1 /* 2 * Copyright (c) 2003,2004,2009 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1989, 1993, 1995 35 * The Regents of the University of California. All rights reserved. 36 * 37 * This code is derived from software contributed to Berkeley by 38 * Poul-Henning Kamp of the FreeBSD Project. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. All advertising materials mentioning features or use of this software 49 * must display the following acknowledgement: 50 * This product includes software developed by the University of 51 * California, Berkeley and its contributors. 52 * 4. Neither the name of the University nor the names of its contributors 53 * may be used to endorse or promote products derived from this software 54 * without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 * SUCH DAMAGE. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/sysctl.h> 73 #include <sys/mount.h> 74 #include <sys/vnode.h> 75 #include <sys/malloc.h> 76 #include <sys/sysproto.h> 77 #include <sys/spinlock.h> 78 #include <sys/proc.h> 79 #include <sys/namei.h> 80 #include <sys/nlookup.h> 81 #include <sys/filedesc.h> 82 #include <sys/fnv_hash.h> 83 #include <sys/globaldata.h> 84 #include <sys/kern_syscall.h> 85 #include <sys/dirent.h> 86 #include <ddb/ddb.h> 87 88 #include <sys/sysref2.h> 89 #include <sys/spinlock2.h> 90 #include <sys/mplock2.h> 91 92 #define MAX_RECURSION_DEPTH 64 93 94 /* 95 * Random lookups in the cache are accomplished with a hash table using 96 * a hash key of (nc_src_vp, name). Each hash chain has its own spin lock. 97 * 98 * Negative entries may exist and correspond to resolved namecache 99 * structures where nc_vp is NULL. In a negative entry, NCF_WHITEOUT 100 * will be set if the entry corresponds to a whited-out directory entry 101 * (verses simply not finding the entry at all). ncneglist is locked 102 * with a global spinlock (ncspin). 103 * 104 * MPSAFE RULES: 105 * 106 * (1) A ncp must be referenced before it can be locked. 107 * 108 * (2) A ncp must be locked in order to modify it. 109 * 110 * (3) ncp locks are always ordered child -> parent. That may seem 111 * backwards but forward scans use the hash table and thus can hold 112 * the parent unlocked when traversing downward. 113 * 114 * This allows insert/rename/delete/dot-dot and other operations 115 * to use ncp->nc_parent links. 116 * 117 * This also prevents a locked up e.g. NFS node from creating a 118 * chain reaction all the way back to the root vnode / namecache. 119 * 120 * (4) parent linkages require both the parent and child to be locked. 121 */ 122 123 /* 124 * Structures associated with name cacheing. 125 */ 126 #define NCHHASH(hash) (&nchashtbl[(hash) & nchash]) 127 #define MINNEG 1024 128 129 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries"); 130 131 LIST_HEAD(nchash_list, namecache); 132 133 struct nchash_head { 134 struct nchash_list list; 135 struct spinlock spin; 136 }; 137 138 static struct nchash_head *nchashtbl; 139 static struct namecache_list ncneglist; 140 static struct spinlock ncspin; 141 142 /* 143 * ncvp_debug - debug cache_fromvp(). This is used by the NFS server 144 * to create the namecache infrastructure leading to a dangling vnode. 145 * 146 * 0 Only errors are reported 147 * 1 Successes are reported 148 * 2 Successes + the whole directory scan is reported 149 * 3 Force the directory scan code run as if the parent vnode did not 150 * have a namecache record, even if it does have one. 151 */ 152 static int ncvp_debug; 153 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, ""); 154 155 static u_long nchash; /* size of hash table */ 156 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, ""); 157 158 static int ncnegfactor = 16; /* ratio of negative entries */ 159 SYSCTL_INT(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, ""); 160 161 static int nclockwarn; /* warn on locked entries in ticks */ 162 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, ""); 163 164 static int numneg; /* number of cache entries allocated */ 165 SYSCTL_INT(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, ""); 166 167 static int numdefered; /* number of cache entries allocated */ 168 SYSCTL_INT(_debug, OID_AUTO, numdefered, CTLFLAG_RD, &numdefered, 0, ""); 169 170 static int numcache; /* number of cache entries allocated */ 171 SYSCTL_INT(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, ""); 172 173 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), ""); 174 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), ""); 175 176 int cache_mpsafe; 177 SYSCTL_INT(_vfs, OID_AUTO, cache_mpsafe, CTLFLAG_RW, &cache_mpsafe, 0, ""); 178 179 static int cache_resolve_mp(struct mount *mp); 180 static struct vnode *cache_dvpref(struct namecache *ncp); 181 static void _cache_lock(struct namecache *ncp); 182 static void _cache_setunresolved(struct namecache *ncp); 183 static void _cache_cleanneg(int count); 184 static void _cache_cleandefered(void); 185 186 /* 187 * The new name cache statistics 188 */ 189 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics"); 190 #define STATNODE(mode, name, var) \ 191 SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, ""); 192 STATNODE(CTLFLAG_RD, numneg, &numneg); 193 STATNODE(CTLFLAG_RD, numcache, &numcache); 194 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls); 195 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits); 196 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits); 197 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks); 198 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss); 199 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap); 200 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps); 201 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits); 202 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps); 203 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits); 204 205 struct nchstats nchstats[SMP_MAXCPU]; 206 /* 207 * Export VFS cache effectiveness statistics to user-land. 208 * 209 * The statistics are left for aggregation to user-land so 210 * neat things can be achieved, like observing per-CPU cache 211 * distribution. 212 */ 213 static int 214 sysctl_nchstats(SYSCTL_HANDLER_ARGS) 215 { 216 struct globaldata *gd; 217 int i, error; 218 219 error = 0; 220 for (i = 0; i < ncpus; ++i) { 221 gd = globaldata_find(i); 222 if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats), 223 sizeof(struct nchstats)))) 224 break; 225 } 226 227 return (error); 228 } 229 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD, 230 0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics"); 231 232 static struct namecache *cache_zap(struct namecache *ncp, int nonblock); 233 234 /* 235 * Namespace locking. The caller must already hold a reference to the 236 * namecache structure in order to lock/unlock it. This function prevents 237 * the namespace from being created or destroyed by accessors other then 238 * the lock holder. 239 * 240 * Note that holding a locked namecache structure prevents other threads 241 * from making namespace changes (e.g. deleting or creating), prevents 242 * vnode association state changes by other threads, and prevents the 243 * namecache entry from being resolved or unresolved by other threads. 244 * 245 * The lock owner has full authority to associate/disassociate vnodes 246 * and resolve/unresolve the locked ncp. 247 * 248 * The primary lock field is nc_exlocks. nc_locktd is set after the 249 * fact (when locking) or cleared prior to unlocking. 250 * 251 * WARNING! Holding a locked ncp will prevent a vnode from being destroyed 252 * or recycled, but it does NOT help you if the vnode had already 253 * initiated a recyclement. If this is important, use cache_get() 254 * rather then cache_lock() (and deal with the differences in the 255 * way the refs counter is handled). Or, alternatively, make an 256 * unconditional call to cache_validate() or cache_resolve() 257 * after cache_lock() returns. 258 * 259 * MPSAFE 260 */ 261 static 262 void 263 _cache_lock(struct namecache *ncp) 264 { 265 thread_t td; 266 int didwarn; 267 int error; 268 u_int count; 269 270 KKASSERT(ncp->nc_refs != 0); 271 didwarn = 0; 272 td = curthread; 273 274 for (;;) { 275 count = ncp->nc_exlocks; 276 277 if (count == 0) { 278 if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) { 279 /* 280 * The vp associated with a locked ncp must 281 * be held to prevent it from being recycled. 282 * 283 * WARNING! If VRECLAIMED is set the vnode 284 * could already be in the middle of a recycle. 285 * Callers must use cache_vref() or 286 * cache_vget() on the locked ncp to 287 * validate the vp or set the cache entry 288 * to unresolved. 289 * 290 * NOTE! vhold() is allowed if we hold a 291 * lock on the ncp (which we do). 292 */ 293 ncp->nc_locktd = td; 294 if (ncp->nc_vp) 295 vhold(ncp->nc_vp); /* MPSAFE */ 296 break; 297 } 298 /* cmpset failed */ 299 continue; 300 } 301 if (ncp->nc_locktd == td) { 302 if (atomic_cmpset_int(&ncp->nc_exlocks, count, 303 count + 1)) { 304 break; 305 } 306 /* cmpset failed */ 307 continue; 308 } 309 tsleep_interlock(ncp, 0); 310 if (atomic_cmpset_int(&ncp->nc_exlocks, count, 311 count | NC_EXLOCK_REQ) == 0) { 312 /* cmpset failed */ 313 continue; 314 } 315 error = tsleep(ncp, PINTERLOCKED, "clock", nclockwarn); 316 if (error == EWOULDBLOCK) { 317 if (didwarn == 0) { 318 didwarn = ticks; 319 kprintf("[diagnostic] cache_lock: blocked " 320 "on %p", 321 ncp); 322 kprintf(" \"%*.*s\"\n", 323 ncp->nc_nlen, ncp->nc_nlen, 324 ncp->nc_name); 325 } 326 } 327 } 328 if (didwarn) { 329 kprintf("[diagnostic] cache_lock: unblocked %*.*s after " 330 "%d secs\n", 331 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name, 332 (int)(ticks - didwarn) / hz); 333 } 334 } 335 336 /* 337 * NOTE: nc_refs may be zero if the ncp is interlocked by circumstance, 338 * such as the case where one of its children is locked. 339 * 340 * MPSAFE 341 */ 342 static 343 int 344 _cache_lock_nonblock(struct namecache *ncp) 345 { 346 thread_t td; 347 u_int count; 348 349 td = curthread; 350 351 for (;;) { 352 count = ncp->nc_exlocks; 353 354 if (count == 0) { 355 if (atomic_cmpset_int(&ncp->nc_exlocks, 0, 1)) { 356 /* 357 * The vp associated with a locked ncp must 358 * be held to prevent it from being recycled. 359 * 360 * WARNING! If VRECLAIMED is set the vnode 361 * could already be in the middle of a recycle. 362 * Callers must use cache_vref() or 363 * cache_vget() on the locked ncp to 364 * validate the vp or set the cache entry 365 * to unresolved. 366 * 367 * NOTE! vhold() is allowed if we hold a 368 * lock on the ncp (which we do). 369 */ 370 ncp->nc_locktd = td; 371 if (ncp->nc_vp) 372 vhold(ncp->nc_vp); /* MPSAFE */ 373 break; 374 } 375 /* cmpset failed */ 376 continue; 377 } 378 if (ncp->nc_locktd == td) { 379 if (atomic_cmpset_int(&ncp->nc_exlocks, count, 380 count + 1)) { 381 break; 382 } 383 /* cmpset failed */ 384 continue; 385 } 386 return(EWOULDBLOCK); 387 } 388 return(0); 389 } 390 391 /* 392 * Helper function 393 * 394 * NOTE: nc_refs can be 0 (degenerate case during _cache_drop). 395 * 396 * nc_locktd must be NULLed out prior to nc_exlocks getting cleared. 397 * 398 * MPSAFE 399 */ 400 static 401 void 402 _cache_unlock(struct namecache *ncp) 403 { 404 thread_t td __debugvar = curthread; 405 u_int count; 406 407 KKASSERT(ncp->nc_refs >= 0); 408 KKASSERT(ncp->nc_exlocks > 0); 409 KKASSERT(ncp->nc_locktd == td); 410 411 count = ncp->nc_exlocks; 412 if ((count & ~NC_EXLOCK_REQ) == 1) { 413 ncp->nc_locktd = NULL; 414 if (ncp->nc_vp) 415 vdrop(ncp->nc_vp); 416 } 417 for (;;) { 418 if ((count & ~NC_EXLOCK_REQ) == 1) { 419 if (atomic_cmpset_int(&ncp->nc_exlocks, count, 0)) { 420 if (count & NC_EXLOCK_REQ) 421 wakeup(ncp); 422 break; 423 } 424 } else { 425 if (atomic_cmpset_int(&ncp->nc_exlocks, count, 426 count - 1)) { 427 break; 428 } 429 } 430 count = ncp->nc_exlocks; 431 } 432 } 433 434 435 /* 436 * cache_hold() and cache_drop() prevent the premature deletion of a 437 * namecache entry but do not prevent operations (such as zapping) on 438 * that namecache entry. 439 * 440 * This routine may only be called from outside this source module if 441 * nc_refs is already at least 1. 442 * 443 * This is a rare case where callers are allowed to hold a spinlock, 444 * so we can't ourselves. 445 * 446 * MPSAFE 447 */ 448 static __inline 449 struct namecache * 450 _cache_hold(struct namecache *ncp) 451 { 452 atomic_add_int(&ncp->nc_refs, 1); 453 return(ncp); 454 } 455 456 /* 457 * Drop a cache entry, taking care to deal with races. 458 * 459 * For potential 1->0 transitions we must hold the ncp lock to safely 460 * test its flags. An unresolved entry with no children must be zapped 461 * to avoid leaks. 462 * 463 * The call to cache_zap() itself will handle all remaining races and 464 * will decrement the ncp's refs regardless. If we are resolved or 465 * have children nc_refs can safely be dropped to 0 without having to 466 * zap the entry. 467 * 468 * NOTE: cache_zap() will re-check nc_refs and nc_list in a MPSAFE fashion. 469 * 470 * NOTE: cache_zap() may return a non-NULL referenced parent which must 471 * be dropped in a loop. 472 * 473 * MPSAFE 474 */ 475 static __inline 476 void 477 _cache_drop(struct namecache *ncp) 478 { 479 int refs; 480 481 while (ncp) { 482 KKASSERT(ncp->nc_refs > 0); 483 refs = ncp->nc_refs; 484 485 if (refs == 1) { 486 if (_cache_lock_nonblock(ncp) == 0) { 487 if ((ncp->nc_flag & NCF_UNRESOLVED) && 488 TAILQ_EMPTY(&ncp->nc_list)) { 489 ncp = cache_zap(ncp, 1); 490 continue; 491 } 492 if (atomic_cmpset_int(&ncp->nc_refs, 1, 0)) { 493 _cache_unlock(ncp); 494 break; 495 } 496 _cache_unlock(ncp); 497 } 498 } else { 499 if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) 500 break; 501 } 502 cpu_pause(); 503 } 504 } 505 506 /* 507 * Link a new namecache entry to its parent and to the hash table. Be 508 * careful to avoid races if vhold() blocks in the future. 509 * 510 * Both ncp and par must be referenced and locked. 511 * 512 * NOTE: The hash table spinlock is likely held during this call, we 513 * can't do anything fancy. 514 * 515 * MPSAFE 516 */ 517 static void 518 _cache_link_parent(struct namecache *ncp, struct namecache *par, 519 struct nchash_head *nchpp) 520 { 521 KKASSERT(ncp->nc_parent == NULL); 522 ncp->nc_parent = par; 523 ncp->nc_head = nchpp; 524 LIST_INSERT_HEAD(&nchpp->list, ncp, nc_hash); 525 526 if (TAILQ_EMPTY(&par->nc_list)) { 527 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry); 528 /* 529 * Any vp associated with an ncp which has children must 530 * be held to prevent it from being recycled. 531 */ 532 if (par->nc_vp) 533 vhold(par->nc_vp); 534 } else { 535 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry); 536 } 537 } 538 539 /* 540 * Remove the parent and hash associations from a namecache structure. 541 * If this is the last child of the parent the cache_drop(par) will 542 * attempt to recursively zap the parent. 543 * 544 * ncp must be locked. This routine will acquire a temporary lock on 545 * the parent as wlel as the appropriate hash chain. 546 * 547 * MPSAFE 548 */ 549 static void 550 _cache_unlink_parent(struct namecache *ncp) 551 { 552 struct namecache *par; 553 struct vnode *dropvp; 554 555 if ((par = ncp->nc_parent) != NULL) { 556 KKASSERT(ncp->nc_parent == par); 557 _cache_hold(par); 558 _cache_lock(par); 559 spin_lock_wr(&ncp->nc_head->spin); 560 LIST_REMOVE(ncp, nc_hash); 561 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry); 562 dropvp = NULL; 563 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list)) 564 dropvp = par->nc_vp; 565 spin_unlock_wr(&ncp->nc_head->spin); 566 ncp->nc_parent = NULL; 567 ncp->nc_head = NULL; 568 _cache_unlock(par); 569 _cache_drop(par); 570 571 /* 572 * We can only safely vdrop with no spinlocks held. 573 */ 574 if (dropvp) 575 vdrop(dropvp); 576 } 577 } 578 579 /* 580 * Allocate a new namecache structure. Most of the code does not require 581 * zero-termination of the string but it makes vop_compat_ncreate() easier. 582 * 583 * MPSAFE 584 */ 585 static struct namecache * 586 cache_alloc(int nlen) 587 { 588 struct namecache *ncp; 589 590 ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO); 591 if (nlen) 592 ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK); 593 ncp->nc_nlen = nlen; 594 ncp->nc_flag = NCF_UNRESOLVED; 595 ncp->nc_error = ENOTCONN; /* needs to be resolved */ 596 ncp->nc_refs = 1; 597 598 TAILQ_INIT(&ncp->nc_list); 599 _cache_lock(ncp); 600 return(ncp); 601 } 602 603 /* 604 * Can only be called for the case where the ncp has never been 605 * associated with anything (so no spinlocks are needed). 606 * 607 * MPSAFE 608 */ 609 static void 610 _cache_free(struct namecache *ncp) 611 { 612 KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1); 613 if (ncp->nc_name) 614 kfree(ncp->nc_name, M_VFSCACHE); 615 kfree(ncp, M_VFSCACHE); 616 } 617 618 /* 619 * MPSAFE 620 */ 621 void 622 cache_zero(struct nchandle *nch) 623 { 624 nch->ncp = NULL; 625 nch->mount = NULL; 626 } 627 628 /* 629 * Ref and deref a namecache structure. 630 * 631 * The caller must specify a stable ncp pointer, typically meaning the 632 * ncp is already referenced but this can also occur indirectly through 633 * e.g. holding a lock on a direct child. 634 * 635 * WARNING: Caller may hold an unrelated read spinlock, which means we can't 636 * use read spinlocks here. 637 * 638 * MPSAFE if nch is 639 */ 640 struct nchandle * 641 cache_hold(struct nchandle *nch) 642 { 643 _cache_hold(nch->ncp); 644 atomic_add_int(&nch->mount->mnt_refs, 1); 645 return(nch); 646 } 647 648 /* 649 * Create a copy of a namecache handle for an already-referenced 650 * entry. 651 * 652 * MPSAFE if nch is 653 */ 654 void 655 cache_copy(struct nchandle *nch, struct nchandle *target) 656 { 657 *target = *nch; 658 if (target->ncp) 659 _cache_hold(target->ncp); 660 atomic_add_int(&nch->mount->mnt_refs, 1); 661 } 662 663 /* 664 * MPSAFE if nch is 665 */ 666 void 667 cache_changemount(struct nchandle *nch, struct mount *mp) 668 { 669 atomic_add_int(&nch->mount->mnt_refs, -1); 670 nch->mount = mp; 671 atomic_add_int(&nch->mount->mnt_refs, 1); 672 } 673 674 /* 675 * MPSAFE 676 */ 677 void 678 cache_drop(struct nchandle *nch) 679 { 680 atomic_add_int(&nch->mount->mnt_refs, -1); 681 _cache_drop(nch->ncp); 682 nch->ncp = NULL; 683 nch->mount = NULL; 684 } 685 686 /* 687 * MPSAFE 688 */ 689 void 690 cache_lock(struct nchandle *nch) 691 { 692 _cache_lock(nch->ncp); 693 } 694 695 /* 696 * Relock nch1 given an unlocked nch1 and a locked nch2. The caller 697 * is responsible for checking both for validity on return as they 698 * may have become invalid. 699 * 700 * We have to deal with potential deadlocks here, just ping pong 701 * the lock until we get it (we will always block somewhere when 702 * looping so this is not cpu-intensive). 703 * 704 * which = 0 nch1 not locked, nch2 is locked 705 * which = 1 nch1 is locked, nch2 is not locked 706 */ 707 void 708 cache_relock(struct nchandle *nch1, struct ucred *cred1, 709 struct nchandle *nch2, struct ucred *cred2) 710 { 711 int which; 712 713 which = 0; 714 715 for (;;) { 716 if (which == 0) { 717 if (cache_lock_nonblock(nch1) == 0) { 718 cache_resolve(nch1, cred1); 719 break; 720 } 721 cache_unlock(nch2); 722 cache_lock(nch1); 723 cache_resolve(nch1, cred1); 724 which = 1; 725 } else { 726 if (cache_lock_nonblock(nch2) == 0) { 727 cache_resolve(nch2, cred2); 728 break; 729 } 730 cache_unlock(nch1); 731 cache_lock(nch2); 732 cache_resolve(nch2, cred2); 733 which = 0; 734 } 735 } 736 } 737 738 /* 739 * MPSAFE 740 */ 741 int 742 cache_lock_nonblock(struct nchandle *nch) 743 { 744 return(_cache_lock_nonblock(nch->ncp)); 745 } 746 747 748 /* 749 * MPSAFE 750 */ 751 void 752 cache_unlock(struct nchandle *nch) 753 { 754 _cache_unlock(nch->ncp); 755 } 756 757 /* 758 * ref-and-lock, unlock-and-deref functions. 759 * 760 * This function is primarily used by nlookup. Even though cache_lock 761 * holds the vnode, it is possible that the vnode may have already 762 * initiated a recyclement. 763 * 764 * We want cache_get() to return a definitively usable vnode or a 765 * definitively unresolved ncp. 766 * 767 * MPSAFE 768 */ 769 static 770 struct namecache * 771 _cache_get(struct namecache *ncp) 772 { 773 _cache_hold(ncp); 774 _cache_lock(ncp); 775 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) 776 _cache_setunresolved(ncp); 777 return(ncp); 778 } 779 780 /* 781 * This is a special form of _cache_lock() which only succeeds if 782 * it can get a pristine, non-recursive lock. The caller must have 783 * already ref'd the ncp. 784 * 785 * On success the ncp will be locked, on failure it will not. The 786 * ref count does not change either way. 787 * 788 * We want _cache_lock_special() (on success) to return a definitively 789 * usable vnode or a definitively unresolved ncp. 790 * 791 * MPSAFE 792 */ 793 static int 794 _cache_lock_special(struct namecache *ncp) 795 { 796 if (_cache_lock_nonblock(ncp) == 0) { 797 if ((ncp->nc_exlocks & ~NC_EXLOCK_REQ) == 1) { 798 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) 799 _cache_setunresolved(ncp); 800 return(0); 801 } 802 _cache_unlock(ncp); 803 } 804 return(EWOULDBLOCK); 805 } 806 807 808 /* 809 * NOTE: The same nchandle can be passed for both arguments. 810 * 811 * MPSAFE 812 */ 813 void 814 cache_get(struct nchandle *nch, struct nchandle *target) 815 { 816 KKASSERT(nch->ncp->nc_refs > 0); 817 target->mount = nch->mount; 818 target->ncp = _cache_get(nch->ncp); 819 atomic_add_int(&target->mount->mnt_refs, 1); 820 } 821 822 /* 823 * MPSAFE 824 */ 825 static __inline 826 void 827 _cache_put(struct namecache *ncp) 828 { 829 _cache_unlock(ncp); 830 _cache_drop(ncp); 831 } 832 833 /* 834 * MPSAFE 835 */ 836 void 837 cache_put(struct nchandle *nch) 838 { 839 atomic_add_int(&nch->mount->mnt_refs, -1); 840 _cache_put(nch->ncp); 841 nch->ncp = NULL; 842 nch->mount = NULL; 843 } 844 845 /* 846 * Resolve an unresolved ncp by associating a vnode with it. If the 847 * vnode is NULL, a negative cache entry is created. 848 * 849 * The ncp should be locked on entry and will remain locked on return. 850 * 851 * MPSAFE 852 */ 853 static 854 void 855 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp) 856 { 857 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED); 858 859 if (vp != NULL) { 860 /* 861 * Any vp associated with an ncp which has children must 862 * be held. Any vp associated with a locked ncp must be held. 863 */ 864 if (!TAILQ_EMPTY(&ncp->nc_list)) 865 vhold(vp); 866 spin_lock_wr(&vp->v_spinlock); 867 ncp->nc_vp = vp; 868 TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode); 869 spin_unlock_wr(&vp->v_spinlock); 870 if (ncp->nc_exlocks) 871 vhold(vp); 872 873 /* 874 * Set auxiliary flags 875 */ 876 switch(vp->v_type) { 877 case VDIR: 878 ncp->nc_flag |= NCF_ISDIR; 879 break; 880 case VLNK: 881 ncp->nc_flag |= NCF_ISSYMLINK; 882 /* XXX cache the contents of the symlink */ 883 break; 884 default: 885 break; 886 } 887 atomic_add_int(&numcache, 1); 888 ncp->nc_error = 0; 889 } else { 890 /* 891 * When creating a negative cache hit we set the 892 * namecache_gen. A later resolve will clean out the 893 * negative cache hit if the mount point's namecache_gen 894 * has changed. Used by devfs, could also be used by 895 * other remote FSs. 896 */ 897 ncp->nc_vp = NULL; 898 spin_lock_wr(&ncspin); 899 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode); 900 ++numneg; 901 spin_unlock_wr(&ncspin); 902 ncp->nc_error = ENOENT; 903 if (mp) 904 ncp->nc_namecache_gen = mp->mnt_namecache_gen; 905 } 906 ncp->nc_flag &= ~(NCF_UNRESOLVED | NCF_DEFEREDZAP); 907 } 908 909 /* 910 * MPSAFE 911 */ 912 void 913 cache_setvp(struct nchandle *nch, struct vnode *vp) 914 { 915 _cache_setvp(nch->mount, nch->ncp, vp); 916 } 917 918 /* 919 * MPSAFE 920 */ 921 void 922 cache_settimeout(struct nchandle *nch, int nticks) 923 { 924 struct namecache *ncp = nch->ncp; 925 926 if ((ncp->nc_timeout = ticks + nticks) == 0) 927 ncp->nc_timeout = 1; 928 } 929 930 /* 931 * Disassociate the vnode or negative-cache association and mark a 932 * namecache entry as unresolved again. Note that the ncp is still 933 * left in the hash table and still linked to its parent. 934 * 935 * The ncp should be locked and refd on entry and will remain locked and refd 936 * on return. 937 * 938 * This routine is normally never called on a directory containing children. 939 * However, NFS often does just that in its rename() code as a cop-out to 940 * avoid complex namespace operations. This disconnects a directory vnode 941 * from its namecache and can cause the OLDAPI and NEWAPI to get out of 942 * sync. 943 * 944 * MPSAFE 945 */ 946 static 947 void 948 _cache_setunresolved(struct namecache *ncp) 949 { 950 struct vnode *vp; 951 952 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) { 953 ncp->nc_flag |= NCF_UNRESOLVED; 954 ncp->nc_timeout = 0; 955 ncp->nc_error = ENOTCONN; 956 if ((vp = ncp->nc_vp) != NULL) { 957 atomic_add_int(&numcache, -1); 958 spin_lock_wr(&vp->v_spinlock); 959 ncp->nc_vp = NULL; 960 TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode); 961 spin_unlock_wr(&vp->v_spinlock); 962 963 /* 964 * Any vp associated with an ncp with children is 965 * held by that ncp. Any vp associated with a locked 966 * ncp is held by that ncp. These conditions must be 967 * undone when the vp is cleared out from the ncp. 968 */ 969 if (!TAILQ_EMPTY(&ncp->nc_list)) 970 vdrop(vp); 971 if (ncp->nc_exlocks) 972 vdrop(vp); 973 } else { 974 spin_lock_wr(&ncspin); 975 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode); 976 --numneg; 977 spin_unlock_wr(&ncspin); 978 } 979 ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK); 980 } 981 } 982 983 /* 984 * The cache_nresolve() code calls this function to automatically 985 * set a resolved cache element to unresolved if it has timed out 986 * or if it is a negative cache hit and the mount point namecache_gen 987 * has changed. 988 * 989 * MPSAFE 990 */ 991 static __inline void 992 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp) 993 { 994 /* 995 * Already in an unresolved state, nothing to do. 996 */ 997 if (ncp->nc_flag & NCF_UNRESOLVED) 998 return; 999 1000 /* 1001 * Try to zap entries that have timed out. We have 1002 * to be careful here because locked leafs may depend 1003 * on the vnode remaining intact in a parent, so only 1004 * do this under very specific conditions. 1005 */ 1006 if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 && 1007 TAILQ_EMPTY(&ncp->nc_list)) { 1008 _cache_setunresolved(ncp); 1009 return; 1010 } 1011 1012 /* 1013 * If a resolved negative cache hit is invalid due to 1014 * the mount's namecache generation being bumped, zap it. 1015 */ 1016 if (ncp->nc_vp == NULL && 1017 ncp->nc_namecache_gen != mp->mnt_namecache_gen) { 1018 _cache_setunresolved(ncp); 1019 return; 1020 } 1021 } 1022 1023 /* 1024 * MPSAFE 1025 */ 1026 void 1027 cache_setunresolved(struct nchandle *nch) 1028 { 1029 _cache_setunresolved(nch->ncp); 1030 } 1031 1032 /* 1033 * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist 1034 * looking for matches. This flag tells the lookup code when it must 1035 * check for a mount linkage and also prevents the directories in question 1036 * from being deleted or renamed. 1037 * 1038 * MPSAFE 1039 */ 1040 static 1041 int 1042 cache_clrmountpt_callback(struct mount *mp, void *data) 1043 { 1044 struct nchandle *nch = data; 1045 1046 if (mp->mnt_ncmounton.ncp == nch->ncp) 1047 return(1); 1048 if (mp->mnt_ncmountpt.ncp == nch->ncp) 1049 return(1); 1050 return(0); 1051 } 1052 1053 /* 1054 * MPSAFE 1055 */ 1056 void 1057 cache_clrmountpt(struct nchandle *nch) 1058 { 1059 int count; 1060 1061 count = mountlist_scan(cache_clrmountpt_callback, nch, 1062 MNTSCAN_FORWARD|MNTSCAN_NOBUSY); 1063 if (count == 0) 1064 nch->ncp->nc_flag &= ~NCF_ISMOUNTPT; 1065 } 1066 1067 /* 1068 * Invalidate portions of the namecache topology given a starting entry. 1069 * The passed ncp is set to an unresolved state and: 1070 * 1071 * The passed ncp must be referencxed and locked. The routine may unlock 1072 * and relock ncp several times, and will recheck the children and loop 1073 * to catch races. When done the passed ncp will be returned with the 1074 * reference and lock intact. 1075 * 1076 * CINV_DESTROY - Set a flag in the passed ncp entry indicating 1077 * that the physical underlying nodes have been 1078 * destroyed... as in deleted. For example, when 1079 * a directory is removed. This will cause record 1080 * lookups on the name to no longer be able to find 1081 * the record and tells the resolver to return failure 1082 * rather then trying to resolve through the parent. 1083 * 1084 * The topology itself, including ncp->nc_name, 1085 * remains intact. 1086 * 1087 * This only applies to the passed ncp, if CINV_CHILDREN 1088 * is specified the children are not flagged. 1089 * 1090 * CINV_CHILDREN - Set all children (recursively) to an unresolved 1091 * state as well. 1092 * 1093 * Note that this will also have the side effect of 1094 * cleaning out any unreferenced nodes in the topology 1095 * from the leaves up as the recursion backs out. 1096 * 1097 * Note that the topology for any referenced nodes remains intact, but 1098 * the nodes will be marked as having been destroyed and will be set 1099 * to an unresolved state. 1100 * 1101 * It is possible for cache_inval() to race a cache_resolve(), meaning that 1102 * the namecache entry may not actually be invalidated on return if it was 1103 * revalidated while recursing down into its children. This code guarentees 1104 * that the node(s) will go through an invalidation cycle, but does not 1105 * guarentee that they will remain in an invalidated state. 1106 * 1107 * Returns non-zero if a revalidation was detected during the invalidation 1108 * recursion, zero otherwise. Note that since only the original ncp is 1109 * locked the revalidation ultimately can only indicate that the original ncp 1110 * *MIGHT* no have been reresolved. 1111 * 1112 * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we 1113 * have to avoid blowing out the kernel stack. We do this by saving the 1114 * deep namecache node and aborting the recursion, then re-recursing at that 1115 * node using a depth-first algorithm in order to allow multiple deep 1116 * recursions to chain through each other, then we restart the invalidation 1117 * from scratch. 1118 * 1119 * MPSAFE 1120 */ 1121 1122 struct cinvtrack { 1123 struct namecache *resume_ncp; 1124 int depth; 1125 }; 1126 1127 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *); 1128 1129 static 1130 int 1131 _cache_inval(struct namecache *ncp, int flags) 1132 { 1133 struct cinvtrack track; 1134 struct namecache *ncp2; 1135 int r; 1136 1137 track.depth = 0; 1138 track.resume_ncp = NULL; 1139 1140 for (;;) { 1141 r = _cache_inval_internal(ncp, flags, &track); 1142 if (track.resume_ncp == NULL) 1143 break; 1144 kprintf("Warning: deep namecache recursion at %s\n", 1145 ncp->nc_name); 1146 _cache_unlock(ncp); 1147 while ((ncp2 = track.resume_ncp) != NULL) { 1148 track.resume_ncp = NULL; 1149 _cache_lock(ncp2); 1150 _cache_inval_internal(ncp2, flags & ~CINV_DESTROY, 1151 &track); 1152 _cache_put(ncp2); 1153 } 1154 _cache_lock(ncp); 1155 } 1156 return(r); 1157 } 1158 1159 int 1160 cache_inval(struct nchandle *nch, int flags) 1161 { 1162 return(_cache_inval(nch->ncp, flags)); 1163 } 1164 1165 /* 1166 * Helper for _cache_inval(). The passed ncp is refd and locked and 1167 * remains that way on return, but may be unlocked/relocked multiple 1168 * times by the routine. 1169 */ 1170 static int 1171 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track) 1172 { 1173 struct namecache *kid; 1174 struct namecache *nextkid; 1175 int rcnt = 0; 1176 1177 KKASSERT(ncp->nc_exlocks); 1178 1179 _cache_setunresolved(ncp); 1180 if (flags & CINV_DESTROY) 1181 ncp->nc_flag |= NCF_DESTROYED; 1182 if ((flags & CINV_CHILDREN) && 1183 (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL 1184 ) { 1185 _cache_hold(kid); 1186 if (++track->depth > MAX_RECURSION_DEPTH) { 1187 track->resume_ncp = ncp; 1188 _cache_hold(ncp); 1189 ++rcnt; 1190 } 1191 _cache_unlock(ncp); 1192 while (kid) { 1193 if (track->resume_ncp) { 1194 _cache_drop(kid); 1195 break; 1196 } 1197 if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL) 1198 _cache_hold(nextkid); 1199 if ((kid->nc_flag & NCF_UNRESOLVED) == 0 || 1200 TAILQ_FIRST(&kid->nc_list) 1201 ) { 1202 _cache_lock(kid); 1203 rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track); 1204 _cache_unlock(kid); 1205 } 1206 _cache_drop(kid); 1207 kid = nextkid; 1208 } 1209 --track->depth; 1210 _cache_lock(ncp); 1211 } 1212 1213 /* 1214 * Someone could have gotten in there while ncp was unlocked, 1215 * retry if so. 1216 */ 1217 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) 1218 ++rcnt; 1219 return (rcnt); 1220 } 1221 1222 /* 1223 * Invalidate a vnode's namecache associations. To avoid races against 1224 * the resolver we do not invalidate a node which we previously invalidated 1225 * but which was then re-resolved while we were in the invalidation loop. 1226 * 1227 * Returns non-zero if any namecache entries remain after the invalidation 1228 * loop completed. 1229 * 1230 * NOTE: Unlike the namecache topology which guarentees that ncp's will not 1231 * be ripped out of the topology while held, the vnode's v_namecache 1232 * list has no such restriction. NCP's can be ripped out of the list 1233 * at virtually any time if not locked, even if held. 1234 * 1235 * In addition, the v_namecache list itself must be locked via 1236 * the vnode's spinlock. 1237 * 1238 * MPSAFE 1239 */ 1240 int 1241 cache_inval_vp(struct vnode *vp, int flags) 1242 { 1243 struct namecache *ncp; 1244 struct namecache *next; 1245 1246 restart: 1247 spin_lock_wr(&vp->v_spinlock); 1248 ncp = TAILQ_FIRST(&vp->v_namecache); 1249 if (ncp) 1250 _cache_hold(ncp); 1251 while (ncp) { 1252 /* loop entered with ncp held and vp spin-locked */ 1253 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL) 1254 _cache_hold(next); 1255 spin_unlock_wr(&vp->v_spinlock); 1256 _cache_lock(ncp); 1257 if (ncp->nc_vp != vp) { 1258 kprintf("Warning: cache_inval_vp: race-A detected on " 1259 "%s\n", ncp->nc_name); 1260 _cache_put(ncp); 1261 if (next) 1262 _cache_drop(next); 1263 goto restart; 1264 } 1265 _cache_inval(ncp, flags); 1266 _cache_put(ncp); /* also releases reference */ 1267 ncp = next; 1268 spin_lock_wr(&vp->v_spinlock); 1269 if (ncp && ncp->nc_vp != vp) { 1270 spin_unlock_wr(&vp->v_spinlock); 1271 kprintf("Warning: cache_inval_vp: race-B detected on " 1272 "%s\n", ncp->nc_name); 1273 _cache_drop(ncp); 1274 goto restart; 1275 } 1276 } 1277 spin_unlock_wr(&vp->v_spinlock); 1278 return(TAILQ_FIRST(&vp->v_namecache) != NULL); 1279 } 1280 1281 /* 1282 * This routine is used instead of the normal cache_inval_vp() when we 1283 * are trying to recycle otherwise good vnodes. 1284 * 1285 * Return 0 on success, non-zero if not all namecache records could be 1286 * disassociated from the vnode (for various reasons). 1287 * 1288 * MPSAFE 1289 */ 1290 int 1291 cache_inval_vp_nonblock(struct vnode *vp) 1292 { 1293 struct namecache *ncp; 1294 struct namecache *next; 1295 1296 spin_lock_wr(&vp->v_spinlock); 1297 ncp = TAILQ_FIRST(&vp->v_namecache); 1298 if (ncp) 1299 _cache_hold(ncp); 1300 while (ncp) { 1301 /* loop entered with ncp held */ 1302 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL) 1303 _cache_hold(next); 1304 spin_unlock_wr(&vp->v_spinlock); 1305 if (_cache_lock_nonblock(ncp)) { 1306 _cache_drop(ncp); 1307 if (next) 1308 _cache_drop(next); 1309 goto done; 1310 } 1311 if (ncp->nc_vp != vp) { 1312 kprintf("Warning: cache_inval_vp: race-A detected on " 1313 "%s\n", ncp->nc_name); 1314 _cache_put(ncp); 1315 if (next) 1316 _cache_drop(next); 1317 goto done; 1318 } 1319 _cache_inval(ncp, 0); 1320 _cache_put(ncp); /* also releases reference */ 1321 ncp = next; 1322 spin_lock_wr(&vp->v_spinlock); 1323 if (ncp && ncp->nc_vp != vp) { 1324 spin_unlock_wr(&vp->v_spinlock); 1325 kprintf("Warning: cache_inval_vp: race-B detected on " 1326 "%s\n", ncp->nc_name); 1327 _cache_drop(ncp); 1328 goto done; 1329 } 1330 } 1331 spin_unlock_wr(&vp->v_spinlock); 1332 done: 1333 return(TAILQ_FIRST(&vp->v_namecache) != NULL); 1334 } 1335 1336 /* 1337 * The source ncp has been renamed to the target ncp. Both fncp and tncp 1338 * must be locked. The target ncp is destroyed (as a normal rename-over 1339 * would destroy the target file or directory). 1340 * 1341 * Because there may be references to the source ncp we cannot copy its 1342 * contents to the target. Instead the source ncp is relinked as the target 1343 * and the target ncp is removed from the namecache topology. 1344 * 1345 * MPSAFE 1346 */ 1347 void 1348 cache_rename(struct nchandle *fnch, struct nchandle *tnch) 1349 { 1350 struct namecache *fncp = fnch->ncp; 1351 struct namecache *tncp = tnch->ncp; 1352 struct namecache *tncp_par; 1353 struct nchash_head *nchpp; 1354 u_int32_t hash; 1355 char *oname; 1356 1357 /* 1358 * Rename fncp (unlink) 1359 */ 1360 _cache_unlink_parent(fncp); 1361 oname = fncp->nc_name; 1362 fncp->nc_name = tncp->nc_name; 1363 fncp->nc_nlen = tncp->nc_nlen; 1364 tncp_par = tncp->nc_parent; 1365 _cache_hold(tncp_par); 1366 _cache_lock(tncp_par); 1367 1368 /* 1369 * Rename fncp (relink) 1370 */ 1371 hash = fnv_32_buf(fncp->nc_name, fncp->nc_nlen, FNV1_32_INIT); 1372 hash = fnv_32_buf(&tncp_par, sizeof(tncp_par), hash); 1373 nchpp = NCHHASH(hash); 1374 1375 spin_lock_wr(&nchpp->spin); 1376 _cache_link_parent(fncp, tncp_par, nchpp); 1377 spin_unlock_wr(&nchpp->spin); 1378 1379 _cache_put(tncp_par); 1380 1381 /* 1382 * Get rid of the overwritten tncp (unlink) 1383 */ 1384 _cache_setunresolved(tncp); 1385 _cache_unlink_parent(tncp); 1386 tncp->nc_name = NULL; 1387 tncp->nc_nlen = 0; 1388 1389 if (oname) 1390 kfree(oname, M_VFSCACHE); 1391 } 1392 1393 /* 1394 * vget the vnode associated with the namecache entry. Resolve the namecache 1395 * entry if necessary. The passed ncp must be referenced and locked. 1396 * 1397 * lk_type may be LK_SHARED, LK_EXCLUSIVE. A ref'd, possibly locked 1398 * (depending on the passed lk_type) will be returned in *vpp with an error 1399 * of 0, or NULL will be returned in *vpp with a non-0 error code. The 1400 * most typical error is ENOENT, meaning that the ncp represents a negative 1401 * cache hit and there is no vnode to retrieve, but other errors can occur 1402 * too. 1403 * 1404 * The vget() can race a reclaim. If this occurs we re-resolve the 1405 * namecache entry. 1406 * 1407 * There are numerous places in the kernel where vget() is called on a 1408 * vnode while one or more of its namecache entries is locked. Releasing 1409 * a vnode never deadlocks against locked namecache entries (the vnode 1410 * will not get recycled while referenced ncp's exist). This means we 1411 * can safely acquire the vnode. In fact, we MUST NOT release the ncp 1412 * lock when acquiring the vp lock or we might cause a deadlock. 1413 * 1414 * MPSAFE 1415 */ 1416 int 1417 cache_vget(struct nchandle *nch, struct ucred *cred, 1418 int lk_type, struct vnode **vpp) 1419 { 1420 struct namecache *ncp; 1421 struct vnode *vp; 1422 int error; 1423 1424 ncp = nch->ncp; 1425 KKASSERT(ncp->nc_locktd == curthread); 1426 again: 1427 vp = NULL; 1428 if (ncp->nc_flag & NCF_UNRESOLVED) 1429 error = cache_resolve(nch, cred); 1430 else 1431 error = 0; 1432 1433 if (error == 0 && (vp = ncp->nc_vp) != NULL) { 1434 error = vget(vp, lk_type); 1435 if (error) { 1436 /* 1437 * VRECLAIM race 1438 */ 1439 if (error == ENOENT) { 1440 kprintf("Warning: vnode reclaim race detected " 1441 "in cache_vget on %p (%s)\n", 1442 vp, ncp->nc_name); 1443 _cache_setunresolved(ncp); 1444 goto again; 1445 } 1446 1447 /* 1448 * Not a reclaim race, some other error. 1449 */ 1450 KKASSERT(ncp->nc_vp == vp); 1451 vp = NULL; 1452 } else { 1453 KKASSERT(ncp->nc_vp == vp); 1454 KKASSERT((vp->v_flag & VRECLAIMED) == 0); 1455 } 1456 } 1457 if (error == 0 && vp == NULL) 1458 error = ENOENT; 1459 *vpp = vp; 1460 return(error); 1461 } 1462 1463 int 1464 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp) 1465 { 1466 struct namecache *ncp; 1467 struct vnode *vp; 1468 int error; 1469 1470 ncp = nch->ncp; 1471 KKASSERT(ncp->nc_locktd == curthread); 1472 again: 1473 vp = NULL; 1474 if (ncp->nc_flag & NCF_UNRESOLVED) 1475 error = cache_resolve(nch, cred); 1476 else 1477 error = 0; 1478 1479 if (error == 0 && (vp = ncp->nc_vp) != NULL) { 1480 error = vget(vp, LK_SHARED); 1481 if (error) { 1482 /* 1483 * VRECLAIM race 1484 */ 1485 if (error == ENOENT) { 1486 kprintf("Warning: vnode reclaim race detected " 1487 "in cache_vget on %p (%s)\n", 1488 vp, ncp->nc_name); 1489 _cache_setunresolved(ncp); 1490 goto again; 1491 } 1492 1493 /* 1494 * Not a reclaim race, some other error. 1495 */ 1496 KKASSERT(ncp->nc_vp == vp); 1497 vp = NULL; 1498 } else { 1499 KKASSERT(ncp->nc_vp == vp); 1500 KKASSERT((vp->v_flag & VRECLAIMED) == 0); 1501 /* caller does not want a lock */ 1502 vn_unlock(vp); 1503 } 1504 } 1505 if (error == 0 && vp == NULL) 1506 error = ENOENT; 1507 *vpp = vp; 1508 return(error); 1509 } 1510 1511 /* 1512 * Return a referenced vnode representing the parent directory of 1513 * ncp. 1514 * 1515 * Because the caller has locked the ncp it should not be possible for 1516 * the parent ncp to go away. However, the parent can unresolve its 1517 * dvp at any time so we must be able to acquire a lock on the parent 1518 * to safely access nc_vp. 1519 * 1520 * We have to leave par unlocked when vget()ing dvp to avoid a deadlock, 1521 * so use vhold()/vdrop() while holding the lock to prevent dvp from 1522 * getting destroyed. 1523 * 1524 * MPSAFE - Note vhold() is allowed when dvp has 0 refs if we hold a 1525 * lock on the ncp in question.. 1526 */ 1527 static struct vnode * 1528 cache_dvpref(struct namecache *ncp) 1529 { 1530 struct namecache *par; 1531 struct vnode *dvp; 1532 1533 dvp = NULL; 1534 if ((par = ncp->nc_parent) != NULL) { 1535 _cache_hold(par); 1536 _cache_lock(par); 1537 if ((par->nc_flag & NCF_UNRESOLVED) == 0) { 1538 if ((dvp = par->nc_vp) != NULL) 1539 vhold(dvp); 1540 } 1541 _cache_unlock(par); 1542 if (dvp) { 1543 if (vget(dvp, LK_SHARED) == 0) { 1544 vn_unlock(dvp); 1545 vdrop(dvp); 1546 /* return refd, unlocked dvp */ 1547 } else { 1548 vdrop(dvp); 1549 dvp = NULL; 1550 } 1551 } 1552 _cache_drop(par); 1553 } 1554 return(dvp); 1555 } 1556 1557 /* 1558 * Convert a directory vnode to a namecache record without any other 1559 * knowledge of the topology. This ONLY works with directory vnodes and 1560 * is ONLY used by the NFS server. dvp must be refd but unlocked, and the 1561 * returned ncp (if not NULL) will be held and unlocked. 1562 * 1563 * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned. 1564 * If 'makeit' is 1 we attempt to track-down and create the namecache topology 1565 * for dvp. This will fail only if the directory has been deleted out from 1566 * under the caller. 1567 * 1568 * Callers must always check for a NULL return no matter the value of 'makeit'. 1569 * 1570 * To avoid underflowing the kernel stack each recursive call increments 1571 * the makeit variable. 1572 */ 1573 1574 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred, 1575 struct vnode *dvp, char *fakename); 1576 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred, 1577 struct vnode **saved_dvp); 1578 1579 int 1580 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit, 1581 struct nchandle *nch) 1582 { 1583 struct vnode *saved_dvp; 1584 struct vnode *pvp; 1585 char *fakename; 1586 int error; 1587 1588 nch->ncp = NULL; 1589 nch->mount = dvp->v_mount; 1590 saved_dvp = NULL; 1591 fakename = NULL; 1592 1593 /* 1594 * Loop until resolution, inside code will break out on error. 1595 */ 1596 while (makeit) { 1597 /* 1598 * Break out if we successfully acquire a working ncp. 1599 */ 1600 spin_lock_wr(&dvp->v_spinlock); 1601 nch->ncp = TAILQ_FIRST(&dvp->v_namecache); 1602 if (nch->ncp) { 1603 cache_hold(nch); 1604 spin_unlock_wr(&dvp->v_spinlock); 1605 break; 1606 } 1607 spin_unlock_wr(&dvp->v_spinlock); 1608 1609 /* 1610 * If dvp is the root of its filesystem it should already 1611 * have a namecache pointer associated with it as a side 1612 * effect of the mount, but it may have been disassociated. 1613 */ 1614 if (dvp->v_flag & VROOT) { 1615 nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp); 1616 error = cache_resolve_mp(nch->mount); 1617 _cache_put(nch->ncp); 1618 if (ncvp_debug) { 1619 kprintf("cache_fromdvp: resolve root of mount %p error %d", 1620 dvp->v_mount, error); 1621 } 1622 if (error) { 1623 if (ncvp_debug) 1624 kprintf(" failed\n"); 1625 nch->ncp = NULL; 1626 break; 1627 } 1628 if (ncvp_debug) 1629 kprintf(" succeeded\n"); 1630 continue; 1631 } 1632 1633 /* 1634 * If we are recursed too deeply resort to an O(n^2) 1635 * algorithm to resolve the namecache topology. The 1636 * resolved pvp is left referenced in saved_dvp to 1637 * prevent the tree from being destroyed while we loop. 1638 */ 1639 if (makeit > 20) { 1640 error = cache_fromdvp_try(dvp, cred, &saved_dvp); 1641 if (error) { 1642 kprintf("lookupdotdot(longpath) failed %d " 1643 "dvp %p\n", error, dvp); 1644 nch->ncp = NULL; 1645 break; 1646 } 1647 continue; 1648 } 1649 1650 /* 1651 * Get the parent directory and resolve its ncp. 1652 */ 1653 if (fakename) { 1654 kfree(fakename, M_TEMP); 1655 fakename = NULL; 1656 } 1657 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred, 1658 &fakename); 1659 if (error) { 1660 kprintf("lookupdotdot failed %d dvp %p\n", error, dvp); 1661 break; 1662 } 1663 vn_unlock(pvp); 1664 1665 /* 1666 * Reuse makeit as a recursion depth counter. On success 1667 * nch will be fully referenced. 1668 */ 1669 cache_fromdvp(pvp, cred, makeit + 1, nch); 1670 vrele(pvp); 1671 if (nch->ncp == NULL) 1672 break; 1673 1674 /* 1675 * Do an inefficient scan of pvp (embodied by ncp) to look 1676 * for dvp. This will create a namecache record for dvp on 1677 * success. We loop up to recheck on success. 1678 * 1679 * ncp and dvp are both held but not locked. 1680 */ 1681 error = cache_inefficient_scan(nch, cred, dvp, fakename); 1682 if (error) { 1683 kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n", 1684 pvp, nch->ncp->nc_name, dvp); 1685 cache_drop(nch); 1686 /* nch was NULLed out, reload mount */ 1687 nch->mount = dvp->v_mount; 1688 break; 1689 } 1690 if (ncvp_debug) { 1691 kprintf("cache_fromdvp: scan %p (%s) succeeded\n", 1692 pvp, nch->ncp->nc_name); 1693 } 1694 cache_drop(nch); 1695 /* nch was NULLed out, reload mount */ 1696 nch->mount = dvp->v_mount; 1697 } 1698 1699 /* 1700 * If nch->ncp is non-NULL it will have been held already. 1701 */ 1702 if (fakename) 1703 kfree(fakename, M_TEMP); 1704 if (saved_dvp) 1705 vrele(saved_dvp); 1706 if (nch->ncp) 1707 return (0); 1708 return (EINVAL); 1709 } 1710 1711 /* 1712 * Go up the chain of parent directories until we find something 1713 * we can resolve into the namecache. This is very inefficient. 1714 */ 1715 static 1716 int 1717 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred, 1718 struct vnode **saved_dvp) 1719 { 1720 struct nchandle nch; 1721 struct vnode *pvp; 1722 int error; 1723 static time_t last_fromdvp_report; 1724 char *fakename; 1725 1726 /* 1727 * Loop getting the parent directory vnode until we get something we 1728 * can resolve in the namecache. 1729 */ 1730 vref(dvp); 1731 nch.mount = dvp->v_mount; 1732 nch.ncp = NULL; 1733 fakename = NULL; 1734 1735 for (;;) { 1736 if (fakename) { 1737 kfree(fakename, M_TEMP); 1738 fakename = NULL; 1739 } 1740 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred, 1741 &fakename); 1742 if (error) { 1743 vrele(dvp); 1744 break; 1745 } 1746 vn_unlock(pvp); 1747 spin_lock_wr(&pvp->v_spinlock); 1748 if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) { 1749 _cache_hold(nch.ncp); 1750 spin_unlock_wr(&pvp->v_spinlock); 1751 vrele(pvp); 1752 break; 1753 } 1754 spin_unlock_wr(&pvp->v_spinlock); 1755 if (pvp->v_flag & VROOT) { 1756 nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp); 1757 error = cache_resolve_mp(nch.mount); 1758 _cache_unlock(nch.ncp); 1759 vrele(pvp); 1760 if (error) { 1761 _cache_drop(nch.ncp); 1762 nch.ncp = NULL; 1763 vrele(dvp); 1764 } 1765 break; 1766 } 1767 vrele(dvp); 1768 dvp = pvp; 1769 } 1770 if (error == 0) { 1771 if (last_fromdvp_report != time_second) { 1772 last_fromdvp_report = time_second; 1773 kprintf("Warning: extremely inefficient path " 1774 "resolution on %s\n", 1775 nch.ncp->nc_name); 1776 } 1777 error = cache_inefficient_scan(&nch, cred, dvp, fakename); 1778 1779 /* 1780 * Hopefully dvp now has a namecache record associated with 1781 * it. Leave it referenced to prevent the kernel from 1782 * recycling the vnode. Otherwise extremely long directory 1783 * paths could result in endless recycling. 1784 */ 1785 if (*saved_dvp) 1786 vrele(*saved_dvp); 1787 *saved_dvp = dvp; 1788 _cache_drop(nch.ncp); 1789 } 1790 if (fakename) 1791 kfree(fakename, M_TEMP); 1792 return (error); 1793 } 1794 1795 /* 1796 * Do an inefficient scan of the directory represented by ncp looking for 1797 * the directory vnode dvp. ncp must be held but not locked on entry and 1798 * will be held on return. dvp must be refd but not locked on entry and 1799 * will remain refd on return. 1800 * 1801 * Why do this at all? Well, due to its stateless nature the NFS server 1802 * converts file handles directly to vnodes without necessarily going through 1803 * the namecache ops that would otherwise create the namecache topology 1804 * leading to the vnode. We could either (1) Change the namecache algorithms 1805 * to allow disconnect namecache records that are re-merged opportunistically, 1806 * or (2) Make the NFS server backtrack and scan to recover a connected 1807 * namecache topology in order to then be able to issue new API lookups. 1808 * 1809 * It turns out that (1) is a huge mess. It takes a nice clean set of 1810 * namecache algorithms and introduces a lot of complication in every subsystem 1811 * that calls into the namecache to deal with the re-merge case, especially 1812 * since we are using the namecache to placehold negative lookups and the 1813 * vnode might not be immediately assigned. (2) is certainly far less 1814 * efficient then (1), but since we are only talking about directories here 1815 * (which are likely to remain cached), the case does not actually run all 1816 * that often and has the supreme advantage of not polluting the namecache 1817 * algorithms. 1818 * 1819 * If a fakename is supplied just construct a namecache entry using the 1820 * fake name. 1821 */ 1822 static int 1823 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred, 1824 struct vnode *dvp, char *fakename) 1825 { 1826 struct nlcomponent nlc; 1827 struct nchandle rncp; 1828 struct dirent *den; 1829 struct vnode *pvp; 1830 struct vattr vat; 1831 struct iovec iov; 1832 struct uio uio; 1833 int blksize; 1834 int eofflag; 1835 int bytes; 1836 char *rbuf; 1837 int error; 1838 1839 vat.va_blocksize = 0; 1840 if ((error = VOP_GETATTR(dvp, &vat)) != 0) 1841 return (error); 1842 cache_lock(nch); 1843 error = cache_vref(nch, cred, &pvp); 1844 cache_unlock(nch); 1845 if (error) 1846 return (error); 1847 if (ncvp_debug) { 1848 kprintf("inefficient_scan: directory iosize %ld " 1849 "vattr fileid = %lld\n", 1850 vat.va_blocksize, 1851 (long long)vat.va_fileid); 1852 } 1853 1854 /* 1855 * Use the supplied fakename if not NULL. Fake names are typically 1856 * not in the actual filesystem hierarchy. This is used by HAMMER 1857 * to glue @@timestamp recursions together. 1858 */ 1859 if (fakename) { 1860 nlc.nlc_nameptr = fakename; 1861 nlc.nlc_namelen = strlen(fakename); 1862 rncp = cache_nlookup(nch, &nlc); 1863 goto done; 1864 } 1865 1866 if ((blksize = vat.va_blocksize) == 0) 1867 blksize = DEV_BSIZE; 1868 rbuf = kmalloc(blksize, M_TEMP, M_WAITOK); 1869 rncp.ncp = NULL; 1870 1871 eofflag = 0; 1872 uio.uio_offset = 0; 1873 again: 1874 iov.iov_base = rbuf; 1875 iov.iov_len = blksize; 1876 uio.uio_iov = &iov; 1877 uio.uio_iovcnt = 1; 1878 uio.uio_resid = blksize; 1879 uio.uio_segflg = UIO_SYSSPACE; 1880 uio.uio_rw = UIO_READ; 1881 uio.uio_td = curthread; 1882 1883 if (ncvp_debug >= 2) 1884 kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset); 1885 error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL); 1886 if (error == 0) { 1887 den = (struct dirent *)rbuf; 1888 bytes = blksize - uio.uio_resid; 1889 1890 while (bytes > 0) { 1891 if (ncvp_debug >= 2) { 1892 kprintf("cache_inefficient_scan: %*.*s\n", 1893 den->d_namlen, den->d_namlen, 1894 den->d_name); 1895 } 1896 if (den->d_type != DT_WHT && 1897 den->d_ino == vat.va_fileid) { 1898 if (ncvp_debug) { 1899 kprintf("cache_inefficient_scan: " 1900 "MATCHED inode %lld path %s/%*.*s\n", 1901 (long long)vat.va_fileid, 1902 nch->ncp->nc_name, 1903 den->d_namlen, den->d_namlen, 1904 den->d_name); 1905 } 1906 nlc.nlc_nameptr = den->d_name; 1907 nlc.nlc_namelen = den->d_namlen; 1908 rncp = cache_nlookup(nch, &nlc); 1909 KKASSERT(rncp.ncp != NULL); 1910 break; 1911 } 1912 bytes -= _DIRENT_DIRSIZ(den); 1913 den = _DIRENT_NEXT(den); 1914 } 1915 if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize) 1916 goto again; 1917 } 1918 kfree(rbuf, M_TEMP); 1919 done: 1920 vrele(pvp); 1921 if (rncp.ncp) { 1922 if (rncp.ncp->nc_flag & NCF_UNRESOLVED) { 1923 _cache_setvp(rncp.mount, rncp.ncp, dvp); 1924 if (ncvp_debug >= 2) { 1925 kprintf("cache_inefficient_scan: setvp %s/%s = %p\n", 1926 nch->ncp->nc_name, rncp.ncp->nc_name, dvp); 1927 } 1928 } else { 1929 if (ncvp_debug >= 2) { 1930 kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n", 1931 nch->ncp->nc_name, rncp.ncp->nc_name, dvp, 1932 rncp.ncp->nc_vp); 1933 } 1934 } 1935 if (rncp.ncp->nc_vp == NULL) 1936 error = rncp.ncp->nc_error; 1937 /* 1938 * Release rncp after a successful nlookup. rncp was fully 1939 * referenced. 1940 */ 1941 cache_put(&rncp); 1942 } else { 1943 kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n", 1944 dvp, nch->ncp->nc_name); 1945 error = ENOENT; 1946 } 1947 return (error); 1948 } 1949 1950 /* 1951 * Zap a namecache entry. The ncp is unconditionally set to an unresolved 1952 * state, which disassociates it from its vnode or ncneglist. 1953 * 1954 * Then, if there are no additional references to the ncp and no children, 1955 * the ncp is removed from the topology and destroyed. 1956 * 1957 * References and/or children may exist if the ncp is in the middle of the 1958 * topology, preventing the ncp from being destroyed. 1959 * 1960 * This function must be called with the ncp held and locked and will unlock 1961 * and drop it during zapping. 1962 * 1963 * If nonblock is non-zero and the parent ncp cannot be locked we give up. 1964 * This case can occur in the cache_drop() path. 1965 * 1966 * This function may returned a held (but NOT locked) parent node which the 1967 * caller must drop. We do this so _cache_drop() can loop, to avoid 1968 * blowing out the kernel stack. 1969 * 1970 * WARNING! For MPSAFE operation this routine must acquire up to three 1971 * spin locks to be able to safely test nc_refs. Lock order is 1972 * very important. 1973 * 1974 * hash spinlock if on hash list 1975 * parent spinlock if child of parent 1976 * (the ncp is unresolved so there is no vnode association) 1977 */ 1978 static struct namecache * 1979 cache_zap(struct namecache *ncp, int nonblock) 1980 { 1981 struct namecache *par; 1982 struct vnode *dropvp; 1983 int refs; 1984 1985 /* 1986 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED. 1987 */ 1988 _cache_setunresolved(ncp); 1989 1990 /* 1991 * Try to scrap the entry and possibly tail-recurse on its parent. 1992 * We only scrap unref'd (other then our ref) unresolved entries, 1993 * we do not scrap 'live' entries. 1994 * 1995 * Note that once the spinlocks are acquired if nc_refs == 1 no 1996 * other references are possible. If it isn't, however, we have 1997 * to decrement but also be sure to avoid a 1->0 transition. 1998 */ 1999 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED); 2000 KKASSERT(ncp->nc_refs > 0); 2001 2002 /* 2003 * Acquire locks. Note that the parent can't go away while we hold 2004 * a child locked. 2005 */ 2006 if ((par = ncp->nc_parent) != NULL) { 2007 if (nonblock) { 2008 for (;;) { 2009 if (_cache_lock_nonblock(par) == 0) 2010 break; 2011 kprintf("Warning ncp %p cache_drop " 2012 "deadlock avoided\n", ncp); 2013 refs = ncp->nc_refs; 2014 ncp->nc_flag |= NCF_DEFEREDZAP; 2015 ++numdefered; /* MP race ok */ 2016 if (atomic_cmpset_int(&ncp->nc_refs, 2017 refs, refs - 1)) { 2018 _cache_unlock(ncp); 2019 return(NULL); 2020 } 2021 cpu_pause(); 2022 } 2023 _cache_hold(par); 2024 } else { 2025 _cache_hold(par); 2026 _cache_lock(par); 2027 } 2028 spin_lock_wr(&ncp->nc_head->spin); 2029 } 2030 2031 /* 2032 * If someone other then us has a ref or we have children 2033 * we cannot zap the entry. The 1->0 transition and any 2034 * further list operation is protected by the spinlocks 2035 * we have acquired but other transitions are not. 2036 */ 2037 for (;;) { 2038 refs = ncp->nc_refs; 2039 if (refs == 1 && TAILQ_EMPTY(&ncp->nc_list)) 2040 break; 2041 if (atomic_cmpset_int(&ncp->nc_refs, refs, refs - 1)) { 2042 if (par) { 2043 spin_unlock_wr(&ncp->nc_head->spin); 2044 _cache_put(par); 2045 } 2046 _cache_unlock(ncp); 2047 return(NULL); 2048 } 2049 cpu_pause(); 2050 } 2051 2052 /* 2053 * We are the only ref and with the spinlocks held no further 2054 * refs can be acquired by others. 2055 * 2056 * Remove us from the hash list and parent list. We have to 2057 * drop a ref on the parent's vp if the parent's list becomes 2058 * empty. 2059 */ 2060 dropvp = NULL; 2061 if (par) { 2062 struct nchash_head *nchpp = ncp->nc_head; 2063 2064 KKASSERT(nchpp != NULL); 2065 LIST_REMOVE(ncp, nc_hash); 2066 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry); 2067 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list)) 2068 dropvp = par->nc_vp; 2069 ncp->nc_head = NULL; 2070 ncp->nc_parent = NULL; 2071 spin_unlock_wr(&nchpp->spin); 2072 _cache_unlock(par); 2073 } else { 2074 KKASSERT(ncp->nc_head == NULL); 2075 } 2076 2077 /* 2078 * ncp should not have picked up any refs. Physically 2079 * destroy the ncp. 2080 */ 2081 KKASSERT(ncp->nc_refs == 1); 2082 /* _cache_unlock(ncp) not required */ 2083 ncp->nc_refs = -1; /* safety */ 2084 if (ncp->nc_name) 2085 kfree(ncp->nc_name, M_VFSCACHE); 2086 kfree(ncp, M_VFSCACHE); 2087 2088 /* 2089 * Delayed drop (we had to release our spinlocks) 2090 * 2091 * The refed parent (if not NULL) must be dropped. The 2092 * caller is responsible for looping. 2093 */ 2094 if (dropvp) 2095 vdrop(dropvp); 2096 return(par); 2097 } 2098 2099 /* 2100 * Clean up dangling negative cache and defered-drop entries in the 2101 * namecache. 2102 */ 2103 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW; 2104 2105 void 2106 cache_hysteresis(void) 2107 { 2108 /* 2109 * Don't cache too many negative hits. We use hysteresis to reduce 2110 * the impact on the critical path. 2111 */ 2112 switch(cache_hysteresis_state) { 2113 case CHI_LOW: 2114 if (numneg > MINNEG && numneg * ncnegfactor > numcache) { 2115 _cache_cleanneg(10); 2116 cache_hysteresis_state = CHI_HIGH; 2117 } 2118 break; 2119 case CHI_HIGH: 2120 if (numneg > MINNEG * 9 / 10 && 2121 numneg * ncnegfactor * 9 / 10 > numcache 2122 ) { 2123 _cache_cleanneg(10); 2124 } else { 2125 cache_hysteresis_state = CHI_LOW; 2126 } 2127 break; 2128 } 2129 2130 /* 2131 * Clean out dangling defered-zap ncps which could not 2132 * be cleanly dropped if too many build up. Note 2133 * that numdefered is not an exact number as such ncps 2134 * can be reused and the counter is not handled in a MP 2135 * safe manner by design. 2136 */ 2137 if (numdefered * ncnegfactor > numcache) { 2138 _cache_cleandefered(); 2139 } 2140 } 2141 2142 /* 2143 * NEW NAMECACHE LOOKUP API 2144 * 2145 * Lookup an entry in the namecache. The passed par_nch must be referenced 2146 * and unlocked. A referenced and locked nchandle with a non-NULL nch.ncp 2147 * is ALWAYS returned, eve if the supplied component is illegal. 2148 * 2149 * The resulting namecache entry should be returned to the system with 2150 * cache_put() or cache_unlock() + cache_drop(). 2151 * 2152 * namecache locks are recursive but care must be taken to avoid lock order 2153 * reversals (hence why the passed par_nch must be unlocked). Locking 2154 * rules are to order for parent traversals, not for child traversals. 2155 * 2156 * Nobody else will be able to manipulate the associated namespace (e.g. 2157 * create, delete, rename, rename-target) until the caller unlocks the 2158 * entry. 2159 * 2160 * The returned entry will be in one of three states: positive hit (non-null 2161 * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set). 2162 * Unresolved entries must be resolved through the filesystem to associate the 2163 * vnode and/or determine whether a positive or negative hit has occured. 2164 * 2165 * It is not necessary to lock a directory in order to lock namespace under 2166 * that directory. In fact, it is explicitly not allowed to do that. A 2167 * directory is typically only locked when being created, renamed, or 2168 * destroyed. 2169 * 2170 * The directory (par) may be unresolved, in which case any returned child 2171 * will likely also be marked unresolved. Likely but not guarenteed. Since 2172 * the filesystem lookup requires a resolved directory vnode the caller is 2173 * responsible for resolving the namecache chain top-down. This API 2174 * specifically allows whole chains to be created in an unresolved state. 2175 */ 2176 struct nchandle 2177 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc) 2178 { 2179 struct nchandle nch; 2180 struct namecache *ncp; 2181 struct namecache *new_ncp; 2182 struct nchash_head *nchpp; 2183 struct mount *mp; 2184 u_int32_t hash; 2185 globaldata_t gd; 2186 int par_locked; 2187 2188 numcalls++; 2189 gd = mycpu; 2190 mp = par_nch->mount; 2191 par_locked = 0; 2192 2193 /* 2194 * This is a good time to call it, no ncp's are locked by 2195 * the caller or us. 2196 */ 2197 cache_hysteresis(); 2198 2199 /* 2200 * Try to locate an existing entry 2201 */ 2202 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT); 2203 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash); 2204 new_ncp = NULL; 2205 nchpp = NCHHASH(hash); 2206 restart: 2207 spin_lock_wr(&nchpp->spin); 2208 LIST_FOREACH(ncp, &nchpp->list, nc_hash) { 2209 numchecks++; 2210 2211 /* 2212 * Break out if we find a matching entry. Note that 2213 * UNRESOLVED entries may match, but DESTROYED entries 2214 * do not. 2215 */ 2216 if (ncp->nc_parent == par_nch->ncp && 2217 ncp->nc_nlen == nlc->nlc_namelen && 2218 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 && 2219 (ncp->nc_flag & NCF_DESTROYED) == 0 2220 ) { 2221 _cache_hold(ncp); 2222 spin_unlock_wr(&nchpp->spin); 2223 if (par_locked) { 2224 _cache_unlock(par_nch->ncp); 2225 par_locked = 0; 2226 } 2227 if (_cache_lock_special(ncp) == 0) { 2228 _cache_auto_unresolve(mp, ncp); 2229 if (new_ncp) 2230 _cache_free(new_ncp); 2231 goto found; 2232 } 2233 _cache_get(ncp); 2234 _cache_put(ncp); 2235 _cache_drop(ncp); 2236 goto restart; 2237 } 2238 } 2239 2240 /* 2241 * We failed to locate an entry, create a new entry and add it to 2242 * the cache. The parent ncp must also be locked so we 2243 * can link into it. 2244 * 2245 * We have to relookup after possibly blocking in kmalloc or 2246 * when locking par_nch. 2247 * 2248 * NOTE: nlc_namelen can be 0 and nlc_nameptr NULL as a special 2249 * mount case, in which case nc_name will be NULL. 2250 */ 2251 if (new_ncp == NULL) { 2252 spin_unlock_wr(&nchpp->spin); 2253 new_ncp = cache_alloc(nlc->nlc_namelen); 2254 if (nlc->nlc_namelen) { 2255 bcopy(nlc->nlc_nameptr, new_ncp->nc_name, 2256 nlc->nlc_namelen); 2257 new_ncp->nc_name[nlc->nlc_namelen] = 0; 2258 } 2259 goto restart; 2260 } 2261 if (par_locked == 0) { 2262 spin_unlock_wr(&nchpp->spin); 2263 _cache_lock(par_nch->ncp); 2264 par_locked = 1; 2265 goto restart; 2266 } 2267 2268 /* 2269 * WARNING! We still hold the spinlock. We have to set the hash 2270 * table entry attomically. 2271 */ 2272 ncp = new_ncp; 2273 _cache_link_parent(ncp, par_nch->ncp, nchpp); 2274 spin_unlock_wr(&nchpp->spin); 2275 _cache_unlock(par_nch->ncp); 2276 /* par_locked = 0 - not used */ 2277 found: 2278 /* 2279 * stats and namecache size management 2280 */ 2281 if (ncp->nc_flag & NCF_UNRESOLVED) 2282 ++gd->gd_nchstats->ncs_miss; 2283 else if (ncp->nc_vp) 2284 ++gd->gd_nchstats->ncs_goodhits; 2285 else 2286 ++gd->gd_nchstats->ncs_neghits; 2287 nch.mount = mp; 2288 nch.ncp = ncp; 2289 atomic_add_int(&nch.mount->mnt_refs, 1); 2290 return(nch); 2291 } 2292 2293 /* 2294 * The namecache entry is marked as being used as a mount point. 2295 * Locate the mount if it is visible to the caller. 2296 */ 2297 struct findmount_info { 2298 struct mount *result; 2299 struct mount *nch_mount; 2300 struct namecache *nch_ncp; 2301 }; 2302 2303 static 2304 int 2305 cache_findmount_callback(struct mount *mp, void *data) 2306 { 2307 struct findmount_info *info = data; 2308 2309 /* 2310 * Check the mount's mounted-on point against the passed nch. 2311 */ 2312 if (mp->mnt_ncmounton.mount == info->nch_mount && 2313 mp->mnt_ncmounton.ncp == info->nch_ncp 2314 ) { 2315 info->result = mp; 2316 return(-1); 2317 } 2318 return(0); 2319 } 2320 2321 struct mount * 2322 cache_findmount(struct nchandle *nch) 2323 { 2324 struct findmount_info info; 2325 2326 info.result = NULL; 2327 info.nch_mount = nch->mount; 2328 info.nch_ncp = nch->ncp; 2329 mountlist_scan(cache_findmount_callback, &info, 2330 MNTSCAN_FORWARD|MNTSCAN_NOBUSY); 2331 return(info.result); 2332 } 2333 2334 /* 2335 * Resolve an unresolved namecache entry, generally by looking it up. 2336 * The passed ncp must be locked and refd. 2337 * 2338 * Theoretically since a vnode cannot be recycled while held, and since 2339 * the nc_parent chain holds its vnode as long as children exist, the 2340 * direct parent of the cache entry we are trying to resolve should 2341 * have a valid vnode. If not then generate an error that we can 2342 * determine is related to a resolver bug. 2343 * 2344 * However, if a vnode was in the middle of a recyclement when the NCP 2345 * got locked, ncp->nc_vp might point to a vnode that is about to become 2346 * invalid. cache_resolve() handles this case by unresolving the entry 2347 * and then re-resolving it. 2348 * 2349 * Note that successful resolution does not necessarily return an error 2350 * code of 0. If the ncp resolves to a negative cache hit then ENOENT 2351 * will be returned. 2352 * 2353 * MPSAFE 2354 */ 2355 int 2356 cache_resolve(struct nchandle *nch, struct ucred *cred) 2357 { 2358 struct namecache *par_tmp; 2359 struct namecache *par; 2360 struct namecache *ncp; 2361 struct nchandle nctmp; 2362 struct mount *mp; 2363 struct vnode *dvp; 2364 int error; 2365 2366 ncp = nch->ncp; 2367 mp = nch->mount; 2368 restart: 2369 /* 2370 * If the ncp is already resolved we have nothing to do. However, 2371 * we do want to guarentee that a usable vnode is returned when 2372 * a vnode is present, so make sure it hasn't been reclaimed. 2373 */ 2374 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) { 2375 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) 2376 _cache_setunresolved(ncp); 2377 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) 2378 return (ncp->nc_error); 2379 } 2380 2381 /* 2382 * Mount points need special handling because the parent does not 2383 * belong to the same filesystem as the ncp. 2384 */ 2385 if (ncp == mp->mnt_ncmountpt.ncp) 2386 return (cache_resolve_mp(mp)); 2387 2388 /* 2389 * We expect an unbroken chain of ncps to at least the mount point, 2390 * and even all the way to root (but this code doesn't have to go 2391 * past the mount point). 2392 */ 2393 if (ncp->nc_parent == NULL) { 2394 kprintf("EXDEV case 1 %p %*.*s\n", ncp, 2395 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name); 2396 ncp->nc_error = EXDEV; 2397 return(ncp->nc_error); 2398 } 2399 2400 /* 2401 * The vp's of the parent directories in the chain are held via vhold() 2402 * due to the existance of the child, and should not disappear. 2403 * However, there are cases where they can disappear: 2404 * 2405 * - due to filesystem I/O errors. 2406 * - due to NFS being stupid about tracking the namespace and 2407 * destroys the namespace for entire directories quite often. 2408 * - due to forced unmounts. 2409 * - due to an rmdir (parent will be marked DESTROYED) 2410 * 2411 * When this occurs we have to track the chain backwards and resolve 2412 * it, looping until the resolver catches up to the current node. We 2413 * could recurse here but we might run ourselves out of kernel stack 2414 * so we do it in a more painful manner. This situation really should 2415 * not occur all that often, or if it does not have to go back too 2416 * many nodes to resolve the ncp. 2417 */ 2418 while ((dvp = cache_dvpref(ncp)) == NULL) { 2419 /* 2420 * This case can occur if a process is CD'd into a 2421 * directory which is then rmdir'd. If the parent is marked 2422 * destroyed there is no point trying to resolve it. 2423 */ 2424 if (ncp->nc_parent->nc_flag & NCF_DESTROYED) 2425 return(ENOENT); 2426 par = ncp->nc_parent; 2427 _cache_hold(par); 2428 _cache_lock(par); 2429 while ((par_tmp = par->nc_parent) != NULL && 2430 par_tmp->nc_vp == NULL) { 2431 _cache_hold(par_tmp); 2432 _cache_lock(par_tmp); 2433 _cache_put(par); 2434 par = par_tmp; 2435 } 2436 if (par->nc_parent == NULL) { 2437 kprintf("EXDEV case 2 %*.*s\n", 2438 par->nc_nlen, par->nc_nlen, par->nc_name); 2439 _cache_put(par); 2440 return (EXDEV); 2441 } 2442 kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n", 2443 par->nc_nlen, par->nc_nlen, par->nc_name); 2444 /* 2445 * The parent is not set in stone, ref and lock it to prevent 2446 * it from disappearing. Also note that due to renames it 2447 * is possible for our ncp to move and for par to no longer 2448 * be one of its parents. We resolve it anyway, the loop 2449 * will handle any moves. 2450 */ 2451 _cache_get(par); /* additional hold/lock */ 2452 _cache_put(par); /* from earlier hold/lock */ 2453 if (par == nch->mount->mnt_ncmountpt.ncp) { 2454 cache_resolve_mp(nch->mount); 2455 } else if ((dvp = cache_dvpref(par)) == NULL) { 2456 kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name); 2457 _cache_put(par); 2458 continue; 2459 } else { 2460 if (par->nc_flag & NCF_UNRESOLVED) { 2461 nctmp.mount = mp; 2462 nctmp.ncp = par; 2463 par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred); 2464 } 2465 vrele(dvp); 2466 } 2467 if ((error = par->nc_error) != 0) { 2468 if (par->nc_error != EAGAIN) { 2469 kprintf("EXDEV case 3 %*.*s error %d\n", 2470 par->nc_nlen, par->nc_nlen, par->nc_name, 2471 par->nc_error); 2472 _cache_put(par); 2473 return(error); 2474 } 2475 kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n", 2476 par, par->nc_nlen, par->nc_nlen, par->nc_name); 2477 } 2478 _cache_put(par); 2479 /* loop */ 2480 } 2481 2482 /* 2483 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected 2484 * ncp's and reattach them. If this occurs the original ncp is marked 2485 * EAGAIN to force a relookup. 2486 * 2487 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed 2488 * ncp must already be resolved. 2489 */ 2490 if (dvp) { 2491 nctmp.mount = mp; 2492 nctmp.ncp = ncp; 2493 ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred); 2494 vrele(dvp); 2495 } else { 2496 ncp->nc_error = EPERM; 2497 } 2498 if (ncp->nc_error == EAGAIN) { 2499 kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n", 2500 ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name); 2501 goto restart; 2502 } 2503 return(ncp->nc_error); 2504 } 2505 2506 /* 2507 * Resolve the ncp associated with a mount point. Such ncp's almost always 2508 * remain resolved and this routine is rarely called. NFS MPs tends to force 2509 * re-resolution more often due to its mac-truck-smash-the-namecache 2510 * method of tracking namespace changes. 2511 * 2512 * The semantics for this call is that the passed ncp must be locked on 2513 * entry and will be locked on return. However, if we actually have to 2514 * resolve the mount point we temporarily unlock the entry in order to 2515 * avoid race-to-root deadlocks due to e.g. dead NFS mounts. Because of 2516 * the unlock we have to recheck the flags after we relock. 2517 */ 2518 static int 2519 cache_resolve_mp(struct mount *mp) 2520 { 2521 struct namecache *ncp = mp->mnt_ncmountpt.ncp; 2522 struct vnode *vp; 2523 int error; 2524 2525 KKASSERT(mp != NULL); 2526 2527 /* 2528 * If the ncp is already resolved we have nothing to do. However, 2529 * we do want to guarentee that a usable vnode is returned when 2530 * a vnode is present, so make sure it hasn't been reclaimed. 2531 */ 2532 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) { 2533 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED)) 2534 _cache_setunresolved(ncp); 2535 } 2536 2537 if (ncp->nc_flag & NCF_UNRESOLVED) { 2538 _cache_unlock(ncp); 2539 while (vfs_busy(mp, 0)) 2540 ; 2541 error = VFS_ROOT(mp, &vp); 2542 _cache_lock(ncp); 2543 2544 /* 2545 * recheck the ncp state after relocking. 2546 */ 2547 if (ncp->nc_flag & NCF_UNRESOLVED) { 2548 ncp->nc_error = error; 2549 if (error == 0) { 2550 _cache_setvp(mp, ncp, vp); 2551 vput(vp); 2552 } else { 2553 kprintf("[diagnostic] cache_resolve_mp: failed" 2554 " to resolve mount %p err=%d ncp=%p\n", 2555 mp, error, ncp); 2556 _cache_setvp(mp, ncp, NULL); 2557 } 2558 } else if (error == 0) { 2559 vput(vp); 2560 } 2561 vfs_unbusy(mp); 2562 } 2563 return(ncp->nc_error); 2564 } 2565 2566 /* 2567 * Clean out negative cache entries when too many have accumulated. 2568 * 2569 * MPSAFE 2570 */ 2571 static void 2572 _cache_cleanneg(int count) 2573 { 2574 struct namecache *ncp; 2575 2576 /* 2577 * Automode from the vnlru proc - clean out 10% of the negative cache 2578 * entries. 2579 */ 2580 if (count == 0) 2581 count = numneg / 10 + 1; 2582 2583 /* 2584 * Attempt to clean out the specified number of negative cache 2585 * entries. 2586 */ 2587 while (count) { 2588 spin_lock_wr(&ncspin); 2589 ncp = TAILQ_FIRST(&ncneglist); 2590 if (ncp == NULL) { 2591 spin_unlock_wr(&ncspin); 2592 break; 2593 } 2594 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode); 2595 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode); 2596 _cache_hold(ncp); 2597 spin_unlock_wr(&ncspin); 2598 if (_cache_lock_special(ncp) == 0) { 2599 ncp = cache_zap(ncp, 0); 2600 if (ncp) 2601 _cache_drop(ncp); 2602 } else { 2603 _cache_drop(ncp); 2604 } 2605 --count; 2606 } 2607 } 2608 2609 /* 2610 * This is a kitchen sink function to clean out ncps which we 2611 * tried to zap from cache_drop() but failed because we were 2612 * unable to acquire the parent lock. 2613 * 2614 * Such entries can also be removed via cache_inval_vp(), such 2615 * as when unmounting. 2616 * 2617 * MPSAFE 2618 */ 2619 static void 2620 _cache_cleandefered(void) 2621 { 2622 struct nchash_head *nchpp; 2623 struct namecache *ncp; 2624 struct namecache dummy; 2625 int i; 2626 2627 bzero(&dummy, sizeof(dummy)); 2628 dummy.nc_flag = NCF_DESTROYED; 2629 2630 for (i = 0; i <= nchash; ++i) { 2631 nchpp = &nchashtbl[i]; 2632 2633 spin_lock_wr(&nchpp->spin); 2634 LIST_INSERT_HEAD(&nchpp->list, &dummy, nc_hash); 2635 ncp = &dummy; 2636 while ((ncp = LIST_NEXT(ncp, nc_hash)) != NULL) { 2637 if ((ncp->nc_flag & NCF_DEFEREDZAP) == 0) 2638 continue; 2639 LIST_REMOVE(&dummy, nc_hash); 2640 LIST_INSERT_AFTER(ncp, &dummy, nc_hash); 2641 _cache_hold(ncp); 2642 spin_unlock_wr(&nchpp->spin); 2643 _cache_drop(ncp); 2644 spin_lock_wr(&nchpp->spin); 2645 ncp = &dummy; 2646 } 2647 LIST_REMOVE(&dummy, nc_hash); 2648 spin_unlock_wr(&nchpp->spin); 2649 } 2650 } 2651 2652 /* 2653 * Name cache initialization, from vfsinit() when we are booting 2654 */ 2655 void 2656 nchinit(void) 2657 { 2658 int i; 2659 globaldata_t gd; 2660 2661 /* initialise per-cpu namecache effectiveness statistics. */ 2662 for (i = 0; i < ncpus; ++i) { 2663 gd = globaldata_find(i); 2664 gd->gd_nchstats = &nchstats[i]; 2665 } 2666 TAILQ_INIT(&ncneglist); 2667 spin_init(&ncspin); 2668 nchashtbl = hashinit_ext(desiredvnodes*2, sizeof(struct nchash_head), 2669 M_VFSCACHE, &nchash); 2670 for (i = 0; i <= (int)nchash; ++i) { 2671 LIST_INIT(&nchashtbl[i].list); 2672 spin_init(&nchashtbl[i].spin); 2673 } 2674 nclockwarn = 5 * hz; 2675 } 2676 2677 /* 2678 * Called from start_init() to bootstrap the root filesystem. Returns 2679 * a referenced, unlocked namecache record. 2680 */ 2681 void 2682 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp) 2683 { 2684 nch->ncp = cache_alloc(0); 2685 nch->mount = mp; 2686 atomic_add_int(&mp->mnt_refs, 1); 2687 if (vp) 2688 _cache_setvp(nch->mount, nch->ncp, vp); 2689 } 2690 2691 /* 2692 * vfs_cache_setroot() 2693 * 2694 * Create an association between the root of our namecache and 2695 * the root vnode. This routine may be called several times during 2696 * booting. 2697 * 2698 * If the caller intends to save the returned namecache pointer somewhere 2699 * it must cache_hold() it. 2700 */ 2701 void 2702 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch) 2703 { 2704 struct vnode *ovp; 2705 struct nchandle onch; 2706 2707 ovp = rootvnode; 2708 onch = rootnch; 2709 rootvnode = nvp; 2710 if (nch) 2711 rootnch = *nch; 2712 else 2713 cache_zero(&rootnch); 2714 if (ovp) 2715 vrele(ovp); 2716 if (onch.ncp) 2717 cache_drop(&onch); 2718 } 2719 2720 /* 2721 * XXX OLD API COMPAT FUNCTION. This really messes up the new namecache 2722 * topology and is being removed as quickly as possible. The new VOP_N*() 2723 * API calls are required to make specific adjustments using the supplied 2724 * ncp pointers rather then just bogusly purging random vnodes. 2725 * 2726 * Invalidate all namecache entries to a particular vnode as well as 2727 * any direct children of that vnode in the namecache. This is a 2728 * 'catch all' purge used by filesystems that do not know any better. 2729 * 2730 * Note that the linkage between the vnode and its namecache entries will 2731 * be removed, but the namecache entries themselves might stay put due to 2732 * active references from elsewhere in the system or due to the existance of 2733 * the children. The namecache topology is left intact even if we do not 2734 * know what the vnode association is. Such entries will be marked 2735 * NCF_UNRESOLVED. 2736 */ 2737 void 2738 cache_purge(struct vnode *vp) 2739 { 2740 cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN); 2741 } 2742 2743 /* 2744 * Flush all entries referencing a particular filesystem. 2745 * 2746 * Since we need to check it anyway, we will flush all the invalid 2747 * entries at the same time. 2748 */ 2749 #if 0 2750 2751 void 2752 cache_purgevfs(struct mount *mp) 2753 { 2754 struct nchash_head *nchpp; 2755 struct namecache *ncp, *nnp; 2756 2757 /* 2758 * Scan hash tables for applicable entries. 2759 */ 2760 for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) { 2761 spin_lock_wr(&nchpp->spin); XXX 2762 ncp = LIST_FIRST(&nchpp->list); 2763 if (ncp) 2764 _cache_hold(ncp); 2765 while (ncp) { 2766 nnp = LIST_NEXT(ncp, nc_hash); 2767 if (nnp) 2768 _cache_hold(nnp); 2769 if (ncp->nc_mount == mp) { 2770 _cache_lock(ncp); 2771 ncp = cache_zap(ncp, 0); 2772 if (ncp) 2773 _cache_drop(ncp); 2774 } else { 2775 _cache_drop(ncp); 2776 } 2777 ncp = nnp; 2778 } 2779 spin_unlock_wr(&nchpp->spin); XXX 2780 } 2781 } 2782 2783 #endif 2784 2785 static int disablecwd; 2786 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, ""); 2787 2788 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls); 2789 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1); 2790 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2); 2791 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3); 2792 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4); 2793 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound); 2794 2795 /* 2796 * MPALMOSTSAFE 2797 */ 2798 int 2799 sys___getcwd(struct __getcwd_args *uap) 2800 { 2801 int buflen; 2802 int error; 2803 char *buf; 2804 char *bp; 2805 2806 if (disablecwd) 2807 return (ENODEV); 2808 2809 buflen = uap->buflen; 2810 if (buflen == 0) 2811 return (EINVAL); 2812 if (buflen > MAXPATHLEN) 2813 buflen = MAXPATHLEN; 2814 2815 buf = kmalloc(buflen, M_TEMP, M_WAITOK); 2816 get_mplock(); 2817 bp = kern_getcwd(buf, buflen, &error); 2818 rel_mplock(); 2819 if (error == 0) 2820 error = copyout(bp, uap->buf, strlen(bp) + 1); 2821 kfree(buf, M_TEMP); 2822 return (error); 2823 } 2824 2825 char * 2826 kern_getcwd(char *buf, size_t buflen, int *error) 2827 { 2828 struct proc *p = curproc; 2829 char *bp; 2830 int i, slash_prefixed; 2831 struct filedesc *fdp; 2832 struct nchandle nch; 2833 struct namecache *ncp; 2834 2835 numcwdcalls++; 2836 bp = buf; 2837 bp += buflen - 1; 2838 *bp = '\0'; 2839 fdp = p->p_fd; 2840 slash_prefixed = 0; 2841 2842 nch = fdp->fd_ncdir; 2843 ncp = nch.ncp; 2844 if (ncp) 2845 _cache_hold(ncp); 2846 2847 while (ncp && (ncp != fdp->fd_nrdir.ncp || 2848 nch.mount != fdp->fd_nrdir.mount) 2849 ) { 2850 /* 2851 * While traversing upwards if we encounter the root 2852 * of the current mount we have to skip to the mount point 2853 * in the underlying filesystem. 2854 */ 2855 if (ncp == nch.mount->mnt_ncmountpt.ncp) { 2856 nch = nch.mount->mnt_ncmounton; 2857 _cache_drop(ncp); 2858 ncp = nch.ncp; 2859 if (ncp) 2860 _cache_hold(ncp); 2861 continue; 2862 } 2863 2864 /* 2865 * Prepend the path segment 2866 */ 2867 for (i = ncp->nc_nlen - 1; i >= 0; i--) { 2868 if (bp == buf) { 2869 numcwdfail4++; 2870 *error = ERANGE; 2871 bp = NULL; 2872 goto done; 2873 } 2874 *--bp = ncp->nc_name[i]; 2875 } 2876 if (bp == buf) { 2877 numcwdfail4++; 2878 *error = ERANGE; 2879 bp = NULL; 2880 goto done; 2881 } 2882 *--bp = '/'; 2883 slash_prefixed = 1; 2884 2885 /* 2886 * Go up a directory. This isn't a mount point so we don't 2887 * have to check again. 2888 */ 2889 while ((nch.ncp = ncp->nc_parent) != NULL) { 2890 _cache_lock(ncp); 2891 if (nch.ncp != ncp->nc_parent) { 2892 _cache_unlock(ncp); 2893 continue; 2894 } 2895 _cache_hold(nch.ncp); 2896 _cache_unlock(ncp); 2897 break; 2898 } 2899 _cache_drop(ncp); 2900 ncp = nch.ncp; 2901 } 2902 if (ncp == NULL) { 2903 numcwdfail2++; 2904 *error = ENOENT; 2905 bp = NULL; 2906 goto done; 2907 } 2908 if (!slash_prefixed) { 2909 if (bp == buf) { 2910 numcwdfail4++; 2911 *error = ERANGE; 2912 bp = NULL; 2913 goto done; 2914 } 2915 *--bp = '/'; 2916 } 2917 numcwdfound++; 2918 *error = 0; 2919 done: 2920 if (ncp) 2921 _cache_drop(ncp); 2922 return (bp); 2923 } 2924 2925 /* 2926 * Thus begins the fullpath magic. 2927 * 2928 * The passed nchp is referenced but not locked. 2929 */ 2930 #undef STATNODE 2931 #define STATNODE(name) \ 2932 static u_int name; \ 2933 SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "") 2934 2935 static int disablefullpath; 2936 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW, 2937 &disablefullpath, 0, ""); 2938 2939 STATNODE(numfullpathcalls); 2940 STATNODE(numfullpathfail1); 2941 STATNODE(numfullpathfail2); 2942 STATNODE(numfullpathfail3); 2943 STATNODE(numfullpathfail4); 2944 STATNODE(numfullpathfound); 2945 2946 int 2947 cache_fullpath(struct proc *p, struct nchandle *nchp, 2948 char **retbuf, char **freebuf) 2949 { 2950 struct nchandle fd_nrdir; 2951 struct nchandle nch; 2952 struct namecache *ncp; 2953 struct mount *mp; 2954 char *bp, *buf; 2955 int slash_prefixed; 2956 int error = 0; 2957 int i; 2958 2959 atomic_add_int(&numfullpathcalls, -1); 2960 2961 *retbuf = NULL; 2962 *freebuf = NULL; 2963 2964 buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK); 2965 bp = buf + MAXPATHLEN - 1; 2966 *bp = '\0'; 2967 if (p != NULL) 2968 fd_nrdir = p->p_fd->fd_nrdir; 2969 else 2970 fd_nrdir = rootnch; 2971 slash_prefixed = 0; 2972 nch = *nchp; 2973 ncp = nch.ncp; 2974 if (ncp) 2975 _cache_hold(ncp); 2976 mp = nch.mount; 2977 2978 while (ncp && (ncp != fd_nrdir.ncp || mp != fd_nrdir.mount)) { 2979 /* 2980 * While traversing upwards if we encounter the root 2981 * of the current mount we have to skip to the mount point. 2982 */ 2983 if (ncp == mp->mnt_ncmountpt.ncp) { 2984 nch = mp->mnt_ncmounton; 2985 _cache_drop(ncp); 2986 ncp = nch.ncp; 2987 if (ncp) 2988 _cache_hold(ncp); 2989 mp = nch.mount; 2990 continue; 2991 } 2992 2993 /* 2994 * Prepend the path segment 2995 */ 2996 for (i = ncp->nc_nlen - 1; i >= 0; i--) { 2997 if (bp == buf) { 2998 numfullpathfail4++; 2999 kfree(buf, M_TEMP); 3000 error = ENOMEM; 3001 goto done; 3002 } 3003 *--bp = ncp->nc_name[i]; 3004 } 3005 if (bp == buf) { 3006 numfullpathfail4++; 3007 kfree(buf, M_TEMP); 3008 error = ENOMEM; 3009 goto done; 3010 } 3011 *--bp = '/'; 3012 slash_prefixed = 1; 3013 3014 /* 3015 * Go up a directory. This isn't a mount point so we don't 3016 * have to check again. 3017 * 3018 * We can only safely access nc_parent with ncp held locked. 3019 */ 3020 while ((nch.ncp = ncp->nc_parent) != NULL) { 3021 _cache_lock(ncp); 3022 if (nch.ncp != ncp->nc_parent) { 3023 _cache_unlock(ncp); 3024 continue; 3025 } 3026 _cache_hold(nch.ncp); 3027 _cache_unlock(ncp); 3028 break; 3029 } 3030 _cache_drop(ncp); 3031 ncp = nch.ncp; 3032 } 3033 if (ncp == NULL) { 3034 numfullpathfail2++; 3035 kfree(buf, M_TEMP); 3036 error = ENOENT; 3037 goto done; 3038 } 3039 3040 if (!slash_prefixed) { 3041 if (bp == buf) { 3042 numfullpathfail4++; 3043 kfree(buf, M_TEMP); 3044 error = ENOMEM; 3045 goto done; 3046 } 3047 *--bp = '/'; 3048 } 3049 numfullpathfound++; 3050 *retbuf = bp; 3051 *freebuf = buf; 3052 error = 0; 3053 done: 3054 if (ncp) 3055 _cache_drop(ncp); 3056 return(error); 3057 } 3058 3059 int 3060 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf) 3061 { 3062 struct namecache *ncp; 3063 struct nchandle nch; 3064 int error; 3065 3066 atomic_add_int(&numfullpathcalls, 1); 3067 if (disablefullpath) 3068 return (ENODEV); 3069 3070 if (p == NULL) 3071 return (EINVAL); 3072 3073 /* vn is NULL, client wants us to use p->p_textvp */ 3074 if (vn == NULL) { 3075 if ((vn = p->p_textvp) == NULL) 3076 return (EINVAL); 3077 } 3078 spin_lock_wr(&vn->v_spinlock); 3079 TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) { 3080 if (ncp->nc_nlen) 3081 break; 3082 } 3083 if (ncp == NULL) { 3084 spin_unlock_wr(&vn->v_spinlock); 3085 return (EINVAL); 3086 } 3087 _cache_hold(ncp); 3088 spin_unlock_wr(&vn->v_spinlock); 3089 3090 atomic_add_int(&numfullpathcalls, -1); 3091 nch.ncp = ncp;; 3092 nch.mount = vn->v_mount; 3093 error = cache_fullpath(p, &nch, retbuf, freebuf); 3094 _cache_drop(ncp); 3095 return (error); 3096 } 3097