xref: /dflybsd-src/sys/kern/vfs_cache.c (revision 88abd8b5763f2e5d4b4db5c5dc1b5bb4c489698b)
1 /*
2  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/sysctl.h>
73 #include <sys/mount.h>
74 #include <sys/vnode.h>
75 #include <sys/malloc.h>
76 #include <sys/sysproto.h>
77 #include <sys/spinlock.h>
78 #include <sys/proc.h>
79 #include <sys/namei.h>
80 #include <sys/nlookup.h>
81 #include <sys/filedesc.h>
82 #include <sys/fnv_hash.h>
83 #include <sys/globaldata.h>
84 #include <sys/kern_syscall.h>
85 #include <sys/dirent.h>
86 #include <ddb/ddb.h>
87 
88 #include <sys/sysref2.h>
89 #include <sys/spinlock2.h>
90 #include <sys/mplock2.h>
91 
92 #define MAX_RECURSION_DEPTH	64
93 
94 /*
95  * Random lookups in the cache are accomplished with a hash table using
96  * a hash key of (nc_src_vp, name).  Each hash chain has its own spin lock.
97  *
98  * Negative entries may exist and correspond to resolved namecache
99  * structures where nc_vp is NULL.  In a negative entry, NCF_WHITEOUT
100  * will be set if the entry corresponds to a whited-out directory entry
101  * (verses simply not finding the entry at all).   ncneglist is locked
102  * with a global spinlock (ncspin).
103  *
104  * MPSAFE RULES:
105  *
106  * (1) A ncp must be referenced before it can be locked.
107  *
108  * (2) A ncp must be locked in order to modify it.
109  *
110  * (3) ncp locks are always ordered child -> parent.  That may seem
111  *     backwards but forward scans use the hash table and thus can hold
112  *     the parent unlocked when traversing downward.
113  *
114  *     This allows insert/rename/delete/dot-dot and other operations
115  *     to use ncp->nc_parent links.
116  *
117  *     This also prevents a locked up e.g. NFS node from creating a
118  *     chain reaction all the way back to the root vnode / namecache.
119  *
120  * (4) parent linkages require both the parent and child to be locked.
121  */
122 
123 /*
124  * Structures associated with name cacheing.
125  */
126 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
127 #define MINNEG		1024
128 
129 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
130 
131 LIST_HEAD(nchash_list, namecache);
132 
133 struct nchash_head {
134        struct nchash_list list;
135        struct spinlock	spin;
136 };
137 
138 static struct nchash_head	*nchashtbl;
139 static struct namecache_list	ncneglist;
140 static struct spinlock		ncspin;
141 
142 /*
143  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
144  * to create the namecache infrastructure leading to a dangling vnode.
145  *
146  * 0	Only errors are reported
147  * 1	Successes are reported
148  * 2	Successes + the whole directory scan is reported
149  * 3	Force the directory scan code run as if the parent vnode did not
150  *	have a namecache record, even if it does have one.
151  */
152 static int	ncvp_debug;
153 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
154 
155 static u_long	nchash;			/* size of hash table */
156 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
157 
158 static int	ncnegfactor = 16;	/* ratio of negative entries */
159 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
160 
161 static int	nclockwarn;		/* warn on locked entries in ticks */
162 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
163 
164 static int	numdefered;		/* number of cache entries allocated */
165 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0, "");
166 
167 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
168 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
169 
170 int cache_mpsafe = 1;
171 SYSCTL_INT(_vfs, OID_AUTO, cache_mpsafe, CTLFLAG_RW, &cache_mpsafe, 0, "");
172 
173 static int cache_resolve_mp(struct mount *mp);
174 static struct vnode *cache_dvpref(struct namecache *ncp);
175 static void _cache_lock(struct namecache *ncp);
176 static void _cache_setunresolved(struct namecache *ncp);
177 static void _cache_cleanneg(int count);
178 static void _cache_cleandefered(void);
179 
180 /*
181  * The new name cache statistics
182  */
183 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
184 #define STATNODE(mode, name, var) \
185 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
186 #define STATNODE_INT(mode, name, var) \
187 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
188 static int numneg; STATNODE_INT(CTLFLAG_RD, numneg, &numneg);
189 static int numcache; STATNODE_INT(CTLFLAG_RD, numcache, &numcache);
190 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
191 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
192 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
193 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
194 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
195 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
196 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
197 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
198 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
199 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
200 
201 struct nchstats nchstats[SMP_MAXCPU];
202 /*
203  * Export VFS cache effectiveness statistics to user-land.
204  *
205  * The statistics are left for aggregation to user-land so
206  * neat things can be achieved, like observing per-CPU cache
207  * distribution.
208  */
209 static int
210 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
211 {
212 	struct globaldata *gd;
213 	int i, error;
214 
215 	error = 0;
216 	for (i = 0; i < ncpus; ++i) {
217 		gd = globaldata_find(i);
218 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
219 			sizeof(struct nchstats))))
220 			break;
221 	}
222 
223 	return (error);
224 }
225 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
226   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
227 
228 static struct namecache *cache_zap(struct namecache *ncp, int nonblock);
229 
230 /*
231  * Namespace locking.  The caller must already hold a reference to the
232  * namecache structure in order to lock/unlock it.  This function prevents
233  * the namespace from being created or destroyed by accessors other then
234  * the lock holder.
235  *
236  * Note that holding a locked namecache structure prevents other threads
237  * from making namespace changes (e.g. deleting or creating), prevents
238  * vnode association state changes by other threads, and prevents the
239  * namecache entry from being resolved or unresolved by other threads.
240  *
241  * The lock owner has full authority to associate/disassociate vnodes
242  * and resolve/unresolve the locked ncp.
243  *
244  * The primary lock field is nc_exlocks.  nc_locktd is set after the
245  * fact (when locking) or cleared prior to unlocking.
246  *
247  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
248  *	     or recycled, but it does NOT help you if the vnode had already
249  *	     initiated a recyclement.  If this is important, use cache_get()
250  *	     rather then cache_lock() (and deal with the differences in the
251  *	     way the refs counter is handled).  Or, alternatively, make an
252  *	     unconditional call to cache_validate() or cache_resolve()
253  *	     after cache_lock() returns.
254  *
255  * MPSAFE
256  */
257 static
258 void
259 _cache_lock(struct namecache *ncp)
260 {
261 	thread_t td;
262 	int didwarn;
263 	int error;
264 	u_int count;
265 
266 	KKASSERT(ncp->nc_refs != 0);
267 	didwarn = 0;
268 	td = curthread;
269 
270 	for (;;) {
271 		count = ncp->nc_exlocks;
272 
273 		if (count == 0) {
274 			if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
275 				/*
276 				 * The vp associated with a locked ncp must
277 				 * be held to prevent it from being recycled.
278 				 *
279 				 * WARNING!  If VRECLAIMED is set the vnode
280 				 * could already be in the middle of a recycle.
281 				 * Callers must use cache_vref() or
282 				 * cache_vget() on the locked ncp to
283 				 * validate the vp or set the cache entry
284 				 * to unresolved.
285 				 *
286 				 * NOTE! vhold() is allowed if we hold a
287 				 *	 lock on the ncp (which we do).
288 				 */
289 				ncp->nc_locktd = td;
290 				if (ncp->nc_vp)
291 					vhold(ncp->nc_vp);	/* MPSAFE */
292 				break;
293 			}
294 			/* cmpset failed */
295 			continue;
296 		}
297 		if (ncp->nc_locktd == td) {
298 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
299 					      count + 1)) {
300 				break;
301 			}
302 			/* cmpset failed */
303 			continue;
304 		}
305 		tsleep_interlock(ncp, 0);
306 		if (atomic_cmpset_int(&ncp->nc_exlocks, count,
307 				      count | NC_EXLOCK_REQ) == 0) {
308 			/* cmpset failed */
309 			continue;
310 		}
311 		error = tsleep(ncp, PINTERLOCKED, "clock", nclockwarn);
312 		if (error == EWOULDBLOCK) {
313 			if (didwarn == 0) {
314 				didwarn = ticks;
315 				kprintf("[diagnostic] cache_lock: blocked "
316 					"on %p",
317 					ncp);
318 				kprintf(" \"%*.*s\"\n",
319 					ncp->nc_nlen, ncp->nc_nlen,
320 					ncp->nc_name);
321 			}
322 		}
323 	}
324 	if (didwarn) {
325 		kprintf("[diagnostic] cache_lock: unblocked %*.*s after "
326 			"%d secs\n",
327 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name,
328 			(int)(ticks - didwarn) / hz);
329 	}
330 }
331 
332 /*
333  * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance,
334  *	 such as the case where one of its children is locked.
335  *
336  * MPSAFE
337  */
338 static
339 int
340 _cache_lock_nonblock(struct namecache *ncp)
341 {
342 	thread_t td;
343 	u_int count;
344 
345 	td = curthread;
346 
347 	for (;;) {
348 		count = ncp->nc_exlocks;
349 
350 		if (count == 0) {
351 			if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) {
352 				/*
353 				 * The vp associated with a locked ncp must
354 				 * be held to prevent it from being recycled.
355 				 *
356 				 * WARNING!  If VRECLAIMED is set the vnode
357 				 * could already be in the middle of a recycle.
358 				 * Callers must use cache_vref() or
359 				 * cache_vget() on the locked ncp to
360 				 * validate the vp or set the cache entry
361 				 * to unresolved.
362 				 *
363 				 * NOTE! vhold() is allowed if we hold a
364 				 *	 lock on the ncp (which we do).
365 				 */
366 				ncp->nc_locktd = td;
367 				if (ncp->nc_vp)
368 					vhold(ncp->nc_vp);	/* MPSAFE */
369 				break;
370 			}
371 			/* cmpset failed */
372 			continue;
373 		}
374 		if (ncp->nc_locktd == td) {
375 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
376 					      count + 1)) {
377 				break;
378 			}
379 			/* cmpset failed */
380 			continue;
381 		}
382 		return(EWOULDBLOCK);
383 	}
384 	return(0);
385 }
386 
387 /*
388  * Helper function
389  *
390  * NOTE: nc_refs can be 0 (degenerate case during _cache_drop).
391  *
392  *	 nc_locktd must be NULLed out prior to nc_exlocks getting cleared.
393  *
394  * MPSAFE
395  */
396 static
397 void
398 _cache_unlock(struct namecache *ncp)
399 {
400 	thread_t td __debugvar = curthread;
401 	u_int count;
402 
403 	KKASSERT(ncp->nc_refs >= 0);
404 	KKASSERT(ncp->nc_exlocks > 0);
405 	KKASSERT(ncp->nc_locktd == td);
406 
407 	count = ncp->nc_exlocks;
408 	if ((count & ~NC_EXLOCK_REQ) == 1) {
409 		ncp->nc_locktd = NULL;
410 		if (ncp->nc_vp)
411 			vdrop(ncp->nc_vp);
412 	}
413 	for (;;) {
414 		if ((count & ~NC_EXLOCK_REQ) == 1) {
415 			if (atomic_cmpset_int(&ncp->nc_exlocks, count, 0)) {
416 				if (count & NC_EXLOCK_REQ)
417 					wakeup(ncp);
418 				break;
419 			}
420 		} else {
421 			if (atomic_cmpset_int(&ncp->nc_exlocks, count,
422 					      count - 1)) {
423 				break;
424 			}
425 		}
426 		count = ncp->nc_exlocks;
427 	}
428 }
429 
430 
431 /*
432  * cache_hold() and cache_drop() prevent the premature deletion of a
433  * namecache entry but do not prevent operations (such as zapping) on
434  * that namecache entry.
435  *
436  * This routine may only be called from outside this source module if
437  * nc_refs is already at least 1.
438  *
439  * This is a rare case where callers are allowed to hold a spinlock,
440  * so we can't ourselves.
441  *
442  * MPSAFE
443  */
444 static __inline
445 struct namecache *
446 _cache_hold(struct namecache *ncp)
447 {
448 	atomic_add_int(&ncp->nc_refs, 1);
449 	return(ncp);
450 }
451 
452 /*
453  * Drop a cache entry, taking care to deal with races.
454  *
455  * For potential 1->0 transitions we must hold the ncp lock to safely
456  * test its flags.  An unresolved entry with no children must be zapped
457  * to avoid leaks.
458  *
459  * The call to cache_zap() itself will handle all remaining races and
460  * will decrement the ncp's refs regardless.  If we are resolved or
461  * have children nc_refs can safely be dropped to 0 without having to
462  * zap the entry.
463  *
464  * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion.
465  *
466  * NOTE: cache_zap() may return a non-NULL referenced parent which must
467  *	 be dropped in a loop.
468  *
469  * MPSAFE
470  */
471 static __inline
472 void
473 _cache_drop(struct namecache *ncp)
474 {
475 	int refs;
476 
477 	while (ncp) {
478 		KKASSERT(ncp->nc_refs > 0);
479 		refs = ncp->nc_refs;
480 
481 		if (refs == 1) {
482 			if (_cache_lock_nonblock(ncp) == 0) {
483 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
484 				if ((ncp->nc_flag & NCF_UNRESOLVED) &&
485 				    TAILQ_EMPTY(&ncp->nc_list)) {
486 					ncp = cache_zap(ncp, 1);
487 					continue;
488 				}
489 				if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) {
490 					_cache_unlock(ncp);
491 					break;
492 				}
493 				_cache_unlock(ncp);
494 			}
495 		} else {
496 			if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1))
497 				break;
498 		}
499 		cpu_pause();
500 	}
501 }
502 
503 /*
504  * Link a new namecache entry to its parent and to the hash table.  Be
505  * careful to avoid races if vhold() blocks in the future.
506  *
507  * Both ncp and par must be referenced and locked.
508  *
509  * NOTE: The hash table spinlock is likely held during this call, we
510  *	 can't do anything fancy.
511  *
512  * MPSAFE
513  */
514 static void
515 _cache_link_parent(struct namecache *ncp, struct namecache *par,
516 		   struct nchash_head *nchpp)
517 {
518 	KKASSERT(ncp->nc_parent == NULL);
519 	ncp->nc_parent = par;
520 	ncp->nc_head = nchpp;
521 
522 	/*
523 	 * Set inheritance flags.  Note that the parent flags may be
524 	 * stale due to getattr potentially not having been run yet
525 	 * (it gets run during nlookup()'s).
526 	 */
527 	ncp->nc_flag &= ~(NCF_SF_PNOCACHE | NCF_UF_PCACHE);
528 	if (par->nc_flag & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE))
529 		ncp->nc_flag |= NCF_SF_PNOCACHE;
530 	if (par->nc_flag & (NCF_UF_CACHE | NCF_UF_PCACHE))
531 		ncp->nc_flag |= NCF_UF_PCACHE;
532 
533 	LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash);
534 
535 	if (TAILQ_EMPTY(&par->nc_list)) {
536 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
537 		/*
538 		 * Any vp associated with an ncp which has children must
539 		 * be held to prevent it from being recycled.
540 		 */
541 		if (par->nc_vp)
542 			vhold(par->nc_vp);
543 	} else {
544 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
545 	}
546 }
547 
548 /*
549  * Remove the parent and hash associations from a namecache structure.
550  * If this is the last child of the parent the cache_drop(par) will
551  * attempt to recursively zap the parent.
552  *
553  * ncp must be locked.  This routine will acquire a temporary lock on
554  * the parent as wlel as the appropriate hash chain.
555  *
556  * MPSAFE
557  */
558 static void
559 _cache_unlink_parent(struct namecache *ncp)
560 {
561 	struct namecache *par;
562 	struct vnode *dropvp;
563 
564 	if ((par = ncp->nc_parent) != NULL) {
565 		KKASSERT(ncp->nc_parent == par);
566 		_cache_hold(par);
567 		_cache_lock(par);
568 		spin_lock(&ncp->nc_head->spin);
569 		LIST_REMOVE(ncp, nc_hash);
570 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
571 		dropvp = NULL;
572 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
573 			dropvp = par->nc_vp;
574 		spin_unlock(&ncp->nc_head->spin);
575 		ncp->nc_parent = NULL;
576 		ncp->nc_head = NULL;
577 		_cache_unlock(par);
578 		_cache_drop(par);
579 
580 		/*
581 		 * We can only safely vdrop with no spinlocks held.
582 		 */
583 		if (dropvp)
584 			vdrop(dropvp);
585 	}
586 }
587 
588 /*
589  * Allocate a new namecache structure.  Most of the code does not require
590  * zero-termination of the string but it makes vop_compat_ncreate() easier.
591  *
592  * MPSAFE
593  */
594 static struct namecache *
595 cache_alloc(int nlen)
596 {
597 	struct namecache *ncp;
598 
599 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
600 	if (nlen)
601 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
602 	ncp->nc_nlen = nlen;
603 	ncp->nc_flag = NCF_UNRESOLVED;
604 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
605 	ncp->nc_refs = 1;
606 
607 	TAILQ_INIT(&ncp->nc_list);
608 	_cache_lock(ncp);
609 	return(ncp);
610 }
611 
612 /*
613  * Can only be called for the case where the ncp has never been
614  * associated with anything (so no spinlocks are needed).
615  *
616  * MPSAFE
617  */
618 static void
619 _cache_free(struct namecache *ncp)
620 {
621 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
622 	if (ncp->nc_name)
623 		kfree(ncp->nc_name, M_VFSCACHE);
624 	kfree(ncp, M_VFSCACHE);
625 }
626 
627 /*
628  * MPSAFE
629  */
630 void
631 cache_zero(struct nchandle *nch)
632 {
633 	nch->ncp = NULL;
634 	nch->mount = NULL;
635 }
636 
637 /*
638  * Ref and deref a namecache structure.
639  *
640  * The caller must specify a stable ncp pointer, typically meaning the
641  * ncp is already referenced but this can also occur indirectly through
642  * e.g. holding a lock on a direct child.
643  *
644  * WARNING: Caller may hold an unrelated read spinlock, which means we can't
645  *	    use read spinlocks here.
646  *
647  * MPSAFE if nch is
648  */
649 struct nchandle *
650 cache_hold(struct nchandle *nch)
651 {
652 	_cache_hold(nch->ncp);
653 	atomic_add_int(&nch->mount->mnt_refs, 1);
654 	return(nch);
655 }
656 
657 /*
658  * Create a copy of a namecache handle for an already-referenced
659  * entry.
660  *
661  * MPSAFE if nch is
662  */
663 void
664 cache_copy(struct nchandle *nch, struct nchandle *target)
665 {
666 	*target = *nch;
667 	if (target->ncp)
668 		_cache_hold(target->ncp);
669 	atomic_add_int(&nch->mount->mnt_refs, 1);
670 }
671 
672 /*
673  * MPSAFE if nch is
674  */
675 void
676 cache_changemount(struct nchandle *nch, struct mount *mp)
677 {
678 	atomic_add_int(&nch->mount->mnt_refs, -1);
679 	nch->mount = mp;
680 	atomic_add_int(&nch->mount->mnt_refs, 1);
681 }
682 
683 /*
684  * MPSAFE
685  */
686 void
687 cache_drop(struct nchandle *nch)
688 {
689 	atomic_add_int(&nch->mount->mnt_refs, -1);
690 	_cache_drop(nch->ncp);
691 	nch->ncp = NULL;
692 	nch->mount = NULL;
693 }
694 
695 /*
696  * MPSAFE
697  */
698 void
699 cache_lock(struct nchandle *nch)
700 {
701 	_cache_lock(nch->ncp);
702 }
703 
704 /*
705  * Relock nch1 given an unlocked nch1 and a locked nch2.  The caller
706  * is responsible for checking both for validity on return as they
707  * may have become invalid.
708  *
709  * We have to deal with potential deadlocks here, just ping pong
710  * the lock until we get it (we will always block somewhere when
711  * looping so this is not cpu-intensive).
712  *
713  * which = 0	nch1 not locked, nch2 is locked
714  * which = 1	nch1 is locked, nch2 is not locked
715  */
716 void
717 cache_relock(struct nchandle *nch1, struct ucred *cred1,
718 	     struct nchandle *nch2, struct ucred *cred2)
719 {
720 	int which;
721 
722 	which = 0;
723 
724 	for (;;) {
725 		if (which == 0) {
726 			if (cache_lock_nonblock(nch1) == 0) {
727 				cache_resolve(nch1, cred1);
728 				break;
729 			}
730 			cache_unlock(nch2);
731 			cache_lock(nch1);
732 			cache_resolve(nch1, cred1);
733 			which = 1;
734 		} else {
735 			if (cache_lock_nonblock(nch2) == 0) {
736 				cache_resolve(nch2, cred2);
737 				break;
738 			}
739 			cache_unlock(nch1);
740 			cache_lock(nch2);
741 			cache_resolve(nch2, cred2);
742 			which = 0;
743 		}
744 	}
745 }
746 
747 /*
748  * MPSAFE
749  */
750 int
751 cache_lock_nonblock(struct nchandle *nch)
752 {
753 	return(_cache_lock_nonblock(nch->ncp));
754 }
755 
756 
757 /*
758  * MPSAFE
759  */
760 void
761 cache_unlock(struct nchandle *nch)
762 {
763 	_cache_unlock(nch->ncp);
764 }
765 
766 /*
767  * ref-and-lock, unlock-and-deref functions.
768  *
769  * This function is primarily used by nlookup.  Even though cache_lock
770  * holds the vnode, it is possible that the vnode may have already
771  * initiated a recyclement.
772  *
773  * We want cache_get() to return a definitively usable vnode or a
774  * definitively unresolved ncp.
775  *
776  * MPSAFE
777  */
778 static
779 struct namecache *
780 _cache_get(struct namecache *ncp)
781 {
782 	_cache_hold(ncp);
783 	_cache_lock(ncp);
784 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
785 		_cache_setunresolved(ncp);
786 	return(ncp);
787 }
788 
789 /*
790  * This is a special form of _cache_lock() which only succeeds if
791  * it can get a pristine, non-recursive lock.  The caller must have
792  * already ref'd the ncp.
793  *
794  * On success the ncp will be locked, on failure it will not.  The
795  * ref count does not change either way.
796  *
797  * We want _cache_lock_special() (on success) to return a definitively
798  * usable vnode or a definitively unresolved ncp.
799  *
800  * MPSAFE
801  */
802 static int
803 _cache_lock_special(struct namecache *ncp)
804 {
805 	if (_cache_lock_nonblock(ncp) == 0) {
806 		if ((ncp->nc_exlocks & ~NC_EXLOCK_REQ) == 1) {
807 			if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
808 				_cache_setunresolved(ncp);
809 			return(0);
810 		}
811 		_cache_unlock(ncp);
812 	}
813 	return(EWOULDBLOCK);
814 }
815 
816 
817 /*
818  * NOTE: The same nchandle can be passed for both arguments.
819  *
820  * MPSAFE
821  */
822 void
823 cache_get(struct nchandle *nch, struct nchandle *target)
824 {
825 	KKASSERT(nch->ncp->nc_refs > 0);
826 	target->mount = nch->mount;
827 	target->ncp = _cache_get(nch->ncp);
828 	atomic_add_int(&target->mount->mnt_refs, 1);
829 }
830 
831 /*
832  * MPSAFE
833  */
834 static __inline
835 void
836 _cache_put(struct namecache *ncp)
837 {
838 	_cache_unlock(ncp);
839 	_cache_drop(ncp);
840 }
841 
842 /*
843  * MPSAFE
844  */
845 void
846 cache_put(struct nchandle *nch)
847 {
848 	atomic_add_int(&nch->mount->mnt_refs, -1);
849 	_cache_put(nch->ncp);
850 	nch->ncp = NULL;
851 	nch->mount = NULL;
852 }
853 
854 /*
855  * Resolve an unresolved ncp by associating a vnode with it.  If the
856  * vnode is NULL, a negative cache entry is created.
857  *
858  * The ncp should be locked on entry and will remain locked on return.
859  *
860  * MPSAFE
861  */
862 static
863 void
864 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
865 {
866 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
867 
868 	if (vp != NULL) {
869 		/*
870 		 * Any vp associated with an ncp which has children must
871 		 * be held.  Any vp associated with a locked ncp must be held.
872 		 */
873 		if (!TAILQ_EMPTY(&ncp->nc_list))
874 			vhold(vp);
875 		spin_lock(&vp->v_spinlock);
876 		ncp->nc_vp = vp;
877 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
878 		spin_unlock(&vp->v_spinlock);
879 		if (ncp->nc_exlocks)
880 			vhold(vp);
881 
882 		/*
883 		 * Set auxiliary flags
884 		 */
885 		switch(vp->v_type) {
886 		case VDIR:
887 			ncp->nc_flag |= NCF_ISDIR;
888 			break;
889 		case VLNK:
890 			ncp->nc_flag |= NCF_ISSYMLINK;
891 			/* XXX cache the contents of the symlink */
892 			break;
893 		default:
894 			break;
895 		}
896 		atomic_add_int(&numcache, 1);
897 		ncp->nc_error = 0;
898 	} else {
899 		/*
900 		 * When creating a negative cache hit we set the
901 		 * namecache_gen.  A later resolve will clean out the
902 		 * negative cache hit if the mount point's namecache_gen
903 		 * has changed.  Used by devfs, could also be used by
904 		 * other remote FSs.
905 		 */
906 		ncp->nc_vp = NULL;
907 		spin_lock(&ncspin);
908 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
909 		++numneg;
910 		spin_unlock(&ncspin);
911 		ncp->nc_error = ENOENT;
912 		if (mp)
913 			ncp->nc_namecache_gen = mp->mnt_namecache_gen;
914 	}
915 	ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP);
916 }
917 
918 /*
919  * MPSAFE
920  */
921 void
922 cache_setvp(struct nchandle *nch, struct vnode *vp)
923 {
924 	_cache_setvp(nch->mount, nch->ncp, vp);
925 }
926 
927 /*
928  * MPSAFE
929  */
930 void
931 cache_settimeout(struct nchandle *nch, int nticks)
932 {
933 	struct namecache *ncp = nch->ncp;
934 
935 	if ((ncp->nc_timeout = ticks + nticks) == 0)
936 		ncp->nc_timeout = 1;
937 }
938 
939 /*
940  * Disassociate the vnode or negative-cache association and mark a
941  * namecache entry as unresolved again.  Note that the ncp is still
942  * left in the hash table and still linked to its parent.
943  *
944  * The ncp should be locked and refd on entry and will remain locked and refd
945  * on return.
946  *
947  * This routine is normally never called on a directory containing children.
948  * However, NFS often does just that in its rename() code as a cop-out to
949  * avoid complex namespace operations.  This disconnects a directory vnode
950  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
951  * sync.
952  *
953  * MPSAFE
954  */
955 static
956 void
957 _cache_setunresolved(struct namecache *ncp)
958 {
959 	struct vnode *vp;
960 
961 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
962 		ncp->nc_flag |= NCF_UNRESOLVED;
963 		ncp->nc_timeout = 0;
964 		ncp->nc_error = ENOTCONN;
965 		if ((vp = ncp->nc_vp) != NULL) {
966 			atomic_add_int(&numcache, -1);
967 			spin_lock(&vp->v_spinlock);
968 			ncp->nc_vp = NULL;
969 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
970 			spin_unlock(&vp->v_spinlock);
971 
972 			/*
973 			 * Any vp associated with an ncp with children is
974 			 * held by that ncp.  Any vp associated with a locked
975 			 * ncp is held by that ncp.  These conditions must be
976 			 * undone when the vp is cleared out from the ncp.
977 			 */
978 			if (!TAILQ_EMPTY(&ncp->nc_list))
979 				vdrop(vp);
980 			if (ncp->nc_exlocks)
981 				vdrop(vp);
982 		} else {
983 			spin_lock(&ncspin);
984 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
985 			--numneg;
986 			spin_unlock(&ncspin);
987 		}
988 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK);
989 	}
990 }
991 
992 /*
993  * The cache_nresolve() code calls this function to automatically
994  * set a resolved cache element to unresolved if it has timed out
995  * or if it is a negative cache hit and the mount point namecache_gen
996  * has changed.
997  *
998  * MPSAFE
999  */
1000 static __inline void
1001 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
1002 {
1003 	/*
1004 	 * Already in an unresolved state, nothing to do.
1005 	 */
1006 	if (ncp->nc_flag & NCF_UNRESOLVED)
1007 		return;
1008 
1009 	/*
1010 	 * Try to zap entries that have timed out.  We have
1011 	 * to be careful here because locked leafs may depend
1012 	 * on the vnode remaining intact in a parent, so only
1013 	 * do this under very specific conditions.
1014 	 */
1015 	if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
1016 	    TAILQ_EMPTY(&ncp->nc_list)) {
1017 		_cache_setunresolved(ncp);
1018 		return;
1019 	}
1020 
1021 	/*
1022 	 * If a resolved negative cache hit is invalid due to
1023 	 * the mount's namecache generation being bumped, zap it.
1024 	 */
1025 	if (ncp->nc_vp == NULL &&
1026 	    ncp->nc_namecache_gen != mp->mnt_namecache_gen) {
1027 		_cache_setunresolved(ncp);
1028 		return;
1029 	}
1030 }
1031 
1032 /*
1033  * MPSAFE
1034  */
1035 void
1036 cache_setunresolved(struct nchandle *nch)
1037 {
1038 	_cache_setunresolved(nch->ncp);
1039 }
1040 
1041 /*
1042  * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
1043  * looking for matches.  This flag tells the lookup code when it must
1044  * check for a mount linkage and also prevents the directories in question
1045  * from being deleted or renamed.
1046  *
1047  * MPSAFE
1048  */
1049 static
1050 int
1051 cache_clrmountpt_callback(struct mount *mp, void *data)
1052 {
1053 	struct nchandle *nch = data;
1054 
1055 	if (mp->mnt_ncmounton.ncp == nch->ncp)
1056 		return(1);
1057 	if (mp->mnt_ncmountpt.ncp == nch->ncp)
1058 		return(1);
1059 	return(0);
1060 }
1061 
1062 /*
1063  * MPSAFE
1064  */
1065 void
1066 cache_clrmountpt(struct nchandle *nch)
1067 {
1068 	int count;
1069 
1070 	count = mountlist_scan(cache_clrmountpt_callback, nch,
1071 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1072 	if (count == 0)
1073 		nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
1074 }
1075 
1076 /*
1077  * Invalidate portions of the namecache topology given a starting entry.
1078  * The passed ncp is set to an unresolved state and:
1079  *
1080  * The passed ncp must be referencxed and locked.  The routine may unlock
1081  * and relock ncp several times, and will recheck the children and loop
1082  * to catch races.  When done the passed ncp will be returned with the
1083  * reference and lock intact.
1084  *
1085  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
1086  *			  that the physical underlying nodes have been
1087  *			  destroyed... as in deleted.  For example, when
1088  *			  a directory is removed.  This will cause record
1089  *			  lookups on the name to no longer be able to find
1090  *			  the record and tells the resolver to return failure
1091  *			  rather then trying to resolve through the parent.
1092  *
1093  *			  The topology itself, including ncp->nc_name,
1094  *			  remains intact.
1095  *
1096  *			  This only applies to the passed ncp, if CINV_CHILDREN
1097  *			  is specified the children are not flagged.
1098  *
1099  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
1100  *			  state as well.
1101  *
1102  *			  Note that this will also have the side effect of
1103  *			  cleaning out any unreferenced nodes in the topology
1104  *			  from the leaves up as the recursion backs out.
1105  *
1106  * Note that the topology for any referenced nodes remains intact, but
1107  * the nodes will be marked as having been destroyed and will be set
1108  * to an unresolved state.
1109  *
1110  * It is possible for cache_inval() to race a cache_resolve(), meaning that
1111  * the namecache entry may not actually be invalidated on return if it was
1112  * revalidated while recursing down into its children.  This code guarentees
1113  * that the node(s) will go through an invalidation cycle, but does not
1114  * guarentee that they will remain in an invalidated state.
1115  *
1116  * Returns non-zero if a revalidation was detected during the invalidation
1117  * recursion, zero otherwise.  Note that since only the original ncp is
1118  * locked the revalidation ultimately can only indicate that the original ncp
1119  * *MIGHT* no have been reresolved.
1120  *
1121  * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
1122  * have to avoid blowing out the kernel stack.  We do this by saving the
1123  * deep namecache node and aborting the recursion, then re-recursing at that
1124  * node using a depth-first algorithm in order to allow multiple deep
1125  * recursions to chain through each other, then we restart the invalidation
1126  * from scratch.
1127  *
1128  * MPSAFE
1129  */
1130 
1131 struct cinvtrack {
1132 	struct namecache *resume_ncp;
1133 	int depth;
1134 };
1135 
1136 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
1137 
1138 static
1139 int
1140 _cache_inval(struct namecache *ncp, int flags)
1141 {
1142 	struct cinvtrack track;
1143 	struct namecache *ncp2;
1144 	int r;
1145 
1146 	track.depth = 0;
1147 	track.resume_ncp = NULL;
1148 
1149 	for (;;) {
1150 		r = _cache_inval_internal(ncp, flags, &track);
1151 		if (track.resume_ncp == NULL)
1152 			break;
1153 		kprintf("Warning: deep namecache recursion at %s\n",
1154 			ncp->nc_name);
1155 		_cache_unlock(ncp);
1156 		while ((ncp2 = track.resume_ncp) != NULL) {
1157 			track.resume_ncp = NULL;
1158 			_cache_lock(ncp2);
1159 			_cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
1160 					     &track);
1161 			_cache_put(ncp2);
1162 		}
1163 		_cache_lock(ncp);
1164 	}
1165 	return(r);
1166 }
1167 
1168 int
1169 cache_inval(struct nchandle *nch, int flags)
1170 {
1171 	return(_cache_inval(nch->ncp, flags));
1172 }
1173 
1174 /*
1175  * Helper for _cache_inval().  The passed ncp is refd and locked and
1176  * remains that way on return, but may be unlocked/relocked multiple
1177  * times by the routine.
1178  */
1179 static int
1180 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
1181 {
1182 	struct namecache *kid;
1183 	struct namecache *nextkid;
1184 	int rcnt = 0;
1185 
1186 	KKASSERT(ncp->nc_exlocks);
1187 
1188 	_cache_setunresolved(ncp);
1189 	if (flags & CINV_DESTROY)
1190 		ncp->nc_flag |= NCF_DESTROYED;
1191 	if ((flags & CINV_CHILDREN) &&
1192 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
1193 	) {
1194 		_cache_hold(kid);
1195 		if (++track->depth > MAX_RECURSION_DEPTH) {
1196 			track->resume_ncp = ncp;
1197 			_cache_hold(ncp);
1198 			++rcnt;
1199 		}
1200 		_cache_unlock(ncp);
1201 		while (kid) {
1202 			if (track->resume_ncp) {
1203 				_cache_drop(kid);
1204 				break;
1205 			}
1206 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
1207 				_cache_hold(nextkid);
1208 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
1209 			    TAILQ_FIRST(&kid->nc_list)
1210 			) {
1211 				_cache_lock(kid);
1212 				rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
1213 				_cache_unlock(kid);
1214 			}
1215 			_cache_drop(kid);
1216 			kid = nextkid;
1217 		}
1218 		--track->depth;
1219 		_cache_lock(ncp);
1220 	}
1221 
1222 	/*
1223 	 * Someone could have gotten in there while ncp was unlocked,
1224 	 * retry if so.
1225 	 */
1226 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1227 		++rcnt;
1228 	return (rcnt);
1229 }
1230 
1231 /*
1232  * Invalidate a vnode's namecache associations.  To avoid races against
1233  * the resolver we do not invalidate a node which we previously invalidated
1234  * but which was then re-resolved while we were in the invalidation loop.
1235  *
1236  * Returns non-zero if any namecache entries remain after the invalidation
1237  * loop completed.
1238  *
1239  * NOTE: Unlike the namecache topology which guarentees that ncp's will not
1240  *	 be ripped out of the topology while held, the vnode's v_namecache
1241  *	 list has no such restriction.  NCP's can be ripped out of the list
1242  *	 at virtually any time if not locked, even if held.
1243  *
1244  *	 In addition, the v_namecache list itself must be locked via
1245  *	 the vnode's spinlock.
1246  *
1247  * MPSAFE
1248  */
1249 int
1250 cache_inval_vp(struct vnode *vp, int flags)
1251 {
1252 	struct namecache *ncp;
1253 	struct namecache *next;
1254 
1255 restart:
1256 	spin_lock(&vp->v_spinlock);
1257 	ncp = TAILQ_FIRST(&vp->v_namecache);
1258 	if (ncp)
1259 		_cache_hold(ncp);
1260 	while (ncp) {
1261 		/* loop entered with ncp held and vp spin-locked */
1262 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1263 			_cache_hold(next);
1264 		spin_unlock(&vp->v_spinlock);
1265 		_cache_lock(ncp);
1266 		if (ncp->nc_vp != vp) {
1267 			kprintf("Warning: cache_inval_vp: race-A detected on "
1268 				"%s\n", ncp->nc_name);
1269 			_cache_put(ncp);
1270 			if (next)
1271 				_cache_drop(next);
1272 			goto restart;
1273 		}
1274 		_cache_inval(ncp, flags);
1275 		_cache_put(ncp);		/* also releases reference */
1276 		ncp = next;
1277 		spin_lock(&vp->v_spinlock);
1278 		if (ncp && ncp->nc_vp != vp) {
1279 			spin_unlock(&vp->v_spinlock);
1280 			kprintf("Warning: cache_inval_vp: race-B detected on "
1281 				"%s\n", ncp->nc_name);
1282 			_cache_drop(ncp);
1283 			goto restart;
1284 		}
1285 	}
1286 	spin_unlock(&vp->v_spinlock);
1287 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1288 }
1289 
1290 /*
1291  * This routine is used instead of the normal cache_inval_vp() when we
1292  * are trying to recycle otherwise good vnodes.
1293  *
1294  * Return 0 on success, non-zero if not all namecache records could be
1295  * disassociated from the vnode (for various reasons).
1296  *
1297  * MPSAFE
1298  */
1299 int
1300 cache_inval_vp_nonblock(struct vnode *vp)
1301 {
1302 	struct namecache *ncp;
1303 	struct namecache *next;
1304 
1305 	spin_lock(&vp->v_spinlock);
1306 	ncp = TAILQ_FIRST(&vp->v_namecache);
1307 	if (ncp)
1308 		_cache_hold(ncp);
1309 	while (ncp) {
1310 		/* loop entered with ncp held */
1311 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1312 			_cache_hold(next);
1313 		spin_unlock(&vp->v_spinlock);
1314 		if (_cache_lock_nonblock(ncp)) {
1315 			_cache_drop(ncp);
1316 			if (next)
1317 				_cache_drop(next);
1318 			goto done;
1319 		}
1320 		if (ncp->nc_vp != vp) {
1321 			kprintf("Warning: cache_inval_vp: race-A detected on "
1322 				"%s\n", ncp->nc_name);
1323 			_cache_put(ncp);
1324 			if (next)
1325 				_cache_drop(next);
1326 			goto done;
1327 		}
1328 		_cache_inval(ncp, 0);
1329 		_cache_put(ncp);		/* also releases reference */
1330 		ncp = next;
1331 		spin_lock(&vp->v_spinlock);
1332 		if (ncp && ncp->nc_vp != vp) {
1333 			spin_unlock(&vp->v_spinlock);
1334 			kprintf("Warning: cache_inval_vp: race-B detected on "
1335 				"%s\n", ncp->nc_name);
1336 			_cache_drop(ncp);
1337 			goto done;
1338 		}
1339 	}
1340 	spin_unlock(&vp->v_spinlock);
1341 done:
1342 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1343 }
1344 
1345 /*
1346  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
1347  * must be locked.  The target ncp is destroyed (as a normal rename-over
1348  * would destroy the target file or directory).
1349  *
1350  * Because there may be references to the source ncp we cannot copy its
1351  * contents to the target.  Instead the source ncp is relinked as the target
1352  * and the target ncp is removed from the namecache topology.
1353  *
1354  * MPSAFE
1355  */
1356 void
1357 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1358 {
1359 	struct namecache *fncp = fnch->ncp;
1360 	struct namecache *tncp = tnch->ncp;
1361 	struct namecache *tncp_par;
1362 	struct nchash_head *nchpp;
1363 	u_int32_t hash;
1364 	char *oname;
1365 
1366 	/*
1367 	 * Rename fncp (unlink)
1368 	 */
1369 	_cache_unlink_parent(fncp);
1370 	oname = fncp->nc_name;
1371 	fncp->nc_name = tncp->nc_name;
1372 	fncp->nc_nlen = tncp->nc_nlen;
1373 	tncp_par = tncp->nc_parent;
1374 	_cache_hold(tncp_par);
1375 	_cache_lock(tncp_par);
1376 
1377 	/*
1378 	 * Rename fncp (relink)
1379 	 */
1380 	hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT);
1381 	hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash);
1382 	nchpp = NCHHASH(hash);
1383 
1384 	spin_lock(&nchpp->spin);
1385 	_cache_link_parent(fncp, tncp_par, nchpp);
1386 	spin_unlock(&nchpp->spin);
1387 
1388 	_cache_put(tncp_par);
1389 
1390 	/*
1391 	 * Get rid of the overwritten tncp (unlink)
1392 	 */
1393 	_cache_setunresolved(tncp);
1394 	_cache_unlink_parent(tncp);
1395 	tncp->nc_name = NULL;
1396 	tncp->nc_nlen = 0;
1397 
1398 	if (oname)
1399 		kfree(oname, M_VFSCACHE);
1400 }
1401 
1402 /*
1403  * vget the vnode associated with the namecache entry.  Resolve the namecache
1404  * entry if necessary.  The passed ncp must be referenced and locked.
1405  *
1406  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
1407  * (depending on the passed lk_type) will be returned in *vpp with an error
1408  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
1409  * most typical error is ENOENT, meaning that the ncp represents a negative
1410  * cache hit and there is no vnode to retrieve, but other errors can occur
1411  * too.
1412  *
1413  * The vget() can race a reclaim.  If this occurs we re-resolve the
1414  * namecache entry.
1415  *
1416  * There are numerous places in the kernel where vget() is called on a
1417  * vnode while one or more of its namecache entries is locked.  Releasing
1418  * a vnode never deadlocks against locked namecache entries (the vnode
1419  * will not get recycled while referenced ncp's exist).  This means we
1420  * can safely acquire the vnode.  In fact, we MUST NOT release the ncp
1421  * lock when acquiring the vp lock or we might cause a deadlock.
1422  *
1423  * MPSAFE
1424  */
1425 int
1426 cache_vget(struct nchandle *nch, struct ucred *cred,
1427 	   int lk_type, struct vnode **vpp)
1428 {
1429 	struct namecache *ncp;
1430 	struct vnode *vp;
1431 	int error;
1432 
1433 	ncp = nch->ncp;
1434 	KKASSERT(ncp->nc_locktd == curthread);
1435 again:
1436 	vp = NULL;
1437 	if (ncp->nc_flag & NCF_UNRESOLVED)
1438 		error = cache_resolve(nch, cred);
1439 	else
1440 		error = 0;
1441 
1442 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1443 		error = vget(vp, lk_type);
1444 		if (error) {
1445 			/*
1446 			 * VRECLAIM race
1447 			 */
1448 			if (error == ENOENT) {
1449 				kprintf("Warning: vnode reclaim race detected "
1450 					"in cache_vget on %p (%s)\n",
1451 					vp, ncp->nc_name);
1452 				_cache_setunresolved(ncp);
1453 				goto again;
1454 			}
1455 
1456 			/*
1457 			 * Not a reclaim race, some other error.
1458 			 */
1459 			KKASSERT(ncp->nc_vp == vp);
1460 			vp = NULL;
1461 		} else {
1462 			KKASSERT(ncp->nc_vp == vp);
1463 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1464 		}
1465 	}
1466 	if (error == 0 && vp == NULL)
1467 		error = ENOENT;
1468 	*vpp = vp;
1469 	return(error);
1470 }
1471 
1472 int
1473 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1474 {
1475 	struct namecache *ncp;
1476 	struct vnode *vp;
1477 	int error;
1478 
1479 	ncp = nch->ncp;
1480 	KKASSERT(ncp->nc_locktd == curthread);
1481 again:
1482 	vp = NULL;
1483 	if (ncp->nc_flag & NCF_UNRESOLVED)
1484 		error = cache_resolve(nch, cred);
1485 	else
1486 		error = 0;
1487 
1488 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1489 		error = vget(vp, LK_SHARED);
1490 		if (error) {
1491 			/*
1492 			 * VRECLAIM race
1493 			 */
1494 			if (error == ENOENT) {
1495 				kprintf("Warning: vnode reclaim race detected "
1496 					"in cache_vget on %p (%s)\n",
1497 					vp, ncp->nc_name);
1498 				_cache_setunresolved(ncp);
1499 				goto again;
1500 			}
1501 
1502 			/*
1503 			 * Not a reclaim race, some other error.
1504 			 */
1505 			KKASSERT(ncp->nc_vp == vp);
1506 			vp = NULL;
1507 		} else {
1508 			KKASSERT(ncp->nc_vp == vp);
1509 			KKASSERT((vp->v_flag & VRECLAIMED) == 0);
1510 			/* caller does not want a lock */
1511 			vn_unlock(vp);
1512 		}
1513 	}
1514 	if (error == 0 && vp == NULL)
1515 		error = ENOENT;
1516 	*vpp = vp;
1517 	return(error);
1518 }
1519 
1520 /*
1521  * Return a referenced vnode representing the parent directory of
1522  * ncp.
1523  *
1524  * Because the caller has locked the ncp it should not be possible for
1525  * the parent ncp to go away.  However, the parent can unresolve its
1526  * dvp at any time so we must be able to acquire a lock on the parent
1527  * to safely access nc_vp.
1528  *
1529  * We have to leave par unlocked when vget()ing dvp to avoid a deadlock,
1530  * so use vhold()/vdrop() while holding the lock to prevent dvp from
1531  * getting destroyed.
1532  *
1533  * MPSAFE - Note vhold() is allowed when dvp has 0 refs if we hold a
1534  *	    lock on the ncp in question..
1535  */
1536 static struct vnode *
1537 cache_dvpref(struct namecache *ncp)
1538 {
1539 	struct namecache *par;
1540 	struct vnode *dvp;
1541 
1542 	dvp = NULL;
1543 	if ((par = ncp->nc_parent) != NULL) {
1544 		_cache_hold(par);
1545 		_cache_lock(par);
1546 		if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1547 			if ((dvp = par->nc_vp) != NULL)
1548 				vhold(dvp);
1549 		}
1550 		_cache_unlock(par);
1551 		if (dvp) {
1552 			if (vget(dvp, LK_SHARED) == 0) {
1553 				vn_unlock(dvp);
1554 				vdrop(dvp);
1555 				/* return refd, unlocked dvp */
1556 			} else {
1557 				vdrop(dvp);
1558 				dvp = NULL;
1559 			}
1560 		}
1561 		_cache_drop(par);
1562 	}
1563 	return(dvp);
1564 }
1565 
1566 /*
1567  * Convert a directory vnode to a namecache record without any other
1568  * knowledge of the topology.  This ONLY works with directory vnodes and
1569  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1570  * returned ncp (if not NULL) will be held and unlocked.
1571  *
1572  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1573  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1574  * for dvp.  This will fail only if the directory has been deleted out from
1575  * under the caller.
1576  *
1577  * Callers must always check for a NULL return no matter the value of 'makeit'.
1578  *
1579  * To avoid underflowing the kernel stack each recursive call increments
1580  * the makeit variable.
1581  */
1582 
1583 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1584 				  struct vnode *dvp, char *fakename);
1585 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1586 				  struct vnode **saved_dvp);
1587 
1588 int
1589 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1590 	      struct nchandle *nch)
1591 {
1592 	struct vnode *saved_dvp;
1593 	struct vnode *pvp;
1594 	char *fakename;
1595 	int error;
1596 
1597 	nch->ncp = NULL;
1598 	nch->mount = dvp->v_mount;
1599 	saved_dvp = NULL;
1600 	fakename = NULL;
1601 
1602 	/*
1603 	 * Handle the makeit == 0 degenerate case
1604 	 */
1605 	if (makeit == 0) {
1606 		spin_lock(&dvp->v_spinlock);
1607 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1608 		if (nch->ncp)
1609 			cache_hold(nch);
1610 		spin_unlock(&dvp->v_spinlock);
1611 	}
1612 
1613 	/*
1614 	 * Loop until resolution, inside code will break out on error.
1615 	 */
1616 	while (makeit) {
1617 		/*
1618 		 * Break out if we successfully acquire a working ncp.
1619 		 */
1620 		spin_lock(&dvp->v_spinlock);
1621 		nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1622 		if (nch->ncp) {
1623 			cache_hold(nch);
1624 			spin_unlock(&dvp->v_spinlock);
1625 			break;
1626 		}
1627 		spin_unlock(&dvp->v_spinlock);
1628 
1629 		/*
1630 		 * If dvp is the root of its filesystem it should already
1631 		 * have a namecache pointer associated with it as a side
1632 		 * effect of the mount, but it may have been disassociated.
1633 		 */
1634 		if (dvp->v_flag & VROOT) {
1635 			nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1636 			error = cache_resolve_mp(nch->mount);
1637 			_cache_put(nch->ncp);
1638 			if (ncvp_debug) {
1639 				kprintf("cache_fromdvp: resolve root of mount %p error %d",
1640 					dvp->v_mount, error);
1641 			}
1642 			if (error) {
1643 				if (ncvp_debug)
1644 					kprintf(" failed\n");
1645 				nch->ncp = NULL;
1646 				break;
1647 			}
1648 			if (ncvp_debug)
1649 				kprintf(" succeeded\n");
1650 			continue;
1651 		}
1652 
1653 		/*
1654 		 * If we are recursed too deeply resort to an O(n^2)
1655 		 * algorithm to resolve the namecache topology.  The
1656 		 * resolved pvp is left referenced in saved_dvp to
1657 		 * prevent the tree from being destroyed while we loop.
1658 		 */
1659 		if (makeit > 20) {
1660 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1661 			if (error) {
1662 				kprintf("lookupdotdot(longpath) failed %d "
1663 				       "dvp %p\n", error, dvp);
1664 				nch->ncp = NULL;
1665 				break;
1666 			}
1667 			continue;
1668 		}
1669 
1670 		/*
1671 		 * Get the parent directory and resolve its ncp.
1672 		 */
1673 		if (fakename) {
1674 			kfree(fakename, M_TEMP);
1675 			fakename = NULL;
1676 		}
1677 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1678 					  &fakename);
1679 		if (error) {
1680 			kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1681 			break;
1682 		}
1683 		vn_unlock(pvp);
1684 
1685 		/*
1686 		 * Reuse makeit as a recursion depth counter.  On success
1687 		 * nch will be fully referenced.
1688 		 */
1689 		cache_fromdvp(pvp, cred, makeit + 1, nch);
1690 		vrele(pvp);
1691 		if (nch->ncp == NULL)
1692 			break;
1693 
1694 		/*
1695 		 * Do an inefficient scan of pvp (embodied by ncp) to look
1696 		 * for dvp.  This will create a namecache record for dvp on
1697 		 * success.  We loop up to recheck on success.
1698 		 *
1699 		 * ncp and dvp are both held but not locked.
1700 		 */
1701 		error = cache_inefficient_scan(nch, cred, dvp, fakename);
1702 		if (error) {
1703 			kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1704 				pvp, nch->ncp->nc_name, dvp);
1705 			cache_drop(nch);
1706 			/* nch was NULLed out, reload mount */
1707 			nch->mount = dvp->v_mount;
1708 			break;
1709 		}
1710 		if (ncvp_debug) {
1711 			kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1712 				pvp, nch->ncp->nc_name);
1713 		}
1714 		cache_drop(nch);
1715 		/* nch was NULLed out, reload mount */
1716 		nch->mount = dvp->v_mount;
1717 	}
1718 
1719 	/*
1720 	 * If nch->ncp is non-NULL it will have been held already.
1721 	 */
1722 	if (fakename)
1723 		kfree(fakename, M_TEMP);
1724 	if (saved_dvp)
1725 		vrele(saved_dvp);
1726 	if (nch->ncp)
1727 		return (0);
1728 	return (EINVAL);
1729 }
1730 
1731 /*
1732  * Go up the chain of parent directories until we find something
1733  * we can resolve into the namecache.  This is very inefficient.
1734  */
1735 static
1736 int
1737 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1738 		  struct vnode **saved_dvp)
1739 {
1740 	struct nchandle nch;
1741 	struct vnode *pvp;
1742 	int error;
1743 	static time_t last_fromdvp_report;
1744 	char *fakename;
1745 
1746 	/*
1747 	 * Loop getting the parent directory vnode until we get something we
1748 	 * can resolve in the namecache.
1749 	 */
1750 	vref(dvp);
1751 	nch.mount = dvp->v_mount;
1752 	nch.ncp = NULL;
1753 	fakename = NULL;
1754 
1755 	for (;;) {
1756 		if (fakename) {
1757 			kfree(fakename, M_TEMP);
1758 			fakename = NULL;
1759 		}
1760 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1761 					  &fakename);
1762 		if (error) {
1763 			vrele(dvp);
1764 			break;
1765 		}
1766 		vn_unlock(pvp);
1767 		spin_lock(&pvp->v_spinlock);
1768 		if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1769 			_cache_hold(nch.ncp);
1770 			spin_unlock(&pvp->v_spinlock);
1771 			vrele(pvp);
1772 			break;
1773 		}
1774 		spin_unlock(&pvp->v_spinlock);
1775 		if (pvp->v_flag & VROOT) {
1776 			nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1777 			error = cache_resolve_mp(nch.mount);
1778 			_cache_unlock(nch.ncp);
1779 			vrele(pvp);
1780 			if (error) {
1781 				_cache_drop(nch.ncp);
1782 				nch.ncp = NULL;
1783 				vrele(dvp);
1784 			}
1785 			break;
1786 		}
1787 		vrele(dvp);
1788 		dvp = pvp;
1789 	}
1790 	if (error == 0) {
1791 		if (last_fromdvp_report != time_second) {
1792 			last_fromdvp_report = time_second;
1793 			kprintf("Warning: extremely inefficient path "
1794 				"resolution on %s\n",
1795 				nch.ncp->nc_name);
1796 		}
1797 		error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1798 
1799 		/*
1800 		 * Hopefully dvp now has a namecache record associated with
1801 		 * it.  Leave it referenced to prevent the kernel from
1802 		 * recycling the vnode.  Otherwise extremely long directory
1803 		 * paths could result in endless recycling.
1804 		 */
1805 		if (*saved_dvp)
1806 		    vrele(*saved_dvp);
1807 		*saved_dvp = dvp;
1808 		_cache_drop(nch.ncp);
1809 	}
1810 	if (fakename)
1811 		kfree(fakename, M_TEMP);
1812 	return (error);
1813 }
1814 
1815 /*
1816  * Do an inefficient scan of the directory represented by ncp looking for
1817  * the directory vnode dvp.  ncp must be held but not locked on entry and
1818  * will be held on return.  dvp must be refd but not locked on entry and
1819  * will remain refd on return.
1820  *
1821  * Why do this at all?  Well, due to its stateless nature the NFS server
1822  * converts file handles directly to vnodes without necessarily going through
1823  * the namecache ops that would otherwise create the namecache topology
1824  * leading to the vnode.  We could either (1) Change the namecache algorithms
1825  * to allow disconnect namecache records that are re-merged opportunistically,
1826  * or (2) Make the NFS server backtrack and scan to recover a connected
1827  * namecache topology in order to then be able to issue new API lookups.
1828  *
1829  * It turns out that (1) is a huge mess.  It takes a nice clean set of
1830  * namecache algorithms and introduces a lot of complication in every subsystem
1831  * that calls into the namecache to deal with the re-merge case, especially
1832  * since we are using the namecache to placehold negative lookups and the
1833  * vnode might not be immediately assigned. (2) is certainly far less
1834  * efficient then (1), but since we are only talking about directories here
1835  * (which are likely to remain cached), the case does not actually run all
1836  * that often and has the supreme advantage of not polluting the namecache
1837  * algorithms.
1838  *
1839  * If a fakename is supplied just construct a namecache entry using the
1840  * fake name.
1841  */
1842 static int
1843 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1844 		       struct vnode *dvp, char *fakename)
1845 {
1846 	struct nlcomponent nlc;
1847 	struct nchandle rncp;
1848 	struct dirent *den;
1849 	struct vnode *pvp;
1850 	struct vattr vat;
1851 	struct iovec iov;
1852 	struct uio uio;
1853 	int blksize;
1854 	int eofflag;
1855 	int bytes;
1856 	char *rbuf;
1857 	int error;
1858 
1859 	vat.va_blocksize = 0;
1860 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1861 		return (error);
1862 	cache_lock(nch);
1863 	error = cache_vref(nch, cred, &pvp);
1864 	cache_unlock(nch);
1865 	if (error)
1866 		return (error);
1867 	if (ncvp_debug) {
1868 		kprintf("inefficient_scan: directory iosize %ld "
1869 			"vattr fileid = %lld\n",
1870 			vat.va_blocksize,
1871 			(long long)vat.va_fileid);
1872 	}
1873 
1874 	/*
1875 	 * Use the supplied fakename if not NULL.  Fake names are typically
1876 	 * not in the actual filesystem hierarchy.  This is used by HAMMER
1877 	 * to glue @@timestamp recursions together.
1878 	 */
1879 	if (fakename) {
1880 		nlc.nlc_nameptr = fakename;
1881 		nlc.nlc_namelen = strlen(fakename);
1882 		rncp = cache_nlookup(nch, &nlc);
1883 		goto done;
1884 	}
1885 
1886 	if ((blksize = vat.va_blocksize) == 0)
1887 		blksize = DEV_BSIZE;
1888 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1889 	rncp.ncp = NULL;
1890 
1891 	eofflag = 0;
1892 	uio.uio_offset = 0;
1893 again:
1894 	iov.iov_base = rbuf;
1895 	iov.iov_len = blksize;
1896 	uio.uio_iov = &iov;
1897 	uio.uio_iovcnt = 1;
1898 	uio.uio_resid = blksize;
1899 	uio.uio_segflg = UIO_SYSSPACE;
1900 	uio.uio_rw = UIO_READ;
1901 	uio.uio_td = curthread;
1902 
1903 	if (ncvp_debug >= 2)
1904 		kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1905 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1906 	if (error == 0) {
1907 		den = (struct dirent *)rbuf;
1908 		bytes = blksize - uio.uio_resid;
1909 
1910 		while (bytes > 0) {
1911 			if (ncvp_debug >= 2) {
1912 				kprintf("cache_inefficient_scan: %*.*s\n",
1913 					den->d_namlen, den->d_namlen,
1914 					den->d_name);
1915 			}
1916 			if (den->d_type != DT_WHT &&
1917 			    den->d_ino == vat.va_fileid) {
1918 				if (ncvp_debug) {
1919 					kprintf("cache_inefficient_scan: "
1920 					       "MATCHED inode %lld path %s/%*.*s\n",
1921 					       (long long)vat.va_fileid,
1922 					       nch->ncp->nc_name,
1923 					       den->d_namlen, den->d_namlen,
1924 					       den->d_name);
1925 				}
1926 				nlc.nlc_nameptr = den->d_name;
1927 				nlc.nlc_namelen = den->d_namlen;
1928 				rncp = cache_nlookup(nch, &nlc);
1929 				KKASSERT(rncp.ncp != NULL);
1930 				break;
1931 			}
1932 			bytes -= _DIRENT_DIRSIZ(den);
1933 			den = _DIRENT_NEXT(den);
1934 		}
1935 		if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1936 			goto again;
1937 	}
1938 	kfree(rbuf, M_TEMP);
1939 done:
1940 	vrele(pvp);
1941 	if (rncp.ncp) {
1942 		if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1943 			_cache_setvp(rncp.mount, rncp.ncp, dvp);
1944 			if (ncvp_debug >= 2) {
1945 				kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1946 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1947 			}
1948 		} else {
1949 			if (ncvp_debug >= 2) {
1950 				kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1951 					nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1952 					rncp.ncp->nc_vp);
1953 			}
1954 		}
1955 		if (rncp.ncp->nc_vp == NULL)
1956 			error = rncp.ncp->nc_error;
1957 		/*
1958 		 * Release rncp after a successful nlookup.  rncp was fully
1959 		 * referenced.
1960 		 */
1961 		cache_put(&rncp);
1962 	} else {
1963 		kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1964 			dvp, nch->ncp->nc_name);
1965 		error = ENOENT;
1966 	}
1967 	return (error);
1968 }
1969 
1970 /*
1971  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1972  * state, which disassociates it from its vnode or ncneglist.
1973  *
1974  * Then, if there are no additional references to the ncp and no children,
1975  * the ncp is removed from the topology and destroyed.
1976  *
1977  * References and/or children may exist if the ncp is in the middle of the
1978  * topology, preventing the ncp from being destroyed.
1979  *
1980  * This function must be called with the ncp held and locked and will unlock
1981  * and drop it during zapping.
1982  *
1983  * If nonblock is non-zero and the parent ncp cannot be locked we give up.
1984  * This case can occur in the cache_drop() path.
1985  *
1986  * This function may returned a held (but NOT locked) parent node which the
1987  * caller must drop.  We do this so _cache_drop() can loop, to avoid
1988  * blowing out the kernel stack.
1989  *
1990  * WARNING!  For MPSAFE operation this routine must acquire up to three
1991  *	     spin locks to be able to safely test nc_refs.  Lock order is
1992  *	     very important.
1993  *
1994  *	     hash spinlock if on hash list
1995  *	     parent spinlock if child of parent
1996  *	     (the ncp is unresolved so there is no vnode association)
1997  */
1998 static struct namecache *
1999 cache_zap(struct namecache *ncp, int nonblock)
2000 {
2001 	struct namecache *par;
2002 	struct vnode *dropvp;
2003 	int refs;
2004 
2005 	/*
2006 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
2007 	 */
2008 	_cache_setunresolved(ncp);
2009 
2010 	/*
2011 	 * Try to scrap the entry and possibly tail-recurse on its parent.
2012 	 * We only scrap unref'd (other then our ref) unresolved entries,
2013 	 * we do not scrap 'live' entries.
2014 	 *
2015 	 * Note that once the spinlocks are acquired if nc_refs == 1 no
2016 	 * other references are possible.  If it isn't, however, we have
2017 	 * to decrement but also be sure to avoid a 1->0 transition.
2018 	 */
2019 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
2020 	KKASSERT(ncp->nc_refs > 0);
2021 
2022 	/*
2023 	 * Acquire locks.  Note that the parent can't go away while we hold
2024 	 * a child locked.
2025 	 */
2026 	if ((par = ncp->nc_parent) != NULL) {
2027 		if (nonblock) {
2028 			for (;;) {
2029 				if (_cache_lock_nonblock(par) == 0)
2030 					break;
2031 				refs = ncp->nc_refs;
2032 				ncp->nc_flag |= NCF_DEFEREDZAP;
2033 				++numdefered;	/* MP race ok */
2034 				if (atomic_cmpset_int(&ncp->nc_refs,
2035 						      refs, refs - 1)) {
2036 					_cache_unlock(ncp);
2037 					return(NULL);
2038 				}
2039 				cpu_pause();
2040 			}
2041 			_cache_hold(par);
2042 		} else {
2043 			_cache_hold(par);
2044 			_cache_lock(par);
2045 		}
2046 		spin_lock(&ncp->nc_head->spin);
2047 	}
2048 
2049 	/*
2050 	 * If someone other then us has a ref or we have children
2051 	 * we cannot zap the entry.  The 1->0 transition and any
2052 	 * further list operation is protected by the spinlocks
2053 	 * we have acquired but other transitions are not.
2054 	 */
2055 	for (;;) {
2056 		refs = ncp->nc_refs;
2057 		if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list))
2058 			break;
2059 		if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) {
2060 			if (par) {
2061 				spin_unlock(&ncp->nc_head->spin);
2062 				_cache_put(par);
2063 			}
2064 			_cache_unlock(ncp);
2065 			return(NULL);
2066 		}
2067 		cpu_pause();
2068 	}
2069 
2070 	/*
2071 	 * We are the only ref and with the spinlocks held no further
2072 	 * refs can be acquired by others.
2073 	 *
2074 	 * Remove us from the hash list and parent list.  We have to
2075 	 * drop a ref on the parent's vp if the parent's list becomes
2076 	 * empty.
2077 	 */
2078 	dropvp = NULL;
2079 	if (par) {
2080 		struct nchash_head *nchpp = ncp->nc_head;
2081 
2082 		KKASSERT(nchpp != NULL);
2083 		LIST_REMOVE(ncp, nc_hash);
2084 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
2085 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
2086 			dropvp = par->nc_vp;
2087 		ncp->nc_head = NULL;
2088 		ncp->nc_parent = NULL;
2089 		spin_unlock(&nchpp->spin);
2090 		_cache_unlock(par);
2091 	} else {
2092 		KKASSERT(ncp->nc_head == NULL);
2093 	}
2094 
2095 	/*
2096 	 * ncp should not have picked up any refs.  Physically
2097 	 * destroy the ncp.
2098 	 */
2099 	KKASSERT(ncp->nc_refs == 1);
2100 	/* _cache_unlock(ncp) not required */
2101 	ncp->nc_refs = -1;	/* safety */
2102 	if (ncp->nc_name)
2103 		kfree(ncp->nc_name, M_VFSCACHE);
2104 	kfree(ncp, M_VFSCACHE);
2105 
2106 	/*
2107 	 * Delayed drop (we had to release our spinlocks)
2108 	 *
2109 	 * The refed parent (if not  NULL) must be dropped.  The
2110 	 * caller is responsible for looping.
2111 	 */
2112 	if (dropvp)
2113 		vdrop(dropvp);
2114 	return(par);
2115 }
2116 
2117 /*
2118  * Clean up dangling negative cache and defered-drop entries in the
2119  * namecache.
2120  */
2121 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
2122 
2123 void
2124 cache_hysteresis(void)
2125 {
2126 	/*
2127 	 * Don't cache too many negative hits.  We use hysteresis to reduce
2128 	 * the impact on the critical path.
2129 	 */
2130 	switch(cache_hysteresis_state) {
2131 	case CHI_LOW:
2132 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
2133 			_cache_cleanneg(10);
2134 			cache_hysteresis_state = CHI_HIGH;
2135 		}
2136 		break;
2137 	case CHI_HIGH:
2138 		if (numneg > MINNEG * 9 / 10 &&
2139 		    numneg * ncnegfactor * 9 / 10 > numcache
2140 		) {
2141 			_cache_cleanneg(10);
2142 		} else {
2143 			cache_hysteresis_state = CHI_LOW;
2144 		}
2145 		break;
2146 	}
2147 
2148 	/*
2149 	 * Clean out dangling defered-zap ncps which could not
2150 	 * be cleanly dropped if too many build up.  Note
2151 	 * that numdefered is not an exact number as such ncps
2152 	 * can be reused and the counter is not handled in a MP
2153 	 * safe manner by design.
2154 	 */
2155 	if (numdefered * ncnegfactor > numcache) {
2156 		_cache_cleandefered();
2157 	}
2158 }
2159 
2160 /*
2161  * NEW NAMECACHE LOOKUP API
2162  *
2163  * Lookup an entry in the namecache.  The passed par_nch must be referenced
2164  * and unlocked.  A referenced and locked nchandle with a non-NULL nch.ncp
2165  * is ALWAYS returned, eve if the supplied component is illegal.
2166  *
2167  * The resulting namecache entry should be returned to the system with
2168  * cache_put() or cache_unlock() + cache_drop().
2169  *
2170  * namecache locks are recursive but care must be taken to avoid lock order
2171  * reversals (hence why the passed par_nch must be unlocked).  Locking
2172  * rules are to order for parent traversals, not for child traversals.
2173  *
2174  * Nobody else will be able to manipulate the associated namespace (e.g.
2175  * create, delete, rename, rename-target) until the caller unlocks the
2176  * entry.
2177  *
2178  * The returned entry will be in one of three states:  positive hit (non-null
2179  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
2180  * Unresolved entries must be resolved through the filesystem to associate the
2181  * vnode and/or determine whether a positive or negative hit has occured.
2182  *
2183  * It is not necessary to lock a directory in order to lock namespace under
2184  * that directory.  In fact, it is explicitly not allowed to do that.  A
2185  * directory is typically only locked when being created, renamed, or
2186  * destroyed.
2187  *
2188  * The directory (par) may be unresolved, in which case any returned child
2189  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
2190  * the filesystem lookup requires a resolved directory vnode the caller is
2191  * responsible for resolving the namecache chain top-down.  This API
2192  * specifically allows whole chains to be created in an unresolved state.
2193  */
2194 struct nchandle
2195 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
2196 {
2197 	struct nchandle nch;
2198 	struct namecache *ncp;
2199 	struct namecache *new_ncp;
2200 	struct nchash_head *nchpp;
2201 	struct mount *mp;
2202 	u_int32_t hash;
2203 	globaldata_t gd;
2204 	int par_locked;
2205 
2206 	numcalls++;
2207 	gd = mycpu;
2208 	mp = par_nch->mount;
2209 	par_locked = 0;
2210 
2211 	/*
2212 	 * This is a good time to call it, no ncp's are locked by
2213 	 * the caller or us.
2214 	 */
2215 	cache_hysteresis();
2216 
2217 	/*
2218 	 * Try to locate an existing entry
2219 	 */
2220 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2221 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2222 	new_ncp = NULL;
2223 	nchpp = NCHHASH(hash);
2224 restart:
2225 	spin_lock(&nchpp->spin);
2226 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2227 		numchecks++;
2228 
2229 		/*
2230 		 * Break out if we find a matching entry.  Note that
2231 		 * UNRESOLVED entries may match, but DESTROYED entries
2232 		 * do not.
2233 		 */
2234 		if (ncp->nc_parent == par_nch->ncp &&
2235 		    ncp->nc_nlen == nlc->nlc_namelen &&
2236 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2237 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2238 		) {
2239 			_cache_hold(ncp);
2240 			spin_unlock(&nchpp->spin);
2241 			if (par_locked) {
2242 				_cache_unlock(par_nch->ncp);
2243 				par_locked = 0;
2244 			}
2245 			if (_cache_lock_special(ncp) == 0) {
2246 				_cache_auto_unresolve(mp, ncp);
2247 				if (new_ncp)
2248 					_cache_free(new_ncp);
2249 				goto found;
2250 			}
2251 			_cache_get(ncp);
2252 			_cache_put(ncp);
2253 			_cache_drop(ncp);
2254 			goto restart;
2255 		}
2256 	}
2257 
2258 	/*
2259 	 * We failed to locate an entry, create a new entry and add it to
2260 	 * the cache.  The parent ncp must also be locked so we
2261 	 * can link into it.
2262 	 *
2263 	 * We have to relookup after possibly blocking in kmalloc or
2264 	 * when locking par_nch.
2265 	 *
2266 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2267 	 *	 mount case, in which case nc_name will be NULL.
2268 	 */
2269 	if (new_ncp == NULL) {
2270 		spin_unlock(&nchpp->spin);
2271 		new_ncp = cache_alloc(nlc->nlc_namelen);
2272 		if (nlc->nlc_namelen) {
2273 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2274 			      nlc->nlc_namelen);
2275 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2276 		}
2277 		goto restart;
2278 	}
2279 	if (par_locked == 0) {
2280 		spin_unlock(&nchpp->spin);
2281 		_cache_lock(par_nch->ncp);
2282 		par_locked = 1;
2283 		goto restart;
2284 	}
2285 
2286 	/*
2287 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2288 	 *	     table entry atomically.
2289 	 */
2290 	ncp = new_ncp;
2291 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2292 	spin_unlock(&nchpp->spin);
2293 	_cache_unlock(par_nch->ncp);
2294 	/* par_locked = 0 - not used */
2295 found:
2296 	/*
2297 	 * stats and namecache size management
2298 	 */
2299 	if (ncp->nc_flag & NCF_UNRESOLVED)
2300 		++gd->gd_nchstats->ncs_miss;
2301 	else if (ncp->nc_vp)
2302 		++gd->gd_nchstats->ncs_goodhits;
2303 	else
2304 		++gd->gd_nchstats->ncs_neghits;
2305 	nch.mount = mp;
2306 	nch.ncp = ncp;
2307 	atomic_add_int(&nch.mount->mnt_refs, 1);
2308 	return(nch);
2309 }
2310 
2311 /*
2312  * This is a non-blocking verison of cache_nlookup() used by
2313  * nfs_readdirplusrpc_uio().  It can fail for any reason and
2314  * will return nch.ncp == NULL in that case.
2315  */
2316 struct nchandle
2317 cache_nlookup_nonblock(struct nchandle *par_nch, struct nlcomponent *nlc)
2318 {
2319 	struct nchandle nch;
2320 	struct namecache *ncp;
2321 	struct namecache *new_ncp;
2322 	struct nchash_head *nchpp;
2323 	struct mount *mp;
2324 	u_int32_t hash;
2325 	globaldata_t gd;
2326 	int par_locked;
2327 
2328 	numcalls++;
2329 	gd = mycpu;
2330 	mp = par_nch->mount;
2331 	par_locked = 0;
2332 
2333 	/*
2334 	 * Try to locate an existing entry
2335 	 */
2336 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
2337 	hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
2338 	new_ncp = NULL;
2339 	nchpp = NCHHASH(hash);
2340 restart:
2341 	spin_lock(&nchpp->spin);
2342 	LIST_FOREACH(ncp, &nchpp->list, nc_hash) {
2343 		numchecks++;
2344 
2345 		/*
2346 		 * Break out if we find a matching entry.  Note that
2347 		 * UNRESOLVED entries may match, but DESTROYED entries
2348 		 * do not.
2349 		 */
2350 		if (ncp->nc_parent == par_nch->ncp &&
2351 		    ncp->nc_nlen == nlc->nlc_namelen &&
2352 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
2353 		    (ncp->nc_flag & NCF_DESTROYED) == 0
2354 		) {
2355 			_cache_hold(ncp);
2356 			spin_unlock(&nchpp->spin);
2357 			if (par_locked) {
2358 				_cache_unlock(par_nch->ncp);
2359 				par_locked = 0;
2360 			}
2361 			if (_cache_lock_special(ncp) == 0) {
2362 				_cache_auto_unresolve(mp, ncp);
2363 				if (new_ncp) {
2364 					_cache_free(new_ncp);
2365 					new_ncp = NULL;
2366 				}
2367 				goto found;
2368 			}
2369 			_cache_drop(ncp);
2370 			goto failed;
2371 		}
2372 	}
2373 
2374 	/*
2375 	 * We failed to locate an entry, create a new entry and add it to
2376 	 * the cache.  The parent ncp must also be locked so we
2377 	 * can link into it.
2378 	 *
2379 	 * We have to relookup after possibly blocking in kmalloc or
2380 	 * when locking par_nch.
2381 	 *
2382 	 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special
2383 	 *	 mount case, in which case nc_name will be NULL.
2384 	 */
2385 	if (new_ncp == NULL) {
2386 		spin_unlock(&nchpp->spin);
2387 		new_ncp = cache_alloc(nlc->nlc_namelen);
2388 		if (nlc->nlc_namelen) {
2389 			bcopy(nlc->nlc_nameptr, new_ncp->nc_name,
2390 			      nlc->nlc_namelen);
2391 			new_ncp->nc_name[nlc->nlc_namelen] = 0;
2392 		}
2393 		goto restart;
2394 	}
2395 	if (par_locked == 0) {
2396 		spin_unlock(&nchpp->spin);
2397 		if (_cache_lock_nonblock(par_nch->ncp) == 0) {
2398 			par_locked = 1;
2399 			goto restart;
2400 		}
2401 		goto failed;
2402 	}
2403 
2404 	/*
2405 	 * WARNING!  We still hold the spinlock.  We have to set the hash
2406 	 *	     table entry atomically.
2407 	 */
2408 	ncp = new_ncp;
2409 	_cache_link_parent(ncp, par_nch->ncp, nchpp);
2410 	spin_unlock(&nchpp->spin);
2411 	_cache_unlock(par_nch->ncp);
2412 	/* par_locked = 0 - not used */
2413 found:
2414 	/*
2415 	 * stats and namecache size management
2416 	 */
2417 	if (ncp->nc_flag & NCF_UNRESOLVED)
2418 		++gd->gd_nchstats->ncs_miss;
2419 	else if (ncp->nc_vp)
2420 		++gd->gd_nchstats->ncs_goodhits;
2421 	else
2422 		++gd->gd_nchstats->ncs_neghits;
2423 	nch.mount = mp;
2424 	nch.ncp = ncp;
2425 	atomic_add_int(&nch.mount->mnt_refs, 1);
2426 	return(nch);
2427 failed:
2428 	if (new_ncp) {
2429 		_cache_free(new_ncp);
2430 		new_ncp = NULL;
2431 	}
2432 	nch.mount = NULL;
2433 	nch.ncp = NULL;
2434 	return(nch);
2435 }
2436 
2437 /*
2438  * The namecache entry is marked as being used as a mount point.
2439  * Locate the mount if it is visible to the caller.
2440  */
2441 struct findmount_info {
2442 	struct mount *result;
2443 	struct mount *nch_mount;
2444 	struct namecache *nch_ncp;
2445 };
2446 
2447 static
2448 int
2449 cache_findmount_callback(struct mount *mp, void *data)
2450 {
2451 	struct findmount_info *info = data;
2452 
2453 	/*
2454 	 * Check the mount's mounted-on point against the passed nch.
2455 	 */
2456 	if (mp->mnt_ncmounton.mount == info->nch_mount &&
2457 	    mp->mnt_ncmounton.ncp == info->nch_ncp
2458 	) {
2459 	    info->result = mp;
2460 	    return(-1);
2461 	}
2462 	return(0);
2463 }
2464 
2465 struct mount *
2466 cache_findmount(struct nchandle *nch)
2467 {
2468 	struct findmount_info info;
2469 
2470 	info.result = NULL;
2471 	info.nch_mount = nch->mount;
2472 	info.nch_ncp = nch->ncp;
2473 	mountlist_scan(cache_findmount_callback, &info,
2474 			       MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
2475 	return(info.result);
2476 }
2477 
2478 /*
2479  * Resolve an unresolved namecache entry, generally by looking it up.
2480  * The passed ncp must be locked and refd.
2481  *
2482  * Theoretically since a vnode cannot be recycled while held, and since
2483  * the nc_parent chain holds its vnode as long as children exist, the
2484  * direct parent of the cache entry we are trying to resolve should
2485  * have a valid vnode.  If not then generate an error that we can
2486  * determine is related to a resolver bug.
2487  *
2488  * However, if a vnode was in the middle of a recyclement when the NCP
2489  * got locked, ncp->nc_vp might point to a vnode that is about to become
2490  * invalid.  cache_resolve() handles this case by unresolving the entry
2491  * and then re-resolving it.
2492  *
2493  * Note that successful resolution does not necessarily return an error
2494  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
2495  * will be returned.
2496  *
2497  * MPSAFE
2498  */
2499 int
2500 cache_resolve(struct nchandle *nch, struct ucred *cred)
2501 {
2502 	struct namecache *par_tmp;
2503 	struct namecache *par;
2504 	struct namecache *ncp;
2505 	struct nchandle nctmp;
2506 	struct mount *mp;
2507 	struct vnode *dvp;
2508 	int error;
2509 
2510 	ncp = nch->ncp;
2511 	mp = nch->mount;
2512 restart:
2513 	/*
2514 	 * If the ncp is already resolved we have nothing to do.  However,
2515 	 * we do want to guarentee that a usable vnode is returned when
2516 	 * a vnode is present, so make sure it hasn't been reclaimed.
2517 	 */
2518 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2519 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2520 			_cache_setunresolved(ncp);
2521 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
2522 			return (ncp->nc_error);
2523 	}
2524 
2525 	/*
2526 	 * Mount points need special handling because the parent does not
2527 	 * belong to the same filesystem as the ncp.
2528 	 */
2529 	if (ncp == mp->mnt_ncmountpt.ncp)
2530 		return (cache_resolve_mp(mp));
2531 
2532 	/*
2533 	 * We expect an unbroken chain of ncps to at least the mount point,
2534 	 * and even all the way to root (but this code doesn't have to go
2535 	 * past the mount point).
2536 	 */
2537 	if (ncp->nc_parent == NULL) {
2538 		kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2539 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2540 		ncp->nc_error = EXDEV;
2541 		return(ncp->nc_error);
2542 	}
2543 
2544 	/*
2545 	 * The vp's of the parent directories in the chain are held via vhold()
2546 	 * due to the existance of the child, and should not disappear.
2547 	 * However, there are cases where they can disappear:
2548 	 *
2549 	 *	- due to filesystem I/O errors.
2550 	 *	- due to NFS being stupid about tracking the namespace and
2551 	 *	  destroys the namespace for entire directories quite often.
2552 	 *	- due to forced unmounts.
2553 	 *	- due to an rmdir (parent will be marked DESTROYED)
2554 	 *
2555 	 * When this occurs we have to track the chain backwards and resolve
2556 	 * it, looping until the resolver catches up to the current node.  We
2557 	 * could recurse here but we might run ourselves out of kernel stack
2558 	 * so we do it in a more painful manner.  This situation really should
2559 	 * not occur all that often, or if it does not have to go back too
2560 	 * many nodes to resolve the ncp.
2561 	 */
2562 	while ((dvp = cache_dvpref(ncp)) == NULL) {
2563 		/*
2564 		 * This case can occur if a process is CD'd into a
2565 		 * directory which is then rmdir'd.  If the parent is marked
2566 		 * destroyed there is no point trying to resolve it.
2567 		 */
2568 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2569 			return(ENOENT);
2570 		par = ncp->nc_parent;
2571 		_cache_hold(par);
2572 		_cache_lock(par);
2573 		while ((par_tmp = par->nc_parent) != NULL &&
2574 		       par_tmp->nc_vp == NULL) {
2575 			_cache_hold(par_tmp);
2576 			_cache_lock(par_tmp);
2577 			_cache_put(par);
2578 			par = par_tmp;
2579 		}
2580 		if (par->nc_parent == NULL) {
2581 			kprintf("EXDEV case 2 %*.*s\n",
2582 				par->nc_nlen, par->nc_nlen, par->nc_name);
2583 			_cache_put(par);
2584 			return (EXDEV);
2585 		}
2586 		kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2587 			par->nc_nlen, par->nc_nlen, par->nc_name);
2588 		/*
2589 		 * The parent is not set in stone, ref and lock it to prevent
2590 		 * it from disappearing.  Also note that due to renames it
2591 		 * is possible for our ncp to move and for par to no longer
2592 		 * be one of its parents.  We resolve it anyway, the loop
2593 		 * will handle any moves.
2594 		 */
2595 		_cache_get(par);	/* additional hold/lock */
2596 		_cache_put(par);	/* from earlier hold/lock */
2597 		if (par == nch->mount->mnt_ncmountpt.ncp) {
2598 			cache_resolve_mp(nch->mount);
2599 		} else if ((dvp = cache_dvpref(par)) == NULL) {
2600 			kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2601 			_cache_put(par);
2602 			continue;
2603 		} else {
2604 			if (par->nc_flag & NCF_UNRESOLVED) {
2605 				nctmp.mount = mp;
2606 				nctmp.ncp = par;
2607 				par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2608 			}
2609 			vrele(dvp);
2610 		}
2611 		if ((error = par->nc_error) != 0) {
2612 			if (par->nc_error != EAGAIN) {
2613 				kprintf("EXDEV case 3 %*.*s error %d\n",
2614 				    par->nc_nlen, par->nc_nlen, par->nc_name,
2615 				    par->nc_error);
2616 				_cache_put(par);
2617 				return(error);
2618 			}
2619 			kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2620 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
2621 		}
2622 		_cache_put(par);
2623 		/* loop */
2624 	}
2625 
2626 	/*
2627 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2628 	 * ncp's and reattach them.  If this occurs the original ncp is marked
2629 	 * EAGAIN to force a relookup.
2630 	 *
2631 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2632 	 * ncp must already be resolved.
2633 	 */
2634 	if (dvp) {
2635 		nctmp.mount = mp;
2636 		nctmp.ncp = ncp;
2637 		ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2638 		vrele(dvp);
2639 	} else {
2640 		ncp->nc_error = EPERM;
2641 	}
2642 	if (ncp->nc_error == EAGAIN) {
2643 		kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2644 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2645 		goto restart;
2646 	}
2647 	return(ncp->nc_error);
2648 }
2649 
2650 /*
2651  * Resolve the ncp associated with a mount point.  Such ncp's almost always
2652  * remain resolved and this routine is rarely called.  NFS MPs tends to force
2653  * re-resolution more often due to its mac-truck-smash-the-namecache
2654  * method of tracking namespace changes.
2655  *
2656  * The semantics for this call is that the passed ncp must be locked on
2657  * entry and will be locked on return.  However, if we actually have to
2658  * resolve the mount point we temporarily unlock the entry in order to
2659  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
2660  * the unlock we have to recheck the flags after we relock.
2661  */
2662 static int
2663 cache_resolve_mp(struct mount *mp)
2664 {
2665 	struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2666 	struct vnode *vp;
2667 	int error;
2668 
2669 	KKASSERT(mp != NULL);
2670 
2671 	/*
2672 	 * If the ncp is already resolved we have nothing to do.  However,
2673 	 * we do want to guarentee that a usable vnode is returned when
2674 	 * a vnode is present, so make sure it hasn't been reclaimed.
2675 	 */
2676 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2677 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2678 			_cache_setunresolved(ncp);
2679 	}
2680 
2681 	if (ncp->nc_flag & NCF_UNRESOLVED) {
2682 		_cache_unlock(ncp);
2683 		while (vfs_busy(mp, 0))
2684 			;
2685 		error = VFS_ROOT(mp, &vp);
2686 		_cache_lock(ncp);
2687 
2688 		/*
2689 		 * recheck the ncp state after relocking.
2690 		 */
2691 		if (ncp->nc_flag & NCF_UNRESOLVED) {
2692 			ncp->nc_error = error;
2693 			if (error == 0) {
2694 				_cache_setvp(mp, ncp, vp);
2695 				vput(vp);
2696 			} else {
2697 				kprintf("[diagnostic] cache_resolve_mp: failed"
2698 					" to resolve mount %p err=%d ncp=%p\n",
2699 					mp, error, ncp);
2700 				_cache_setvp(mp, ncp, NULL);
2701 			}
2702 		} else if (error == 0) {
2703 			vput(vp);
2704 		}
2705 		vfs_unbusy(mp);
2706 	}
2707 	return(ncp->nc_error);
2708 }
2709 
2710 /*
2711  * Clean out negative cache entries when too many have accumulated.
2712  *
2713  * MPSAFE
2714  */
2715 static void
2716 _cache_cleanneg(int count)
2717 {
2718 	struct namecache *ncp;
2719 
2720 	/*
2721 	 * Automode from the vnlru proc - clean out 10% of the negative cache
2722 	 * entries.
2723 	 */
2724 	if (count == 0)
2725 		count = numneg / 10 + 1;
2726 
2727 	/*
2728 	 * Attempt to clean out the specified number of negative cache
2729 	 * entries.
2730 	 */
2731 	while (count) {
2732 		spin_lock(&ncspin);
2733 		ncp = TAILQ_FIRST(&ncneglist);
2734 		if (ncp == NULL) {
2735 			spin_unlock(&ncspin);
2736 			break;
2737 		}
2738 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2739 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2740 		_cache_hold(ncp);
2741 		spin_unlock(&ncspin);
2742 		if (_cache_lock_special(ncp) == 0) {
2743 			ncp = cache_zap(ncp, 1);
2744 			if (ncp)
2745 				_cache_drop(ncp);
2746 		} else {
2747 			_cache_drop(ncp);
2748 		}
2749 		--count;
2750 	}
2751 }
2752 
2753 /*
2754  * This is a kitchen sink function to clean out ncps which we
2755  * tried to zap from cache_drop() but failed because we were
2756  * unable to acquire the parent lock.
2757  *
2758  * Such entries can also be removed via cache_inval_vp(), such
2759  * as when unmounting.
2760  *
2761  * MPSAFE
2762  */
2763 static void
2764 _cache_cleandefered(void)
2765 {
2766 	struct nchash_head *nchpp;
2767 	struct namecache *ncp;
2768 	struct namecache dummy;
2769 	int i;
2770 
2771 	numdefered = 0;
2772 	bzero(&dummy, sizeof(dummy));
2773 	dummy.nc_flag = NCF_DESTROYED;
2774 
2775 	for (i = 0; i <= nchash; ++i) {
2776 		nchpp = &nchashtbl[i];
2777 
2778 		spin_lock(&nchpp->spin);
2779 		LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash);
2780 		ncp = &dummy;
2781 		while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) {
2782 			if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0)
2783 				continue;
2784 			LIST_REMOVE(&dummy, nc_hash);
2785 			LIST_INSERT_AFTER(ncp, &dummy, nc_hash);
2786 			_cache_hold(ncp);
2787 			spin_unlock(&nchpp->spin);
2788 			if (_cache_lock_nonblock(ncp) == 0) {
2789 				ncp->nc_flag &= ~NCF_DEFEREDZAP;
2790 				_cache_unlock(ncp);
2791 			}
2792 			_cache_drop(ncp);
2793 			spin_lock(&nchpp->spin);
2794 			ncp = &dummy;
2795 		}
2796 		LIST_REMOVE(&dummy, nc_hash);
2797 		spin_unlock(&nchpp->spin);
2798 	}
2799 }
2800 
2801 /*
2802  * Name cache initialization, from vfsinit() when we are booting
2803  */
2804 void
2805 nchinit(void)
2806 {
2807 	int i;
2808 	globaldata_t gd;
2809 
2810 	/* initialise per-cpu namecache effectiveness statistics. */
2811 	for (i = 0; i < ncpus; ++i) {
2812 		gd = globaldata_find(i);
2813 		gd->gd_nchstats = &nchstats[i];
2814 	}
2815 	TAILQ_INIT(&ncneglist);
2816 	spin_init(&ncspin);
2817 	nchashtbl = hashinit_ext(desiredvnodes*2, sizeof(struct nchash_head),
2818 				 M_VFSCACHE, &nchash);
2819 	for (i = 0; i <= (int)nchash; ++i) {
2820 		LIST_INIT(&nchashtbl[i].list);
2821 		spin_init(&nchashtbl[i].spin);
2822 	}
2823 	nclockwarn = 5 * hz;
2824 }
2825 
2826 /*
2827  * Called from start_init() to bootstrap the root filesystem.  Returns
2828  * a referenced, unlocked namecache record.
2829  */
2830 void
2831 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2832 {
2833 	nch->ncp = cache_alloc(0);
2834 	nch->mount = mp;
2835 	atomic_add_int(&mp->mnt_refs, 1);
2836 	if (vp)
2837 		_cache_setvp(nch->mount, nch->ncp, vp);
2838 }
2839 
2840 /*
2841  * vfs_cache_setroot()
2842  *
2843  *	Create an association between the root of our namecache and
2844  *	the root vnode.  This routine may be called several times during
2845  *	booting.
2846  *
2847  *	If the caller intends to save the returned namecache pointer somewhere
2848  *	it must cache_hold() it.
2849  */
2850 void
2851 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2852 {
2853 	struct vnode *ovp;
2854 	struct nchandle onch;
2855 
2856 	ovp = rootvnode;
2857 	onch = rootnch;
2858 	rootvnode = nvp;
2859 	if (nch)
2860 		rootnch = *nch;
2861 	else
2862 		cache_zero(&rootnch);
2863 	if (ovp)
2864 		vrele(ovp);
2865 	if (onch.ncp)
2866 		cache_drop(&onch);
2867 }
2868 
2869 /*
2870  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
2871  * topology and is being removed as quickly as possible.  The new VOP_N*()
2872  * API calls are required to make specific adjustments using the supplied
2873  * ncp pointers rather then just bogusly purging random vnodes.
2874  *
2875  * Invalidate all namecache entries to a particular vnode as well as
2876  * any direct children of that vnode in the namecache.  This is a
2877  * 'catch all' purge used by filesystems that do not know any better.
2878  *
2879  * Note that the linkage between the vnode and its namecache entries will
2880  * be removed, but the namecache entries themselves might stay put due to
2881  * active references from elsewhere in the system or due to the existance of
2882  * the children.   The namecache topology is left intact even if we do not
2883  * know what the vnode association is.  Such entries will be marked
2884  * NCF_UNRESOLVED.
2885  */
2886 void
2887 cache_purge(struct vnode *vp)
2888 {
2889 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2890 }
2891 
2892 /*
2893  * Flush all entries referencing a particular filesystem.
2894  *
2895  * Since we need to check it anyway, we will flush all the invalid
2896  * entries at the same time.
2897  */
2898 #if 0
2899 
2900 void
2901 cache_purgevfs(struct mount *mp)
2902 {
2903 	struct nchash_head *nchpp;
2904 	struct namecache *ncp, *nnp;
2905 
2906 	/*
2907 	 * Scan hash tables for applicable entries.
2908 	 */
2909 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2910 		spin_lock_wr(&nchpp->spin); XXX
2911 		ncp = LIST_FIRST(&nchpp->list);
2912 		if (ncp)
2913 			_cache_hold(ncp);
2914 		while (ncp) {
2915 			nnp = LIST_NEXT(ncp, nc_hash);
2916 			if (nnp)
2917 				_cache_hold(nnp);
2918 			if (ncp->nc_mount == mp) {
2919 				_cache_lock(ncp);
2920 				ncp = cache_zap(ncp, 0);
2921 				if (ncp)
2922 					_cache_drop(ncp);
2923 			} else {
2924 				_cache_drop(ncp);
2925 			}
2926 			ncp = nnp;
2927 		}
2928 		spin_unlock_wr(&nchpp->spin); XXX
2929 	}
2930 }
2931 
2932 #endif
2933 
2934 static int disablecwd;
2935 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
2936 
2937 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
2938 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
2939 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
2940 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
2941 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
2942 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
2943 
2944 /*
2945  * MPALMOSTSAFE
2946  */
2947 int
2948 sys___getcwd(struct __getcwd_args *uap)
2949 {
2950 	u_int buflen;
2951 	int error;
2952 	char *buf;
2953 	char *bp;
2954 
2955 	if (disablecwd)
2956 		return (ENODEV);
2957 
2958 	buflen = uap->buflen;
2959 	if (buflen == 0)
2960 		return (EINVAL);
2961 	if (buflen > MAXPATHLEN)
2962 		buflen = MAXPATHLEN;
2963 
2964 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
2965 	get_mplock();
2966 	bp = kern_getcwd(buf, buflen, &error);
2967 	rel_mplock();
2968 	if (error == 0)
2969 		error = copyout(bp, uap->buf, strlen(bp) + 1);
2970 	kfree(buf, M_TEMP);
2971 	return (error);
2972 }
2973 
2974 char *
2975 kern_getcwd(char *buf, size_t buflen, int *error)
2976 {
2977 	struct proc *p = curproc;
2978 	char *bp;
2979 	int i, slash_prefixed;
2980 	struct filedesc *fdp;
2981 	struct nchandle nch;
2982 	struct namecache *ncp;
2983 
2984 	numcwdcalls++;
2985 	bp = buf;
2986 	bp += buflen - 1;
2987 	*bp = '\0';
2988 	fdp = p->p_fd;
2989 	slash_prefixed = 0;
2990 
2991 	nch = fdp->fd_ncdir;
2992 	ncp = nch.ncp;
2993 	if (ncp)
2994 		_cache_hold(ncp);
2995 
2996 	while (ncp && (ncp != fdp->fd_nrdir.ncp ||
2997 	       nch.mount != fdp->fd_nrdir.mount)
2998 	) {
2999 		/*
3000 		 * While traversing upwards if we encounter the root
3001 		 * of the current mount we have to skip to the mount point
3002 		 * in the underlying filesystem.
3003 		 */
3004 		if (ncp == nch.mount->mnt_ncmountpt.ncp) {
3005 			nch = nch.mount->mnt_ncmounton;
3006 			_cache_drop(ncp);
3007 			ncp = nch.ncp;
3008 			if (ncp)
3009 				_cache_hold(ncp);
3010 			continue;
3011 		}
3012 
3013 		/*
3014 		 * Prepend the path segment
3015 		 */
3016 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3017 			if (bp == buf) {
3018 				numcwdfail4++;
3019 				*error = ERANGE;
3020 				bp = NULL;
3021 				goto done;
3022 			}
3023 			*--bp = ncp->nc_name[i];
3024 		}
3025 		if (bp == buf) {
3026 			numcwdfail4++;
3027 			*error = ERANGE;
3028 			bp = NULL;
3029 			goto done;
3030 		}
3031 		*--bp = '/';
3032 		slash_prefixed = 1;
3033 
3034 		/*
3035 		 * Go up a directory.  This isn't a mount point so we don't
3036 		 * have to check again.
3037 		 */
3038 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3039 			_cache_lock(ncp);
3040 			if (nch.ncp != ncp->nc_parent) {
3041 				_cache_unlock(ncp);
3042 				continue;
3043 			}
3044 			_cache_hold(nch.ncp);
3045 			_cache_unlock(ncp);
3046 			break;
3047 		}
3048 		_cache_drop(ncp);
3049 		ncp = nch.ncp;
3050 	}
3051 	if (ncp == NULL) {
3052 		numcwdfail2++;
3053 		*error = ENOENT;
3054 		bp = NULL;
3055 		goto done;
3056 	}
3057 	if (!slash_prefixed) {
3058 		if (bp == buf) {
3059 			numcwdfail4++;
3060 			*error = ERANGE;
3061 			bp = NULL;
3062 			goto done;
3063 		}
3064 		*--bp = '/';
3065 	}
3066 	numcwdfound++;
3067 	*error = 0;
3068 done:
3069 	if (ncp)
3070 		_cache_drop(ncp);
3071 	return (bp);
3072 }
3073 
3074 /*
3075  * Thus begins the fullpath magic.
3076  *
3077  * The passed nchp is referenced but not locked.
3078  */
3079 #undef STATNODE
3080 #define STATNODE(name)							\
3081 	static u_int name;						\
3082 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
3083 
3084 static int disablefullpath;
3085 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
3086     &disablefullpath, 0, "");
3087 
3088 STATNODE(numfullpathcalls);
3089 STATNODE(numfullpathfail1);
3090 STATNODE(numfullpathfail2);
3091 STATNODE(numfullpathfail3);
3092 STATNODE(numfullpathfail4);
3093 STATNODE(numfullpathfound);
3094 
3095 int
3096 cache_fullpath(struct proc *p, struct nchandle *nchp,
3097 	       char **retbuf, char **freebuf, int guess)
3098 {
3099 	struct nchandle fd_nrdir;
3100 	struct nchandle nch;
3101 	struct namecache *ncp;
3102 	struct mount *mp, *new_mp;
3103 	char *bp, *buf;
3104 	int slash_prefixed;
3105 	int error = 0;
3106 	int i;
3107 
3108 	atomic_add_int(&numfullpathcalls, -1);
3109 
3110 	*retbuf = NULL;
3111 	*freebuf = NULL;
3112 
3113 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3114 	bp = buf + MAXPATHLEN - 1;
3115 	*bp = '\0';
3116 	if (p != NULL)
3117 		fd_nrdir = p->p_fd->fd_nrdir;
3118 	else
3119 		fd_nrdir = rootnch;
3120 	slash_prefixed = 0;
3121 	nch = *nchp;
3122 	ncp = nch.ncp;
3123 	if (ncp)
3124 		_cache_hold(ncp);
3125 	mp = nch.mount;
3126 
3127 	while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) {
3128 		new_mp = NULL;
3129 
3130 		/*
3131 		 * If we are asked to guess the upwards path, we do so whenever
3132 		 * we encounter an ncp marked as a mountpoint. We try to find
3133 		 * the actual mountpoint by finding the mountpoint with this ncp.
3134 		 */
3135 		if (guess && (ncp->nc_flag & NCF_ISMOUNTPT)) {
3136 			new_mp = mount_get_by_nc(ncp);
3137 		}
3138 		/*
3139 		 * While traversing upwards if we encounter the root
3140 		 * of the current mount we have to skip to the mount point.
3141 		 */
3142 		if (ncp == mp->mnt_ncmountpt.ncp) {
3143 			new_mp = mp;
3144 		}
3145 		if (new_mp) {
3146 			nch = new_mp->mnt_ncmounton;
3147 			_cache_drop(ncp);
3148 			ncp = nch.ncp;
3149 			if (ncp)
3150 				_cache_hold(ncp);
3151 			mp = nch.mount;
3152 			continue;
3153 		}
3154 
3155 		/*
3156 		 * Prepend the path segment
3157 		 */
3158 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
3159 			if (bp == buf) {
3160 				numfullpathfail4++;
3161 				kfree(buf, M_TEMP);
3162 				error = ENOMEM;
3163 				goto done;
3164 			}
3165 			*--bp = ncp->nc_name[i];
3166 		}
3167 		if (bp == buf) {
3168 			numfullpathfail4++;
3169 			kfree(buf, M_TEMP);
3170 			error = ENOMEM;
3171 			goto done;
3172 		}
3173 		*--bp = '/';
3174 		slash_prefixed = 1;
3175 
3176 		/*
3177 		 * Go up a directory.  This isn't a mount point so we don't
3178 		 * have to check again.
3179 		 *
3180 		 * We can only safely access nc_parent with ncp held locked.
3181 		 */
3182 		while ((nch.ncp = ncp->nc_parent) != NULL) {
3183 			_cache_lock(ncp);
3184 			if (nch.ncp != ncp->nc_parent) {
3185 				_cache_unlock(ncp);
3186 				continue;
3187 			}
3188 			_cache_hold(nch.ncp);
3189 			_cache_unlock(ncp);
3190 			break;
3191 		}
3192 		_cache_drop(ncp);
3193 		ncp = nch.ncp;
3194 	}
3195 	if (ncp == NULL) {
3196 		numfullpathfail2++;
3197 		kfree(buf, M_TEMP);
3198 		error = ENOENT;
3199 		goto done;
3200 	}
3201 
3202 	if (!slash_prefixed) {
3203 		if (bp == buf) {
3204 			numfullpathfail4++;
3205 			kfree(buf, M_TEMP);
3206 			error = ENOMEM;
3207 			goto done;
3208 		}
3209 		*--bp = '/';
3210 	}
3211 	numfullpathfound++;
3212 	*retbuf = bp;
3213 	*freebuf = buf;
3214 	error = 0;
3215 done:
3216 	if (ncp)
3217 		_cache_drop(ncp);
3218 	return(error);
3219 }
3220 
3221 int
3222 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf, int guess)
3223 {
3224 	struct namecache *ncp;
3225 	struct nchandle nch;
3226 	int error;
3227 
3228 	atomic_add_int(&numfullpathcalls, 1);
3229 	if (disablefullpath)
3230 		return (ENODEV);
3231 
3232 	if (p == NULL)
3233 		return (EINVAL);
3234 
3235 	/* vn is NULL, client wants us to use p->p_textvp */
3236 	if (vn == NULL) {
3237 		if ((vn = p->p_textvp) == NULL)
3238 			return (EINVAL);
3239 	}
3240 	spin_lock(&vn->v_spinlock);
3241 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
3242 		if (ncp->nc_nlen)
3243 			break;
3244 	}
3245 	if (ncp == NULL) {
3246 		spin_unlock(&vn->v_spinlock);
3247 		return (EINVAL);
3248 	}
3249 	_cache_hold(ncp);
3250 	spin_unlock(&vn->v_spinlock);
3251 
3252 	atomic_add_int(&numfullpathcalls, -1);
3253 	nch.ncp = ncp;;
3254 	nch.mount = vn->v_mount;
3255 	error = cache_fullpath(p, &nch, retbuf, freebuf, guess);
3256 	_cache_drop(ncp);
3257 	return (error);
3258 }
3259