xref: /dflybsd-src/sys/kern/vfs_cache.c (revision ebbb4b97bba5f71fea11be7f7df933ecaf76a6e5)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
69 #include <sys/mount.h>
70 #include <sys/vnode.h>
71 #include <sys/malloc.h>
72 #include <sys/sysproto.h>
73 #include <sys/spinlock.h>
74 #include <sys/proc.h>
75 #include <sys/namei.h>
76 #include <sys/nlookup.h>
77 #include <sys/filedesc.h>
78 #include <sys/fnv_hash.h>
79 #include <sys/globaldata.h>
80 #include <sys/kern_syscall.h>
81 #include <sys/dirent.h>
82 #include <ddb/ddb.h>
83 
84 #include <sys/sysref2.h>
85 #include <sys/spinlock2.h>
86 #include <sys/mplock2.h>
87 
88 #define MAX_RECURSION_DEPTH	64
89 
90 /*
91  * Random lookups in the cache are accomplished with a hash table using
92  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock.
93  *
94  * Negative entries may exist and correspond to resolved namecache
95  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
96  * will be set if the entry corresponds to a whited-out directory entry
97  * (verses simply not finding the entry at all).   ncneglist is locked
98  * with a global spinlock (ncspin).
99  *
100  * MPSAFE RULES:
101  *
102  * (1) A ncp must be referenced before it can be locked.
103  *
104  * (2) A ncp must be locked in order to modify it.
105  *
106  * (3) ncp locks are always ordered child -> parent.  That may seem
107  *     backwards but forward scans use the hash table and thus can hold
108  *     the parent unlocked when traversing downward.
109  *
110  *     This allows insert/rename/delete/dot-dot and other operations
111  *     to use ncp->nc_parent links.
112  *
113  *     This also prevents a locked up e.g. NFS node from creating a
114  *     chain reaction all the way back to the root vnode / namecache.
115  *
116  * (4) parent linkages require both the parent and child to be locked.
117  */
118 
119 /*
120  * Structures associated with name cacheing.
121  */
122 #define NCHHASH(hash)		(&nchashtbl[(hash) & nchash])
123 #define MINNEG			1024
124 #define MINPOS			1024
125 #define NCMOUNT_NUMCACHE	1009	/* prime number */
126 
127 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
128 
129 LIST_HEAD(nchash_list, namecache);
130 
131 struct nchash_head {
132        struct nchash_list list;
133        struct spinlock	spin;
134 };
135 
136 struct ncmount_cache {
137 	struct spinlock	spin;
138 	struct namecache *ncp;
139 	struct mount *mp;
140 	int isneg;		/* if != 0 mp is originator and not target */
141 };
142 
143 static struct nchash_head	*nchashtbl;
144 static struct namecache_list	ncneglist;
145 static struct spinlock		ncspin;
146 static struct ncmount_cache	ncmount_cache[NCMOUNT_NUMCACHE];
147 
148 /*
149  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
150  * to create the namecache infrastructure leading to a dangling vnode.
151  *
152  * 0	Only errors are reported
153  * 1	Successes are reported
154  * 2	Successes + the whole directory scan is reported
155  * 3	Force the directory scan code run as if the parent vnode did not
156  *	have a namecache record, even if it does have one.
157  */
158 static int	ncvp_debug;
159 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
160     "Namecache debug level (0-3)");
161 
162 static u_long	nchash;			/* size of hash table */
163 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
164     "Size of namecache hash table");
165 
166 static int	ncnegflush = 10;	/* burst for negative flush */
167 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
168     "Batch flush negative entries");
169 
170 static int	ncposflush = 10;	/* burst for positive flush */
171 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
172     "Batch flush positive entries");
173 
174 static int	ncnegfactor = 16;	/* ratio of negative entries */
175 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
176     "Ratio of namecache negative entries");
177 
178 static int	nclockwarn;		/* warn on locked entries in ticks */
179 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
180     "Warn on locked namecache entries in ticks");
181 
182 static int	numdefered;		/* number of cache entries allocated */
183 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
184     "Number of cache entries allocated");
185 
186 static int	ncposlimit;		/* number of cache entries allocated */
187 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
188     "Number of cache entries allocated");
189 
190 static int	ncp_shared_lock_disable = 0;
191 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
192 	   &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
193 
194 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
195     "sizeof(struct vnode)");
196 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
197     "sizeof(struct namecache)");
198 
199 static int	ncmount_cache_enable = 1;
200 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
201 	   &ncmount_cache_enable, 0, "mount point cache");
202 static long	ncmount_cache_hit;
203 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_hit, CTLFLAG_RW,
204 	    &ncmount_cache_hit, 0, "mpcache hits");
205 static long	ncmount_cache_miss;
206 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_miss, CTLFLAG_RW,
207 	    &ncmount_cache_miss, 0, "mpcache misses");
208 static long	ncmount_cache_overwrite;
209 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_overwrite, CTLFLAG_RW,
210 	    &ncmount_cache_overwrite, 0, "mpcache entry overwrites");
211 
212 static int cache_resolve_mp(struct mount *mp);
213 static struct vnode *cache_dvpref(struct namecache *ncp);
214 static void _cache_lock(struct namecache *ncp);
215 static void _cache_setunresolved(struct namecache *ncp);
216 static void _cache_cleanneg(int count);
217 static void _cache_cleanpos(int count);
218 static void _cache_cleandefered(void);
219 static void _cache_unlink(struct namecache *ncp);
220 
221 /*
222  * The new name cache statistics
223  */
224 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
225 static int numneg;
226 SYSCTL_INT(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0,
227     "Number of negative namecache entries");
228 static int numcache;
229 SYSCTL_INT(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0,
230     "Number of namecaches entries");
231 static u_long numcalls;
232 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcalls, CTLFLAG_RD, &numcalls, 0,
233     "Number of namecache lookups");
234 static u_long numchecks;
235 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numchecks, CTLFLAG_RD, &numchecks, 0,
236     "Number of checked entries in namecache lookups");
237 
238 struct nchstats nchstats[SMP_MAXCPU];
239 /*
240  * Export VFS cache effectiveness statistics to user-land.
241  *
242  * The statistics are left for aggregation to user-land so
243  * neat things can be achieved, like observing per-CPU cache
244  * distribution.
245  */
246 static int
247 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
248 {
249 	struct globaldata *gd;
250 	int i, error;
251 
252 	error = 0;
253 	for (i = 0; i < ncpus; ++i) {
254 		gd = globaldata_find(i);
255 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
256 			sizeof(struct nchstats))))
257 			break;
258 	}
259 
260 	return (error);
261 }
262 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
263   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
264 
265 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
266 
267 /*
268  * Namespace locking.  The caller must already hold a reference to the
269  * namecache structure in order to lock/unlock it.  This function prevents
270  * the namespace from being created or destroyed by accessors other then
271  * the lock holder.
272  *
273  * Note that holding a locked namecache structure prevents other threads
274  * from making namespace changes (e.g. deleting or creating), prevents
275  * vnode association state changes by other threads, and prevents the
276  * namecache entry from being resolved or unresolved by other threads.
277  *
278  * An exclusive lock owner has full authority to associate/disassociate
279  * vnodes and resolve/unresolve the locked ncp.
280  *
281  * A shared lock owner only has authority to acquire the underlying vnode,
282  * if any.
283  *
284  * The primary lock field is nc_lockstatus.  nc_locktd is set after the
285  * fact (when locking) or cleared prior to unlocking.
286  *
287  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
288  *	     or recycled, but it does NOT help you if the vnode had already
289  *	     initiated a recyclement.  If this is important, use cache_get()
290  *	     rather then cache_lock() (and deal with the differences in the
291  *	     way the refs counter is handled).  Or, alternatively, make an
292  *	     unconditional call to cache_validate() or cache_resolve()
293  *	     after cache_lock() returns.
294  */
295 static
296 void
297 _cache_lock(struct namecache *ncp)
298 {
299 	thread_t td;
300 	int didwarn;
301 	int begticks;
302 	int error;
303 	u_int count;
304 
305 	KKASSERT(ncp->nc_refs != 0);
306 	didwarn = 0;
307 	begticks = 0;
308 	td = curthread;
309 
310 	for (;;) {
311 		count = ncp->nc_lockstatus;
312 		cpu_ccfence();
313 
314 		if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
315 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
316 					      count, count + 1)) {
317 				/*
318 				 * The vp associated with a locked ncp must
319 				 * be held to prevent it from being recycled.
320 				 *
321 				 * WARNING!  If VRECLAIMED is set the vnode
322 				 * could already be in the middle of a recycle.
323 				 * Callers must use cache_vref() or
324 				 * cache_vget() on the locked ncp to
325 				 * validate the vp or set the cache entry
326 				 * to unresolved.
327 				 *
328 				 * NOTE! vhold() is allowed if we hold a
329 				 *	 lock on the ncp (which we do).
330 				 */
331 				ncp->nc_locktd = td;
332 				if (ncp->nc_vp)
333 					vhold(ncp->nc_vp);
334 				break;
335 			}
336 			/* cmpset failed */
337 			continue;
338 		}
339 		if (ncp->nc_locktd == td) {
340 			KKASSERT((count & NC_SHLOCK_FLAG) == 0);
341 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
342 					      count, count + 1)) {
343 				break;
344 			}
345 			/* cmpset failed */
346 			continue;
347 		}
348 		tsleep_interlock(&ncp->nc_locktd, 0);
349 		if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
350 				      count | NC_EXLOCK_REQ) == 0) {
351 			/* cmpset failed */
352 			continue;
353 		}
354 		if (begticks == 0)
355 			begticks = ticks;
356 		error = tsleep(&ncp->nc_locktd, PINTERLOCKED,
357 			       "clock", nclockwarn);
358 		if (error == EWOULDBLOCK) {
359 			if (didwarn == 0) {
360 				didwarn = ticks;
361 				kprintf("[diagnostic] cache_lock: "
362 					"blocked on %p %08x",
363 					ncp, count);
364 				kprintf(" \"%*.*s\"\n",
365 					ncp->nc_nlen, ncp->nc_nlen,
366 					ncp->nc_name);
367 			}
368 		}
369 		/* loop */
370 	}
371 	if (didwarn) {
372 		kprintf("[diagnostic] cache_lock: unblocked %*.*s after "
373 			"%d secs\n",
374 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
375 			(int)(ticks + (hz / 2) - begticks) / hz);
376 	}
377 }
378 
379 /*
380  * The shared lock works similarly to the exclusive lock except
381  * nc_locktd is left NULL and we need an interlock (VHOLD) to
382  * prevent vhold() races, since the moment our cmpset_int succeeds
383  * another cpu can come in and get its own shared lock.
384  *
385  * A critical section is needed to prevent interruption during the
386  * VHOLD interlock.
387  */
388 static
389 void
390 _cache_lock_shared(struct namecache *ncp)
391 {
392 	int didwarn;
393 	int error;
394 	u_int count;
395 	u_int optreq = NC_EXLOCK_REQ;
396 
397 	KKASSERT(ncp->nc_refs != 0);
398 	didwarn = 0;
399 
400 	for (;;) {
401 		count = ncp->nc_lockstatus;
402 		cpu_ccfence();
403 
404 		if ((count & ~NC_SHLOCK_REQ) == 0) {
405 			crit_enter();
406 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
407 				      count,
408 				      (count + 1) | NC_SHLOCK_FLAG |
409 						    NC_SHLOCK_VHOLD)) {
410 				/*
411 				 * The vp associated with a locked ncp must
412 				 * be held to prevent it from being recycled.
413 				 *
414 				 * WARNING!  If VRECLAIMED is set the vnode
415 				 * could already be in the middle of a recycle.
416 				 * Callers must use cache_vref() or
417 				 * cache_vget() on the locked ncp to
418 				 * validate the vp or set the cache entry
419 				 * to unresolved.
420 				 *
421 				 * NOTE! vhold() is allowed if we hold a
422 				 *	 lock on the ncp (which we do).
423 				 */
424 				if (ncp->nc_vp)
425 					vhold(ncp->nc_vp);
426 				atomic_clear_int(&ncp->nc_lockstatus,
427 						 NC_SHLOCK_VHOLD);
428 				crit_exit();
429 				break;
430 			}
431 			/* cmpset failed */
432 			crit_exit();
433 			continue;
434 		}
435 
436 		/*
437 		 * If already held shared we can just bump the count, but
438 		 * only allow this if nobody is trying to get the lock
439 		 * exclusively.  If we are blocking too long ignore excl
440 		 * requests (which can race/deadlock us).
441 		 *
442 		 * VHOLD is a bit of a hack.  Even though we successfully
443 		 * added another shared ref, the cpu that got the first
444 		 * shared ref might not yet have held the vnode.
445 		 */
446 		if ((count & (optreq|NC_SHLOCK_FLAG)) == NC_SHLOCK_FLAG) {
447 			KKASSERT((count & ~(NC_EXLOCK_REQ |
448 					    NC_SHLOCK_REQ |
449 					    NC_SHLOCK_FLAG)) > 0);
450 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
451 					      count, count + 1)) {
452 				while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
453 					cpu_pause();
454 				break;
455 			}
456 			continue;
457 		}
458 		tsleep_interlock(ncp, 0);
459 		if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
460 				      count | NC_SHLOCK_REQ) == 0) {
461 			/* cmpset failed */
462 			continue;
463 		}
464 		error = tsleep(ncp, PINTERLOCKED, "clocksh", nclockwarn);
465 		if (error == EWOULDBLOCK) {
466 			optreq = 0;
467 			if (didwarn == 0) {
468 				didwarn = ticks;
469 				kprintf("[diagnostic] cache_lock_shared: "
470 					"blocked on %p %08x",
471 					ncp, count);
472 				kprintf(" \"%*.*s\"\n",
473 					ncp->nc_nlen, ncp->nc_nlen,
474 					ncp->nc_name);
475 			}
476 		}
477 		/* loop */
478 	}
479 	if (didwarn) {
480 		kprintf("[diagnostic] cache_lock_shared: "
481 			"unblocked %*.*s after %d secs\n",
482 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
483 			(int)(ticks - didwarn) / hz);
484 	}
485 }
486 
487 /*
488  * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
489  *	 such as the case where one of its children is locked.
490  */
491 static
492 int
493 _cache_lock_nonblock(struct namecache *ncp)
494 {
495 	thread_t td;
496 	u_int count;
497 
498 	td = curthread;
499 
500 	for (;;) {
501 		count = ncp->nc_lockstatus;
502 
503 		if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
504 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
505 					      count, count + 1)) {
506 				/*
507 				 * The vp associated with a locked ncp must
508 				 * be held to prevent it from being recycled.
509 				 *
510 				 * WARNING!  If VRECLAIMED is set the vnode
511 				 * could already be in the middle of a recycle.
512 				 * Callers must use cache_vref() or
513 				 * cache_vget() on the locked ncp to
514 				 * validate the vp or set the cache entry
515 				 * to unresolved.
516 				 *
517 				 * NOTE! vhold() is allowed if we hold a
518 				 *	 lock on the ncp (which we do).
519 				 */
520 				ncp->nc_locktd = td;
521 				if (ncp->nc_vp)
522 					vhold(ncp->nc_vp);
523 				break;
524 			}
525 			/* cmpset failed */
526 			continue;
527 		}
528 		if (ncp->nc_locktd == td) {
529 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
530 					      count, count + 1)) {
531 				break;
532 			}
533 			/* cmpset failed */
534 			continue;
535 		}
536 		return(EWOULDBLOCK);
537 	}
538 	return(0);
539 }
540 
541 /*
542  * The shared lock works similarly to the exclusive lock except
543  * nc_locktd is left NULL and we need an interlock (VHOLD) to
544  * prevent vhold() races, since the moment our cmpset_int succeeds
545  * another cpu can come in and get its own shared lock.
546  *
547  * A critical section is needed to prevent interruption during the
548  * VHOLD interlock.
549  */
550 static
551 int
552 _cache_lock_shared_nonblock(struct namecache *ncp)
553 {
554 	u_int count;
555 
556 	for (;;) {
557 		count = ncp->nc_lockstatus;
558 
559 		if ((count & ~NC_SHLOCK_REQ) == 0) {
560 			crit_enter();
561 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
562 				      count,
563 				      (count + 1) | NC_SHLOCK_FLAG |
564 						    NC_SHLOCK_VHOLD)) {
565 				/*
566 				 * The vp associated with a locked ncp must
567 				 * be held to prevent it from being recycled.
568 				 *
569 				 * WARNING!  If VRECLAIMED is set the vnode
570 				 * could already be in the middle of a recycle.
571 				 * Callers must use cache_vref() or
572 				 * cache_vget() on the locked ncp to
573 				 * validate the vp or set the cache entry
574 				 * to unresolved.
575 				 *
576 				 * NOTE! vhold() is allowed if we hold a
577 				 *	 lock on the ncp (which we do).
578 				 */
579 				if (ncp->nc_vp)
580 					vhold(ncp->nc_vp);
581 				atomic_clear_int(&ncp->nc_lockstatus,
582 						 NC_SHLOCK_VHOLD);
583 				crit_exit();
584 				break;
585 			}
586 			/* cmpset failed */
587 			crit_exit();
588 			continue;
589 		}
590 
591 		/*
592 		 * If already held shared we can just bump the count, but
593 		 * only allow this if nobody is trying to get the lock
594 		 * exclusively.
595 		 *
596 		 * VHOLD is a bit of a hack.  Even though we successfully
597 		 * added another shared ref, the cpu that got the first
598 		 * shared ref might not yet have held the vnode.
599 		 */
600 		if ((count & (NC_EXLOCK_REQ|NC_SHLOCK_FLAG)) ==
601 		    NC_SHLOCK_FLAG) {
602 			KKASSERT((count & ~(NC_EXLOCK_REQ |
603 					    NC_SHLOCK_REQ |
604 					    NC_SHLOCK_FLAG)) > 0);
605 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
606 					      count, count + 1)) {
607 				while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
608 					cpu_pause();
609 				break;
610 			}
611 			continue;
612 		}
613 		return(EWOULDBLOCK);
614 	}
615 	return(0);
616 }
617 
618 /*
619  * Helper function
620  *
621  * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
622  *
623  *	 nc_locktd must be NULLed out prior to nc_lockstatus getting cleared.
624  */
625 static
626 void
627 _cache_unlock(struct namecache *ncp)
628 {
629 	thread_t td __debugvar = curthread;
630 	u_int count;
631 	u_int ncount;
632 	struct vnode *dropvp;
633 
634 	KKASSERT(ncp->nc_refs >= 0);
635 	KKASSERT((ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) > 0);
636 	KKASSERT((ncp->nc_lockstatus & NC_SHLOCK_FLAG) || ncp->nc_locktd == td);
637 
638 	count = ncp->nc_lockstatus;
639 	cpu_ccfence();
640 
641 	/*
642 	 * Clear nc_locktd prior to the atomic op (excl lock only)
643 	 */
644 	if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1)
645 		ncp->nc_locktd = NULL;
646 	dropvp = NULL;
647 
648 	for (;;) {
649 		if ((count &
650 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ|NC_SHLOCK_FLAG)) == 1) {
651 			dropvp = ncp->nc_vp;
652 			if (count & NC_EXLOCK_REQ)
653 				ncount = count & NC_SHLOCK_REQ; /* cnt->0 */
654 			else
655 				ncount = 0;
656 
657 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
658 					      count, ncount)) {
659 				if (count & NC_EXLOCK_REQ)
660 					wakeup(&ncp->nc_locktd);
661 				else if (count & NC_SHLOCK_REQ)
662 					wakeup(ncp);
663 				break;
664 			}
665 			dropvp = NULL;
666 		} else {
667 			KKASSERT((count & NC_SHLOCK_VHOLD) == 0);
668 			KKASSERT((count & ~(NC_EXLOCK_REQ |
669 					    NC_SHLOCK_REQ |
670 					    NC_SHLOCK_FLAG)) > 1);
671 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
672 					      count, count - 1)) {
673 				break;
674 			}
675 		}
676 		count = ncp->nc_lockstatus;
677 		cpu_ccfence();
678 	}
679 
680 	/*
681 	 * Don't actually drop the vp until we successfully clean out
682 	 * the lock, otherwise we may race another shared lock.
683 	 */
684 	if (dropvp)
685 		vdrop(dropvp);
686 }
687 
688 static
689 int
690 _cache_lockstatus(struct namecache *ncp)
691 {
692 	if (ncp->nc_locktd == curthread)
693 		return(LK_EXCLUSIVE);
694 	if (ncp->nc_lockstatus & NC_SHLOCK_FLAG)
695 		return(LK_SHARED);
696 	return(-1);
697 }
698 
699 /*
700  * cache_hold() and cache_drop() prevent the premature deletion of a
701  * namecache entry but do not prevent operations (such as zapping) on
702  * that namecache entry.
703  *
704  * This routine may only be called from outside this source module if
705  * nc_refs is already at least 1.
706  *
707  * This is a rare case where callers are allowed to hold a spinlock,
708  * so we can't ourselves.
709  */
710 static __inline
711 struct namecache *
712 _cache_hold(struct namecache *ncp)
713 {
714 	atomic_add_int(&ncp->nc_refs, 1);
715 	return(ncp);
716 }
717 
718 /*
719  * Drop a cache entry, taking care to deal with races.
720  *
721  * For potential 1->0 transitions we must hold the ncp lock to safely
722  * test its flags.  An unresolved entry with no children must be zapped
723  * to avoid leaks.
724  *
725  * The call to cache_zap() itself will handle all remaining races and
726  * will decrement the ncp's refs regardless.  If we are resolved or
727  * have children nc_refs can safely be dropped to 0 without having to
728  * zap the entry.
729  *
730  * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
731  *
732  * NOTE: cache_zap() may return a non-NULL referenced parent which must
733  *	 be dropped in a loop.
734  */
735 static __inline
736 void
737 _cache_drop(struct namecache *ncp)
738 {
739 	int refs;
740 
741 	while (ncp) {
742 		KKASSERT(ncp->nc_refs > 0);
743 		refs = ncp->nc_refs;
744 
745 		if (refs == 1) {
746 			if (_cache_lock_nonblock(ncp) == 0) {
747 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
748 				if ((ncp->nc_flag & NCF_UNRESOLVED) &&
749 				    TAILQ_EMPTY(&ncp->nc_list)) {
750 					ncp = cache_zap(ncp, 1);
751 					continue;
752 				}
753 				if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
754 					_cache_unlock(ncp);
755 					break;
756 				}
757 				_cache_unlock(ncp);
758 			}
759 		} else {
760 			if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
761 				break;
762 		}
763 		cpu_pause();
764 	}
765 }
766 
767 /*
768  * Link a new namecache entry to its parent and to the hash table.  Be
769  * careful to avoid races if vhold() blocks in the future.
770  *
771  * Both ncp and par must be referenced and locked.
772  *
773  * NOTE: The hash table spinlock is held during this call, we can't do
774  *	 anything fancy.
775  */
776 static void
777 _cache_link_parent(struct namecache *ncp, struct namecache *par,
778 		   struct nchash_head *nchpp)
779 {
780 	KKASSERT(ncp->nc_parent == NULL);
781 	ncp->nc_parent = par;
782 	ncp->nc_head = nchpp;
783 
784 	/*
785 	 * Set inheritance flags.  Note that the parent flags may be
786 	 * stale due to getattr potentially not having been run yet
787 	 * (it gets run during nlookup()'s).
788 	 */
789 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
790 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
791 		ncp->nc_flag |= NCF_SF_PNOCACHE;
792 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
793 		ncp->nc_flag |= NCF_UF_PCACHE;
794 
795 	LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
796 
797 	if (TAILQ_EMPTY(&par->nc_list)) {
798 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
799 		/*
800 		 * Any vp associated with an ncp which has children must
801 		 * be held to prevent it from being recycled.
802 		 */
803 		if (par->nc_vp)
804 			vhold(par->nc_vp);
805 	} else {
806 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
807 	}
808 }
809 
810 /*
811  * Remove the parent and hash associations from a namecache structure.
812  * If this is the last child of the parent the cache_drop(par) will
813  * attempt to recursively zap the parent.
814  *
815  * ncp must be locked.  This routine will acquire a temporary lock on
816  * the parent as wlel as the appropriate hash chain.
817  */
818 static void
819 _cache_unlink_parent(struct namecache *ncp)
820 {
821 	struct namecache *par;
822 	struct vnode *dropvp;
823 
824 	if ((par = ncp->nc_parent) != NULL) {
825 		KKASSERT(ncp->nc_parent == par);
826 		_cache_hold(par);
827 		_cache_lock(par);
828 		spin_lock(&ncp->nc_head->spin);
829 		LIST_REMOVE(ncp, nc_hash);
830 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
831 		dropvp = NULL;
832 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
833 			dropvp = par->nc_vp;
834 		spin_unlock(&ncp->nc_head->spin);
835 		ncp->nc_parent = NULL;
836 		ncp->nc_head = NULL;
837 		_cache_unlock(par);
838 		_cache_drop(par);
839 
840 		/*
841 		 * We can only safely vdrop with no spinlocks held.
842 		 */
843 		if (dropvp)
844 			vdrop(dropvp);
845 	}
846 }
847 
848 /*
849  * Allocate a new namecache structure.  Most of the code does not require
850  * zero-termination of the string but it makes vop_compat_ncreate() easier.
851  */
852 static struct namecache *
853 cache_alloc(int nlen)
854 {
855 	struct namecache *ncp;
856 
857 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
858 	if (nlen)
859 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
860 	ncp->nc_nlen = nlen;
861 	ncp->nc_flag = NCF_UNRESOLVED;
862 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
863 	ncp->nc_refs = 1;
864 
865 	TAILQ_INIT(&ncp->nc_list);
866 	_cache_lock(ncp);
867 	return(ncp);
868 }
869 
870 /*
871  * Can only be called for the case where the ncp has never been
872  * associated with anything (so no spinlocks are needed).
873  */
874 static void
875 _cache_free(struct namecache *ncp)
876 {
877 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_lockstatus == 1);
878 	if (ncp->nc_name)
879 		kfree(ncp->nc_name, M_VFSCACHE);
880 	kfree(ncp, M_VFSCACHE);
881 }
882 
883 /*
884  * [re]initialize a nchandle.
885  */
886 void
887 cache_zero(struct nchandle *nch)
888 {
889 	nch->ncp = NULL;
890 	nch->mount = NULL;
891 }
892 
893 /*
894  * Ref and deref a namecache structure.
895  *
896  * The caller must specify a stable ncp pointer, typically meaning the
897  * ncp is already referenced but this can also occur indirectly through
898  * e.g. holding a lock on a direct child.
899  *
900  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
901  *	    use read spinlocks here.
902  *
903  * MPSAFE if nch is
904  */
905 struct nchandle *
906 cache_hold(struct nchandle *nch)
907 {
908 	_cache_hold(nch->ncp);
909 	atomic_add_int(&nch->mount->mnt_refs, 1);
910 	return(nch);
911 }
912 
913 /*
914  * Create a copy of a namecache handle for an already-referenced
915  * entry.
916  *
917  * MPSAFE if nch is
918  */
919 void
920 cache_copy(struct nchandle *nch, struct nchandle *target)
921 {
922 	*target = *nch;
923 	if (target->ncp)
924 		_cache_hold(target->ncp);
925 	atomic_add_int(&nch->mount->mnt_refs, 1);
926 }
927 
928 /*
929  * MPSAFE if nch is
930  */
931 void
932 cache_changemount(struct nchandle *nch, struct mount *mp)
933 {
934 	atomic_add_int(&nch->mount->mnt_refs, -1);
935 	nch->mount = mp;
936 	atomic_add_int(&nch->mount->mnt_refs, 1);
937 }
938 
939 void
940 cache_drop(struct nchandle *nch)
941 {
942 	atomic_add_int(&nch->mount->mnt_refs, -1);
943 	_cache_drop(nch->ncp);
944 	nch->ncp = NULL;
945 	nch->mount = NULL;
946 }
947 
948 int
949 cache_lockstatus(struct nchandle *nch)
950 {
951 	return(_cache_lockstatus(nch->ncp));
952 }
953 
954 void
955 cache_lock(struct nchandle *nch)
956 {
957 	_cache_lock(nch->ncp);
958 }
959 
960 void
961 cache_lock_maybe_shared(struct nchandle *nch, int excl)
962 {
963 	struct namecache *ncp = nch->ncp;
964 
965 	if (ncp_shared_lock_disable || excl ||
966 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
967 		_cache_lock(ncp);
968 	} else {
969 		_cache_lock_shared(ncp);
970 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
971 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
972 				_cache_unlock(ncp);
973 				_cache_lock(ncp);
974 			}
975 		} else {
976 			_cache_unlock(ncp);
977 			_cache_lock(ncp);
978 		}
979 	}
980 }
981 
982 /*
983  * Relock nch1 given an unlocked nch1 and a locked nch2.  The caller
984  * is responsible for checking both for validity on return as they
985  * may have become invalid.
986  *
987  * We have to deal with potential deadlocks here, just ping pong
988  * the lock until we get it (we will always block somewhere when
989  * looping so this is not cpu-intensive).
990  *
991  * which = 0	nch1 not locked, nch2 is locked
992  * which = 1	nch1 is locked, nch2 is not locked
993  */
994 void
995 cache_relock(struct nchandle *nch1, struct ucred *cred1,
996 	     struct nchandle *nch2, struct ucred *cred2)
997 {
998 	int which;
999 
1000 	which = 0;
1001 
1002 	for (;;) {
1003 		if (which == 0) {
1004 			if (cache_lock_nonblock(nch1) == 0) {
1005 				cache_resolve(nch1, cred1);
1006 				break;
1007 			}
1008 			cache_unlock(nch2);
1009 			cache_lock(nch1);
1010 			cache_resolve(nch1, cred1);
1011 			which = 1;
1012 		} else {
1013 			if (cache_lock_nonblock(nch2) == 0) {
1014 				cache_resolve(nch2, cred2);
1015 				break;
1016 			}
1017 			cache_unlock(nch1);
1018 			cache_lock(nch2);
1019 			cache_resolve(nch2, cred2);
1020 			which = 0;
1021 		}
1022 	}
1023 }
1024 
1025 int
1026 cache_lock_nonblock(struct nchandle *nch)
1027 {
1028 	return(_cache_lock_nonblock(nch->ncp));
1029 }
1030 
1031 void
1032 cache_unlock(struct nchandle *nch)
1033 {
1034 	_cache_unlock(nch->ncp);
1035 }
1036 
1037 /*
1038  * ref-and-lock, unlock-and-deref functions.
1039  *
1040  * This function is primarily used by nlookup.  Even though cache_lock
1041  * holds the vnode, it is possible that the vnode may have already
1042  * initiated a recyclement.
1043  *
1044  * We want cache_get() to return a definitively usable vnode or a
1045  * definitively unresolved ncp.
1046  */
1047 static
1048 struct namecache *
1049 _cache_get(struct namecache *ncp)
1050 {
1051 	_cache_hold(ncp);
1052 	_cache_lock(ncp);
1053 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1054 		_cache_setunresolved(ncp);
1055 	return(ncp);
1056 }
1057 
1058 /*
1059  * Attempt to obtain a shared lock on the ncp.  A shared lock will only
1060  * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1061  * valid.  Otherwise an exclusive lock will be acquired instead.
1062  */
1063 static
1064 struct namecache *
1065 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1066 {
1067 	if (ncp_shared_lock_disable || excl ||
1068 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1069 		return(_cache_get(ncp));
1070 	}
1071 	_cache_hold(ncp);
1072 	_cache_lock_shared(ncp);
1073 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1074 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1075 			_cache_unlock(ncp);
1076 			ncp = _cache_get(ncp);
1077 			_cache_drop(ncp);
1078 		}
1079 	} else {
1080 		_cache_unlock(ncp);
1081 		ncp = _cache_get(ncp);
1082 		_cache_drop(ncp);
1083 	}
1084 	return(ncp);
1085 }
1086 
1087 /*
1088  * This is a special form of _cache_lock() which only succeeds if
1089  * it can get a pristine, non-recursive lock.  The caller must have
1090  * already ref'd the ncp.
1091  *
1092  * On success the ncp will be locked, on failure it will not.  The
1093  * ref count does not change either way.
1094  *
1095  * We want _cache_lock_special() (on success) to return a definitively
1096  * usable vnode or a definitively unresolved ncp.
1097  */
1098 static int
1099 _cache_lock_special(struct namecache *ncp)
1100 {
1101 	if (_cache_lock_nonblock(ncp) == 0) {
1102 		if ((ncp->nc_lockstatus &
1103 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1) {
1104 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1105 				_cache_setunresolved(ncp);
1106 			return(0);
1107 		}
1108 		_cache_unlock(ncp);
1109 	}
1110 	return(EWOULDBLOCK);
1111 }
1112 
1113 /*
1114  * This function tries to get a shared lock but will back-off to an exclusive
1115  * lock if:
1116  *
1117  * (1) Some other thread is trying to obtain an exclusive lock
1118  *     (to prevent the exclusive requester from getting livelocked out
1119  *     by many shared locks).
1120  *
1121  * (2) The current thread already owns an exclusive lock (to avoid
1122  *     deadlocking).
1123  *
1124  * WARNING! On machines with lots of cores we really want to try hard to
1125  *	    get a shared lock or concurrent path lookups can chain-react
1126  *	    into a very high-latency exclusive lock.
1127  */
1128 static int
1129 _cache_lock_shared_special(struct namecache *ncp)
1130 {
1131 	/*
1132 	 * Only honor a successful shared lock (returning 0) if there is
1133 	 * no exclusive request pending and the vnode, if present, is not
1134 	 * in a reclaimed state.
1135 	 */
1136 	if (_cache_lock_shared_nonblock(ncp) == 0) {
1137 		if ((ncp->nc_lockstatus & NC_EXLOCK_REQ) == 0) {
1138 			if (ncp->nc_vp == NULL ||
1139 			    (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
1140 				return(0);
1141 			}
1142 		}
1143 		_cache_unlock(ncp);
1144 		return(EWOULDBLOCK);
1145 	}
1146 
1147 	/*
1148 	 * Non-blocking shared lock failed.  If we already own the exclusive
1149 	 * lock just acquire another exclusive lock (instead of deadlocking).
1150 	 * Otherwise acquire a shared lock.
1151 	 */
1152 	if (ncp->nc_locktd == curthread) {
1153 		_cache_lock(ncp);
1154 		return(0);
1155 	}
1156 	_cache_lock_shared(ncp);
1157 	return(0);
1158 }
1159 
1160 
1161 /*
1162  * NOTE: The same nchandle can be passed for both arguments.
1163  */
1164 void
1165 cache_get(struct nchandle *nch, struct nchandle *target)
1166 {
1167 	KKASSERT(nch->ncp->nc_refs > 0);
1168 	target->mount = nch->mount;
1169 	target->ncp = _cache_get(nch->ncp);
1170 	atomic_add_int(&target->mount->mnt_refs, 1);
1171 }
1172 
1173 void
1174 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1175 {
1176 	KKASSERT(nch->ncp->nc_refs > 0);
1177 	target->mount = nch->mount;
1178 	target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1179 	atomic_add_int(&target->mount->mnt_refs, 1);
1180 }
1181 
1182 /*
1183  *
1184  */
1185 static __inline
1186 void
1187 _cache_put(struct namecache *ncp)
1188 {
1189 	_cache_unlock(ncp);
1190 	_cache_drop(ncp);
1191 }
1192 
1193 /*
1194  *
1195  */
1196 void
1197 cache_put(struct nchandle *nch)
1198 {
1199 	atomic_add_int(&nch->mount->mnt_refs, -1);
1200 	_cache_put(nch->ncp);
1201 	nch->ncp = NULL;
1202 	nch->mount = NULL;
1203 }
1204 
1205 /*
1206  * Resolve an unresolved ncp by associating a vnode with it.  If the
1207  * vnode is NULL, a negative cache entry is created.
1208  *
1209  * The ncp should be locked on entry and will remain locked on return.
1210  */
1211 static
1212 void
1213 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
1214 {
1215 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
1216 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1217 
1218 	if (vp != NULL) {
1219 		/*
1220 		 * Any vp associated with an ncp which has children must
1221 		 * be held.  Any vp associated with a locked ncp must be held.
1222 		 */
1223 		if (!TAILQ_EMPTY(&ncp->nc_list))
1224 			vhold(vp);
1225 		spin_lock(&vp->v_spin);
1226 		ncp->nc_vp = vp;
1227 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1228 		spin_unlock(&vp->v_spin);
1229 		if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1230 			vhold(vp);
1231 
1232 		/*
1233 		 * Set auxiliary flags
1234 		 */
1235 		switch(vp->v_type) {
1236 		case VDIR:
1237 			ncp->nc_flag |= NCF_ISDIR;
1238 			break;
1239 		case VLNK:
1240 			ncp->nc_flag |= NCF_ISSYMLINK;
1241 			/* XXX cache the contents of the symlink */
1242 			break;
1243 		default:
1244 			break;
1245 		}
1246 		atomic_add_int(&numcache, 1);
1247 		ncp->nc_error = 0;
1248 		/* XXX: this is a hack to work-around the lack of a real pfs vfs
1249 		 * implementation*/
1250 		if (mp != NULL)
1251 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1252 				vp->v_pfsmp = mp;
1253 	} else {
1254 		/*
1255 		 * When creating a negative cache hit we set the
1256 		 * namecache_gen.  A later resolve will clean out the
1257 		 * negative cache hit if the mount point's namecache_gen
1258 		 * has changed.  Used by devfs, could also be used by
1259 		 * other remote FSs.
1260 		 */
1261 		ncp->nc_vp = NULL;
1262 		spin_lock(&ncspin);
1263 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
1264 		++numneg;
1265 		spin_unlock(&ncspin);
1266 		ncp->nc_error = ENOENT;
1267 		if (mp)
1268 			VFS_NCPGEN_SET(mp, ncp);
1269 	}
1270 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1271 }
1272 
1273 /*
1274  *
1275  */
1276 void
1277 cache_setvp(struct nchandle *nch, struct vnode *vp)
1278 {
1279 	_cache_setvp(nch->mount, nch->ncp, vp);
1280 }
1281 
1282 /*
1283  *
1284  */
1285 void
1286 cache_settimeout(struct nchandle *nch, int nticks)
1287 {
1288 	struct namecache *ncp = nch->ncp;
1289 
1290 	if ((ncp->nc_timeout = ticks + nticks) == 0)
1291 		ncp->nc_timeout = 1;
1292 }
1293 
1294 /*
1295  * Disassociate the vnode or negative-cache association and mark a
1296  * namecache entry as unresolved again.  Note that the ncp is still
1297  * left in the hash table and still linked to its parent.
1298  *
1299  * The ncp should be locked and refd on entry and will remain locked and refd
1300  * on return.
1301  *
1302  * This routine is normally never called on a directory containing children.
1303  * However, NFS often does just that in its rename() code as a cop-out to
1304  * avoid complex namespace operations.  This disconnects a directory vnode
1305  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1306  * sync.
1307  *
1308  */
1309 static
1310 void
1311 _cache_setunresolved(struct namecache *ncp)
1312 {
1313 	struct vnode *vp;
1314 
1315 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1316 		ncp->nc_flag |= NCF_UNRESOLVED;
1317 		ncp->nc_timeout = 0;
1318 		ncp->nc_error = ENOTCONN;
1319 		if ((vp = ncp->nc_vp) != NULL) {
1320 			atomic_add_int(&numcache, -1);
1321 			spin_lock(&vp->v_spin);
1322 			ncp->nc_vp = NULL;
1323 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1324 			spin_unlock(&vp->v_spin);
1325 
1326 			/*
1327 			 * Any vp associated with an ncp with children is
1328 			 * held by that ncp.  Any vp associated with a locked
1329 			 * ncp is held by that ncp.  These conditions must be
1330 			 * undone when the vp is cleared out from the ncp.
1331 			 */
1332 			if (!TAILQ_EMPTY(&ncp->nc_list))
1333 				vdrop(vp);
1334 			if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1335 				vdrop(vp);
1336 		} else {
1337 			spin_lock(&ncspin);
1338 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
1339 			--numneg;
1340 			spin_unlock(&ncspin);
1341 		}
1342 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1343 	}
1344 }
1345 
1346 /*
1347  * The cache_nresolve() code calls this function to automatically
1348  * set a resolved cache element to unresolved if it has timed out
1349  * or if it is a negative cache hit and the mount point namecache_gen
1350  * has changed.
1351  */
1352 static __inline int
1353 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1354 {
1355 	/*
1356 	 * Try to zap entries that have timed out.  We have
1357 	 * to be careful here because locked leafs may depend
1358 	 * on the vnode remaining intact in a parent, so only
1359 	 * do this under very specific conditions.
1360 	 */
1361 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1362 	    TAILQ_EMPTY(&ncp->nc_list)) {
1363 		return 1;
1364 	}
1365 
1366 	/*
1367 	 * If a resolved negative cache hit is invalid due to
1368 	 * the mount's namecache generation being bumped, zap it.
1369 	 */
1370 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1371 		return 1;
1372 	}
1373 
1374 	/*
1375 	 * Otherwise we are good
1376 	 */
1377 	return 0;
1378 }
1379 
1380 static __inline void
1381 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1382 {
1383 	/*
1384 	 * Already in an unresolved state, nothing to do.
1385 	 */
1386 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1387 		if (_cache_auto_unresolve_test(mp, ncp))
1388 			_cache_setunresolved(ncp);
1389 	}
1390 }
1391 
1392 /*
1393  *
1394  */
1395 void
1396 cache_setunresolved(struct nchandle *nch)
1397 {
1398 	_cache_setunresolved(nch->ncp);
1399 }
1400 
1401 /*
1402  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1403  * looking for matches.  This flag tells the lookup code when it must
1404  * check for a mount linkage and also prevents the directories in question
1405  * from being deleted or renamed.
1406  */
1407 static
1408 int
1409 cache_clrmountpt_callback(struct mount *mp, void *data)
1410 {
1411 	struct nchandle *nch = data;
1412 
1413 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1414 		return(1);
1415 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1416 		return(1);
1417 	return(0);
1418 }
1419 
1420 /*
1421  *
1422  */
1423 void
1424 cache_clrmountpt(struct nchandle *nch)
1425 {
1426 	int count;
1427 
1428 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1429 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1430 	if (count == 0)
1431 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1432 }
1433 
1434 /*
1435  * Invalidate portions of the namecache topology given a starting entry.
1436  * The passed ncp is set to an unresolved state and:
1437  *
1438  * The passed ncp must be referencxed and locked.  The routine may unlock
1439  * and relock ncp several times, and will recheck the children and loop
1440  * to catch races.  When done the passed ncp will be returned with the
1441  * reference and lock intact.
1442  *
1443  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1444  *			  that the physical underlying nodes have been
1445  *			  destroyed... as in deleted.  For example, when
1446  *			  a directory is removed.  This will cause record
1447  *			  lookups on the name to no longer be able to find
1448  *			  the record and tells the resolver to return failure
1449  *			  rather then trying to resolve through the parent.
1450  *
1451  *			  The topology itself, including ncp->nc_name,
1452  *			  remains intact.
1453  *
1454  *			  This only applies to the passed ncp, if CINV_CHILDREN
1455  *			  is specified the children are not flagged.
1456  *
1457  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1458  *			  state as well.
1459  *
1460  *			  Note that this will also have the side effect of
1461  *			  cleaning out any unreferenced nodes in the topology
1462  *			  from the leaves up as the recursion backs out.
1463  *
1464  * Note that the topology for any referenced nodes remains intact, but
1465  * the nodes will be marked as having been destroyed and will be set
1466  * to an unresolved state.
1467  *
1468  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1469  * the namecache entry may not actually be invalidated on return if it was
1470  * revalidated while recursing down into its children.  This code guarentees
1471  * that the node(s) will go through an invalidation cycle, but does not
1472  * guarentee that they will remain in an invalidated state.
1473  *
1474  * Returns non-zero if a revalidation was detected during the invalidation
1475  * recursion, zero otherwise.  Note that since only the original ncp is
1476  * locked the revalidation ultimately can only indicate that the original ncp
1477  * *MIGHT* no have been reresolved.
1478  *
1479  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1480  * have to avoid blowing out the kernel stack.  We do this by saving the
1481  * deep namecache node and aborting the recursion, then re-recursing at that
1482  * node using a depth-first algorithm in order to allow multiple deep
1483  * recursions to chain through each other, then we restart the invalidation
1484  * from scratch.
1485  */
1486 
1487 struct cinvtrack {
1488 	struct namecache *resume_ncp;
1489 	int depth;
1490 };
1491 
1492 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1493 
1494 static
1495 int
1496 _cache_inval(struct namecache *ncp, int flags)
1497 {
1498 	struct cinvtrack track;
1499 	struct namecache *ncp2;
1500 	int r;
1501 
1502 	track.depth = 0;
1503 	track.resume_ncp = NULL;
1504 
1505 	for (;;) {
1506 		r = _cache_inval_internal(ncp, flags, &track);
1507 		if (track.resume_ncp == NULL)
1508 			break;
1509 		kprintf("Warning: deep namecache recursion at %s\n",
1510 			ncp->nc_name);
1511 		_cache_unlock(ncp);
1512 		while ((ncp2 = track.resume_ncp) != NULL) {
1513 			track.resume_ncp = NULL;
1514 			_cache_lock(ncp2);
1515 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1516 					     &track);
1517 			_cache_put(ncp2);
1518 		}
1519 		_cache_lock(ncp);
1520 	}
1521 	return(r);
1522 }
1523 
1524 int
1525 cache_inval(struct nchandle *nch, int flags)
1526 {
1527 	return(_cache_inval(nch->ncp, flags));
1528 }
1529 
1530 /*
1531  * Helper for _cache_inval().  The passed ncp is refd and locked and
1532  * remains that way on return, but may be unlocked/relocked multiple
1533  * times by the routine.
1534  */
1535 static int
1536 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1537 {
1538 	struct namecache *kid;
1539 	struct namecache *nextkid;
1540 	int rcnt = 0;
1541 
1542 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1543 
1544 	_cache_setunresolved(ncp);
1545 	if (flags & CINV_DESTROY)
1546 		ncp->nc_flag |= NCF_DESTROYED;
1547 	if ((flags & CINV_CHILDREN) &&
1548 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1549 	) {
1550 		_cache_hold(kid);
1551 		if (++track->depth > MAX_RECURSION_DEPTH) {
1552 			track->resume_ncp = ncp;
1553 			_cache_hold(ncp);
1554 			++rcnt;
1555 		}
1556 		_cache_unlock(ncp);
1557 		while (kid) {
1558 			if (track->resume_ncp) {
1559 				_cache_drop(kid);
1560 				break;
1561 			}
1562 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1563 				_cache_hold(nextkid);
1564 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1565 			    TAILQ_FIRST(&kid->nc_list)
1566 			) {
1567 				_cache_lock(kid);
1568 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1569 				_cache_unlock(kid);
1570 			}
1571 			_cache_drop(kid);
1572 			kid = nextkid;
1573 		}
1574 		--track->depth;
1575 		_cache_lock(ncp);
1576 	}
1577 
1578 	/*
1579 	 * Someone could have gotten in there while ncp was unlocked,
1580 	 * retry if so.
1581 	 */
1582 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1583 		++rcnt;
1584 	return (rcnt);
1585 }
1586 
1587 /*
1588  * Invalidate a vnode's namecache associations.  To avoid races against
1589  * the resolver we do not invalidate a node which we previously invalidated
1590  * but which was then re-resolved while we were in the invalidation loop.
1591  *
1592  * Returns non-zero if any namecache entries remain after the invalidation
1593  * loop completed.
1594  *
1595  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1596  *	 be ripped out of the topology while held, the vnode's v_namecache
1597  *	 list has no such restriction.  NCP's can be ripped out of the list
1598  *	 at virtually any time if not locked, even if held.
1599  *
1600  *	 In addition, the v_namecache list itself must be locked via
1601  *	 the vnode's spinlock.
1602  */
1603 int
1604 cache_inval_vp(struct vnode *vp, int flags)
1605 {
1606 	struct namecache *ncp;
1607 	struct namecache *next;
1608 
1609 restart:
1610 	spin_lock(&vp->v_spin);
1611 	ncp = TAILQ_FIRST(&vp->v_namecache);
1612 	if (ncp)
1613 		_cache_hold(ncp);
1614 	while (ncp) {
1615 		/* loop entered with ncp held and vp spin-locked */
1616 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1617 			_cache_hold(next);
1618 		spin_unlock(&vp->v_spin);
1619 		_cache_lock(ncp);
1620 		if (ncp->nc_vp != vp) {
1621 			kprintf("Warning: cache_inval_vp: race-A detected on "
1622 				"%s\n", ncp->nc_name);
1623 			_cache_put(ncp);
1624 			if (next)
1625 				_cache_drop(next);
1626 			goto restart;
1627 		}
1628 		_cache_inval(ncp, flags);
1629 		_cache_put(ncp);		/* also releases reference */
1630 		ncp = next;
1631 		spin_lock(&vp->v_spin);
1632 		if (ncp && ncp->nc_vp != vp) {
1633 			spin_unlock(&vp->v_spin);
1634 			kprintf("Warning: cache_inval_vp: race-B detected on "
1635 				"%s\n", ncp->nc_name);
1636 			_cache_drop(ncp);
1637 			goto restart;
1638 		}
1639 	}
1640 	spin_unlock(&vp->v_spin);
1641 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1642 }
1643 
1644 /*
1645  * This routine is used instead of the normal cache_inval_vp() when we
1646  * are trying to recycle otherwise good vnodes.
1647  *
1648  * Return 0 on success, non-zero if not all namecache records could be
1649  * disassociated from the vnode (for various reasons).
1650  */
1651 int
1652 cache_inval_vp_nonblock(struct vnode *vp)
1653 {
1654 	struct namecache *ncp;
1655 	struct namecache *next;
1656 
1657 	spin_lock(&vp->v_spin);
1658 	ncp = TAILQ_FIRST(&vp->v_namecache);
1659 	if (ncp)
1660 		_cache_hold(ncp);
1661 	while (ncp) {
1662 		/* loop entered with ncp held */
1663 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1664 			_cache_hold(next);
1665 		spin_unlock(&vp->v_spin);
1666 		if (_cache_lock_nonblock(ncp)) {
1667 			_cache_drop(ncp);
1668 			if (next)
1669 				_cache_drop(next);
1670 			goto done;
1671 		}
1672 		if (ncp->nc_vp != vp) {
1673 			kprintf("Warning: cache_inval_vp: race-A detected on "
1674 				"%s\n", ncp->nc_name);
1675 			_cache_put(ncp);
1676 			if (next)
1677 				_cache_drop(next);
1678 			goto done;
1679 		}
1680 		_cache_inval(ncp, 0);
1681 		_cache_put(ncp);		/* also releases reference */
1682 		ncp = next;
1683 		spin_lock(&vp->v_spin);
1684 		if (ncp && ncp->nc_vp != vp) {
1685 			spin_unlock(&vp->v_spin);
1686 			kprintf("Warning: cache_inval_vp: race-B detected on "
1687 				"%s\n", ncp->nc_name);
1688 			_cache_drop(ncp);
1689 			goto done;
1690 		}
1691 	}
1692 	spin_unlock(&vp->v_spin);
1693 done:
1694 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1695 }
1696 
1697 /*
1698  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1699  * must be locked.  The target ncp is destroyed (as a normal rename-over
1700  * would destroy the target file or directory).
1701  *
1702  * Because there may be references to the source ncp we cannot copy its
1703  * contents to the target.  Instead the source ncp is relinked as the target
1704  * and the target ncp is removed from the namecache topology.
1705  */
1706 void
1707 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1708 {
1709 	struct namecache *fncp = fnch->ncp;
1710 	struct namecache *tncp = tnch->ncp;
1711 	struct namecache *tncp_par;
1712 	struct nchash_head *nchpp;
1713 	u_int32_t hash;
1714 	char *oname;
1715 	char *nname;
1716 
1717 	if (tncp->nc_nlen) {
1718 		nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHE, M_WAITOK);
1719 		bcopy(tncp->nc_name, nname, tncp->nc_nlen);
1720 		nname[tncp->nc_nlen] = 0;
1721 	} else {
1722 		nname = NULL;
1723 	}
1724 
1725 	/*
1726 	 * Rename fncp (unlink)
1727 	 */
1728 	_cache_unlink_parent(fncp);
1729 	oname = fncp->nc_name;
1730 	fncp->nc_name = nname;
1731 	fncp->nc_nlen = tncp->nc_nlen;
1732 	if (oname)
1733 		kfree(oname, M_VFSCACHE);
1734 
1735 	tncp_par = tncp->nc_parent;
1736 	_cache_hold(tncp_par);
1737 	_cache_lock(tncp_par);
1738 
1739 	/*
1740 	 * Rename fncp (relink)
1741 	 */
1742 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1743 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1744 	nchpp = NCHHASH(hash);
1745 
1746 	spin_lock(&nchpp->spin);
1747 	_cache_link_parent(fncp, tncp_par, nchpp);
1748 	spin_unlock(&nchpp->spin);
1749 
1750 	_cache_put(tncp_par);
1751 
1752 	/*
1753 	 * Get rid of the overwritten tncp (unlink)
1754 	 */
1755 	_cache_unlink(tncp);
1756 }
1757 
1758 /*
1759  * Perform actions consistent with unlinking a file.  The passed-in ncp
1760  * must be locked.
1761  *
1762  * The ncp is marked DESTROYED so it no longer shows up in searches,
1763  * and will be physically deleted when the vnode goes away.
1764  *
1765  * If the related vnode has no refs then we cycle it through vget()/vput()
1766  * to (possibly if we don't have a ref race) trigger a deactivation,
1767  * allowing the VFS to trivially detect and recycle the deleted vnode
1768  * via VOP_INACTIVE().
1769  *
1770  * NOTE: _cache_rename() will automatically call _cache_unlink() on the
1771  *	 target ncp.
1772  */
1773 void
1774 cache_unlink(struct nchandle *nch)
1775 {
1776 	_cache_unlink(nch->ncp);
1777 }
1778 
1779 static void
1780 _cache_unlink(struct namecache *ncp)
1781 {
1782 	struct vnode *vp;
1783 
1784 	/*
1785 	 * Causes lookups to fail and allows another ncp with the same
1786 	 * name to be created under ncp->nc_parent.
1787 	 */
1788 	ncp->nc_flag |= NCF_DESTROYED;
1789 
1790 	/*
1791 	 * Attempt to trigger a deactivation.
1792 	 */
1793 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1794 	    (vp = ncp->nc_vp) != NULL &&
1795 	    !sysref_isactive(&vp->v_sysref)) {
1796 		if (vget(vp, LK_SHARED) == 0)
1797 			vput(vp);
1798 	}
1799 }
1800 
1801 /*
1802  * vget the vnode associated with the namecache entry.  Resolve the namecache
1803  * entry if necessary.  The passed ncp must be referenced and locked.
1804  *
1805  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1806  * (depending on the passed lk_type) will be returned in *vpp with an error
1807  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1808  * most typical error is ENOENT, meaning that the ncp represents a negative
1809  * cache hit and there is no vnode to retrieve, but other errors can occur
1810  * too.
1811  *
1812  * The vget() can race a reclaim.  If this occurs we re-resolve the
1813  * namecache entry.
1814  *
1815  * There are numerous places in the kernel where vget() is called on a
1816  * vnode while one or more of its namecache entries is locked.  Releasing
1817  * a vnode never deadlocks against locked namecache entries (the vnode
1818  * will not get recycled while referenced ncp's exist).  This means we
1819  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1820  * lock when acquiring the vp lock or we might cause a deadlock.
1821  *
1822  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1823  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1824  *	 relocked exclusively before being re-resolved.
1825  */
1826 int
1827 cache_vget(struct nchandle *nch, struct ucred *cred,
1828 	   int lk_type, struct vnode **vpp)
1829 {
1830 	struct namecache *ncp;
1831 	struct vnode *vp;
1832 	int error;
1833 
1834 	ncp = nch->ncp;
1835 again:
1836 	vp = NULL;
1837 	if (ncp->nc_flag & NCF_UNRESOLVED)
1838 		error = cache_resolve(nch, cred);
1839 	else
1840 		error = 0;
1841 
1842 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1843 		error = vget(vp, lk_type);
1844 		if (error) {
1845 			/*
1846 			 * VRECLAIM race
1847 			 */
1848 			if (error == ENOENT) {
1849 				kprintf("Warning: vnode reclaim race detected "
1850 					"in cache_vget on %p (%s)\n",
1851 					vp, ncp->nc_name);
1852 				_cache_unlock(ncp);
1853 				_cache_lock(ncp);
1854 				_cache_setunresolved(ncp);
1855 				goto again;
1856 			}
1857 
1858 			/*
1859 			 * Not a reclaim race, some other error.
1860 			 */
1861 			KKASSERT(ncp->nc_vp == vp);
1862 			vp = NULL;
1863 		} else {
1864 			KKASSERT(ncp->nc_vp == vp);
1865 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1866 		}
1867 	}
1868 	if (error == 0 && vp == NULL)
1869 		error = ENOENT;
1870 	*vpp = vp;
1871 	return(error);
1872 }
1873 
1874 /*
1875  * Similar to cache_vget() but only acquires a ref on the vnode.
1876  *
1877  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1878  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1879  *	 relocked exclusively before being re-resolved.
1880  */
1881 int
1882 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1883 {
1884 	struct namecache *ncp;
1885 	struct vnode *vp;
1886 	int error;
1887 
1888 	ncp = nch->ncp;
1889 again:
1890 	vp = NULL;
1891 	if (ncp->nc_flag & NCF_UNRESOLVED)
1892 		error = cache_resolve(nch, cred);
1893 	else
1894 		error = 0;
1895 
1896 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1897 		error = vget(vp, LK_SHARED);
1898 		if (error) {
1899 			/*
1900 			 * VRECLAIM race
1901 			 */
1902 			if (error == ENOENT) {
1903 				kprintf("Warning: vnode reclaim race detected "
1904 					"in cache_vget on %p (%s)\n",
1905 					vp, ncp->nc_name);
1906 				_cache_unlock(ncp);
1907 				_cache_lock(ncp);
1908 				_cache_setunresolved(ncp);
1909 				goto again;
1910 			}
1911 
1912 			/*
1913 			 * Not a reclaim race, some other error.
1914 			 */
1915 			KKASSERT(ncp->nc_vp == vp);
1916 			vp = NULL;
1917 		} else {
1918 			KKASSERT(ncp->nc_vp == vp);
1919 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1920 			/* caller does not want a lock */
1921 			vn_unlock(vp);
1922 		}
1923 	}
1924 	if (error == 0 && vp == NULL)
1925 		error = ENOENT;
1926 	*vpp = vp;
1927 	return(error);
1928 }
1929 
1930 /*
1931  * Return a referenced vnode representing the parent directory of
1932  * ncp.
1933  *
1934  * Because the caller has locked the ncp it should not be possible for
1935  * the parent ncp to go away.  However, the parent can unresolve its
1936  * dvp at any time so we must be able to acquire a lock on the parent
1937  * to safely access nc_vp.
1938  *
1939  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
1940  * so use vhold()/vdrop() while holding the lock to prevent dvp from
1941  * getting destroyed.
1942  *
1943  * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
1944  *	 lock on the ncp in question..
1945  */
1946 static struct vnode *
1947 cache_dvpref(struct namecache *ncp)
1948 {
1949 	struct namecache *par;
1950 	struct vnode *dvp;
1951 
1952 	dvp = NULL;
1953 	if ((par = ncp->nc_parent) != NULL) {
1954 		_cache_hold(par);
1955 		_cache_lock(par);
1956 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1957 			if ((dvp = par->nc_vp) != NULL)
1958 				vhold(dvp);
1959 		}
1960 		_cache_unlock(par);
1961 		if (dvp) {
1962 			if (vget(dvp, LK_SHARED) == 0) {
1963 				vn_unlock(dvp);
1964 				vdrop(dvp);
1965 				/* return refd, unlocked dvp */
1966 			} else {
1967 				vdrop(dvp);
1968 				dvp = NULL;
1969 			}
1970 		}
1971 		_cache_drop(par);
1972 	}
1973 	return(dvp);
1974 }
1975 
1976 /*
1977  * Convert a directory vnode to a namecache record without any other
1978  * knowledge of the topology.  This ONLY works with directory vnodes and
1979  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1980  * returned ncp (if not NULL) will be held and unlocked.
1981  *
1982  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1983  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1984  * for dvp.  This will fail only if the directory has been deleted out from
1985  * under the caller.
1986  *
1987  * Callers must always check for a NULL return no matter the value of 'makeit'.
1988  *
1989  * To avoid underflowing the kernel stack each recursive call increments
1990  * the makeit variable.
1991  */
1992 
1993 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1994 				  struct vnode *dvp, char *fakename);
1995 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1996 				  struct vnode **saved_dvp);
1997 
1998 int
1999 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
2000 	      struct nchandle *nch)
2001 {
2002 	struct vnode *saved_dvp;
2003 	struct vnode *pvp;
2004 	char *fakename;
2005 	int error;
2006 
2007 	nch->ncp = NULL;
2008 	nch->mount = dvp->v_mount;
2009 	saved_dvp = NULL;
2010 	fakename = NULL;
2011 
2012 	/*
2013 	 * Handle the makeit == 0 degenerate case
2014 	 */
2015 	if (makeit == 0) {
2016 		spin_lock_shared(&dvp->v_spin);
2017 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2018 		if (nch->ncp)
2019 			cache_hold(nch);
2020 		spin_unlock_shared(&dvp->v_spin);
2021 	}
2022 
2023 	/*
2024 	 * Loop until resolution, inside code will break out on error.
2025 	 */
2026 	while (makeit) {
2027 		/*
2028 		 * Break out if we successfully acquire a working ncp.
2029 		 */
2030 		spin_lock_shared(&dvp->v_spin);
2031 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
2032 		if (nch->ncp) {
2033 			cache_hold(nch);
2034 			spin_unlock_shared(&dvp->v_spin);
2035 			break;
2036 		}
2037 		spin_unlock_shared(&dvp->v_spin);
2038 
2039 		/*
2040 		 * If dvp is the root of its filesystem it should already
2041 		 * have a namecache pointer associated with it as a side
2042 		 * effect of the mount, but it may have been disassociated.
2043 		 */
2044 		if (dvp->v_flag & VROOT) {
2045 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2046 			error = cache_resolve_mp(nch->mount);
2047 			_cache_put(nch->ncp);
2048 			if (ncvp_debug) {
2049 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
2050 					dvp->v_mount, error);
2051 			}
2052 			if (error) {
2053 				if (ncvp_debug)
2054 					kprintf(" failed\n");
2055 				nch->ncp = NULL;
2056 				break;
2057 			}
2058 			if (ncvp_debug)
2059 				kprintf(" succeeded\n");
2060 			continue;
2061 		}
2062 
2063 		/*
2064 		 * If we are recursed too deeply resort to an O(n^2)
2065 		 * algorithm to resolve the namecache topology.  The
2066 		 * resolved pvp is left referenced in saved_dvp to
2067 		 * prevent the tree from being destroyed while we loop.
2068 		 */
2069 		if (makeit > 20) {
2070 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2071 			if (error) {
2072 				kprintf("lookupdotdot(longpath) failed %d "
2073 				       "dvp %p\n", error, dvp);
2074 				nch->ncp = NULL;
2075 				break;
2076 			}
2077 			continue;
2078 		}
2079 
2080 		/*
2081 		 * Get the parent directory and resolve its ncp.
2082 		 */
2083 		if (fakename) {
2084 			kfree(fakename, M_TEMP);
2085 			fakename = NULL;
2086 		}
2087 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2088 					  &fakename);
2089 		if (error) {
2090 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2091 			break;
2092 		}
2093 		vn_unlock(pvp);
2094 
2095 		/*
2096 		 * Reuse makeit as a recursion depth counter.  On success
2097 		 * nch will be fully referenced.
2098 		 */
2099 		cache_fromdvp(pvp, cred, makeit + 1, nch);
2100 		vrele(pvp);
2101 		if (nch->ncp == NULL)
2102 			break;
2103 
2104 		/*
2105 		 * Do an inefficient scan of pvp (embodied by ncp) to look
2106 		 * for dvp.  This will create a namecache record for dvp on
2107 		 * success.  We loop up to recheck on success.
2108 		 *
2109 		 * ncp and dvp are both held but not locked.
2110 		 */
2111 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
2112 		if (error) {
2113 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2114 				pvp, nch->ncp->nc_name, dvp);
2115 			cache_drop(nch);
2116 			/* nch was NULLed out, reload mount */
2117 			nch->mount = dvp->v_mount;
2118 			break;
2119 		}
2120 		if (ncvp_debug) {
2121 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2122 				pvp, nch->ncp->nc_name);
2123 		}
2124 		cache_drop(nch);
2125 		/* nch was NULLed out, reload mount */
2126 		nch->mount = dvp->v_mount;
2127 	}
2128 
2129 	/*
2130 	 * If nch->ncp is non-NULL it will have been held already.
2131 	 */
2132 	if (fakename)
2133 		kfree(fakename, M_TEMP);
2134 	if (saved_dvp)
2135 		vrele(saved_dvp);
2136 	if (nch->ncp)
2137 		return (0);
2138 	return (EINVAL);
2139 }
2140 
2141 /*
2142  * Go up the chain of parent directories until we find something
2143  * we can resolve into the namecache.  This is very inefficient.
2144  */
2145 static
2146 int
2147 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2148 		  struct vnode **saved_dvp)
2149 {
2150 	struct nchandle nch;
2151 	struct vnode *pvp;
2152 	int error;
2153 	static time_t last_fromdvp_report;
2154 	char *fakename;
2155 
2156 	/*
2157 	 * Loop getting the parent directory vnode until we get something we
2158 	 * can resolve in the namecache.
2159 	 */
2160 	vref(dvp);
2161 	nch.mount = dvp->v_mount;
2162 	nch.ncp = NULL;
2163 	fakename = NULL;
2164 
2165 	for (;;) {
2166 		if (fakename) {
2167 			kfree(fakename, M_TEMP);
2168 			fakename = NULL;
2169 		}
2170 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2171 					  &fakename);
2172 		if (error) {
2173 			vrele(dvp);
2174 			break;
2175 		}
2176 		vn_unlock(pvp);
2177 		spin_lock_shared(&pvp->v_spin);
2178 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2179 			_cache_hold(nch.ncp);
2180 			spin_unlock_shared(&pvp->v_spin);
2181 			vrele(pvp);
2182 			break;
2183 		}
2184 		spin_unlock_shared(&pvp->v_spin);
2185 		if (pvp->v_flag & VROOT) {
2186 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2187 			error = cache_resolve_mp(nch.mount);
2188 			_cache_unlock(nch.ncp);
2189 			vrele(pvp);
2190 			if (error) {
2191 				_cache_drop(nch.ncp);
2192 				nch.ncp = NULL;
2193 				vrele(dvp);
2194 			}
2195 			break;
2196 		}
2197 		vrele(dvp);
2198 		dvp = pvp;
2199 	}
2200 	if (error == 0) {
2201 		if (last_fromdvp_report != time_uptime) {
2202 			last_fromdvp_report = time_uptime;
2203 			kprintf("Warning: extremely inefficient path "
2204 				"resolution on %s\n",
2205 				nch.ncp->nc_name);
2206 		}
2207 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2208 
2209 		/*
2210 		 * Hopefully dvp now has a namecache record associated with
2211 		 * it.  Leave it referenced to prevent the kernel from
2212 		 * recycling the vnode.  Otherwise extremely long directory
2213 		 * paths could result in endless recycling.
2214 		 */
2215 		if (*saved_dvp)
2216 		    vrele(*saved_dvp);
2217 		*saved_dvp = dvp;
2218 		_cache_drop(nch.ncp);
2219 	}
2220 	if (fakename)
2221 		kfree(fakename, M_TEMP);
2222 	return (error);
2223 }
2224 
2225 /*
2226  * Do an inefficient scan of the directory represented by ncp looking for
2227  * the directory vnode dvp.  ncp must be held but not locked on entry and
2228  * will be held on return.  dvp must be refd but not locked on entry and
2229  * will remain refd on return.
2230  *
2231  * Why do this at all?  Well, due to its stateless nature the NFS server
2232  * converts file handles directly to vnodes without necessarily going through
2233  * the namecache ops that would otherwise create the namecache topology
2234  * leading to the vnode.  We could either (1) Change the namecache algorithms
2235  * to allow disconnect namecache records that are re-merged opportunistically,
2236  * or (2) Make the NFS server backtrack and scan to recover a connected
2237  * namecache topology in order to then be able to issue new API lookups.
2238  *
2239  * It turns out that (1) is a huge mess.  It takes a nice clean set of
2240  * namecache algorithms and introduces a lot of complication in every subsystem
2241  * that calls into the namecache to deal with the re-merge case, especially
2242  * since we are using the namecache to placehold negative lookups and the
2243  * vnode might not be immediately assigned. (2) is certainly far less
2244  * efficient then (1), but since we are only talking about directories here
2245  * (which are likely to remain cached), the case does not actually run all
2246  * that often and has the supreme advantage of not polluting the namecache
2247  * algorithms.
2248  *
2249  * If a fakename is supplied just construct a namecache entry using the
2250  * fake name.
2251  */
2252 static int
2253 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2254 		       struct vnode *dvp, char *fakename)
2255 {
2256 	struct nlcomponent nlc;
2257 	struct nchandle rncp;
2258 	struct dirent *den;
2259 	struct vnode *pvp;
2260 	struct vattr vat;
2261 	struct iovec iov;
2262 	struct uio uio;
2263 	int blksize;
2264 	int eofflag;
2265 	int bytes;
2266 	char *rbuf;
2267 	int error;
2268 
2269 	vat.va_blocksize = 0;
2270 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2271 		return (error);
2272 	cache_lock(nch);
2273 	error = cache_vref(nch, cred, &pvp);
2274 	cache_unlock(nch);
2275 	if (error)
2276 		return (error);
2277 	if (ncvp_debug) {
2278 		kprintf("inefficient_scan: directory iosize %ld "
2279 			"vattr fileid = %lld\n",
2280 			vat.va_blocksize,
2281 			(long long)vat.va_fileid);
2282 	}
2283 
2284 	/*
2285 	 * Use the supplied fakename if not NULL.  Fake names are typically
2286 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
2287 	 * to glue @@timestamp recursions together.
2288 	 */
2289 	if (fakename) {
2290 		nlc.nlc_nameptr = fakename;
2291 		nlc.nlc_namelen = strlen(fakename);
2292 		rncp = cache_nlookup(nch, &nlc);
2293 		goto done;
2294 	}
2295 
2296 	if ((blksize = vat.va_blocksize) == 0)
2297 		blksize = DEV_BSIZE;
2298 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2299 	rncp.ncp = NULL;
2300 
2301 	eofflag = 0;
2302 	uio.uio_offset = 0;
2303 again:
2304 	iov.iov_base = rbuf;
2305 	iov.iov_len = blksize;
2306 	uio.uio_iov = &iov;
2307 	uio.uio_iovcnt = 1;
2308 	uio.uio_resid = blksize;
2309 	uio.uio_segflg = UIO_SYSSPACE;
2310 	uio.uio_rw = UIO_READ;
2311 	uio.uio_td = curthread;
2312 
2313 	if (ncvp_debug >= 2)
2314 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2315 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2316 	if (error == 0) {
2317 		den = (struct dirent *)rbuf;
2318 		bytes = blksize - uio.uio_resid;
2319 
2320 		while (bytes > 0) {
2321 			if (ncvp_debug >= 2) {
2322 				kprintf("cache_inefficient_scan: %*.*s\n",
2323 					den->d_namlen, den->d_namlen,
2324 					den->d_name);
2325 			}
2326 			if (den->d_type != DT_WHT &&
2327 			    den->d_ino == vat.va_fileid) {
2328 				if (ncvp_debug) {
2329 					kprintf("cache_inefficient_scan: "
2330 					       "MATCHED inode %lld path %s/%*.*s\n",
2331 					       (long long)vat.va_fileid,
2332 					       nch->ncp->nc_name,
2333 					       den->d_namlen, den->d_namlen,
2334 					       den->d_name);
2335 				}
2336 				nlc.nlc_nameptr = den->d_name;
2337 				nlc.nlc_namelen = den->d_namlen;
2338 				rncp = cache_nlookup(nch, &nlc);
2339 				KKASSERT(rncp.ncp != NULL);
2340 				break;
2341 			}
2342 			bytes -= _DIRENT_DIRSIZ(den);
2343 			den = _DIRENT_NEXT(den);
2344 		}
2345 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2346 			goto again;
2347 	}
2348 	kfree(rbuf, M_TEMP);
2349 done:
2350 	vrele(pvp);
2351 	if (rncp.ncp) {
2352 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2353 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
2354 			if (ncvp_debug >= 2) {
2355 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2356 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2357 			}
2358 		} else {
2359 			if (ncvp_debug >= 2) {
2360 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2361 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2362 					rncp.ncp->nc_vp);
2363 			}
2364 		}
2365 		if (rncp.ncp->nc_vp == NULL)
2366 			error = rncp.ncp->nc_error;
2367 		/*
2368 		 * Release rncp after a successful nlookup.  rncp was fully
2369 		 * referenced.
2370 		 */
2371 		cache_put(&rncp);
2372 	} else {
2373 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2374 			dvp, nch->ncp->nc_name);
2375 		error = ENOENT;
2376 	}
2377 	return (error);
2378 }
2379 
2380 /*
2381  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
2382  * state, which disassociates it from its vnode or ncneglist.
2383  *
2384  * Then, if there are no additional references to the ncp and no children,
2385  * the ncp is removed from the topology and destroyed.
2386  *
2387  * References and/or children may exist if the ncp is in the middle of the
2388  * topology, preventing the ncp from being destroyed.
2389  *
2390  * This function must be called with the ncp held and locked and will unlock
2391  * and drop it during zapping.
2392  *
2393  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2394  * This case can occur in the cache_drop() path.
2395  *
2396  * This function may returned a held (but NOT locked) parent node which the
2397  * caller must drop.  We do this so _cache_drop() can loop, to avoid
2398  * blowing out the kernel stack.
2399  *
2400  * WARNING!  For MPSAFE operation this routine must acquire up to three
2401  *	     spin locks to be able to safely test nc_refs.  Lock order is
2402  *	     very important.
2403  *
2404  *	     hash spinlock if on hash list
2405  *	     parent spinlock if child of parent
2406  *	     (the ncp is unresolved so there is no vnode association)
2407  */
2408 static struct namecache *
2409 cache_zap(struct namecache *ncp, int nonblock)
2410 {
2411 	struct namecache *par;
2412 	struct vnode *dropvp;
2413 	int refs;
2414 
2415 	/*
2416 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2417 	 */
2418 	_cache_setunresolved(ncp);
2419 
2420 	/*
2421 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2422 	 * We only scrap unref'd (other then our ref) unresolved entries,
2423 	 * we do not scrap 'live' entries.
2424 	 *
2425 	 * Note that once the spinlocks are acquired if nc_refs == 1 no
2426 	 * other references are possible.  If it isn't, however, we have
2427 	 * to decrement but also be sure to avoid a 1->0 transition.
2428 	 */
2429 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2430 	KKASSERT(ncp->nc_refs > 0);
2431 
2432 	/*
2433 	 * Acquire locks.  Note that the parent can't go away while we hold
2434 	 * a child locked.
2435 	 */
2436 	if ((par = ncp->nc_parent) != NULL) {
2437 		if (nonblock) {
2438 			for (;;) {
2439 				if (_cache_lock_nonblock(par) == 0)
2440 					break;
2441 				refs = ncp->nc_refs;
2442 				ncp->nc_flag |= NCF_DEFEREDZAP;
2443 				++numdefered;	/* MP race ok */
2444 				if (atomic_cmpset_int(&ncp->nc_refs,
2445 						      refs, refs - 1)) {
2446 					_cache_unlock(ncp);
2447 					return(NULL);
2448 				}
2449 				cpu_pause();
2450 			}
2451 			_cache_hold(par);
2452 		} else {
2453 			_cache_hold(par);
2454 			_cache_lock(par);
2455 		}
2456 		spin_lock(&ncp->nc_head->spin);
2457 	}
2458 
2459 	/*
2460 	 * If someone other then us has a ref or we have children
2461 	 * we cannot zap the entry.  The 1->0 transition and any
2462 	 * further list operation is protected by the spinlocks
2463 	 * we have acquired but other transitions are not.
2464 	 */
2465 	for (;;) {
2466 		refs = ncp->nc_refs;
2467 		if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2468 			break;
2469 		if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2470 			if (par) {
2471 				spin_unlock(&ncp->nc_head->spin);
2472 				_cache_put(par);
2473 			}
2474 			_cache_unlock(ncp);
2475 			return(NULL);
2476 		}
2477 		cpu_pause();
2478 	}
2479 
2480 	/*
2481 	 * We are the only ref and with the spinlocks held no further
2482 	 * refs can be acquired by others.
2483 	 *
2484 	 * Remove us from the hash list and parent list.  We have to
2485 	 * drop a ref on the parent's vp if the parent's list becomes
2486 	 * empty.
2487 	 */
2488 	dropvp = NULL;
2489 	if (par) {
2490 		struct nchash_head *nchpp = ncp->nc_head;
2491 
2492 		KKASSERT(nchpp != NULL);
2493 		LIST_REMOVE(ncp, nc_hash);
2494 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2495 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2496 			dropvp = par->nc_vp;
2497 		ncp->nc_head = NULL;
2498 		ncp->nc_parent = NULL;
2499 		spin_unlock(&nchpp->spin);
2500 		_cache_unlock(par);
2501 	} else {
2502 		KKASSERT(ncp->nc_head == NULL);
2503 	}
2504 
2505 	/*
2506 	 * ncp should not have picked up any refs.  Physically
2507 	 * destroy the ncp.
2508 	 */
2509 	KKASSERT(ncp->nc_refs == 1);
2510 	/* _cache_unlock(ncp) not required */
2511 	ncp->nc_refs = -1;	/* safety */
2512 	if (ncp->nc_name)
2513 		kfree(ncp->nc_name, M_VFSCACHE);
2514 	kfree(ncp, M_VFSCACHE);
2515 
2516 	/*
2517 	 * Delayed drop (we had to release our spinlocks)
2518 	 *
2519 	 * The refed parent (if not  NULL) must be dropped.  The
2520 	 * caller is responsible for looping.
2521 	 */
2522 	if (dropvp)
2523 		vdrop(dropvp);
2524 	return(par);
2525 }
2526 
2527 /*
2528  * Clean up dangling negative cache and defered-drop entries in the
2529  * namecache.
2530  *
2531  * This routine is called in the critical path and also called from
2532  * vnlru().  When called from vnlru we use a lower limit to try to
2533  * deal with the negative cache before the critical path has to start
2534  * dealing with it.
2535  */
2536 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2537 
2538 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2539 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2540 
2541 void
2542 cache_hysteresis(int critpath)
2543 {
2544 	int poslimit;
2545 	int neglimit = desiredvnodes / ncnegfactor;
2546 	int xnumcache = numcache;
2547 
2548 	if (critpath == 0)
2549 		neglimit = neglimit * 8 / 10;
2550 
2551 	/*
2552 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2553 	 * the impact on the critical path.
2554 	 */
2555 	switch(neg_cache_hysteresis_state[critpath]) {
2556 	case CHI_LOW:
2557 		if (numneg > MINNEG && numneg > neglimit) {
2558 			if (critpath)
2559 				_cache_cleanneg(ncnegflush);
2560 			else
2561 				_cache_cleanneg(ncnegflush +
2562 						numneg - neglimit);
2563 			neg_cache_hysteresis_state[critpath] = CHI_HIGH;
2564 		}
2565 		break;
2566 	case CHI_HIGH:
2567 		if (numneg > MINNEG * 9 / 10 &&
2568 		    numneg * 9 / 10 > neglimit
2569 		) {
2570 			if (critpath)
2571 				_cache_cleanneg(ncnegflush);
2572 			else
2573 				_cache_cleanneg(ncnegflush +
2574 						numneg * 9 / 10 - neglimit);
2575 		} else {
2576 			neg_cache_hysteresis_state[critpath] = CHI_LOW;
2577 		}
2578 		break;
2579 	}
2580 
2581 	/*
2582 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2583 	 * the impact on the critical path.
2584 	 *
2585 	 * Excessive positive hits can accumulate due to large numbers of
2586 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2587 	 * into infinity).
2588 	 */
2589 	if ((poslimit = ncposlimit) == 0)
2590 		poslimit = desiredvnodes * 2;
2591 	if (critpath == 0)
2592 		poslimit = poslimit * 8 / 10;
2593 
2594 	switch(pos_cache_hysteresis_state[critpath]) {
2595 	case CHI_LOW:
2596 		if (xnumcache > poslimit && xnumcache > MINPOS) {
2597 			if (critpath)
2598 				_cache_cleanpos(ncposflush);
2599 			else
2600 				_cache_cleanpos(ncposflush +
2601 						xnumcache - poslimit);
2602 			pos_cache_hysteresis_state[critpath] = CHI_HIGH;
2603 		}
2604 		break;
2605 	case CHI_HIGH:
2606 		if (xnumcache > poslimit * 5 / 6 && xnumcache > MINPOS) {
2607 			if (critpath)
2608 				_cache_cleanpos(ncposflush);
2609 			else
2610 				_cache_cleanpos(ncposflush +
2611 						xnumcache - poslimit * 5 / 6);
2612 		} else {
2613 			pos_cache_hysteresis_state[critpath] = CHI_LOW;
2614 		}
2615 		break;
2616 	}
2617 
2618 	/*
2619 	 * Clean out dangling defered-zap ncps which could not
2620 	 * be cleanly dropped if too many build up.  Note
2621 	 * that numdefered is not an exact number as such ncps
2622 	 * can be reused and the counter is not handled in a MP
2623 	 * safe manner by design.
2624 	 */
2625 	if (numdefered > neglimit) {
2626 		_cache_cleandefered();
2627 	}
2628 }
2629 
2630 /*
2631  * NEW NAMECACHE LOOKUP API
2632  *
2633  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2634  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2635  * is ALWAYS returned, eve if the supplied component is illegal.
2636  *
2637  * The resulting namecache entry should be returned to the system with
2638  * cache_put() or cache_unlock() + cache_drop().
2639  *
2640  * namecache locks are recursive but care must be taken to avoid lock order
2641  * reversals (hence why the passed par_nch must be unlocked).  Locking
2642  * rules are to order for parent traversals, not for child traversals.
2643  *
2644  * Nobody else will be able to manipulate the associated namespace (e.g.
2645  * create, delete, rename, rename-target) until the caller unlocks the
2646  * entry.
2647  *
2648  * The returned entry will be in one of three states:  positive hit (non-null
2649  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2650  * Unresolved entries must be resolved through the filesystem to associate the
2651  * vnode and/or determine whether a positive or negative hit has occured.
2652  *
2653  * It is not necessary to lock a directory in order to lock namespace under
2654  * that directory.  In fact, it is explicitly not allowed to do that.  A
2655  * directory is typically only locked when being created, renamed, or
2656  * destroyed.
2657  *
2658  * The directory (par) may be unresolved, in which case any returned child
2659  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2660  * the filesystem lookup requires a resolved directory vnode the caller is
2661  * responsible for resolving the namecache chain top-down.  This API
2662  * specifically allows whole chains to be created in an unresolved state.
2663  */
2664 struct nchandle
2665 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2666 {
2667 	struct nchandle nch;
2668 	struct namecache *ncp;
2669 	struct namecache *new_ncp;
2670 	struct nchash_head *nchpp;
2671 	struct mount *mp;
2672 	u_int32_t hash;
2673 	globaldata_t gd;
2674 	int par_locked;
2675 
2676 	numcalls++;
2677 	gd = mycpu;
2678 	mp = par_nch->mount;
2679 	par_locked = 0;
2680 
2681 	/*
2682 	 * This is a good time to call it, no ncp's are locked by
2683 	 * the caller or us.
2684 	 */
2685 	cache_hysteresis(1);
2686 
2687 	/*
2688 	 * Try to locate an existing entry
2689 	 */
2690 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2691 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2692 	new_ncp = NULL;
2693 	nchpp = NCHHASH(hash);
2694 restart:
2695 	if (new_ncp)
2696 		spin_lock(&nchpp->spin);
2697 	else
2698 		spin_lock_shared(&nchpp->spin);
2699 
2700 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2701 		numchecks++;
2702 
2703 		/*
2704 		 * Break out if we find a matching entry.  Note that
2705 		 * UNRESOLVED entries may match, but DESTROYED entries
2706 		 * do not.
2707 		 */
2708 		if (ncp->nc_parent == par_nch->ncp &&
2709 		    ncp->nc_nlen == nlc->nlc_namelen &&
2710 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2711 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2712 		) {
2713 			_cache_hold(ncp);
2714 			if (new_ncp)
2715 				spin_unlock(&nchpp->spin);
2716 			else
2717 				spin_unlock_shared(&nchpp->spin);
2718 			if (par_locked) {
2719 				_cache_unlock(par_nch->ncp);
2720 				par_locked = 0;
2721 			}
2722 			if (_cache_lock_special(ncp) == 0) {
2723 				_cache_auto_unresolve(mp, ncp);
2724 				if (new_ncp)
2725 					_cache_free(new_ncp);
2726 				goto found;
2727 			}
2728 			_cache_get(ncp);
2729 			_cache_put(ncp);
2730 			_cache_drop(ncp);
2731 			goto restart;
2732 		}
2733 	}
2734 
2735 	/*
2736 	 * We failed to locate an entry, create a new entry and add it to
2737 	 * the cache.  The parent ncp must also be locked so we
2738 	 * can link into it.
2739 	 *
2740 	 * We have to relookup after possibly blocking in kmalloc or
2741 	 * when locking par_nch.
2742 	 *
2743 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2744 	 *	 mount case, in which case nc_name will be NULL.
2745 	 */
2746 	if (new_ncp == NULL) {
2747 		spin_unlock_shared(&nchpp->spin);
2748 		new_ncp = cache_alloc(nlc->nlc_namelen);
2749 		if (nlc->nlc_namelen) {
2750 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2751 			      nlc->nlc_namelen);
2752 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2753 		}
2754 		goto restart;
2755 	}
2756 
2757 	/*
2758 	 * NOTE! The spinlock is held exclusively here because new_ncp
2759 	 *	 is non-NULL.
2760 	 */
2761 	if (par_locked == 0) {
2762 		spin_unlock(&nchpp->spin);
2763 		_cache_lock(par_nch->ncp);
2764 		par_locked = 1;
2765 		goto restart;
2766 	}
2767 
2768 	/*
2769 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2770 	 *	     table entry atomically.
2771 	 */
2772 	ncp = new_ncp;
2773 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2774 	spin_unlock(&nchpp->spin);
2775 	_cache_unlock(par_nch->ncp);
2776 	/* par_locked = 0 - not used */
2777 found:
2778 	/*
2779 	 * stats and namecache size management
2780 	 */
2781 	if (ncp->nc_flag & NCF_UNRESOLVED)
2782 		++gd->gd_nchstats->ncs_miss;
2783 	else if (ncp->nc_vp)
2784 		++gd->gd_nchstats->ncs_goodhits;
2785 	else
2786 		++gd->gd_nchstats->ncs_neghits;
2787 	nch.mount = mp;
2788 	nch.ncp = ncp;
2789 	atomic_add_int(&nch.mount->mnt_refs, 1);
2790 	return(nch);
2791 }
2792 
2793 /*
2794  * Attempt to lookup a namecache entry and return with a shared namecache
2795  * lock.
2796  */
2797 int
2798 cache_nlookup_maybe_shared(struct nchandle *par_nch, struct nlcomponent *nlc,
2799 			   int excl, struct nchandle *res_nch)
2800 {
2801 	struct namecache *ncp;
2802 	struct nchash_head *nchpp;
2803 	struct mount *mp;
2804 	u_int32_t hash;
2805 	globaldata_t gd;
2806 
2807 	/*
2808 	 * If exclusive requested or shared namecache locks are disabled,
2809 	 * return failure.
2810 	 */
2811 	if (ncp_shared_lock_disable || excl)
2812 		return(EWOULDBLOCK);
2813 
2814 	numcalls++;
2815 	gd = mycpu;
2816 	mp = par_nch->mount;
2817 
2818 	/*
2819 	 * This is a good time to call it, no ncp's are locked by
2820 	 * the caller or us.
2821 	 */
2822 	cache_hysteresis(1);
2823 
2824 	/*
2825 	 * Try to locate an existing entry
2826 	 */
2827 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2828 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2829 	nchpp = NCHHASH(hash);
2830 
2831 	spin_lock_shared(&nchpp->spin);
2832 
2833 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2834 		numchecks++;
2835 
2836 		/*
2837 		 * Break out if we find a matching entry.  Note that
2838 		 * UNRESOLVED entries may match, but DESTROYED entries
2839 		 * do not.
2840 		 */
2841 		if (ncp->nc_parent == par_nch->ncp &&
2842 		    ncp->nc_nlen == nlc->nlc_namelen &&
2843 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2844 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2845 		) {
2846 			_cache_hold(ncp);
2847 			spin_unlock_shared(&nchpp->spin);
2848 			if (_cache_lock_shared_special(ncp) == 0) {
2849 				if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
2850 				    (ncp->nc_flag & NCF_DESTROYED) == 0 &&
2851 				    _cache_auto_unresolve_test(mp, ncp) == 0) {
2852 					goto found;
2853 				}
2854 				_cache_unlock(ncp);
2855 			}
2856 			_cache_drop(ncp);
2857 			spin_lock_shared(&nchpp->spin);
2858 			break;
2859 		}
2860 	}
2861 
2862 	/*
2863 	 * Failure
2864 	 */
2865 	spin_unlock_shared(&nchpp->spin);
2866 	return(EWOULDBLOCK);
2867 
2868 	/*
2869 	 * Success
2870 	 *
2871 	 * Note that nc_error might be non-zero (e.g ENOENT).
2872 	 */
2873 found:
2874 	res_nch->mount = mp;
2875 	res_nch->ncp = ncp;
2876 	++gd->gd_nchstats->ncs_goodhits;
2877 	atomic_add_int(&res_nch->mount->mnt_refs, 1);
2878 
2879 	KKASSERT(ncp->nc_error != EWOULDBLOCK);
2880 	return(ncp->nc_error);
2881 }
2882 
2883 /*
2884  * This is a non-blocking verison of cache_nlookup() used by
2885  * nfs_readdirplusrpc_uio().  It can fail for any reason and
2886  * will return nch.ncp == NULL in that case.
2887  */
2888 struct nchandle
2889 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
2890 {
2891 	struct nchandle nch;
2892 	struct namecache *ncp;
2893 	struct namecache *new_ncp;
2894 	struct nchash_head *nchpp;
2895 	struct mount *mp;
2896 	u_int32_t hash;
2897 	globaldata_t gd;
2898 	int par_locked;
2899 
2900 	numcalls++;
2901 	gd = mycpu;
2902 	mp = par_nch->mount;
2903 	par_locked = 0;
2904 
2905 	/*
2906 	 * Try to locate an existing entry
2907 	 */
2908 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2909 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2910 	new_ncp = NULL;
2911 	nchpp = NCHHASH(hash);
2912 restart:
2913 	spin_lock(&nchpp->spin);
2914 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2915 		numchecks++;
2916 
2917 		/*
2918 		 * Break out if we find a matching entry.  Note that
2919 		 * UNRESOLVED entries may match, but DESTROYED entries
2920 		 * do not.
2921 		 */
2922 		if (ncp->nc_parent == par_nch->ncp &&
2923 		    ncp->nc_nlen == nlc->nlc_namelen &&
2924 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2925 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2926 		) {
2927 			_cache_hold(ncp);
2928 			spin_unlock(&nchpp->spin);
2929 			if (par_locked) {
2930 				_cache_unlock(par_nch->ncp);
2931 				par_locked = 0;
2932 			}
2933 			if (_cache_lock_special(ncp) == 0) {
2934 				_cache_auto_unresolve(mp, ncp);
2935 				if (new_ncp) {
2936 					_cache_free(new_ncp);
2937 					new_ncp = NULL;
2938 				}
2939 				goto found;
2940 			}
2941 			_cache_drop(ncp);
2942 			goto failed;
2943 		}
2944 	}
2945 
2946 	/*
2947 	 * We failed to locate an entry, create a new entry and add it to
2948 	 * the cache.  The parent ncp must also be locked so we
2949 	 * can link into it.
2950 	 *
2951 	 * We have to relookup after possibly blocking in kmalloc or
2952 	 * when locking par_nch.
2953 	 *
2954 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2955 	 *	 mount case, in which case nc_name will be NULL.
2956 	 */
2957 	if (new_ncp == NULL) {
2958 		spin_unlock(&nchpp->spin);
2959 		new_ncp = cache_alloc(nlc->nlc_namelen);
2960 		if (nlc->nlc_namelen) {
2961 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2962 			      nlc->nlc_namelen);
2963 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2964 		}
2965 		goto restart;
2966 	}
2967 	if (par_locked == 0) {
2968 		spin_unlock(&nchpp->spin);
2969 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
2970 			par_locked = 1;
2971 			goto restart;
2972 		}
2973 		goto failed;
2974 	}
2975 
2976 	/*
2977 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2978 	 *	     table entry atomically.
2979 	 */
2980 	ncp = new_ncp;
2981 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2982 	spin_unlock(&nchpp->spin);
2983 	_cache_unlock(par_nch->ncp);
2984 	/* par_locked = 0 - not used */
2985 found:
2986 	/*
2987 	 * stats and namecache size management
2988 	 */
2989 	if (ncp->nc_flag & NCF_UNRESOLVED)
2990 		++gd->gd_nchstats->ncs_miss;
2991 	else if (ncp->nc_vp)
2992 		++gd->gd_nchstats->ncs_goodhits;
2993 	else
2994 		++gd->gd_nchstats->ncs_neghits;
2995 	nch.mount = mp;
2996 	nch.ncp = ncp;
2997 	atomic_add_int(&nch.mount->mnt_refs, 1);
2998 	return(nch);
2999 failed:
3000 	if (new_ncp) {
3001 		_cache_free(new_ncp);
3002 		new_ncp = NULL;
3003 	}
3004 	nch.mount = NULL;
3005 	nch.ncp = NULL;
3006 	return(nch);
3007 }
3008 
3009 /*
3010  * The namecache entry is marked as being used as a mount point.
3011  * Locate the mount if it is visible to the caller.  The DragonFly
3012  * mount system allows arbitrary loops in the topology and disentangles
3013  * those loops by matching against (mp, ncp) rather than just (ncp).
3014  * This means any given ncp can dive any number of mounts, depending
3015  * on the relative mount (e.g. nullfs) the caller is at in the topology.
3016  *
3017  * We use a very simple frontend cache to reduce SMP conflicts,
3018  * which we have to do because the mountlist scan needs an exclusive
3019  * lock around its ripout info list.  Not to mention that there might
3020  * be a lot of mounts.
3021  */
3022 struct findmount_info {
3023 	struct mount *result;
3024 	struct mount *nch_mount;
3025 	struct namecache *nch_ncp;
3026 };
3027 
3028 static
3029 struct ncmount_cache *
3030 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
3031 {
3032 	int hash;
3033 
3034 	hash = ((int)(intptr_t)mp / sizeof(*mp)) ^
3035 	       ((int)(intptr_t)ncp / sizeof(*ncp));
3036 	hash = (hash & 0x7FFFFFFF) % NCMOUNT_NUMCACHE;
3037 	return (&ncmount_cache[hash]);
3038 }
3039 
3040 static
3041 int
3042 cache_findmount_callback(struct mount *mp, void *data)
3043 {
3044 	struct findmount_info *info = data;
3045 
3046 	/*
3047 	 * Check the mount's mounted-on point against the passed nch.
3048 	 */
3049 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
3050 	    mp->mnt_ncmounton.ncp == info->nch_ncp
3051 	) {
3052 	    info->result = mp;
3053 	    atomic_add_int(&mp->mnt_refs, 1);
3054 	    return(-1);
3055 	}
3056 	return(0);
3057 }
3058 
3059 struct mount *
3060 cache_findmount(struct nchandle *nch)
3061 {
3062 	struct findmount_info info;
3063 	struct ncmount_cache *ncc;
3064 	struct mount *mp;
3065 
3066 	/*
3067 	 * Fast
3068 	 */
3069 	if (ncmount_cache_enable == 0) {
3070 		ncc = NULL;
3071 		goto skip;
3072 	}
3073 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3074 	if (ncc->ncp == nch->ncp) {
3075 		spin_lock_shared(&ncc->spin);
3076 		if (ncc->isneg == 0 &&
3077 		    ncc->ncp == nch->ncp && (mp = ncc->mp) != NULL) {
3078 			if (mp->mnt_ncmounton.mount == nch->mount &&
3079 			    mp->mnt_ncmounton.ncp == nch->ncp) {
3080 				/*
3081 				 * Cache hit (positive)
3082 				 */
3083 				atomic_add_int(&mp->mnt_refs, 1);
3084 				spin_unlock_shared(&ncc->spin);
3085 				++ncmount_cache_hit;
3086 				return(mp);
3087 			}
3088 			/* else cache miss */
3089 		}
3090 		if (ncc->isneg &&
3091 		    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3092 			/*
3093 			 * Cache hit (negative)
3094 			 */
3095 			spin_unlock_shared(&ncc->spin);
3096 			++ncmount_cache_hit;
3097 			return(NULL);
3098 		}
3099 		spin_unlock_shared(&ncc->spin);
3100 	}
3101 skip:
3102 
3103 	/*
3104 	 * Slow
3105 	 */
3106 	info.result = NULL;
3107 	info.nch_mount = nch->mount;
3108 	info.nch_ncp = nch->ncp;
3109 	mountlist_scan(cache_findmount_callback, &info,
3110 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
3111 
3112 	/*
3113 	 * Cache the result.
3114 	 *
3115 	 * Negative lookups: We cache the originating {ncp,mp}. (mp) is
3116 	 *		     only used for pointer comparisons and is not
3117 	 *		     referenced (otherwise there would be dangling
3118 	 *		     refs).
3119 	 *
3120 	 * Positive lookups: We cache the originating {ncp} and the target
3121 	 *		     (mp).  (mp) is referenced.
3122 	 *
3123 	 * Indeterminant:    If the match is undergoing an unmount we do
3124 	 *		     not cache it to avoid racing cache_unmounting(),
3125 	 *		     but still return the match.
3126 	 */
3127 	if (ncc) {
3128 		spin_lock(&ncc->spin);
3129 		if (info.result == NULL) {
3130 			if (ncc->isneg == 0 && ncc->mp)
3131 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3132 			ncc->ncp = nch->ncp;
3133 			ncc->mp = nch->mount;
3134 			ncc->isneg = 1;
3135 			spin_unlock(&ncc->spin);
3136 			++ncmount_cache_overwrite;
3137 		} else if ((info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0) {
3138 			if (ncc->isneg == 0 && ncc->mp)
3139 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3140 			atomic_add_int(&info.result->mnt_refs, 1);
3141 			ncc->ncp = nch->ncp;
3142 			ncc->mp = info.result;
3143 			ncc->isneg = 0;
3144 			spin_unlock(&ncc->spin);
3145 			++ncmount_cache_overwrite;
3146 		} else {
3147 			spin_unlock(&ncc->spin);
3148 		}
3149 		++ncmount_cache_miss;
3150 	}
3151 	return(info.result);
3152 }
3153 
3154 void
3155 cache_dropmount(struct mount *mp)
3156 {
3157 	atomic_add_int(&mp->mnt_refs, -1);
3158 }
3159 
3160 void
3161 cache_ismounting(struct mount *mp)
3162 {
3163 	struct nchandle *nch = &mp->mnt_ncmounton;
3164 	struct ncmount_cache *ncc;
3165 
3166 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3167 	if (ncc->isneg &&
3168 	    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3169 		spin_lock(&ncc->spin);
3170 		if (ncc->isneg &&
3171 		    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3172 			ncc->ncp = NULL;
3173 			ncc->mp = NULL;
3174 		}
3175 		spin_unlock(&ncc->spin);
3176 	}
3177 }
3178 
3179 void
3180 cache_unmounting(struct mount *mp)
3181 {
3182 	struct nchandle *nch = &mp->mnt_ncmounton;
3183 	struct ncmount_cache *ncc;
3184 
3185 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3186 	if (ncc->isneg == 0 &&
3187 	    ncc->ncp == nch->ncp && ncc->mp == mp) {
3188 		spin_lock(&ncc->spin);
3189 		if (ncc->isneg == 0 &&
3190 		    ncc->ncp == nch->ncp && ncc->mp == mp) {
3191 			atomic_add_int(&mp->mnt_refs, -1);
3192 			ncc->ncp = NULL;
3193 			ncc->mp = NULL;
3194 		}
3195 		spin_unlock(&ncc->spin);
3196 	}
3197 }
3198 
3199 /*
3200  * Resolve an unresolved namecache entry, generally by looking it up.
3201  * The passed ncp must be locked and refd.
3202  *
3203  * Theoretically since a vnode cannot be recycled while held, and since
3204  * the nc_parent chain holds its vnode as long as children exist, the
3205  * direct parent of the cache entry we are trying to resolve should
3206  * have a valid vnode.  If not then generate an error that we can
3207  * determine is related to a resolver bug.
3208  *
3209  * However, if a vnode was in the middle of a recyclement when the NCP
3210  * got locked, ncp->nc_vp might point to a vnode that is about to become
3211  * invalid.  cache_resolve() handles this case by unresolving the entry
3212  * and then re-resolving it.
3213  *
3214  * Note that successful resolution does not necessarily return an error
3215  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
3216  * will be returned.
3217  */
3218 int
3219 cache_resolve(struct nchandle *nch, struct ucred *cred)
3220 {
3221 	struct namecache *par_tmp;
3222 	struct namecache *par;
3223 	struct namecache *ncp;
3224 	struct nchandle nctmp;
3225 	struct mount *mp;
3226 	struct vnode *dvp;
3227 	int error;
3228 
3229 	ncp = nch->ncp;
3230 	mp = nch->mount;
3231 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
3232 restart:
3233 	/*
3234 	 * If the ncp is already resolved we have nothing to do.  However,
3235 	 * we do want to guarentee that a usable vnode is returned when
3236 	 * a vnode is present, so make sure it hasn't been reclaimed.
3237 	 */
3238 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3239 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3240 			_cache_setunresolved(ncp);
3241 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
3242 			return (ncp->nc_error);
3243 	}
3244 
3245 	/*
3246 	 * If the ncp was destroyed it will never resolve again.  This
3247 	 * can basically only happen when someone is chdir'd into an
3248 	 * empty directory which is then rmdir'd.  We want to catch this
3249 	 * here and not dive the VFS because the VFS might actually
3250 	 * have a way to re-resolve the disconnected ncp, which will
3251 	 * result in inconsistencies in the cdir/nch for proc->p_fd.
3252 	 */
3253 	if (ncp->nc_flag & NCF_DESTROYED) {
3254 		kprintf("Warning: cache_resolve: ncp '%s' was unlinked\n",
3255 			ncp->nc_name);
3256 		return(EINVAL);
3257 	}
3258 
3259 	/*
3260 	 * Mount points need special handling because the parent does not
3261 	 * belong to the same filesystem as the ncp.
3262 	 */
3263 	if (ncp == mp->mnt_ncmountpt.ncp)
3264 		return (cache_resolve_mp(mp));
3265 
3266 	/*
3267 	 * We expect an unbroken chain of ncps to at least the mount point,
3268 	 * and even all the way to root (but this code doesn't have to go
3269 	 * past the mount point).
3270 	 */
3271 	if (ncp->nc_parent == NULL) {
3272 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
3273 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3274 		ncp->nc_error = EXDEV;
3275 		return(ncp->nc_error);
3276 	}
3277 
3278 	/*
3279 	 * The vp's of the parent directories in the chain are held via vhold()
3280 	 * due to the existance of the child, and should not disappear.
3281 	 * However, there are cases where they can disappear:
3282 	 *
3283 	 *	- due to filesystem I/O errors.
3284 	 *	- due to NFS being stupid about tracking the namespace and
3285 	 *	  destroys the namespace for entire directories quite often.
3286 	 *	- due to forced unmounts.
3287 	 *	- due to an rmdir (parent will be marked DESTROYED)
3288 	 *
3289 	 * When this occurs we have to track the chain backwards and resolve
3290 	 * it, looping until the resolver catches up to the current node.  We
3291 	 * could recurse here but we might run ourselves out of kernel stack
3292 	 * so we do it in a more painful manner.  This situation really should
3293 	 * not occur all that often, or if it does not have to go back too
3294 	 * many nodes to resolve the ncp.
3295 	 */
3296 	while ((dvp = cache_dvpref(ncp)) == NULL) {
3297 		/*
3298 		 * This case can occur if a process is CD'd into a
3299 		 * directory which is then rmdir'd.  If the parent is marked
3300 		 * destroyed there is no point trying to resolve it.
3301 		 */
3302 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
3303 			return(ENOENT);
3304 		par = ncp->nc_parent;
3305 		_cache_hold(par);
3306 		_cache_lock(par);
3307 		while ((par_tmp = par->nc_parent) != NULL &&
3308 		       par_tmp->nc_vp == NULL) {
3309 			_cache_hold(par_tmp);
3310 			_cache_lock(par_tmp);
3311 			_cache_put(par);
3312 			par = par_tmp;
3313 		}
3314 		if (par->nc_parent == NULL) {
3315 			kprintf("EXDEV case 2 %*.*s\n",
3316 				par->nc_nlen, par->nc_nlen, par->nc_name);
3317 			_cache_put(par);
3318 			return (EXDEV);
3319 		}
3320 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
3321 			par->nc_nlen, par->nc_nlen, par->nc_name);
3322 		/*
3323 		 * The parent is not set in stone, ref and lock it to prevent
3324 		 * it from disappearing.  Also note that due to renames it
3325 		 * is possible for our ncp to move and for par to no longer
3326 		 * be one of its parents.  We resolve it anyway, the loop
3327 		 * will handle any moves.
3328 		 */
3329 		_cache_get(par);	/* additional hold/lock */
3330 		_cache_put(par);	/* from earlier hold/lock */
3331 		if (par == nch->mount->mnt_ncmountpt.ncp) {
3332 			cache_resolve_mp(nch->mount);
3333 		} else if ((dvp = cache_dvpref(par)) == NULL) {
3334 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
3335 			_cache_put(par);
3336 			continue;
3337 		} else {
3338 			if (par->nc_flag & NCF_UNRESOLVED) {
3339 				nctmp.mount = mp;
3340 				nctmp.ncp = par;
3341 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3342 			}
3343 			vrele(dvp);
3344 		}
3345 		if ((error = par->nc_error) != 0) {
3346 			if (par->nc_error != EAGAIN) {
3347 				kprintf("EXDEV case 3 %*.*s error %d\n",
3348 				    par->nc_nlen, par->nc_nlen, par->nc_name,
3349 				    par->nc_error);
3350 				_cache_put(par);
3351 				return(error);
3352 			}
3353 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
3354 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
3355 		}
3356 		_cache_put(par);
3357 		/* loop */
3358 	}
3359 
3360 	/*
3361 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
3362 	 * ncp's and reattach them.  If this occurs the original ncp is marked
3363 	 * EAGAIN to force a relookup.
3364 	 *
3365 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
3366 	 * ncp must already be resolved.
3367 	 */
3368 	if (dvp) {
3369 		nctmp.mount = mp;
3370 		nctmp.ncp = ncp;
3371 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3372 		vrele(dvp);
3373 	} else {
3374 		ncp->nc_error = EPERM;
3375 	}
3376 	if (ncp->nc_error == EAGAIN) {
3377 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
3378 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3379 		goto restart;
3380 	}
3381 	return(ncp->nc_error);
3382 }
3383 
3384 /*
3385  * Resolve the ncp associated with a mount point.  Such ncp's almost always
3386  * remain resolved and this routine is rarely called.  NFS MPs tends to force
3387  * re-resolution more often due to its mac-truck-smash-the-namecache
3388  * method of tracking namespace changes.
3389  *
3390  * The semantics for this call is that the passed ncp must be locked on
3391  * entry and will be locked on return.  However, if we actually have to
3392  * resolve the mount point we temporarily unlock the entry in order to
3393  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
3394  * the unlock we have to recheck the flags after we relock.
3395  */
3396 static int
3397 cache_resolve_mp(struct mount *mp)
3398 {
3399 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
3400 	struct vnode *vp;
3401 	int error;
3402 
3403 	KKASSERT(mp != NULL);
3404 
3405 	/*
3406 	 * If the ncp is already resolved we have nothing to do.  However,
3407 	 * we do want to guarentee that a usable vnode is returned when
3408 	 * a vnode is present, so make sure it hasn't been reclaimed.
3409 	 */
3410 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3411 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3412 			_cache_setunresolved(ncp);
3413 	}
3414 
3415 	if (ncp->nc_flag & NCF_UNRESOLVED) {
3416 		_cache_unlock(ncp);
3417 		while (vfs_busy(mp, 0))
3418 			;
3419 		error = VFS_ROOT(mp, &vp);
3420 		_cache_lock(ncp);
3421 
3422 		/*
3423 		 * recheck the ncp state after relocking.
3424 		 */
3425 		if (ncp->nc_flag & NCF_UNRESOLVED) {
3426 			ncp->nc_error = error;
3427 			if (error == 0) {
3428 				_cache_setvp(mp, ncp, vp);
3429 				vput(vp);
3430 			} else {
3431 				kprintf("[diagnostic] cache_resolve_mp: failed"
3432 					" to resolve mount %p err=%d ncp=%p\n",
3433 					mp, error, ncp);
3434 				_cache_setvp(mp, ncp, NULL);
3435 			}
3436 		} else if (error == 0) {
3437 			vput(vp);
3438 		}
3439 		vfs_unbusy(mp);
3440 	}
3441 	return(ncp->nc_error);
3442 }
3443 
3444 /*
3445  * Clean out negative cache entries when too many have accumulated.
3446  */
3447 static void
3448 _cache_cleanneg(int count)
3449 {
3450 	struct namecache *ncp;
3451 
3452 	/*
3453 	 * Attempt to clean out the specified number of negative cache
3454 	 * entries.
3455 	 */
3456 	while (count) {
3457 		spin_lock(&ncspin);
3458 		ncp = TAILQ_FIRST(&ncneglist);
3459 		if (ncp == NULL) {
3460 			spin_unlock(&ncspin);
3461 			break;
3462 		}
3463 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
3464 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
3465 		_cache_hold(ncp);
3466 		spin_unlock(&ncspin);
3467 
3468 		/*
3469 		 * This can race, so we must re-check that the ncp
3470 		 * is on the ncneglist after successfully locking it.
3471 		 */
3472 		if (_cache_lock_special(ncp) == 0) {
3473 			if (ncp->nc_vp == NULL &&
3474 			    (ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3475 				ncp = cache_zap(ncp, 1);
3476 				if (ncp)
3477 					_cache_drop(ncp);
3478 			} else {
3479 				kprintf("cache_cleanneg: race avoided\n");
3480 				_cache_unlock(ncp);
3481 			}
3482 		} else {
3483 			_cache_drop(ncp);
3484 		}
3485 		--count;
3486 	}
3487 }
3488 
3489 /*
3490  * Clean out positive cache entries when too many have accumulated.
3491  */
3492 static void
3493 _cache_cleanpos(int count)
3494 {
3495 	static volatile int rover;
3496 	struct nchash_head *nchpp;
3497 	struct namecache *ncp;
3498 	int rover_copy;
3499 
3500 	/*
3501 	 * Attempt to clean out the specified number of negative cache
3502 	 * entries.
3503 	 */
3504 	while (count) {
3505 		rover_copy = ++rover;	/* MPSAFEENOUGH */
3506 		cpu_ccfence();
3507 		nchpp = NCHHASH(rover_copy);
3508 
3509 		spin_lock_shared(&nchpp->spin);
3510 		ncp = LIST_FIRST(&nchpp->list);
3511 		while (ncp && (ncp->nc_flag & NCF_DESTROYED))
3512 			ncp = LIST_NEXT(ncp, nc_hash);
3513 		if (ncp)
3514 			_cache_hold(ncp);
3515 		spin_unlock_shared(&nchpp->spin);
3516 
3517 		if (ncp) {
3518 			if (_cache_lock_special(ncp) == 0) {
3519 				ncp = cache_zap(ncp, 1);
3520 				if (ncp)
3521 					_cache_drop(ncp);
3522 			} else {
3523 				_cache_drop(ncp);
3524 			}
3525 		}
3526 		--count;
3527 	}
3528 }
3529 
3530 /*
3531  * This is a kitchen sink function to clean out ncps which we
3532  * tried to zap from cache_drop() but failed because we were
3533  * unable to acquire the parent lock.
3534  *
3535  * Such entries can also be removed via cache_inval_vp(), such
3536  * as when unmounting.
3537  */
3538 static void
3539 _cache_cleandefered(void)
3540 {
3541 	struct nchash_head *nchpp;
3542 	struct namecache *ncp;
3543 	struct namecache dummy;
3544 	int i;
3545 
3546 	numdefered = 0;
3547 	bzero(&dummy, sizeof(dummy));
3548 	dummy.nc_flag = NCF_DESTROYED;
3549 	dummy.nc_refs = 1;
3550 
3551 	for (i = 0; i <= nchash; ++i) {
3552 		nchpp = &nchashtbl[i];
3553 
3554 		spin_lock(&nchpp->spin);
3555 		LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
3556 		ncp = &dummy;
3557 		while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
3558 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
3559 				continue;
3560 			LIST_REMOVE(&dummy, nc_hash);
3561 			LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
3562 			_cache_hold(ncp);
3563 			spin_unlock(&nchpp->spin);
3564 			if (_cache_lock_nonblock(ncp) == 0) {
3565 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
3566 				_cache_unlock(ncp);
3567 			}
3568 			_cache_drop(ncp);
3569 			spin_lock(&nchpp->spin);
3570 			ncp = &dummy;
3571 		}
3572 		LIST_REMOVE(&dummy, nc_hash);
3573 		spin_unlock(&nchpp->spin);
3574 	}
3575 }
3576 
3577 /*
3578  * Name cache initialization, from vfsinit() when we are booting
3579  */
3580 void
3581 nchinit(void)
3582 {
3583 	int i;
3584 	globaldata_t gd;
3585 
3586 	/* initialise per-cpu namecache effectiveness statistics. */
3587 	for (i = 0; i < ncpus; ++i) {
3588 		gd = globaldata_find(i);
3589 		gd->gd_nchstats = &nchstats[i];
3590 	}
3591 	TAILQ_INIT(&ncneglist);
3592 	spin_init(&ncspin);
3593 	nchashtbl = hashinit_ext(desiredvnodes / 2,
3594 				 sizeof(struct nchash_head),
3595 				 M_VFSCACHE, &nchash);
3596 	for (i = 0; i <= (int)nchash; ++i) {
3597 		LIST_INIT(&nchashtbl[i].list);
3598 		spin_init(&nchashtbl[i].spin);
3599 	}
3600 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
3601 		spin_init(&ncmount_cache[i].spin);
3602 	nclockwarn = 5 * hz;
3603 }
3604 
3605 /*
3606  * Called from start_init() to bootstrap the root filesystem.  Returns
3607  * a referenced, unlocked namecache record.
3608  */
3609 void
3610 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
3611 {
3612 	nch->ncp = cache_alloc(0);
3613 	nch->mount = mp;
3614 	atomic_add_int(&mp->mnt_refs, 1);
3615 	if (vp)
3616 		_cache_setvp(nch->mount, nch->ncp, vp);
3617 }
3618 
3619 /*
3620  * vfs_cache_setroot()
3621  *
3622  *	Create an association between the root of our namecache and
3623  *	the root vnode.  This routine may be called several times during
3624  *	booting.
3625  *
3626  *	If the caller intends to save the returned namecache pointer somewhere
3627  *	it must cache_hold() it.
3628  */
3629 void
3630 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
3631 {
3632 	struct vnode *ovp;
3633 	struct nchandle onch;
3634 
3635 	ovp = rootvnode;
3636 	onch = rootnch;
3637 	rootvnode = nvp;
3638 	if (nch)
3639 		rootnch = *nch;
3640 	else
3641 		cache_zero(&rootnch);
3642 	if (ovp)
3643 		vrele(ovp);
3644 	if (onch.ncp)
3645 		cache_drop(&onch);
3646 }
3647 
3648 /*
3649  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
3650  * topology and is being removed as quickly as possible.  The new VOP_N*()
3651  * API calls are required to make specific adjustments using the supplied
3652  * ncp pointers rather then just bogusly purging random vnodes.
3653  *
3654  * Invalidate all namecache entries to a particular vnode as well as
3655  * any direct children of that vnode in the namecache.  This is a
3656  * 'catch all' purge used by filesystems that do not know any better.
3657  *
3658  * Note that the linkage between the vnode and its namecache entries will
3659  * be removed, but the namecache entries themselves might stay put due to
3660  * active references from elsewhere in the system or due to the existance of
3661  * the children.   The namecache topology is left intact even if we do not
3662  * know what the vnode association is.  Such entries will be marked
3663  * NCF_UNRESOLVED.
3664  */
3665 void
3666 cache_purge(struct vnode *vp)
3667 {
3668 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
3669 }
3670 
3671 /*
3672  * Flush all entries referencing a particular filesystem.
3673  *
3674  * Since we need to check it anyway, we will flush all the invalid
3675  * entries at the same time.
3676  */
3677 #if 0
3678 
3679 void
3680 cache_purgevfs(struct mount *mp)
3681 {
3682 	struct nchash_head *nchpp;
3683 	struct namecache *ncp, *nnp;
3684 
3685 	/*
3686 	 * Scan hash tables for applicable entries.
3687 	 */
3688 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
3689 		spin_lock_wr(&nchpp->spin); XXX
3690 		ncp = LIST_FIRST(&nchpp->list);
3691 		if (ncp)
3692 			_cache_hold(ncp);
3693 		while (ncp) {
3694 			nnp = LIST_NEXT(ncp, nc_hash);
3695 			if (nnp)
3696 				_cache_hold(nnp);
3697 			if (ncp->nc_mount == mp) {
3698 				_cache_lock(ncp);
3699 				ncp = cache_zap(ncp, 0);
3700 				if (ncp)
3701 					_cache_drop(ncp);
3702 			} else {
3703 				_cache_drop(ncp);
3704 			}
3705 			ncp = nnp;
3706 		}
3707 		spin_unlock_wr(&nchpp->spin); XXX
3708 	}
3709 }
3710 
3711 #endif
3712 
3713 static int disablecwd;
3714 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
3715     "Disable getcwd");
3716 
3717 static u_long numcwdcalls;
3718 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdcalls, CTLFLAG_RD, &numcwdcalls, 0,
3719     "Number of current directory resolution calls");
3720 static u_long numcwdfailnf;
3721 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailnf, CTLFLAG_RD, &numcwdfailnf, 0,
3722     "Number of current directory failures due to lack of file");
3723 static u_long numcwdfailsz;
3724 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailsz, CTLFLAG_RD, &numcwdfailsz, 0,
3725     "Number of current directory failures due to large result");
3726 static u_long numcwdfound;
3727 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfound, CTLFLAG_RD, &numcwdfound, 0,
3728     "Number of current directory resolution successes");
3729 
3730 /*
3731  * MPALMOSTSAFE
3732  */
3733 int
3734 sys___getcwd(struct __getcwd_args *uap)
3735 {
3736 	u_int buflen;
3737 	int error;
3738 	char *buf;
3739 	char *bp;
3740 
3741 	if (disablecwd)
3742 		return (ENODEV);
3743 
3744 	buflen = uap->buflen;
3745 	if (buflen == 0)
3746 		return (EINVAL);
3747 	if (buflen > MAXPATHLEN)
3748 		buflen = MAXPATHLEN;
3749 
3750 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
3751 	bp = kern_getcwd(buf, buflen, &error);
3752 	if (error == 0)
3753 		error = copyout(bp, uap->buf, strlen(bp) + 1);
3754 	kfree(buf, M_TEMP);
3755 	return (error);
3756 }
3757 
3758 char *
3759 kern_getcwd(char *buf, size_t buflen, int *error)
3760 {
3761 	struct proc *p = curproc;
3762 	char *bp;
3763 	int i, slash_prefixed;
3764 	struct filedesc *fdp;
3765 	struct nchandle nch;
3766 	struct namecache *ncp;
3767 
3768 	numcwdcalls++;
3769 	bp = buf;
3770 	bp += buflen - 1;
3771 	*bp = '\0';
3772 	fdp = p->p_fd;
3773 	slash_prefixed = 0;
3774 
3775 	nch = fdp->fd_ncdir;
3776 	ncp = nch.ncp;
3777 	if (ncp)
3778 		_cache_hold(ncp);
3779 
3780 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
3781 	       nch.mount != fdp->fd_nrdir.mount)
3782 	) {
3783 		/*
3784 		 * While traversing upwards if we encounter the root
3785 		 * of the current mount we have to skip to the mount point
3786 		 * in the underlying filesystem.
3787 		 */
3788 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
3789 			nch = nch.mount->mnt_ncmounton;
3790 			_cache_drop(ncp);
3791 			ncp = nch.ncp;
3792 			if (ncp)
3793 				_cache_hold(ncp);
3794 			continue;
3795 		}
3796 
3797 		/*
3798 		 * Prepend the path segment
3799 		 */
3800 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3801 			if (bp == buf) {
3802 				numcwdfailsz++;
3803 				*error = ERANGE;
3804 				bp = NULL;
3805 				goto done;
3806 			}
3807 			*--bp = ncp->nc_name[i];
3808 		}
3809 		if (bp == buf) {
3810 			numcwdfailsz++;
3811 			*error = ERANGE;
3812 			bp = NULL;
3813 			goto done;
3814 		}
3815 		*--bp = '/';
3816 		slash_prefixed = 1;
3817 
3818 		/*
3819 		 * Go up a directory.  This isn't a mount point so we don't
3820 		 * have to check again.
3821 		 */
3822 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3823 			if (ncp_shared_lock_disable)
3824 				_cache_lock(ncp);
3825 			else
3826 				_cache_lock_shared(ncp);
3827 			if (nch.ncp != ncp->nc_parent) {
3828 				_cache_unlock(ncp);
3829 				continue;
3830 			}
3831 			_cache_hold(nch.ncp);
3832 			_cache_unlock(ncp);
3833 			break;
3834 		}
3835 		_cache_drop(ncp);
3836 		ncp = nch.ncp;
3837 	}
3838 	if (ncp == NULL) {
3839 		numcwdfailnf++;
3840 		*error = ENOENT;
3841 		bp = NULL;
3842 		goto done;
3843 	}
3844 	if (!slash_prefixed) {
3845 		if (bp == buf) {
3846 			numcwdfailsz++;
3847 			*error = ERANGE;
3848 			bp = NULL;
3849 			goto done;
3850 		}
3851 		*--bp = '/';
3852 	}
3853 	numcwdfound++;
3854 	*error = 0;
3855 done:
3856 	if (ncp)
3857 		_cache_drop(ncp);
3858 	return (bp);
3859 }
3860 
3861 /*
3862  * Thus begins the fullpath magic.
3863  *
3864  * The passed nchp is referenced but not locked.
3865  */
3866 static int disablefullpath;
3867 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
3868     &disablefullpath, 0,
3869     "Disable fullpath lookups");
3870 
3871 static u_int numfullpathcalls;
3872 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathcalls, CTLFLAG_RD,
3873     &numfullpathcalls, 0,
3874     "Number of full path resolutions in progress");
3875 static u_int numfullpathfailnf;
3876 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailnf, CTLFLAG_RD,
3877     &numfullpathfailnf, 0,
3878     "Number of full path resolution failures due to lack of file");
3879 static u_int numfullpathfailsz;
3880 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailsz, CTLFLAG_RD,
3881     &numfullpathfailsz, 0,
3882     "Number of full path resolution failures due to insufficient memory");
3883 static u_int numfullpathfound;
3884 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfound, CTLFLAG_RD,
3885     &numfullpathfound, 0,
3886     "Number of full path resolution successes");
3887 
3888 int
3889 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
3890 	       char **retbuf, char **freebuf, int guess)
3891 {
3892 	struct nchandle fd_nrdir;
3893 	struct nchandle nch;
3894 	struct namecache *ncp;
3895 	struct mount *mp, *new_mp;
3896 	char *bp, *buf;
3897 	int slash_prefixed;
3898 	int error = 0;
3899 	int i;
3900 
3901 	atomic_add_int(&numfullpathcalls, -1);
3902 
3903 	*retbuf = NULL;
3904 	*freebuf = NULL;
3905 
3906 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3907 	bp = buf + MAXPATHLEN - 1;
3908 	*bp = '\0';
3909 	if (nchbase)
3910 		fd_nrdir = *nchbase;
3911 	else if (p != NULL)
3912 		fd_nrdir = p->p_fd->fd_nrdir;
3913 	else
3914 		fd_nrdir = rootnch;
3915 	slash_prefixed = 0;
3916 	nch = *nchp;
3917 	ncp = nch.ncp;
3918 	if (ncp)
3919 		_cache_hold(ncp);
3920 	mp = nch.mount;
3921 
3922 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
3923 		new_mp = NULL;
3924 
3925 		/*
3926 		 * If we are asked to guess the upwards path, we do so whenever
3927 		 * we encounter an ncp marked as a mountpoint. We try to find
3928 		 * the actual mountpoint by finding the mountpoint with this
3929 		 * ncp.
3930 		 */
3931 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
3932 			new_mp = mount_get_by_nc(ncp);
3933 		}
3934 		/*
3935 		 * While traversing upwards if we encounter the root
3936 		 * of the current mount we have to skip to the mount point.
3937 		 */
3938 		if (ncp == mp->mnt_ncmountpt.ncp) {
3939 			new_mp = mp;
3940 		}
3941 		if (new_mp) {
3942 			nch = new_mp->mnt_ncmounton;
3943 			_cache_drop(ncp);
3944 			ncp = nch.ncp;
3945 			if (ncp)
3946 				_cache_hold(ncp);
3947 			mp = nch.mount;
3948 			continue;
3949 		}
3950 
3951 		/*
3952 		 * Prepend the path segment
3953 		 */
3954 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3955 			if (bp == buf) {
3956 				numfullpathfailsz++;
3957 				kfree(buf, M_TEMP);
3958 				error = ENOMEM;
3959 				goto done;
3960 			}
3961 			*--bp = ncp->nc_name[i];
3962 		}
3963 		if (bp == buf) {
3964 			numfullpathfailsz++;
3965 			kfree(buf, M_TEMP);
3966 			error = ENOMEM;
3967 			goto done;
3968 		}
3969 		*--bp = '/';
3970 		slash_prefixed = 1;
3971 
3972 		/*
3973 		 * Go up a directory.  This isn't a mount point so we don't
3974 		 * have to check again.
3975 		 *
3976 		 * We can only safely access nc_parent with ncp held locked.
3977 		 */
3978 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3979 			_cache_lock(ncp);
3980 			if (nch.ncp != ncp->nc_parent) {
3981 				_cache_unlock(ncp);
3982 				continue;
3983 			}
3984 			_cache_hold(nch.ncp);
3985 			_cache_unlock(ncp);
3986 			break;
3987 		}
3988 		_cache_drop(ncp);
3989 		ncp = nch.ncp;
3990 	}
3991 	if (ncp == NULL) {
3992 		numfullpathfailnf++;
3993 		kfree(buf, M_TEMP);
3994 		error = ENOENT;
3995 		goto done;
3996 	}
3997 
3998 	if (!slash_prefixed) {
3999 		if (bp == buf) {
4000 			numfullpathfailsz++;
4001 			kfree(buf, M_TEMP);
4002 			error = ENOMEM;
4003 			goto done;
4004 		}
4005 		*--bp = '/';
4006 	}
4007 	numfullpathfound++;
4008 	*retbuf = bp;
4009 	*freebuf = buf;
4010 	error = 0;
4011 done:
4012 	if (ncp)
4013 		_cache_drop(ncp);
4014 	return(error);
4015 }
4016 
4017 int
4018 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf,
4019 	    char **freebuf, int guess)
4020 {
4021 	struct namecache *ncp;
4022 	struct nchandle nch;
4023 	int error;
4024 
4025 	*freebuf = NULL;
4026 	atomic_add_int(&numfullpathcalls, 1);
4027 	if (disablefullpath)
4028 		return (ENODEV);
4029 
4030 	if (p == NULL)
4031 		return (EINVAL);
4032 
4033 	/* vn is NULL, client wants us to use p->p_textvp */
4034 	if (vn == NULL) {
4035 		if ((vn = p->p_textvp) == NULL)
4036 			return (EINVAL);
4037 	}
4038 	spin_lock_shared(&vn->v_spin);
4039 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
4040 		if (ncp->nc_nlen)
4041 			break;
4042 	}
4043 	if (ncp == NULL) {
4044 		spin_unlock_shared(&vn->v_spin);
4045 		return (EINVAL);
4046 	}
4047 	_cache_hold(ncp);
4048 	spin_unlock_shared(&vn->v_spin);
4049 
4050 	atomic_add_int(&numfullpathcalls, -1);
4051 	nch.ncp = ncp;
4052 	nch.mount = vn->v_mount;
4053 	error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
4054 	_cache_drop(ncp);
4055 	return (error);
4056 }
4057