizeof(vat->va_mtime));
1374     if (vat->va_ctime.tv_sec != VNOVAL)
1375 	jrecord_leaf(jrec, JLEAF_CTIME, &vat->va_ctime, sizeof(vat->va_ctime));
1376     if (vat->va_gen != VNOVAL)
1377 	jrecord_leaf(jrec, JLEAF_GEN, &vat->va_gen, sizeof(vat->va_gen));
1378     if (vat->va_flags != VNOVAL)
1379 	jrecord_leaf(jrec, JLEAF_FLAGS, &vat->va_flags, sizeof(vat->va_flags));
1380     if (vat->va_rdev != VNOVAL)
1381 	jrecord_leaf(jrec, JLEAF_UDEV, &vat->va_rdev, sizeof(vat->va_rdev));
1382 #if 0
1383     if (vat->va_filerev != VNOVAL)
1384 	jrecord_leaf(jrec, JLEAF_FILEREV, &vat->va_filerev, sizeof(vat->va_filerev));
1385 #endif
1386     jrecord_pop(jrec, save);
1387 }
1388 
1389 /*
1390  * Write out the creds used to issue a file operation.  If a process is
1391  * available write out additional tracking information related to the
1392  * process.
1393  *
1394  * XXX additional tracking info
1395  * XXX tty line info
1396  */
1397 static void
1398 jrecord_write_cred(struct jrecord *jrec, struct thread *td, struct ucred *cred)
1399 {
1400     void *save;
1401     struct proc *p;
1402 
1403     save = jrecord_push(jrec, JTYPE_CRED);
1404     jrecord_leaf(jrec, JLEAF_UID, &cred->cr_uid, sizeof(cred->cr_uid));
1405     jrecord_leaf(jrec, JLEAF_GID, &cred->cr_gid, sizeof(cred->cr_gid));
1406     if (td && (p = td->td_proc) != NULL) {
1407 	jrecord_leaf(jrec, JLEAF_PID, &p->p_pid, sizeof(p->p_pid));
1408 	jrecord_leaf(jrec, JLEAF_COMM, p->p_comm, sizeof(p->p_comm));
1409     }
1410     jrecord_pop(jrec, save);
1411 }
1412 
1413 /*
1414  * Write out information required to identify a vnode
1415  *
1416  * XXX this needs work.  We should write out the inode number as well,
1417  * and in fact avoid writing out the file path for seqential writes
1418  * occuring within e.g. a certain period of time.
1419  */
1420 static void
1421 jrecord_write_vnode_ref(struct jrecord *jrec, struct vnode *vp)
1422 {
1423     struct namecache *ncp;
1424 
1425     TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1426 	if ((ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1427 	    break;
1428     }
1429     if (ncp)
1430 	jrecord_write_path(jrec, JLEAF_PATH_REF, ncp);
1431 }
1432 
1433 #if 0
1434 /*
1435  * Write out the current contents of the file within the specified
1436  * range.  This is typically called from within an UNDO section.  A
1437  * locked vnode must be passed.
1438  */
1439 static int
1440 jrecord_write_filearea(struct jrecord *jrec, struct vnode *vp,
1441 			off_t begoff, off_t endoff)
1442 {
1443 }
1444 #endif
1445 
1446 /*
1447  * Write out the data represented by a pagelist
1448  */
1449 static void
1450 jrecord_write_pagelist(struct jrecord *jrec, int16_t rectype,
1451 			struct vm_page **pglist, int *rtvals, int pgcount,
1452 			off_t offset)
1453 {
1454     struct msf_buf *msf;
1455     int error;
1456     int b;
1457     int i;
1458 
1459     i = 0;
1460     while (i < pgcount) {
1461 	/*
1462 	 * Find the next valid section.  Skip any invalid elements
1463 	 */
1464 	if (rtvals[i] != VM_PAGER_OK) {
1465 	    ++i;
1466 	    offset += PAGE_SIZE;
1467 	    continue;
1468 	}
1469 
1470 	/*
1471 	 * Figure out how big the valid section is, capping I/O at what the
1472 	 * MSFBUF can represent.
1473 	 */
1474 	b = i;
1475 	while (i < pgcount && i - b != XIO_INTERNAL_PAGES &&
1476 	       rtvals[i] == VM_PAGER_OK
1477 	) {
1478 	    ++i;
1479 	}
1480 
1481 	/*
1482 	 * And write it out.
1483 	 */
1484 	if (i - b) {
1485 	    error = msf_map_pagelist(&msf, pglist + b, i - b, 0);
1486 	    if (error == 0) {
1487 		printf("RECORD PUTPAGES %d\n", msf_buf_bytes(msf));
1488 		jrecord_leaf(jrec, JLEAF_SEEKPOS, &offset, sizeof(offset));
1489 		jrecord_leaf(jrec, rectype,
1490 			     msf_buf_kva(msf), msf_buf_bytes(msf));
1491 		msf_buf_free(msf);
1492 	    } else {
1493 		printf("jrecord_write_pagelist: mapping failure\n");
1494 	    }
1495 	    offset += (off_t)(i - b) << PAGE_SHIFT;
1496 	}
1497     }
1498 }
1499 
1500 /*
1501  * Write out the data represented by a UIO.
1502  */
1503 struct jwuio_info {
1504     struct jrecord *jrec;
1505     int16_t rectype;
1506 };
1507 
1508 static int jrecord_write_uio_callback(void *info, char *buf, int bytes);
1509 
1510 static void
1511 jrecord_write_uio(struct jrecord *jrec, int16_t rectype, struct uio *uio)
1512 {
1513     struct jwuio_info info = { jrec, rectype };
1514     int error;
1515 
1516     if (uio->uio_segflg != UIO_NOCOPY) {
1517 	jrecord_leaf(jrec, JLEAF_SEEKPOS, &uio->uio_offset,
1518 		     sizeof(uio->uio_offset));
1519 	error = msf_uio_iterate(uio, jrecord_write_uio_callback, &info);
1520 	if (error)
1521 	    printf("XXX warning uio iterate failed %d\n", error);
1522     }
1523 }
1524 
1525 static int
1526 jrecord_write_uio_callback(void *info_arg, char *buf, int bytes)
1527 {
1528     struct jwuio_info *info = info_arg;
1529 
1530     jrecord_leaf(info->jrec, info->rectype, buf, bytes);
1531     return(0);
1532 }
1533 
1534 /************************************************************************
1535  *			JOURNAL VNOPS					*
1536  ************************************************************************
1537  *
1538  * These are function shims replacing the normal filesystem ops.  We become
1539  * responsible for calling the underlying filesystem ops.  We have the choice
1540  * of executing the underlying op first and then generating the journal entry,
1541  * or starting the journal entry, executing the underlying op, and then
1542  * either completing or aborting it.
1543  *
1544  * The journal is supposed to be a high-level entity, which generally means
1545  * identifying files by name rather then by inode.  Supplying both allows
1546  * the journal to be used both for inode-number-compatible 'mirrors' and
1547  * for simple filesystem replication.
1548  *
1549  * Writes are particularly difficult to deal with because a single write may
1550  * represent a hundred megabyte buffer or more, and both writes and truncations
1551  * require the 'old' data to be written out as well as the new data if the
1552  * log is reversable.  Other issues:
1553  *
1554  * - How to deal with operations on unlinked files (no path available),
1555  *   but which may still be filesystem visible due to hard links.
1556  *
1557  * - How to deal with modifications made via a memory map.
1558  *
1559  * - Future cache coherency support will require cache coherency API calls
1560  *   both prior to and after the call to the underlying VFS.
1561  *
1562  * ALSO NOTE: We do not have to shim compatibility VOPs like MKDIR which have
1563  * new VFS equivalents (NMKDIR).
1564  */
1565 
1566 /*
1567  * Journal vop_settattr { a_vp, a_vap, a_cred, a_td }
1568  */
1569 static
1570 int
1571 journal_setattr(struct vop_setattr_args *ap)
1572 {
1573     struct mount *mp;
1574     struct journal *jo;
1575     struct jrecord jrec;
1576     void *save;		/* warning, save pointers do not always remain valid */
1577     int error;
1578 
1579     error = vop_journal_operate_ap(&ap->a_head);
1580     mp = ap->a_head.a_ops->vv_mount;
1581     if (error == 0) {
1582 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1583 	    jrecord_init(jo, &jrec, -1);
1584 	    save = jrecord_push(&jrec, JTYPE_SETATTR);
1585 	    jrecord_write_cred(&jrec, ap->a_td, ap->a_cred);
1586 	    jrecord_write_vnode_ref(&jrec, ap->a_vp);
1587 	    jrecord_write_vattr(&jrec, ap->a_vap);
1588 	    jrecord_pop(&jrec, save);
1589 	    jrecord_done(&jrec, 0);
1590 	}
1591     }
1592     return (error);
1593 }
1594 
1595 /*
1596  * Journal vop_write { a_vp, a_uio, a_ioflag, a_cred }
1597  */
1598 static
1599 int
1600 journal_write(struct vop_write_args *ap)
1601 {
1602     struct mount *mp;
1603     struct journal *jo;
1604     struct jrecord jrec;
1605     struct uio uio_copy;
1606     struct iovec uio_one_iovec;
1607     void *save;		/* warning, save pointers do not always remain valid */
1608     int error;
1609 
1610     /*
1611      * This is really nasty.  UIO's don't retain sufficient information to
1612      * be reusable once they've gone through the VOP chain.  The iovecs get
1613      * cleared, so we have to copy the UIO.
1614      *
1615      * XXX fix the UIO code to not destroy iov's during a scan so we can
1616      *     reuse the uio over and over again.
1617      */
1618     uio_copy = *ap->a_uio;
1619     if (uio_copy.uio_iovcnt == 1) {
1620 	uio_one_iovec = ap->a_uio->uio_iov[0];
1621 	uio_copy.uio_iov = &uio_one_iovec;
1622     } else {
1623 	uio_copy.uio_iov = malloc(uio_copy.uio_iovcnt * sizeof(struct iovec),
1624 				    M_JOURNAL, M_WAITOK);
1625 	bcopy(ap->a_uio->uio_iov, uio_copy.uio_iov,
1626 		uio_copy.uio_iovcnt * sizeof(struct iovec));
1627     }
1628 
1629     error = vop_journal_operate_ap(&ap->a_head);
1630     mp = ap->a_head.a_ops->vv_mount;
1631     if (error == 0) {
1632 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1633 	    jrecord_init(jo, &jrec, -1);
1634 	    save = jrecord_push(&jrec, JTYPE_WRITE);
1635 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
1636 	    jrecord_write_vnode_ref(&jrec, ap->a_vp);
1637 	    jrecord_write_uio(&jrec, JLEAF_FILEDATA, &uio_copy);
1638 	    jrecord_pop(&jrec, save);
1639 	    jrecord_done(&jrec, 0);
1640 	}
1641     }
1642 
1643     if (uio_copy.uio_iov != &uio_one_iovec)
1644 	free(uio_copy.uio_iov, M_JOURNAL);
1645 
1646 
1647     return (error);
1648 }
1649 
1650 /*
1651  * Journal vop_fsync { a_vp, a_waitfor, a_td }
1652  */
1653 static
1654 int
1655 journal_fsync(struct vop_fsync_args *ap)
1656 {
1657     struct mount *mp;
1658     struct journal *jo;
1659     int error;
1660 
1661     error = vop_journal_operate_ap(&ap->a_head);
1662     mp = ap->a_head.a_ops->vv_mount;
1663     if (error == 0) {
1664 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1665 	    /* XXX synchronize pending journal records */
1666 	}
1667     }
1668     return (error);
1669 }
1670 
1671 /*
1672  * Journal vop_putpages { a_vp, a_m, a_count, a_sync, a_rtvals, a_offset }
1673  *
1674  * note: a_count is in bytes.
1675  */
1676 static
1677 int
1678 journal_putpages(struct vop_putpages_args *ap)
1679 {
1680     struct mount *mp;
1681     struct journal *jo;
1682     struct jrecord jrec;
1683     void *save;		/* warning, save pointers do not always remain valid */
1684     int error;
1685 
1686     error = vop_journal_operate_ap(&ap->a_head);
1687     mp = ap->a_head.a_ops->vv_mount;
1688     if (error == 0 && ap->a_count > 0) {
1689 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1690 	    jrecord_init(jo, &jrec, -1);
1691 	    save = jrecord_push(&jrec, JTYPE_PUTPAGES);
1692 	    jrecord_write_vnode_ref(&jrec, ap->a_vp);
1693 	    jrecord_write_pagelist(&jrec, JLEAF_FILEDATA,
1694 			ap->a_m, ap->a_rtvals, btoc(ap->a_count), ap->a_offset);
1695 	    jrecord_pop(&jrec, save);
1696 	    jrecord_done(&jrec, 0);
1697 	}
1698     }
1699     return (error);
1700 }
1701 
1702 /*
1703  * Journal vop_setacl { a_vp, a_type, a_aclp, a_cred, a_td }
1704  */
1705 static
1706 int
1707 journal_setacl(struct vop_setacl_args *ap)
1708 {
1709     struct mount *mp;
1710     struct journal *jo;
1711     struct jrecord jrec;
1712     void *save;		/* warning, save pointers do not always remain valid */
1713     int error;
1714 
1715     error = vop_journal_operate_ap(&ap->a_head);
1716     mp = ap->a_head.a_ops->vv_mount;
1717     if (error == 0) {
1718 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1719 	    jrecord_init(jo, &jrec, -1);
1720 	    save = jrecord_push(&jrec, JTYPE_SETACL);
1721 	    jrecord_write_cred(&jrec, ap->a_td, ap->a_cred);
1722 	    jrecord_write_vnode_ref(&jrec, ap->a_vp);
1723 	    /* XXX type, aclp */
1724 	    jrecord_pop(&jrec, save);
1725 	    jrecord_done(&jrec, 0);
1726 	}
1727     }
1728     return (error);
1729 }
1730 
1731 /*
1732  * Journal vop_setextattr { a_vp, a_name, a_uio, a_cred, a_td }
1733  */
1734 static
1735 int
1736 journal_setextattr(struct vop_setextattr_args *ap)
1737 {
1738     struct mount *mp;
1739     struct journal *jo;
1740     struct jrecord jrec;
1741     void *save;		/* warning, save pointers do not always remain valid */
1742     int error;
1743 
1744     error = vop_journal_operate_ap(&ap->a_head);
1745     mp = ap->a_head.a_ops->vv_mount;
1746     if (error == 0) {
1747 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1748 	    jrecord_init(jo, &jrec, -1);
1749 	    save = jrecord_push(&jrec, JTYPE_SETEXTATTR);
1750 	    jrecord_write_cred(&jrec, ap->a_td, ap->a_cred);
1751 	    jrecord_write_vnode_ref(&jrec, ap->a_vp);
1752 	    jrecord_leaf(&jrec, JLEAF_ATTRNAME, ap->a_name, strlen(ap->a_name));
1753 	    jrecord_write_uio(&jrec, JLEAF_FILEDATA, ap->a_uio);
1754 	    jrecord_pop(&jrec, save);
1755 	    jrecord_done(&jrec, 0);
1756 	}
1757     }
1758     return (error);
1759 }
1760 
1761 /*
1762  * Journal vop_ncreate { a_ncp, a_vpp, a_cred, a_vap }
1763  */
1764 static
1765 int
1766 journal_ncreate(struct vop_ncreate_args *ap)
1767 {
1768     struct mount *mp;
1769     struct journal *jo;
1770     struct jrecord jrec;
1771     void *save;		/* warning, save pointers do not always remain valid */
1772     int error;
1773 
1774     error = vop_journal_operate_ap(&ap->a_head);
1775     mp = ap->a_head.a_ops->vv_mount;
1776     if (error == 0) {
1777 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1778 	    jrecord_init(jo, &jrec, -1);
1779 	    save = jrecord_push(&jrec, JTYPE_CREATE);
1780 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
1781 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1782 	    if (*ap->a_vpp)
1783 		jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
1784 	    jrecord_pop(&jrec, save);
1785 	    jrecord_done(&jrec, 0);
1786 	}
1787     }
1788     return (error);
1789 }
1790 
1791 /*
1792  * Journal vop_nmknod { a_ncp, a_vpp, a_cred, a_vap }
1793  */
1794 static
1795 int
1796 journal_nmknod(struct vop_nmknod_args *ap)
1797 {
1798     struct mount *mp;
1799     struct journal *jo;
1800     struct jrecord jrec;
1801     void *save;		/* warning, save pointers do not always remain valid */
1802     int error;
1803 
1804     error = vop_journal_operate_ap(&ap->a_head);
1805     mp = ap->a_head.a_ops->vv_mount;
1806     if (error == 0) {
1807 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1808 	    jrecord_init(jo, &jrec, -1);
1809 	    save = jrecord_push(&jrec, JTYPE_MKNOD);
1810 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
1811 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1812 	    jrecord_write_vattr(&jrec, ap->a_vap);
1813 	    if (*ap->a_vpp)
1814 		jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
1815 	    jrecord_pop(&jrec, save);
1816 	    jrecord_done(&jrec, 0);
1817 	}
1818     }
1819     return (error);
1820 }
1821 
1822 /*
1823  * Journal vop_nlink { a_ncp, a_vp, a_cred }
1824  */
1825 static
1826 int
1827 journal_nlink(struct vop_nlink_args *ap)
1828 {
1829     struct mount *mp;
1830     struct journal *jo;
1831     struct jrecord jrec;
1832     void *save;		/* warning, save pointers do not always remain valid */
1833     int error;
1834 
1835     error = vop_journal_operate_ap(&ap->a_head);
1836     mp = ap->a_head.a_ops->vv_mount;
1837     if (error == 0) {
1838 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1839 	    jrecord_init(jo, &jrec, -1);
1840 	    save = jrecord_push(&jrec, JTYPE_LINK);
1841 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
1842 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1843 	    jrecord_write_vnode_ref(&jrec, ap->a_vp);
1844 	    /* XXX PATH to VP and inode number */
1845 	    jrecord_pop(&jrec, save);
1846 	    jrecord_done(&jrec, 0);
1847 	}
1848     }
1849     return (error);
1850 }
1851 
1852 /*
1853  * Journal vop_symlink { a_ncp, a_vpp, a_cred, a_vap, a_target }
1854  */
1855 static
1856 int
1857 journal_nsymlink(struct vop_nsymlink_args *ap)
1858 {
1859     struct mount *mp;
1860     struct journal *jo;
1861     struct jrecord jrec;
1862     void *save;		/* warning, save pointers do not always remain valid */
1863     int error;
1864 
1865     error = vop_journal_operate_ap(&ap->a_head);
1866     mp = ap->a_head.a_ops->vv_mount;
1867     if (error == 0) {
1868 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1869 	    jrecord_init(jo, &jrec, -1);
1870 	    save = jrecord_push(&jrec, JTYPE_SYMLINK);
1871 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
1872 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1873 	    jrecord_leaf(&jrec, JLEAF_SYMLINKDATA,
1874 			ap->a_target, strlen(ap->a_target));
1875 	    if (*ap->a_vpp)
1876 		jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
1877 	    jrecord_pop(&jrec, save);
1878 	    jrecord_done(&jrec, 0);
1879 	}
1880     }
1881     return (error);
1882 }
1883 
1884 /*
1885  * Journal vop_nwhiteout { a_ncp, a_cred, a_flags }
1886  */
1887 static
1888 int
1889 journal_nwhiteout(struct vop_nwhiteout_args *ap)
1890 {
1891     struct mount *mp;
1892     struct journal *jo;
1893     struct jrecord jrec;
1894     void *save;		/* warning, save pointers do not always remain valid */
1895     int error;
1896 
1897     error = vop_journal_operate_ap(&ap->a_head);
1898     mp = ap->a_head.a_ops->vv_mount;
1899     if (error == 0) {
1900 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1901 	    jrecord_init(jo, &jrec, -1);
1902 	    save = jrecord_push(&jrec, JTYPE_WHITEOUT);
1903 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
1904 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1905 	    jrecord_pop(&jrec, save);
1906 	    jrecord_done(&jrec, 0);
1907 	}
1908     }
1909     return (error);
1910 }
1911 
1912 /*
1913  * Journal vop_nremove { a_ncp, a_cred }
1914  */
1915 static
1916 int
1917 journal_nremove(struct vop_nremove_args *ap)
1918 {
1919     struct mount *mp;
1920     struct journal *jo;
1921     struct jrecord jrec;
1922     void *save;		/* warning, save pointers do not always remain valid */
1923     int error;
1924 
1925     error = vop_journal_operate_ap(&ap->a_head);
1926     mp = ap->a_head.a_ops->vv_mount;
1927     if (error == 0) {
1928 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1929 	    jrecord_init(jo, &jrec, -1);
1930 	    save = jrecord_push(&jrec, JTYPE_REMOVE);
1931 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
1932 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1933 	    jrecord_pop(&jrec, save);
1934 	    jrecord_done(&jrec, 0);
1935 	}
1936     }
1937     return (error);
1938 }
1939 
1940 /*
1941  * Journal vop_nmkdir { a_ncp, a_vpp, a_cred, a_vap }
1942  */
1943 static
1944 int
1945 journal_nmkdir(struct vop_nmkdir_args *ap)
1946 {
1947     struct mount *mp;
1948     struct journal *jo;
1949     struct jrecord jrec;
1950     void *save;		/* warning, save pointers do not always remain valid */
1951     int error;
1952 
1953     error = vop_journal_operate_ap(&ap->a_head);
1954     mp = ap->a_head.a_ops->vv_mount;
1955     if (error == 0) {
1956 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1957 	    jrecord_init(jo, &jrec, -1);
1958 	    if (jo->flags & MC_JOURNAL_WANT_REVERSABLE) {
1959 		save = jrecord_push(&jrec, JTYPE_UNDO);
1960 		/* XXX undo operations */
1961 		jrecord_pop(&jrec, save);
1962 	    }
1963 #if 0
1964 	    if (jo->flags & MC_JOURNAL_WANT_AUDIT) {
1965 		jrecord_write_audit(&jrec);
1966 	    }
1967 #endif
1968 	    save = jrecord_push(&jrec, JTYPE_MKDIR);
1969 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1970 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
1971 	    jrecord_write_vattr(&jrec, ap->a_vap);
1972 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1973 	    if (*ap->a_vpp)
1974 		jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
1975 	    jrecord_pop(&jrec, save);
1976 	    jrecord_done(&jrec, 0);
1977 	}
1978     }
1979     return (error);
1980 }
1981 
1982 /*
1983  * Journal vop_nrmdir { a_ncp, a_cred }
1984  */
1985 static
1986 int
1987 journal_nrmdir(struct vop_nrmdir_args *ap)
1988 {
1989     struct mount *mp;
1990     struct journal *jo;
1991     struct jrecord jrec;
1992     void *save;		/* warning, save pointers do not always remain valid */
1993     int error;
1994 
1995     error = vop_journal_operate_ap(&ap->a_head);
1996     mp = ap->a_head.a_ops->vv_mount;
1997     if (error == 0) {
1998 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1999 	    jrecord_init(jo, &jrec, -1);
2000 	    save = jrecord_push(&jrec, JTYPE_RMDIR);
2001 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
2002 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
2003 	    jrecord_pop(&jrec, save);
2004 	    jrecord_done(&jrec, 0);
2005 	}
2006     }
2007     return (error);
2008 }
2009 
2010 /*
2011  * Journal vop_nrename { a_fncp, a_tncp, a_cred }
2012  */
2013 static
2014 int
2015 journal_nrename(struct vop_nrename_args *ap)
2016 {
2017     struct mount *mp;
2018     struct journal *jo;
2019     struct jrecord jrec;
2020     void *save;		/* warning, save pointers do not always remain valid */
2021     int error;
2022 
2023     error = vop_journal_operate_ap(&ap->a_head);
2024     mp = ap->a_head.a_ops->vv_mount;
2025     if (error == 0) {
2026 	TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
2027 	    jrecord_init(jo, &jrec, -1);
2028 	    save = jrecord_push(&jrec, JTYPE_RENAME);
2029 	    jrecord_write_cred(&jrec, NULL, ap->a_cred);
2030 	    jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_fncp);
2031 	    jrecord_write_path(&jrec, JLEAF_PATH2, ap->a_tncp);
2032 	    jrecord_pop(&jrec, save);
2033 	    jrecord_done(&jrec, 0);
2034 	}
2035     }
2036     return (error);
2037 }
2038 
2039