xref: /dflybsd-src/sys/kern/vfs_cache.c (revision a9656fbcd49c376aba5e04370d8b0f1fa96e063c)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/sysctl.h>
73 #include <sys/mount.h>
74 #include <sys/vnode.h>
75 #include <sys/malloc.h>
76 #include <sys/sysproto.h>
77 #include <sys/spinlock.h>
78 #include <sys/proc.h>
79 #include <sys/namei.h>
80 #include <sys/nlookup.h>
81 #include <sys/filedesc.h>
82 #include <sys/fnv_hash.h>
83 #include <sys/globaldata.h>
84 #include <sys/kern_syscall.h>
85 #include <sys/dirent.h>
86 #include <ddb/ddb.h>
87 
88 #include <sys/sysref2.h>
89 #include <sys/spinlock2.h>
90 #include <sys/mplock2.h>
91 
92 #define MAX_RECURSION_DEPTH	64
93 
94 /*
95  * Random lookups in the cache are accomplished with a hash table using
96  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock.
97  *
98  * Negative entries may exist and correspond to resolved namecache
99  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
100  * will be set if the entry corresponds to a whited-out directory entry
101  * (verses simply not finding the entry at all).   ncneglist is locked
102  * with a global spinlock (ncspin).
103  *
104  * MPSAFE RULES:
105  *
106  * (1) A ncp must be referenced before it can be locked.
107  *
108  * (2) A ncp must be locked in order to modify it.
109  *
110  * (3) ncp locks are always ordered child -> parent.  That may seem
111  *     backwards but forward scans use the hash table and thus can hold
112  *     the parent unlocked when traversing downward.
113  *
114  *     This allows insert/rename/delete/dot-dot and other operations
115  *     to use ncp->nc_parent links.
116  *
117  *     This also prevents a locked up e.g. NFS node from creating a
118  *     chain reaction all the way back to the root vnode / namecache.
119  *
120  * (4) parent linkages require both the parent and child to be locked.
121  */
122 
123 /*
124  * Structures associated with name cacheing.
125  */
126 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
127 #define MINNEG		1024
128 
129 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
130 
131 LIST_HEAD(nchash_list, namecache);
132 
133 struct nchash_head {
134        struct nchash_list list;
135        struct spinlock	spin;
136 };
137 
138 static struct nchash_head	*nchashtbl;
139 static struct namecache_list	ncneglist;
140 static struct spinlock		ncspin;
141 
142 /*
143  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
144  * to create the namecache infrastructure leading to a dangling vnode.
145  *
146  * 0	Only errors are reported
147  * 1	Successes are reported
148  * 2	Successes + the whole directory scan is reported
149  * 3	Force the directory scan code run as if the parent vnode did not
150  *	have a namecache record, even if it does have one.
151  */
152 static int	ncvp_debug;
153 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
154 
155 static u_long	nchash;			/* size of hash table */
156 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
157 
158 static int	ncnegfactor = 16;	/* ratio of negative entries */
159 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
160 
161 static int	nclockwarn;		/* warn on locked entries in ticks */
162 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
163 
164 static int	numneg;			/* number of cache entries allocated */
165 SYSCTL_INT(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
166 
167 static int	numdefered;		/* number of cache entries allocated */
168 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0, "");
169 
170 static int	numcache;		/* number of cache entries allocated */
171 SYSCTL_INT(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
172 
173 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
174 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
175 
176 int cache_mpsafe = 1;
177 SYSCTL_INT(_vfs, OID_AUTO, cache_mpsafe, CTLFLAG_RW, &cache_mpsafe, 0, "");
178 
179 static int cache_resolve_mp(struct mount *mp);
180 static struct vnode *cache_dvpref(struct namecache *ncp);
181 static void _cache_lock(struct namecache *ncp);
182 static void _cache_setunresolved(struct namecache *ncp);
183 static void _cache_cleanneg(int count);
184 static void _cache_cleandefered(void);
185 
186 /*
187  * The new name cache statistics
188  */
189 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
190 #define STATNODE(mode, name, var) \
191 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
192 STATNODE(CTLFLAG_RD, numneg, &numneg);
193 STATNODE(CTLFLAG_RD, numcache, &numcache);
194 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
195 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
196 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
197 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
198 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
199 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
200 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
201 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
202 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
203 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
204 
205 struct nchstats nchstats[SMP_MAXCPU];
206 /*
207  * Export VFS cache effectiveness statistics to user-land.
208  *
209  * The statistics are left for aggregation to user-land so
210  * neat things can be achieved, like observing per-CPU cache
211  * distribution.
212  */
213 static int
214 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
215 {
216 	struct globaldata *gd;
217 	int i, error;
218 
219 	error = 0;
220 	for (i = 0; i < ncpus; ++i) {
221 		gd = globaldata_find(i);
222 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
223 			sizeof(struct nchstats))))
224 			break;
225 	}
226 
227 	return (error);
228 }
229 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
230   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
231 
232 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
233 
234 /*
235  * Namespace locking.  The caller must already hold a reference to the
236  * namecache structure in order to lock/unlock it.  This function prevents
237  * the namespace from being created or destroyed by accessors other then
238  * the lock holder.
239  *
240  * Note that holding a locked namecache structure prevents other threads
241  * from making namespace changes (e.g. deleting or creating), prevents
242  * vnode association state changes by other threads, and prevents the
243  * namecache entry from being resolved or unresolved by other threads.
244  *
245  * The lock owner has full authority to associate/disassociate vnodes
246  * and resolve/unresolve the locked ncp.
247  *
248  * The primary lock field is nc_exlocks.  nc_locktd is set after the
249  * fact (when locking) or cleared prior to unlocking.
250  *
251  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
252  *	     or recycled, but it does NOT help you if the vnode had already
253  *	     initiated a recyclement.  If this is important, use cache_get()
254  *	     rather then cache_lock() (and deal with the differences in the
255  *	     way the refs counter is handled).  Or, alternatively, make an
256  *	     unconditional call to cache_validate() or cache_resolve()
257  *	     after cache_lock() returns.
258  *
259  * MPSAFE
260  */
261 static
262 void
263 _cache_lock(struct namecache *ncp)
264 {
265 	thread_t td;
266 	int didwarn;
267 	int error;
268 	u_int count;
269 
270 	KKASSERT(ncp->nc_refs != 0);
271 	didwarn = 0;
272 	td = curthread;
273 
274 	for (;;) {
275 		count = ncp->nc_exlocks;
276 
277 		if (count == 0) {
278 			if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
279 				/*
280 				 * The vp associated with a locked ncp must
281 				 * be held to prevent it from being recycled.
282 				 *
283 				 * WARNING!  If VRECLAIMED is set the vnode
284 				 * could already be in the middle of a recycle.
285 				 * Callers must use cache_vref() or
286 				 * cache_vget() on the locked ncp to
287 				 * validate the vp or set the cache entry
288 				 * to unresolved.
289 				 *
290 				 * NOTE! vhold() is allowed if we hold a
291 				 *	 lock on the ncp (which we do).
292 				 */
293 				ncp->nc_locktd = td;
294 				if (ncp->nc_vp)
295 					vhold(ncp->nc_vp);	/* MPSAFE */
296 				break;
297 			}
298 			/* cmpset failed */
299 			continue;
300 		}
301 		if (ncp->nc_locktd == td) {
302 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
303 					      count + 1)) {
304 				break;
305 			}
306 			/* cmpset failed */
307 			continue;
308 		}
309 		tsleep_interlock(ncp, 0);
310 		if (atomic_cmpset_int(&ncp->nc_exlocks, count,
311 				      count | NC_EXLOCK_REQ) == 0) {
312 			/* cmpset failed */
313 			continue;
314 		}
315 		error = tsleep(ncp, PINTERLOCKED, "clock", nclockwarn);
316 		if (error == EWOULDBLOCK) {
317 			if (didwarn == 0) {
318 				didwarn = ticks;
319 				kprintf("[diagnostic] cache_lock: blocked "
320 					"on %p",
321 					ncp);
322 				kprintf(" \"%*.*s\"\n",
323 					ncp->nc_nlen, ncp->nc_nlen,
324 					ncp->nc_name);
325 			}
326 		}
327 	}
328 	if (didwarn) {
329 		kprintf("[diagnostic] cache_lock: unblocked %*.*s after "
330 			"%d secs\n",
331 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
332 			(int)(ticks - didwarn) / hz);
333 	}
334 }
335 
336 /*
337  * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
338  *	 such as the case where one of its children is locked.
339  *
340  * MPSAFE
341  */
342 static
343 int
344 _cache_lock_nonblock(struct namecache *ncp)
345 {
346 	thread_t td;
347 	u_int count;
348 
349 	td = curthread;
350 
351 	for (;;) {
352 		count = ncp->nc_exlocks;
353 
354 		if (count == 0) {
355 			if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
356 				/*
357 				 * The vp associated with a locked ncp must
358 				 * be held to prevent it from being recycled.
359 				 *
360 				 * WARNING!  If VRECLAIMED is set the vnode
361 				 * could already be in the middle of a recycle.
362 				 * Callers must use cache_vref() or
363 				 * cache_vget() on the locked ncp to
364 				 * validate the vp or set the cache entry
365 				 * to unresolved.
366 				 *
367 				 * NOTE! vhold() is allowed if we hold a
368 				 *	 lock on the ncp (which we do).
369 				 */
370 				ncp->nc_locktd = td;
371 				if (ncp->nc_vp)
372 					vhold(ncp->nc_vp);	/* MPSAFE */
373 				break;
374 			}
375 			/* cmpset failed */
376 			continue;
377 		}
378 		if (ncp->nc_locktd == td) {
379 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
380 					      count + 1)) {
381 				break;
382 			}
383 			/* cmpset failed */
384 			continue;
385 		}
386 		return(EWOULDBLOCK);
387 	}
388 	return(0);
389 }
390 
391 /*
392  * Helper function
393  *
394  * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
395  *
396  *	 nc_locktd must be NULLed out prior to nc_exlocks getting cleared.
397  *
398  * MPSAFE
399  */
400 static
401 void
402 _cache_unlock(struct namecache *ncp)
403 {
404 	thread_t td __debugvar = curthread;
405 	u_int count;
406 
407 	KKASSERT(ncp->nc_refs >= 0);
408 	KKASSERT(ncp->nc_exlocks > 0);
409 	KKASSERT(ncp->nc_locktd == td);
410 
411 	count = ncp->nc_exlocks;
412 	if ((count & ~NC_EXLOCK_REQ) == 1) {
413 		ncp->nc_locktd = NULL;
414 		if (ncp->nc_vp)
415 			vdrop(ncp->nc_vp);
416 	}
417 	for (;;) {
418 		if ((count & ~NC_EXLOCK_REQ) == 1) {
419 			if (atomic_cmpset_int(&ncp->nc_exlocks, count, 0)) {
420 				if (count & NC_EXLOCK_REQ)
421 					wakeup(ncp);
422 				break;
423 			}
424 		} else {
425 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
426 					      count - 1)) {
427 				break;
428 			}
429 		}
430 		count = ncp->nc_exlocks;
431 	}
432 }
433 
434 
435 /*
436  * cache_hold() and cache_drop() prevent the premature deletion of a
437  * namecache entry but do not prevent operations (such as zapping) on
438  * that namecache entry.
439  *
440  * This routine may only be called from outside this source module if
441  * nc_refs is already at least 1.
442  *
443  * This is a rare case where callers are allowed to hold a spinlock,
444  * so we can't ourselves.
445  *
446  * MPSAFE
447  */
448 static __inline
449 struct namecache *
450 _cache_hold(struct namecache *ncp)
451 {
452 	atomic_add_int(&ncp->nc_refs, 1);
453 	return(ncp);
454 }
455 
456 /*
457  * Drop a cache entry, taking care to deal with races.
458  *
459  * For potential 1->0 transitions we must hold the ncp lock to safely
460  * test its flags.  An unresolved entry with no children must be zapped
461  * to avoid leaks.
462  *
463  * The call to cache_zap() itself will handle all remaining races and
464  * will decrement the ncp's refs regardless.  If we are resolved or
465  * have children nc_refs can safely be dropped to 0 without having to
466  * zap the entry.
467  *
468  * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
469  *
470  * NOTE: cache_zap() may return a non-NULL referenced parent which must
471  *	 be dropped in a loop.
472  *
473  * MPSAFE
474  */
475 static __inline
476 void
477 _cache_drop(struct namecache *ncp)
478 {
479 	int refs;
480 
481 	while (ncp) {
482 		KKASSERT(ncp->nc_refs > 0);
483 		refs = ncp->nc_refs;
484 
485 		if (refs == 1) {
486 			if (_cache_lock_nonblock(ncp) == 0) {
487 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
488 				if ((ncp->nc_flag & NCF_UNRESOLVED) &&
489 				    TAILQ_EMPTY(&ncp->nc_list)) {
490 					ncp = cache_zap(ncp, 1);
491 					continue;
492 				}
493 				if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
494 					_cache_unlock(ncp);
495 					break;
496 				}
497 				_cache_unlock(ncp);
498 			}
499 		} else {
500 			if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
501 				break;
502 		}
503 		cpu_pause();
504 	}
505 }
506 
507 /*
508  * Link a new namecache entry to its parent and to the hash table.  Be
509  * careful to avoid races if vhold() blocks in the future.
510  *
511  * Both ncp and par must be referenced and locked.
512  *
513  * NOTE: The hash table spinlock is likely held during this call, we
514  *	 can't do anything fancy.
515  *
516  * MPSAFE
517  */
518 static void
519 _cache_link_parent(struct namecache *ncp, struct namecache *par,
520 		   struct nchash_head *nchpp)
521 {
522 	KKASSERT(ncp->nc_parent == NULL);
523 	ncp->nc_parent = par;
524 	ncp->nc_head = nchpp;
525 
526 	/*
527 	 * Set inheritance flags.  Note that the parent flags may be
528 	 * stale due to getattr potentially not having been run yet
529 	 * (it gets run during nlookup()'s).
530 	 */
531 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
532 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
533 		ncp->nc_flag |= NCF_SF_PNOCACHE;
534 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
535 		ncp->nc_flag |= NCF_UF_PCACHE;
536 
537 	LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
538 
539 	if (TAILQ_EMPTY(&par->nc_list)) {
540 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
541 		/*
542 		 * Any vp associated with an ncp which has children must
543 		 * be held to prevent it from being recycled.
544 		 */
545 		if (par->nc_vp)
546 			vhold(par->nc_vp);
547 	} else {
548 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
549 	}
550 }
551 
552 /*
553  * Remove the parent and hash associations from a namecache structure.
554  * If this is the last child of the parent the cache_drop(par) will
555  * attempt to recursively zap the parent.
556  *
557  * ncp must be locked.  This routine will acquire a temporary lock on
558  * the parent as wlel as the appropriate hash chain.
559  *
560  * MPSAFE
561  */
562 static void
563 _cache_unlink_parent(struct namecache *ncp)
564 {
565 	struct namecache *par;
566 	struct vnode *dropvp;
567 
568 	if ((par = ncp->nc_parent) != NULL) {
569 		KKASSERT(ncp->nc_parent == par);
570 		_cache_hold(par);
571 		_cache_lock(par);
572 		spin_lock_wr(&ncp->nc_head->spin);
573 		LIST_REMOVE(ncp, nc_hash);
574 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
575 		dropvp = NULL;
576 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
577 			dropvp = par->nc_vp;
578 		spin_unlock_wr(&ncp->nc_head->spin);
579 		ncp->nc_parent = NULL;
580 		ncp->nc_head = NULL;
581 		_cache_unlock(par);
582 		_cache_drop(par);
583 
584 		/*
585 		 * We can only safely vdrop with no spinlocks held.
586 		 */
587 		if (dropvp)
588 			vdrop(dropvp);
589 	}
590 }
591 
592 /*
593  * Allocate a new namecache structure.  Most of the code does not require
594  * zero-termination of the string but it makes vop_compat_ncreate() easier.
595  *
596  * MPSAFE
597  */
598 static struct namecache *
599 cache_alloc(int nlen)
600 {
601 	struct namecache *ncp;
602 
603 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
604 	if (nlen)
605 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
606 	ncp->nc_nlen = nlen;
607 	ncp->nc_flag = NCF_UNRESOLVED;
608 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
609 	ncp->nc_refs = 1;
610 
611 	TAILQ_INIT(&ncp->nc_list);
612 	_cache_lock(ncp);
613 	return(ncp);
614 }
615 
616 /*
617  * Can only be called for the case where the ncp has never been
618  * associated with anything (so no spinlocks are needed).
619  *
620  * MPSAFE
621  */
622 static void
623 _cache_free(struct namecache *ncp)
624 {
625 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
626 	if (ncp->nc_name)
627 		kfree(ncp->nc_name, M_VFSCACHE);
628 	kfree(ncp, M_VFSCACHE);
629 }
630 
631 /*
632  * MPSAFE
633  */
634 void
635 cache_zero(struct nchandle *nch)
636 {
637 	nch->ncp = NULL;
638 	nch->mount = NULL;
639 }
640 
641 /*
642  * Ref and deref a namecache structure.
643  *
644  * The caller must specify a stable ncp pointer, typically meaning the
645  * ncp is already referenced but this can also occur indirectly through
646  * e.g. holding a lock on a direct child.
647  *
648  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
649  *	    use read spinlocks here.
650  *
651  * MPSAFE if nch is
652  */
653 struct nchandle *
654 cache_hold(struct nchandle *nch)
655 {
656 	_cache_hold(nch->ncp);
657 	atomic_add_int(&nch->mount->mnt_refs, 1);
658 	return(nch);
659 }
660 
661 /*
662  * Create a copy of a namecache handle for an already-referenced
663  * entry.
664  *
665  * MPSAFE if nch is
666  */
667 void
668 cache_copy(struct nchandle *nch, struct nchandle *target)
669 {
670 	*target = *nch;
671 	if (target->ncp)
672 		_cache_hold(target->ncp);
673 	atomic_add_int(&nch->mount->mnt_refs, 1);
674 }
675 
676 /*
677  * MPSAFE if nch is
678  */
679 void
680 cache_changemount(struct nchandle *nch, struct mount *mp)
681 {
682 	atomic_add_int(&nch->mount->mnt_refs, -1);
683 	nch->mount = mp;
684 	atomic_add_int(&nch->mount->mnt_refs, 1);
685 }
686 
687 /*
688  * MPSAFE
689  */
690 void
691 cache_drop(struct nchandle *nch)
692 {
693 	atomic_add_int(&nch->mount->mnt_refs, -1);
694 	_cache_drop(nch->ncp);
695 	nch->ncp = NULL;
696 	nch->mount = NULL;
697 }
698 
699 /*
700  * MPSAFE
701  */
702 void
703 cache_lock(struct nchandle *nch)
704 {
705 	_cache_lock(nch->ncp);
706 }
707 
708 /*
709  * Relock nch1 given an unlocked nch1 and a locked nch2.  The caller
710  * is responsible for checking both for validity on return as they
711  * may have become invalid.
712  *
713  * We have to deal with potential deadlocks here, just ping pong
714  * the lock until we get it (we will always block somewhere when
715  * looping so this is not cpu-intensive).
716  *
717  * which = 0	nch1 not locked, nch2 is locked
718  * which = 1	nch1 is locked, nch2 is not locked
719  */
720 void
721 cache_relock(struct nchandle *nch1, struct ucred *cred1,
722 	     struct nchandle *nch2, struct ucred *cred2)
723 {
724 	int which;
725 
726 	which = 0;
727 
728 	for (;;) {
729 		if (which == 0) {
730 			if (cache_lock_nonblock(nch1) == 0) {
731 				cache_resolve(nch1, cred1);
732 				break;
733 			}
734 			cache_unlock(nch2);
735 			cache_lock(nch1);
736 			cache_resolve(nch1, cred1);
737 			which = 1;
738 		} else {
739 			if (cache_lock_nonblock(nch2) == 0) {
740 				cache_resolve(nch2, cred2);
741 				break;
742 			}
743 			cache_unlock(nch1);
744 			cache_lock(nch2);
745 			cache_resolve(nch2, cred2);
746 			which = 0;
747 		}
748 	}
749 }
750 
751 /*
752  * MPSAFE
753  */
754 int
755 cache_lock_nonblock(struct nchandle *nch)
756 {
757 	return(_cache_lock_nonblock(nch->ncp));
758 }
759 
760 
761 /*
762  * MPSAFE
763  */
764 void
765 cache_unlock(struct nchandle *nch)
766 {
767 	_cache_unlock(nch->ncp);
768 }
769 
770 /*
771  * ref-and-lock, unlock-and-deref functions.
772  *
773  * This function is primarily used by nlookup.  Even though cache_lock
774  * holds the vnode, it is possible that the vnode may have already
775  * initiated a recyclement.
776  *
777  * We want cache_get() to return a definitively usable vnode or a
778  * definitively unresolved ncp.
779  *
780  * MPSAFE
781  */
782 static
783 struct namecache *
784 _cache_get(struct namecache *ncp)
785 {
786 	_cache_hold(ncp);
787 	_cache_lock(ncp);
788 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
789 		_cache_setunresolved(ncp);
790 	return(ncp);
791 }
792 
793 /*
794  * This is a special form of _cache_lock() which only succeeds if
795  * it can get a pristine, non-recursive lock.  The caller must have
796  * already ref'd the ncp.
797  *
798  * On success the ncp will be locked, on failure it will not.  The
799  * ref count does not change either way.
800  *
801  * We want _cache_lock_special() (on success) to return a definitively
802  * usable vnode or a definitively unresolved ncp.
803  *
804  * MPSAFE
805  */
806 static int
807 _cache_lock_special(struct namecache *ncp)
808 {
809 	if (_cache_lock_nonblock(ncp) == 0) {
810 		if ((ncp->nc_exlocks & ~NC_EXLOCK_REQ) == 1) {
811 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
812 				_cache_setunresolved(ncp);
813 			return(0);
814 		}
815 		_cache_unlock(ncp);
816 	}
817 	return(EWOULDBLOCK);
818 }
819 
820 
821 /*
822  * NOTE: The same nchandle can be passed for both arguments.
823  *
824  * MPSAFE
825  */
826 void
827 cache_get(struct nchandle *nch, struct nchandle *target)
828 {
829 	KKASSERT(nch->ncp->nc_refs > 0);
830 	target->mount = nch->mount;
831 	target->ncp = _cache_get(nch->ncp);
832 	atomic_add_int(&target->mount->mnt_refs, 1);
833 }
834 
835 /*
836  * MPSAFE
837  */
838 static __inline
839 void
840 _cache_put(struct namecache *ncp)
841 {
842 	_cache_unlock(ncp);
843 	_cache_drop(ncp);
844 }
845 
846 /*
847  * MPSAFE
848  */
849 void
850 cache_put(struct nchandle *nch)
851 {
852 	atomic_add_int(&nch->mount->mnt_refs, -1);
853 	_cache_put(nch->ncp);
854 	nch->ncp = NULL;
855 	nch->mount = NULL;
856 }
857 
858 /*
859  * Resolve an unresolved ncp by associating a vnode with it.  If the
860  * vnode is NULL, a negative cache entry is created.
861  *
862  * The ncp should be locked on entry and will remain locked on return.
863  *
864  * MPSAFE
865  */
866 static
867 void
868 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
869 {
870 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
871 
872 	if (vp != NULL) {
873 		/*
874 		 * Any vp associated with an ncp which has children must
875 		 * be held.  Any vp associated with a locked ncp must be held.
876 		 */
877 		if (!TAILQ_EMPTY(&ncp->nc_list))
878 			vhold(vp);
879 		spin_lock_wr(&vp->v_spinlock);
880 		ncp->nc_vp = vp;
881 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
882 		spin_unlock_wr(&vp->v_spinlock);
883 		if (ncp->nc_exlocks)
884 			vhold(vp);
885 
886 		/*
887 		 * Set auxiliary flags
888 		 */
889 		switch(vp->v_type) {
890 		case VDIR:
891 			ncp->nc_flag |= NCF_ISDIR;
892 			break;
893 		case VLNK:
894 			ncp->nc_flag |= NCF_ISSYMLINK;
895 			/* XXX cache the contents of the symlink */
896 			break;
897 		default:
898 			break;
899 		}
900 		atomic_add_int(&numcache, 1);
901 		ncp->nc_error = 0;
902 	} else {
903 		/*
904 		 * When creating a negative cache hit we set the
905 		 * namecache_gen.  A later resolve will clean out the
906 		 * negative cache hit if the mount point's namecache_gen
907 		 * has changed.  Used by devfs, could also be used by
908 		 * other remote FSs.
909 		 */
910 		ncp->nc_vp = NULL;
911 		spin_lock_wr(&ncspin);
912 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
913 		++numneg;
914 		spin_unlock_wr(&ncspin);
915 		ncp->nc_error = ENOENT;
916 		if (mp)
917 			ncp->nc_namecache_gen = mp->mnt_namecache_gen;
918 	}
919 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
920 }
921 
922 /*
923  * MPSAFE
924  */
925 void
926 cache_setvp(struct nchandle *nch, struct vnode *vp)
927 {
928 	_cache_setvp(nch->mount, nch->ncp, vp);
929 }
930 
931 /*
932  * MPSAFE
933  */
934 void
935 cache_settimeout(struct nchandle *nch, int nticks)
936 {
937 	struct namecache *ncp = nch->ncp;
938 
939 	if ((ncp->nc_timeout = ticks + nticks) == 0)
940 		ncp->nc_timeout = 1;
941 }
942 
943 /*
944  * Disassociate the vnode or negative-cache association and mark a
945  * namecache entry as unresolved again.  Note that the ncp is still
946  * left in the hash table and still linked to its parent.
947  *
948  * The ncp should be locked and refd on entry and will remain locked and refd
949  * on return.
950  *
951  * This routine is normally never called on a directory containing children.
952  * However, NFS often does just that in its rename() code as a cop-out to
953  * avoid complex namespace operations.  This disconnects a directory vnode
954  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
955  * sync.
956  *
957  * MPSAFE
958  */
959 static
960 void
961 _cache_setunresolved(struct namecache *ncp)
962 {
963 	struct vnode *vp;
964 
965 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
966 		ncp->nc_flag |= NCF_UNRESOLVED;
967 		ncp->nc_timeout = 0;
968 		ncp->nc_error = ENOTCONN;
969 		if ((vp = ncp->nc_vp) != NULL) {
970 			atomic_add_int(&numcache, -1);
971 			spin_lock_wr(&vp->v_spinlock);
972 			ncp->nc_vp = NULL;
973 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
974 			spin_unlock_wr(&vp->v_spinlock);
975 
976 			/*
977 			 * Any vp associated with an ncp with children is
978 			 * held by that ncp.  Any vp associated with a locked
979 			 * ncp is held by that ncp.  These conditions must be
980 			 * undone when the vp is cleared out from the ncp.
981 			 */
982 			if (!TAILQ_EMPTY(&ncp->nc_list))
983 				vdrop(vp);
984 			if (ncp->nc_exlocks)
985 				vdrop(vp);
986 		} else {
987 			spin_lock_wr(&ncspin);
988 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
989 			--numneg;
990 			spin_unlock_wr(&ncspin);
991 		}
992 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
993 	}
994 }
995 
996 /*
997  * The cache_nresolve() code calls this function to automatically
998  * set a resolved cache element to unresolved if it has timed out
999  * or if it is a negative cache hit and the mount point namecache_gen
1000  * has changed.
1001  *
1002  * MPSAFE
1003  */
1004 static __inline void
1005 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1006 {
1007 	/*
1008 	 * Already in an unresolved state, nothing to do.
1009 	 */
1010 	if (ncp->nc_flag & NCF_UNRESOLVED)
1011 		return;
1012 
1013 	/*
1014 	 * Try to zap entries that have timed out.  We have
1015 	 * to be careful here because locked leafs may depend
1016 	 * on the vnode remaining intact in a parent, so only
1017 	 * do this under very specific conditions.
1018 	 */
1019 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1020 	    TAILQ_EMPTY(&ncp->nc_list)) {
1021 		_cache_setunresolved(ncp);
1022 		return;
1023 	}
1024 
1025 	/*
1026 	 * If a resolved negative cache hit is invalid due to
1027 	 * the mount's namecache generation being bumped, zap it.
1028 	 */
1029 	if (ncp->nc_vp == NULL &&
1030 	    ncp->nc_namecache_gen != mp->mnt_namecache_gen) {
1031 		_cache_setunresolved(ncp);
1032 		return;
1033 	}
1034 }
1035 
1036 /*
1037  * MPSAFE
1038  */
1039 void
1040 cache_setunresolved(struct nchandle *nch)
1041 {
1042 	_cache_setunresolved(nch->ncp);
1043 }
1044 
1045 /*
1046  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1047  * looking for matches.  This flag tells the lookup code when it must
1048  * check for a mount linkage and also prevents the directories in question
1049  * from being deleted or renamed.
1050  *
1051  * MPSAFE
1052  */
1053 static
1054 int
1055 cache_clrmountpt_callback(struct mount *mp, void *data)
1056 {
1057 	struct nchandle *nch = data;
1058 
1059 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1060 		return(1);
1061 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1062 		return(1);
1063 	return(0);
1064 }
1065 
1066 /*
1067  * MPSAFE
1068  */
1069 void
1070 cache_clrmountpt(struct nchandle *nch)
1071 {
1072 	int count;
1073 
1074 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1075 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1076 	if (count == 0)
1077 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1078 }
1079 
1080 /*
1081  * Invalidate portions of the namecache topology given a starting entry.
1082  * The passed ncp is set to an unresolved state and:
1083  *
1084  * The passed ncp must be referencxed and locked.  The routine may unlock
1085  * and relock ncp several times, and will recheck the children and loop
1086  * to catch races.  When done the passed ncp will be returned with the
1087  * reference and lock intact.
1088  *
1089  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1090  *			  that the physical underlying nodes have been
1091  *			  destroyed... as in deleted.  For example, when
1092  *			  a directory is removed.  This will cause record
1093  *			  lookups on the name to no longer be able to find
1094  *			  the record and tells the resolver to return failure
1095  *			  rather then trying to resolve through the parent.
1096  *
1097  *			  The topology itself, including ncp->nc_name,
1098  *			  remains intact.
1099  *
1100  *			  This only applies to the passed ncp, if CINV_CHILDREN
1101  *			  is specified the children are not flagged.
1102  *
1103  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1104  *			  state as well.
1105  *
1106  *			  Note that this will also have the side effect of
1107  *			  cleaning out any unreferenced nodes in the topology
1108  *			  from the leaves up as the recursion backs out.
1109  *
1110  * Note that the topology for any referenced nodes remains intact, but
1111  * the nodes will be marked as having been destroyed and will be set
1112  * to an unresolved state.
1113  *
1114  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1115  * the namecache entry may not actually be invalidated on return if it was
1116  * revalidated while recursing down into its children.  This code guarentees
1117  * that the node(s) will go through an invalidation cycle, but does not
1118  * guarentee that they will remain in an invalidated state.
1119  *
1120  * Returns non-zero if a revalidation was detected during the invalidation
1121  * recursion, zero otherwise.  Note that since only the original ncp is
1122  * locked the revalidation ultimately can only indicate that the original ncp
1123  * *MIGHT* no have been reresolved.
1124  *
1125  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1126  * have to avoid blowing out the kernel stack.  We do this by saving the
1127  * deep namecache node and aborting the recursion, then re-recursing at that
1128  * node using a depth-first algorithm in order to allow multiple deep
1129  * recursions to chain through each other, then we restart the invalidation
1130  * from scratch.
1131  *
1132  * MPSAFE
1133  */
1134 
1135 struct cinvtrack {
1136 	struct namecache *resume_ncp;
1137 	int depth;
1138 };
1139 
1140 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1141 
1142 static
1143 int
1144 _cache_inval(struct namecache *ncp, int flags)
1145 {
1146 	struct cinvtrack track;
1147 	struct namecache *ncp2;
1148 	int r;
1149 
1150 	track.depth = 0;
1151 	track.resume_ncp = NULL;
1152 
1153 	for (;;) {
1154 		r = _cache_inval_internal(ncp, flags, &track);
1155 		if (track.resume_ncp == NULL)
1156 			break;
1157 		kprintf("Warning: deep namecache recursion at %s\n",
1158 			ncp->nc_name);
1159 		_cache_unlock(ncp);
1160 		while ((ncp2 = track.resume_ncp) != NULL) {
1161 			track.resume_ncp = NULL;
1162 			_cache_lock(ncp2);
1163 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1164 					     &track);
1165 			_cache_put(ncp2);
1166 		}
1167 		_cache_lock(ncp);
1168 	}
1169 	return(r);
1170 }
1171 
1172 int
1173 cache_inval(struct nchandle *nch, int flags)
1174 {
1175 	return(_cache_inval(nch->ncp, flags));
1176 }
1177 
1178 /*
1179  * Helper for _cache_inval().  The passed ncp is refd and locked and
1180  * remains that way on return, but may be unlocked/relocked multiple
1181  * times by the routine.
1182  */
1183 static int
1184 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1185 {
1186 	struct namecache *kid;
1187 	struct namecache *nextkid;
1188 	int rcnt = 0;
1189 
1190 	KKASSERT(ncp->nc_exlocks);
1191 
1192 	_cache_setunresolved(ncp);
1193 	if (flags & CINV_DESTROY)
1194 		ncp->nc_flag |= NCF_DESTROYED;
1195 	if ((flags & CINV_CHILDREN) &&
1196 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1197 	) {
1198 		_cache_hold(kid);
1199 		if (++track->depth > MAX_RECURSION_DEPTH) {
1200 			track->resume_ncp = ncp;
1201 			_cache_hold(ncp);
1202 			++rcnt;
1203 		}
1204 		_cache_unlock(ncp);
1205 		while (kid) {
1206 			if (track->resume_ncp) {
1207 				_cache_drop(kid);
1208 				break;
1209 			}
1210 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1211 				_cache_hold(nextkid);
1212 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1213 			    TAILQ_FIRST(&kid->nc_list)
1214 			) {
1215 				_cache_lock(kid);
1216 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1217 				_cache_unlock(kid);
1218 			}
1219 			_cache_drop(kid);
1220 			kid = nextkid;
1221 		}
1222 		--track->depth;
1223 		_cache_lock(ncp);
1224 	}
1225 
1226 	/*
1227 	 * Someone could have gotten in there while ncp was unlocked,
1228 	 * retry if so.
1229 	 */
1230 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1231 		++rcnt;
1232 	return (rcnt);
1233 }
1234 
1235 /*
1236  * Invalidate a vnode's namecache associations.  To avoid races against
1237  * the resolver we do not invalidate a node which we previously invalidated
1238  * but which was then re-resolved while we were in the invalidation loop.
1239  *
1240  * Returns non-zero if any namecache entries remain after the invalidation
1241  * loop completed.
1242  *
1243  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1244  *	 be ripped out of the topology while held, the vnode's v_namecache
1245  *	 list has no such restriction.  NCP's can be ripped out of the list
1246  *	 at virtually any time if not locked, even if held.
1247  *
1248  *	 In addition, the v_namecache list itself must be locked via
1249  *	 the vnode's spinlock.
1250  *
1251  * MPSAFE
1252  */
1253 int
1254 cache_inval_vp(struct vnode *vp, int flags)
1255 {
1256 	struct namecache *ncp;
1257 	struct namecache *next;
1258 
1259 restart:
1260 	spin_lock_wr(&vp->v_spinlock);
1261 	ncp = TAILQ_FIRST(&vp->v_namecache);
1262 	if (ncp)
1263 		_cache_hold(ncp);
1264 	while (ncp) {
1265 		/* loop entered with ncp held and vp spin-locked */
1266 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1267 			_cache_hold(next);
1268 		spin_unlock_wr(&vp->v_spinlock);
1269 		_cache_lock(ncp);
1270 		if (ncp->nc_vp != vp) {
1271 			kprintf("Warning: cache_inval_vp: race-A detected on "
1272 				"%s\n", ncp->nc_name);
1273 			_cache_put(ncp);
1274 			if (next)
1275 				_cache_drop(next);
1276 			goto restart;
1277 		}
1278 		_cache_inval(ncp, flags);
1279 		_cache_put(ncp);		/* also releases reference */
1280 		ncp = next;
1281 		spin_lock_wr(&vp->v_spinlock);
1282 		if (ncp && ncp->nc_vp != vp) {
1283 			spin_unlock_wr(&vp->v_spinlock);
1284 			kprintf("Warning: cache_inval_vp: race-B detected on "
1285 				"%s\n", ncp->nc_name);
1286 			_cache_drop(ncp);
1287 			goto restart;
1288 		}
1289 	}
1290 	spin_unlock_wr(&vp->v_spinlock);
1291 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1292 }
1293 
1294 /*
1295  * This routine is used instead of the normal cache_inval_vp() when we
1296  * are trying to recycle otherwise good vnodes.
1297  *
1298  * Return 0 on success, non-zero if not all namecache records could be
1299  * disassociated from the vnode (for various reasons).
1300  *
1301  * MPSAFE
1302  */
1303 int
1304 cache_inval_vp_nonblock(struct vnode *vp)
1305 {
1306 	struct namecache *ncp;
1307 	struct namecache *next;
1308 
1309 	spin_lock_wr(&vp->v_spinlock);
1310 	ncp = TAILQ_FIRST(&vp->v_namecache);
1311 	if (ncp)
1312 		_cache_hold(ncp);
1313 	while (ncp) {
1314 		/* loop entered with ncp held */
1315 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1316 			_cache_hold(next);
1317 		spin_unlock_wr(&vp->v_spinlock);
1318 		if (_cache_lock_nonblock(ncp)) {
1319 			_cache_drop(ncp);
1320 			if (next)
1321 				_cache_drop(next);
1322 			goto done;
1323 		}
1324 		if (ncp->nc_vp != vp) {
1325 			kprintf("Warning: cache_inval_vp: race-A detected on "
1326 				"%s\n", ncp->nc_name);
1327 			_cache_put(ncp);
1328 			if (next)
1329 				_cache_drop(next);
1330 			goto done;
1331 		}
1332 		_cache_inval(ncp, 0);
1333 		_cache_put(ncp);		/* also releases reference */
1334 		ncp = next;
1335 		spin_lock_wr(&vp->v_spinlock);
1336 		if (ncp && ncp->nc_vp != vp) {
1337 			spin_unlock_wr(&vp->v_spinlock);
1338 			kprintf("Warning: cache_inval_vp: race-B detected on "
1339 				"%s\n", ncp->nc_name);
1340 			_cache_drop(ncp);
1341 			goto done;
1342 		}
1343 	}
1344 	spin_unlock_wr(&vp->v_spinlock);
1345 done:
1346 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1347 }
1348 
1349 /*
1350  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1351  * must be locked.  The target ncp is destroyed (as a normal rename-over
1352  * would destroy the target file or directory).
1353  *
1354  * Because there may be references to the source ncp we cannot copy its
1355  * contents to the target.  Instead the source ncp is relinked as the target
1356  * and the target ncp is removed from the namecache topology.
1357  *
1358  * MPSAFE
1359  */
1360 void
1361 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1362 {
1363 	struct namecache *fncp = fnch->ncp;
1364 	struct namecache *tncp = tnch->ncp;
1365 	struct namecache *tncp_par;
1366 	struct nchash_head *nchpp;
1367 	u_int32_t hash;
1368 	char *oname;
1369 
1370 	/*
1371 	 * Rename fncp (unlink)
1372 	 */
1373 	_cache_unlink_parent(fncp);
1374 	oname = fncp->nc_name;
1375 	fncp->nc_name = tncp->nc_name;
1376 	fncp->nc_nlen = tncp->nc_nlen;
1377 	tncp_par = tncp->nc_parent;
1378 	_cache_hold(tncp_par);
1379 	_cache_lock(tncp_par);
1380 
1381 	/*
1382 	 * Rename fncp (relink)
1383 	 */
1384 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1385 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1386 	nchpp = NCHHASH(hash);
1387 
1388 	spin_lock_wr(&nchpp->spin);
1389 	_cache_link_parent(fncp, tncp_par, nchpp);
1390 	spin_unlock_wr(&nchpp->spin);
1391 
1392 	_cache_put(tncp_par);
1393 
1394 	/*
1395 	 * Get rid of the overwritten tncp (unlink)
1396 	 */
1397 	_cache_setunresolved(tncp);
1398 	_cache_unlink_parent(tncp);
1399 	tncp->nc_name = NULL;
1400 	tncp->nc_nlen = 0;
1401 
1402 	if (oname)
1403 		kfree(oname, M_VFSCACHE);
1404 }
1405 
1406 /*
1407  * vget the vnode associated with the namecache entry.  Resolve the namecache
1408  * entry if necessary.  The passed ncp must be referenced and locked.
1409  *
1410  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1411  * (depending on the passed lk_type) will be returned in *vpp with an error
1412  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1413  * most typical error is ENOENT, meaning that the ncp represents a negative
1414  * cache hit and there is no vnode to retrieve, but other errors can occur
1415  * too.
1416  *
1417  * The vget() can race a reclaim.  If this occurs we re-resolve the
1418  * namecache entry.
1419  *
1420  * There are numerous places in the kernel where vget() is called on a
1421  * vnode while one or more of its namecache entries is locked.  Releasing
1422  * a vnode never deadlocks against locked namecache entries (the vnode
1423  * will not get recycled while referenced ncp's exist).  This means we
1424  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1425  * lock when acquiring the vp lock or we might cause a deadlock.
1426  *
1427  * MPSAFE
1428  */
1429 int
1430 cache_vget(struct nchandle *nch, struct ucred *cred,
1431 	   int lk_type, struct vnode **vpp)
1432 {
1433 	struct namecache *ncp;
1434 	struct vnode *vp;
1435 	int error;
1436 
1437 	ncp = nch->ncp;
1438 	KKASSERT(ncp->nc_locktd == curthread);
1439 again:
1440 	vp = NULL;
1441 	if (ncp->nc_flag & NCF_UNRESOLVED)
1442 		error = cache_resolve(nch, cred);
1443 	else
1444 		error = 0;
1445 
1446 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1447 		error = vget(vp, lk_type);
1448 		if (error) {
1449 			/*
1450 			 * VRECLAIM race
1451 			 */
1452 			if (error == ENOENT) {
1453 				kprintf("Warning: vnode reclaim race detected "
1454 					"in cache_vget on %p (%s)\n",
1455 					vp, ncp->nc_name);
1456 				_cache_setunresolved(ncp);
1457 				goto again;
1458 			}
1459 
1460 			/*
1461 			 * Not a reclaim race, some other error.
1462 			 */
1463 			KKASSERT(ncp->nc_vp == vp);
1464 			vp = NULL;
1465 		} else {
1466 			KKASSERT(ncp->nc_vp == vp);
1467 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1468 		}
1469 	}
1470 	if (error == 0 && vp == NULL)
1471 		error = ENOENT;
1472 	*vpp = vp;
1473 	return(error);
1474 }
1475 
1476 int
1477 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1478 {
1479 	struct namecache *ncp;
1480 	struct vnode *vp;
1481 	int error;
1482 
1483 	ncp = nch->ncp;
1484 	KKASSERT(ncp->nc_locktd == curthread);
1485 again:
1486 	vp = NULL;
1487 	if (ncp->nc_flag & NCF_UNRESOLVED)
1488 		error = cache_resolve(nch, cred);
1489 	else
1490 		error = 0;
1491 
1492 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1493 		error = vget(vp, LK_SHARED);
1494 		if (error) {
1495 			/*
1496 			 * VRECLAIM race
1497 			 */
1498 			if (error == ENOENT) {
1499 				kprintf("Warning: vnode reclaim race detected "
1500 					"in cache_vget on %p (%s)\n",
1501 					vp, ncp->nc_name);
1502 				_cache_setunresolved(ncp);
1503 				goto again;
1504 			}
1505 
1506 			/*
1507 			 * Not a reclaim race, some other error.
1508 			 */
1509 			KKASSERT(ncp->nc_vp == vp);
1510 			vp = NULL;
1511 		} else {
1512 			KKASSERT(ncp->nc_vp == vp);
1513 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1514 			/* caller does not want a lock */
1515 			vn_unlock(vp);
1516 		}
1517 	}
1518 	if (error == 0 && vp == NULL)
1519 		error = ENOENT;
1520 	*vpp = vp;
1521 	return(error);
1522 }
1523 
1524 /*
1525  * Return a referenced vnode representing the parent directory of
1526  * ncp.
1527  *
1528  * Because the caller has locked the ncp it should not be possible for
1529  * the parent ncp to go away.  However, the parent can unresolve its
1530  * dvp at any time so we must be able to acquire a lock on the parent
1531  * to safely access nc_vp.
1532  *
1533  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
1534  * so use vhold()/vdrop() while holding the lock to prevent dvp from
1535  * getting destroyed.
1536  *
1537  * MPSAFE - Note vhold() is allowed when dvp has 0 refs if we hold a
1538  *	    lock on the ncp in question..
1539  */
1540 static struct vnode *
1541 cache_dvpref(struct namecache *ncp)
1542 {
1543 	struct namecache *par;
1544 	struct vnode *dvp;
1545 
1546 	dvp = NULL;
1547 	if ((par = ncp->nc_parent) != NULL) {
1548 		_cache_hold(par);
1549 		_cache_lock(par);
1550 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1551 			if ((dvp = par->nc_vp) != NULL)
1552 				vhold(dvp);
1553 		}
1554 		_cache_unlock(par);
1555 		if (dvp) {
1556 			if (vget(dvp, LK_SHARED) == 0) {
1557 				vn_unlock(dvp);
1558 				vdrop(dvp);
1559 				/* return refd, unlocked dvp */
1560 			} else {
1561 				vdrop(dvp);
1562 				dvp = NULL;
1563 			}
1564 		}
1565 		_cache_drop(par);
1566 	}
1567 	return(dvp);
1568 }
1569 
1570 /*
1571  * Convert a directory vnode to a namecache record without any other
1572  * knowledge of the topology.  This ONLY works with directory vnodes and
1573  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1574  * returned ncp (if not NULL) will be held and unlocked.
1575  *
1576  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1577  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1578  * for dvp.  This will fail only if the directory has been deleted out from
1579  * under the caller.
1580  *
1581  * Callers must always check for a NULL return no matter the value of 'makeit'.
1582  *
1583  * To avoid underflowing the kernel stack each recursive call increments
1584  * the makeit variable.
1585  */
1586 
1587 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1588 				  struct vnode *dvp, char *fakename);
1589 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1590 				  struct vnode **saved_dvp);
1591 
1592 int
1593 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1594 	      struct nchandle *nch)
1595 {
1596 	struct vnode *saved_dvp;
1597 	struct vnode *pvp;
1598 	char *fakename;
1599 	int error;
1600 
1601 	nch->ncp = NULL;
1602 	nch->mount = dvp->v_mount;
1603 	saved_dvp = NULL;
1604 	fakename = NULL;
1605 
1606 	/*
1607 	 * Handle the makeit == 0 degenerate case
1608 	 */
1609 	if (makeit == 0) {
1610 		spin_lock_wr(&dvp->v_spinlock);
1611 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1612 		if (nch->ncp)
1613 			cache_hold(nch);
1614 		spin_unlock_wr(&dvp->v_spinlock);
1615 	}
1616 
1617 	/*
1618 	 * Loop until resolution, inside code will break out on error.
1619 	 */
1620 	while (makeit) {
1621 		/*
1622 		 * Break out if we successfully acquire a working ncp.
1623 		 */
1624 		spin_lock_wr(&dvp->v_spinlock);
1625 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1626 		if (nch->ncp) {
1627 			cache_hold(nch);
1628 			spin_unlock_wr(&dvp->v_spinlock);
1629 			break;
1630 		}
1631 		spin_unlock_wr(&dvp->v_spinlock);
1632 
1633 		/*
1634 		 * If dvp is the root of its filesystem it should already
1635 		 * have a namecache pointer associated with it as a side
1636 		 * effect of the mount, but it may have been disassociated.
1637 		 */
1638 		if (dvp->v_flag & VROOT) {
1639 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1640 			error = cache_resolve_mp(nch->mount);
1641 			_cache_put(nch->ncp);
1642 			if (ncvp_debug) {
1643 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
1644 					dvp->v_mount, error);
1645 			}
1646 			if (error) {
1647 				if (ncvp_debug)
1648 					kprintf(" failed\n");
1649 				nch->ncp = NULL;
1650 				break;
1651 			}
1652 			if (ncvp_debug)
1653 				kprintf(" succeeded\n");
1654 			continue;
1655 		}
1656 
1657 		/*
1658 		 * If we are recursed too deeply resort to an O(n^2)
1659 		 * algorithm to resolve the namecache topology.  The
1660 		 * resolved pvp is left referenced in saved_dvp to
1661 		 * prevent the tree from being destroyed while we loop.
1662 		 */
1663 		if (makeit > 20) {
1664 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1665 			if (error) {
1666 				kprintf("lookupdotdot(longpath) failed %d "
1667 				       "dvp %p\n", error, dvp);
1668 				nch->ncp = NULL;
1669 				break;
1670 			}
1671 			continue;
1672 		}
1673 
1674 		/*
1675 		 * Get the parent directory and resolve its ncp.
1676 		 */
1677 		if (fakename) {
1678 			kfree(fakename, M_TEMP);
1679 			fakename = NULL;
1680 		}
1681 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1682 					  &fakename);
1683 		if (error) {
1684 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1685 			break;
1686 		}
1687 		vn_unlock(pvp);
1688 
1689 		/*
1690 		 * Reuse makeit as a recursion depth counter.  On success
1691 		 * nch will be fully referenced.
1692 		 */
1693 		cache_fromdvp(pvp, cred, makeit + 1, nch);
1694 		vrele(pvp);
1695 		if (nch->ncp == NULL)
1696 			break;
1697 
1698 		/*
1699 		 * Do an inefficient scan of pvp (embodied by ncp) to look
1700 		 * for dvp.  This will create a namecache record for dvp on
1701 		 * success.  We loop up to recheck on success.
1702 		 *
1703 		 * ncp and dvp are both held but not locked.
1704 		 */
1705 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
1706 		if (error) {
1707 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1708 				pvp, nch->ncp->nc_name, dvp);
1709 			cache_drop(nch);
1710 			/* nch was NULLed out, reload mount */
1711 			nch->mount = dvp->v_mount;
1712 			break;
1713 		}
1714 		if (ncvp_debug) {
1715 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1716 				pvp, nch->ncp->nc_name);
1717 		}
1718 		cache_drop(nch);
1719 		/* nch was NULLed out, reload mount */
1720 		nch->mount = dvp->v_mount;
1721 	}
1722 
1723 	/*
1724 	 * If nch->ncp is non-NULL it will have been held already.
1725 	 */
1726 	if (fakename)
1727 		kfree(fakename, M_TEMP);
1728 	if (saved_dvp)
1729 		vrele(saved_dvp);
1730 	if (nch->ncp)
1731 		return (0);
1732 	return (EINVAL);
1733 }
1734 
1735 /*
1736  * Go up the chain of parent directories until we find something
1737  * we can resolve into the namecache.  This is very inefficient.
1738  */
1739 static
1740 int
1741 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1742 		  struct vnode **saved_dvp)
1743 {
1744 	struct nchandle nch;
1745 	struct vnode *pvp;
1746 	int error;
1747 	static time_t last_fromdvp_report;
1748 	char *fakename;
1749 
1750 	/*
1751 	 * Loop getting the parent directory vnode until we get something we
1752 	 * can resolve in the namecache.
1753 	 */
1754 	vref(dvp);
1755 	nch.mount = dvp->v_mount;
1756 	nch.ncp = NULL;
1757 	fakename = NULL;
1758 
1759 	for (;;) {
1760 		if (fakename) {
1761 			kfree(fakename, M_TEMP);
1762 			fakename = NULL;
1763 		}
1764 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1765 					  &fakename);
1766 		if (error) {
1767 			vrele(dvp);
1768 			break;
1769 		}
1770 		vn_unlock(pvp);
1771 		spin_lock_wr(&pvp->v_spinlock);
1772 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1773 			_cache_hold(nch.ncp);
1774 			spin_unlock_wr(&pvp->v_spinlock);
1775 			vrele(pvp);
1776 			break;
1777 		}
1778 		spin_unlock_wr(&pvp->v_spinlock);
1779 		if (pvp->v_flag & VROOT) {
1780 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1781 			error = cache_resolve_mp(nch.mount);
1782 			_cache_unlock(nch.ncp);
1783 			vrele(pvp);
1784 			if (error) {
1785 				_cache_drop(nch.ncp);
1786 				nch.ncp = NULL;
1787 				vrele(dvp);
1788 			}
1789 			break;
1790 		}
1791 		vrele(dvp);
1792 		dvp = pvp;
1793 	}
1794 	if (error == 0) {
1795 		if (last_fromdvp_report != time_second) {
1796 			last_fromdvp_report = time_second;
1797 			kprintf("Warning: extremely inefficient path "
1798 				"resolution on %s\n",
1799 				nch.ncp->nc_name);
1800 		}
1801 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1802 
1803 		/*
1804 		 * Hopefully dvp now has a namecache record associated with
1805 		 * it.  Leave it referenced to prevent the kernel from
1806 		 * recycling the vnode.  Otherwise extremely long directory
1807 		 * paths could result in endless recycling.
1808 		 */
1809 		if (*saved_dvp)
1810 		    vrele(*saved_dvp);
1811 		*saved_dvp = dvp;
1812 		_cache_drop(nch.ncp);
1813 	}
1814 	if (fakename)
1815 		kfree(fakename, M_TEMP);
1816 	return (error);
1817 }
1818 
1819 /*
1820  * Do an inefficient scan of the directory represented by ncp looking for
1821  * the directory vnode dvp.  ncp must be held but not locked on entry and
1822  * will be held on return.  dvp must be refd but not locked on entry and
1823  * will remain refd on return.
1824  *
1825  * Why do this at all?  Well, due to its stateless nature the NFS server
1826  * converts file handles directly to vnodes without necessarily going through
1827  * the namecache ops that would otherwise create the namecache topology
1828  * leading to the vnode.  We could either (1) Change the namecache algorithms
1829  * to allow disconnect namecache records that are re-merged opportunistically,
1830  * or (2) Make the NFS server backtrack and scan to recover a connected
1831  * namecache topology in order to then be able to issue new API lookups.
1832  *
1833  * It turns out that (1) is a huge mess.  It takes a nice clean set of
1834  * namecache algorithms and introduces a lot of complication in every subsystem
1835  * that calls into the namecache to deal with the re-merge case, especially
1836  * since we are using the namecache to placehold negative lookups and the
1837  * vnode might not be immediately assigned. (2) is certainly far less
1838  * efficient then (1), but since we are only talking about directories here
1839  * (which are likely to remain cached), the case does not actually run all
1840  * that often and has the supreme advantage of not polluting the namecache
1841  * algorithms.
1842  *
1843  * If a fakename is supplied just construct a namecache entry using the
1844  * fake name.
1845  */
1846 static int
1847 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1848 		       struct vnode *dvp, char *fakename)
1849 {
1850 	struct nlcomponent nlc;
1851 	struct nchandle rncp;
1852 	struct dirent *den;
1853 	struct vnode *pvp;
1854 	struct vattr vat;
1855 	struct iovec iov;
1856 	struct uio uio;
1857 	int blksize;
1858 	int eofflag;
1859 	int bytes;
1860 	char *rbuf;
1861 	int error;
1862 
1863 	vat.va_blocksize = 0;
1864 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1865 		return (error);
1866 	cache_lock(nch);
1867 	error = cache_vref(nch, cred, &pvp);
1868 	cache_unlock(nch);
1869 	if (error)
1870 		return (error);
1871 	if (ncvp_debug) {
1872 		kprintf("inefficient_scan: directory iosize %ld "
1873 			"vattr fileid = %lld\n",
1874 			vat.va_blocksize,
1875 			(long long)vat.va_fileid);
1876 	}
1877 
1878 	/*
1879 	 * Use the supplied fakename if not NULL.  Fake names are typically
1880 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
1881 	 * to glue @@timestamp recursions together.
1882 	 */
1883 	if (fakename) {
1884 		nlc.nlc_nameptr = fakename;
1885 		nlc.nlc_namelen = strlen(fakename);
1886 		rncp = cache_nlookup(nch, &nlc);
1887 		goto done;
1888 	}
1889 
1890 	if ((blksize = vat.va_blocksize) == 0)
1891 		blksize = DEV_BSIZE;
1892 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1893 	rncp.ncp = NULL;
1894 
1895 	eofflag = 0;
1896 	uio.uio_offset = 0;
1897 again:
1898 	iov.iov_base = rbuf;
1899 	iov.iov_len = blksize;
1900 	uio.uio_iov = &iov;
1901 	uio.uio_iovcnt = 1;
1902 	uio.uio_resid = blksize;
1903 	uio.uio_segflg = UIO_SYSSPACE;
1904 	uio.uio_rw = UIO_READ;
1905 	uio.uio_td = curthread;
1906 
1907 	if (ncvp_debug >= 2)
1908 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1909 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1910 	if (error == 0) {
1911 		den = (struct dirent *)rbuf;
1912 		bytes = blksize - uio.uio_resid;
1913 
1914 		while (bytes > 0) {
1915 			if (ncvp_debug >= 2) {
1916 				kprintf("cache_inefficient_scan: %*.*s\n",
1917 					den->d_namlen, den->d_namlen,
1918 					den->d_name);
1919 			}
1920 			if (den->d_type != DT_WHT &&
1921 			    den->d_ino == vat.va_fileid) {
1922 				if (ncvp_debug) {
1923 					kprintf("cache_inefficient_scan: "
1924 					       "MATCHED inode %lld path %s/%*.*s\n",
1925 					       (long long)vat.va_fileid,
1926 					       nch->ncp->nc_name,
1927 					       den->d_namlen, den->d_namlen,
1928 					       den->d_name);
1929 				}
1930 				nlc.nlc_nameptr = den->d_name;
1931 				nlc.nlc_namelen = den->d_namlen;
1932 				rncp = cache_nlookup(nch, &nlc);
1933 				KKASSERT(rncp.ncp != NULL);
1934 				break;
1935 			}
1936 			bytes -= _DIRENT_DIRSIZ(den);
1937 			den = _DIRENT_NEXT(den);
1938 		}
1939 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1940 			goto again;
1941 	}
1942 	kfree(rbuf, M_TEMP);
1943 done:
1944 	vrele(pvp);
1945 	if (rncp.ncp) {
1946 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1947 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
1948 			if (ncvp_debug >= 2) {
1949 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1950 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1951 			}
1952 		} else {
1953 			if (ncvp_debug >= 2) {
1954 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1955 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1956 					rncp.ncp->nc_vp);
1957 			}
1958 		}
1959 		if (rncp.ncp->nc_vp == NULL)
1960 			error = rncp.ncp->nc_error;
1961 		/*
1962 		 * Release rncp after a successful nlookup.  rncp was fully
1963 		 * referenced.
1964 		 */
1965 		cache_put(&rncp);
1966 	} else {
1967 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1968 			dvp, nch->ncp->nc_name);
1969 		error = ENOENT;
1970 	}
1971 	return (error);
1972 }
1973 
1974 /*
1975  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1976  * state, which disassociates it from its vnode or ncneglist.
1977  *
1978  * Then, if there are no additional references to the ncp and no children,
1979  * the ncp is removed from the topology and destroyed.
1980  *
1981  * References and/or children may exist if the ncp is in the middle of the
1982  * topology, preventing the ncp from being destroyed.
1983  *
1984  * This function must be called with the ncp held and locked and will unlock
1985  * and drop it during zapping.
1986  *
1987  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
1988  * This case can occur in the cache_drop() path.
1989  *
1990  * This function may returned a held (but NOT locked) parent node which the
1991  * caller must drop.  We do this so _cache_drop() can loop, to avoid
1992  * blowing out the kernel stack.
1993  *
1994  * WARNING!  For MPSAFE operation this routine must acquire up to three
1995  *	     spin locks to be able to safely test nc_refs.  Lock order is
1996  *	     very important.
1997  *
1998  *	     hash spinlock if on hash list
1999  *	     parent spinlock if child of parent
2000  *	     (the ncp is unresolved so there is no vnode association)
2001  */
2002 static struct namecache *
2003 cache_zap(struct namecache *ncp, int nonblock)
2004 {
2005 	struct namecache *par;
2006 	struct vnode *dropvp;
2007 	int refs;
2008 
2009 	/*
2010 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2011 	 */
2012 	_cache_setunresolved(ncp);
2013 
2014 	/*
2015 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2016 	 * We only scrap unref'd (other then our ref) unresolved entries,
2017 	 * we do not scrap 'live' entries.
2018 	 *
2019 	 * Note that once the spinlocks are acquired if nc_refs == 1 no
2020 	 * other references are possible.  If it isn't, however, we have
2021 	 * to decrement but also be sure to avoid a 1->0 transition.
2022 	 */
2023 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2024 	KKASSERT(ncp->nc_refs > 0);
2025 
2026 	/*
2027 	 * Acquire locks.  Note that the parent can't go away while we hold
2028 	 * a child locked.
2029 	 */
2030 	if ((par = ncp->nc_parent) != NULL) {
2031 		if (nonblock) {
2032 			for (;;) {
2033 				if (_cache_lock_nonblock(par) == 0)
2034 					break;
2035 				refs = ncp->nc_refs;
2036 				ncp->nc_flag |= NCF_DEFEREDZAP;
2037 				++numdefered;	/* MP race ok */
2038 				if (atomic_cmpset_int(&ncp->nc_refs,
2039 						      refs, refs - 1)) {
2040 					_cache_unlock(ncp);
2041 					return(NULL);
2042 				}
2043 				cpu_pause();
2044 			}
2045 			_cache_hold(par);
2046 		} else {
2047 			_cache_hold(par);
2048 			_cache_lock(par);
2049 		}
2050 		spin_lock_wr(&ncp->nc_head->spin);
2051 	}
2052 
2053 	/*
2054 	 * If someone other then us has a ref or we have children
2055 	 * we cannot zap the entry.  The 1->0 transition and any
2056 	 * further list operation is protected by the spinlocks
2057 	 * we have acquired but other transitions are not.
2058 	 */
2059 	for (;;) {
2060 		refs = ncp->nc_refs;
2061 		if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2062 			break;
2063 		if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2064 			if (par) {
2065 				spin_unlock_wr(&ncp->nc_head->spin);
2066 				_cache_put(par);
2067 			}
2068 			_cache_unlock(ncp);
2069 			return(NULL);
2070 		}
2071 		cpu_pause();
2072 	}
2073 
2074 	/*
2075 	 * We are the only ref and with the spinlocks held no further
2076 	 * refs can be acquired by others.
2077 	 *
2078 	 * Remove us from the hash list and parent list.  We have to
2079 	 * drop a ref on the parent's vp if the parent's list becomes
2080 	 * empty.
2081 	 */
2082 	dropvp = NULL;
2083 	if (par) {
2084 		struct nchash_head *nchpp = ncp->nc_head;
2085 
2086 		KKASSERT(nchpp != NULL);
2087 		LIST_REMOVE(ncp, nc_hash);
2088 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2089 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2090 			dropvp = par->nc_vp;
2091 		ncp->nc_head = NULL;
2092 		ncp->nc_parent = NULL;
2093 		spin_unlock_wr(&nchpp->spin);
2094 		_cache_unlock(par);
2095 	} else {
2096 		KKASSERT(ncp->nc_head == NULL);
2097 	}
2098 
2099 	/*
2100 	 * ncp should not have picked up any refs.  Physically
2101 	 * destroy the ncp.
2102 	 */
2103 	KKASSERT(ncp->nc_refs == 1);
2104 	/* _cache_unlock(ncp) not required */
2105 	ncp->nc_refs = -1;	/* safety */
2106 	if (ncp->nc_name)
2107 		kfree(ncp->nc_name, M_VFSCACHE);
2108 	kfree(ncp, M_VFSCACHE);
2109 
2110 	/*
2111 	 * Delayed drop (we had to release our spinlocks)
2112 	 *
2113 	 * The refed parent (if not  NULL) must be dropped.  The
2114 	 * caller is responsible for looping.
2115 	 */
2116 	if (dropvp)
2117 		vdrop(dropvp);
2118 	return(par);
2119 }
2120 
2121 /*
2122  * Clean up dangling negative cache and defered-drop entries in the
2123  * namecache.
2124  */
2125 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
2126 
2127 void
2128 cache_hysteresis(void)
2129 {
2130 	/*
2131 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2132 	 * the impact on the critical path.
2133 	 */
2134 	switch(cache_hysteresis_state) {
2135 	case CHI_LOW:
2136 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
2137 			_cache_cleanneg(10);
2138 			cache_hysteresis_state = CHI_HIGH;
2139 		}
2140 		break;
2141 	case CHI_HIGH:
2142 		if (numneg > MINNEG * 9 / 10 &&
2143 		    numneg * ncnegfactor * 9 / 10 > numcache
2144 		) {
2145 			_cache_cleanneg(10);
2146 		} else {
2147 			cache_hysteresis_state = CHI_LOW;
2148 		}
2149 		break;
2150 	}
2151 
2152 	/*
2153 	 * Clean out dangling defered-zap ncps which could not
2154 	 * be cleanly dropped if too many build up.  Note
2155 	 * that numdefered is not an exact number as such ncps
2156 	 * can be reused and the counter is not handled in a MP
2157 	 * safe manner by design.
2158 	 */
2159 	if (numdefered * ncnegfactor > numcache) {
2160 		_cache_cleandefered();
2161 	}
2162 }
2163 
2164 /*
2165  * NEW NAMECACHE LOOKUP API
2166  *
2167  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2168  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2169  * is ALWAYS returned, eve if the supplied component is illegal.
2170  *
2171  * The resulting namecache entry should be returned to the system with
2172  * cache_put() or cache_unlock() + cache_drop().
2173  *
2174  * namecache locks are recursive but care must be taken to avoid lock order
2175  * reversals (hence why the passed par_nch must be unlocked).  Locking
2176  * rules are to order for parent traversals, not for child traversals.
2177  *
2178  * Nobody else will be able to manipulate the associated namespace (e.g.
2179  * create, delete, rename, rename-target) until the caller unlocks the
2180  * entry.
2181  *
2182  * The returned entry will be in one of three states:  positive hit (non-null
2183  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2184  * Unresolved entries must be resolved through the filesystem to associate the
2185  * vnode and/or determine whether a positive or negative hit has occured.
2186  *
2187  * It is not necessary to lock a directory in order to lock namespace under
2188  * that directory.  In fact, it is explicitly not allowed to do that.  A
2189  * directory is typically only locked when being created, renamed, or
2190  * destroyed.
2191  *
2192  * The directory (par) may be unresolved, in which case any returned child
2193  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2194  * the filesystem lookup requires a resolved directory vnode the caller is
2195  * responsible for resolving the namecache chain top-down.  This API
2196  * specifically allows whole chains to be created in an unresolved state.
2197  */
2198 struct nchandle
2199 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2200 {
2201 	struct nchandle nch;
2202 	struct namecache *ncp;
2203 	struct namecache *new_ncp;
2204 	struct nchash_head *nchpp;
2205 	struct mount *mp;
2206 	u_int32_t hash;
2207 	globaldata_t gd;
2208 	int par_locked;
2209 
2210 	numcalls++;
2211 	gd = mycpu;
2212 	mp = par_nch->mount;
2213 	par_locked = 0;
2214 
2215 	/*
2216 	 * This is a good time to call it, no ncp's are locked by
2217 	 * the caller or us.
2218 	 */
2219 	cache_hysteresis();
2220 
2221 	/*
2222 	 * Try to locate an existing entry
2223 	 */
2224 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2225 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2226 	new_ncp = NULL;
2227 	nchpp = NCHHASH(hash);
2228 restart:
2229 	spin_lock_wr(&nchpp->spin);
2230 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2231 		numchecks++;
2232 
2233 		/*
2234 		 * Break out if we find a matching entry.  Note that
2235 		 * UNRESOLVED entries may match, but DESTROYED entries
2236 		 * do not.
2237 		 */
2238 		if (ncp->nc_parent == par_nch->ncp &&
2239 		    ncp->nc_nlen == nlc->nlc_namelen &&
2240 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2241 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2242 		) {
2243 			_cache_hold(ncp);
2244 			spin_unlock_wr(&nchpp->spin);
2245 			if (par_locked) {
2246 				_cache_unlock(par_nch->ncp);
2247 				par_locked = 0;
2248 			}
2249 			if (_cache_lock_special(ncp) == 0) {
2250 				_cache_auto_unresolve(mp, ncp);
2251 				if (new_ncp)
2252 					_cache_free(new_ncp);
2253 				goto found;
2254 			}
2255 			_cache_get(ncp);
2256 			_cache_put(ncp);
2257 			_cache_drop(ncp);
2258 			goto restart;
2259 		}
2260 	}
2261 
2262 	/*
2263 	 * We failed to locate an entry, create a new entry and add it to
2264 	 * the cache.  The parent ncp must also be locked so we
2265 	 * can link into it.
2266 	 *
2267 	 * We have to relookup after possibly blocking in kmalloc or
2268 	 * when locking par_nch.
2269 	 *
2270 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2271 	 *	 mount case, in which case nc_name will be NULL.
2272 	 */
2273 	if (new_ncp == NULL) {
2274 		spin_unlock_wr(&nchpp->spin);
2275 		new_ncp = cache_alloc(nlc->nlc_namelen);
2276 		if (nlc->nlc_namelen) {
2277 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2278 			      nlc->nlc_namelen);
2279 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2280 		}
2281 		goto restart;
2282 	}
2283 	if (par_locked == 0) {
2284 		spin_unlock_wr(&nchpp->spin);
2285 		_cache_lock(par_nch->ncp);
2286 		par_locked = 1;
2287 		goto restart;
2288 	}
2289 
2290 	/*
2291 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2292 	 *	     table entry atomically.
2293 	 */
2294 	ncp = new_ncp;
2295 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2296 	spin_unlock_wr(&nchpp->spin);
2297 	_cache_unlock(par_nch->ncp);
2298 	/* par_locked = 0 - not used */
2299 found:
2300 	/*
2301 	 * stats and namecache size management
2302 	 */
2303 	if (ncp->nc_flag & NCF_UNRESOLVED)
2304 		++gd->gd_nchstats->ncs_miss;
2305 	else if (ncp->nc_vp)
2306 		++gd->gd_nchstats->ncs_goodhits;
2307 	else
2308 		++gd->gd_nchstats->ncs_neghits;
2309 	nch.mount = mp;
2310 	nch.ncp = ncp;
2311 	atomic_add_int(&nch.mount->mnt_refs, 1);
2312 	return(nch);
2313 }
2314 
2315 /*
2316  * This is a non-blocking verison of cache_nlookup() used by
2317  * nfs_readdirplusrpc_uio().  It can fail for any reason and
2318  * will return nch.ncp == NULL in that case.
2319  */
2320 struct nchandle
2321 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
2322 {
2323 	struct nchandle nch;
2324 	struct namecache *ncp;
2325 	struct namecache *new_ncp;
2326 	struct nchash_head *nchpp;
2327 	struct mount *mp;
2328 	u_int32_t hash;
2329 	globaldata_t gd;
2330 	int par_locked;
2331 
2332 	numcalls++;
2333 	gd = mycpu;
2334 	mp = par_nch->mount;
2335 	par_locked = 0;
2336 
2337 	/*
2338 	 * Try to locate an existing entry
2339 	 */
2340 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2341 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2342 	new_ncp = NULL;
2343 	nchpp = NCHHASH(hash);
2344 restart:
2345 	spin_lock_wr(&nchpp->spin);
2346 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2347 		numchecks++;
2348 
2349 		/*
2350 		 * Break out if we find a matching entry.  Note that
2351 		 * UNRESOLVED entries may match, but DESTROYED entries
2352 		 * do not.
2353 		 */
2354 		if (ncp->nc_parent == par_nch->ncp &&
2355 		    ncp->nc_nlen == nlc->nlc_namelen &&
2356 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2357 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2358 		) {
2359 			_cache_hold(ncp);
2360 			spin_unlock_wr(&nchpp->spin);
2361 			if (par_locked) {
2362 				_cache_unlock(par_nch->ncp);
2363 				par_locked = 0;
2364 			}
2365 			if (_cache_lock_special(ncp) == 0) {
2366 				_cache_auto_unresolve(mp, ncp);
2367 				if (new_ncp) {
2368 					_cache_free(new_ncp);
2369 					new_ncp = NULL;
2370 				}
2371 				goto found;
2372 			}
2373 			_cache_drop(ncp);
2374 			goto failed;
2375 		}
2376 	}
2377 
2378 	/*
2379 	 * We failed to locate an entry, create a new entry and add it to
2380 	 * the cache.  The parent ncp must also be locked so we
2381 	 * can link into it.
2382 	 *
2383 	 * We have to relookup after possibly blocking in kmalloc or
2384 	 * when locking par_nch.
2385 	 *
2386 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2387 	 *	 mount case, in which case nc_name will be NULL.
2388 	 */
2389 	if (new_ncp == NULL) {
2390 		spin_unlock_wr(&nchpp->spin);
2391 		new_ncp = cache_alloc(nlc->nlc_namelen);
2392 		if (nlc->nlc_namelen) {
2393 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2394 			      nlc->nlc_namelen);
2395 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2396 		}
2397 		goto restart;
2398 	}
2399 	if (par_locked == 0) {
2400 		spin_unlock_wr(&nchpp->spin);
2401 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
2402 			par_locked = 1;
2403 			goto restart;
2404 		}
2405 		goto failed;
2406 	}
2407 
2408 	/*
2409 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2410 	 *	     table entry atomically.
2411 	 */
2412 	ncp = new_ncp;
2413 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2414 	spin_unlock_wr(&nchpp->spin);
2415 	_cache_unlock(par_nch->ncp);
2416 	/* par_locked = 0 - not used */
2417 found:
2418 	/*
2419 	 * stats and namecache size management
2420 	 */
2421 	if (ncp->nc_flag & NCF_UNRESOLVED)
2422 		++gd->gd_nchstats->ncs_miss;
2423 	else if (ncp->nc_vp)
2424 		++gd->gd_nchstats->ncs_goodhits;
2425 	else
2426 		++gd->gd_nchstats->ncs_neghits;
2427 	nch.mount = mp;
2428 	nch.ncp = ncp;
2429 	atomic_add_int(&nch.mount->mnt_refs, 1);
2430 	return(nch);
2431 failed:
2432 	if (new_ncp) {
2433 		_cache_free(new_ncp);
2434 		new_ncp = NULL;
2435 	}
2436 	nch.mount = NULL;
2437 	nch.ncp = NULL;
2438 	return(nch);
2439 }
2440 
2441 /*
2442  * The namecache entry is marked as being used as a mount point.
2443  * Locate the mount if it is visible to the caller.
2444  */
2445 struct findmount_info {
2446 	struct mount *result;
2447 	struct mount *nch_mount;
2448 	struct namecache *nch_ncp;
2449 };
2450 
2451 static
2452 int
2453 cache_findmount_callback(struct mount *mp, void *data)
2454 {
2455 	struct findmount_info *info = data;
2456 
2457 	/*
2458 	 * Check the mount's mounted-on point against the passed nch.
2459 	 */
2460 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
2461 	    mp->mnt_ncmounton.ncp == info->nch_ncp
2462 	) {
2463 	    info->result = mp;
2464 	    return(-1);
2465 	}
2466 	return(0);
2467 }
2468 
2469 struct mount *
2470 cache_findmount(struct nchandle *nch)
2471 {
2472 	struct findmount_info info;
2473 
2474 	info.result = NULL;
2475 	info.nch_mount = nch->mount;
2476 	info.nch_ncp = nch->ncp;
2477 	mountlist_scan(cache_findmount_callback, &info,
2478 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
2479 	return(info.result);
2480 }
2481 
2482 /*
2483  * Resolve an unresolved namecache entry, generally by looking it up.
2484  * The passed ncp must be locked and refd.
2485  *
2486  * Theoretically since a vnode cannot be recycled while held, and since
2487  * the nc_parent chain holds its vnode as long as children exist, the
2488  * direct parent of the cache entry we are trying to resolve should
2489  * have a valid vnode.  If not then generate an error that we can
2490  * determine is related to a resolver bug.
2491  *
2492  * However, if a vnode was in the middle of a recyclement when the NCP
2493  * got locked, ncp->nc_vp might point to a vnode that is about to become
2494  * invalid.  cache_resolve() handles this case by unresolving the entry
2495  * and then re-resolving it.
2496  *
2497  * Note that successful resolution does not necessarily return an error
2498  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
2499  * will be returned.
2500  *
2501  * MPSAFE
2502  */
2503 int
2504 cache_resolve(struct nchandle *nch, struct ucred *cred)
2505 {
2506 	struct namecache *par_tmp;
2507 	struct namecache *par;
2508 	struct namecache *ncp;
2509 	struct nchandle nctmp;
2510 	struct mount *mp;
2511 	struct vnode *dvp;
2512 	int error;
2513 
2514 	ncp = nch->ncp;
2515 	mp = nch->mount;
2516 restart:
2517 	/*
2518 	 * If the ncp is already resolved we have nothing to do.  However,
2519 	 * we do want to guarentee that a usable vnode is returned when
2520 	 * a vnode is present, so make sure it hasn't been reclaimed.
2521 	 */
2522 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2523 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2524 			_cache_setunresolved(ncp);
2525 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
2526 			return (ncp->nc_error);
2527 	}
2528 
2529 	/*
2530 	 * Mount points need special handling because the parent does not
2531 	 * belong to the same filesystem as the ncp.
2532 	 */
2533 	if (ncp == mp->mnt_ncmountpt.ncp)
2534 		return (cache_resolve_mp(mp));
2535 
2536 	/*
2537 	 * We expect an unbroken chain of ncps to at least the mount point,
2538 	 * and even all the way to root (but this code doesn't have to go
2539 	 * past the mount point).
2540 	 */
2541 	if (ncp->nc_parent == NULL) {
2542 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2543 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2544 		ncp->nc_error = EXDEV;
2545 		return(ncp->nc_error);
2546 	}
2547 
2548 	/*
2549 	 * The vp's of the parent directories in the chain are held via vhold()
2550 	 * due to the existance of the child, and should not disappear.
2551 	 * However, there are cases where they can disappear:
2552 	 *
2553 	 *	- due to filesystem I/O errors.
2554 	 *	- due to NFS being stupid about tracking the namespace and
2555 	 *	  destroys the namespace for entire directories quite often.
2556 	 *	- due to forced unmounts.
2557 	 *	- due to an rmdir (parent will be marked DESTROYED)
2558 	 *
2559 	 * When this occurs we have to track the chain backwards and resolve
2560 	 * it, looping until the resolver catches up to the current node.  We
2561 	 * could recurse here but we might run ourselves out of kernel stack
2562 	 * so we do it in a more painful manner.  This situation really should
2563 	 * not occur all that often, or if it does not have to go back too
2564 	 * many nodes to resolve the ncp.
2565 	 */
2566 	while ((dvp = cache_dvpref(ncp)) == NULL) {
2567 		/*
2568 		 * This case can occur if a process is CD'd into a
2569 		 * directory which is then rmdir'd.  If the parent is marked
2570 		 * destroyed there is no point trying to resolve it.
2571 		 */
2572 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2573 			return(ENOENT);
2574 		par = ncp->nc_parent;
2575 		_cache_hold(par);
2576 		_cache_lock(par);
2577 		while ((par_tmp = par->nc_parent) != NULL &&
2578 		       par_tmp->nc_vp == NULL) {
2579 			_cache_hold(par_tmp);
2580 			_cache_lock(par_tmp);
2581 			_cache_put(par);
2582 			par = par_tmp;
2583 		}
2584 		if (par->nc_parent == NULL) {
2585 			kprintf("EXDEV case 2 %*.*s\n",
2586 				par->nc_nlen, par->nc_nlen, par->nc_name);
2587 			_cache_put(par);
2588 			return (EXDEV);
2589 		}
2590 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2591 			par->nc_nlen, par->nc_nlen, par->nc_name);
2592 		/*
2593 		 * The parent is not set in stone, ref and lock it to prevent
2594 		 * it from disappearing.  Also note that due to renames it
2595 		 * is possible for our ncp to move and for par to no longer
2596 		 * be one of its parents.  We resolve it anyway, the loop
2597 		 * will handle any moves.
2598 		 */
2599 		_cache_get(par);	/* additional hold/lock */
2600 		_cache_put(par);	/* from earlier hold/lock */
2601 		if (par == nch->mount->mnt_ncmountpt.ncp) {
2602 			cache_resolve_mp(nch->mount);
2603 		} else if ((dvp = cache_dvpref(par)) == NULL) {
2604 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2605 			_cache_put(par);
2606 			continue;
2607 		} else {
2608 			if (par->nc_flag & NCF_UNRESOLVED) {
2609 				nctmp.mount = mp;
2610 				nctmp.ncp = par;
2611 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2612 			}
2613 			vrele(dvp);
2614 		}
2615 		if ((error = par->nc_error) != 0) {
2616 			if (par->nc_error != EAGAIN) {
2617 				kprintf("EXDEV case 3 %*.*s error %d\n",
2618 				    par->nc_nlen, par->nc_nlen, par->nc_name,
2619 				    par->nc_error);
2620 				_cache_put(par);
2621 				return(error);
2622 			}
2623 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2624 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
2625 		}
2626 		_cache_put(par);
2627 		/* loop */
2628 	}
2629 
2630 	/*
2631 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2632 	 * ncp's and reattach them.  If this occurs the original ncp is marked
2633 	 * EAGAIN to force a relookup.
2634 	 *
2635 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2636 	 * ncp must already be resolved.
2637 	 */
2638 	if (dvp) {
2639 		nctmp.mount = mp;
2640 		nctmp.ncp = ncp;
2641 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2642 		vrele(dvp);
2643 	} else {
2644 		ncp->nc_error = EPERM;
2645 	}
2646 	if (ncp->nc_error == EAGAIN) {
2647 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2648 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2649 		goto restart;
2650 	}
2651 	return(ncp->nc_error);
2652 }
2653 
2654 /*
2655  * Resolve the ncp associated with a mount point.  Such ncp's almost always
2656  * remain resolved and this routine is rarely called.  NFS MPs tends to force
2657  * re-resolution more often due to its mac-truck-smash-the-namecache
2658  * method of tracking namespace changes.
2659  *
2660  * The semantics for this call is that the passed ncp must be locked on
2661  * entry and will be locked on return.  However, if we actually have to
2662  * resolve the mount point we temporarily unlock the entry in order to
2663  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
2664  * the unlock we have to recheck the flags after we relock.
2665  */
2666 static int
2667 cache_resolve_mp(struct mount *mp)
2668 {
2669 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2670 	struct vnode *vp;
2671 	int error;
2672 
2673 	KKASSERT(mp != NULL);
2674 
2675 	/*
2676 	 * If the ncp is already resolved we have nothing to do.  However,
2677 	 * we do want to guarentee that a usable vnode is returned when
2678 	 * a vnode is present, so make sure it hasn't been reclaimed.
2679 	 */
2680 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2681 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2682 			_cache_setunresolved(ncp);
2683 	}
2684 
2685 	if (ncp->nc_flag & NCF_UNRESOLVED) {
2686 		_cache_unlock(ncp);
2687 		while (vfs_busy(mp, 0))
2688 			;
2689 		error = VFS_ROOT(mp, &vp);
2690 		_cache_lock(ncp);
2691 
2692 		/*
2693 		 * recheck the ncp state after relocking.
2694 		 */
2695 		if (ncp->nc_flag & NCF_UNRESOLVED) {
2696 			ncp->nc_error = error;
2697 			if (error == 0) {
2698 				_cache_setvp(mp, ncp, vp);
2699 				vput(vp);
2700 			} else {
2701 				kprintf("[diagnostic] cache_resolve_mp: failed"
2702 					" to resolve mount %p err=%d ncp=%p\n",
2703 					mp, error, ncp);
2704 				_cache_setvp(mp, ncp, NULL);
2705 			}
2706 		} else if (error == 0) {
2707 			vput(vp);
2708 		}
2709 		vfs_unbusy(mp);
2710 	}
2711 	return(ncp->nc_error);
2712 }
2713 
2714 /*
2715  * Clean out negative cache entries when too many have accumulated.
2716  *
2717  * MPSAFE
2718  */
2719 static void
2720 _cache_cleanneg(int count)
2721 {
2722 	struct namecache *ncp;
2723 
2724 	/*
2725 	 * Automode from the vnlru proc - clean out 10% of the negative cache
2726 	 * entries.
2727 	 */
2728 	if (count == 0)
2729 		count = numneg / 10 + 1;
2730 
2731 	/*
2732 	 * Attempt to clean out the specified number of negative cache
2733 	 * entries.
2734 	 */
2735 	while (count) {
2736 		spin_lock_wr(&ncspin);
2737 		ncp = TAILQ_FIRST(&ncneglist);
2738 		if (ncp == NULL) {
2739 			spin_unlock_wr(&ncspin);
2740 			break;
2741 		}
2742 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2743 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2744 		_cache_hold(ncp);
2745 		spin_unlock_wr(&ncspin);
2746 		if (_cache_lock_special(ncp) == 0) {
2747 			ncp = cache_zap(ncp, 0);
2748 			if (ncp)
2749 				_cache_drop(ncp);
2750 		} else {
2751 			_cache_drop(ncp);
2752 		}
2753 		--count;
2754 	}
2755 }
2756 
2757 /*
2758  * This is a kitchen sink function to clean out ncps which we
2759  * tried to zap from cache_drop() but failed because we were
2760  * unable to acquire the parent lock.
2761  *
2762  * Such entries can also be removed via cache_inval_vp(), such
2763  * as when unmounting.
2764  *
2765  * MPSAFE
2766  */
2767 static void
2768 _cache_cleandefered(void)
2769 {
2770 	struct nchash_head *nchpp;
2771 	struct namecache *ncp;
2772 	struct namecache dummy;
2773 	int i;
2774 
2775 	numdefered = 0;
2776 	bzero(&dummy, sizeof(dummy));
2777 	dummy.nc_flag = NCF_DESTROYED;
2778 
2779 	for (i = 0; i <= nchash; ++i) {
2780 		nchpp = &nchashtbl[i];
2781 
2782 		spin_lock_wr(&nchpp->spin);
2783 		LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
2784 		ncp = &dummy;
2785 		while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
2786 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
2787 				continue;
2788 			LIST_REMOVE(&dummy, nc_hash);
2789 			LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
2790 			_cache_hold(ncp);
2791 			spin_unlock_wr(&nchpp->spin);
2792 			if (_cache_lock_nonblock(ncp) == 0) {
2793 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
2794 				_cache_unlock(ncp);
2795 			}
2796 			_cache_drop(ncp);
2797 			spin_lock_wr(&nchpp->spin);
2798 			ncp = &dummy;
2799 		}
2800 		LIST_REMOVE(&dummy, nc_hash);
2801 		spin_unlock_wr(&nchpp->spin);
2802 	}
2803 }
2804 
2805 /*
2806  * Name cache initialization, from vfsinit() when we are booting
2807  */
2808 void
2809 nchinit(void)
2810 {
2811 	int i;
2812 	globaldata_t gd;
2813 
2814 	/* initialise per-cpu namecache effectiveness statistics. */
2815 	for (i = 0; i < ncpus; ++i) {
2816 		gd = globaldata_find(i);
2817 		gd->gd_nchstats = &nchstats[i];
2818 	}
2819 	TAILQ_INIT(&ncneglist);
2820 	spin_init(&ncspin);
2821 	nchashtbl = hashinit_ext(desiredvnodes*2, sizeof(struct nchash_head),
2822 				 M_VFSCACHE, &nchash);
2823 	for (i = 0; i <= (int)nchash; ++i) {
2824 		LIST_INIT(&nchashtbl[i].list);
2825 		spin_init(&nchashtbl[i].spin);
2826 	}
2827 	nclockwarn = 5 * hz;
2828 }
2829 
2830 /*
2831  * Called from start_init() to bootstrap the root filesystem.  Returns
2832  * a referenced, unlocked namecache record.
2833  */
2834 void
2835 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2836 {
2837 	nch->ncp = cache_alloc(0);
2838 	nch->mount = mp;
2839 	atomic_add_int(&mp->mnt_refs, 1);
2840 	if (vp)
2841 		_cache_setvp(nch->mount, nch->ncp, vp);
2842 }
2843 
2844 /*
2845  * vfs_cache_setroot()
2846  *
2847  *	Create an association between the root of our namecache and
2848  *	the root vnode.  This routine may be called several times during
2849  *	booting.
2850  *
2851  *	If the caller intends to save the returned namecache pointer somewhere
2852  *	it must cache_hold() it.
2853  */
2854 void
2855 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2856 {
2857 	struct vnode *ovp;
2858 	struct nchandle onch;
2859 
2860 	ovp = rootvnode;
2861 	onch = rootnch;
2862 	rootvnode = nvp;
2863 	if (nch)
2864 		rootnch = *nch;
2865 	else
2866 		cache_zero(&rootnch);
2867 	if (ovp)
2868 		vrele(ovp);
2869 	if (onch.ncp)
2870 		cache_drop(&onch);
2871 }
2872 
2873 /*
2874  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
2875  * topology and is being removed as quickly as possible.  The new VOP_N*()
2876  * API calls are required to make specific adjustments using the supplied
2877  * ncp pointers rather then just bogusly purging random vnodes.
2878  *
2879  * Invalidate all namecache entries to a particular vnode as well as
2880  * any direct children of that vnode in the namecache.  This is a
2881  * 'catch all' purge used by filesystems that do not know any better.
2882  *
2883  * Note that the linkage between the vnode and its namecache entries will
2884  * be removed, but the namecache entries themselves might stay put due to
2885  * active references from elsewhere in the system or due to the existance of
2886  * the children.   The namecache topology is left intact even if we do not
2887  * know what the vnode association is.  Such entries will be marked
2888  * NCF_UNRESOLVED.
2889  */
2890 void
2891 cache_purge(struct vnode *vp)
2892 {
2893 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2894 }
2895 
2896 /*
2897  * Flush all entries referencing a particular filesystem.
2898  *
2899  * Since we need to check it anyway, we will flush all the invalid
2900  * entries at the same time.
2901  */
2902 #if 0
2903 
2904 void
2905 cache_purgevfs(struct mount *mp)
2906 {
2907 	struct nchash_head *nchpp;
2908 	struct namecache *ncp, *nnp;
2909 
2910 	/*
2911 	 * Scan hash tables for applicable entries.
2912 	 */
2913 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2914 		spin_lock_wr(&nchpp->spin); XXX
2915 		ncp = LIST_FIRST(&nchpp->list);
2916 		if (ncp)
2917 			_cache_hold(ncp);
2918 		while (ncp) {
2919 			nnp = LIST_NEXT(ncp, nc_hash);
2920 			if (nnp)
2921 				_cache_hold(nnp);
2922 			if (ncp->nc_mount == mp) {
2923 				_cache_lock(ncp);
2924 				ncp = cache_zap(ncp, 0);
2925 				if (ncp)
2926 					_cache_drop(ncp);
2927 			} else {
2928 				_cache_drop(ncp);
2929 			}
2930 			ncp = nnp;
2931 		}
2932 		spin_unlock_wr(&nchpp->spin); XXX
2933 	}
2934 }
2935 
2936 #endif
2937 
2938 static int disablecwd;
2939 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
2940 
2941 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
2942 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
2943 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
2944 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
2945 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
2946 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
2947 
2948 /*
2949  * MPALMOSTSAFE
2950  */
2951 int
2952 sys___getcwd(struct __getcwd_args *uap)
2953 {
2954 	u_int buflen;
2955 	int error;
2956 	char *buf;
2957 	char *bp;
2958 
2959 	if (disablecwd)
2960 		return (ENODEV);
2961 
2962 	buflen = uap->buflen;
2963 	if (buflen == 0)
2964 		return (EINVAL);
2965 	if (buflen > MAXPATHLEN)
2966 		buflen = MAXPATHLEN;
2967 
2968 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
2969 	get_mplock();
2970 	bp = kern_getcwd(buf, buflen, &error);
2971 	rel_mplock();
2972 	if (error == 0)
2973 		error = copyout(bp, uap->buf, strlen(bp) + 1);
2974 	kfree(buf, M_TEMP);
2975 	return (error);
2976 }
2977 
2978 char *
2979 kern_getcwd(char *buf, size_t buflen, int *error)
2980 {
2981 	struct proc *p = curproc;
2982 	char *bp;
2983 	int i, slash_prefixed;
2984 	struct filedesc *fdp;
2985 	struct nchandle nch;
2986 	struct namecache *ncp;
2987 
2988 	numcwdcalls++;
2989 	bp = buf;
2990 	bp += buflen - 1;
2991 	*bp = '\0';
2992 	fdp = p->p_fd;
2993 	slash_prefixed = 0;
2994 
2995 	nch = fdp->fd_ncdir;
2996 	ncp = nch.ncp;
2997 	if (ncp)
2998 		_cache_hold(ncp);
2999 
3000 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
3001 	       nch.mount != fdp->fd_nrdir.mount)
3002 	) {
3003 		/*
3004 		 * While traversing upwards if we encounter the root
3005 		 * of the current mount we have to skip to the mount point
3006 		 * in the underlying filesystem.
3007 		 */
3008 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
3009 			nch = nch.mount->mnt_ncmounton;
3010 			_cache_drop(ncp);
3011 			ncp = nch.ncp;
3012 			if (ncp)
3013 				_cache_hold(ncp);
3014 			continue;
3015 		}
3016 
3017 		/*
3018 		 * Prepend the path segment
3019 		 */
3020 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3021 			if (bp == buf) {
3022 				numcwdfail4++;
3023 				*error = ERANGE;
3024 				bp = NULL;
3025 				goto done;
3026 			}
3027 			*--bp = ncp->nc_name[i];
3028 		}
3029 		if (bp == buf) {
3030 			numcwdfail4++;
3031 			*error = ERANGE;
3032 			bp = NULL;
3033 			goto done;
3034 		}
3035 		*--bp = '/';
3036 		slash_prefixed = 1;
3037 
3038 		/*
3039 		 * Go up a directory.  This isn't a mount point so we don't
3040 		 * have to check again.
3041 		 */
3042 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3043 			_cache_lock(ncp);
3044 			if (nch.ncp != ncp->nc_parent) {
3045 				_cache_unlock(ncp);
3046 				continue;
3047 			}
3048 			_cache_hold(nch.ncp);
3049 			_cache_unlock(ncp);
3050 			break;
3051 		}
3052 		_cache_drop(ncp);
3053 		ncp = nch.ncp;
3054 	}
3055 	if (ncp == NULL) {
3056 		numcwdfail2++;
3057 		*error = ENOENT;
3058 		bp = NULL;
3059 		goto done;
3060 	}
3061 	if (!slash_prefixed) {
3062 		if (bp == buf) {
3063 			numcwdfail4++;
3064 			*error = ERANGE;
3065 			bp = NULL;
3066 			goto done;
3067 		}
3068 		*--bp = '/';
3069 	}
3070 	numcwdfound++;
3071 	*error = 0;
3072 done:
3073 	if (ncp)
3074 		_cache_drop(ncp);
3075 	return (bp);
3076 }
3077 
3078 /*
3079  * Thus begins the fullpath magic.
3080  *
3081  * The passed nchp is referenced but not locked.
3082  */
3083 #undef STATNODE
3084 #define STATNODE(name)							\
3085 	static u_int name;						\
3086 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
3087 
3088 static int disablefullpath;
3089 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
3090     &disablefullpath, 0, "");
3091 
3092 STATNODE(numfullpathcalls);
3093 STATNODE(numfullpathfail1);
3094 STATNODE(numfullpathfail2);
3095 STATNODE(numfullpathfail3);
3096 STATNODE(numfullpathfail4);
3097 STATNODE(numfullpathfound);
3098 
3099 int
3100 cache_fullpath(struct proc *p, struct nchandle *nchp,
3101 	       char **retbuf, char **freebuf, int guess)
3102 {
3103 	struct nchandle fd_nrdir;
3104 	struct nchandle nch;
3105 	struct namecache *ncp;
3106 	struct mount *mp, *new_mp;
3107 	char *bp, *buf;
3108 	int slash_prefixed;
3109 	int error = 0;
3110 	int i;
3111 
3112 	atomic_add_int(&numfullpathcalls, -1);
3113 
3114 	*retbuf = NULL;
3115 	*freebuf = NULL;
3116 
3117 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3118 	bp = buf + MAXPATHLEN - 1;
3119 	*bp = '\0';
3120 	if (p != NULL)
3121 		fd_nrdir = p->p_fd->fd_nrdir;
3122 	else
3123 		fd_nrdir = rootnch;
3124 	slash_prefixed = 0;
3125 	nch = *nchp;
3126 	ncp = nch.ncp;
3127 	if (ncp)
3128 		_cache_hold(ncp);
3129 	mp = nch.mount;
3130 
3131 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
3132 		new_mp = NULL;
3133 
3134 		/*
3135 		 * If we are asked to guess the upwards path, we do so whenever
3136 		 * we encounter an ncp marked as a mountpoint. We try to find
3137 		 * the actual mountpoint by finding the mountpoint with this ncp.
3138 		 */
3139 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
3140 			new_mp = mount_get_by_nc(ncp);
3141 		}
3142 		/*
3143 		 * While traversing upwards if we encounter the root
3144 		 * of the current mount we have to skip to the mount point.
3145 		 */
3146 		if (ncp == mp->mnt_ncmountpt.ncp) {
3147 			new_mp = mp;
3148 		}
3149 		if (new_mp) {
3150 			nch = new_mp->mnt_ncmounton;
3151 			_cache_drop(ncp);
3152 			ncp = nch.ncp;
3153 			if (ncp)
3154 				_cache_hold(ncp);
3155 			mp = nch.mount;
3156 			continue;
3157 		}
3158 
3159 		/*
3160 		 * Prepend the path segment
3161 		 */
3162 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3163 			if (bp == buf) {
3164 				numfullpathfail4++;
3165 				kfree(buf, M_TEMP);
3166 				error = ENOMEM;
3167 				goto done;
3168 			}
3169 			*--bp = ncp->nc_name[i];
3170 		}
3171 		if (bp == buf) {
3172 			numfullpathfail4++;
3173 			kfree(buf, M_TEMP);
3174 			error = ENOMEM;
3175 			goto done;
3176 		}
3177 		*--bp = '/';
3178 		slash_prefixed = 1;
3179 
3180 		/*
3181 		 * Go up a directory.  This isn't a mount point so we don't
3182 		 * have to check again.
3183 		 *
3184 		 * We can only safely access nc_parent with ncp held locked.
3185 		 */
3186 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3187 			_cache_lock(ncp);
3188 			if (nch.ncp != ncp->nc_parent) {
3189 				_cache_unlock(ncp);
3190 				continue;
3191 			}
3192 			_cache_hold(nch.ncp);
3193 			_cache_unlock(ncp);
3194 			break;
3195 		}
3196 		_cache_drop(ncp);
3197 		ncp = nch.ncp;
3198 	}
3199 	if (ncp == NULL) {
3200 		numfullpathfail2++;
3201 		kfree(buf, M_TEMP);
3202 		error = ENOENT;
3203 		goto done;
3204 	}
3205 
3206 	if (!slash_prefixed) {
3207 		if (bp == buf) {
3208 			numfullpathfail4++;
3209 			kfree(buf, M_TEMP);
3210 			error = ENOMEM;
3211 			goto done;
3212 		}
3213 		*--bp = '/';
3214 	}
3215 	numfullpathfound++;
3216 	*retbuf = bp;
3217 	*freebuf = buf;
3218 	error = 0;
3219 done:
3220 	if (ncp)
3221 		_cache_drop(ncp);
3222 	return(error);
3223 }
3224 
3225 int
3226 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf, int guess)
3227 {
3228 	struct namecache *ncp;
3229 	struct nchandle nch;
3230 	int error;
3231 
3232 	atomic_add_int(&numfullpathcalls, 1);
3233 	if (disablefullpath)
3234 		return (ENODEV);
3235 
3236 	if (p == NULL)
3237 		return (EINVAL);
3238 
3239 	/* vn is NULL, client wants us to use p->p_textvp */
3240 	if (vn == NULL) {
3241 		if ((vn = p->p_textvp) == NULL)
3242 			return (EINVAL);
3243 	}
3244 	spin_lock_wr(&vn->v_spinlock);
3245 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
3246 		if (ncp->nc_nlen)
3247 			break;
3248 	}
3249 	if (ncp == NULL) {
3250 		spin_unlock_wr(&vn->v_spinlock);
3251 		return (EINVAL);
3252 	}
3253 	_cache_hold(ncp);
3254 	spin_unlock_wr(&vn->v_spinlock);
3255 
3256 	atomic_add_int(&numfullpathcalls, -1);
3257 	nch.ncp = ncp;;
3258 	nch.mount = vn->v_mount;
3259 	error = cache_fullpath(p, &nch, retbuf, freebuf, guess);
3260 	_cache_drop(ncp);
3261 	return (error);
3262 }
3263