1 /* 2 * Copyright (c) 2003,2004,2009 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1989, 1993, 1995 35 * The Regents of the University of California. All rights reserved. 36 * 37 * This code is derived from software contributed to Berkeley by 38 * Poul-Henning Kamp of the FreeBSD Project. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 */ 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/kernel.h> 68 #include <sys/sysctl.h> 69 #include <sys/mount.h> 70 #include <sys/vnode.h> 71 #include <sys/malloc.h> 72 #include <sys/sysproto.h> 73 #include <sys/spinlock.h> 74 #include <sys/proc.h> 75 #include <sys/namei.h> 76 #include <sys/nlookup.h> 77 #include <sys/filedesc.h> 78 #include <sys/fnv_hash.h> 79 #include <sys/globaldata.h> 80 #include <sys/kern_syscall.h> 81 #include <sys/dirent.h> 82 #include <ddb/ddb.h> 83 84 #include <sys/sysref2.h> 85 #include <sys/spinlock2.h> 86 #include <sys/mplock2.h> 87 88 #define MAX_RECURSION_DEPTH 64 89 90 /* 91 * Random lookups in the cache are accomplished with a hash table using 92 * a hash key of (nc_src_vp, name). Each hash chain has its own spin lock. 93 * 94 * Negative entries may exist and correspond to resolved namecache 95 * structures where nc_vp is NULL. In a negative entry, NCF_WHITEOUT 96 * will be set if the entry corresponds to a whited-out directory entry 97 * (verses simply not finding the entry at all). ncneglist is locked 98 * with a global spinlock (ncspin). 99 * 100 * MPSAFE RULES: 101 * 102 * (1) A ncp must be referenced before it can be locked. 103 * 104 * (2) A ncp must be locked in order to modify it. 105 * 106 * (3) ncp locks are always ordered child -> parent. That may seem 107 * backwards but forward scans use the hash table and thus can hold 108 * the parent unlocked when traversing downward. 109 * 110 * This allows insert/rename/delete/dot-dot and other operations 111 * to use ncp->nc_parent links. 112 * 113 * This also prevents a locked up e.g. NFS node from creating a 114 * chain reaction all the way back to the root vnode / namecache. 115 * 116 * (4) parent linkages require both the parent and child to be locked. 117 */ 118 119 /* 120 * Structures associated with name cacheing. 121 */ 122 #define NCHHASH(hash) (&nchashtbl[(hash) & nchash]) 123 #define MINNEG 1024 124 #define MINPOS 1024 125 #define NCMOUNT_NUMCACHE 1009 /* prime number */ 126 127 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries"); 128 129 LIST_HEAD(nchash_list, namecache); 130 131 struct nchash_head { 132 struct nchash_list list; 133 struct spinlock spin; 134 }; 135 136 struct ncmount_cache { 137 struct spinlock spin; 138 struct namecache *ncp; 139 struct mount *mp; 140 int isneg; /* if != 0 mp is originator and not target */ 141 }; 142 143 static struct nchash_head *nchashtbl; 144 static struct namecache_list ncneglist; 145 static struct spinlock ncspin; 146 static struct ncmount_cache ncmount_cache[NCMOUNT_NUMCACHE]; 147 148 /* 149 * ncvp_debug - debug cache_fromvp(). This is used by the NFS server 150 * to create the namecache infrastructure leading to a dangling vnode. 151 * 152 * 0 Only errors are reported 153 * 1 Successes are reported 154 * 2 Successes + the whole directory scan is reported 155 * 3 Force the directory scan code run as if the parent vnode did not 156 * have a namecache record, even if it does have one. 157 */ 158 static int ncvp_debug; 159 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, 160 "Namecache debug level (0-3)"); 161 162 static u_long nchash; /* size of hash table */ 163 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, 164 "Size of namecache hash table"); 165 166 static int ncnegflush = 10; /* burst for negative flush */ 167 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0, 168 "Batch flush negative entries"); 169 170 static int ncposflush = 10; /* burst for positive flush */ 171 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0, 172 "Batch flush positive entries"); 173 174 static int ncnegfactor = 16; /* ratio of negative entries */ 175 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, 176 "Ratio of namecache negative entries"); 177 178 static int nclockwarn; /* warn on locked entries in ticks */ 179 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, 180 "Warn on locked namecache entries in ticks"); 181 182 static int numdefered; /* number of cache entries allocated */ 183 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0, 184 "Number of cache entries allocated"); 185 186 static int ncposlimit; /* number of cache entries allocated */ 187 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0, 188 "Number of cache entries allocated"); 189 190 static int ncp_shared_lock_disable = 0; 191 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW, 192 &ncp_shared_lock_disable, 0, "Disable shared namecache locks"); 193 194 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), 195 "sizeof(struct vnode)"); 196 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), 197 "sizeof(struct namecache)"); 198 199 static int ncmount_cache_enable = 1; 200 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW, 201 &ncmount_cache_enable, 0, "mount point cache"); 202 static long ncmount_cache_hit; 203 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_hit, CTLFLAG_RW, 204 &ncmount_cache_hit, 0, "mpcache hits"); 205 static long ncmount_cache_miss; 206 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_miss, CTLFLAG_RW, 207 &ncmount_cache_miss, 0, "mpcache misses"); 208 static long ncmount_cache_overwrite; 209 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_overwrite, CTLFLAG_RW, 210 &ncmount_cache_overwrite, 0, "mpcache entry overwrites"); 211 212 static int cache_resolve_mp(struct mount *mp); 213 static struct vnode *cache_dvpref(struct namecache *ncp); 214 static void _cache_lock(struct namecache *ncp); 215 static void _cache_setunresolved(struct namecache *ncp); 216 static void _cache_cleanneg(int count); 217 static void _cache_cleanpos(int count); 218 static void _cache_cleandefered(void); 219 static void _cache_unlink(struct namecache *ncp); 220 221 /* 222 * The new name cache statistics 223 */ 224 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics"); 225 static int numneg; 226 SYSCTL_INT(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, 227 "Number of negative namecache entries"); 228 static int numcache; 229 SYSCTL_INT(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, 230 "Number of namecaches entries"); 231 static u_long numcalls; 232 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcalls, CTLFLAG_RD, &numcalls, 0, 233 "Number of namecache lookups"); 234 static u_long numchecks; 235 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numchecks, CTLFLAG_RD, &numchecks, 0, 236 "Number of checked entries in namecache lookups"); 237 238 struct nchstats nchstats[SMP_MAXCPU]; 239 /* 240 * Export VFS cache effectiveness statistics to user-land. 241 * 242 * The statistics are left for aggregation to user-land so 243 * neat things can be achieved, like observing per-CPU cache 244 * distribution. 245 */ 246 static int 247 sysctl_nchstats(SYSCTL_HANDLER_ARGS) 248 { 249 struct globaldata *gd; 250 int i, error; 251 252 error = 0; 253 for (i = 0; i < ncpus; ++i) { 254 gd = globaldata_find(i); 255 if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats), 256 sizeof(struct nchstats)))) 257 break; 258 } 259 260 return (error); 261 } 262 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD, 263 0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics"); 264 265 static struct namecache *cache_zap(struct namecache *ncp, int nonblock); 266 267 /* 268 * Namespace locking. The caller must already hold a reference to the 269 * namecache structure in order to lock/unlock it. This function prevents 270 * the namespace from being created or destroyed by accessors other then 271 * the lock holder. 272 * 273 * Note that holding a locked namecache structure prevents other threads 274 * from making namespace changes (e.g. deleting or creating), prevents 275 * vnode association state changes by other threads, and prevents the 276 * namecache entry from being resolved or unresolved by other threads. 277 * 278 * An exclusive lock owner has full authority to associate/disassociate 279 * vnodes and resolve/unresolve the locked ncp. 280 * 281 * A shared lock owner only has authority to acquire the underlying vnode, 282 * if any. 283 * 284 * The primary lock field is nc_lockstatus. nc_locktd is set after the 285 * fact (when locking) or cleared prior to unlocking. 286 * 287 * WARNING! Holding a locked ncp will prevent a vnode from being destroyed 288 * or recycled, but it does NOT help you if the vnode had already 289 * initiated a recyclement. If this is important, use cache_get() 290 * rather then cache_lock() (and deal with the differences in the 291 * way the refs counter is handled). Or, alternatively, make an 292 * unconditional call to cache_validate() or cache_resolve() 293 * after cache_lock() returns. 294 */ 295 static 296 void 297 _cache_lock(struct namecache *ncp) 298 { 299 thread_t td; 300 int didwarn; 301 int begticks; 302 int error; 303 u_int count; 304 305 KKASSERT(ncp->nc_refs != 0); 306 didwarn = 0; 307 begticks = 0; 308 td = curthread; 309 310 for (;;) { 311 count = ncp->nc_lockstatus; 312 cpu_ccfence(); 313 314 if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) { 315 if (atomic_cmpset_int(&ncp->nc_lockstatus, 316 count, count + 1)) { 317 /* 318 * The vp associated with a locked ncp must 319 * be held to prevent it from being recycled. 320 * 321 * WARNING! If VRECLAIMED is set the vnode 322 * could already be in the middle of a recycle. 323 * Callers must use cache_vref() or 324 * cache_vget() on the locked ncp to 325 * validate the vp or set the cache entry 326 * to unresolved. 327 * 328 * NOTE! vhold() is allowed if we hold a 329 * lock on the ncp (which we do). 330 */ 331 ncp->nc_locktd = td; 332 if (ncp->nc_vp) 333 vhold(ncp->nc_vp); 334 break; 335 } 336 /* cmpset failed */ 337 continue; 338 } 339 if (ncp->nc_locktd == td) { 340 KKASSERT((count & NC_SHLOCK_FLAG) == 0); 341 if (atomic_cmpset_int(&ncp->nc_lockstatus, 342 count, count + 1)) { 343 break; 344 } 345 /* cmpset failed */ 346 continue; 347 } 348 tsleep_interlock(&ncp->nc_locktd, 0); 349 if (atomic_cmpset_int(&ncp->nc_lockstatus, count, 350 count | NC_EXLOCK_REQ) == 0) { 351 /* cmpset failed */ 352 continue; 353 } 354 if (begticks == 0) 355 begticks = ticks; 356 error = tsleep(&ncp->nc_locktd, PINTERLOCKED, 357 "clock", nclockwarn); 358 if (error == EWOULDBLOCK) { 359 if (didwarn == 0) { 360 didwarn = ticks; 361 kprintf("[diagnostic] cache_lock: " 362 "blocked on %p %08x", 363 ncp, count); 364 kprintf(" \"%*.*s\"\n", 365 ncp->nc_nlen, ncp->nc_nlen, 366 ncp->nc_name); 367 } 368 } 369 /* loop */ 370 } 371 if (didwarn) { 372 kprintf("[diagnostic] cache_lock: unblocked %*.*s after " 373 "%d secs\n", 374 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name, 375 (int)(ticks + (hz / 2) - begticks) / hz); 376 } 377 } 378 379 /* 380 * The shared lock works similarly to the exclusive lock except 381 * nc_locktd is left NULL and we need an interlock (VHOLD) to 382 * prevent vhold() races, since the moment our cmpset_int succeeds 383 * another cpu can come in and get its own shared lock. 384 * 385 * A critical section is needed to prevent interruption during the 386 * VHOLD interlock. 387 */ 388 static 389 void 390 _cache_lock_shared(struct namecache *ncp) 391 { 392 int didwarn; 393 int error; 394 u_int count; 395 u_int optreq = NC_EXLOCK_REQ; 396 397 KKASSERT(ncp->nc_refs != 0); 398 didwarn = 0; 399 400 for (;;) { 401 count = ncp->nc_lockstatus; 402 cpu_ccfence(); 403 404 if ((count & ~NC_SHLOCK_REQ) == 0) { 405 crit_enter(); 406 if (atomic_cmpset_int(&ncp->nc_lockstatus, 407 count, 408 (count + 1) | NC_SHLOCK_FLAG | 409 NC_SHLOCK_VHOLD)) { 410 /* 411 * The vp associated with a locked ncp must 412 * be held to prevent it from being recycled. 413 * 414 * WARNING! If VRECLAIMED is set the vnode 415 * could already be in the middle of a recycle. 416 * Callers must use cache_vref() or 417 * cache_vget() on the locked ncp to 418 * validate the vp or set the cache entry 419 * to unresolved. 420 * 421 * NOTE! vhold() is allowed if we hold a 422 * lock on the ncp (which we do). 423 */ 424 if (ncp->nc_vp) 425 vhold(ncp->nc_vp); 426 atomic_clear_int(&ncp->nc_lockstatus, 427 NC_SHLOCK_VHOLD); 428 crit_exit(); 429 break; 430 } 431 /* cmpset failed */ 432 crit_exit(); 433 continue; 434 } 435 436 /* 437 * If already held shared we can just bump the count, but 438 * only allow this if nobody is trying to get the lock 439 * exclusively. If we are blocking too long ignore excl 440 * requests (which can race/deadlock us). 441 * 442 * VHOLD is a bit of a hack. Even though we successfully 443 * added another shared ref, the cpu that got the first 444 * shared ref might not yet have held the vnode. 445 */ 446 if ((count & (optreq|NC_SHLOCK_FLAG)) == NC_SHLOCK_FLAG) { 447 KKASSERT((count & ~(NC_EXLOCK_REQ | 448 NC_SHLOCK_REQ | 449 NC_SHLOCK_FLAG)) > 0); 450 if (atomic_cmpset_int(&ncp->nc_lockstatus, 451 count, count + 1)) { 452 while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD) 453 cpu_pause(); 454 break; 455 } 456 continue; 457 } 458 tsleep_interlock(ncp, 0); 459 if (atomic_cmpset_int(&ncp->nc_lockstatus, count, 460 count | NC_SHLOCK_REQ) == 0) { 461 /* cmpset failed */ 462 continue; 463 } 464 error = tsleep(ncp, PINTERLOCKED, "clocksh", nclockwarn); 465 if (error == EWOULDBLOCK) { 466 optreq = 0; 467 if (didwarn == 0) { 468 didwarn = ticks; 469 kprintf("[diagnostic] cache_lock_shared: " 470 "blocked on %p %08x", 471 ncp, count); 472 kprintf(" \"%*.*s\"\n", 473 ncp->nc_nlen, ncp->nc_nlen, 474 ncp->nc_name); 475 } 476 } 477 /* loop */ 478 } 479 if (didwarn) { 480 kprintf("[diagnostic] cache_lock_shared: " 481 "unblocked %*.*s after %d secs\n", 482 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name, 483 (int)(ticks - didwarn) / hz); 484 } 485 } 486 487 /* 488 * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance, 489 * such as the case where one of its children is locked. 490 */ 491 static 492 int 493 _cache_lock_nonblock(struct namecache *ncp) 494 { 495 thread_t td; 496 u_int count; 497 498 td = curthread; 499 500 for (;;) { 501 count = ncp->nc_lockstatus; 502 503 if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) { 504 if (atomic_cmpset_int(&ncp->nc_lockstatus, 505 count, count + 1)) { 506 /* 507 * The vp associated with a locked ncp must 508 * be held to prevent it from being recycled. 509 * 510 * WARNING! If VRECLAIMED is set the vnode 511 * could already be in the middle of a recycle. 512 * Callers must use cache_vref() or 513 * cache_vget() on the locked ncp to 514 * validate the vp or set the cache entry 515 * to unresolved. 516 * 517 * NOTE! vhold() is allowed if we hold a 518 * lock on the ncp (which we do). 519 */ 520 ncp->nc_locktd = td; 521 if (ncp->nc_vp) 522 vhold(ncp->nc_vp); 523 break; 524 } 525 /* cmpset failed */ 526 continue; 527 } 528 if (ncp->nc_locktd == td) { 529 if (atomic_cmpset_int(&ncp->nc_lockstatus, 530 count, count + 1)) { 531 break; 532 } 533 /* cmpset failed */ 534 continue; 535 } 536 return(EWOULDBLOCK); 537 } 538 return(0); 539 } 540 541 /* 542 * The shared lock works similarly to the exclusive lock except 543 * nc_locktd is left NULL and we need an interlock (VHOLD) to 544 * prevent vhold() races, since the moment our cmpset_int succeeds 545 * another cpu can come in and get its own shared lock. 546 * 547 * A critical section is needed to prevent interruption during the 548 * VHOLD interlock. 549 */ 550 static 551 int 552 _cache_lock_shared_nonblock(struct namecache *ncp) 553 { 554 u_int count; 555 556 for (;;) { 557 count = ncp->nc_lockstatus; 558 559 if ((count & ~NC_SHLOCK_REQ) == 0) { 560 crit_enter(); 561 if (atomic_cmpset_int(&ncp->nc_lockstatus, 562 count, 563 (count + 1) | NC_SHLOCK_FLAG | 564 NC_SHLOCK_VHOLD)) { 565 /* 566 * The vp associated with a locked ncp must 567 * be held to prevent it from being recycled. 568 * 569 * WARNING! If VRECLAIMED is set the vnode 570 * could already be in the middle of a recycle. 571 * Callers must use cache_vref() or 572 * cache_vget() on the locked ncp to 573 * validate the vp or set the cache entry 574 * to unresolved. 575 * 576 * NOTE! vhold() is allowed if we hold a 577 * lock on the ncp (which we do). 578 */ 579 if (ncp->nc_vp) 580 vhold(ncp->nc_vp); 581 atomic_clear_int(&ncp->nc_lockstatus, 582 NC_SHLOCK_VHOLD); 583 crit_exit(); 584 break; 585 } 586 /* cmpset failed */ 587 crit_exit(); 588 continue; 589 } 590 591 /* 592 * If already held shared we can just bump the count, but 593 * only allow this if nobody is trying to get the lock 594 * exclusively. 595 * 596 * VHOLD is a bit of a hack. Even though we successfully 597 * added another shared ref, the cpu that got the first 598 * shared ref might not yet have held the vnode. 599 */ 600 if ((count & (NC_EXLOCK_REQ|NC_SHLOCK_FLAG)) == 601 NC_SHLOCK_FLAG) { 602 KKASSERT((count & ~(NC_EXLOCK_REQ | 603 NC_SHLOCK_REQ | 604 NC_SHLOCK_FLAG)) > 0); 605 if (atomic_cmpset_int(&ncp->nc_lockstatus, 606 count, count + 1)) { 607 while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD) 608 cpu_pause(); 609 break; 610 } 611 continue; 612 } 613 return(EWOULDBLOCK); 614 } 615 return(0); 616 } 617 618 /* 619 * Helper function 620 * 621 * NOTE: nc_refs can be 0 (degenerate case during _cache_drop). 622 * 623 * nc_locktd must be NULLed out prior to nc_lockstatus getting cleared. 624 */ 625 static 626 void 627 _cache_unlock(struct namecache *ncp) 628 { 629 thread_t td __debugvar = curthread; 630 u_int count; 631 u_int ncount; 632 struct vnode *dropvp; 633 634 KKASSERT(ncp->nc_refs >= 0); 635 KKASSERT((ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) > 0); 636 KKASSERT((ncp->nc_lockstatus & NC_SHLOCK_FLAG) || ncp->nc_locktd == td); 637 638 count = ncp->nc_lockstatus; 639 cpu_ccfence(); 640 641 /* 642 * Clear nc_locktd prior to the atomic op (excl lock only) 643 */ 644 if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1) 645 ncp->nc_locktd = NULL; 646 dropvp = NULL; 647 648 for (;;) { 649 if ((count & 650 ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ|NC_SHLOCK_FLAG)) == 1) { 651 dropvp = ncp->nc_vp; 652 if (count & NC_EXLOCK_REQ) 653 ncount = count & NC_SHLOCK_REQ; /* cnt->0 */ 654 else 655 ncount = 0; 656 657 if (atomic_cmpset_int(&ncp->nc_lockstatus, 658 count, ncount)) { 659 if (count & NC_EXLOCK_REQ) 660 wakeup(&ncp->nc_locktd); 661 else if (count & NC_SHLOCK_REQ) 662 wakeup(ncp); 663 break; 664 } 665 dropvp = NULL; 666 } else { 667 KKASSERT((count & NC_SHLOCK_VHOLD) == 0); 668 KKASSERT((count & ~(NC_EXLOCK_REQ | 669 NC_SHLOCK_REQ | 670 NC_SHLOCK_FLAG)) > 1); 671 if (atomic_cmpset_int(&ncp->nc_lockstatus, 672 count, count - 1)) { 673 break; 674 } 675 } 676 count = ncp->nc_lockstatus; 677 cpu_ccfence(); 678 } 679 680 /* 681 * Don't actually drop the vp until we successfully clean out 682 * the lock, otherwise we may race another shared lock. 683 */ 684 if (dropvp) 685 vdrop(dropvp); 686 } 687 688 static 689 int 690 _cache_lockstatus(struct namecache *ncp) 691 { 692 if (ncp->nc_locktd == curthread) 693 return(LK_EXCLUSIVE); 694 if (ncp->nc_lockstatus & NC_SHLOCK_FLAG) 695 return(LK_SHARED); 696 return(-1); 697 } 698 699 /* 700 * cache_hold() and cache_drop() prevent the premature deletion of a 701 * namecache entry but do not prevent operations (such as zapping) on 702 * that namecache entry. 703 * 704 * This routine may only be called from outside this source module if 705 * nc_refs is already at least 1. 706 * 707 * This is a rare case where callers are allowed to hold a spinlock, 708 * so we can't ourselves. 709 */ 710 static __inline 711 struct namecache * 712 _cache_hold(struct namecache *ncp) 713 { 714 atomic_add_int(&ncp->nc_refs, 1); 715 return(ncp); 716 } 717 718 /* 719 * Drop a cache entry, taking care to deal with races. 720 * 721 * For potential 1->0 transitions we must hold the ncp lock to safely 722 * test its flags. An unresolved entry with no children must be zapped 723 * to avoid leaks. 724 * 725 * The call to cache_zap() itself will handle all remaining races and 726 * will decrement the ncp's refs regardless. If we are resolved or 727 * have children nc_refs can safely be dropped to 0 without having to 728 * zap the entry. 729 * 730 * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion. 731 * 732 * NOTE: cache_zap() may return a non-NULL referenced parent which must 733 * be dropped in a loop. 734 */ 735 static __inline 736 void 737 _cache_drop(struct namecache *ncp) 738 { 739 int refs; 740 741 while (ncp) { 742 KKASSERT(ncp->nc_refs > 0); 743 refs = ncp->nc_refs; 744 745 if (refs == 1) { 746 if (_cache_lock_nonblock(ncp) == 0) { 747 ncp->nc_flag &= ~NCF_DEFEREDZAP; 748 if ((ncp->nc_flag & NCF_UNRESOLVED) && 749 TAILQ_EMPTY(&ncp->nc_list)) { 750 ncp = cache_zap(ncp, 1); 751 continue; 752 } 753 if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) { 754 _cache_unlock(ncp); 755 break; 756 } 757 _cache_unlock(ncp); 758 } 759 } else { 760 if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) 761 break; 762 } 763 cpu_pause(); 764 } 765 } 766 767 /* 768 * Link a new namecache entry to its parent and to the hash table. Be 769 * careful to avoid races if vhold() blocks in the future. 770 * 771 * Both ncp and par must be referenced and locked. 772 * 773 * NOTE: The hash table spinlock is held during this call, we can't do 774 * anything fancy. 775 */ 776 static void 777 _cache_link_parent(struct namecache *ncp, struct namecache *par, 778 struct nchash_head *nchpp) 779 { 780 KKASSERT(ncp->nc_parent == NULL); 781 ncp->nc_parent = par; 782 ncp->nc_head = nchpp; 783 784 /* 785 * Set inheritance flags. Note that the parent flags may be 786 * stale due to getattr potentially not having been run yet 787 * (it gets run during nlookup()'s). 788 */ 789 ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE); 790 if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE)) 791 ncp->nc_flag |= NCF_SF_PNOCACHE; 792 if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE)) 793 ncp->nc_flag |= NCF_UF_PCACHE; 794 795 LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash); 796 797 if (TAILQ_EMPTY(&par->nc_list)) { 798 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry); 799 /* 800 * Any vp associated with an ncp which has children must 801 * be held to prevent it from being recycled. 802 */ 803 if (par->nc_vp) 804 vhold(par->nc_vp); 805 } else { 806 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry); 807 } 808 } 809 810 /* 811 * Remove the parent and hash associations from a namecache structure. 812 * If this is the last child of the parent the cache_drop(par) will 813 * attempt to recursively zap the parent. 814 * 815 * ncp must be locked. This routine will acquire a temporary lock on 816 * the parent as wlel as the appropriate hash chain. 817 */ 818 static void 819 _cache_unlink_parent(struct namecache *ncp) 820 { 821 struct namecache *par; 822 struct vnode *dropvp; 823 824 if ((par = ncp->nc_parent) != NULL) { 825 KKASSERT(ncp->nc_parent == par); 826 _cache_hold(par); 827 _cache_lock(par); 828 spin_lock(&ncp->nc_head->spin); 829 LIST_REMOVE(ncp, nc_hash); 830 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry); 831 dropvp = NULL; 832 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list)) 833 dropvp = par->nc_vp; 834 spin_unlock(&ncp->nc_head->spin); 835 ncp->nc_parent = NULL; 836 ncp->nc_head = NULL; 837 _cache_unlock(par); 838 _cache_drop(par); 839 840 /* 841 * We can only safely vdrop with no spinlocks held. 842 */ 843 if (dropvp) 844 vdrop(dropvp); 845 } 846 } 847 848 /* 849 * Allocate a new namecache structure. Most of the code does not require 850 * zero-termination of the string but it makes vop_compat_ncreate() easier. 851 */ 852 static struct namecache * 853 cache_alloc(int nlen) 854 { 855 struct namecache *ncp; 856 857 ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO); 858 if (nlen) 859 ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK); 860 ncp->nc_nlen = nlen; 861 ncp->nc_flag = NCF_UNRESOLVED; 862 ncp->nc_error = ENOTCONN; /* needs to be resolved */ 863 ncp->nc_refs = 1; 864 865 TAILQ_INIT(&ncp->nc_list); 866 _cache_lock(ncp); 867 return(ncp); 868 } 869 870 /* 871 * Can only be called for the case where the ncp has never been 872 * associated with anything (so no spinlocks are needed). 873 */ 874 static void 875 _cache_free(struct namecache *ncp) 876 { 877 KKASSERT(ncp->nc_refs == 1 && ncp->nc_lockstatus == 1); 878 if (ncp->nc_name) 879 kfree(ncp->nc_name, M_VFSCACHE); 880 kfree(ncp, M_VFSCACHE); 881 } 882 883 /* 884 * [re]initialize a nchandle. 885 */ 886 void 887 cache_zero(struct nchandle *nch) 888 { 889 nch->ncp = NULL; 890 nch->mount = NULL; 891 } 892 893 /* 894 * Ref and deref a namecache structure. 895 * 896 * The caller must specify a stable ncp pointer, typically meaning the 897 * ncp is already referenced but this can also occur indirectly through 898 * e.g. holding a lock on a direct child. 899 * 900 * WARNING: Caller may hold an unrelated read spinlock, which means we can't 901 * use read spinlocks here. 902 * 903 * MPSAFE if nch is 904 */ 905 struct nchandle * 906 cache_hold(struct nchandle *nch) 907 { 908 _cache_hold(nch->ncp); 909 atomic_add_int(&nch->mount->mnt_refs, 1); 910 return(nch); 911 } 912 913 /* 914 * Create a copy of a namecache handle for an already-referenced 915 * entry. 916 * 917 * MPSAFE if nch is 918 */ 919 void 920 cache_copy(struct nchandle *nch, struct nchandle *target) 921 { 922 *target = *nch; 923 if (target->ncp) 924 _cache_hold(target->ncp); 925 atomic_add_int(&nch->mount->mnt_refs, 1); 926 } 927 928 /* 929 * MPSAFE if nch is 930 */ 931 void 932 cache_changemount(struct nchandle *nch, struct mount *mp) 933 { 934 atomic_add_int(&nch->mount->mnt_refs, -1); 935 nch->mount = mp; 936 atomic_add_int(&nch->mount->mnt_refs, 1); 937 } 938 939 void 940 cache_drop(struct nchandle *nch) 941 { 942 atomic_add_int(&nch->mount->mnt_refs, -1); 943 _cache_drop(nch->ncp); 944 nch->ncp = NULL; 945 nch->mount = NULL; 946 } 947 948 int 949 cache_lockstatus(struct nchandle *nch) 950 { 951 return(_cache_lockstatus(nch->ncp)); 952 } 953 954 void 955 cache_lock(struct nchandle *nch) 956 { 957 _cache_lock(nch->ncp); 958 } 959 960 void 961 cache_lock_maybe_shared(struct nchandle *nch, int excl) 962 { 963 struct namecache *ncp = nch->ncp; 964 965 if (ncp_shared_lock_disable || excl || 966 (ncp->nc_flag & NCF_UNRESOLVED)) { 967 _cache_lock(ncp); 968 } else { 969 _cache_lock_shared(ncp); 970 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) { 971 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) { 972 _cache_unlock(ncp); 973 _cache_lock(ncp); 974 } 975 } else { 976 _cache_unlock(ncp); 977 _cache_lock(ncp); 978 } 979 } 980 } 981 982 /* 983 * Relock nch1 given an unlocked nch1 and a locked nch2. The caller 984 * is responsible for checking both for validity on return as they 985 * may have become invalid. 986 * 987 * We have to deal with potential deadlocks here, just ping pong 988 * the lock until we get it (we will always block somewhere when 989 * looping so this is not cpu-intensive). 990 * 991 * which = 0 nch1 not locked, nch2 is locked 992 * which = 1 nch1 is locked, nch2 is not locked 993 */ 994 void 995 cache_relock(struct nchandle *nch1, struct ucred *cred1, 996 struct nchandle *nch2, struct ucred *cred2) 997 { 998 int which; 999 1000 which = 0; 1001 1002 for (;;) { 1003 if (which == 0) { 1004 if (cache_lock_nonblock(nch1) == 0) { 1005 cache_resolve(nch1, cred1); 1006 break; 1007 } 1008 cache_unlock(nch2); 1009 cache_lock(nch1); 1010 cache_resolve(nch1, cred1); 1011 which = 1; 1012 } else { 1013 if (cache_lock_nonblock(nch2) == 0) { 1014 cache_resolve(nch2, cred2); 1015 break; 1016 } 1017 cache_unlock(nch1); 1018 cache_lock(nch2); 1019 cache_resolve(nch2, cred2); 1020 which = 0; 1021 } 1022 } 1023 } 1024 1025 int 1026 cache_lock_nonblock(struct nchandle *nch) 1027 { 1028 return(_cache_lock_nonblock(nch->ncp)); 1029 } 1030 1031 void 1032 cache_unlock(struct nchandle *nch) 1033 { 1034 _cache_unlock(nch->ncp); 1035 } 1036 1037 /* 1038 * ref-and-lock, unlock-and-deref functions. 1039 * 1040 * This function is primarily used by nlookup. Even though cache_lock 1041 * holds the vnode, it is possible that the vnode may have already 1042 * initiated a recyclement. 1043 * 1044 * We want cache_get() to return a definitively usable vnode or a 1045 * definitively unresolved ncp. 1046 */ 1047 static 1048 struct namecache * 1049 _cache_get(struct namecache *ncp) 1050 { 1051 _cache_hold(ncp); 1052 _cache_lock(ncp); 1053 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) 1054 _cache_setunresolved(ncp); 1055 return(ncp); 1056 } 1057 1058 /* 1059 * Attempt to obtain a shared lock on the ncp. A shared lock will only 1060 * be obtained if the ncp is resolved and the vnode (if not ENOENT) is 1061 * valid. Otherwise an exclusive lock will be acquired instead. 1062 */ 1063 static 1064 struct namecache * 1065 _cache_get_maybe_shared(struct namecache *ncp, int excl) 1066 { 1067 if (ncp_shared_lock_disable || excl || 1068 (ncp->nc_flag & NCF_UNRESOLVED)) { 1069 return(_cache_get(ncp)); 1070 } 1071 _cache_hold(ncp); 1072 _cache_lock_shared(ncp); 1073 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) { 1074 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) { 1075 _cache_unlock(ncp); 1076 ncp = _cache_get(ncp); 1077 _cache_drop(ncp); 1078 } 1079 } else { 1080 _cache_unlock(ncp); 1081 ncp = _cache_get(ncp); 1082 _cache_drop(ncp); 1083 } 1084 return(ncp); 1085 } 1086 1087 /* 1088 * This is a special form of _cache_lock() which only succeeds if 1089 * it can get a pristine, non-recursive lock. The caller must have 1090 * already ref'd the ncp. 1091 * 1092 * On success the ncp will be locked, on failure it will not. The 1093 * ref count does not change either way. 1094 * 1095 * We want _cache_lock_special() (on success) to return a definitively 1096 * usable vnode or a definitively unresolved ncp. 1097 */ 1098 static int 1099 _cache_lock_special(struct namecache *ncp) 1100 { 1101 if (_cache_lock_nonblock(ncp) == 0) { 1102 if ((ncp->nc_lockstatus & 1103 ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1) { 1104 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) 1105 _cache_setunresolved(ncp); 1106 return(0); 1107 } 1108 _cache_unlock(ncp); 1109 } 1110 return(EWOULDBLOCK); 1111 } 1112 1113 /* 1114 * This function tries to get a shared lock but will back-off to an exclusive 1115 * lock if: 1116 * 1117 * (1) Some other thread is trying to obtain an exclusive lock 1118 * (to prevent the exclusive requester from getting livelocked out 1119 * by many shared locks). 1120 * 1121 * (2) The current thread already owns an exclusive lock (to avoid 1122 * deadlocking). 1123 * 1124 * WARNING! On machines with lots of cores we really want to try hard to 1125 * get a shared lock or concurrent path lookups can chain-react 1126 * into a very high-latency exclusive lock. 1127 */ 1128 static int 1129 _cache_lock_shared_special(struct namecache *ncp) 1130 { 1131 /* 1132 * Only honor a successful shared lock (returning 0) if there is 1133 * no exclusive request pending and the vnode, if present, is not 1134 * in a reclaimed state. 1135 */ 1136 if (_cache_lock_shared_nonblock(ncp) == 0) { 1137 if ((ncp->nc_lockstatus & NC_EXLOCK_REQ) == 0) { 1138 if (ncp->nc_vp == NULL || 1139 (ncp->nc_vp->v_flag & VRECLAIMED) == 0) { 1140 return(0); 1141 } 1142 } 1143 _cache_unlock(ncp); 1144 return(EWOULDBLOCK); 1145 } 1146 1147 /* 1148 * Non-blocking shared lock failed. If we already own the exclusive 1149 * lock just acquire another exclusive lock (instead of deadlocking). 1150 * Otherwise acquire a shared lock. 1151 */ 1152 if (ncp->nc_locktd == curthread) { 1153 _cache_lock(ncp); 1154 return(0); 1155 } 1156 _cache_lock_shared(ncp); 1157 return(0); 1158 } 1159 1160 1161 /* 1162 * NOTE: The same nchandle can be passed for both arguments. 1163 */ 1164 void 1165 cache_get(struct nchandle *nch, struct nchandle *target) 1166 { 1167 KKASSERT(nch->ncp->nc_refs > 0); 1168 target->mount = nch->mount; 1169 target->ncp = _cache_get(nch->ncp); 1170 atomic_add_int(&target->mount->mnt_refs, 1); 1171 } 1172 1173 void 1174 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl) 1175 { 1176 KKASSERT(nch->ncp->nc_refs > 0); 1177 target->mount = nch->mount; 1178 target->ncp = _cache_get_maybe_shared(nch->ncp, excl); 1179 atomic_add_int(&target->mount->mnt_refs, 1); 1180 } 1181 1182 /* 1183 * 1184 */ 1185 static __inline 1186 void 1187 _cache_put(struct namecache *ncp) 1188 { 1189 _cache_unlock(ncp); 1190 _cache_drop(ncp); 1191 } 1192 1193 /* 1194 * 1195 */ 1196 void 1197 cache_put(struct nchandle *nch) 1198 { 1199 atomic_add_int(&nch->mount->mnt_refs, -1); 1200 _cache_put(nch->ncp); 1201 nch->ncp = NULL; 1202 nch->mount = NULL; 1203 } 1204 1205 /* 1206 * Resolve an unresolved ncp by associating a vnode with it. If the 1207 * vnode is NULL, a negative cache entry is created. 1208 * 1209 * The ncp should be locked on entry and will remain locked on return. 1210 */ 1211 static 1212 void 1213 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp) 1214 { 1215 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED); 1216 KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE); 1217 1218 if (vp != NULL) { 1219 /* 1220 * Any vp associated with an ncp which has children must 1221 * be held. Any vp associated with a locked ncp must be held. 1222 */ 1223 if (!TAILQ_EMPTY(&ncp->nc_list)) 1224 vhold(vp); 1225 spin_lock(&vp->v_spin); 1226 ncp->nc_vp = vp; 1227 TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode); 1228 spin_unlock(&vp->v_spin); 1229 if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) 1230 vhold(vp); 1231 1232 /* 1233 * Set auxiliary flags 1234 */ 1235 switch(vp->v_type) { 1236 case VDIR: 1237 ncp->nc_flag |= NCF_ISDIR; 1238 break; 1239 case VLNK: 1240 ncp->nc_flag |= NCF_ISSYMLINK; 1241 /* XXX cache the contents of the symlink */ 1242 break; 1243 default: 1244 break; 1245 } 1246 atomic_add_int(&numcache, 1); 1247 ncp->nc_error = 0; 1248 /* XXX: this is a hack to work-around the lack of a real pfs vfs 1249 * implementation*/ 1250 if (mp != NULL) 1251 if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0) 1252 vp->v_pfsmp = mp; 1253 } else { 1254 /* 1255 * When creating a negative cache hit we set the 1256 * namecache_gen. A later resolve will clean out the 1257 * negative cache hit if the mount point's namecache_gen 1258 * has changed. Used by devfs, could also be used by 1259 * other remote FSs. 1260 */ 1261 ncp->nc_vp = NULL; 1262 spin_lock(&ncspin); 1263 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode); 1264 ++numneg; 1265 spin_unlock(&ncspin); 1266 ncp->nc_error = ENOENT; 1267 if (mp) 1268 VFS_NCPGEN_SET(mp, ncp); 1269 } 1270 ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP); 1271 } 1272 1273 /* 1274 * 1275 */ 1276 void 1277 cache_setvp(struct nchandle *nch, struct vnode *vp) 1278 { 1279 _cache_setvp(nch->mount, nch->ncp, vp); 1280 } 1281 1282 /* 1283 * 1284 */ 1285 void 1286 cache_settimeout(struct nchandle *nch, int nticks) 1287 { 1288 struct namecache *ncp = nch->ncp; 1289 1290 if ((ncp->nc_timeout = ticks + nticks) == 0) 1291 ncp->nc_timeout = 1; 1292 } 1293 1294 /* 1295 * Disassociate the vnode or negative-cache association and mark a 1296 * namecache entry as unresolved again. Note that the ncp is still 1297 * left in the hash table and still linked to its parent. 1298 * 1299 * The ncp should be locked and refd on entry and will remain locked and refd 1300 * on return. 1301 * 1302 * This routine is normally never called on a directory containing children. 1303 * However, NFS often does just that in its rename() code as a cop-out to 1304 * avoid complex namespace operations. This disconnects a directory vnode 1305 * from its namecache and can cause the OLDAPI and NEWAPI to get out of 1306 * sync. 1307 * 1308 */ 1309 static 1310 void 1311 _cache_setunresolved(struct namecache *ncp) 1312 { 1313 struct vnode *vp; 1314 1315 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) { 1316 ncp->nc_flag |= NCF_UNRESOLVED; 1317 ncp->nc_timeout = 0; 1318 ncp->nc_error = ENOTCONN; 1319 if ((vp = ncp->nc_vp) != NULL) { 1320 atomic_add_int(&numcache, -1); 1321 spin_lock(&vp->v_spin); 1322 ncp->nc_vp = NULL; 1323 TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode); 1324 spin_unlock(&vp->v_spin); 1325 1326 /* 1327 * Any vp associated with an ncp with children is 1328 * held by that ncp. Any vp associated with a locked 1329 * ncp is held by that ncp. These conditions must be 1330 * undone when the vp is cleared out from the ncp. 1331 */ 1332 if (!TAILQ_EMPTY(&ncp->nc_list)) 1333 vdrop(vp); 1334 if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) 1335 vdrop(vp); 1336 } else { 1337 spin_lock(&ncspin); 1338 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode); 1339 --numneg; 1340 spin_unlock(&ncspin); 1341 } 1342 ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK); 1343 } 1344 } 1345 1346 /* 1347 * The cache_nresolve() code calls this function to automatically 1348 * set a resolved cache element to unresolved if it has timed out 1349 * or if it is a negative cache hit and the mount point namecache_gen 1350 * has changed. 1351 */ 1352 static __inline int 1353 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp) 1354 { 1355 /* 1356 * Try to zap entries that have timed out. We have 1357 * to be careful here because locked leafs may depend 1358 * on the vnode remaining intact in a parent, so only 1359 * do this under very specific conditions. 1360 */ 1361 if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 && 1362 TAILQ_EMPTY(&ncp->nc_list)) { 1363 return 1; 1364 } 1365 1366 /* 1367 * If a resolved negative cache hit is invalid due to 1368 * the mount's namecache generation being bumped, zap it. 1369 */ 1370 if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) { 1371 return 1; 1372 } 1373 1374 /* 1375 * Otherwise we are good 1376 */ 1377 return 0; 1378 } 1379 1380 static __inline void 1381 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp) 1382 { 1383 /* 1384 * Already in an unresolved state, nothing to do. 1385 */ 1386 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) { 1387 if (_cache_auto_unresolve_test(mp, ncp)) 1388 _cache_setunresolved(ncp); 1389 } 1390 } 1391 1392 /* 1393 * 1394 */ 1395 void 1396 cache_setunresolved(struct nchandle *nch) 1397 { 1398 _cache_setunresolved(nch->ncp); 1399 } 1400 1401 /* 1402 * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist 1403 * looking for matches. This flag tells the lookup code when it must 1404 * check for a mount linkage and also prevents the directories in question 1405 * from being deleted or renamed. 1406 */ 1407 static 1408 int 1409 cache_clrmountpt_callback(struct mount *mp, void *data) 1410 { 1411 struct nchandle *nch = data; 1412 1413 if (mp->mnt_ncmounton.ncp == nch->ncp) 1414 return(1); 1415 if (mp->mnt_ncmountpt.ncp == nch->ncp) 1416 return(1); 1417 return(0); 1418 } 1419 1420 /* 1421 * 1422 */ 1423 void 1424 cache_clrmountpt(struct nchandle *nch) 1425 { 1426 int count; 1427 1428 count = mountlist_scan(cache_clrmountpt_callback, nch, 1429 MNTSCAN_FORWARD|MNTSCAN_NOBUSY); 1430 if (count == 0) 1431 nch->ncp->nc_flag &= ~NCF_ISMOUNTPT; 1432 } 1433 1434 /* 1435 * Invalidate portions of the namecache topology given a starting entry. 1436 * The passed ncp is set to an unresolved state and: 1437 * 1438 * The passed ncp must be referencxed and locked. The routine may unlock 1439 * and relock ncp several times, and will recheck the children and loop 1440 * to catch races. When done the passed ncp will be returned with the 1441 * reference and lock intact. 1442 * 1443 * CINV_DESTROY - Set a flag in the passed ncp entry indicating 1444 * that the physical underlying nodes have been 1445 * destroyed... as in deleted. For example, when 1446 * a directory is removed. This will cause record 1447 * lookups on the name to no longer be able to find 1448 * the record and tells the resolver to return failure 1449 * rather then trying to resolve through the parent. 1450 * 1451 * The topology itself, including ncp->nc_name, 1452 * remains intact. 1453 * 1454 * This only applies to the passed ncp, if CINV_CHILDREN 1455 * is specified the children are not flagged. 1456 * 1457 * CINV_CHILDREN - Set all children (recursively) to an unresolved 1458 * state as well. 1459 * 1460 * Note that this will also have the side effect of 1461 * cleaning out any unreferenced nodes in the topology 1462 * from the leaves up as the recursion backs out. 1463 * 1464 * Note that the topology for any referenced nodes remains intact, but 1465 * the nodes will be marked as having been destroyed and will be set 1466 * to an unresolved state. 1467 * 1468 * It is possible for cache_inval() to race a cache_resolve(), meaning that 1469 * the namecache entry may not actually be invalidated on return if it was 1470 * revalidated while recursing down into its children. This code guarentees 1471 * that the node(s) will go through an invalidation cycle, but does not 1472 * guarentee that they will remain in an invalidated state. 1473 * 1474 * Returns non-zero if a revalidation was detected during the invalidation 1475 * recursion, zero otherwise. Note that since only the original ncp is 1476 * locked the revalidation ultimately can only indicate that the original ncp 1477 * *MIGHT* no have been reresolved. 1478 * 1479 * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we 1480 * have to avoid blowing out the kernel stack. We do this by saving the 1481 * deep namecache node and aborting the recursion, then re-recursing at that 1482 * node using a depth-first algorithm in order to allow multiple deep 1483 * recursions to chain through each other, then we restart the invalidation 1484 * from scratch. 1485 */ 1486 1487 struct cinvtrack { 1488 struct namecache *resume_ncp; 1489 int depth; 1490 }; 1491 1492 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *); 1493 1494 static 1495 int 1496 _cache_inval(struct namecache *ncp, int flags) 1497 { 1498 struct cinvtrack track; 1499 struct namecache *ncp2; 1500 int r; 1501 1502 track.depth = 0; 1503 track.resume_ncp = NULL; 1504 1505 for (;;) { 1506 r = _cache_inval_internal(ncp, flags, &track); 1507 if (track.resume_ncp == NULL) 1508 break; 1509 kprintf("Warning: deep namecache recursion at %s\n", 1510 ncp->nc_name); 1511 _cache_unlock(ncp); 1512 while ((ncp2 = track.resume_ncp) != NULL) { 1513 track.resume_ncp = NULL; 1514 _cache_lock(ncp2); 1515 _cache_inval_internal(ncp2, flags & ~CINV_DESTROY, 1516 &track); 1517 _cache_put(ncp2); 1518 } 1519 _cache_lock(ncp); 1520 } 1521 return(r); 1522 } 1523 1524 int 1525 cache_inval(struct nchandle *nch, int flags) 1526 { 1527 return(_cache_inval(nch->ncp, flags)); 1528 } 1529 1530 /* 1531 * Helper for _cache_inval(). The passed ncp is refd and locked and 1532 * remains that way on return, but may be unlocked/relocked multiple 1533 * times by the routine. 1534 */ 1535 static int 1536 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track) 1537 { 1538 struct namecache *kid; 1539 struct namecache *nextkid; 1540 int rcnt = 0; 1541 1542 KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE); 1543 1544 _cache_setunresolved(ncp); 1545 if (flags & CINV_DESTROY) 1546 ncp->nc_flag |= NCF_DESTROYED; 1547 if ((flags & CINV_CHILDREN) && 1548 (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL 1549 ) { 1550 _cache_hold(kid); 1551 if (++track->depth > MAX_RECURSION_DEPTH) { 1552 track->resume_ncp = ncp; 1553 _cache_hold(ncp); 1554 ++rcnt; 1555 } 1556 _cache_unlock(ncp); 1557 while (kid) { 1558 if (track->resume_ncp) { 1559 _cache_drop(kid); 1560 break; 1561 } 1562 if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL) 1563 _cache_hold(nextkid); 1564 if ((kid->nc_flag & NCF_UNRESOLVED) == 0 || 1565 TAILQ_FIRST(&kid->nc_list) 1566 ) { 1567 _cache_lock(kid); 1568 rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track); 1569 _cache_unlock(kid); 1570 } 1571 _cache_drop(kid); 1572 kid = nextkid; 1573 } 1574 --track->depth; 1575 _cache_lock(ncp); 1576 } 1577 1578 /* 1579 * Someone could have gotten in there while ncp was unlocked, 1580 * retry if so. 1581 */ 1582 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) 1583 ++rcnt; 1584 return (rcnt); 1585 } 1586 1587 /* 1588 * Invalidate a vnode's namecache associations. To avoid races against 1589 * the resolver we do not invalidate a node which we previously invalidated 1590 * but which was then re-resolved while we were in the invalidation loop. 1591 * 1592 * Returns non-zero if any namecache entries remain after the invalidation 1593 * loop completed. 1594 * 1595 * NOTE: Unlike the namecache topology which guarentees that ncp's will not 1596 * be ripped out of the topology while held, the vnode's v_namecache 1597 * list has no such restriction. NCP's can be ripped out of the list 1598 * at virtually any time if not locked, even if held. 1599 * 1600 * In addition, the v_namecache list itself must be locked via 1601 * the vnode's spinlock. 1602 */ 1603 int 1604 cache_inval_vp(struct vnode *vp, int flags) 1605 { 1606 struct namecache *ncp; 1607 struct namecache *next; 1608 1609 restart: 1610 spin_lock(&vp->v_spin); 1611 ncp = TAILQ_FIRST(&vp->v_namecache); 1612 if (ncp) 1613 _cache_hold(ncp); 1614 while (ncp) { 1615 /* loop entered with ncp held and vp spin-locked */ 1616 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL) 1617 _cache_hold(next); 1618 spin_unlock(&vp->v_spin); 1619 _cache_lock(ncp); 1620 if (ncp->nc_vp != vp) { 1621 kprintf("Warning: cache_inval_vp: race-A detected on " 1622 "%s\n", ncp->nc_name); 1623 _cache_put(ncp); 1624 if (next) 1625 _cache_drop(next); 1626 goto restart; 1627 } 1628 _cache_inval(ncp, flags); 1629 _cache_put(ncp); /* also releases reference */ 1630 ncp = next; 1631 spin_lock(&vp->v_spin); 1632 if (ncp && ncp->nc_vp != vp) { 1633 spin_unlock(&vp->v_spin); 1634 kprintf("Warning: cache_inval_vp: race-B detected on " 1635 "%s\n", ncp->nc_name); 1636 _cache_drop(ncp); 1637 goto restart; 1638 } 1639 } 1640 spin_unlock(&vp->v_spin); 1641 return(TAILQ_FIRST(&vp->v_namecache) != NULL); 1642 } 1643 1644 /* 1645 * This routine is used instead of the normal cache_inval_vp() when we 1646 * are trying to recycle otherwise good vnodes. 1647 * 1648 * Return 0 on success, non-zero if not all namecache records could be 1649 * disassociated from the vnode (for various reasons). 1650 */ 1651 int 1652 cache_inval_vp_nonblock(struct vnode *vp) 1653 { 1654 struct namecache *ncp; 1655 struct namecache *next; 1656 1657 spin_lock(&vp->v_spin); 1658 ncp = TAILQ_FIRST(&vp->v_namecache); 1659 if (ncp) 1660 _cache_hold(ncp); 1661 while (ncp) { 1662 /* loop entered with ncp held */ 1663 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL) 1664 _cache_hold(next); 1665 spin_unlock(&vp->v_spin); 1666 if (_cache_lock_nonblock(ncp)) { 1667 _cache_drop(ncp); 1668 if (next) 1669 _cache_drop(next); 1670 goto done; 1671 } 1672 if (ncp->nc_vp != vp) { 1673 kprintf("Warning: cache_inval_vp: race-A detected on " 1674 "%s\n", ncp->nc_name); 1675 _cache_put(ncp); 1676 if (next) 1677 _cache_drop(next); 1678 goto done; 1679 } 1680 _cache_inval(ncp, 0); 1681 _cache_put(ncp); /* also releases reference */ 1682 ncp = next; 1683 spin_lock(&vp->v_spin); 1684 if (ncp && ncp->nc_vp != vp) { 1685 spin_unlock(&vp->v_spin); 1686 kprintf("Warning: cache_inval_vp: race-B detected on " 1687 "%s\n", ncp->nc_name); 1688 _cache_drop(ncp); 1689 goto done; 1690 } 1691 } 1692 spin_unlock(&vp->v_spin); 1693 done: 1694 return(TAILQ_FIRST(&vp->v_namecache) != NULL); 1695 } 1696 1697 /* 1698 * The source ncp has been renamed to the target ncp. Both fncp and tncp 1699 * must be locked. The target ncp is destroyed (as a normal rename-over 1700 * would destroy the target file or directory). 1701 * 1702 * Because there may be references to the source ncp we cannot copy its 1703 * contents to the target. Instead the source ncp is relinked as the target 1704 * and the target ncp is removed from the namecache topology. 1705 */ 1706 void 1707 cache_rename(struct nchandle *fnch, struct nchandle *tnch) 1708 { 1709 struct namecache *fncp = fnch->ncp; 1710 struct namecache *tncp = tnch->ncp; 1711 struct namecache *tncp_par; 1712 struct nchash_head *nchpp; 1713 u_int32_t hash; 1714 char *oname; 1715 char *nname; 1716 1717 if (tncp->nc_nlen) { 1718 nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHE, M_WAITOK); 1719 bcopy(tncp->nc_name, nname, tncp->nc_nlen); 1720 nname[tncp->nc_nlen] = 0; 1721 } else { 1722 nname = NULL; 1723 } 1724 1725 /* 1726 * Rename fncp (unlink) 1727 */ 1728 _cache_unlink_parent(fncp); 1729 oname = fncp->nc_name; 1730 fncp->nc_name = nname; 1731 fncp->nc_nlen = tncp->nc_nlen; 1732 if (oname) 1733 kfree(oname, M_VFSCACHE); 1734 1735 tncp_par = tncp->nc_parent; 1736 _cache_hold(tncp_par); 1737 _cache_lock(tncp_par); 1738 1739 /* 1740 * Rename fncp (relink) 1741 */ 1742 hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT); 1743 hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash); 1744 nchpp = NCHHASH(hash); 1745 1746 spin_lock(&nchpp->spin); 1747 _cache_link_parent(fncp, tncp_par, nchpp); 1748 spin_unlock(&nchpp->spin); 1749 1750 _cache_put(tncp_par); 1751 1752 /* 1753 * Get rid of the overwritten tncp (unlink) 1754 */ 1755 _cache_unlink(tncp); 1756 } 1757 1758 /* 1759 * Perform actions consistent with unlinking a file. The passed-in ncp 1760 * must be locked. 1761 * 1762 * The ncp is marked DESTROYED so it no longer shows up in searches, 1763 * and will be physically deleted when the vnode goes away. 1764 * 1765 * If the related vnode has no refs then we cycle it through vget()/vput() 1766 * to (possibly if we don't have a ref race) trigger a deactivation, 1767 * allowing the VFS to trivially detect and recycle the deleted vnode 1768 * via VOP_INACTIVE(). 1769 * 1770 * NOTE: _cache_rename() will automatically call _cache_unlink() on the 1771 * target ncp. 1772 */ 1773 void 1774 cache_unlink(struct nchandle *nch) 1775 { 1776 _cache_unlink(nch->ncp); 1777 } 1778 1779 static void 1780 _cache_unlink(struct namecache *ncp) 1781 { 1782 struct vnode *vp; 1783 1784 /* 1785 * Causes lookups to fail and allows another ncp with the same 1786 * name to be created under ncp->nc_parent. 1787 */ 1788 ncp->nc_flag |= NCF_DESTROYED; 1789 1790 /* 1791 * Attempt to trigger a deactivation. 1792 */ 1793 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 && 1794 (vp = ncp->nc_vp) != NULL && 1795 !sysref_isactive(&vp->v_sysref)) { 1796 if (vget(vp, LK_SHARED) == 0) 1797 vput(vp); 1798 } 1799 } 1800 1801 /* 1802 * vget the vnode associated with the namecache entry. Resolve the namecache 1803 * entry if necessary. The passed ncp must be referenced and locked. 1804 * 1805 * lk_type may be LK_SHARED, LK_EXCLUSIVE. A ref'd, possibly locked 1806 * (depending on the passed lk_type) will be returned in *vpp with an error 1807 * of 0, or NULL will be returned in *vpp with a non-0 error code. The 1808 * most typical error is ENOENT, meaning that the ncp represents a negative 1809 * cache hit and there is no vnode to retrieve, but other errors can occur 1810 * too. 1811 * 1812 * The vget() can race a reclaim. If this occurs we re-resolve the 1813 * namecache entry. 1814 * 1815 * There are numerous places in the kernel where vget() is called on a 1816 * vnode while one or more of its namecache entries is locked. Releasing 1817 * a vnode never deadlocks against locked namecache entries (the vnode 1818 * will not get recycled while referenced ncp's exist). This means we 1819 * can safely acquire the vnode. In fact, we MUST NOT release the ncp 1820 * lock when acquiring the vp lock or we might cause a deadlock. 1821 * 1822 * NOTE: The passed-in ncp must be locked exclusively if it is initially 1823 * unresolved. If a reclaim race occurs the passed-in ncp will be 1824 * relocked exclusively before being re-resolved. 1825 */ 1826 int 1827 cache_vget(struct nchandle *nch, struct ucred *cred, 1828 int lk_type, struct vnode **vpp) 1829 { 1830 struct namecache *ncp; 1831 struct vnode *vp; 1832 int error; 1833 1834 ncp = nch->ncp; 1835 again: 1836 vp = NULL; 1837 if (ncp->nc_flag & NCF_UNRESOLVED) 1838 error = cache_resolve(nch, cred); 1839 else 1840 error = 0; 1841 1842 if (error == 0 && (vp = ncp->nc_vp) != NULL) { 1843 error = vget(vp, lk_type); 1844 if (error) { 1845 /* 1846 * VRECLAIM race 1847 */ 1848 if (error == ENOENT) { 1849 kprintf("Warning: vnode reclaim race detected " 1850 "in cache_vget on %p (%s)\n", 1851 vp, ncp->nc_name); 1852 _cache_unlock(ncp); 1853 _cache_lock(ncp); 1854 _cache_setunresolved(ncp); 1855 goto again; 1856 } 1857 1858 /* 1859 * Not a reclaim race, some other error. 1860 */ 1861 KKASSERT(ncp->nc_vp == vp); 1862 vp = NULL; 1863 } else { 1864 KKASSERT(ncp->nc_vp == vp); 1865 KKASSERT((vp->v_flag & VRECLAIMED) == 0); 1866 } 1867 } 1868 if (error == 0 && vp == NULL) 1869 error = ENOENT; 1870 *vpp = vp; 1871 return(error); 1872 } 1873 1874 /* 1875 * Similar to cache_vget() but only acquires a ref on the vnode. 1876 * 1877 * NOTE: The passed-in ncp must be locked exclusively if it is initially 1878 * unresolved. If a reclaim race occurs the passed-in ncp will be 1879 * relocked exclusively before being re-resolved. 1880 */ 1881 int 1882 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp) 1883 { 1884 struct namecache *ncp; 1885 struct vnode *vp; 1886 int error; 1887 1888 ncp = nch->ncp; 1889 again: 1890 vp = NULL; 1891 if (ncp->nc_flag & NCF_UNRESOLVED) 1892 error = cache_resolve(nch, cred); 1893 else 1894 error = 0; 1895 1896 if (error == 0 && (vp = ncp->nc_vp) != NULL) { 1897 error = vget(vp, LK_SHARED); 1898 if (error) { 1899 /* 1900 * VRECLAIM race 1901 */ 1902 if (error == ENOENT) { 1903 kprintf("Warning: vnode reclaim race detected " 1904 "in cache_vget on %p (%s)\n", 1905 vp, ncp->nc_name); 1906 _cache_unlock(ncp); 1907 _cache_lock(ncp); 1908 _cache_setunresolved(ncp); 1909 goto again; 1910 } 1911 1912 /* 1913 * Not a reclaim race, some other error. 1914 */ 1915 KKASSERT(ncp->nc_vp == vp); 1916 vp = NULL; 1917 } else { 1918 KKASSERT(ncp->nc_vp == vp); 1919 KKASSERT((vp->v_flag & VRECLAIMED) == 0); 1920 /* caller does not want a lock */ 1921 vn_unlock(vp); 1922 } 1923 } 1924 if (error == 0 && vp == NULL) 1925 error = ENOENT; 1926 *vpp = vp; 1927 return(error); 1928 } 1929 1930 /* 1931 * Return a referenced vnode representing the parent directory of 1932 * ncp. 1933 * 1934 * Because the caller has locked the ncp it should not be possible for 1935 * the parent ncp to go away. However, the parent can unresolve its 1936 * dvp at any time so we must be able to acquire a lock on the parent 1937 * to safely access nc_vp. 1938 * 1939 * We have to leave par unlocked when vget()ing dvp to avoid a deadlock, 1940 * so use vhold()/vdrop() while holding the lock to prevent dvp from 1941 * getting destroyed. 1942 * 1943 * NOTE: vhold() is allowed when dvp has 0 refs if we hold a 1944 * lock on the ncp in question.. 1945 */ 1946 static struct vnode * 1947 cache_dvpref(struct namecache *ncp) 1948 { 1949 struct namecache *par; 1950 struct vnode *dvp; 1951 1952 dvp = NULL; 1953 if ((par = ncp->nc_parent) != NULL) { 1954 _cache_hold(par); 1955 _cache_lock(par); 1956 if ((par->nc_flag & NCF_UNRESOLVED) == 0) { 1957 if ((dvp = par->nc_vp) != NULL) 1958 vhold(dvp); 1959 } 1960 _cache_unlock(par); 1961 if (dvp) { 1962 if (vget(dvp, LK_SHARED) == 0) { 1963 vn_unlock(dvp); 1964 vdrop(dvp); 1965 /* return refd, unlocked dvp */ 1966 } else { 1967 vdrop(dvp); 1968 dvp = NULL; 1969 } 1970 } 1971 _cache_drop(par); 1972 } 1973 return(dvp); 1974 } 1975 1976 /* 1977 * Convert a directory vnode to a namecache record without any other 1978 * knowledge of the topology. This ONLY works with directory vnodes and 1979 * is ONLY used by the NFS server. dvp must be refd but unlocked, and the 1980 * returned ncp (if not NULL) will be held and unlocked. 1981 * 1982 * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned. 1983 * If 'makeit' is 1 we attempt to track-down and create the namecache topology 1984 * for dvp. This will fail only if the directory has been deleted out from 1985 * under the caller. 1986 * 1987 * Callers must always check for a NULL return no matter the value of 'makeit'. 1988 * 1989 * To avoid underflowing the kernel stack each recursive call increments 1990 * the makeit variable. 1991 */ 1992 1993 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred, 1994 struct vnode *dvp, char *fakename); 1995 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred, 1996 struct vnode **saved_dvp); 1997 1998 int 1999 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit, 2000 struct nchandle *nch) 2001 { 2002 struct vnode *saved_dvp; 2003 struct vnode *pvp; 2004 char *fakename; 2005 int error; 2006 2007 nch->ncp = NULL; 2008 nch->mount = dvp->v_mount; 2009 saved_dvp = NULL; 2010 fakename = NULL; 2011 2012 /* 2013 * Handle the makeit == 0 degenerate case 2014 */ 2015 if (makeit == 0) { 2016 spin_lock_shared(&dvp->v_spin); 2017 nch->ncp = TAILQ_FIRST(&dvp->v_namecache); 2018 if (nch->ncp) 2019 cache_hold(nch); 2020 spin_unlock_shared(&dvp->v_spin); 2021 } 2022 2023 /* 2024 * Loop until resolution, inside code will break out on error. 2025 */ 2026 while (makeit) { 2027 /* 2028 * Break out if we successfully acquire a working ncp. 2029 */ 2030 spin_lock_shared(&dvp->v_spin); 2031 nch->ncp = TAILQ_FIRST(&dvp->v_namecache); 2032 if (nch->ncp) { 2033 cache_hold(nch); 2034 spin_unlock_shared(&dvp->v_spin); 2035 break; 2036 } 2037 spin_unlock_shared(&dvp->v_spin); 2038 2039 /* 2040 * If dvp is the root of its filesystem it should already 2041 * have a namecache pointer associated with it as a side 2042 * effect of the mount, but it may have been disassociated. 2043 */ 2044 if (dvp->v_flag & VROOT) { 2045 nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp); 2046 error = cache_resolve_mp(nch->mount); 2047 _cache_put(nch->ncp); 2048 if (ncvp_debug) { 2049 kprintf("cache_fromdvp: resolve root of mount %p error %d", 2050 dvp->v_mount, error); 2051 } 2052 if (error) { 2053 if (ncvp_debug) 2054 kprintf(" failed\n"); 2055 nch->ncp = NULL; 2056 break; 2057 } 2058 if (ncvp_debug) 2059 kprintf(" succeeded\n"); 2060 continue; 2061 } 2062 2063 /* 2064 * If we are recursed too deeply resort to an O(n^2) 2065 * algorithm to resolve the namecache topology. The 2066 * resolved pvp is left referenced in saved_dvp to 2067 * prevent the tree from being destroyed while we loop. 2068 */ 2069 if (makeit > 20) { 2070 error = cache_fromdvp_try(dvp, cred, &saved_dvp); 2071 if (error) { 2072 kprintf("lookupdotdot(longpath) failed %d " 2073 "dvp %p\n", error, dvp); 2074 nch->ncp = NULL; 2075 break; 2076 } 2077 continue; 2078 } 2079 2080 /* 2081 * Get the parent directory and resolve its ncp. 2082 */ 2083 if (fakename) { 2084 kfree(fakename, M_TEMP); 2085 fakename = NULL; 2086 } 2087 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred, 2088 &fakename); 2089 if (error) { 2090 kprintf("lookupdotdot failed %d dvp %p\n", error, dvp); 2091 break; 2092 } 2093 vn_unlock(pvp); 2094 2095 /* 2096 * Reuse makeit as a recursion depth counter. On success 2097 * nch will be fully referenced. 2098 */ 2099 cache_fromdvp(pvp, cred, makeit + 1, nch); 2100 vrele(pvp); 2101 if (nch->ncp == NULL) 2102 break; 2103 2104 /* 2105 * Do an inefficient scan of pvp (embodied by ncp) to look 2106 * for dvp. This will create a namecache record for dvp on 2107 * success. We loop up to recheck on success. 2108 * 2109 * ncp and dvp are both held but not locked. 2110 */ 2111 error = cache_inefficient_scan(nch, cred, dvp, fakename); 2112 if (error) { 2113 kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n", 2114 pvp, nch->ncp->nc_name, dvp); 2115 cache_drop(nch); 2116 /* nch was NULLed out, reload mount */ 2117 nch->mount = dvp->v_mount; 2118 break; 2119 } 2120 if (ncvp_debug) { 2121 kprintf("cache_fromdvp: scan %p (%s) succeeded\n", 2122 pvp, nch->ncp->nc_name); 2123 } 2124 cache_drop(nch); 2125 /* nch was NULLed out, reload mount */ 2126 nch->mount = dvp->v_mount; 2127 } 2128 2129 /* 2130 * If nch->ncp is non-NULL it will have been held already. 2131 */ 2132 if (fakename) 2133 kfree(fakename, M_TEMP); 2134 if (saved_dvp) 2135 vrele(saved_dvp); 2136 if (nch->ncp) 2137 return (0); 2138 return (EINVAL); 2139 } 2140 2141 /* 2142 * Go up the chain of parent directories until we find something 2143 * we can resolve into the namecache. This is very inefficient. 2144 */ 2145 static 2146 int 2147 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred, 2148 struct vnode **saved_dvp) 2149 { 2150 struct nchandle nch; 2151 struct vnode *pvp; 2152 int error; 2153 static time_t last_fromdvp_report; 2154 char *fakename; 2155 2156 /* 2157 * Loop getting the parent directory vnode until we get something we 2158 * can resolve in the namecache. 2159 */ 2160 vref(dvp); 2161 nch.mount = dvp->v_mount; 2162 nch.ncp = NULL; 2163 fakename = NULL; 2164 2165 for (;;) { 2166 if (fakename) { 2167 kfree(fakename, M_TEMP); 2168 fakename = NULL; 2169 } 2170 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred, 2171 &fakename); 2172 if (error) { 2173 vrele(dvp); 2174 break; 2175 } 2176 vn_unlock(pvp); 2177 spin_lock_shared(&pvp->v_spin); 2178 if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) { 2179 _cache_hold(nch.ncp); 2180 spin_unlock_shared(&pvp->v_spin); 2181 vrele(pvp); 2182 break; 2183 } 2184 spin_unlock_shared(&pvp->v_spin); 2185 if (pvp->v_flag & VROOT) { 2186 nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp); 2187 error = cache_resolve_mp(nch.mount); 2188 _cache_unlock(nch.ncp); 2189 vrele(pvp); 2190 if (error) { 2191 _cache_drop(nch.ncp); 2192 nch.ncp = NULL; 2193 vrele(dvp); 2194 } 2195 break; 2196 } 2197 vrele(dvp); 2198 dvp = pvp; 2199 } 2200 if (error == 0) { 2201 if (last_fromdvp_report != time_uptime) { 2202 last_fromdvp_report = time_uptime; 2203 kprintf("Warning: extremely inefficient path " 2204 "resolution on %s\n", 2205 nch.ncp->nc_name); 2206 } 2207 error = cache_inefficient_scan(&nch, cred, dvp, fakename); 2208 2209 /* 2210 * Hopefully dvp now has a namecache record associated with 2211 * it. Leave it referenced to prevent the kernel from 2212 * recycling the vnode. Otherwise extremely long directory 2213 * paths could result in endless recycling. 2214 */ 2215 if (*saved_dvp) 2216 vrele(*saved_dvp); 2217 *saved_dvp = dvp; 2218 _cache_drop(nch.ncp); 2219 } 2220 if (fakename) 2221 kfree(fakename, M_TEMP); 2222 return (error); 2223 } 2224 2225 /* 2226 * Do an inefficient scan of the directory represented by ncp looking for 2227 * the directory vnode dvp. ncp must be held but not locked on entry and 2228 * will be held on return. dvp must be refd but not locked on entry and 2229 * will remain refd on return. 2230 * 2231 * Why do this at all? Well, due to its stateless nature the NFS server 2232 * converts file handles directly to vnodes without necessarily going through 2233 * the namecache ops that would otherwise create the namecache topology 2234 * leading to the vnode. We could either (1) Change the namecache algorithms 2235 * to allow disconnect namecache records that are re-merged opportunistically, 2236 * or (2) Make the NFS server backtrack and scan to recover a connected 2237 * namecache topology in order to then be able to issue new API lookups. 2238 * 2239 * It turns out that (1) is a huge mess. It takes a nice clean set of 2240 * namecache algorithms and introduces a lot of complication in every subsystem 2241 * that calls into the namecache to deal with the re-merge case, especially 2242 * since we are using the namecache to placehold negative lookups and the 2243 * vnode might not be immediately assigned. (2) is certainly far less 2244 * efficient then (1), but since we are only talking about directories here 2245 * (which are likely to remain cached), the case does not actually run all 2246 * that often and has the supreme advantage of not polluting the namecache 2247 * algorithms. 2248 * 2249 * If a fakename is supplied just construct a namecache entry using the 2250 * fake name. 2251 */ 2252 static int 2253 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred, 2254 struct vnode *dvp, char *fakename) 2255 { 2256 struct nlcomponent nlc; 2257 struct nchandle rncp; 2258 struct dirent *den; 2259 struct vnode *pvp; 2260 struct vattr vat; 2261 struct iovec iov; 2262 struct uio uio; 2263 int blksize; 2264 int eofflag; 2265 int bytes; 2266 char *rbuf; 2267 int error; 2268 2269 vat.va_blocksize = 0; 2270 if ((error = VOP_GETATTR(dvp, &vat)) != 0) 2271 return (error); 2272 cache_lock(nch); 2273 error = cache_vref(nch, cred, &pvp); 2274 cache_unlock(nch); 2275 if (error) 2276 return (error); 2277 if (ncvp_debug) { 2278 kprintf("inefficient_scan: directory iosize %ld " 2279 "vattr fileid = %lld\n", 2280 vat.va_blocksize, 2281 (long long)vat.va_fileid); 2282 } 2283 2284 /* 2285 * Use the supplied fakename if not NULL. Fake names are typically 2286 * not in the actual filesystem hierarchy. This is used by HAMMER 2287 * to glue @@timestamp recursions together. 2288 */ 2289 if (fakename) { 2290 nlc.nlc_nameptr = fakename; 2291 nlc.nlc_namelen = strlen(fakename); 2292 rncp = cache_nlookup(nch, &nlc); 2293 goto done; 2294 } 2295 2296 if ((blksize = vat.va_blocksize) == 0) 2297 blksize = DEV_BSIZE; 2298 rbuf = kmalloc(blksize, M_TEMP, M_WAITOK); 2299 rncp.ncp = NULL; 2300 2301 eofflag = 0; 2302 uio.uio_offset = 0; 2303 again: 2304 iov.iov_base = rbuf; 2305 iov.iov_len = blksize; 2306 uio.uio_iov = &iov; 2307 uio.uio_iovcnt = 1; 2308 uio.uio_resid = blksize; 2309 uio.uio_segflg = UIO_SYSSPACE; 2310 uio.uio_rw = UIO_READ; 2311 uio.uio_td = curthread; 2312 2313 if (ncvp_debug >= 2) 2314 kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset); 2315 error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL); 2316 if (error == 0) { 2317 den = (struct dirent *)rbuf; 2318 bytes = blksize - uio.uio_resid; 2319 2320 while (bytes > 0) { 2321 if (ncvp_debug >= 2) { 2322 kprintf("cache_inefficient_scan: %*.*s\n", 2323 den->d_namlen, den->d_namlen, 2324 den->d_name); 2325 } 2326 if (den->d_type != DT_WHT && 2327 den->d_ino == vat.va_fileid) { 2328 if (ncvp_debug) { 2329 kprintf("cache_inefficient_scan: " 2330 "MATCHED inode %lld path %s/%*.*s\n", 2331 (long long)vat.va_fileid, 2332 nch->ncp->nc_name, 2333 den->d_namlen, den->d_namlen, 2334 den->d_name); 2335 } 2336 nlc.nlc_nameptr = den->d_name; 2337 nlc.nlc_namelen = den->d_namlen; 2338 rncp = cache_nlookup(nch, &nlc); 2339 KKASSERT(rncp.ncp != NULL); 2340 break; 2341 } 2342 bytes -= _DIRENT_DIRSIZ(den); 2343 den = _DIRENT_NEXT(den); 2344 } 2345 if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize) 2346 goto again; 2347 } 2348 kfree(rbuf, M_TEMP); 2349 done: 2350 vrele(pvp); 2351 if (rncp.ncp) { 2352 if (rncp.ncp->nc_flag & NCF_UNRESOLVED) { 2353 _cache_setvp(rncp.mount, rncp.ncp, dvp); 2354 if (ncvp_debug >= 2) { 2355 kprintf("cache_inefficient_scan: setvp %s/%s = %p\n", 2356 nch->ncp->nc_name, rncp.ncp->nc_name, dvp); 2357 } 2358 } else { 2359 if (ncvp_debug >= 2) { 2360 kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n", 2361 nch->ncp->nc_name, rncp.ncp->nc_name, dvp, 2362 rncp.ncp->nc_vp); 2363 } 2364 } 2365 if (rncp.ncp->nc_vp == NULL) 2366 error = rncp.ncp->nc_error; 2367 /* 2368 * Release rncp after a successful nlookup. rncp was fully 2369 * referenced. 2370 */ 2371 cache_put(&rncp); 2372 } else { 2373 kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n", 2374 dvp, nch->ncp->nc_name); 2375 error = ENOENT; 2376 } 2377 return (error); 2378 } 2379 2380 /* 2381 * Zap a namecache entry. The ncp is unconditionally set to an unresolved 2382 * state, which disassociates it from its vnode or ncneglist. 2383 * 2384 * Then, if there are no additional references to the ncp and no children, 2385 * the ncp is removed from the topology and destroyed. 2386 * 2387 * References and/or children may exist if the ncp is in the middle of the 2388 * topology, preventing the ncp from being destroyed. 2389 * 2390 * This function must be called with the ncp held and locked and will unlock 2391 * and drop it during zapping. 2392 * 2393 * If nonblock is non-zero and the parent ncp cannot be locked we give up. 2394 * This case can occur in the cache_drop() path. 2395 * 2396 * This function may returned a held (but NOT locked) parent node which the 2397 * caller must drop. We do this so _cache_drop() can loop, to avoid 2398 * blowing out the kernel stack. 2399 * 2400 * WARNING! For MPSAFE operation this routine must acquire up to three 2401 * spin locks to be able to safely test nc_refs. Lock order is 2402 * very important. 2403 * 2404 * hash spinlock if on hash list 2405 * parent spinlock if child of parent 2406 * (the ncp is unresolved so there is no vnode association) 2407 */ 2408 static struct namecache * 2409 cache_zap(struct namecache *ncp, int nonblock) 2410 { 2411 struct namecache *par; 2412 struct vnode *dropvp; 2413 int refs; 2414 2415 /* 2416 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED. 2417 */ 2418 _cache_setunresolved(ncp); 2419 2420 /* 2421 * Try to scrap the entry and possibly tail-recurse on its parent. 2422 * We only scrap unref'd (other then our ref) unresolved entries, 2423 * we do not scrap 'live' entries. 2424 * 2425 * Note that once the spinlocks are acquired if nc_refs == 1 no 2426 * other references are possible. If it isn't, however, we have 2427 * to decrement but also be sure to avoid a 1->0 transition. 2428 */ 2429 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED); 2430 KKASSERT(ncp->nc_refs > 0); 2431 2432 /* 2433 * Acquire locks. Note that the parent can't go away while we hold 2434 * a child locked. 2435 */ 2436 if ((par = ncp->nc_parent) != NULL) { 2437 if (nonblock) { 2438 for (;;) { 2439 if (_cache_lock_nonblock(par) == 0) 2440 break; 2441 refs = ncp->nc_refs; 2442 ncp->nc_flag |= NCF_DEFEREDZAP; 2443 ++numdefered; /* MP race ok */ 2444 if (atomic_cmpset_int(&ncp->nc_refs, 2445 refs, refs - 1)) { 2446 _cache_unlock(ncp); 2447 return(NULL); 2448 } 2449 cpu_pause(); 2450 } 2451 _cache_hold(par); 2452 } else { 2453 _cache_hold(par); 2454 _cache_lock(par); 2455 } 2456 spin_lock(&ncp->nc_head->spin); 2457 } 2458 2459 /* 2460 * If someone other then us has a ref or we have children 2461 * we cannot zap the entry. The 1->0 transition and any 2462 * further list operation is protected by the spinlocks 2463 * we have acquired but other transitions are not. 2464 */ 2465 for (;;) { 2466 refs = ncp->nc_refs; 2467 if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list)) 2468 break; 2469 if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) { 2470 if (par) { 2471 spin_unlock(&ncp->nc_head->spin); 2472 _cache_put(par); 2473 } 2474 _cache_unlock(ncp); 2475 return(NULL); 2476 } 2477 cpu_pause(); 2478 } 2479 2480 /* 2481 * We are the only ref and with the spinlocks held no further 2482 * refs can be acquired by others. 2483 * 2484 * Remove us from the hash list and parent list. We have to 2485 * drop a ref on the parent's vp if the parent's list becomes 2486 * empty. 2487 */ 2488 dropvp = NULL; 2489 if (par) { 2490 struct nchash_head *nchpp = ncp->nc_head; 2491 2492 KKASSERT(nchpp != NULL); 2493 LIST_REMOVE(ncp, nc_hash); 2494 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry); 2495 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list)) 2496 dropvp = par->nc_vp; 2497 ncp->nc_head = NULL; 2498 ncp->nc_parent = NULL; 2499 spin_unlock(&nchpp->spin); 2500 _cache_unlock(par); 2501 } else { 2502 KKASSERT(ncp->nc_head == NULL); 2503 } 2504 2505 /* 2506 * ncp should not have picked up any refs. Physically 2507 * destroy the ncp. 2508 */ 2509 KKASSERT(ncp->nc_refs == 1); 2510 /* _cache_unlock(ncp) not required */ 2511 ncp->nc_refs = -1; /* safety */ 2512 if (ncp->nc_name) 2513 kfree(ncp->nc_name, M_VFSCACHE); 2514 kfree(ncp, M_VFSCACHE); 2515 2516 /* 2517 * Delayed drop (we had to release our spinlocks) 2518 * 2519 * The refed parent (if not NULL) must be dropped. The 2520 * caller is responsible for looping. 2521 */ 2522 if (dropvp) 2523 vdrop(dropvp); 2524 return(par); 2525 } 2526 2527 /* 2528 * Clean up dangling negative cache and defered-drop entries in the 2529 * namecache. 2530 * 2531 * This routine is called in the critical path and also called from 2532 * vnlru(). When called from vnlru we use a lower limit to try to 2533 * deal with the negative cache before the critical path has to start 2534 * dealing with it. 2535 */ 2536 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t; 2537 2538 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW }; 2539 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW }; 2540 2541 void 2542 cache_hysteresis(int critpath) 2543 { 2544 int poslimit; 2545 int neglimit = desiredvnodes / ncnegfactor; 2546 int xnumcache = numcache; 2547 2548 if (critpath == 0) 2549 neglimit = neglimit * 8 / 10; 2550 2551 /* 2552 * Don't cache too many negative hits. We use hysteresis to reduce 2553 * the impact on the critical path. 2554 */ 2555 switch(neg_cache_hysteresis_state[critpath]) { 2556 case CHI_LOW: 2557 if (numneg > MINNEG && numneg > neglimit) { 2558 if (critpath) 2559 _cache_cleanneg(ncnegflush); 2560 else 2561 _cache_cleanneg(ncnegflush + 2562 numneg - neglimit); 2563 neg_cache_hysteresis_state[critpath] = CHI_HIGH; 2564 } 2565 break; 2566 case CHI_HIGH: 2567 if (numneg > MINNEG * 9 / 10 && 2568 numneg * 9 / 10 > neglimit 2569 ) { 2570 if (critpath) 2571 _cache_cleanneg(ncnegflush); 2572 else 2573 _cache_cleanneg(ncnegflush + 2574 numneg * 9 / 10 - neglimit); 2575 } else { 2576 neg_cache_hysteresis_state[critpath] = CHI_LOW; 2577 } 2578 break; 2579 } 2580 2581 /* 2582 * Don't cache too many positive hits. We use hysteresis to reduce 2583 * the impact on the critical path. 2584 * 2585 * Excessive positive hits can accumulate due to large numbers of 2586 * hardlinks (the vnode cache will not prevent hl ncps from growing 2587 * into infinity). 2588 */ 2589 if ((poslimit = ncposlimit) == 0) 2590 poslimit = desiredvnodes * 2; 2591 if (critpath == 0) 2592 poslimit = poslimit * 8 / 10; 2593 2594 switch(pos_cache_hysteresis_state[critpath]) { 2595 case CHI_LOW: 2596 if (xnumcache > poslimit && xnumcache > MINPOS) { 2597 if (critpath) 2598 _cache_cleanpos(ncposflush); 2599 else 2600 _cache_cleanpos(ncposflush + 2601 xnumcache - poslimit); 2602 pos_cache_hysteresis_state[critpath] = CHI_HIGH; 2603 } 2604 break; 2605 case CHI_HIGH: 2606 if (xnumcache > poslimit * 5 / 6 && xnumcache > MINPOS) { 2607 if (critpath) 2608 _cache_cleanpos(ncposflush); 2609 else 2610 _cache_cleanpos(ncposflush + 2611 xnumcache - poslimit * 5 / 6); 2612 } else { 2613 pos_cache_hysteresis_state[critpath] = CHI_LOW; 2614 } 2615 break; 2616 } 2617 2618 /* 2619 * Clean out dangling defered-zap ncps which could not 2620 * be cleanly dropped if too many build up. Note 2621 * that numdefered is not an exact number as such ncps 2622 * can be reused and the counter is not handled in a MP 2623 * safe manner by design. 2624 */ 2625 if (numdefered > neglimit) { 2626 _cache_cleandefered(); 2627 } 2628 } 2629 2630 /* 2631 * NEW NAMECACHE LOOKUP API 2632 * 2633 * Lookup an entry in the namecache. The passed par_nch must be referenced 2634 * and unlocked. A referenced and locked nchandle with a non-NULL nch.ncp 2635 * is ALWAYS returned, eve if the supplied component is illegal. 2636 * 2637 * The resulting namecache entry should be returned to the system with 2638 * cache_put() or cache_unlock() + cache_drop(). 2639 * 2640 * namecache locks are recursive but care must be taken to avoid lock order 2641 * reversals (hence why the passed par_nch must be unlocked). Locking 2642 * rules are to order for parent traversals, not for child traversals. 2643 * 2644 * Nobody else will be able to manipulate the associated namespace (e.g. 2645 * create, delete, rename, rename-target) until the caller unlocks the 2646 * entry. 2647 * 2648 * The returned entry will be in one of three states: positive hit (non-null 2649 * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set). 2650 * Unresolved entries must be resolved through the filesystem to associate the 2651 * vnode and/or determine whether a positive or negative hit has occured. 2652 * 2653 * It is not necessary to lock a directory in order to lock namespace under 2654 * that directory. In fact, it is explicitly not allowed to do that. A 2655 * directory is typically only locked when being created, renamed, or 2656 * destroyed. 2657 * 2658 * The directory (par) may be unresolved, in which case any returned child 2659 * will likely also be marked unresolved. Likely but not guarenteed. Since 2660 * the filesystem lookup requires a resolved directory vnode the caller is 2661 * responsible for resolving the namecache chain top-down. This API 2662 * specifically allows whole chains to be created in an unresolved state. 2663 */ 2664 struct nchandle 2665 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc) 2666 { 2667 struct nchandle nch; 2668 struct namecache *ncp; 2669 struct namecache *new_ncp; 2670 struct nchash_head *nchpp; 2671 struct mount *mp; 2672 u_int32_t hash; 2673 globaldata_t gd; 2674 int par_locked; 2675 2676 numcalls++; 2677 gd = mycpu; 2678 mp = par_nch->mount; 2679 par_locked = 0; 2680 2681 /* 2682 * This is a good time to call it, no ncp's are locked by 2683 * the caller or us. 2684 */ 2685 cache_hysteresis(1); 2686 2687 /* 2688 * Try to locate an existing entry 2689 */ 2690 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT); 2691 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash); 2692 new_ncp = NULL; 2693 nchpp = NCHHASH(hash); 2694 restart: 2695 if (new_ncp) 2696 spin_lock(&nchpp->spin); 2697 else 2698 spin_lock_shared(&nchpp->spin); 2699 2700 LIST_FOREACH(ncp, &nchpp->list, nc_hash) { 2701 numchecks++; 2702 2703 /* 2704 * Break out if we find a matching entry. Note that 2705 * UNRESOLVED entries may match, but DESTROYED entries 2706 * do not. 2707 */ 2708 if (ncp->nc_parent == par_nch->ncp && 2709 ncp->nc_nlen == nlc->nlc_namelen && 2710 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 && 2711 (ncp->nc_flag & NCF_DESTROYED) == 0 2712 ) { 2713 _cache_hold(ncp); 2714 if (new_ncp) 2715 spin_unlock(&nchpp->spin); 2716 else 2717 spin_unlock_shared(&nchpp->spin); 2718 if (par_locked) { 2719 _cache_unlock(par_nch->ncp); 2720 par_locked = 0; 2721 } 2722 if (_cache_lock_special(ncp) == 0) { 2723 _cache_auto_unresolve(mp, ncp); 2724 if (new_ncp) 2725 _cache_free(new_ncp); 2726 goto found; 2727 } 2728 _cache_get(ncp); 2729 _cache_put(ncp); 2730 _cache_drop(ncp); 2731 goto restart; 2732 } 2733 } 2734 2735 /* 2736 * We failed to locate an entry, create a new entry and add it to 2737 * the cache. The parent ncp must also be locked so we 2738 * can link into it. 2739 * 2740 * We have to relookup after possibly blocking in kmalloc or 2741 * when locking par_nch. 2742 * 2743 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special 2744 * mount case, in which case nc_name will be NULL. 2745 */ 2746 if (new_ncp == NULL) { 2747 spin_unlock_shared(&nchpp->spin); 2748 new_ncp = cache_alloc(nlc->nlc_namelen); 2749 if (nlc->nlc_namelen) { 2750 bcopy(nlc->nlc_nameptr, new_ncp->nc_name, 2751 nlc->nlc_namelen); 2752 new_ncp->nc_name[nlc->nlc_namelen] = 0; 2753 } 2754 goto restart; 2755 } 2756 2757 /* 2758 * NOTE! The spinlock is held exclusively here because new_ncp 2759 * is non-NULL. 2760 */ 2761 if (par_locked == 0) { 2762 spin_unlock(&nchpp->spin); 2763 _cache_lock(par_nch->ncp); 2764 par_locked = 1; 2765 goto restart; 2766 } 2767 2768 /* 2769 * WARNING! We still hold the spinlock. We have to set the hash 2770 * table entry atomically. 2771 */ 2772 ncp = new_ncp; 2773 _cache_link_parent(ncp, par_nch->ncp, nchpp); 2774 spin_unlock(&nchpp->spin); 2775 _cache_unlock(par_nch->ncp); 2776 /* par_locked = 0 - not used */ 2777 found: 2778 /* 2779 * stats and namecache size management 2780 */ 2781 if (ncp->nc_flag & NCF_UNRESOLVED) 2782 ++gd->gd_nchstats->ncs_miss; 2783 else if (ncp->nc_vp) 2784 ++gd->gd_nchstats->ncs_goodhits; 2785 else 2786 ++gd->gd_nchstats->ncs_neghits; 2787 nch.mount = mp; 2788 nch.ncp = ncp; 2789 atomic_add_int(&nch.mount->mnt_refs, 1); 2790 return(nch); 2791 } 2792 2793 /* 2794 * Attempt to lookup a namecache entry and return with a shared namecache 2795 * lock. 2796 */ 2797 int 2798 cache_nlookup_maybe_shared(struct nchandle *par_nch, struct nlcomponent *nlc, 2799 int excl, struct nchandle *res_nch) 2800 { 2801 struct namecache *ncp; 2802 struct nchash_head *nchpp; 2803 struct mount *mp; 2804 u_int32_t hash; 2805 globaldata_t gd; 2806 2807 /* 2808 * If exclusive requested or shared namecache locks are disabled, 2809 * return failure. 2810 */ 2811 if (ncp_shared_lock_disable || excl) 2812 return(EWOULDBLOCK); 2813 2814 numcalls++; 2815 gd = mycpu; 2816 mp = par_nch->mount; 2817 2818 /* 2819 * This is a good time to call it, no ncp's are locked by 2820 * the caller or us. 2821 */ 2822 cache_hysteresis(1); 2823 2824 /* 2825 * Try to locate an existing entry 2826 */ 2827 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT); 2828 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash); 2829 nchpp = NCHHASH(hash); 2830 2831 spin_lock_shared(&nchpp->spin); 2832 2833 LIST_FOREACH(ncp, &nchpp->list, nc_hash) { 2834 numchecks++; 2835 2836 /* 2837 * Break out if we find a matching entry. Note that 2838 * UNRESOLVED entries may match, but DESTROYED entries 2839 * do not. 2840 */ 2841 if (ncp->nc_parent == par_nch->ncp && 2842 ncp->nc_nlen == nlc->nlc_namelen && 2843 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 && 2844 (ncp->nc_flag & NCF_DESTROYED) == 0 2845 ) { 2846 _cache_hold(ncp); 2847 spin_unlock_shared(&nchpp->spin); 2848 if (_cache_lock_shared_special(ncp) == 0) { 2849 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 && 2850 (ncp->nc_flag & NCF_DESTROYED) == 0 && 2851 _cache_auto_unresolve_test(mp, ncp) == 0) { 2852 goto found; 2853 } 2854 _cache_unlock(ncp); 2855 } 2856 _cache_drop(ncp); 2857 spin_lock_shared(&nchpp->spin); 2858 break; 2859 } 2860 } 2861 2862 /* 2863 * Failure 2864 */ 2865 spin_unlock_shared(&nchpp->spin); 2866 return(EWOULDBLOCK); 2867 2868 /* 2869 * Success 2870 * 2871 * Note that nc_error might be non-zero (e.g ENOENT). 2872 */ 2873 found: 2874 res_nch->mount = mp; 2875 res_nch->ncp = ncp; 2876 ++gd->gd_nchstats->ncs_goodhits; 2877 atomic_add_int(&res_nch->mount->mnt_refs, 1); 2878 2879 KKASSERT(ncp->nc_error != EWOULDBLOCK); 2880 return(ncp->nc_error); 2881 } 2882 2883 /* 2884 * This is a non-blocking verison of cache_nlookup() used by 2885 * nfs_readdirplusrpc_uio(). It can fail for any reason and 2886 * will return nch.ncp == NULL in that case. 2887 */ 2888 struct nchandle 2889 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc) 2890 { 2891 struct nchandle nch; 2892 struct namecache *ncp; 2893 struct namecache *new_ncp; 2894 struct nchash_head *nchpp; 2895 struct mount *mp; 2896 u_int32_t hash; 2897 globaldata_t gd; 2898 int par_locked; 2899 2900 numcalls++; 2901 gd = mycpu; 2902 mp = par_nch->mount; 2903 par_locked = 0; 2904 2905 /* 2906 * Try to locate an existing entry 2907 */ 2908 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT); 2909 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash); 2910 new_ncp = NULL; 2911 nchpp = NCHHASH(hash); 2912 restart: 2913 spin_lock(&nchpp->spin); 2914 LIST_FOREACH(ncp, &nchpp->list, nc_hash) { 2915 numchecks++; 2916 2917 /* 2918 * Break out if we find a matching entry. Note that 2919 * UNRESOLVED entries may match, but DESTROYED entries 2920 * do not. 2921 */ 2922 if (ncp->nc_parent == par_nch->ncp && 2923 ncp->nc_nlen == nlc->nlc_namelen && 2924 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 && 2925 (ncp->nc_flag & NCF_DESTROYED) == 0 2926 ) { 2927 _cache_hold(ncp); 2928 spin_unlock(&nchpp->spin); 2929 if (par_locked) { 2930 _cache_unlock(par_nch->ncp); 2931 par_locked = 0; 2932 } 2933 if (_cache_lock_special(ncp) == 0) { 2934 _cache_auto_unresolve(mp, ncp); 2935 if (new_ncp) { 2936 _cache_free(new_ncp); 2937 new_ncp = NULL; 2938 } 2939 goto found; 2940 } 2941 _cache_drop(ncp); 2942 goto failed; 2943 } 2944 } 2945 2946 /* 2947 * We failed to locate an entry, create a new entry and add it to 2948 * the cache. The parent ncp must also be locked so we 2949 * can link into it. 2950 * 2951 * We have to relookup after possibly blocking in kmalloc or 2952 * when locking par_nch. 2953 * 2954 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special 2955 * mount case, in which case nc_name will be NULL. 2956 */ 2957 if (new_ncp == NULL) { 2958 spin_unlock(&nchpp->spin); 2959 new_ncp = cache_alloc(nlc->nlc_namelen); 2960 if (nlc->nlc_namelen) { 2961 bcopy(nlc->nlc_nameptr, new_ncp->nc_name, 2962 nlc->nlc_namelen); 2963 new_ncp->nc_name[nlc->nlc_namelen] = 0; 2964 } 2965 goto restart; 2966 } 2967 if (par_locked == 0) { 2968 spin_unlock(&nchpp->spin); 2969 if (_cache_lock_nonblock(par_nch->ncp) == 0) { 2970 par_locked = 1; 2971 goto restart; 2972 } 2973 goto failed; 2974 } 2975 2976 /* 2977 * WARNING! We still hold the spinlock. We have to set the hash 2978 * table entry atomically. 2979 */ 2980 ncp = new_ncp; 2981 _cache_link_parent(ncp, par_nch->ncp, nchpp); 2982 spin_unlock(&nchpp->spin); 2983 _cache_unlock(par_nch->ncp); 2984 /* par_locked = 0 - not used */ 2985 found: 2986 /* 2987 * stats and namecache size management 2988 */ 2989 if (ncp->nc_flag & NCF_UNRESOLVED) 2990 ++gd->gd_nchstats->ncs_miss; 2991 else if (ncp->nc_vp) 2992 ++gd->gd_nchstats->ncs_goodhits; 2993 else 2994 ++gd->gd_nchstats->ncs_neghits; 2995 nch.mount = mp; 2996 nch.ncp = ncp; 2997 atomic_add_int(&nch.mount->mnt_refs, 1); 2998 return(nch); 2999 failed: 3000 if (new_ncp) { 3001 _cache_free(new_ncp); 3002 new_ncp = NULL; 3003 } 3004 nch.mount = NULL; 3005 nch.ncp = NULL; 3006 return(nch); 3007 } 3008 3009 /* 3010 * The namecache entry is marked as being used as a mount point. 3011 * Locate the mount if it is visible to the caller. The DragonFly 3012 * mount system allows arbitrary loops in the topology and disentangles 3013 * those loops by matching against (mp, ncp) rather than just (ncp). 3014 * This means any given ncp can dive any number of mounts, depending 3015 * on the relative mount (e.g. nullfs) the caller is at in the topology. 3016 * 3017 * We use a very simple frontend cache to reduce SMP conflicts, 3018 * which we have to do because the mountlist scan needs an exclusive 3019 * lock around its ripout info list. Not to mention that there might 3020 * be a lot of mounts. 3021 */ 3022 struct findmount_info { 3023 struct mount *result; 3024 struct mount *nch_mount; 3025 struct namecache *nch_ncp; 3026 }; 3027 3028 static 3029 struct ncmount_cache * 3030 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp) 3031 { 3032 int hash; 3033 3034 hash = ((int)(intptr_t)mp / sizeof(*mp)) ^ 3035 ((int)(intptr_t)ncp / sizeof(*ncp)); 3036 hash = (hash & 0x7FFFFFFF) % NCMOUNT_NUMCACHE; 3037 return (&ncmount_cache[hash]); 3038 } 3039 3040 static 3041 int 3042 cache_findmount_callback(struct mount *mp, void *data) 3043 { 3044 struct findmount_info *info = data; 3045 3046 /* 3047 * Check the mount's mounted-on point against the passed nch. 3048 */ 3049 if (mp->mnt_ncmounton.mount == info->nch_mount && 3050 mp->mnt_ncmounton.ncp == info->nch_ncp 3051 ) { 3052 info->result = mp; 3053 atomic_add_int(&mp->mnt_refs, 1); 3054 return(-1); 3055 } 3056 return(0); 3057 } 3058 3059 struct mount * 3060 cache_findmount(struct nchandle *nch) 3061 { 3062 struct findmount_info info; 3063 struct ncmount_cache *ncc; 3064 struct mount *mp; 3065 3066 /* 3067 * Fast 3068 */ 3069 if (ncmount_cache_enable == 0) { 3070 ncc = NULL; 3071 goto skip; 3072 } 3073 ncc = ncmount_cache_lookup(nch->mount, nch->ncp); 3074 if (ncc->ncp == nch->ncp) { 3075 spin_lock_shared(&ncc->spin); 3076 if (ncc->isneg == 0 && 3077 ncc->ncp == nch->ncp && (mp = ncc->mp) != NULL) { 3078 if (mp->mnt_ncmounton.mount == nch->mount && 3079 mp->mnt_ncmounton.ncp == nch->ncp) { 3080 /* 3081 * Cache hit (positive) 3082 */ 3083 atomic_add_int(&mp->mnt_refs, 1); 3084 spin_unlock_shared(&ncc->spin); 3085 ++ncmount_cache_hit; 3086 return(mp); 3087 } 3088 /* else cache miss */ 3089 } 3090 if (ncc->isneg && 3091 ncc->ncp == nch->ncp && ncc->mp == nch->mount) { 3092 /* 3093 * Cache hit (negative) 3094 */ 3095 spin_unlock_shared(&ncc->spin); 3096 ++ncmount_cache_hit; 3097 return(NULL); 3098 } 3099 spin_unlock_shared(&ncc->spin); 3100 } 3101 skip: 3102 3103 /* 3104 * Slow 3105 */ 3106 info.result = NULL; 3107 info.nch_mount = nch->mount; 3108 info.nch_ncp = nch->ncp; 3109 mountlist_scan(cache_findmount_callback, &info, 3110 MNTSCAN_FORWARD|MNTSCAN_NOBUSY); 3111 3112 /* 3113 * Cache the result. 3114 * 3115 * Negative lookups: We cache the originating {ncp,mp}. (mp) is 3116 * only used for pointer comparisons and is not 3117 * referenced (otherwise there would be dangling 3118 * refs). 3119 * 3120 * Positive lookups: We cache the originating {ncp} and the target 3121 * (mp). (mp) is referenced. 3122 * 3123 * Indeterminant: If the match is undergoing an unmount we do 3124 * not cache it to avoid racing cache_unmounting(), 3125 * but still return the match. 3126 */ 3127 if (ncc) { 3128 spin_lock(&ncc->spin); 3129 if (info.result == NULL) { 3130 if (ncc->isneg == 0 && ncc->mp) 3131 atomic_add_int(&ncc->mp->mnt_refs, -1); 3132 ncc->ncp = nch->ncp; 3133 ncc->mp = nch->mount; 3134 ncc->isneg = 1; 3135 spin_unlock(&ncc->spin); 3136 ++ncmount_cache_overwrite; 3137 } else if ((info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0) { 3138 if (ncc->isneg == 0 && ncc->mp) 3139 atomic_add_int(&ncc->mp->mnt_refs, -1); 3140 atomic_add_int(&info.result->mnt_refs, 1); 3141 ncc->ncp = nch->ncp; 3142 ncc->mp = info.result; 3143 ncc->isneg = 0; 3144 spin_unlock(&ncc->spin); 3145 ++ncmount_cache_overwrite; 3146 } else { 3147 spin_unlock(&ncc->spin); 3148 } 3149 ++ncmount_cache_miss; 3150 } 3151 return(info.result); 3152 } 3153 3154 void 3155 cache_dropmount(struct mount *mp) 3156 { 3157 atomic_add_int(&mp->mnt_refs, -1); 3158 } 3159 3160 void 3161 cache_ismounting(struct mount *mp) 3162 { 3163 struct nchandle *nch = &mp->mnt_ncmounton; 3164 struct ncmount_cache *ncc; 3165 3166 ncc = ncmount_cache_lookup(nch->mount, nch->ncp); 3167 if (ncc->isneg && 3168 ncc->ncp == nch->ncp && ncc->mp == nch->mount) { 3169 spin_lock(&ncc->spin); 3170 if (ncc->isneg && 3171 ncc->ncp == nch->ncp && ncc->mp == nch->mount) { 3172 ncc->ncp = NULL; 3173 ncc->mp = NULL; 3174 } 3175 spin_unlock(&ncc->spin); 3176 } 3177 } 3178 3179 void 3180 cache_unmounting(struct mount *mp) 3181 { 3182 struct nchandle *nch = &mp->mnt_ncmounton; 3183 struct ncmount_cache *ncc; 3184 3185 ncc = ncmount_cache_lookup(nch->mount, nch->ncp); 3186 if (ncc->isneg == 0 && 3187 ncc->ncp == nch->ncp && ncc->mp == mp) { 3188 spin_lock(&ncc->spin); 3189 if (ncc->isneg == 0 && 3190 ncc->ncp == nch->ncp && ncc->mp == mp) { 3191 atomic_add_int(&mp->mnt_refs, -1); 3192 ncc->ncp = NULL; 3193 ncc->mp = NULL; 3194 } 3195 spin_unlock(&ncc->spin); 3196 } 3197 } 3198 3199 /* 3200 * Resolve an unresolved namecache entry, generally by looking it up. 3201 * The passed ncp must be locked and refd. 3202 * 3203 * Theoretically since a vnode cannot be recycled while held, and since 3204 * the nc_parent chain holds its vnode as long as children exist, the 3205 * direct parent of the cache entry we are trying to resolve should 3206 * have a valid vnode. If not then generate an error that we can 3207 * determine is related to a resolver bug. 3208 * 3209 * However, if a vnode was in the middle of a recyclement when the NCP 3210 * got locked, ncp->nc_vp might point to a vnode that is about to become 3211 * invalid. cache_resolve() handles this case by unresolving the entry 3212 * and then re-resolving it. 3213 * 3214 * Note that successful resolution does not necessarily return an error 3215 * code of 0. If the ncp resolves to a negative cache hit then ENOENT 3216 * will be returned. 3217 */ 3218 int 3219 cache_resolve(struct nchandle *nch, struct ucred *cred) 3220 { 3221 struct namecache *par_tmp; 3222 struct namecache *par; 3223 struct namecache *ncp; 3224 struct nchandle nctmp; 3225 struct mount *mp; 3226 struct vnode *dvp; 3227 int error; 3228 3229 ncp = nch->ncp; 3230 mp = nch->mount; 3231 KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE); 3232 restart: 3233 /* 3234 * If the ncp is already resolved we have nothing to do. However, 3235 * we do want to guarentee that a usable vnode is returned when 3236 * a vnode is present, so make sure it hasn't been reclaimed. 3237 */ 3238 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) { 3239 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) 3240 _cache_setunresolved(ncp); 3241 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) 3242 return (ncp->nc_error); 3243 } 3244 3245 /* 3246 * If the ncp was destroyed it will never resolve again. This 3247 * can basically only happen when someone is chdir'd into an 3248 * empty directory which is then rmdir'd. We want to catch this 3249 * here and not dive the VFS because the VFS might actually 3250 * have a way to re-resolve the disconnected ncp, which will 3251 * result in inconsistencies in the cdir/nch for proc->p_fd. 3252 */ 3253 if (ncp->nc_flag & NCF_DESTROYED) { 3254 kprintf("Warning: cache_resolve: ncp '%s' was unlinked\n", 3255 ncp->nc_name); 3256 return(EINVAL); 3257 } 3258 3259 /* 3260 * Mount points need special handling because the parent does not 3261 * belong to the same filesystem as the ncp. 3262 */ 3263 if (ncp == mp->mnt_ncmountpt.ncp) 3264 return (cache_resolve_mp(mp)); 3265 3266 /* 3267 * We expect an unbroken chain of ncps to at least the mount point, 3268 * and even all the way to root (but this code doesn't have to go 3269 * past the mount point). 3270 */ 3271 if (ncp->nc_parent == NULL) { 3272 kprintf("EXDEV case 1 %p %*.*s\n", ncp, 3273 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name); 3274 ncp->nc_error = EXDEV; 3275 return(ncp->nc_error); 3276 } 3277 3278 /* 3279 * The vp's of the parent directories in the chain are held via vhold() 3280 * due to the existance of the child, and should not disappear. 3281 * However, there are cases where they can disappear: 3282 * 3283 * - due to filesystem I/O errors. 3284 * - due to NFS being stupid about tracking the namespace and 3285 * destroys the namespace for entire directories quite often. 3286 * - due to forced unmounts. 3287 * - due to an rmdir (parent will be marked DESTROYED) 3288 * 3289 * When this occurs we have to track the chain backwards and resolve 3290 * it, looping until the resolver catches up to the current node. We 3291 * could recurse here but we might run ourselves out of kernel stack 3292 * so we do it in a more painful manner. This situation really should 3293 * not occur all that often, or if it does not have to go back too 3294 * many nodes to resolve the ncp. 3295 */ 3296 while ((dvp = cache_dvpref(ncp)) == NULL) { 3297 /* 3298 * This case can occur if a process is CD'd into a 3299 * directory which is then rmdir'd. If the parent is marked 3300 * destroyed there is no point trying to resolve it. 3301 */ 3302 if (ncp->nc_parent->nc_flag & NCF_DESTROYED) 3303 return(ENOENT); 3304 par = ncp->nc_parent; 3305 _cache_hold(par); 3306 _cache_lock(par); 3307 while ((par_tmp = par->nc_parent) != NULL && 3308 par_tmp->nc_vp == NULL) { 3309 _cache_hold(par_tmp); 3310 _cache_lock(par_tmp); 3311 _cache_put(par); 3312 par = par_tmp; 3313 } 3314 if (par->nc_parent == NULL) { 3315 kprintf("EXDEV case 2 %*.*s\n", 3316 par->nc_nlen, par->nc_nlen, par->nc_name); 3317 _cache_put(par); 3318 return (EXDEV); 3319 } 3320 kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n", 3321 par->nc_nlen, par->nc_nlen, par->nc_name); 3322 /* 3323 * The parent is not set in stone, ref and lock it to prevent 3324 * it from disappearing. Also note that due to renames it 3325 * is possible for our ncp to move and for par to no longer 3326 * be one of its parents. We resolve it anyway, the loop 3327 * will handle any moves. 3328 */ 3329 _cache_get(par); /* additional hold/lock */ 3330 _cache_put(par); /* from earlier hold/lock */ 3331 if (par == nch->mount->mnt_ncmountpt.ncp) { 3332 cache_resolve_mp(nch->mount); 3333 } else if ((dvp = cache_dvpref(par)) == NULL) { 3334 kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name); 3335 _cache_put(par); 3336 continue; 3337 } else { 3338 if (par->nc_flag & NCF_UNRESOLVED) { 3339 nctmp.mount = mp; 3340 nctmp.ncp = par; 3341 par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred); 3342 } 3343 vrele(dvp); 3344 } 3345 if ((error = par->nc_error) != 0) { 3346 if (par->nc_error != EAGAIN) { 3347 kprintf("EXDEV case 3 %*.*s error %d\n", 3348 par->nc_nlen, par->nc_nlen, par->nc_name, 3349 par->nc_error); 3350 _cache_put(par); 3351 return(error); 3352 } 3353 kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n", 3354 par, par->nc_nlen, par->nc_nlen, par->nc_name); 3355 } 3356 _cache_put(par); 3357 /* loop */ 3358 } 3359 3360 /* 3361 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected 3362 * ncp's and reattach them. If this occurs the original ncp is marked 3363 * EAGAIN to force a relookup. 3364 * 3365 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed 3366 * ncp must already be resolved. 3367 */ 3368 if (dvp) { 3369 nctmp.mount = mp; 3370 nctmp.ncp = ncp; 3371 ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred); 3372 vrele(dvp); 3373 } else { 3374 ncp->nc_error = EPERM; 3375 } 3376 if (ncp->nc_error == EAGAIN) { 3377 kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n", 3378 ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name); 3379 goto restart; 3380 } 3381 return(ncp->nc_error); 3382 } 3383 3384 /* 3385 * Resolve the ncp associated with a mount point. Such ncp's almost always 3386 * remain resolved and this routine is rarely called. NFS MPs tends to force 3387 * re-resolution more often due to its mac-truck-smash-the-namecache 3388 * method of tracking namespace changes. 3389 * 3390 * The semantics for this call is that the passed ncp must be locked on 3391 * entry and will be locked on return. However, if we actually have to 3392 * resolve the mount point we temporarily unlock the entry in order to 3393 * avoid race-to-root deadlocks due to e.g. dead NFS mounts. Because of 3394 * the unlock we have to recheck the flags after we relock. 3395 */ 3396 static int 3397 cache_resolve_mp(struct mount *mp) 3398 { 3399 struct namecache *ncp = mp->mnt_ncmountpt.ncp; 3400 struct vnode *vp; 3401 int error; 3402 3403 KKASSERT(mp != NULL); 3404 3405 /* 3406 * If the ncp is already resolved we have nothing to do. However, 3407 * we do want to guarentee that a usable vnode is returned when 3408 * a vnode is present, so make sure it hasn't been reclaimed. 3409 */ 3410 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) { 3411 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) 3412 _cache_setunresolved(ncp); 3413 } 3414 3415 if (ncp->nc_flag & NCF_UNRESOLVED) { 3416 _cache_unlock(ncp); 3417 while (vfs_busy(mp, 0)) 3418 ; 3419 error = VFS_ROOT(mp, &vp); 3420 _cache_lock(ncp); 3421 3422 /* 3423 * recheck the ncp state after relocking. 3424 */ 3425 if (ncp->nc_flag & NCF_UNRESOLVED) { 3426 ncp->nc_error = error; 3427 if (error == 0) { 3428 _cache_setvp(mp, ncp, vp); 3429 vput(vp); 3430 } else { 3431 kprintf("[diagnostic] cache_resolve_mp: failed" 3432 " to resolve mount %p err=%d ncp=%p\n", 3433 mp, error, ncp); 3434 _cache_setvp(mp, ncp, NULL); 3435 } 3436 } else if (error == 0) { 3437 vput(vp); 3438 } 3439 vfs_unbusy(mp); 3440 } 3441 return(ncp->nc_error); 3442 } 3443 3444 /* 3445 * Clean out negative cache entries when too many have accumulated. 3446 */ 3447 static void 3448 _cache_cleanneg(int count) 3449 { 3450 struct namecache *ncp; 3451 3452 /* 3453 * Attempt to clean out the specified number of negative cache 3454 * entries. 3455 */ 3456 while (count) { 3457 spin_lock(&ncspin); 3458 ncp = TAILQ_FIRST(&ncneglist); 3459 if (ncp == NULL) { 3460 spin_unlock(&ncspin); 3461 break; 3462 } 3463 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode); 3464 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode); 3465 _cache_hold(ncp); 3466 spin_unlock(&ncspin); 3467 3468 /* 3469 * This can race, so we must re-check that the ncp 3470 * is on the ncneglist after successfully locking it. 3471 */ 3472 if (_cache_lock_special(ncp) == 0) { 3473 if (ncp->nc_vp == NULL && 3474 (ncp->nc_flag & NCF_UNRESOLVED) == 0) { 3475 ncp = cache_zap(ncp, 1); 3476 if (ncp) 3477 _cache_drop(ncp); 3478 } else { 3479 kprintf("cache_cleanneg: race avoided\n"); 3480 _cache_unlock(ncp); 3481 } 3482 } else { 3483 _cache_drop(ncp); 3484 } 3485 --count; 3486 } 3487 } 3488 3489 /* 3490 * Clean out positive cache entries when too many have accumulated. 3491 */ 3492 static void 3493 _cache_cleanpos(int count) 3494 { 3495 static volatile int rover; 3496 struct nchash_head *nchpp; 3497 struct namecache *ncp; 3498 int rover_copy; 3499 3500 /* 3501 * Attempt to clean out the specified number of negative cache 3502 * entries. 3503 */ 3504 while (count) { 3505 rover_copy = ++rover; /* MPSAFEENOUGH */ 3506 cpu_ccfence(); 3507 nchpp = NCHHASH(rover_copy); 3508 3509 spin_lock_shared(&nchpp->spin); 3510 ncp = LIST_FIRST(&nchpp->list); 3511 while (ncp && (ncp->nc_flag & NCF_DESTROYED)) 3512 ncp = LIST_NEXT(ncp, nc_hash); 3513 if (ncp) 3514 _cache_hold(ncp); 3515 spin_unlock_shared(&nchpp->spin); 3516 3517 if (ncp) { 3518 if (_cache_lock_special(ncp) == 0) { 3519 ncp = cache_zap(ncp, 1); 3520 if (ncp) 3521 _cache_drop(ncp); 3522 } else { 3523 _cache_drop(ncp); 3524 } 3525 } 3526 --count; 3527 } 3528 } 3529 3530 /* 3531 * This is a kitchen sink function to clean out ncps which we 3532 * tried to zap from cache_drop() but failed because we were 3533 * unable to acquire the parent lock. 3534 * 3535 * Such entries can also be removed via cache_inval_vp(), such 3536 * as when unmounting. 3537 */ 3538 static void 3539 _cache_cleandefered(void) 3540 { 3541 struct nchash_head *nchpp; 3542 struct namecache *ncp; 3543 struct namecache dummy; 3544 int i; 3545 3546 numdefered = 0; 3547 bzero(&dummy, sizeof(dummy)); 3548 dummy.nc_flag = NCF_DESTROYED; 3549 dummy.nc_refs = 1; 3550 3551 for (i = 0; i <= nchash; ++i) { 3552 nchpp = &nchashtbl[i]; 3553 3554 spin_lock(&nchpp->spin); 3555 LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash); 3556 ncp = &dummy; 3557 while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) { 3558 if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0) 3559 continue; 3560 LIST_REMOVE(&dummy, nc_hash); 3561 LIST_INSERT_AFTER(ncp, &dummy, nc_hash); 3562 _cache_hold(ncp); 3563 spin_unlock(&nchpp->spin); 3564 if (_cache_lock_nonblock(ncp) == 0) { 3565 ncp->nc_flag &= ~NCF_DEFEREDZAP; 3566 _cache_unlock(ncp); 3567 } 3568 _cache_drop(ncp); 3569 spin_lock(&nchpp->spin); 3570 ncp = &dummy; 3571 } 3572 LIST_REMOVE(&dummy, nc_hash); 3573 spin_unlock(&nchpp->spin); 3574 } 3575 } 3576 3577 /* 3578 * Name cache initialization, from vfsinit() when we are booting 3579 */ 3580 void 3581 nchinit(void) 3582 { 3583 int i; 3584 globaldata_t gd; 3585 3586 /* initialise per-cpu namecache effectiveness statistics. */ 3587 for (i = 0; i < ncpus; ++i) { 3588 gd = globaldata_find(i); 3589 gd->gd_nchstats = &nchstats[i]; 3590 } 3591 TAILQ_INIT(&ncneglist); 3592 spin_init(&ncspin); 3593 nchashtbl = hashinit_ext(desiredvnodes / 2, 3594 sizeof(struct nchash_head), 3595 M_VFSCACHE, &nchash); 3596 for (i = 0; i <= (int)nchash; ++i) { 3597 LIST_INIT(&nchashtbl[i].list); 3598 spin_init(&nchashtbl[i].spin); 3599 } 3600 for (i = 0; i < NCMOUNT_NUMCACHE; ++i) 3601 spin_init(&ncmount_cache[i].spin); 3602 nclockwarn = 5 * hz; 3603 } 3604 3605 /* 3606 * Called from start_init() to bootstrap the root filesystem. Returns 3607 * a referenced, unlocked namecache record. 3608 */ 3609 void 3610 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp) 3611 { 3612 nch->ncp = cache_alloc(0); 3613 nch->mount = mp; 3614 atomic_add_int(&mp->mnt_refs, 1); 3615 if (vp) 3616 _cache_setvp(nch->mount, nch->ncp, vp); 3617 } 3618 3619 /* 3620 * vfs_cache_setroot() 3621 * 3622 * Create an association between the root of our namecache and 3623 * the root vnode. This routine may be called several times during 3624 * booting. 3625 * 3626 * If the caller intends to save the returned namecache pointer somewhere 3627 * it must cache_hold() it. 3628 */ 3629 void 3630 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch) 3631 { 3632 struct vnode *ovp; 3633 struct nchandle onch; 3634 3635 ovp = rootvnode; 3636 onch = rootnch; 3637 rootvnode = nvp; 3638 if (nch) 3639 rootnch = *nch; 3640 else 3641 cache_zero(&rootnch); 3642 if (ovp) 3643 vrele(ovp); 3644 if (onch.ncp) 3645 cache_drop(&onch); 3646 } 3647 3648 /* 3649 * XXX OLD API COMPAT FUNCTION. This really messes up the new namecache 3650 * topology and is being removed as quickly as possible. The new VOP_N*() 3651 * API calls are required to make specific adjustments using the supplied 3652 * ncp pointers rather then just bogusly purging random vnodes. 3653 * 3654 * Invalidate all namecache entries to a particular vnode as well as 3655 * any direct children of that vnode in the namecache. This is a 3656 * 'catch all' purge used by filesystems that do not know any better. 3657 * 3658 * Note that the linkage between the vnode and its namecache entries will 3659 * be removed, but the namecache entries themselves might stay put due to 3660 * active references from elsewhere in the system or due to the existance of 3661 * the children. The namecache topology is left intact even if we do not 3662 * know what the vnode association is. Such entries will be marked 3663 * NCF_UNRESOLVED. 3664 */ 3665 void 3666 cache_purge(struct vnode *vp) 3667 { 3668 cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN); 3669 } 3670 3671 /* 3672 * Flush all entries referencing a particular filesystem. 3673 * 3674 * Since we need to check it anyway, we will flush all the invalid 3675 * entries at the same time. 3676 */ 3677 #if 0 3678 3679 void 3680 cache_purgevfs(struct mount *mp) 3681 { 3682 struct nchash_head *nchpp; 3683 struct namecache *ncp, *nnp; 3684 3685 /* 3686 * Scan hash tables for applicable entries. 3687 */ 3688 for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) { 3689 spin_lock_wr(&nchpp->spin); XXX 3690 ncp = LIST_FIRST(&nchpp->list); 3691 if (ncp) 3692 _cache_hold(ncp); 3693 while (ncp) { 3694 nnp = LIST_NEXT(ncp, nc_hash); 3695 if (nnp) 3696 _cache_hold(nnp); 3697 if (ncp->nc_mount == mp) { 3698 _cache_lock(ncp); 3699 ncp = cache_zap(ncp, 0); 3700 if (ncp) 3701 _cache_drop(ncp); 3702 } else { 3703 _cache_drop(ncp); 3704 } 3705 ncp = nnp; 3706 } 3707 spin_unlock_wr(&nchpp->spin); XXX 3708 } 3709 } 3710 3711 #endif 3712 3713 static int disablecwd; 3714 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, 3715 "Disable getcwd"); 3716 3717 static u_long numcwdcalls; 3718 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdcalls, CTLFLAG_RD, &numcwdcalls, 0, 3719 "Number of current directory resolution calls"); 3720 static u_long numcwdfailnf; 3721 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailnf, CTLFLAG_RD, &numcwdfailnf, 0, 3722 "Number of current directory failures due to lack of file"); 3723 static u_long numcwdfailsz; 3724 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailsz, CTLFLAG_RD, &numcwdfailsz, 0, 3725 "Number of current directory failures due to large result"); 3726 static u_long numcwdfound; 3727 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfound, CTLFLAG_RD, &numcwdfound, 0, 3728 "Number of current directory resolution successes"); 3729 3730 /* 3731 * MPALMOSTSAFE 3732 */ 3733 int 3734 sys___getcwd(struct __getcwd_args *uap) 3735 { 3736 u_int buflen; 3737 int error; 3738 char *buf; 3739 char *bp; 3740 3741 if (disablecwd) 3742 return (ENODEV); 3743 3744 buflen = uap->buflen; 3745 if (buflen == 0) 3746 return (EINVAL); 3747 if (buflen > MAXPATHLEN) 3748 buflen = MAXPATHLEN; 3749 3750 buf = kmalloc(buflen, M_TEMP, M_WAITOK); 3751 bp = kern_getcwd(buf, buflen, &error); 3752 if (error == 0) 3753 error = copyout(bp, uap->buf, strlen(bp) + 1); 3754 kfree(buf, M_TEMP); 3755 return (error); 3756 } 3757 3758 char * 3759 kern_getcwd(char *buf, size_t buflen, int *error) 3760 { 3761 struct proc *p = curproc; 3762 char *bp; 3763 int i, slash_prefixed; 3764 struct filedesc *fdp; 3765 struct nchandle nch; 3766 struct namecache *ncp; 3767 3768 numcwdcalls++; 3769 bp = buf; 3770 bp += buflen - 1; 3771 *bp = '\0'; 3772 fdp = p->p_fd; 3773 slash_prefixed = 0; 3774 3775 nch = fdp->fd_ncdir; 3776 ncp = nch.ncp; 3777 if (ncp) 3778 _cache_hold(ncp); 3779 3780 while (ncp && (ncp != fdp->fd_nrdir.ncp || 3781 nch.mount != fdp->fd_nrdir.mount) 3782 ) { 3783 /* 3784 * While traversing upwards if we encounter the root 3785 * of the current mount we have to skip to the mount point 3786 * in the underlying filesystem. 3787 */ 3788 if (ncp == nch.mount->mnt_ncmountpt.ncp) { 3789 nch = nch.mount->mnt_ncmounton; 3790 _cache_drop(ncp); 3791 ncp = nch.ncp; 3792 if (ncp) 3793 _cache_hold(ncp); 3794 continue; 3795 } 3796 3797 /* 3798 * Prepend the path segment 3799 */ 3800 for (i = ncp->nc_nlen - 1; i >= 0; i--) { 3801 if (bp == buf) { 3802 numcwdfailsz++; 3803 *error = ERANGE; 3804 bp = NULL; 3805 goto done; 3806 } 3807 *--bp = ncp->nc_name[i]; 3808 } 3809 if (bp == buf) { 3810 numcwdfailsz++; 3811 *error = ERANGE; 3812 bp = NULL; 3813 goto done; 3814 } 3815 *--bp = '/'; 3816 slash_prefixed = 1; 3817 3818 /* 3819 * Go up a directory. This isn't a mount point so we don't 3820 * have to check again. 3821 */ 3822 while ((nch.ncp = ncp->nc_parent) != NULL) { 3823 if (ncp_shared_lock_disable) 3824 _cache_lock(ncp); 3825 else 3826 _cache_lock_shared(ncp); 3827 if (nch.ncp != ncp->nc_parent) { 3828 _cache_unlock(ncp); 3829 continue; 3830 } 3831 _cache_hold(nch.ncp); 3832 _cache_unlock(ncp); 3833 break; 3834 } 3835 _cache_drop(ncp); 3836 ncp = nch.ncp; 3837 } 3838 if (ncp == NULL) { 3839 numcwdfailnf++; 3840 *error = ENOENT; 3841 bp = NULL; 3842 goto done; 3843 } 3844 if (!slash_prefixed) { 3845 if (bp == buf) { 3846 numcwdfailsz++; 3847 *error = ERANGE; 3848 bp = NULL; 3849 goto done; 3850 } 3851 *--bp = '/'; 3852 } 3853 numcwdfound++; 3854 *error = 0; 3855 done: 3856 if (ncp) 3857 _cache_drop(ncp); 3858 return (bp); 3859 } 3860 3861 /* 3862 * Thus begins the fullpath magic. 3863 * 3864 * The passed nchp is referenced but not locked. 3865 */ 3866 static int disablefullpath; 3867 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW, 3868 &disablefullpath, 0, 3869 "Disable fullpath lookups"); 3870 3871 static u_int numfullpathcalls; 3872 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathcalls, CTLFLAG_RD, 3873 &numfullpathcalls, 0, 3874 "Number of full path resolutions in progress"); 3875 static u_int numfullpathfailnf; 3876 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailnf, CTLFLAG_RD, 3877 &numfullpathfailnf, 0, 3878 "Number of full path resolution failures due to lack of file"); 3879 static u_int numfullpathfailsz; 3880 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailsz, CTLFLAG_RD, 3881 &numfullpathfailsz, 0, 3882 "Number of full path resolution failures due to insufficient memory"); 3883 static u_int numfullpathfound; 3884 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfound, CTLFLAG_RD, 3885 &numfullpathfound, 0, 3886 "Number of full path resolution successes"); 3887 3888 int 3889 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase, 3890 char **retbuf, char **freebuf, int guess) 3891 { 3892 struct nchandle fd_nrdir; 3893 struct nchandle nch; 3894 struct namecache *ncp; 3895 struct mount *mp, *new_mp; 3896 char *bp, *buf; 3897 int slash_prefixed; 3898 int error = 0; 3899 int i; 3900 3901 atomic_add_int(&numfullpathcalls, -1); 3902 3903 *retbuf = NULL; 3904 *freebuf = NULL; 3905 3906 buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK); 3907 bp = buf + MAXPATHLEN - 1; 3908 *bp = '\0'; 3909 if (nchbase) 3910 fd_nrdir = *nchbase; 3911 else if (p != NULL) 3912 fd_nrdir = p->p_fd->fd_nrdir; 3913 else 3914 fd_nrdir = rootnch; 3915 slash_prefixed = 0; 3916 nch = *nchp; 3917 ncp = nch.ncp; 3918 if (ncp) 3919 _cache_hold(ncp); 3920 mp = nch.mount; 3921 3922 while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) { 3923 new_mp = NULL; 3924 3925 /* 3926 * If we are asked to guess the upwards path, we do so whenever 3927 * we encounter an ncp marked as a mountpoint. We try to find 3928 * the actual mountpoint by finding the mountpoint with this 3929 * ncp. 3930 */ 3931 if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) { 3932 new_mp = mount_get_by_nc(ncp); 3933 } 3934 /* 3935 * While traversing upwards if we encounter the root 3936 * of the current mount we have to skip to the mount point. 3937 */ 3938 if (ncp == mp->mnt_ncmountpt.ncp) { 3939 new_mp = mp; 3940 } 3941 if (new_mp) { 3942 nch = new_mp->mnt_ncmounton; 3943 _cache_drop(ncp); 3944 ncp = nch.ncp; 3945 if (ncp) 3946 _cache_hold(ncp); 3947 mp = nch.mount; 3948 continue; 3949 } 3950 3951 /* 3952 * Prepend the path segment 3953 */ 3954 for (i = ncp->nc_nlen - 1; i >= 0; i--) { 3955 if (bp == buf) { 3956 numfullpathfailsz++; 3957 kfree(buf, M_TEMP); 3958 error = ENOMEM; 3959 goto done; 3960 } 3961 *--bp = ncp->nc_name[i]; 3962 } 3963 if (bp == buf) { 3964 numfullpathfailsz++; 3965 kfree(buf, M_TEMP); 3966 error = ENOMEM; 3967 goto done; 3968 } 3969 *--bp = '/'; 3970 slash_prefixed = 1; 3971 3972 /* 3973 * Go up a directory. This isn't a mount point so we don't 3974 * have to check again. 3975 * 3976 * We can only safely access nc_parent with ncp held locked. 3977 */ 3978 while ((nch.ncp = ncp->nc_parent) != NULL) { 3979 _cache_lock(ncp); 3980 if (nch.ncp != ncp->nc_parent) { 3981 _cache_unlock(ncp); 3982 continue; 3983 } 3984 _cache_hold(nch.ncp); 3985 _cache_unlock(ncp); 3986 break; 3987 } 3988 _cache_drop(ncp); 3989 ncp = nch.ncp; 3990 } 3991 if (ncp == NULL) { 3992 numfullpathfailnf++; 3993 kfree(buf, M_TEMP); 3994 error = ENOENT; 3995 goto done; 3996 } 3997 3998 if (!slash_prefixed) { 3999 if (bp == buf) { 4000 numfullpathfailsz++; 4001 kfree(buf, M_TEMP); 4002 error = ENOMEM; 4003 goto done; 4004 } 4005 *--bp = '/'; 4006 } 4007 numfullpathfound++; 4008 *retbuf = bp; 4009 *freebuf = buf; 4010 error = 0; 4011 done: 4012 if (ncp) 4013 _cache_drop(ncp); 4014 return(error); 4015 } 4016 4017 int 4018 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, 4019 char **freebuf, int guess) 4020 { 4021 struct namecache *ncp; 4022 struct nchandle nch; 4023 int error; 4024 4025 *freebuf = NULL; 4026 atomic_add_int(&numfullpathcalls, 1); 4027 if (disablefullpath) 4028 return (ENODEV); 4029 4030 if (p == NULL) 4031 return (EINVAL); 4032 4033 /* vn is NULL, client wants us to use p->p_textvp */ 4034 if (vn == NULL) { 4035 if ((vn = p->p_textvp) == NULL) 4036 return (EINVAL); 4037 } 4038 spin_lock_shared(&vn->v_spin); 4039 TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) { 4040 if (ncp->nc_nlen) 4041 break; 4042 } 4043 if (ncp == NULL) { 4044 spin_unlock_shared(&vn->v_spin); 4045 return (EINVAL); 4046 } 4047 _cache_hold(ncp); 4048 spin_unlock_shared(&vn->v_spin); 4049 4050 atomic_add_int(&numfullpathcalls, -1); 4051 nch.ncp = ncp; 4052 nch.mount = vn->v_mount; 4053 error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess); 4054 _cache_drop(ncp); 4055 return (error); 4056 } 4057