xref: /dflybsd-src/sys/kern/vfs_cache.c (revision ac9843a1ff1bb81f022a04b6a7ed9756fd99238c)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
69 #include <sys/mount.h>
70 #include <sys/vnode.h>
71 #include <sys/malloc.h>
72 #include <sys/sysproto.h>
73 #include <sys/spinlock.h>
74 #include <sys/proc.h>
75 #include <sys/namei.h>
76 #include <sys/nlookup.h>
77 #include <sys/filedesc.h>
78 #include <sys/fnv_hash.h>
79 #include <sys/globaldata.h>
80 #include <sys/kern_syscall.h>
81 #include <sys/dirent.h>
82 #include <ddb/ddb.h>
83 
84 #include <sys/sysref2.h>
85 #include <sys/spinlock2.h>
86 #include <sys/mplock2.h>
87 
88 #define MAX_RECURSION_DEPTH	64
89 
90 /*
91  * Random lookups in the cache are accomplished with a hash table using
92  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock.
93  *
94  * Negative entries may exist and correspond to resolved namecache
95  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
96  * will be set if the entry corresponds to a whited-out directory entry
97  * (verses simply not finding the entry at all).   ncneglist is locked
98  * with a global spinlock (ncspin).
99  *
100  * MPSAFE RULES:
101  *
102  * (1) A ncp must be referenced before it can be locked.
103  *
104  * (2) A ncp must be locked in order to modify it.
105  *
106  * (3) ncp locks are always ordered child -> parent.  That may seem
107  *     backwards but forward scans use the hash table and thus can hold
108  *     the parent unlocked when traversing downward.
109  *
110  *     This allows insert/rename/delete/dot-dot and other operations
111  *     to use ncp->nc_parent links.
112  *
113  *     This also prevents a locked up e.g. NFS node from creating a
114  *     chain reaction all the way back to the root vnode / namecache.
115  *
116  * (4) parent linkages require both the parent and child to be locked.
117  */
118 
119 /*
120  * Structures associated with name cacheing.
121  */
122 #define NCHHASH(hash)		(&nchashtbl[(hash) & nchash])
123 #define MINNEG			1024
124 #define MINPOS			1024
125 #define NCMOUNT_NUMCACHE	1009	/* prime number */
126 
127 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
128 
129 LIST_HEAD(nchash_list, namecache);
130 
131 struct nchash_head {
132        struct nchash_list list;
133        struct spinlock	spin;
134 };
135 
136 struct ncmount_cache {
137 	struct spinlock	spin;
138 	struct namecache *ncp;
139 	struct mount *mp;
140 	int isneg;		/* if != 0 mp is originator and not target */
141 };
142 
143 static struct nchash_head	*nchashtbl;
144 static struct namecache_list	ncneglist;
145 static struct spinlock		ncspin;
146 static struct ncmount_cache	ncmount_cache[NCMOUNT_NUMCACHE];
147 
148 /*
149  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
150  * to create the namecache infrastructure leading to a dangling vnode.
151  *
152  * 0	Only errors are reported
153  * 1	Successes are reported
154  * 2	Successes + the whole directory scan is reported
155  * 3	Force the directory scan code run as if the parent vnode did not
156  *	have a namecache record, even if it does have one.
157  */
158 static int	ncvp_debug;
159 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0,
160     "Namecache debug level (0-3)");
161 
162 static u_long	nchash;			/* size of hash table */
163 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
164     "Size of namecache hash table");
165 
166 static int	ncnegflush = 10;	/* burst for negative flush */
167 SYSCTL_INT(_debug, OID_AUTO, ncnegflush, CTLFLAG_RW, &ncnegflush, 0,
168     "Batch flush negative entries");
169 
170 static int	ncposflush = 10;	/* burst for positive flush */
171 SYSCTL_INT(_debug, OID_AUTO, ncposflush, CTLFLAG_RW, &ncposflush, 0,
172     "Batch flush positive entries");
173 
174 static int	ncnegfactor = 16;	/* ratio of negative entries */
175 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0,
176     "Ratio of namecache negative entries");
177 
178 static int	nclockwarn;		/* warn on locked entries in ticks */
179 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0,
180     "Warn on locked namecache entries in ticks");
181 
182 static int	numdefered;		/* number of cache entries allocated */
183 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0,
184     "Number of cache entries allocated");
185 
186 static int	ncposlimit;		/* number of cache entries allocated */
187 SYSCTL_INT(_debug, OID_AUTO, ncposlimit, CTLFLAG_RW, &ncposlimit, 0,
188     "Number of cache entries allocated");
189 
190 static int	ncp_shared_lock_disable = 1;
191 SYSCTL_INT(_debug, OID_AUTO, ncp_shared_lock_disable, CTLFLAG_RW,
192 	   &ncp_shared_lock_disable, 0, "Disable shared namecache locks");
193 
194 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode),
195     "sizeof(struct vnode)");
196 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache),
197     "sizeof(struct namecache)");
198 
199 static int	ncmount_cache_enable = 1;
200 SYSCTL_INT(_debug, OID_AUTO, ncmount_cache_enable, CTLFLAG_RW,
201 	   &ncmount_cache_enable, 0, "mount point cache");
202 static long	ncmount_cache_hit;
203 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_hit, CTLFLAG_RW,
204 	    &ncmount_cache_hit, 0, "mpcache hits");
205 static long	ncmount_cache_miss;
206 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_miss, CTLFLAG_RW,
207 	    &ncmount_cache_miss, 0, "mpcache misses");
208 static long	ncmount_cache_overwrite;
209 SYSCTL_LONG(_debug, OID_AUTO, ncmount_cache_overwrite, CTLFLAG_RW,
210 	    &ncmount_cache_overwrite, 0, "mpcache entry overwrites");
211 
212 static int cache_resolve_mp(struct mount *mp);
213 static struct vnode *cache_dvpref(struct namecache *ncp);
214 static void _cache_lock(struct namecache *ncp);
215 static void _cache_setunresolved(struct namecache *ncp);
216 static void _cache_cleanneg(int count);
217 static void _cache_cleanpos(int count);
218 static void _cache_cleandefered(void);
219 static void _cache_unlink(struct namecache *ncp);
220 
221 /*
222  * The new name cache statistics
223  */
224 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
225 static int numneg;
226 SYSCTL_INT(_vfs_cache, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0,
227     "Number of negative namecache entries");
228 static int numcache;
229 SYSCTL_INT(_vfs_cache, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0,
230     "Number of namecaches entries");
231 static u_long numcalls;
232 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcalls, CTLFLAG_RD, &numcalls, 0,
233     "Number of namecache lookups");
234 static u_long numchecks;
235 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numchecks, CTLFLAG_RD, &numchecks, 0,
236     "Number of checked entries in namecache lookups");
237 
238 struct nchstats nchstats[SMP_MAXCPU];
239 /*
240  * Export VFS cache effectiveness statistics to user-land.
241  *
242  * The statistics are left for aggregation to user-land so
243  * neat things can be achieved, like observing per-CPU cache
244  * distribution.
245  */
246 static int
247 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
248 {
249 	struct globaldata *gd;
250 	int i, error;
251 
252 	error = 0;
253 	for (i = 0; i < ncpus; ++i) {
254 		gd = globaldata_find(i);
255 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
256 			sizeof(struct nchstats))))
257 			break;
258 	}
259 
260 	return (error);
261 }
262 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
263   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
264 
265 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
266 
267 /*
268  * Namespace locking.  The caller must already hold a reference to the
269  * namecache structure in order to lock/unlock it.  This function prevents
270  * the namespace from being created or destroyed by accessors other then
271  * the lock holder.
272  *
273  * Note that holding a locked namecache structure prevents other threads
274  * from making namespace changes (e.g. deleting or creating), prevents
275  * vnode association state changes by other threads, and prevents the
276  * namecache entry from being resolved or unresolved by other threads.
277  *
278  * An exclusive lock owner has full authority to associate/disassociate
279  * vnodes and resolve/unresolve the locked ncp.
280  *
281  * A shared lock owner only has authority to acquire the underlying vnode,
282  * if any.
283  *
284  * The primary lock field is nc_lockstatus.  nc_locktd is set after the
285  * fact (when locking) or cleared prior to unlocking.
286  *
287  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
288  *	     or recycled, but it does NOT help you if the vnode had already
289  *	     initiated a recyclement.  If this is important, use cache_get()
290  *	     rather then cache_lock() (and deal with the differences in the
291  *	     way the refs counter is handled).  Or, alternatively, make an
292  *	     unconditional call to cache_validate() or cache_resolve()
293  *	     after cache_lock() returns.
294  */
295 static
296 void
297 _cache_lock(struct namecache *ncp)
298 {
299 	thread_t td;
300 	int didwarn;
301 	int error;
302 	u_int count;
303 
304 	KKASSERT(ncp->nc_refs != 0);
305 	didwarn = 0;
306 	td = curthread;
307 
308 	for (;;) {
309 		count = ncp->nc_lockstatus;
310 		cpu_ccfence();
311 
312 		if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
313 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
314 					      count, count + 1)) {
315 				/*
316 				 * The vp associated with a locked ncp must
317 				 * be held to prevent it from being recycled.
318 				 *
319 				 * WARNING!  If VRECLAIMED is set the vnode
320 				 * could already be in the middle of a recycle.
321 				 * Callers must use cache_vref() or
322 				 * cache_vget() on the locked ncp to
323 				 * validate the vp or set the cache entry
324 				 * to unresolved.
325 				 *
326 				 * NOTE! vhold() is allowed if we hold a
327 				 *	 lock on the ncp (which we do).
328 				 */
329 				ncp->nc_locktd = td;
330 				if (ncp->nc_vp)
331 					vhold(ncp->nc_vp);
332 				break;
333 			}
334 			/* cmpset failed */
335 			continue;
336 		}
337 		if (ncp->nc_locktd == td) {
338 			KKASSERT((count & NC_SHLOCK_FLAG) == 0);
339 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
340 					      count, count + 1)) {
341 				break;
342 			}
343 			/* cmpset failed */
344 			continue;
345 		}
346 		tsleep_interlock(&ncp->nc_locktd, 0);
347 		if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
348 				      count | NC_EXLOCK_REQ) == 0) {
349 			/* cmpset failed */
350 			continue;
351 		}
352 		error = tsleep(&ncp->nc_locktd, PINTERLOCKED,
353 			       "clock", nclockwarn);
354 		if (error == EWOULDBLOCK) {
355 			if (didwarn == 0) {
356 				didwarn = ticks;
357 				kprintf("[diagnostic] cache_lock: "
358 					"blocked on %p %08x",
359 					ncp, count);
360 				kprintf(" \"%*.*s\"\n",
361 					ncp->nc_nlen, ncp->nc_nlen,
362 					ncp->nc_name);
363 			}
364 		}
365 		/* loop */
366 	}
367 	if (didwarn) {
368 		kprintf("[diagnostic] cache_lock: unblocked %*.*s after "
369 			"%d secs\n",
370 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
371 			(int)(ticks - didwarn) / hz);
372 	}
373 }
374 
375 /*
376  * The shared lock works similarly to the exclusive lock except
377  * nc_locktd is left NULL and we need an interlock (VHOLD) to
378  * prevent vhold() races, since the moment our cmpset_int succeeds
379  * another cpu can come in and get its own shared lock.
380  *
381  * A critical section is needed to prevent interruption during the
382  * VHOLD interlock.
383  */
384 static
385 void
386 _cache_lock_shared(struct namecache *ncp)
387 {
388 	int didwarn;
389 	int error;
390 	u_int count;
391 
392 	KKASSERT(ncp->nc_refs != 0);
393 	didwarn = 0;
394 
395 	for (;;) {
396 		count = ncp->nc_lockstatus;
397 		cpu_ccfence();
398 
399 		if ((count & ~NC_SHLOCK_REQ) == 0) {
400 			crit_enter();
401 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
402 				      count,
403 				      (count + 1) | NC_SHLOCK_FLAG |
404 						    NC_SHLOCK_VHOLD)) {
405 				/*
406 				 * The vp associated with a locked ncp must
407 				 * be held to prevent it from being recycled.
408 				 *
409 				 * WARNING!  If VRECLAIMED is set the vnode
410 				 * could already be in the middle of a recycle.
411 				 * Callers must use cache_vref() or
412 				 * cache_vget() on the locked ncp to
413 				 * validate the vp or set the cache entry
414 				 * to unresolved.
415 				 *
416 				 * NOTE! vhold() is allowed if we hold a
417 				 *	 lock on the ncp (which we do).
418 				 */
419 				if (ncp->nc_vp)
420 					vhold(ncp->nc_vp);
421 				atomic_clear_int(&ncp->nc_lockstatus,
422 						 NC_SHLOCK_VHOLD);
423 				crit_exit();
424 				break;
425 			}
426 			/* cmpset failed */
427 			crit_exit();
428 			continue;
429 		}
430 
431 		/*
432 		 * If already held shared we can just bump the count, but
433 		 * only allow this if nobody is trying to get the lock
434 		 * exclusively.
435 		 *
436 		 * VHOLD is a bit of a hack.  Even though we successfully
437 		 * added another shared ref, the cpu that got the first
438 		 * shared ref might not yet have held the vnode.
439 		 */
440 		if ((count & (NC_EXLOCK_REQ|NC_SHLOCK_FLAG)) ==
441 		    NC_SHLOCK_FLAG) {
442 			KKASSERT((count & ~(NC_EXLOCK_REQ |
443 					    NC_SHLOCK_REQ |
444 					    NC_SHLOCK_FLAG)) > 0);
445 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
446 					      count, count + 1)) {
447 				while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
448 					cpu_pause();
449 				break;
450 			}
451 			continue;
452 		}
453 		tsleep_interlock(ncp, 0);
454 		if (atomic_cmpset_int(&ncp->nc_lockstatus, count,
455 				      count | NC_SHLOCK_REQ) == 0) {
456 			/* cmpset failed */
457 			continue;
458 		}
459 		error = tsleep(ncp, PINTERLOCKED, "clocksh", nclockwarn);
460 		if (error == EWOULDBLOCK) {
461 			if (didwarn == 0) {
462 				didwarn = ticks;
463 				kprintf("[diagnostic] cache_lock_shared: "
464 					"blocked on %p %08x",
465 					ncp, count);
466 				kprintf(" \"%*.*s\"\n",
467 					ncp->nc_nlen, ncp->nc_nlen,
468 					ncp->nc_name);
469 			}
470 		}
471 		/* loop */
472 	}
473 	if (didwarn) {
474 		kprintf("[diagnostic] cache_lock_shared: "
475 			"unblocked %*.*s after %d secs\n",
476 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
477 			(int)(ticks - didwarn) / hz);
478 	}
479 }
480 
481 /*
482  * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
483  *	 such as the case where one of its children is locked.
484  */
485 static
486 int
487 _cache_lock_nonblock(struct namecache *ncp)
488 {
489 	thread_t td;
490 	u_int count;
491 
492 	td = curthread;
493 
494 	for (;;) {
495 		count = ncp->nc_lockstatus;
496 
497 		if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 0) {
498 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
499 					      count, count + 1)) {
500 				/*
501 				 * The vp associated with a locked ncp must
502 				 * be held to prevent it from being recycled.
503 				 *
504 				 * WARNING!  If VRECLAIMED is set the vnode
505 				 * could already be in the middle of a recycle.
506 				 * Callers must use cache_vref() or
507 				 * cache_vget() on the locked ncp to
508 				 * validate the vp or set the cache entry
509 				 * to unresolved.
510 				 *
511 				 * NOTE! vhold() is allowed if we hold a
512 				 *	 lock on the ncp (which we do).
513 				 */
514 				ncp->nc_locktd = td;
515 				if (ncp->nc_vp)
516 					vhold(ncp->nc_vp);
517 				break;
518 			}
519 			/* cmpset failed */
520 			continue;
521 		}
522 		if (ncp->nc_locktd == td) {
523 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
524 					      count, count + 1)) {
525 				break;
526 			}
527 			/* cmpset failed */
528 			continue;
529 		}
530 		return(EWOULDBLOCK);
531 	}
532 	return(0);
533 }
534 
535 /*
536  * The shared lock works similarly to the exclusive lock except
537  * nc_locktd is left NULL and we need an interlock (VHOLD) to
538  * prevent vhold() races, since the moment our cmpset_int succeeds
539  * another cpu can come in and get its own shared lock.
540  *
541  * A critical section is needed to prevent interruption during the
542  * VHOLD interlock.
543  */
544 static
545 int
546 _cache_lock_shared_nonblock(struct namecache *ncp)
547 {
548 	u_int count;
549 
550 	for (;;) {
551 		count = ncp->nc_lockstatus;
552 
553 		if ((count & ~NC_SHLOCK_REQ) == 0) {
554 			crit_enter();
555 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
556 				      count,
557 				      (count + 1) | NC_SHLOCK_FLAG |
558 						    NC_SHLOCK_VHOLD)) {
559 				/*
560 				 * The vp associated with a locked ncp must
561 				 * be held to prevent it from being recycled.
562 				 *
563 				 * WARNING!  If VRECLAIMED is set the vnode
564 				 * could already be in the middle of a recycle.
565 				 * Callers must use cache_vref() or
566 				 * cache_vget() on the locked ncp to
567 				 * validate the vp or set the cache entry
568 				 * to unresolved.
569 				 *
570 				 * NOTE! vhold() is allowed if we hold a
571 				 *	 lock on the ncp (which we do).
572 				 */
573 				if (ncp->nc_vp)
574 					vhold(ncp->nc_vp);
575 				atomic_clear_int(&ncp->nc_lockstatus,
576 						 NC_SHLOCK_VHOLD);
577 				crit_exit();
578 				break;
579 			}
580 			/* cmpset failed */
581 			crit_exit();
582 			continue;
583 		}
584 
585 		/*
586 		 * If already held shared we can just bump the count, but
587 		 * only allow this if nobody is trying to get the lock
588 		 * exclusively.
589 		 *
590 		 * VHOLD is a bit of a hack.  Even though we successfully
591 		 * added another shared ref, the cpu that got the first
592 		 * shared ref might not yet have held the vnode.
593 		 */
594 		if ((count & (NC_EXLOCK_REQ|NC_SHLOCK_FLAG)) ==
595 		    NC_SHLOCK_FLAG) {
596 			KKASSERT((count & ~(NC_EXLOCK_REQ |
597 					    NC_SHLOCK_REQ |
598 					    NC_SHLOCK_FLAG)) > 0);
599 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
600 					      count, count + 1)) {
601 				while (ncp->nc_lockstatus & NC_SHLOCK_VHOLD)
602 					cpu_pause();
603 				break;
604 			}
605 			continue;
606 		}
607 		return(EWOULDBLOCK);
608 	}
609 	return(0);
610 }
611 
612 /*
613  * Helper function
614  *
615  * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
616  *
617  *	 nc_locktd must be NULLed out prior to nc_lockstatus getting cleared.
618  */
619 static
620 void
621 _cache_unlock(struct namecache *ncp)
622 {
623 	thread_t td __debugvar = curthread;
624 	u_int count;
625 	u_int ncount;
626 	struct vnode *dropvp;
627 
628 	KKASSERT(ncp->nc_refs >= 0);
629 	KKASSERT((ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) > 0);
630 	KKASSERT((ncp->nc_lockstatus & NC_SHLOCK_FLAG) || ncp->nc_locktd == td);
631 
632 	count = ncp->nc_lockstatus;
633 	cpu_ccfence();
634 
635 	/*
636 	 * Clear nc_locktd prior to the atomic op (excl lock only)
637 	 */
638 	if ((count & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1)
639 		ncp->nc_locktd = NULL;
640 	dropvp = NULL;
641 
642 	for (;;) {
643 		if ((count &
644 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ|NC_SHLOCK_FLAG)) == 1) {
645 			dropvp = ncp->nc_vp;
646 			if (count & NC_EXLOCK_REQ)
647 				ncount = count & NC_SHLOCK_REQ; /* cnt->0 */
648 			else
649 				ncount = 0;
650 
651 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
652 					      count, ncount)) {
653 				if (count & NC_EXLOCK_REQ)
654 					wakeup(&ncp->nc_locktd);
655 				else if (count & NC_SHLOCK_REQ)
656 					wakeup(ncp);
657 				break;
658 			}
659 			dropvp = NULL;
660 		} else {
661 			KKASSERT((count & NC_SHLOCK_VHOLD) == 0);
662 			KKASSERT((count & ~(NC_EXLOCK_REQ |
663 					    NC_SHLOCK_REQ |
664 					    NC_SHLOCK_FLAG)) > 1);
665 			if (atomic_cmpset_int(&ncp->nc_lockstatus,
666 					      count, count - 1)) {
667 				break;
668 			}
669 		}
670 		count = ncp->nc_lockstatus;
671 		cpu_ccfence();
672 	}
673 
674 	/*
675 	 * Don't actually drop the vp until we successfully clean out
676 	 * the lock, otherwise we may race another shared lock.
677 	 */
678 	if (dropvp)
679 		vdrop(dropvp);
680 }
681 
682 static
683 int
684 _cache_lockstatus(struct namecache *ncp)
685 {
686 	if (ncp->nc_locktd == curthread)
687 		return(LK_EXCLUSIVE);
688 	if (ncp->nc_lockstatus & NC_SHLOCK_FLAG)
689 		return(LK_SHARED);
690 	return(-1);
691 }
692 
693 /*
694  * cache_hold() and cache_drop() prevent the premature deletion of a
695  * namecache entry but do not prevent operations (such as zapping) on
696  * that namecache entry.
697  *
698  * This routine may only be called from outside this source module if
699  * nc_refs is already at least 1.
700  *
701  * This is a rare case where callers are allowed to hold a spinlock,
702  * so we can't ourselves.
703  */
704 static __inline
705 struct namecache *
706 _cache_hold(struct namecache *ncp)
707 {
708 	atomic_add_int(&ncp->nc_refs, 1);
709 	return(ncp);
710 }
711 
712 /*
713  * Drop a cache entry, taking care to deal with races.
714  *
715  * For potential 1->0 transitions we must hold the ncp lock to safely
716  * test its flags.  An unresolved entry with no children must be zapped
717  * to avoid leaks.
718  *
719  * The call to cache_zap() itself will handle all remaining races and
720  * will decrement the ncp's refs regardless.  If we are resolved or
721  * have children nc_refs can safely be dropped to 0 without having to
722  * zap the entry.
723  *
724  * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
725  *
726  * NOTE: cache_zap() may return a non-NULL referenced parent which must
727  *	 be dropped in a loop.
728  */
729 static __inline
730 void
731 _cache_drop(struct namecache *ncp)
732 {
733 	int refs;
734 
735 	while (ncp) {
736 		KKASSERT(ncp->nc_refs > 0);
737 		refs = ncp->nc_refs;
738 
739 		if (refs == 1) {
740 			if (_cache_lock_nonblock(ncp) == 0) {
741 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
742 				if ((ncp->nc_flag & NCF_UNRESOLVED) &&
743 				    TAILQ_EMPTY(&ncp->nc_list)) {
744 					ncp = cache_zap(ncp, 1);
745 					continue;
746 				}
747 				if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
748 					_cache_unlock(ncp);
749 					break;
750 				}
751 				_cache_unlock(ncp);
752 			}
753 		} else {
754 			if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
755 				break;
756 		}
757 		cpu_pause();
758 	}
759 }
760 
761 /*
762  * Link a new namecache entry to its parent and to the hash table.  Be
763  * careful to avoid races if vhold() blocks in the future.
764  *
765  * Both ncp and par must be referenced and locked.
766  *
767  * NOTE: The hash table spinlock is held during this call, we can't do
768  *	 anything fancy.
769  */
770 static void
771 _cache_link_parent(struct namecache *ncp, struct namecache *par,
772 		   struct nchash_head *nchpp)
773 {
774 	KKASSERT(ncp->nc_parent == NULL);
775 	ncp->nc_parent = par;
776 	ncp->nc_head = nchpp;
777 
778 	/*
779 	 * Set inheritance flags.  Note that the parent flags may be
780 	 * stale due to getattr potentially not having been run yet
781 	 * (it gets run during nlookup()'s).
782 	 */
783 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
784 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
785 		ncp->nc_flag |= NCF_SF_PNOCACHE;
786 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
787 		ncp->nc_flag |= NCF_UF_PCACHE;
788 
789 	LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
790 
791 	if (TAILQ_EMPTY(&par->nc_list)) {
792 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
793 		/*
794 		 * Any vp associated with an ncp which has children must
795 		 * be held to prevent it from being recycled.
796 		 */
797 		if (par->nc_vp)
798 			vhold(par->nc_vp);
799 	} else {
800 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
801 	}
802 }
803 
804 /*
805  * Remove the parent and hash associations from a namecache structure.
806  * If this is the last child of the parent the cache_drop(par) will
807  * attempt to recursively zap the parent.
808  *
809  * ncp must be locked.  This routine will acquire a temporary lock on
810  * the parent as wlel as the appropriate hash chain.
811  */
812 static void
813 _cache_unlink_parent(struct namecache *ncp)
814 {
815 	struct namecache *par;
816 	struct vnode *dropvp;
817 
818 	if ((par = ncp->nc_parent) != NULL) {
819 		KKASSERT(ncp->nc_parent == par);
820 		_cache_hold(par);
821 		_cache_lock(par);
822 		spin_lock(&ncp->nc_head->spin);
823 		LIST_REMOVE(ncp, nc_hash);
824 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
825 		dropvp = NULL;
826 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
827 			dropvp = par->nc_vp;
828 		spin_unlock(&ncp->nc_head->spin);
829 		ncp->nc_parent = NULL;
830 		ncp->nc_head = NULL;
831 		_cache_unlock(par);
832 		_cache_drop(par);
833 
834 		/*
835 		 * We can only safely vdrop with no spinlocks held.
836 		 */
837 		if (dropvp)
838 			vdrop(dropvp);
839 	}
840 }
841 
842 /*
843  * Allocate a new namecache structure.  Most of the code does not require
844  * zero-termination of the string but it makes vop_compat_ncreate() easier.
845  */
846 static struct namecache *
847 cache_alloc(int nlen)
848 {
849 	struct namecache *ncp;
850 
851 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
852 	if (nlen)
853 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
854 	ncp->nc_nlen = nlen;
855 	ncp->nc_flag = NCF_UNRESOLVED;
856 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
857 	ncp->nc_refs = 1;
858 
859 	TAILQ_INIT(&ncp->nc_list);
860 	_cache_lock(ncp);
861 	return(ncp);
862 }
863 
864 /*
865  * Can only be called for the case where the ncp has never been
866  * associated with anything (so no spinlocks are needed).
867  */
868 static void
869 _cache_free(struct namecache *ncp)
870 {
871 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_lockstatus == 1);
872 	if (ncp->nc_name)
873 		kfree(ncp->nc_name, M_VFSCACHE);
874 	kfree(ncp, M_VFSCACHE);
875 }
876 
877 /*
878  * [re]initialize a nchandle.
879  */
880 void
881 cache_zero(struct nchandle *nch)
882 {
883 	nch->ncp = NULL;
884 	nch->mount = NULL;
885 }
886 
887 /*
888  * Ref and deref a namecache structure.
889  *
890  * The caller must specify a stable ncp pointer, typically meaning the
891  * ncp is already referenced but this can also occur indirectly through
892  * e.g. holding a lock on a direct child.
893  *
894  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
895  *	    use read spinlocks here.
896  *
897  * MPSAFE if nch is
898  */
899 struct nchandle *
900 cache_hold(struct nchandle *nch)
901 {
902 	_cache_hold(nch->ncp);
903 	atomic_add_int(&nch->mount->mnt_refs, 1);
904 	return(nch);
905 }
906 
907 /*
908  * Create a copy of a namecache handle for an already-referenced
909  * entry.
910  *
911  * MPSAFE if nch is
912  */
913 void
914 cache_copy(struct nchandle *nch, struct nchandle *target)
915 {
916 	*target = *nch;
917 	if (target->ncp)
918 		_cache_hold(target->ncp);
919 	atomic_add_int(&nch->mount->mnt_refs, 1);
920 }
921 
922 /*
923  * MPSAFE if nch is
924  */
925 void
926 cache_changemount(struct nchandle *nch, struct mount *mp)
927 {
928 	atomic_add_int(&nch->mount->mnt_refs, -1);
929 	nch->mount = mp;
930 	atomic_add_int(&nch->mount->mnt_refs, 1);
931 }
932 
933 void
934 cache_drop(struct nchandle *nch)
935 {
936 	atomic_add_int(&nch->mount->mnt_refs, -1);
937 	_cache_drop(nch->ncp);
938 	nch->ncp = NULL;
939 	nch->mount = NULL;
940 }
941 
942 int
943 cache_lockstatus(struct nchandle *nch)
944 {
945 	return(_cache_lockstatus(nch->ncp));
946 }
947 
948 void
949 cache_lock(struct nchandle *nch)
950 {
951 	_cache_lock(nch->ncp);
952 }
953 
954 void
955 cache_lock_maybe_shared(struct nchandle *nch, int excl)
956 {
957 	struct namecache *ncp = nch->ncp;
958 
959 	if (ncp_shared_lock_disable || excl ||
960 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
961 		_cache_lock(ncp);
962 	} else {
963 		_cache_lock_shared(ncp);
964 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
965 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
966 				_cache_unlock(ncp);
967 				_cache_lock(ncp);
968 			}
969 		} else {
970 			_cache_unlock(ncp);
971 			_cache_lock(ncp);
972 		}
973 	}
974 }
975 
976 /*
977  * Relock nch1 given an unlocked nch1 and a locked nch2.  The caller
978  * is responsible for checking both for validity on return as they
979  * may have become invalid.
980  *
981  * We have to deal with potential deadlocks here, just ping pong
982  * the lock until we get it (we will always block somewhere when
983  * looping so this is not cpu-intensive).
984  *
985  * which = 0	nch1 not locked, nch2 is locked
986  * which = 1	nch1 is locked, nch2 is not locked
987  */
988 void
989 cache_relock(struct nchandle *nch1, struct ucred *cred1,
990 	     struct nchandle *nch2, struct ucred *cred2)
991 {
992 	int which;
993 
994 	which = 0;
995 
996 	for (;;) {
997 		if (which == 0) {
998 			if (cache_lock_nonblock(nch1) == 0) {
999 				cache_resolve(nch1, cred1);
1000 				break;
1001 			}
1002 			cache_unlock(nch2);
1003 			cache_lock(nch1);
1004 			cache_resolve(nch1, cred1);
1005 			which = 1;
1006 		} else {
1007 			if (cache_lock_nonblock(nch2) == 0) {
1008 				cache_resolve(nch2, cred2);
1009 				break;
1010 			}
1011 			cache_unlock(nch1);
1012 			cache_lock(nch2);
1013 			cache_resolve(nch2, cred2);
1014 			which = 0;
1015 		}
1016 	}
1017 }
1018 
1019 int
1020 cache_lock_nonblock(struct nchandle *nch)
1021 {
1022 	return(_cache_lock_nonblock(nch->ncp));
1023 }
1024 
1025 void
1026 cache_unlock(struct nchandle *nch)
1027 {
1028 	_cache_unlock(nch->ncp);
1029 }
1030 
1031 /*
1032  * ref-and-lock, unlock-and-deref functions.
1033  *
1034  * This function is primarily used by nlookup.  Even though cache_lock
1035  * holds the vnode, it is possible that the vnode may have already
1036  * initiated a recyclement.
1037  *
1038  * We want cache_get() to return a definitively usable vnode or a
1039  * definitively unresolved ncp.
1040  */
1041 static
1042 struct namecache *
1043 _cache_get(struct namecache *ncp)
1044 {
1045 	_cache_hold(ncp);
1046 	_cache_lock(ncp);
1047 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1048 		_cache_setunresolved(ncp);
1049 	return(ncp);
1050 }
1051 
1052 /*
1053  * Attempt to obtain a shared lock on the ncp.  A shared lock will only
1054  * be obtained if the ncp is resolved and the vnode (if not ENOENT) is
1055  * valid.  Otherwise an exclusive lock will be acquired instead.
1056  */
1057 static
1058 struct namecache *
1059 _cache_get_maybe_shared(struct namecache *ncp, int excl)
1060 {
1061 	if (ncp_shared_lock_disable || excl ||
1062 	    (ncp->nc_flag & NCF_UNRESOLVED)) {
1063 		return(_cache_get(ncp));
1064 	}
1065 	_cache_hold(ncp);
1066 	_cache_lock_shared(ncp);
1067 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1068 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) {
1069 			_cache_unlock(ncp);
1070 			ncp = _cache_get(ncp);
1071 			_cache_drop(ncp);
1072 		}
1073 	} else {
1074 		_cache_unlock(ncp);
1075 		ncp = _cache_get(ncp);
1076 		_cache_drop(ncp);
1077 	}
1078 	return(ncp);
1079 }
1080 
1081 /*
1082  * This is a special form of _cache_lock() which only succeeds if
1083  * it can get a pristine, non-recursive lock.  The caller must have
1084  * already ref'd the ncp.
1085  *
1086  * On success the ncp will be locked, on failure it will not.  The
1087  * ref count does not change either way.
1088  *
1089  * We want _cache_lock_special() (on success) to return a definitively
1090  * usable vnode or a definitively unresolved ncp.
1091  */
1092 static int
1093 _cache_lock_special(struct namecache *ncp)
1094 {
1095 	if (_cache_lock_nonblock(ncp) == 0) {
1096 		if ((ncp->nc_lockstatus &
1097 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == 1) {
1098 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1099 				_cache_setunresolved(ncp);
1100 			return(0);
1101 		}
1102 		_cache_unlock(ncp);
1103 	}
1104 	return(EWOULDBLOCK);
1105 }
1106 
1107 static int
1108 _cache_lock_shared_special(struct namecache *ncp)
1109 {
1110 	if (_cache_lock_shared_nonblock(ncp) == 0) {
1111 		if ((ncp->nc_lockstatus &
1112 		     ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ)) == (NC_SHLOCK_FLAG | 1)) {
1113 			if (ncp->nc_vp == NULL ||
1114 			    (ncp->nc_vp->v_flag & VRECLAIMED) == 0) {
1115 				return(0);
1116 			}
1117 		}
1118 		_cache_unlock(ncp);
1119 	}
1120 	return(EWOULDBLOCK);
1121 }
1122 
1123 
1124 /*
1125  * NOTE: The same nchandle can be passed for both arguments.
1126  */
1127 void
1128 cache_get(struct nchandle *nch, struct nchandle *target)
1129 {
1130 	KKASSERT(nch->ncp->nc_refs > 0);
1131 	target->mount = nch->mount;
1132 	target->ncp = _cache_get(nch->ncp);
1133 	atomic_add_int(&target->mount->mnt_refs, 1);
1134 }
1135 
1136 void
1137 cache_get_maybe_shared(struct nchandle *nch, struct nchandle *target, int excl)
1138 {
1139 	KKASSERT(nch->ncp->nc_refs > 0);
1140 	target->mount = nch->mount;
1141 	target->ncp = _cache_get_maybe_shared(nch->ncp, excl);
1142 	atomic_add_int(&target->mount->mnt_refs, 1);
1143 }
1144 
1145 /*
1146  *
1147  */
1148 static __inline
1149 void
1150 _cache_put(struct namecache *ncp)
1151 {
1152 	_cache_unlock(ncp);
1153 	_cache_drop(ncp);
1154 }
1155 
1156 /*
1157  *
1158  */
1159 void
1160 cache_put(struct nchandle *nch)
1161 {
1162 	atomic_add_int(&nch->mount->mnt_refs, -1);
1163 	_cache_put(nch->ncp);
1164 	nch->ncp = NULL;
1165 	nch->mount = NULL;
1166 }
1167 
1168 /*
1169  * Resolve an unresolved ncp by associating a vnode with it.  If the
1170  * vnode is NULL, a negative cache entry is created.
1171  *
1172  * The ncp should be locked on entry and will remain locked on return.
1173  */
1174 static
1175 void
1176 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
1177 {
1178 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
1179 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1180 
1181 	if (vp != NULL) {
1182 		/*
1183 		 * Any vp associated with an ncp which has children must
1184 		 * be held.  Any vp associated with a locked ncp must be held.
1185 		 */
1186 		if (!TAILQ_EMPTY(&ncp->nc_list))
1187 			vhold(vp);
1188 		spin_lock(&vp->v_spin);
1189 		ncp->nc_vp = vp;
1190 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
1191 		spin_unlock(&vp->v_spin);
1192 		if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1193 			vhold(vp);
1194 
1195 		/*
1196 		 * Set auxiliary flags
1197 		 */
1198 		switch(vp->v_type) {
1199 		case VDIR:
1200 			ncp->nc_flag |= NCF_ISDIR;
1201 			break;
1202 		case VLNK:
1203 			ncp->nc_flag |= NCF_ISSYMLINK;
1204 			/* XXX cache the contents of the symlink */
1205 			break;
1206 		default:
1207 			break;
1208 		}
1209 		atomic_add_int(&numcache, 1);
1210 		ncp->nc_error = 0;
1211 		/* XXX: this is a hack to work-around the lack of a real pfs vfs
1212 		 * implementation*/
1213 		if (mp != NULL)
1214 			if (strncmp(mp->mnt_stat.f_fstypename, "null", 5) == 0)
1215 				vp->v_pfsmp = mp;
1216 	} else {
1217 		/*
1218 		 * When creating a negative cache hit we set the
1219 		 * namecache_gen.  A later resolve will clean out the
1220 		 * negative cache hit if the mount point's namecache_gen
1221 		 * has changed.  Used by devfs, could also be used by
1222 		 * other remote FSs.
1223 		 */
1224 		ncp->nc_vp = NULL;
1225 		spin_lock(&ncspin);
1226 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
1227 		++numneg;
1228 		spin_unlock(&ncspin);
1229 		ncp->nc_error = ENOENT;
1230 		if (mp)
1231 			VFS_NCPGEN_SET(mp, ncp);
1232 	}
1233 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
1234 }
1235 
1236 /*
1237  *
1238  */
1239 void
1240 cache_setvp(struct nchandle *nch, struct vnode *vp)
1241 {
1242 	_cache_setvp(nch->mount, nch->ncp, vp);
1243 }
1244 
1245 /*
1246  *
1247  */
1248 void
1249 cache_settimeout(struct nchandle *nch, int nticks)
1250 {
1251 	struct namecache *ncp = nch->ncp;
1252 
1253 	if ((ncp->nc_timeout = ticks + nticks) == 0)
1254 		ncp->nc_timeout = 1;
1255 }
1256 
1257 /*
1258  * Disassociate the vnode or negative-cache association and mark a
1259  * namecache entry as unresolved again.  Note that the ncp is still
1260  * left in the hash table and still linked to its parent.
1261  *
1262  * The ncp should be locked and refd on entry and will remain locked and refd
1263  * on return.
1264  *
1265  * This routine is normally never called on a directory containing children.
1266  * However, NFS often does just that in its rename() code as a cop-out to
1267  * avoid complex namespace operations.  This disconnects a directory vnode
1268  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
1269  * sync.
1270  *
1271  */
1272 static
1273 void
1274 _cache_setunresolved(struct namecache *ncp)
1275 {
1276 	struct vnode *vp;
1277 
1278 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1279 		ncp->nc_flag |= NCF_UNRESOLVED;
1280 		ncp->nc_timeout = 0;
1281 		ncp->nc_error = ENOTCONN;
1282 		if ((vp = ncp->nc_vp) != NULL) {
1283 			atomic_add_int(&numcache, -1);
1284 			spin_lock(&vp->v_spin);
1285 			ncp->nc_vp = NULL;
1286 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
1287 			spin_unlock(&vp->v_spin);
1288 
1289 			/*
1290 			 * Any vp associated with an ncp with children is
1291 			 * held by that ncp.  Any vp associated with a locked
1292 			 * ncp is held by that ncp.  These conditions must be
1293 			 * undone when the vp is cleared out from the ncp.
1294 			 */
1295 			if (!TAILQ_EMPTY(&ncp->nc_list))
1296 				vdrop(vp);
1297 			if (ncp->nc_lockstatus & ~(NC_EXLOCK_REQ|NC_SHLOCK_REQ))
1298 				vdrop(vp);
1299 		} else {
1300 			spin_lock(&ncspin);
1301 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
1302 			--numneg;
1303 			spin_unlock(&ncspin);
1304 		}
1305 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
1306 	}
1307 }
1308 
1309 /*
1310  * The cache_nresolve() code calls this function to automatically
1311  * set a resolved cache element to unresolved if it has timed out
1312  * or if it is a negative cache hit and the mount point namecache_gen
1313  * has changed.
1314  */
1315 static __inline int
1316 _cache_auto_unresolve_test(struct mount *mp, struct namecache *ncp)
1317 {
1318 	/*
1319 	 * Try to zap entries that have timed out.  We have
1320 	 * to be careful here because locked leafs may depend
1321 	 * on the vnode remaining intact in a parent, so only
1322 	 * do this under very specific conditions.
1323 	 */
1324 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1325 	    TAILQ_EMPTY(&ncp->nc_list)) {
1326 		return 1;
1327 	}
1328 
1329 	/*
1330 	 * If a resolved negative cache hit is invalid due to
1331 	 * the mount's namecache generation being bumped, zap it.
1332 	 */
1333 	if (ncp->nc_vp == NULL && VFS_NCPGEN_TEST(mp, ncp)) {
1334 		return 1;
1335 	}
1336 
1337 	/*
1338 	 * Otherwise we are good
1339 	 */
1340 	return 0;
1341 }
1342 
1343 static __inline void
1344 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1345 {
1346 	/*
1347 	 * Already in an unresolved state, nothing to do.
1348 	 */
1349 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1350 		if (_cache_auto_unresolve_test(mp, ncp))
1351 			_cache_setunresolved(ncp);
1352 	}
1353 }
1354 
1355 /*
1356  *
1357  */
1358 void
1359 cache_setunresolved(struct nchandle *nch)
1360 {
1361 	_cache_setunresolved(nch->ncp);
1362 }
1363 
1364 /*
1365  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1366  * looking for matches.  This flag tells the lookup code when it must
1367  * check for a mount linkage and also prevents the directories in question
1368  * from being deleted or renamed.
1369  */
1370 static
1371 int
1372 cache_clrmountpt_callback(struct mount *mp, void *data)
1373 {
1374 	struct nchandle *nch = data;
1375 
1376 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1377 		return(1);
1378 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1379 		return(1);
1380 	return(0);
1381 }
1382 
1383 /*
1384  *
1385  */
1386 void
1387 cache_clrmountpt(struct nchandle *nch)
1388 {
1389 	int count;
1390 
1391 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1392 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1393 	if (count == 0)
1394 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1395 }
1396 
1397 /*
1398  * Invalidate portions of the namecache topology given a starting entry.
1399  * The passed ncp is set to an unresolved state and:
1400  *
1401  * The passed ncp must be referencxed and locked.  The routine may unlock
1402  * and relock ncp several times, and will recheck the children and loop
1403  * to catch races.  When done the passed ncp will be returned with the
1404  * reference and lock intact.
1405  *
1406  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1407  *			  that the physical underlying nodes have been
1408  *			  destroyed... as in deleted.  For example, when
1409  *			  a directory is removed.  This will cause record
1410  *			  lookups on the name to no longer be able to find
1411  *			  the record and tells the resolver to return failure
1412  *			  rather then trying to resolve through the parent.
1413  *
1414  *			  The topology itself, including ncp->nc_name,
1415  *			  remains intact.
1416  *
1417  *			  This only applies to the passed ncp, if CINV_CHILDREN
1418  *			  is specified the children are not flagged.
1419  *
1420  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1421  *			  state as well.
1422  *
1423  *			  Note that this will also have the side effect of
1424  *			  cleaning out any unreferenced nodes in the topology
1425  *			  from the leaves up as the recursion backs out.
1426  *
1427  * Note that the topology for any referenced nodes remains intact, but
1428  * the nodes will be marked as having been destroyed and will be set
1429  * to an unresolved state.
1430  *
1431  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1432  * the namecache entry may not actually be invalidated on return if it was
1433  * revalidated while recursing down into its children.  This code guarentees
1434  * that the node(s) will go through an invalidation cycle, but does not
1435  * guarentee that they will remain in an invalidated state.
1436  *
1437  * Returns non-zero if a revalidation was detected during the invalidation
1438  * recursion, zero otherwise.  Note that since only the original ncp is
1439  * locked the revalidation ultimately can only indicate that the original ncp
1440  * *MIGHT* no have been reresolved.
1441  *
1442  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1443  * have to avoid blowing out the kernel stack.  We do this by saving the
1444  * deep namecache node and aborting the recursion, then re-recursing at that
1445  * node using a depth-first algorithm in order to allow multiple deep
1446  * recursions to chain through each other, then we restart the invalidation
1447  * from scratch.
1448  */
1449 
1450 struct cinvtrack {
1451 	struct namecache *resume_ncp;
1452 	int depth;
1453 };
1454 
1455 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1456 
1457 static
1458 int
1459 _cache_inval(struct namecache *ncp, int flags)
1460 {
1461 	struct cinvtrack track;
1462 	struct namecache *ncp2;
1463 	int r;
1464 
1465 	track.depth = 0;
1466 	track.resume_ncp = NULL;
1467 
1468 	for (;;) {
1469 		r = _cache_inval_internal(ncp, flags, &track);
1470 		if (track.resume_ncp == NULL)
1471 			break;
1472 		kprintf("Warning: deep namecache recursion at %s\n",
1473 			ncp->nc_name);
1474 		_cache_unlock(ncp);
1475 		while ((ncp2 = track.resume_ncp) != NULL) {
1476 			track.resume_ncp = NULL;
1477 			_cache_lock(ncp2);
1478 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1479 					     &track);
1480 			_cache_put(ncp2);
1481 		}
1482 		_cache_lock(ncp);
1483 	}
1484 	return(r);
1485 }
1486 
1487 int
1488 cache_inval(struct nchandle *nch, int flags)
1489 {
1490 	return(_cache_inval(nch->ncp, flags));
1491 }
1492 
1493 /*
1494  * Helper for _cache_inval().  The passed ncp is refd and locked and
1495  * remains that way on return, but may be unlocked/relocked multiple
1496  * times by the routine.
1497  */
1498 static int
1499 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1500 {
1501 	struct namecache *kid;
1502 	struct namecache *nextkid;
1503 	int rcnt = 0;
1504 
1505 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
1506 
1507 	_cache_setunresolved(ncp);
1508 	if (flags & CINV_DESTROY)
1509 		ncp->nc_flag |= NCF_DESTROYED;
1510 	if ((flags & CINV_CHILDREN) &&
1511 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1512 	) {
1513 		_cache_hold(kid);
1514 		if (++track->depth > MAX_RECURSION_DEPTH) {
1515 			track->resume_ncp = ncp;
1516 			_cache_hold(ncp);
1517 			++rcnt;
1518 		}
1519 		_cache_unlock(ncp);
1520 		while (kid) {
1521 			if (track->resume_ncp) {
1522 				_cache_drop(kid);
1523 				break;
1524 			}
1525 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1526 				_cache_hold(nextkid);
1527 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1528 			    TAILQ_FIRST(&kid->nc_list)
1529 			) {
1530 				_cache_lock(kid);
1531 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1532 				_cache_unlock(kid);
1533 			}
1534 			_cache_drop(kid);
1535 			kid = nextkid;
1536 		}
1537 		--track->depth;
1538 		_cache_lock(ncp);
1539 	}
1540 
1541 	/*
1542 	 * Someone could have gotten in there while ncp was unlocked,
1543 	 * retry if so.
1544 	 */
1545 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1546 		++rcnt;
1547 	return (rcnt);
1548 }
1549 
1550 /*
1551  * Invalidate a vnode's namecache associations.  To avoid races against
1552  * the resolver we do not invalidate a node which we previously invalidated
1553  * but which was then re-resolved while we were in the invalidation loop.
1554  *
1555  * Returns non-zero if any namecache entries remain after the invalidation
1556  * loop completed.
1557  *
1558  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1559  *	 be ripped out of the topology while held, the vnode's v_namecache
1560  *	 list has no such restriction.  NCP's can be ripped out of the list
1561  *	 at virtually any time if not locked, even if held.
1562  *
1563  *	 In addition, the v_namecache list itself must be locked via
1564  *	 the vnode's spinlock.
1565  */
1566 int
1567 cache_inval_vp(struct vnode *vp, int flags)
1568 {
1569 	struct namecache *ncp;
1570 	struct namecache *next;
1571 
1572 restart:
1573 	spin_lock(&vp->v_spin);
1574 	ncp = TAILQ_FIRST(&vp->v_namecache);
1575 	if (ncp)
1576 		_cache_hold(ncp);
1577 	while (ncp) {
1578 		/* loop entered with ncp held and vp spin-locked */
1579 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1580 			_cache_hold(next);
1581 		spin_unlock(&vp->v_spin);
1582 		_cache_lock(ncp);
1583 		if (ncp->nc_vp != vp) {
1584 			kprintf("Warning: cache_inval_vp: race-A detected on "
1585 				"%s\n", ncp->nc_name);
1586 			_cache_put(ncp);
1587 			if (next)
1588 				_cache_drop(next);
1589 			goto restart;
1590 		}
1591 		_cache_inval(ncp, flags);
1592 		_cache_put(ncp);		/* also releases reference */
1593 		ncp = next;
1594 		spin_lock(&vp->v_spin);
1595 		if (ncp && ncp->nc_vp != vp) {
1596 			spin_unlock(&vp->v_spin);
1597 			kprintf("Warning: cache_inval_vp: race-B detected on "
1598 				"%s\n", ncp->nc_name);
1599 			_cache_drop(ncp);
1600 			goto restart;
1601 		}
1602 	}
1603 	spin_unlock(&vp->v_spin);
1604 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1605 }
1606 
1607 /*
1608  * This routine is used instead of the normal cache_inval_vp() when we
1609  * are trying to recycle otherwise good vnodes.
1610  *
1611  * Return 0 on success, non-zero if not all namecache records could be
1612  * disassociated from the vnode (for various reasons).
1613  */
1614 int
1615 cache_inval_vp_nonblock(struct vnode *vp)
1616 {
1617 	struct namecache *ncp;
1618 	struct namecache *next;
1619 
1620 	spin_lock(&vp->v_spin);
1621 	ncp = TAILQ_FIRST(&vp->v_namecache);
1622 	if (ncp)
1623 		_cache_hold(ncp);
1624 	while (ncp) {
1625 		/* loop entered with ncp held */
1626 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1627 			_cache_hold(next);
1628 		spin_unlock(&vp->v_spin);
1629 		if (_cache_lock_nonblock(ncp)) {
1630 			_cache_drop(ncp);
1631 			if (next)
1632 				_cache_drop(next);
1633 			goto done;
1634 		}
1635 		if (ncp->nc_vp != vp) {
1636 			kprintf("Warning: cache_inval_vp: race-A detected on "
1637 				"%s\n", ncp->nc_name);
1638 			_cache_put(ncp);
1639 			if (next)
1640 				_cache_drop(next);
1641 			goto done;
1642 		}
1643 		_cache_inval(ncp, 0);
1644 		_cache_put(ncp);		/* also releases reference */
1645 		ncp = next;
1646 		spin_lock(&vp->v_spin);
1647 		if (ncp && ncp->nc_vp != vp) {
1648 			spin_unlock(&vp->v_spin);
1649 			kprintf("Warning: cache_inval_vp: race-B detected on "
1650 				"%s\n", ncp->nc_name);
1651 			_cache_drop(ncp);
1652 			goto done;
1653 		}
1654 	}
1655 	spin_unlock(&vp->v_spin);
1656 done:
1657 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1658 }
1659 
1660 /*
1661  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1662  * must be locked.  The target ncp is destroyed (as a normal rename-over
1663  * would destroy the target file or directory).
1664  *
1665  * Because there may be references to the source ncp we cannot copy its
1666  * contents to the target.  Instead the source ncp is relinked as the target
1667  * and the target ncp is removed from the namecache topology.
1668  */
1669 void
1670 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1671 {
1672 	struct namecache *fncp = fnch->ncp;
1673 	struct namecache *tncp = tnch->ncp;
1674 	struct namecache *tncp_par;
1675 	struct nchash_head *nchpp;
1676 	u_int32_t hash;
1677 	char *oname;
1678 	char *nname;
1679 
1680 	if (tncp->nc_nlen) {
1681 		nname = kmalloc(tncp->nc_nlen + 1, M_VFSCACHE, M_WAITOK);
1682 		bcopy(tncp->nc_name, nname, tncp->nc_nlen);
1683 		nname[tncp->nc_nlen] = 0;
1684 	} else {
1685 		nname = NULL;
1686 	}
1687 
1688 	/*
1689 	 * Rename fncp (unlink)
1690 	 */
1691 	_cache_unlink_parent(fncp);
1692 	oname = fncp->nc_name;
1693 	fncp->nc_name = nname;
1694 	fncp->nc_nlen = tncp->nc_nlen;
1695 	if (oname)
1696 		kfree(oname, M_VFSCACHE);
1697 
1698 	tncp_par = tncp->nc_parent;
1699 	_cache_hold(tncp_par);
1700 	_cache_lock(tncp_par);
1701 
1702 	/*
1703 	 * Rename fncp (relink)
1704 	 */
1705 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1706 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1707 	nchpp = NCHHASH(hash);
1708 
1709 	spin_lock(&nchpp->spin);
1710 	_cache_link_parent(fncp, tncp_par, nchpp);
1711 	spin_unlock(&nchpp->spin);
1712 
1713 	_cache_put(tncp_par);
1714 
1715 	/*
1716 	 * Get rid of the overwritten tncp (unlink)
1717 	 */
1718 	_cache_unlink(tncp);
1719 }
1720 
1721 /*
1722  * Perform actions consistent with unlinking a file.  The passed-in ncp
1723  * must be locked.
1724  *
1725  * The ncp is marked DESTROYED so it no longer shows up in searches,
1726  * and will be physically deleted when the vnode goes away.
1727  *
1728  * If the related vnode has no refs then we cycle it through vget()/vput()
1729  * to (possibly if we don't have a ref race) trigger a deactivation,
1730  * allowing the VFS to trivially detect and recycle the deleted vnode
1731  * via VOP_INACTIVE().
1732  *
1733  * NOTE: _cache_rename() will automatically call _cache_unlink() on the
1734  *	 target ncp.
1735  */
1736 void
1737 cache_unlink(struct nchandle *nch)
1738 {
1739 	_cache_unlink(nch->ncp);
1740 }
1741 
1742 static void
1743 _cache_unlink(struct namecache *ncp)
1744 {
1745 	struct vnode *vp;
1746 
1747 	/*
1748 	 * Causes lookups to fail and allows another ncp with the same
1749 	 * name to be created under ncp->nc_parent.
1750 	 */
1751 	ncp->nc_flag |= NCF_DESTROYED;
1752 
1753 	/*
1754 	 * Attempt to trigger a deactivation.
1755 	 */
1756 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1757 	    (vp = ncp->nc_vp) != NULL &&
1758 	    !sysref_isactive(&vp->v_sysref)) {
1759 		if (vget(vp, LK_SHARED) == 0)
1760 			vput(vp);
1761 	}
1762 }
1763 
1764 /*
1765  * vget the vnode associated with the namecache entry.  Resolve the namecache
1766  * entry if necessary.  The passed ncp must be referenced and locked.
1767  *
1768  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1769  * (depending on the passed lk_type) will be returned in *vpp with an error
1770  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1771  * most typical error is ENOENT, meaning that the ncp represents a negative
1772  * cache hit and there is no vnode to retrieve, but other errors can occur
1773  * too.
1774  *
1775  * The vget() can race a reclaim.  If this occurs we re-resolve the
1776  * namecache entry.
1777  *
1778  * There are numerous places in the kernel where vget() is called on a
1779  * vnode while one or more of its namecache entries is locked.  Releasing
1780  * a vnode never deadlocks against locked namecache entries (the vnode
1781  * will not get recycled while referenced ncp's exist).  This means we
1782  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1783  * lock when acquiring the vp lock or we might cause a deadlock.
1784  *
1785  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1786  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1787  *	 relocked exclusively before being re-resolved.
1788  */
1789 int
1790 cache_vget(struct nchandle *nch, struct ucred *cred,
1791 	   int lk_type, struct vnode **vpp)
1792 {
1793 	struct namecache *ncp;
1794 	struct vnode *vp;
1795 	int error;
1796 
1797 	ncp = nch->ncp;
1798 again:
1799 	vp = NULL;
1800 	if (ncp->nc_flag & NCF_UNRESOLVED)
1801 		error = cache_resolve(nch, cred);
1802 	else
1803 		error = 0;
1804 
1805 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1806 		error = vget(vp, lk_type);
1807 		if (error) {
1808 			/*
1809 			 * VRECLAIM race
1810 			 */
1811 			if (error == ENOENT) {
1812 				kprintf("Warning: vnode reclaim race detected "
1813 					"in cache_vget on %p (%s)\n",
1814 					vp, ncp->nc_name);
1815 				_cache_unlock(ncp);
1816 				_cache_lock(ncp);
1817 				_cache_setunresolved(ncp);
1818 				goto again;
1819 			}
1820 
1821 			/*
1822 			 * Not a reclaim race, some other error.
1823 			 */
1824 			KKASSERT(ncp->nc_vp == vp);
1825 			vp = NULL;
1826 		} else {
1827 			KKASSERT(ncp->nc_vp == vp);
1828 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1829 		}
1830 	}
1831 	if (error == 0 && vp == NULL)
1832 		error = ENOENT;
1833 	*vpp = vp;
1834 	return(error);
1835 }
1836 
1837 /*
1838  * Similar to cache_vget() but only acquires a ref on the vnode.
1839  *
1840  * NOTE: The passed-in ncp must be locked exclusively if it is initially
1841  *	 unresolved.  If a reclaim race occurs the passed-in ncp will be
1842  *	 relocked exclusively before being re-resolved.
1843  */
1844 int
1845 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1846 {
1847 	struct namecache *ncp;
1848 	struct vnode *vp;
1849 	int error;
1850 
1851 	ncp = nch->ncp;
1852 again:
1853 	vp = NULL;
1854 	if (ncp->nc_flag & NCF_UNRESOLVED)
1855 		error = cache_resolve(nch, cred);
1856 	else
1857 		error = 0;
1858 
1859 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1860 		error = vget(vp, LK_SHARED);
1861 		if (error) {
1862 			/*
1863 			 * VRECLAIM race
1864 			 */
1865 			if (error == ENOENT) {
1866 				kprintf("Warning: vnode reclaim race detected "
1867 					"in cache_vget on %p (%s)\n",
1868 					vp, ncp->nc_name);
1869 				_cache_unlock(ncp);
1870 				_cache_lock(ncp);
1871 				_cache_setunresolved(ncp);
1872 				goto again;
1873 			}
1874 
1875 			/*
1876 			 * Not a reclaim race, some other error.
1877 			 */
1878 			KKASSERT(ncp->nc_vp == vp);
1879 			vp = NULL;
1880 		} else {
1881 			KKASSERT(ncp->nc_vp == vp);
1882 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1883 			/* caller does not want a lock */
1884 			vn_unlock(vp);
1885 		}
1886 	}
1887 	if (error == 0 && vp == NULL)
1888 		error = ENOENT;
1889 	*vpp = vp;
1890 	return(error);
1891 }
1892 
1893 /*
1894  * Return a referenced vnode representing the parent directory of
1895  * ncp.
1896  *
1897  * Because the caller has locked the ncp it should not be possible for
1898  * the parent ncp to go away.  However, the parent can unresolve its
1899  * dvp at any time so we must be able to acquire a lock on the parent
1900  * to safely access nc_vp.
1901  *
1902  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
1903  * so use vhold()/vdrop() while holding the lock to prevent dvp from
1904  * getting destroyed.
1905  *
1906  * NOTE: vhold() is allowed when dvp has 0 refs if we hold a
1907  *	 lock on the ncp in question..
1908  */
1909 static struct vnode *
1910 cache_dvpref(struct namecache *ncp)
1911 {
1912 	struct namecache *par;
1913 	struct vnode *dvp;
1914 
1915 	dvp = NULL;
1916 	if ((par = ncp->nc_parent) != NULL) {
1917 		_cache_hold(par);
1918 		_cache_lock(par);
1919 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1920 			if ((dvp = par->nc_vp) != NULL)
1921 				vhold(dvp);
1922 		}
1923 		_cache_unlock(par);
1924 		if (dvp) {
1925 			if (vget(dvp, LK_SHARED) == 0) {
1926 				vn_unlock(dvp);
1927 				vdrop(dvp);
1928 				/* return refd, unlocked dvp */
1929 			} else {
1930 				vdrop(dvp);
1931 				dvp = NULL;
1932 			}
1933 		}
1934 		_cache_drop(par);
1935 	}
1936 	return(dvp);
1937 }
1938 
1939 /*
1940  * Convert a directory vnode to a namecache record without any other
1941  * knowledge of the topology.  This ONLY works with directory vnodes and
1942  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1943  * returned ncp (if not NULL) will be held and unlocked.
1944  *
1945  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1946  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1947  * for dvp.  This will fail only if the directory has been deleted out from
1948  * under the caller.
1949  *
1950  * Callers must always check for a NULL return no matter the value of 'makeit'.
1951  *
1952  * To avoid underflowing the kernel stack each recursive call increments
1953  * the makeit variable.
1954  */
1955 
1956 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1957 				  struct vnode *dvp, char *fakename);
1958 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1959 				  struct vnode **saved_dvp);
1960 
1961 int
1962 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1963 	      struct nchandle *nch)
1964 {
1965 	struct vnode *saved_dvp;
1966 	struct vnode *pvp;
1967 	char *fakename;
1968 	int error;
1969 
1970 	nch->ncp = NULL;
1971 	nch->mount = dvp->v_mount;
1972 	saved_dvp = NULL;
1973 	fakename = NULL;
1974 
1975 	/*
1976 	 * Handle the makeit == 0 degenerate case
1977 	 */
1978 	if (makeit == 0) {
1979 		spin_lock(&dvp->v_spin);
1980 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1981 		if (nch->ncp)
1982 			cache_hold(nch);
1983 		spin_unlock(&dvp->v_spin);
1984 	}
1985 
1986 	/*
1987 	 * Loop until resolution, inside code will break out on error.
1988 	 */
1989 	while (makeit) {
1990 		/*
1991 		 * Break out if we successfully acquire a working ncp.
1992 		 */
1993 		spin_lock(&dvp->v_spin);
1994 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1995 		if (nch->ncp) {
1996 			cache_hold(nch);
1997 			spin_unlock(&dvp->v_spin);
1998 			break;
1999 		}
2000 		spin_unlock(&dvp->v_spin);
2001 
2002 		/*
2003 		 * If dvp is the root of its filesystem it should already
2004 		 * have a namecache pointer associated with it as a side
2005 		 * effect of the mount, but it may have been disassociated.
2006 		 */
2007 		if (dvp->v_flag & VROOT) {
2008 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
2009 			error = cache_resolve_mp(nch->mount);
2010 			_cache_put(nch->ncp);
2011 			if (ncvp_debug) {
2012 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
2013 					dvp->v_mount, error);
2014 			}
2015 			if (error) {
2016 				if (ncvp_debug)
2017 					kprintf(" failed\n");
2018 				nch->ncp = NULL;
2019 				break;
2020 			}
2021 			if (ncvp_debug)
2022 				kprintf(" succeeded\n");
2023 			continue;
2024 		}
2025 
2026 		/*
2027 		 * If we are recursed too deeply resort to an O(n^2)
2028 		 * algorithm to resolve the namecache topology.  The
2029 		 * resolved pvp is left referenced in saved_dvp to
2030 		 * prevent the tree from being destroyed while we loop.
2031 		 */
2032 		if (makeit > 20) {
2033 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
2034 			if (error) {
2035 				kprintf("lookupdotdot(longpath) failed %d "
2036 				       "dvp %p\n", error, dvp);
2037 				nch->ncp = NULL;
2038 				break;
2039 			}
2040 			continue;
2041 		}
2042 
2043 		/*
2044 		 * Get the parent directory and resolve its ncp.
2045 		 */
2046 		if (fakename) {
2047 			kfree(fakename, M_TEMP);
2048 			fakename = NULL;
2049 		}
2050 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2051 					  &fakename);
2052 		if (error) {
2053 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
2054 			break;
2055 		}
2056 		vn_unlock(pvp);
2057 
2058 		/*
2059 		 * Reuse makeit as a recursion depth counter.  On success
2060 		 * nch will be fully referenced.
2061 		 */
2062 		cache_fromdvp(pvp, cred, makeit + 1, nch);
2063 		vrele(pvp);
2064 		if (nch->ncp == NULL)
2065 			break;
2066 
2067 		/*
2068 		 * Do an inefficient scan of pvp (embodied by ncp) to look
2069 		 * for dvp.  This will create a namecache record for dvp on
2070 		 * success.  We loop up to recheck on success.
2071 		 *
2072 		 * ncp and dvp are both held but not locked.
2073 		 */
2074 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
2075 		if (error) {
2076 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
2077 				pvp, nch->ncp->nc_name, dvp);
2078 			cache_drop(nch);
2079 			/* nch was NULLed out, reload mount */
2080 			nch->mount = dvp->v_mount;
2081 			break;
2082 		}
2083 		if (ncvp_debug) {
2084 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
2085 				pvp, nch->ncp->nc_name);
2086 		}
2087 		cache_drop(nch);
2088 		/* nch was NULLed out, reload mount */
2089 		nch->mount = dvp->v_mount;
2090 	}
2091 
2092 	/*
2093 	 * If nch->ncp is non-NULL it will have been held already.
2094 	 */
2095 	if (fakename)
2096 		kfree(fakename, M_TEMP);
2097 	if (saved_dvp)
2098 		vrele(saved_dvp);
2099 	if (nch->ncp)
2100 		return (0);
2101 	return (EINVAL);
2102 }
2103 
2104 /*
2105  * Go up the chain of parent directories until we find something
2106  * we can resolve into the namecache.  This is very inefficient.
2107  */
2108 static
2109 int
2110 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
2111 		  struct vnode **saved_dvp)
2112 {
2113 	struct nchandle nch;
2114 	struct vnode *pvp;
2115 	int error;
2116 	static time_t last_fromdvp_report;
2117 	char *fakename;
2118 
2119 	/*
2120 	 * Loop getting the parent directory vnode until we get something we
2121 	 * can resolve in the namecache.
2122 	 */
2123 	vref(dvp);
2124 	nch.mount = dvp->v_mount;
2125 	nch.ncp = NULL;
2126 	fakename = NULL;
2127 
2128 	for (;;) {
2129 		if (fakename) {
2130 			kfree(fakename, M_TEMP);
2131 			fakename = NULL;
2132 		}
2133 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
2134 					  &fakename);
2135 		if (error) {
2136 			vrele(dvp);
2137 			break;
2138 		}
2139 		vn_unlock(pvp);
2140 		spin_lock(&pvp->v_spin);
2141 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
2142 			_cache_hold(nch.ncp);
2143 			spin_unlock(&pvp->v_spin);
2144 			vrele(pvp);
2145 			break;
2146 		}
2147 		spin_unlock(&pvp->v_spin);
2148 		if (pvp->v_flag & VROOT) {
2149 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
2150 			error = cache_resolve_mp(nch.mount);
2151 			_cache_unlock(nch.ncp);
2152 			vrele(pvp);
2153 			if (error) {
2154 				_cache_drop(nch.ncp);
2155 				nch.ncp = NULL;
2156 				vrele(dvp);
2157 			}
2158 			break;
2159 		}
2160 		vrele(dvp);
2161 		dvp = pvp;
2162 	}
2163 	if (error == 0) {
2164 		if (last_fromdvp_report != time_second) {
2165 			last_fromdvp_report = time_second;
2166 			kprintf("Warning: extremely inefficient path "
2167 				"resolution on %s\n",
2168 				nch.ncp->nc_name);
2169 		}
2170 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
2171 
2172 		/*
2173 		 * Hopefully dvp now has a namecache record associated with
2174 		 * it.  Leave it referenced to prevent the kernel from
2175 		 * recycling the vnode.  Otherwise extremely long directory
2176 		 * paths could result in endless recycling.
2177 		 */
2178 		if (*saved_dvp)
2179 		    vrele(*saved_dvp);
2180 		*saved_dvp = dvp;
2181 		_cache_drop(nch.ncp);
2182 	}
2183 	if (fakename)
2184 		kfree(fakename, M_TEMP);
2185 	return (error);
2186 }
2187 
2188 /*
2189  * Do an inefficient scan of the directory represented by ncp looking for
2190  * the directory vnode dvp.  ncp must be held but not locked on entry and
2191  * will be held on return.  dvp must be refd but not locked on entry and
2192  * will remain refd on return.
2193  *
2194  * Why do this at all?  Well, due to its stateless nature the NFS server
2195  * converts file handles directly to vnodes without necessarily going through
2196  * the namecache ops that would otherwise create the namecache topology
2197  * leading to the vnode.  We could either (1) Change the namecache algorithms
2198  * to allow disconnect namecache records that are re-merged opportunistically,
2199  * or (2) Make the NFS server backtrack and scan to recover a connected
2200  * namecache topology in order to then be able to issue new API lookups.
2201  *
2202  * It turns out that (1) is a huge mess.  It takes a nice clean set of
2203  * namecache algorithms and introduces a lot of complication in every subsystem
2204  * that calls into the namecache to deal with the re-merge case, especially
2205  * since we are using the namecache to placehold negative lookups and the
2206  * vnode might not be immediately assigned. (2) is certainly far less
2207  * efficient then (1), but since we are only talking about directories here
2208  * (which are likely to remain cached), the case does not actually run all
2209  * that often and has the supreme advantage of not polluting the namecache
2210  * algorithms.
2211  *
2212  * If a fakename is supplied just construct a namecache entry using the
2213  * fake name.
2214  */
2215 static int
2216 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
2217 		       struct vnode *dvp, char *fakename)
2218 {
2219 	struct nlcomponent nlc;
2220 	struct nchandle rncp;
2221 	struct dirent *den;
2222 	struct vnode *pvp;
2223 	struct vattr vat;
2224 	struct iovec iov;
2225 	struct uio uio;
2226 	int blksize;
2227 	int eofflag;
2228 	int bytes;
2229 	char *rbuf;
2230 	int error;
2231 
2232 	vat.va_blocksize = 0;
2233 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
2234 		return (error);
2235 	cache_lock(nch);
2236 	error = cache_vref(nch, cred, &pvp);
2237 	cache_unlock(nch);
2238 	if (error)
2239 		return (error);
2240 	if (ncvp_debug) {
2241 		kprintf("inefficient_scan: directory iosize %ld "
2242 			"vattr fileid = %lld\n",
2243 			vat.va_blocksize,
2244 			(long long)vat.va_fileid);
2245 	}
2246 
2247 	/*
2248 	 * Use the supplied fakename if not NULL.  Fake names are typically
2249 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
2250 	 * to glue @@timestamp recursions together.
2251 	 */
2252 	if (fakename) {
2253 		nlc.nlc_nameptr = fakename;
2254 		nlc.nlc_namelen = strlen(fakename);
2255 		rncp = cache_nlookup(nch, &nlc);
2256 		goto done;
2257 	}
2258 
2259 	if ((blksize = vat.va_blocksize) == 0)
2260 		blksize = DEV_BSIZE;
2261 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
2262 	rncp.ncp = NULL;
2263 
2264 	eofflag = 0;
2265 	uio.uio_offset = 0;
2266 again:
2267 	iov.iov_base = rbuf;
2268 	iov.iov_len = blksize;
2269 	uio.uio_iov = &iov;
2270 	uio.uio_iovcnt = 1;
2271 	uio.uio_resid = blksize;
2272 	uio.uio_segflg = UIO_SYSSPACE;
2273 	uio.uio_rw = UIO_READ;
2274 	uio.uio_td = curthread;
2275 
2276 	if (ncvp_debug >= 2)
2277 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
2278 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
2279 	if (error == 0) {
2280 		den = (struct dirent *)rbuf;
2281 		bytes = blksize - uio.uio_resid;
2282 
2283 		while (bytes > 0) {
2284 			if (ncvp_debug >= 2) {
2285 				kprintf("cache_inefficient_scan: %*.*s\n",
2286 					den->d_namlen, den->d_namlen,
2287 					den->d_name);
2288 			}
2289 			if (den->d_type != DT_WHT &&
2290 			    den->d_ino == vat.va_fileid) {
2291 				if (ncvp_debug) {
2292 					kprintf("cache_inefficient_scan: "
2293 					       "MATCHED inode %lld path %s/%*.*s\n",
2294 					       (long long)vat.va_fileid,
2295 					       nch->ncp->nc_name,
2296 					       den->d_namlen, den->d_namlen,
2297 					       den->d_name);
2298 				}
2299 				nlc.nlc_nameptr = den->d_name;
2300 				nlc.nlc_namelen = den->d_namlen;
2301 				rncp = cache_nlookup(nch, &nlc);
2302 				KKASSERT(rncp.ncp != NULL);
2303 				break;
2304 			}
2305 			bytes -= _DIRENT_DIRSIZ(den);
2306 			den = _DIRENT_NEXT(den);
2307 		}
2308 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
2309 			goto again;
2310 	}
2311 	kfree(rbuf, M_TEMP);
2312 done:
2313 	vrele(pvp);
2314 	if (rncp.ncp) {
2315 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
2316 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
2317 			if (ncvp_debug >= 2) {
2318 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
2319 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
2320 			}
2321 		} else {
2322 			if (ncvp_debug >= 2) {
2323 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
2324 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
2325 					rncp.ncp->nc_vp);
2326 			}
2327 		}
2328 		if (rncp.ncp->nc_vp == NULL)
2329 			error = rncp.ncp->nc_error;
2330 		/*
2331 		 * Release rncp after a successful nlookup.  rncp was fully
2332 		 * referenced.
2333 		 */
2334 		cache_put(&rncp);
2335 	} else {
2336 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
2337 			dvp, nch->ncp->nc_name);
2338 		error = ENOENT;
2339 	}
2340 	return (error);
2341 }
2342 
2343 /*
2344  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
2345  * state, which disassociates it from its vnode or ncneglist.
2346  *
2347  * Then, if there are no additional references to the ncp and no children,
2348  * the ncp is removed from the topology and destroyed.
2349  *
2350  * References and/or children may exist if the ncp is in the middle of the
2351  * topology, preventing the ncp from being destroyed.
2352  *
2353  * This function must be called with the ncp held and locked and will unlock
2354  * and drop it during zapping.
2355  *
2356  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
2357  * This case can occur in the cache_drop() path.
2358  *
2359  * This function may returned a held (but NOT locked) parent node which the
2360  * caller must drop.  We do this so _cache_drop() can loop, to avoid
2361  * blowing out the kernel stack.
2362  *
2363  * WARNING!  For MPSAFE operation this routine must acquire up to three
2364  *	     spin locks to be able to safely test nc_refs.  Lock order is
2365  *	     very important.
2366  *
2367  *	     hash spinlock if on hash list
2368  *	     parent spinlock if child of parent
2369  *	     (the ncp is unresolved so there is no vnode association)
2370  */
2371 static struct namecache *
2372 cache_zap(struct namecache *ncp, int nonblock)
2373 {
2374 	struct namecache *par;
2375 	struct vnode *dropvp;
2376 	int refs;
2377 
2378 	/*
2379 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2380 	 */
2381 	_cache_setunresolved(ncp);
2382 
2383 	/*
2384 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2385 	 * We only scrap unref'd (other then our ref) unresolved entries,
2386 	 * we do not scrap 'live' entries.
2387 	 *
2388 	 * Note that once the spinlocks are acquired if nc_refs == 1 no
2389 	 * other references are possible.  If it isn't, however, we have
2390 	 * to decrement but also be sure to avoid a 1->0 transition.
2391 	 */
2392 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2393 	KKASSERT(ncp->nc_refs > 0);
2394 
2395 	/*
2396 	 * Acquire locks.  Note that the parent can't go away while we hold
2397 	 * a child locked.
2398 	 */
2399 	if ((par = ncp->nc_parent) != NULL) {
2400 		if (nonblock) {
2401 			for (;;) {
2402 				if (_cache_lock_nonblock(par) == 0)
2403 					break;
2404 				refs = ncp->nc_refs;
2405 				ncp->nc_flag |= NCF_DEFEREDZAP;
2406 				++numdefered;	/* MP race ok */
2407 				if (atomic_cmpset_int(&ncp->nc_refs,
2408 						      refs, refs - 1)) {
2409 					_cache_unlock(ncp);
2410 					return(NULL);
2411 				}
2412 				cpu_pause();
2413 			}
2414 			_cache_hold(par);
2415 		} else {
2416 			_cache_hold(par);
2417 			_cache_lock(par);
2418 		}
2419 		spin_lock(&ncp->nc_head->spin);
2420 	}
2421 
2422 	/*
2423 	 * If someone other then us has a ref or we have children
2424 	 * we cannot zap the entry.  The 1->0 transition and any
2425 	 * further list operation is protected by the spinlocks
2426 	 * we have acquired but other transitions are not.
2427 	 */
2428 	for (;;) {
2429 		refs = ncp->nc_refs;
2430 		if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2431 			break;
2432 		if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2433 			if (par) {
2434 				spin_unlock(&ncp->nc_head->spin);
2435 				_cache_put(par);
2436 			}
2437 			_cache_unlock(ncp);
2438 			return(NULL);
2439 		}
2440 		cpu_pause();
2441 	}
2442 
2443 	/*
2444 	 * We are the only ref and with the spinlocks held no further
2445 	 * refs can be acquired by others.
2446 	 *
2447 	 * Remove us from the hash list and parent list.  We have to
2448 	 * drop a ref on the parent's vp if the parent's list becomes
2449 	 * empty.
2450 	 */
2451 	dropvp = NULL;
2452 	if (par) {
2453 		struct nchash_head *nchpp = ncp->nc_head;
2454 
2455 		KKASSERT(nchpp != NULL);
2456 		LIST_REMOVE(ncp, nc_hash);
2457 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2458 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2459 			dropvp = par->nc_vp;
2460 		ncp->nc_head = NULL;
2461 		ncp->nc_parent = NULL;
2462 		spin_unlock(&nchpp->spin);
2463 		_cache_unlock(par);
2464 	} else {
2465 		KKASSERT(ncp->nc_head == NULL);
2466 	}
2467 
2468 	/*
2469 	 * ncp should not have picked up any refs.  Physically
2470 	 * destroy the ncp.
2471 	 */
2472 	KKASSERT(ncp->nc_refs == 1);
2473 	/* _cache_unlock(ncp) not required */
2474 	ncp->nc_refs = -1;	/* safety */
2475 	if (ncp->nc_name)
2476 		kfree(ncp->nc_name, M_VFSCACHE);
2477 	kfree(ncp, M_VFSCACHE);
2478 
2479 	/*
2480 	 * Delayed drop (we had to release our spinlocks)
2481 	 *
2482 	 * The refed parent (if not  NULL) must be dropped.  The
2483 	 * caller is responsible for looping.
2484 	 */
2485 	if (dropvp)
2486 		vdrop(dropvp);
2487 	return(par);
2488 }
2489 
2490 /*
2491  * Clean up dangling negative cache and defered-drop entries in the
2492  * namecache.
2493  *
2494  * This routine is called in the critical path and also called from
2495  * vnlru().  When called from vnlru we use a lower limit to try to
2496  * deal with the negative cache before the critical path has to start
2497  * dealing with it.
2498  */
2499 typedef enum { CHI_LOW, CHI_HIGH } cache_hs_t;
2500 
2501 static cache_hs_t neg_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2502 static cache_hs_t pos_cache_hysteresis_state[2] = { CHI_LOW, CHI_LOW };
2503 
2504 void
2505 cache_hysteresis(int critpath)
2506 {
2507 	int poslimit;
2508 	int neglimit = desiredvnodes / ncnegfactor;
2509 	int xnumcache = numcache;
2510 
2511 	if (critpath == 0)
2512 		neglimit = neglimit * 8 / 10;
2513 
2514 	/*
2515 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2516 	 * the impact on the critical path.
2517 	 */
2518 	switch(neg_cache_hysteresis_state[critpath]) {
2519 	case CHI_LOW:
2520 		if (numneg > MINNEG && numneg > neglimit) {
2521 			if (critpath)
2522 				_cache_cleanneg(ncnegflush);
2523 			else
2524 				_cache_cleanneg(ncnegflush +
2525 						numneg - neglimit);
2526 			neg_cache_hysteresis_state[critpath] = CHI_HIGH;
2527 		}
2528 		break;
2529 	case CHI_HIGH:
2530 		if (numneg > MINNEG * 9 / 10 &&
2531 		    numneg * 9 / 10 > neglimit
2532 		) {
2533 			if (critpath)
2534 				_cache_cleanneg(ncnegflush);
2535 			else
2536 				_cache_cleanneg(ncnegflush +
2537 						numneg * 9 / 10 - neglimit);
2538 		} else {
2539 			neg_cache_hysteresis_state[critpath] = CHI_LOW;
2540 		}
2541 		break;
2542 	}
2543 
2544 	/*
2545 	 * Don't cache too many positive hits.  We use hysteresis to reduce
2546 	 * the impact on the critical path.
2547 	 *
2548 	 * Excessive positive hits can accumulate due to large numbers of
2549 	 * hardlinks (the vnode cache will not prevent hl ncps from growing
2550 	 * into infinity).
2551 	 */
2552 	if ((poslimit = ncposlimit) == 0)
2553 		poslimit = desiredvnodes * 2;
2554 	if (critpath == 0)
2555 		poslimit = poslimit * 8 / 10;
2556 
2557 	switch(pos_cache_hysteresis_state[critpath]) {
2558 	case CHI_LOW:
2559 		if (xnumcache > poslimit && xnumcache > MINPOS) {
2560 			if (critpath)
2561 				_cache_cleanpos(ncposflush);
2562 			else
2563 				_cache_cleanpos(ncposflush +
2564 						xnumcache - poslimit);
2565 			pos_cache_hysteresis_state[critpath] = CHI_HIGH;
2566 		}
2567 		break;
2568 	case CHI_HIGH:
2569 		if (xnumcache > poslimit * 5 / 6 && xnumcache > MINPOS) {
2570 			if (critpath)
2571 				_cache_cleanpos(ncposflush);
2572 			else
2573 				_cache_cleanpos(ncposflush +
2574 						xnumcache - poslimit * 5 / 6);
2575 		} else {
2576 			pos_cache_hysteresis_state[critpath] = CHI_LOW;
2577 		}
2578 		break;
2579 	}
2580 
2581 	/*
2582 	 * Clean out dangling defered-zap ncps which could not
2583 	 * be cleanly dropped if too many build up.  Note
2584 	 * that numdefered is not an exact number as such ncps
2585 	 * can be reused and the counter is not handled in a MP
2586 	 * safe manner by design.
2587 	 */
2588 	if (numdefered > neglimit) {
2589 		_cache_cleandefered();
2590 	}
2591 }
2592 
2593 /*
2594  * NEW NAMECACHE LOOKUP API
2595  *
2596  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2597  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2598  * is ALWAYS returned, eve if the supplied component is illegal.
2599  *
2600  * The resulting namecache entry should be returned to the system with
2601  * cache_put() or cache_unlock() + cache_drop().
2602  *
2603  * namecache locks are recursive but care must be taken to avoid lock order
2604  * reversals (hence why the passed par_nch must be unlocked).  Locking
2605  * rules are to order for parent traversals, not for child traversals.
2606  *
2607  * Nobody else will be able to manipulate the associated namespace (e.g.
2608  * create, delete, rename, rename-target) until the caller unlocks the
2609  * entry.
2610  *
2611  * The returned entry will be in one of three states:  positive hit (non-null
2612  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2613  * Unresolved entries must be resolved through the filesystem to associate the
2614  * vnode and/or determine whether a positive or negative hit has occured.
2615  *
2616  * It is not necessary to lock a directory in order to lock namespace under
2617  * that directory.  In fact, it is explicitly not allowed to do that.  A
2618  * directory is typically only locked when being created, renamed, or
2619  * destroyed.
2620  *
2621  * The directory (par) may be unresolved, in which case any returned child
2622  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2623  * the filesystem lookup requires a resolved directory vnode the caller is
2624  * responsible for resolving the namecache chain top-down.  This API
2625  * specifically allows whole chains to be created in an unresolved state.
2626  */
2627 struct nchandle
2628 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2629 {
2630 	struct nchandle nch;
2631 	struct namecache *ncp;
2632 	struct namecache *new_ncp;
2633 	struct nchash_head *nchpp;
2634 	struct mount *mp;
2635 	u_int32_t hash;
2636 	globaldata_t gd;
2637 	int par_locked;
2638 
2639 	numcalls++;
2640 	gd = mycpu;
2641 	mp = par_nch->mount;
2642 	par_locked = 0;
2643 
2644 	/*
2645 	 * This is a good time to call it, no ncp's are locked by
2646 	 * the caller or us.
2647 	 */
2648 	cache_hysteresis(1);
2649 
2650 	/*
2651 	 * Try to locate an existing entry
2652 	 */
2653 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2654 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2655 	new_ncp = NULL;
2656 	nchpp = NCHHASH(hash);
2657 restart:
2658 	spin_lock(&nchpp->spin);
2659 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2660 		numchecks++;
2661 
2662 		/*
2663 		 * Break out if we find a matching entry.  Note that
2664 		 * UNRESOLVED entries may match, but DESTROYED entries
2665 		 * do not.
2666 		 */
2667 		if (ncp->nc_parent == par_nch->ncp &&
2668 		    ncp->nc_nlen == nlc->nlc_namelen &&
2669 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2670 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2671 		) {
2672 			_cache_hold(ncp);
2673 			spin_unlock(&nchpp->spin);
2674 			if (par_locked) {
2675 				_cache_unlock(par_nch->ncp);
2676 				par_locked = 0;
2677 			}
2678 			if (_cache_lock_special(ncp) == 0) {
2679 				_cache_auto_unresolve(mp, ncp);
2680 				if (new_ncp)
2681 					_cache_free(new_ncp);
2682 				goto found;
2683 			}
2684 			_cache_get(ncp);
2685 			_cache_put(ncp);
2686 			_cache_drop(ncp);
2687 			goto restart;
2688 		}
2689 	}
2690 
2691 	/*
2692 	 * We failed to locate an entry, create a new entry and add it to
2693 	 * the cache.  The parent ncp must also be locked so we
2694 	 * can link into it.
2695 	 *
2696 	 * We have to relookup after possibly blocking in kmalloc or
2697 	 * when locking par_nch.
2698 	 *
2699 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2700 	 *	 mount case, in which case nc_name will be NULL.
2701 	 */
2702 	if (new_ncp == NULL) {
2703 		spin_unlock(&nchpp->spin);
2704 		new_ncp = cache_alloc(nlc->nlc_namelen);
2705 		if (nlc->nlc_namelen) {
2706 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2707 			      nlc->nlc_namelen);
2708 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2709 		}
2710 		goto restart;
2711 	}
2712 	if (par_locked == 0) {
2713 		spin_unlock(&nchpp->spin);
2714 		_cache_lock(par_nch->ncp);
2715 		par_locked = 1;
2716 		goto restart;
2717 	}
2718 
2719 	/*
2720 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2721 	 *	     table entry atomically.
2722 	 */
2723 	ncp = new_ncp;
2724 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2725 	spin_unlock(&nchpp->spin);
2726 	_cache_unlock(par_nch->ncp);
2727 	/* par_locked = 0 - not used */
2728 found:
2729 	/*
2730 	 * stats and namecache size management
2731 	 */
2732 	if (ncp->nc_flag & NCF_UNRESOLVED)
2733 		++gd->gd_nchstats->ncs_miss;
2734 	else if (ncp->nc_vp)
2735 		++gd->gd_nchstats->ncs_goodhits;
2736 	else
2737 		++gd->gd_nchstats->ncs_neghits;
2738 	nch.mount = mp;
2739 	nch.ncp = ncp;
2740 	atomic_add_int(&nch.mount->mnt_refs, 1);
2741 	return(nch);
2742 }
2743 
2744 /*
2745  * Attempt to lookup a namecache entry and return with a shared namecache
2746  * lock.
2747  */
2748 int
2749 cache_nlookup_maybe_shared(struct nchandle *par_nch, struct nlcomponent *nlc,
2750 			   int excl, struct nchandle *res_nch)
2751 {
2752 	struct namecache *ncp;
2753 	struct nchash_head *nchpp;
2754 	struct mount *mp;
2755 	u_int32_t hash;
2756 	globaldata_t gd;
2757 
2758 	/*
2759 	 * If exclusive requested or shared namecache locks are disabled,
2760 	 * return failure.
2761 	 */
2762 	if (ncp_shared_lock_disable || excl)
2763 		return(EWOULDBLOCK);
2764 
2765 	numcalls++;
2766 	gd = mycpu;
2767 	mp = par_nch->mount;
2768 
2769 	/*
2770 	 * This is a good time to call it, no ncp's are locked by
2771 	 * the caller or us.
2772 	 */
2773 	cache_hysteresis(1);
2774 
2775 	/*
2776 	 * Try to locate an existing entry
2777 	 */
2778 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2779 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2780 	nchpp = NCHHASH(hash);
2781 
2782 	spin_lock(&nchpp->spin);
2783 
2784 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2785 		numchecks++;
2786 
2787 		/*
2788 		 * Break out if we find a matching entry.  Note that
2789 		 * UNRESOLVED entries may match, but DESTROYED entries
2790 		 * do not.
2791 		 */
2792 		if (ncp->nc_parent == par_nch->ncp &&
2793 		    ncp->nc_nlen == nlc->nlc_namelen &&
2794 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2795 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2796 		) {
2797 			_cache_hold(ncp);
2798 			spin_unlock(&nchpp->spin);
2799 			if (_cache_lock_shared_special(ncp) == 0) {
2800 				if ((ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
2801 				    (ncp->nc_flag & NCF_DESTROYED) == 0 &&
2802 				    _cache_auto_unresolve_test(mp, ncp) == 0) {
2803 					goto found;
2804 				}
2805 				_cache_unlock(ncp);
2806 			}
2807 			_cache_drop(ncp);
2808 			spin_lock(&nchpp->spin);
2809 			break;
2810 		}
2811 	}
2812 
2813 	/*
2814 	 * Failure
2815 	 */
2816 	spin_unlock(&nchpp->spin);
2817 	return(EWOULDBLOCK);
2818 
2819 	/*
2820 	 * Success
2821 	 *
2822 	 * Note that nc_error might be non-zero (e.g ENOENT).
2823 	 */
2824 found:
2825 	res_nch->mount = mp;
2826 	res_nch->ncp = ncp;
2827 	++gd->gd_nchstats->ncs_goodhits;
2828 	atomic_add_int(&res_nch->mount->mnt_refs, 1);
2829 
2830 	KKASSERT(ncp->nc_error != EWOULDBLOCK);
2831 	return(ncp->nc_error);
2832 }
2833 
2834 /*
2835  * This is a non-blocking verison of cache_nlookup() used by
2836  * nfs_readdirplusrpc_uio().  It can fail for any reason and
2837  * will return nch.ncp == NULL in that case.
2838  */
2839 struct nchandle
2840 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
2841 {
2842 	struct nchandle nch;
2843 	struct namecache *ncp;
2844 	struct namecache *new_ncp;
2845 	struct nchash_head *nchpp;
2846 	struct mount *mp;
2847 	u_int32_t hash;
2848 	globaldata_t gd;
2849 	int par_locked;
2850 
2851 	numcalls++;
2852 	gd = mycpu;
2853 	mp = par_nch->mount;
2854 	par_locked = 0;
2855 
2856 	/*
2857 	 * Try to locate an existing entry
2858 	 */
2859 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2860 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2861 	new_ncp = NULL;
2862 	nchpp = NCHHASH(hash);
2863 restart:
2864 	spin_lock(&nchpp->spin);
2865 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2866 		numchecks++;
2867 
2868 		/*
2869 		 * Break out if we find a matching entry.  Note that
2870 		 * UNRESOLVED entries may match, but DESTROYED entries
2871 		 * do not.
2872 		 */
2873 		if (ncp->nc_parent == par_nch->ncp &&
2874 		    ncp->nc_nlen == nlc->nlc_namelen &&
2875 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2876 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2877 		) {
2878 			_cache_hold(ncp);
2879 			spin_unlock(&nchpp->spin);
2880 			if (par_locked) {
2881 				_cache_unlock(par_nch->ncp);
2882 				par_locked = 0;
2883 			}
2884 			if (_cache_lock_special(ncp) == 0) {
2885 				_cache_auto_unresolve(mp, ncp);
2886 				if (new_ncp) {
2887 					_cache_free(new_ncp);
2888 					new_ncp = NULL;
2889 				}
2890 				goto found;
2891 			}
2892 			_cache_drop(ncp);
2893 			goto failed;
2894 		}
2895 	}
2896 
2897 	/*
2898 	 * We failed to locate an entry, create a new entry and add it to
2899 	 * the cache.  The parent ncp must also be locked so we
2900 	 * can link into it.
2901 	 *
2902 	 * We have to relookup after possibly blocking in kmalloc or
2903 	 * when locking par_nch.
2904 	 *
2905 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2906 	 *	 mount case, in which case nc_name will be NULL.
2907 	 */
2908 	if (new_ncp == NULL) {
2909 		spin_unlock(&nchpp->spin);
2910 		new_ncp = cache_alloc(nlc->nlc_namelen);
2911 		if (nlc->nlc_namelen) {
2912 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2913 			      nlc->nlc_namelen);
2914 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2915 		}
2916 		goto restart;
2917 	}
2918 	if (par_locked == 0) {
2919 		spin_unlock(&nchpp->spin);
2920 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
2921 			par_locked = 1;
2922 			goto restart;
2923 		}
2924 		goto failed;
2925 	}
2926 
2927 	/*
2928 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2929 	 *	     table entry atomically.
2930 	 */
2931 	ncp = new_ncp;
2932 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2933 	spin_unlock(&nchpp->spin);
2934 	_cache_unlock(par_nch->ncp);
2935 	/* par_locked = 0 - not used */
2936 found:
2937 	/*
2938 	 * stats and namecache size management
2939 	 */
2940 	if (ncp->nc_flag & NCF_UNRESOLVED)
2941 		++gd->gd_nchstats->ncs_miss;
2942 	else if (ncp->nc_vp)
2943 		++gd->gd_nchstats->ncs_goodhits;
2944 	else
2945 		++gd->gd_nchstats->ncs_neghits;
2946 	nch.mount = mp;
2947 	nch.ncp = ncp;
2948 	atomic_add_int(&nch.mount->mnt_refs, 1);
2949 	return(nch);
2950 failed:
2951 	if (new_ncp) {
2952 		_cache_free(new_ncp);
2953 		new_ncp = NULL;
2954 	}
2955 	nch.mount = NULL;
2956 	nch.ncp = NULL;
2957 	return(nch);
2958 }
2959 
2960 /*
2961  * The namecache entry is marked as being used as a mount point.
2962  * Locate the mount if it is visible to the caller.  The DragonFly
2963  * mount system allows arbitrary loops in the topology and disentangles
2964  * those loops by matching against (mp, ncp) rather than just (ncp).
2965  * This means any given ncp can dive any number of mounts, depending
2966  * on the relative mount (e.g. nullfs) the caller is at in the topology.
2967  *
2968  * We use a very simple frontend cache to reduce SMP conflicts,
2969  * which we have to do because the mountlist scan needs an exclusive
2970  * lock around its ripout info list.  Not to mention that there might
2971  * be a lot of mounts.
2972  */
2973 struct findmount_info {
2974 	struct mount *result;
2975 	struct mount *nch_mount;
2976 	struct namecache *nch_ncp;
2977 };
2978 
2979 static
2980 struct ncmount_cache *
2981 ncmount_cache_lookup(struct mount *mp, struct namecache *ncp)
2982 {
2983 	int hash;
2984 
2985 	hash = ((int)(intptr_t)mp / sizeof(*mp)) ^
2986 	       ((int)(intptr_t)ncp / sizeof(*ncp));
2987 	hash = (hash & 0x7FFFFFFF) % NCMOUNT_NUMCACHE;
2988 	return (&ncmount_cache[hash]);
2989 }
2990 
2991 static
2992 int
2993 cache_findmount_callback(struct mount *mp, void *data)
2994 {
2995 	struct findmount_info *info = data;
2996 
2997 	/*
2998 	 * Check the mount's mounted-on point against the passed nch.
2999 	 */
3000 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
3001 	    mp->mnt_ncmounton.ncp == info->nch_ncp
3002 	) {
3003 	    info->result = mp;
3004 	    atomic_add_int(&mp->mnt_refs, 1);
3005 	    return(-1);
3006 	}
3007 	return(0);
3008 }
3009 
3010 struct mount *
3011 cache_findmount(struct nchandle *nch)
3012 {
3013 	struct findmount_info info;
3014 	struct ncmount_cache *ncc;
3015 	struct mount *mp;
3016 
3017 	/*
3018 	 * Fast
3019 	 */
3020 	if (ncmount_cache_enable == 0) {
3021 		ncc = NULL;
3022 		goto skip;
3023 	}
3024 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3025 	if (ncc->ncp == nch->ncp) {
3026 		spin_lock_shared(&ncc->spin);
3027 		if (ncc->isneg == 0 &&
3028 		    ncc->ncp == nch->ncp && (mp = ncc->mp) != NULL) {
3029 			if (mp->mnt_ncmounton.mount == nch->mount &&
3030 			    mp->mnt_ncmounton.ncp == nch->ncp) {
3031 				/*
3032 				 * Cache hit (positive)
3033 				 */
3034 				atomic_add_int(&mp->mnt_refs, 1);
3035 				spin_unlock_shared(&ncc->spin);
3036 				++ncmount_cache_hit;
3037 				return(mp);
3038 			}
3039 			/* else cache miss */
3040 		}
3041 		if (ncc->isneg &&
3042 		    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3043 			/*
3044 			 * Cache hit (negative)
3045 			 */
3046 			spin_unlock_shared(&ncc->spin);
3047 			++ncmount_cache_hit;
3048 			return(NULL);
3049 		}
3050 		spin_unlock_shared(&ncc->spin);
3051 	}
3052 skip:
3053 
3054 	/*
3055 	 * Slow
3056 	 */
3057 	info.result = NULL;
3058 	info.nch_mount = nch->mount;
3059 	info.nch_ncp = nch->ncp;
3060 	mountlist_scan(cache_findmount_callback, &info,
3061 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
3062 
3063 	/*
3064 	 * Cache the result.
3065 	 *
3066 	 * Negative lookups: We cache the originating {ncp,mp}. (mp) is
3067 	 *		     only used for pointer comparisons and is not
3068 	 *		     referenced (otherwise there would be dangling
3069 	 *		     refs).
3070 	 *
3071 	 * Positive lookups: We cache the originating {ncp} and the target
3072 	 *		     (mp).  (mp) is referenced.
3073 	 *
3074 	 * Indeterminant:    If the match is undergoing an unmount we do
3075 	 *		     not cache it to avoid racing cache_unmounting(),
3076 	 *		     but still return the match.
3077 	 */
3078 	if (ncc) {
3079 		spin_lock(&ncc->spin);
3080 		if (info.result == NULL) {
3081 			if (ncc->isneg == 0 && ncc->mp)
3082 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3083 			ncc->ncp = nch->ncp;
3084 			ncc->mp = nch->mount;
3085 			ncc->isneg = 1;
3086 			spin_unlock(&ncc->spin);
3087 			++ncmount_cache_overwrite;
3088 		} else if ((info.result->mnt_kern_flag & MNTK_UNMOUNT) == 0) {
3089 			if (ncc->isneg == 0 && ncc->mp)
3090 				atomic_add_int(&ncc->mp->mnt_refs, -1);
3091 			atomic_add_int(&info.result->mnt_refs, 1);
3092 			ncc->ncp = nch->ncp;
3093 			ncc->mp = info.result;
3094 			ncc->isneg = 0;
3095 			spin_unlock(&ncc->spin);
3096 			++ncmount_cache_overwrite;
3097 		} else {
3098 			spin_unlock(&ncc->spin);
3099 		}
3100 		++ncmount_cache_miss;
3101 	}
3102 	return(info.result);
3103 }
3104 
3105 void
3106 cache_dropmount(struct mount *mp)
3107 {
3108 	atomic_add_int(&mp->mnt_refs, -1);
3109 }
3110 
3111 void
3112 cache_ismounting(struct mount *mp)
3113 {
3114 	struct nchandle *nch = &mp->mnt_ncmounton;
3115 	struct ncmount_cache *ncc;
3116 
3117 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3118 	if (ncc->isneg &&
3119 	    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3120 		spin_lock(&ncc->spin);
3121 		if (ncc->isneg &&
3122 		    ncc->ncp == nch->ncp && ncc->mp == nch->mount) {
3123 			ncc->ncp = NULL;
3124 			ncc->mp = NULL;
3125 		}
3126 		spin_unlock(&ncc->spin);
3127 	}
3128 }
3129 
3130 void
3131 cache_unmounting(struct mount *mp)
3132 {
3133 	struct nchandle *nch = &mp->mnt_ncmounton;
3134 	struct ncmount_cache *ncc;
3135 
3136 	ncc = ncmount_cache_lookup(nch->mount, nch->ncp);
3137 	if (ncc->isneg == 0 &&
3138 	    ncc->ncp == nch->ncp && ncc->mp == mp) {
3139 		spin_lock(&ncc->spin);
3140 		if (ncc->isneg == 0 &&
3141 		    ncc->ncp == nch->ncp && ncc->mp == mp) {
3142 			atomic_add_int(&mp->mnt_refs, -1);
3143 			ncc->ncp = NULL;
3144 			ncc->mp = NULL;
3145 		}
3146 		spin_unlock(&ncc->spin);
3147 	}
3148 }
3149 
3150 /*
3151  * Resolve an unresolved namecache entry, generally by looking it up.
3152  * The passed ncp must be locked and refd.
3153  *
3154  * Theoretically since a vnode cannot be recycled while held, and since
3155  * the nc_parent chain holds its vnode as long as children exist, the
3156  * direct parent of the cache entry we are trying to resolve should
3157  * have a valid vnode.  If not then generate an error that we can
3158  * determine is related to a resolver bug.
3159  *
3160  * However, if a vnode was in the middle of a recyclement when the NCP
3161  * got locked, ncp->nc_vp might point to a vnode that is about to become
3162  * invalid.  cache_resolve() handles this case by unresolving the entry
3163  * and then re-resolving it.
3164  *
3165  * Note that successful resolution does not necessarily return an error
3166  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
3167  * will be returned.
3168  */
3169 int
3170 cache_resolve(struct nchandle *nch, struct ucred *cred)
3171 {
3172 	struct namecache *par_tmp;
3173 	struct namecache *par;
3174 	struct namecache *ncp;
3175 	struct nchandle nctmp;
3176 	struct mount *mp;
3177 	struct vnode *dvp;
3178 	int error;
3179 
3180 	ncp = nch->ncp;
3181 	mp = nch->mount;
3182 	KKASSERT(_cache_lockstatus(ncp) == LK_EXCLUSIVE);
3183 restart:
3184 	/*
3185 	 * If the ncp is already resolved we have nothing to do.  However,
3186 	 * we do want to guarentee that a usable vnode is returned when
3187 	 * a vnode is present, so make sure it hasn't been reclaimed.
3188 	 */
3189 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3190 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3191 			_cache_setunresolved(ncp);
3192 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
3193 			return (ncp->nc_error);
3194 	}
3195 
3196 	/*
3197 	 * If the ncp was destroyed it will never resolve again.  This
3198 	 * can basically only happen when someone is chdir'd into an
3199 	 * empty directory which is then rmdir'd.  We want to catch this
3200 	 * here and not dive the VFS because the VFS might actually
3201 	 * have a way to re-resolve the disconnected ncp, which will
3202 	 * result in inconsistencies in the cdir/nch for proc->p_fd.
3203 	 */
3204 	if (ncp->nc_flag & NCF_DESTROYED) {
3205 		kprintf("Warning: cache_resolve: ncp '%s' was unlinked\n",
3206 			ncp->nc_name);
3207 		return(EINVAL);
3208 	}
3209 
3210 	/*
3211 	 * Mount points need special handling because the parent does not
3212 	 * belong to the same filesystem as the ncp.
3213 	 */
3214 	if (ncp == mp->mnt_ncmountpt.ncp)
3215 		return (cache_resolve_mp(mp));
3216 
3217 	/*
3218 	 * We expect an unbroken chain of ncps to at least the mount point,
3219 	 * and even all the way to root (but this code doesn't have to go
3220 	 * past the mount point).
3221 	 */
3222 	if (ncp->nc_parent == NULL) {
3223 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
3224 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3225 		ncp->nc_error = EXDEV;
3226 		return(ncp->nc_error);
3227 	}
3228 
3229 	/*
3230 	 * The vp's of the parent directories in the chain are held via vhold()
3231 	 * due to the existance of the child, and should not disappear.
3232 	 * However, there are cases where they can disappear:
3233 	 *
3234 	 *	- due to filesystem I/O errors.
3235 	 *	- due to NFS being stupid about tracking the namespace and
3236 	 *	  destroys the namespace for entire directories quite often.
3237 	 *	- due to forced unmounts.
3238 	 *	- due to an rmdir (parent will be marked DESTROYED)
3239 	 *
3240 	 * When this occurs we have to track the chain backwards and resolve
3241 	 * it, looping until the resolver catches up to the current node.  We
3242 	 * could recurse here but we might run ourselves out of kernel stack
3243 	 * so we do it in a more painful manner.  This situation really should
3244 	 * not occur all that often, or if it does not have to go back too
3245 	 * many nodes to resolve the ncp.
3246 	 */
3247 	while ((dvp = cache_dvpref(ncp)) == NULL) {
3248 		/*
3249 		 * This case can occur if a process is CD'd into a
3250 		 * directory which is then rmdir'd.  If the parent is marked
3251 		 * destroyed there is no point trying to resolve it.
3252 		 */
3253 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
3254 			return(ENOENT);
3255 		par = ncp->nc_parent;
3256 		_cache_hold(par);
3257 		_cache_lock(par);
3258 		while ((par_tmp = par->nc_parent) != NULL &&
3259 		       par_tmp->nc_vp == NULL) {
3260 			_cache_hold(par_tmp);
3261 			_cache_lock(par_tmp);
3262 			_cache_put(par);
3263 			par = par_tmp;
3264 		}
3265 		if (par->nc_parent == NULL) {
3266 			kprintf("EXDEV case 2 %*.*s\n",
3267 				par->nc_nlen, par->nc_nlen, par->nc_name);
3268 			_cache_put(par);
3269 			return (EXDEV);
3270 		}
3271 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
3272 			par->nc_nlen, par->nc_nlen, par->nc_name);
3273 		/*
3274 		 * The parent is not set in stone, ref and lock it to prevent
3275 		 * it from disappearing.  Also note that due to renames it
3276 		 * is possible for our ncp to move and for par to no longer
3277 		 * be one of its parents.  We resolve it anyway, the loop
3278 		 * will handle any moves.
3279 		 */
3280 		_cache_get(par);	/* additional hold/lock */
3281 		_cache_put(par);	/* from earlier hold/lock */
3282 		if (par == nch->mount->mnt_ncmountpt.ncp) {
3283 			cache_resolve_mp(nch->mount);
3284 		} else if ((dvp = cache_dvpref(par)) == NULL) {
3285 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
3286 			_cache_put(par);
3287 			continue;
3288 		} else {
3289 			if (par->nc_flag & NCF_UNRESOLVED) {
3290 				nctmp.mount = mp;
3291 				nctmp.ncp = par;
3292 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3293 			}
3294 			vrele(dvp);
3295 		}
3296 		if ((error = par->nc_error) != 0) {
3297 			if (par->nc_error != EAGAIN) {
3298 				kprintf("EXDEV case 3 %*.*s error %d\n",
3299 				    par->nc_nlen, par->nc_nlen, par->nc_name,
3300 				    par->nc_error);
3301 				_cache_put(par);
3302 				return(error);
3303 			}
3304 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
3305 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
3306 		}
3307 		_cache_put(par);
3308 		/* loop */
3309 	}
3310 
3311 	/*
3312 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
3313 	 * ncp's and reattach them.  If this occurs the original ncp is marked
3314 	 * EAGAIN to force a relookup.
3315 	 *
3316 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
3317 	 * ncp must already be resolved.
3318 	 */
3319 	if (dvp) {
3320 		nctmp.mount = mp;
3321 		nctmp.ncp = ncp;
3322 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
3323 		vrele(dvp);
3324 	} else {
3325 		ncp->nc_error = EPERM;
3326 	}
3327 	if (ncp->nc_error == EAGAIN) {
3328 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
3329 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
3330 		goto restart;
3331 	}
3332 	return(ncp->nc_error);
3333 }
3334 
3335 /*
3336  * Resolve the ncp associated with a mount point.  Such ncp's almost always
3337  * remain resolved and this routine is rarely called.  NFS MPs tends to force
3338  * re-resolution more often due to its mac-truck-smash-the-namecache
3339  * method of tracking namespace changes.
3340  *
3341  * The semantics for this call is that the passed ncp must be locked on
3342  * entry and will be locked on return.  However, if we actually have to
3343  * resolve the mount point we temporarily unlock the entry in order to
3344  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
3345  * the unlock we have to recheck the flags after we relock.
3346  */
3347 static int
3348 cache_resolve_mp(struct mount *mp)
3349 {
3350 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
3351 	struct vnode *vp;
3352 	int error;
3353 
3354 	KKASSERT(mp != NULL);
3355 
3356 	/*
3357 	 * If the ncp is already resolved we have nothing to do.  However,
3358 	 * we do want to guarentee that a usable vnode is returned when
3359 	 * a vnode is present, so make sure it hasn't been reclaimed.
3360 	 */
3361 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3362 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
3363 			_cache_setunresolved(ncp);
3364 	}
3365 
3366 	if (ncp->nc_flag & NCF_UNRESOLVED) {
3367 		_cache_unlock(ncp);
3368 		while (vfs_busy(mp, 0))
3369 			;
3370 		error = VFS_ROOT(mp, &vp);
3371 		_cache_lock(ncp);
3372 
3373 		/*
3374 		 * recheck the ncp state after relocking.
3375 		 */
3376 		if (ncp->nc_flag & NCF_UNRESOLVED) {
3377 			ncp->nc_error = error;
3378 			if (error == 0) {
3379 				_cache_setvp(mp, ncp, vp);
3380 				vput(vp);
3381 			} else {
3382 				kprintf("[diagnostic] cache_resolve_mp: failed"
3383 					" to resolve mount %p err=%d ncp=%p\n",
3384 					mp, error, ncp);
3385 				_cache_setvp(mp, ncp, NULL);
3386 			}
3387 		} else if (error == 0) {
3388 			vput(vp);
3389 		}
3390 		vfs_unbusy(mp);
3391 	}
3392 	return(ncp->nc_error);
3393 }
3394 
3395 /*
3396  * Clean out negative cache entries when too many have accumulated.
3397  */
3398 static void
3399 _cache_cleanneg(int count)
3400 {
3401 	struct namecache *ncp;
3402 
3403 	/*
3404 	 * Attempt to clean out the specified number of negative cache
3405 	 * entries.
3406 	 */
3407 	while (count) {
3408 		spin_lock(&ncspin);
3409 		ncp = TAILQ_FIRST(&ncneglist);
3410 		if (ncp == NULL) {
3411 			spin_unlock(&ncspin);
3412 			break;
3413 		}
3414 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
3415 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
3416 		_cache_hold(ncp);
3417 		spin_unlock(&ncspin);
3418 
3419 		/*
3420 		 * This can race, so we must re-check that the ncp
3421 		 * is on the ncneglist after successfully locking it.
3422 		 */
3423 		if (_cache_lock_special(ncp) == 0) {
3424 			if (ncp->nc_vp == NULL &&
3425 			    (ncp->nc_flag & NCF_UNRESOLVED) == 0) {
3426 				ncp = cache_zap(ncp, 1);
3427 				if (ncp)
3428 					_cache_drop(ncp);
3429 			} else {
3430 				kprintf("cache_cleanneg: race avoided\n");
3431 				_cache_unlock(ncp);
3432 			}
3433 		} else {
3434 			_cache_drop(ncp);
3435 		}
3436 		--count;
3437 	}
3438 }
3439 
3440 /*
3441  * Clean out positive cache entries when too many have accumulated.
3442  */
3443 static void
3444 _cache_cleanpos(int count)
3445 {
3446 	static volatile int rover;
3447 	struct nchash_head *nchpp;
3448 	struct namecache *ncp;
3449 	int rover_copy;
3450 
3451 	/*
3452 	 * Attempt to clean out the specified number of negative cache
3453 	 * entries.
3454 	 */
3455 	while (count) {
3456 		rover_copy = ++rover;	/* MPSAFEENOUGH */
3457 		cpu_ccfence();
3458 		nchpp = NCHHASH(rover_copy);
3459 
3460 		spin_lock(&nchpp->spin);
3461 		ncp = LIST_FIRST(&nchpp->list);
3462 		while (ncp && (ncp->nc_flag & NCF_DESTROYED))
3463 			ncp = LIST_NEXT(ncp, nc_hash);
3464 		if (ncp)
3465 			_cache_hold(ncp);
3466 		spin_unlock(&nchpp->spin);
3467 
3468 		if (ncp) {
3469 			if (_cache_lock_special(ncp) == 0) {
3470 				ncp = cache_zap(ncp, 1);
3471 				if (ncp)
3472 					_cache_drop(ncp);
3473 			} else {
3474 				_cache_drop(ncp);
3475 			}
3476 		}
3477 		--count;
3478 	}
3479 }
3480 
3481 /*
3482  * This is a kitchen sink function to clean out ncps which we
3483  * tried to zap from cache_drop() but failed because we were
3484  * unable to acquire the parent lock.
3485  *
3486  * Such entries can also be removed via cache_inval_vp(), such
3487  * as when unmounting.
3488  */
3489 static void
3490 _cache_cleandefered(void)
3491 {
3492 	struct nchash_head *nchpp;
3493 	struct namecache *ncp;
3494 	struct namecache dummy;
3495 	int i;
3496 
3497 	numdefered = 0;
3498 	bzero(&dummy, sizeof(dummy));
3499 	dummy.nc_flag = NCF_DESTROYED;
3500 	dummy.nc_refs = 1;
3501 
3502 	for (i = 0; i <= nchash; ++i) {
3503 		nchpp = &nchashtbl[i];
3504 
3505 		spin_lock(&nchpp->spin);
3506 		LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
3507 		ncp = &dummy;
3508 		while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
3509 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
3510 				continue;
3511 			LIST_REMOVE(&dummy, nc_hash);
3512 			LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
3513 			_cache_hold(ncp);
3514 			spin_unlock(&nchpp->spin);
3515 			if (_cache_lock_nonblock(ncp) == 0) {
3516 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
3517 				_cache_unlock(ncp);
3518 			}
3519 			_cache_drop(ncp);
3520 			spin_lock(&nchpp->spin);
3521 			ncp = &dummy;
3522 		}
3523 		LIST_REMOVE(&dummy, nc_hash);
3524 		spin_unlock(&nchpp->spin);
3525 	}
3526 }
3527 
3528 /*
3529  * Name cache initialization, from vfsinit() when we are booting
3530  */
3531 void
3532 nchinit(void)
3533 {
3534 	int i;
3535 	globaldata_t gd;
3536 
3537 	/* initialise per-cpu namecache effectiveness statistics. */
3538 	for (i = 0; i < ncpus; ++i) {
3539 		gd = globaldata_find(i);
3540 		gd->gd_nchstats = &nchstats[i];
3541 	}
3542 	TAILQ_INIT(&ncneglist);
3543 	spin_init(&ncspin);
3544 	nchashtbl = hashinit_ext(desiredvnodes / 2,
3545 				 sizeof(struct nchash_head),
3546 				 M_VFSCACHE, &nchash);
3547 	for (i = 0; i <= (int)nchash; ++i) {
3548 		LIST_INIT(&nchashtbl[i].list);
3549 		spin_init(&nchashtbl[i].spin);
3550 	}
3551 	for (i = 0; i < NCMOUNT_NUMCACHE; ++i)
3552 		spin_init(&ncmount_cache[i].spin);
3553 	nclockwarn = 5 * hz;
3554 }
3555 
3556 /*
3557  * Called from start_init() to bootstrap the root filesystem.  Returns
3558  * a referenced, unlocked namecache record.
3559  */
3560 void
3561 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
3562 {
3563 	nch->ncp = cache_alloc(0);
3564 	nch->mount = mp;
3565 	atomic_add_int(&mp->mnt_refs, 1);
3566 	if (vp)
3567 		_cache_setvp(nch->mount, nch->ncp, vp);
3568 }
3569 
3570 /*
3571  * vfs_cache_setroot()
3572  *
3573  *	Create an association between the root of our namecache and
3574  *	the root vnode.  This routine may be called several times during
3575  *	booting.
3576  *
3577  *	If the caller intends to save the returned namecache pointer somewhere
3578  *	it must cache_hold() it.
3579  */
3580 void
3581 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
3582 {
3583 	struct vnode *ovp;
3584 	struct nchandle onch;
3585 
3586 	ovp = rootvnode;
3587 	onch = rootnch;
3588 	rootvnode = nvp;
3589 	if (nch)
3590 		rootnch = *nch;
3591 	else
3592 		cache_zero(&rootnch);
3593 	if (ovp)
3594 		vrele(ovp);
3595 	if (onch.ncp)
3596 		cache_drop(&onch);
3597 }
3598 
3599 /*
3600  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
3601  * topology and is being removed as quickly as possible.  The new VOP_N*()
3602  * API calls are required to make specific adjustments using the supplied
3603  * ncp pointers rather then just bogusly purging random vnodes.
3604  *
3605  * Invalidate all namecache entries to a particular vnode as well as
3606  * any direct children of that vnode in the namecache.  This is a
3607  * 'catch all' purge used by filesystems that do not know any better.
3608  *
3609  * Note that the linkage between the vnode and its namecache entries will
3610  * be removed, but the namecache entries themselves might stay put due to
3611  * active references from elsewhere in the system or due to the existance of
3612  * the children.   The namecache topology is left intact even if we do not
3613  * know what the vnode association is.  Such entries will be marked
3614  * NCF_UNRESOLVED.
3615  */
3616 void
3617 cache_purge(struct vnode *vp)
3618 {
3619 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
3620 }
3621 
3622 /*
3623  * Flush all entries referencing a particular filesystem.
3624  *
3625  * Since we need to check it anyway, we will flush all the invalid
3626  * entries at the same time.
3627  */
3628 #if 0
3629 
3630 void
3631 cache_purgevfs(struct mount *mp)
3632 {
3633 	struct nchash_head *nchpp;
3634 	struct namecache *ncp, *nnp;
3635 
3636 	/*
3637 	 * Scan hash tables for applicable entries.
3638 	 */
3639 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
3640 		spin_lock_wr(&nchpp->spin); XXX
3641 		ncp = LIST_FIRST(&nchpp->list);
3642 		if (ncp)
3643 			_cache_hold(ncp);
3644 		while (ncp) {
3645 			nnp = LIST_NEXT(ncp, nc_hash);
3646 			if (nnp)
3647 				_cache_hold(nnp);
3648 			if (ncp->nc_mount == mp) {
3649 				_cache_lock(ncp);
3650 				ncp = cache_zap(ncp, 0);
3651 				if (ncp)
3652 					_cache_drop(ncp);
3653 			} else {
3654 				_cache_drop(ncp);
3655 			}
3656 			ncp = nnp;
3657 		}
3658 		spin_unlock_wr(&nchpp->spin); XXX
3659 	}
3660 }
3661 
3662 #endif
3663 
3664 static int disablecwd;
3665 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0,
3666     "Disable getcwd");
3667 
3668 static u_long numcwdcalls;
3669 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdcalls, CTLFLAG_RD, &numcwdcalls, 0,
3670     "Number of current directory resolution calls");
3671 static u_long numcwdfailnf;
3672 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailnf, CTLFLAG_RD, &numcwdfailnf, 0,
3673     "Number of current directory failures due to lack of file");
3674 static u_long numcwdfailsz;
3675 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfailsz, CTLFLAG_RD, &numcwdfailsz, 0,
3676     "Number of current directory failures due to large result");
3677 static u_long numcwdfound;
3678 SYSCTL_ULONG(_vfs_cache, OID_AUTO, numcwdfound, CTLFLAG_RD, &numcwdfound, 0,
3679     "Number of current directory resolution successes");
3680 
3681 /*
3682  * MPALMOSTSAFE
3683  */
3684 int
3685 sys___getcwd(struct __getcwd_args *uap)
3686 {
3687 	u_int buflen;
3688 	int error;
3689 	char *buf;
3690 	char *bp;
3691 
3692 	if (disablecwd)
3693 		return (ENODEV);
3694 
3695 	buflen = uap->buflen;
3696 	if (buflen == 0)
3697 		return (EINVAL);
3698 	if (buflen > MAXPATHLEN)
3699 		buflen = MAXPATHLEN;
3700 
3701 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
3702 	bp = kern_getcwd(buf, buflen, &error);
3703 	if (error == 0)
3704 		error = copyout(bp, uap->buf, strlen(bp) + 1);
3705 	kfree(buf, M_TEMP);
3706 	return (error);
3707 }
3708 
3709 char *
3710 kern_getcwd(char *buf, size_t buflen, int *error)
3711 {
3712 	struct proc *p = curproc;
3713 	char *bp;
3714 	int i, slash_prefixed;
3715 	struct filedesc *fdp;
3716 	struct nchandle nch;
3717 	struct namecache *ncp;
3718 
3719 	numcwdcalls++;
3720 	bp = buf;
3721 	bp += buflen - 1;
3722 	*bp = '\0';
3723 	fdp = p->p_fd;
3724 	slash_prefixed = 0;
3725 
3726 	nch = fdp->fd_ncdir;
3727 	ncp = nch.ncp;
3728 	if (ncp)
3729 		_cache_hold(ncp);
3730 
3731 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
3732 	       nch.mount != fdp->fd_nrdir.mount)
3733 	) {
3734 		/*
3735 		 * While traversing upwards if we encounter the root
3736 		 * of the current mount we have to skip to the mount point
3737 		 * in the underlying filesystem.
3738 		 */
3739 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
3740 			nch = nch.mount->mnt_ncmounton;
3741 			_cache_drop(ncp);
3742 			ncp = nch.ncp;
3743 			if (ncp)
3744 				_cache_hold(ncp);
3745 			continue;
3746 		}
3747 
3748 		/*
3749 		 * Prepend the path segment
3750 		 */
3751 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3752 			if (bp == buf) {
3753 				numcwdfailsz++;
3754 				*error = ERANGE;
3755 				bp = NULL;
3756 				goto done;
3757 			}
3758 			*--bp = ncp->nc_name[i];
3759 		}
3760 		if (bp == buf) {
3761 			numcwdfailsz++;
3762 			*error = ERANGE;
3763 			bp = NULL;
3764 			goto done;
3765 		}
3766 		*--bp = '/';
3767 		slash_prefixed = 1;
3768 
3769 		/*
3770 		 * Go up a directory.  This isn't a mount point so we don't
3771 		 * have to check again.
3772 		 */
3773 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3774 			if (ncp_shared_lock_disable)
3775 				_cache_lock(ncp);
3776 			else
3777 				_cache_lock_shared(ncp);
3778 			if (nch.ncp != ncp->nc_parent) {
3779 				_cache_unlock(ncp);
3780 				continue;
3781 			}
3782 			_cache_hold(nch.ncp);
3783 			_cache_unlock(ncp);
3784 			break;
3785 		}
3786 		_cache_drop(ncp);
3787 		ncp = nch.ncp;
3788 	}
3789 	if (ncp == NULL) {
3790 		numcwdfailnf++;
3791 		*error = ENOENT;
3792 		bp = NULL;
3793 		goto done;
3794 	}
3795 	if (!slash_prefixed) {
3796 		if (bp == buf) {
3797 			numcwdfailsz++;
3798 			*error = ERANGE;
3799 			bp = NULL;
3800 			goto done;
3801 		}
3802 		*--bp = '/';
3803 	}
3804 	numcwdfound++;
3805 	*error = 0;
3806 done:
3807 	if (ncp)
3808 		_cache_drop(ncp);
3809 	return (bp);
3810 }
3811 
3812 /*
3813  * Thus begins the fullpath magic.
3814  *
3815  * The passed nchp is referenced but not locked.
3816  */
3817 static int disablefullpath;
3818 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
3819     &disablefullpath, 0,
3820     "Disable fullpath lookups");
3821 
3822 static u_int numfullpathcalls;
3823 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathcalls, CTLFLAG_RD,
3824     &numfullpathcalls, 0,
3825     "Number of full path resolutions in progress");
3826 static u_int numfullpathfailnf;
3827 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailnf, CTLFLAG_RD,
3828     &numfullpathfailnf, 0,
3829     "Number of full path resolution failures due to lack of file");
3830 static u_int numfullpathfailsz;
3831 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfailsz, CTLFLAG_RD,
3832     &numfullpathfailsz, 0,
3833     "Number of full path resolution failures due to insufficient memory");
3834 static u_int numfullpathfound;
3835 SYSCTL_UINT(_vfs_cache, OID_AUTO, numfullpathfound, CTLFLAG_RD,
3836     &numfullpathfound, 0,
3837     "Number of full path resolution successes");
3838 
3839 int
3840 cache_fullpath(struct proc *p, struct nchandle *nchp, struct nchandle *nchbase,
3841 	       char **retbuf, char **freebuf, int guess)
3842 {
3843 	struct nchandle fd_nrdir;
3844 	struct nchandle nch;
3845 	struct namecache *ncp;
3846 	struct mount *mp, *new_mp;
3847 	char *bp, *buf;
3848 	int slash_prefixed;
3849 	int error = 0;
3850 	int i;
3851 
3852 	atomic_add_int(&numfullpathcalls, -1);
3853 
3854 	*retbuf = NULL;
3855 	*freebuf = NULL;
3856 
3857 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3858 	bp = buf + MAXPATHLEN - 1;
3859 	*bp = '\0';
3860 	if (nchbase)
3861 		fd_nrdir = *nchbase;
3862 	else if (p != NULL)
3863 		fd_nrdir = p->p_fd->fd_nrdir;
3864 	else
3865 		fd_nrdir = rootnch;
3866 	slash_prefixed = 0;
3867 	nch = *nchp;
3868 	ncp = nch.ncp;
3869 	if (ncp)
3870 		_cache_hold(ncp);
3871 	mp = nch.mount;
3872 
3873 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
3874 		new_mp = NULL;
3875 
3876 		/*
3877 		 * If we are asked to guess the upwards path, we do so whenever
3878 		 * we encounter an ncp marked as a mountpoint. We try to find
3879 		 * the actual mountpoint by finding the mountpoint with this
3880 		 * ncp.
3881 		 */
3882 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
3883 			new_mp = mount_get_by_nc(ncp);
3884 		}
3885 		/*
3886 		 * While traversing upwards if we encounter the root
3887 		 * of the current mount we have to skip to the mount point.
3888 		 */
3889 		if (ncp == mp->mnt_ncmountpt.ncp) {
3890 			new_mp = mp;
3891 		}
3892 		if (new_mp) {
3893 			nch = new_mp->mnt_ncmounton;
3894 			_cache_drop(ncp);
3895 			ncp = nch.ncp;
3896 			if (ncp)
3897 				_cache_hold(ncp);
3898 			mp = nch.mount;
3899 			continue;
3900 		}
3901 
3902 		/*
3903 		 * Prepend the path segment
3904 		 */
3905 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3906 			if (bp == buf) {
3907 				numfullpathfailsz++;
3908 				kfree(buf, M_TEMP);
3909 				error = ENOMEM;
3910 				goto done;
3911 			}
3912 			*--bp = ncp->nc_name[i];
3913 		}
3914 		if (bp == buf) {
3915 			numfullpathfailsz++;
3916 			kfree(buf, M_TEMP);
3917 			error = ENOMEM;
3918 			goto done;
3919 		}
3920 		*--bp = '/';
3921 		slash_prefixed = 1;
3922 
3923 		/*
3924 		 * Go up a directory.  This isn't a mount point so we don't
3925 		 * have to check again.
3926 		 *
3927 		 * We can only safely access nc_parent with ncp held locked.
3928 		 */
3929 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3930 			_cache_lock(ncp);
3931 			if (nch.ncp != ncp->nc_parent) {
3932 				_cache_unlock(ncp);
3933 				continue;
3934 			}
3935 			_cache_hold(nch.ncp);
3936 			_cache_unlock(ncp);
3937 			break;
3938 		}
3939 		_cache_drop(ncp);
3940 		ncp = nch.ncp;
3941 	}
3942 	if (ncp == NULL) {
3943 		numfullpathfailnf++;
3944 		kfree(buf, M_TEMP);
3945 		error = ENOENT;
3946 		goto done;
3947 	}
3948 
3949 	if (!slash_prefixed) {
3950 		if (bp == buf) {
3951 			numfullpathfailsz++;
3952 			kfree(buf, M_TEMP);
3953 			error = ENOMEM;
3954 			goto done;
3955 		}
3956 		*--bp = '/';
3957 	}
3958 	numfullpathfound++;
3959 	*retbuf = bp;
3960 	*freebuf = buf;
3961 	error = 0;
3962 done:
3963 	if (ncp)
3964 		_cache_drop(ncp);
3965 	return(error);
3966 }
3967 
3968 int
3969 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf,
3970     int guess)
3971 {
3972 	struct namecache *ncp;
3973 	struct nchandle nch;
3974 	int error;
3975 
3976 	*freebuf = NULL;
3977 	atomic_add_int(&numfullpathcalls, 1);
3978 	if (disablefullpath)
3979 		return (ENODEV);
3980 
3981 	if (p == NULL)
3982 		return (EINVAL);
3983 
3984 	/* vn is NULL, client wants us to use p->p_textvp */
3985 	if (vn == NULL) {
3986 		if ((vn = p->p_textvp) == NULL)
3987 			return (EINVAL);
3988 	}
3989 	spin_lock(&vn->v_spin);
3990 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
3991 		if (ncp->nc_nlen)
3992 			break;
3993 	}
3994 	if (ncp == NULL) {
3995 		spin_unlock(&vn->v_spin);
3996 		return (EINVAL);
3997 	}
3998 	_cache_hold(ncp);
3999 	spin_unlock(&vn->v_spin);
4000 
4001 	atomic_add_int(&numfullpathcalls, -1);
4002 	nch.ncp = ncp;
4003 	nch.mount = vn->v_mount;
4004 	error = cache_fullpath(p, &nch, NULL, retbuf, freebuf, guess);
4005 	_cache_drop(ncp);
4006 	return (error);
4007 }
4008