xref: /dflybsd-src/sys/kern/vfs_cache.c (revision 1f7ab7c9fc18f47a2f16dc45b13dee254c603ce7)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993, 1995
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * This code is derived from software contributed to Berkeley by
38  * Poul-Henning Kamp of the FreeBSD Project.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the University of
51  *	California, Berkeley and its contributors.
52  * 4. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
69  * $FreeBSD: src/sys/kern/vfs_cache.c,v 1.42.2.6 2001/10/05 20:07:03 dillon Exp $
70  * $DragonFly: src/sys/kern/vfs_cache.c,v 1.77 2006/09/19 16:06:11 dillon Exp $
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mount.h>
78 #include <sys/vnode.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/proc.h>
82 #include <sys/namei.h>
83 #include <sys/nlookup.h>
84 #include <sys/filedesc.h>
85 #include <sys/fnv_hash.h>
86 #include <sys/globaldata.h>
87 #include <sys/kern_syscall.h>
88 #include <sys/dirent.h>
89 #include <ddb/ddb.h>
90 
91 /*
92  * Random lookups in the cache are accomplished with a hash table using
93  * a hash key of (nc_src_vp, name).
94  *
95  * Negative entries may exist and correspond to structures where nc_vp
96  * is NULL.  In a negative entry, NCF_WHITEOUT will be set if the entry
97  * corresponds to a whited-out directory entry (verses simply not finding the
98  * entry at all).
99  *
100  * Upon reaching the last segment of a path, if the reference is for DELETE,
101  * or NOCACHE is set (rewrite), and the name is located in the cache, it
102  * will be dropped.
103  */
104 
105 /*
106  * Structures associated with name cacheing.
107  */
108 #define NCHHASH(hash)	(&nchashtbl[(hash) & nchash])
109 #define MINNEG		1024
110 
111 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
112 
113 static LIST_HEAD(nchashhead, namecache) *nchashtbl;	/* Hash Table */
114 static struct namecache_list	ncneglist;		/* instead of vnode */
115 
116 /*
117  * ncvp_debug - debug cache_fromvp().  This is used by the NFS server
118  * to create the namecache infrastructure leading to a dangling vnode.
119  *
120  * 0	Only errors are reported
121  * 1	Successes are reported
122  * 2	Successes + the whole directory scan is reported
123  * 3	Force the directory scan code run as if the parent vnode did not
124  *	have a namecache record, even if it does have one.
125  */
126 static int	ncvp_debug;
127 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
128 
129 static u_long	nchash;			/* size of hash table */
130 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
131 
132 static u_long	ncnegfactor = 16;	/* ratio of negative entries */
133 SYSCTL_ULONG(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
134 
135 static int	nclockwarn;		/* warn on locked entries in ticks */
136 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
137 
138 static u_long	numneg;		/* number of cache entries allocated */
139 SYSCTL_ULONG(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
140 
141 static u_long	numcache;		/* number of cache entries allocated */
142 SYSCTL_ULONG(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
143 
144 static u_long	numunres;		/* number of unresolved entries */
145 SYSCTL_ULONG(_debug, OID_AUTO, numunres, CTLFLAG_RD, &numunres, 0, "");
146 
147 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
148 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
149 
150 static int cache_resolve_mp(struct namecache *ncp);
151 static void cache_rehash(struct namecache *ncp);
152 
153 /*
154  * The new name cache statistics
155  */
156 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
157 #define STATNODE(mode, name, var) \
158 	SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
159 STATNODE(CTLFLAG_RD, numneg, &numneg);
160 STATNODE(CTLFLAG_RD, numcache, &numcache);
161 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
162 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
163 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
164 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
165 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
166 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
167 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
168 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
169 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
170 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
171 
172 struct nchstats nchstats[SMP_MAXCPU];
173 /*
174  * Export VFS cache effectiveness statistics to user-land.
175  *
176  * The statistics are left for aggregation to user-land so
177  * neat things can be achieved, like observing per-CPU cache
178  * distribution.
179  */
180 static int
181 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
182 {
183 	struct globaldata *gd;
184 	int i, error;
185 
186 	error = 0;
187 	for (i = 0; i < ncpus; ++i) {
188 		gd = globaldata_find(i);
189 		if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
190 			sizeof(struct nchstats))))
191 			break;
192 	}
193 
194 	return (error);
195 }
196 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
197   0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
198 
199 static void cache_zap(struct namecache *ncp);
200 
201 /*
202  * cache_hold() and cache_drop() prevent the premature deletion of a
203  * namecache entry but do not prevent operations (such as zapping) on
204  * that namecache entry.
205  *
206  * This routine may only be called from outside this source module if
207  * nc_refs is already at least 1.
208  *
209  * This is a rare case where callers are allowed to hold a spinlock,
210  * so we can't ourselves.
211  */
212 static __inline
213 struct namecache *
214 _cache_hold(struct namecache *ncp)
215 {
216 	atomic_add_int(&ncp->nc_refs, 1);
217 	return(ncp);
218 }
219 
220 /*
221  * When dropping an entry, if only one ref remains and the entry has not
222  * been resolved, zap it.  Since the one reference is being dropped the
223  * entry had better not be locked.
224  */
225 static __inline
226 void
227 _cache_drop(struct namecache *ncp)
228 {
229 	KKASSERT(ncp->nc_refs > 0);
230 	if (ncp->nc_refs == 1 &&
231 	    (ncp->nc_flag & NCF_UNRESOLVED) &&
232 	    TAILQ_EMPTY(&ncp->nc_list)
233 	) {
234 		KKASSERT(ncp->nc_exlocks == 0);
235 		cache_lock(ncp);
236 		cache_zap(ncp);
237 	} else {
238 		atomic_subtract_int(&ncp->nc_refs, 1);
239 	}
240 }
241 
242 /*
243  * Link a new namecache entry to its parent.  Be careful to avoid races
244  * if vhold() blocks in the future.
245  */
246 static void
247 cache_link_parent(struct namecache *ncp, struct namecache *par)
248 {
249 	KKASSERT(ncp->nc_parent == NULL);
250 	ncp->nc_parent = par;
251 	if (TAILQ_EMPTY(&par->nc_list)) {
252 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
253 		/*
254 		 * Any vp associated with an ncp which has children must
255 		 * be held to prevent it from being recycled.
256 		 */
257 		if (par->nc_vp)
258 			vhold(par->nc_vp);
259 	} else {
260 		TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
261 	}
262 }
263 
264 /*
265  * Remove the parent association from a namecache structure.  If this is
266  * the last child of the parent the cache_drop(par) will attempt to
267  * recursively zap the parent.
268  */
269 static void
270 cache_unlink_parent(struct namecache *ncp)
271 {
272 	struct namecache *par;
273 
274 	if ((par = ncp->nc_parent) != NULL) {
275 		ncp->nc_parent = NULL;
276 		par = cache_hold(par);
277 		TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
278 		if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
279 			vdrop(par->nc_vp);
280 		cache_drop(par);
281 	}
282 }
283 
284 /*
285  * Allocate a new namecache structure.  Most of the code does not require
286  * zero-termination of the string but it makes vop_compat_ncreate() easier.
287  */
288 static struct namecache *
289 cache_alloc(int nlen)
290 {
291 	struct namecache *ncp;
292 
293 	ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
294 	if (nlen)
295 		ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
296 	ncp->nc_nlen = nlen;
297 	ncp->nc_flag = NCF_UNRESOLVED;
298 	ncp->nc_error = ENOTCONN;	/* needs to be resolved */
299 	ncp->nc_refs = 1;
300 
301 	/*
302 	 * Construct a fake FSMID based on the time of day and a 32 bit
303 	 * roller for uniqueness.  This is used to generate a useful
304 	 * FSMID for filesystems which do not support it.
305 	 */
306 	ncp->nc_fsmid = cache_getnewfsmid();
307 	TAILQ_INIT(&ncp->nc_list);
308 	cache_lock(ncp);
309 	return(ncp);
310 }
311 
312 static void
313 cache_free(struct namecache *ncp)
314 {
315 	KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
316 	if (ncp->nc_name)
317 		kfree(ncp->nc_name, M_VFSCACHE);
318 	kfree(ncp, M_VFSCACHE);
319 }
320 
321 /*
322  * Ref and deref a namecache structure.
323  *
324  * Warning: caller may hold an unrelated read spinlock, which means we can't
325  * use read spinlocks here.
326  */
327 struct namecache *
328 cache_hold(struct namecache *ncp)
329 {
330 	return(_cache_hold(ncp));
331 }
332 
333 void
334 cache_drop(struct namecache *ncp)
335 {
336 	_cache_drop(ncp);
337 }
338 
339 /*
340  * Namespace locking.  The caller must already hold a reference to the
341  * namecache structure in order to lock/unlock it.  This function prevents
342  * the namespace from being created or destroyed by accessors other then
343  * the lock holder.
344  *
345  * Note that holding a locked namecache structure prevents other threads
346  * from making namespace changes (e.g. deleting or creating), prevents
347  * vnode association state changes by other threads, and prevents the
348  * namecache entry from being resolved or unresolved by other threads.
349  *
350  * The lock owner has full authority to associate/disassociate vnodes
351  * and resolve/unresolve the locked ncp.
352  *
353  * WARNING!  Holding a locked ncp will prevent a vnode from being destroyed
354  * or recycled, but it does NOT help you if the vnode had already initiated
355  * a recyclement.  If this is important, use cache_get() rather then
356  * cache_lock() (and deal with the differences in the way the refs counter
357  * is handled).  Or, alternatively, make an unconditional call to
358  * cache_validate() or cache_resolve() after cache_lock() returns.
359  */
360 void
361 cache_lock(struct namecache *ncp)
362 {
363 	thread_t td;
364 	int didwarn;
365 
366 	KKASSERT(ncp->nc_refs != 0);
367 	didwarn = 0;
368 	td = curthread;
369 
370 	for (;;) {
371 		if (ncp->nc_exlocks == 0) {
372 			ncp->nc_exlocks = 1;
373 			ncp->nc_locktd = td;
374 			/*
375 			 * The vp associated with a locked ncp must be held
376 			 * to prevent it from being recycled (which would
377 			 * cause the ncp to become unresolved).
378 			 *
379 			 * WARNING!  If VRECLAIMED is set the vnode could
380 			 * already be in the middle of a recycle.  Callers
381 			 * should not assume that nc_vp is usable when
382 			 * not NULL.  cache_vref() or cache_vget() must be
383 			 * called.
384 			 *
385 			 * XXX loop on race for later MPSAFE work.
386 			 */
387 			if (ncp->nc_vp)
388 				vhold(ncp->nc_vp);
389 			break;
390 		}
391 		if (ncp->nc_locktd == td) {
392 			++ncp->nc_exlocks;
393 			break;
394 		}
395 		ncp->nc_flag |= NCF_LOCKREQ;
396 		if (tsleep(ncp, 0, "clock", nclockwarn) == EWOULDBLOCK) {
397 			if (didwarn)
398 				continue;
399 			didwarn = 1;
400 			printf("[diagnostic] cache_lock: blocked on %p", ncp);
401 			if ((ncp->nc_flag & NCF_MOUNTPT) && ncp->nc_mount)
402 			    printf(" [MOUNTFROM %s]\n", ncp->nc_mount->mnt_stat.f_mntfromname);
403 			else
404 			    printf(" \"%*.*s\"\n",
405 				ncp->nc_nlen, ncp->nc_nlen,
406 				ncp->nc_name);
407 		}
408 	}
409 
410 	if (didwarn == 1) {
411 		printf("[diagnostic] cache_lock: unblocked %*.*s\n",
412 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
413 	}
414 }
415 
416 int
417 cache_lock_nonblock(struct namecache *ncp)
418 {
419 	thread_t td;
420 
421 	KKASSERT(ncp->nc_refs != 0);
422 	td = curthread;
423 	if (ncp->nc_exlocks == 0) {
424 		ncp->nc_exlocks = 1;
425 		ncp->nc_locktd = td;
426 		/*
427 		 * The vp associated with a locked ncp must be held
428 		 * to prevent it from being recycled (which would
429 		 * cause the ncp to become unresolved).
430 		 *
431 		 * WARNING!  If VRECLAIMED is set the vnode could
432 		 * already be in the middle of a recycle.  Callers
433 		 * should not assume that nc_vp is usable when
434 		 * not NULL.  cache_vref() or cache_vget() must be
435 		 * called.
436 		 *
437 		 * XXX loop on race for later MPSAFE work.
438 		 */
439 		if (ncp->nc_vp)
440 			vhold(ncp->nc_vp);
441 		return(0);
442 	} else {
443 		return(EWOULDBLOCK);
444 	}
445 }
446 
447 void
448 cache_unlock(struct namecache *ncp)
449 {
450 	thread_t td = curthread;
451 
452 	KKASSERT(ncp->nc_refs > 0);
453 	KKASSERT(ncp->nc_exlocks > 0);
454 	KKASSERT(ncp->nc_locktd == td);
455 	if (--ncp->nc_exlocks == 0) {
456 		if (ncp->nc_vp)
457 			vdrop(ncp->nc_vp);
458 		ncp->nc_locktd = NULL;
459 		if (ncp->nc_flag & NCF_LOCKREQ) {
460 			ncp->nc_flag &= ~NCF_LOCKREQ;
461 			wakeup(ncp);
462 		}
463 	}
464 }
465 
466 /*
467  * ref-and-lock, unlock-and-deref functions.
468  *
469  * This function is primarily used by nlookup.  Even though cache_lock
470  * holds the vnode, it is possible that the vnode may have already
471  * initiated a recyclement.  We want cache_get() to return a definitively
472  * usable vnode or a definitively unresolved ncp.
473  */
474 struct namecache *
475 cache_get(struct namecache *ncp)
476 {
477 	_cache_hold(ncp);
478 	cache_lock(ncp);
479 	if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
480 		cache_setunresolved(ncp);
481 	return(ncp);
482 }
483 
484 int
485 cache_get_nonblock(struct namecache *ncp)
486 {
487 	/* XXX MP */
488 	if (ncp->nc_exlocks == 0 || ncp->nc_locktd == curthread) {
489 		_cache_hold(ncp);
490 		cache_lock(ncp);
491 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
492 			cache_setunresolved(ncp);
493 		return(0);
494 	}
495 	return(EWOULDBLOCK);
496 }
497 
498 void
499 cache_put(struct namecache *ncp)
500 {
501 	cache_unlock(ncp);
502 	_cache_drop(ncp);
503 }
504 
505 /*
506  * Resolve an unresolved ncp by associating a vnode with it.  If the
507  * vnode is NULL, a negative cache entry is created.
508  *
509  * The ncp should be locked on entry and will remain locked on return.
510  */
511 void
512 cache_setvp(struct namecache *ncp, struct vnode *vp)
513 {
514 	KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
515 	ncp->nc_vp = vp;
516 	if (vp != NULL) {
517 		/*
518 		 * Any vp associated with an ncp which has children must
519 		 * be held.  Any vp associated with a locked ncp must be held.
520 		 */
521 		if (!TAILQ_EMPTY(&ncp->nc_list))
522 			vhold(vp);
523 		TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
524 		if (ncp->nc_exlocks)
525 			vhold(vp);
526 
527 		/*
528 		 * Set auxillary flags
529 		 */
530 		switch(vp->v_type) {
531 		case VDIR:
532 			ncp->nc_flag |= NCF_ISDIR;
533 			break;
534 		case VLNK:
535 			ncp->nc_flag |= NCF_ISSYMLINK;
536 			/* XXX cache the contents of the symlink */
537 			break;
538 		default:
539 			break;
540 		}
541 		++numcache;
542 		ncp->nc_error = 0;
543 	} else {
544 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
545 		++numneg;
546 		ncp->nc_error = ENOENT;
547 	}
548 	ncp->nc_flag &= ~NCF_UNRESOLVED;
549 }
550 
551 void
552 cache_settimeout(struct namecache *ncp, int nticks)
553 {
554 	if ((ncp->nc_timeout = ticks + nticks) == 0)
555 		ncp->nc_timeout = 1;
556 }
557 
558 /*
559  * Disassociate the vnode or negative-cache association and mark a
560  * namecache entry as unresolved again.  Note that the ncp is still
561  * left in the hash table and still linked to its parent.
562  *
563  * The ncp should be locked and refd on entry and will remain locked and refd
564  * on return.
565  *
566  * This routine is normally never called on a directory containing children.
567  * However, NFS often does just that in its rename() code as a cop-out to
568  * avoid complex namespace operations.  This disconnects a directory vnode
569  * from its namecache and can cause the OLDAPI and NEWAPI to get out of
570  * sync.
571  *
572  * NOTE: NCF_FSMID must be cleared so a refurbishment of the ncp, such as
573  * in a create, properly propogates flag up the chain.
574  */
575 void
576 cache_setunresolved(struct namecache *ncp)
577 {
578 	struct vnode *vp;
579 
580 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
581 		ncp->nc_flag |= NCF_UNRESOLVED;
582 		ncp->nc_timeout = 0;
583 		ncp->nc_error = ENOTCONN;
584 		++numunres;
585 		if ((vp = ncp->nc_vp) != NULL) {
586 			--numcache;
587 			ncp->nc_vp = NULL;
588 			TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
589 
590 			/*
591 			 * Any vp associated with an ncp with children is
592 			 * held by that ncp.  Any vp associated with a locked
593 			 * ncp is held by that ncp.  These conditions must be
594 			 * undone when the vp is cleared out from the ncp.
595 			 */
596 			if (ncp->nc_flag & NCF_FSMID)
597 				vupdatefsmid(vp);
598 			if (!TAILQ_EMPTY(&ncp->nc_list))
599 				vdrop(vp);
600 			if (ncp->nc_exlocks)
601 				vdrop(vp);
602 		} else {
603 			TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
604 			--numneg;
605 		}
606 		ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK|
607 				  NCF_FSMID);
608 	}
609 }
610 
611 /*
612  * Mark the namecache node as containing a mount point.
613  *
614  * XXX called with a ref'd but unlocked ncp.
615  */
616 void
617 cache_setmountpt(struct namecache *ncp, struct mount *mp)
618 {
619 	ncp->nc_mount = mp;
620 	ncp->nc_flag |= NCF_MOUNTPT;
621 	ncp->nc_parent->nc_flag |= NCF_MOUNTEDHERE;
622 }
623 
624 /*
625  * Clean up a mount point in the namecache topology after an unmount.
626  *
627  * XXX we probably need to traverse the entire topology and clear
628  * the nc_mount pointer.
629  */
630 void
631 cache_clrmountpt(struct namecache *ncp)
632 {
633 	if (ncp->nc_parent)
634 		ncp->nc_parent->nc_flag &= ~NCF_MOUNTEDHERE;
635 	ncp->nc_mount = NULL;
636 }
637 
638 /*
639  * Invalidate portions of the namecache topology given a starting entry.
640  * The passed ncp is set to an unresolved state and:
641  *
642  * The passed ncp must be locked.
643  *
644  * CINV_DESTROY		- Set a flag in the passed ncp entry indicating
645  *			  that the physical underlying nodes have been
646  *			  destroyed... as in deleted.  For example, when
647  *			  a directory is removed.  This will cause record
648  *			  lookups on the name to no longer be able to find
649  *			  the record and tells the resolver to return failure
650  *			  rather then trying to resolve through the parent.
651  *
652  *			  The topology itself, including ncp->nc_name,
653  *			  remains intact.
654  *
655  *			  This only applies to the passed ncp, if CINV_CHILDREN
656  *			  is specified the children are not flagged.
657  *
658  * CINV_CHILDREN	- Set all children (recursively) to an unresolved
659  *			  state as well.
660  *
661  *			  Note that this will also have the side effect of
662  *			  cleaning out any unreferenced nodes in the topology
663  *			  from the leaves up as the recursion backs out.
664  *
665  * Note that the topology for any referenced nodes remains intact.
666  *
667  * It is possible for cache_inval() to race a cache_resolve(), meaning that
668  * the namecache entry may not actually be invalidated on return if it was
669  * revalidated while recursing down into its children.  This code guarentees
670  * that the node(s) will go through an invalidation cycle, but does not
671  * guarentee that they will remain in an invalidated state.
672  *
673  * Returns non-zero if a revalidation was detected during the invalidation
674  * recursion, zero otherwise.  Note that since only the original ncp is
675  * locked the revalidation ultimately can only indicate that the original ncp
676  * *MIGHT* no have been reresolved.
677  */
678 int
679 cache_inval(struct namecache *ncp, int flags)
680 {
681 	struct namecache *kid;
682 	struct namecache *nextkid;
683 	int rcnt = 0;
684 
685 	KKASSERT(ncp->nc_exlocks);
686 
687 	cache_setunresolved(ncp);
688 	if (flags & CINV_DESTROY)
689 		ncp->nc_flag |= NCF_DESTROYED;
690 
691 	if ((flags & CINV_CHILDREN) &&
692 	    (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
693 	) {
694 		cache_hold(kid);
695 		cache_unlock(ncp);
696 		while (kid) {
697 			if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
698 				cache_hold(nextkid);
699 			if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
700 			    TAILQ_FIRST(&kid->nc_list)
701 			) {
702 				cache_lock(kid);
703 				rcnt += cache_inval(kid, flags & ~CINV_DESTROY);
704 				cache_unlock(kid);
705 			}
706 			cache_drop(kid);
707 			kid = nextkid;
708 		}
709 		cache_lock(ncp);
710 	}
711 
712 	/*
713 	 * Someone could have gotten in there while ncp was unlocked,
714 	 * retry if so.
715 	 */
716 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
717 		++rcnt;
718 	return (rcnt);
719 }
720 
721 /*
722  * Invalidate a vnode's namecache associations.  To avoid races against
723  * the resolver we do not invalidate a node which we previously invalidated
724  * but which was then re-resolved while we were in the invalidation loop.
725  *
726  * Returns non-zero if any namecache entries remain after the invalidation
727  * loop completed.
728  *
729  * NOTE: unlike the namecache topology which guarentees that ncp's will not
730  * be ripped out of the topology while held, the vnode's v_namecache list
731  * has no such restriction.  NCP's can be ripped out of the list at virtually
732  * any time if not locked, even if held.
733  */
734 int
735 cache_inval_vp(struct vnode *vp, int flags)
736 {
737 	struct namecache *ncp;
738 	struct namecache *next;
739 
740 restart:
741 	ncp = TAILQ_FIRST(&vp->v_namecache);
742 	if (ncp)
743 		cache_hold(ncp);
744 	while (ncp) {
745 		/* loop entered with ncp held */
746 		if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
747 			cache_hold(next);
748 		cache_lock(ncp);
749 		if (ncp->nc_vp != vp) {
750 			printf("Warning: cache_inval_vp: race-A detected on "
751 				"%s\n", ncp->nc_name);
752 			cache_put(ncp);
753 			if (next)
754 				cache_drop(next);
755 			goto restart;
756 		}
757 		cache_inval(ncp, flags);
758 		cache_put(ncp);		/* also releases reference */
759 		ncp = next;
760 		if (ncp && ncp->nc_vp != vp) {
761 			printf("Warning: cache_inval_vp: race-B detected on "
762 				"%s\n", ncp->nc_name);
763 			cache_drop(ncp);
764 			goto restart;
765 		}
766 	}
767 	return(TAILQ_FIRST(&vp->v_namecache) != NULL);
768 }
769 
770 /*
771  * The source ncp has been renamed to the target ncp.  Both fncp and tncp
772  * must be locked.  Both will be set to unresolved, any children of tncp
773  * will be disconnected (the prior contents of the target is assumed to be
774  * destroyed by the rename operation, e.g. renaming over an empty directory),
775  * and all children of fncp will be moved to tncp.
776  *
777  * XXX the disconnection could pose a problem, check code paths to make
778  * sure any code that blocks can handle the parent being changed out from
779  * under it.  Maybe we should lock the children (watch out for deadlocks) ?
780  *
781  * After we return the caller has the option of calling cache_setvp() if
782  * the vnode of the new target ncp is known.
783  *
784  * Any process CD'd into any of the children will no longer be able to ".."
785  * back out.  An rm -rf can cause this situation to occur.
786  */
787 void
788 cache_rename(struct namecache *fncp, struct namecache *tncp)
789 {
790 	struct namecache *scan;
791 	int didwarn = 0;
792 
793 	cache_setunresolved(fncp);
794 	cache_setunresolved(tncp);
795 	while (cache_inval(tncp, CINV_CHILDREN) != 0) {
796 		if (didwarn++ % 10 == 0) {
797 			printf("Warning: cache_rename: race during "
798 				"rename %s->%s\n",
799 				fncp->nc_name, tncp->nc_name);
800 		}
801 		tsleep(tncp, 0, "mvrace", hz / 10);
802 		cache_setunresolved(tncp);
803 	}
804 	while ((scan = TAILQ_FIRST(&fncp->nc_list)) != NULL) {
805 		cache_hold(scan);
806 		cache_unlink_parent(scan);
807 		cache_link_parent(scan, tncp);
808 		if (scan->nc_flag & NCF_HASHED)
809 			cache_rehash(scan);
810 		cache_drop(scan);
811 	}
812 }
813 
814 /*
815  * vget the vnode associated with the namecache entry.  Resolve the namecache
816  * entry if necessary and deal with namecache/vp races.  The passed ncp must
817  * be referenced and may be locked.  The ncp's ref/locking state is not
818  * effected by this call.
819  *
820  * lk_type may be LK_SHARED, LK_EXCLUSIVE.  A ref'd, possibly locked
821  * (depending on the passed lk_type) will be returned in *vpp with an error
822  * of 0, or NULL will be returned in *vpp with a non-0 error code.  The
823  * most typical error is ENOENT, meaning that the ncp represents a negative
824  * cache hit and there is no vnode to retrieve, but other errors can occur
825  * too.
826  *
827  * The main race we have to deal with are namecache zaps.  The ncp itself
828  * will not disappear since it is referenced, and it turns out that the
829  * validity of the vp pointer can be checked simply by rechecking the
830  * contents of ncp->nc_vp.
831  */
832 int
833 cache_vget(struct namecache *ncp, struct ucred *cred,
834 	   int lk_type, struct vnode **vpp)
835 {
836 	struct vnode *vp;
837 	int error;
838 
839 again:
840 	vp = NULL;
841 	if (ncp->nc_flag & NCF_UNRESOLVED) {
842 		cache_lock(ncp);
843 		error = cache_resolve(ncp, cred);
844 		cache_unlock(ncp);
845 	} else {
846 		error = 0;
847 	}
848 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
849 		/*
850 		 * Accessing the vnode from the namecache is a bit
851 		 * dangerous.  Because there are no refs on the vnode, it
852 		 * could be in the middle of a reclaim.
853 		 */
854 		if (vp->v_flag & VRECLAIMED) {
855 			printf("Warning: vnode reclaim race detected in cache_vget on %p (%s)\n", vp, ncp->nc_name);
856 			cache_lock(ncp);
857 			cache_setunresolved(ncp);
858 			cache_unlock(ncp);
859 			goto again;
860 		}
861 		error = vget(vp, lk_type);
862 		if (error) {
863 			if (vp != ncp->nc_vp)
864 				goto again;
865 			vp = NULL;
866 		} else if (vp != ncp->nc_vp) {
867 			vput(vp);
868 			goto again;
869 		} else if (vp->v_flag & VRECLAIMED) {
870 			panic("vget succeeded on a VRECLAIMED node! vp %p", vp);
871 		}
872 	}
873 	if (error == 0 && vp == NULL)
874 		error = ENOENT;
875 	*vpp = vp;
876 	return(error);
877 }
878 
879 int
880 cache_vref(struct namecache *ncp, struct ucred *cred, struct vnode **vpp)
881 {
882 	struct vnode *vp;
883 	int error;
884 
885 again:
886 	vp = NULL;
887 	if (ncp->nc_flag & NCF_UNRESOLVED) {
888 		cache_lock(ncp);
889 		error = cache_resolve(ncp, cred);
890 		cache_unlock(ncp);
891 	} else {
892 		error = 0;
893 	}
894 	if (error == 0 && (vp = ncp->nc_vp) != NULL) {
895 		/*
896 		 * Since we did not obtain any locks, a cache zap
897 		 * race can occur here if the vnode is in the middle
898 		 * of being reclaimed and has not yet been able to
899 		 * clean out its cache node.  If that case occurs,
900 		 * we must lock and unresolve the cache, then loop
901 		 * to retry.
902 		 */
903 		if (vp->v_flag & VRECLAIMED) {
904 			printf("Warning: vnode reclaim race detected on cache_vref %p (%s)\n", vp, ncp->nc_name);
905 			cache_lock(ncp);
906 			cache_setunresolved(ncp);
907 			cache_unlock(ncp);
908 			goto again;
909 		}
910 		vref_initial(vp, 1);
911 	}
912 	if (error == 0 && vp == NULL)
913 		error = ENOENT;
914 	*vpp = vp;
915 	return(error);
916 }
917 
918 /*
919  * Recursively set the FSMID update flag for namecache nodes leading
920  * to root.  This will cause the next getattr or reclaim to increment the
921  * fsmid and mark the inode for lazy updating.
922  *
923  * Stop recursing when we hit a node whos NCF_FSMID flag is already set.
924  * This makes FSMIDs work in an Einsteinian fashion - where the observation
925  * effects the result.  In this case a program monitoring a higher level
926  * node will have detected some prior change and started its scan (clearing
927  * NCF_FSMID in higher level nodes), but since it has not yet observed the
928  * node where we find NCF_FSMID still set, we can safely make the related
929  * modification without interfering with the theorized program.
930  *
931  * This also means that FSMIDs cannot represent time-domain quantities
932  * in a hierarchical sense.  But the main reason for doing it this way
933  * is to reduce the amount of recursion that occurs in the critical path
934  * when e.g. a program is writing to a file that sits deep in a directory
935  * hierarchy.
936  */
937 void
938 cache_update_fsmid(struct namecache *ncp)
939 {
940 	struct vnode *vp;
941 	struct namecache *scan;
942 
943 	/*
944 	 * Warning: even if we get a non-NULL vp it could still be in the
945 	 * middle of a recyclement.  Don't do anything fancy, just set
946 	 * NCF_FSMID.
947 	 */
948 	if ((vp = ncp->nc_vp) != NULL) {
949 		TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
950 			for (scan = ncp; scan; scan = scan->nc_parent) {
951 				if (scan->nc_flag & NCF_FSMID)
952 					break;
953 				scan->nc_flag |= NCF_FSMID;
954 			}
955 		}
956 	} else {
957 		while (ncp && (ncp->nc_flag & NCF_FSMID) == 0) {
958 			ncp->nc_flag |= NCF_FSMID;
959 			ncp = ncp->nc_parent;
960 		}
961 	}
962 }
963 
964 void
965 cache_update_fsmid_vp(struct vnode *vp)
966 {
967 	struct namecache *ncp;
968 	struct namecache *scan;
969 
970 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
971 		for (scan = ncp; scan; scan = scan->nc_parent) {
972 			if (scan->nc_flag & NCF_FSMID)
973 				break;
974 			scan->nc_flag |= NCF_FSMID;
975 		}
976 	}
977 }
978 
979 /*
980  * If getattr is called on a vnode (e.g. a stat call), the filesystem
981  * may call this routine to determine if the namecache has the hierarchical
982  * change flag set, requiring the fsmid to be updated.
983  *
984  * Since 0 indicates no support, make sure the filesystem fsmid is at least
985  * 1.
986  */
987 int
988 cache_check_fsmid_vp(struct vnode *vp, int64_t *fsmid)
989 {
990 	struct namecache *ncp;
991 	int changed = 0;
992 
993 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
994 		if (ncp->nc_flag & NCF_FSMID) {
995 			ncp->nc_flag &= ~NCF_FSMID;
996 			changed = 1;
997 		}
998 	}
999 	if (*fsmid == 0)
1000 		++*fsmid;
1001 	if (changed)
1002 		++*fsmid;
1003 	return(changed);
1004 }
1005 
1006 /*
1007  * Obtain the FSMID for a vnode for filesystems which do not support
1008  * a built-in FSMID.
1009  */
1010 int64_t
1011 cache_sync_fsmid_vp(struct vnode *vp)
1012 {
1013 	struct namecache *ncp;
1014 
1015 	if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL) {
1016 		if (ncp->nc_flag & NCF_FSMID) {
1017 			ncp->nc_flag &= ~NCF_FSMID;
1018 			++ncp->nc_fsmid;
1019 		}
1020 		return(ncp->nc_fsmid);
1021 	}
1022 	return(VNOVAL);
1023 }
1024 
1025 /*
1026  * Convert a directory vnode to a namecache record without any other
1027  * knowledge of the topology.  This ONLY works with directory vnodes and
1028  * is ONLY used by the NFS server.  dvp must be refd but unlocked, and the
1029  * returned ncp (if not NULL) will be held and unlocked.
1030  *
1031  * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1032  * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1033  * for dvp.  This will fail only if the directory has been deleted out from
1034  * under the caller.
1035  *
1036  * Callers must always check for a NULL return no matter the value of 'makeit'.
1037  *
1038  * To avoid underflowing the kernel stack each recursive call increments
1039  * the makeit variable.
1040  */
1041 
1042 static int cache_inefficient_scan(struct namecache *ncp, struct ucred *cred,
1043 				  struct vnode *dvp);
1044 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1045 				  struct vnode **saved_dvp);
1046 
1047 struct namecache *
1048 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit)
1049 {
1050 	struct namecache *ncp;
1051 	struct vnode *saved_dvp;
1052 	struct vnode *pvp;
1053 	int error;
1054 
1055 	ncp = NULL;
1056 	saved_dvp = NULL;
1057 
1058 	/*
1059 	 * Temporary debugging code to force the directory scanning code
1060 	 * to be exercised.
1061 	 */
1062 	if (ncvp_debug >= 3 && makeit && TAILQ_FIRST(&dvp->v_namecache)) {
1063 		ncp = TAILQ_FIRST(&dvp->v_namecache);
1064 		printf("cache_fromdvp: forcing %s\n", ncp->nc_name);
1065 		goto force;
1066 	}
1067 
1068 	/*
1069 	 * Loop until resolution, inside code will break out on error.
1070 	 */
1071 	while ((ncp = TAILQ_FIRST(&dvp->v_namecache)) == NULL && makeit) {
1072 force:
1073 		/*
1074 		 * If dvp is the root of its filesystem it should already
1075 		 * have a namecache pointer associated with it as a side
1076 		 * effect of the mount, but it may have been disassociated.
1077 		 */
1078 		if (dvp->v_flag & VROOT) {
1079 			ncp = cache_get(dvp->v_mount->mnt_ncp);
1080 			error = cache_resolve_mp(ncp);
1081 			cache_put(ncp);
1082 			if (ncvp_debug) {
1083 				printf("cache_fromdvp: resolve root of mount %p error %d",
1084 					dvp->v_mount, error);
1085 			}
1086 			if (error) {
1087 				if (ncvp_debug)
1088 					printf(" failed\n");
1089 				ncp = NULL;
1090 				break;
1091 			}
1092 			if (ncvp_debug)
1093 				printf(" succeeded\n");
1094 			continue;
1095 		}
1096 
1097 		/*
1098 		 * If we are recursed too deeply resort to an O(n^2)
1099 		 * algorithm to resolve the namecache topology.  The
1100 		 * resolved pvp is left referenced in saved_dvp to
1101 		 * prevent the tree from being destroyed while we loop.
1102 		 */
1103 		if (makeit > 20) {
1104 			error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1105 			if (error) {
1106 				printf("lookupdotdot(longpath) failed %d "
1107 				       "dvp %p\n", error, dvp);
1108 				break;
1109 			}
1110 			continue;
1111 		}
1112 
1113 		/*
1114 		 * Get the parent directory and resolve its ncp.
1115 		 */
1116 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred);
1117 		if (error) {
1118 			printf("lookupdotdot failed %d dvp %p\n", error, dvp);
1119 			break;
1120 		}
1121 		vn_unlock(pvp);
1122 
1123 		/*
1124 		 * Reuse makeit as a recursion depth counter.
1125 		 */
1126 		ncp = cache_fromdvp(pvp, cred, makeit + 1);
1127 		vrele(pvp);
1128 		if (ncp == NULL)
1129 			break;
1130 
1131 		/*
1132 		 * Do an inefficient scan of pvp (embodied by ncp) to look
1133 		 * for dvp.  This will create a namecache record for dvp on
1134 		 * success.  We loop up to recheck on success.
1135 		 *
1136 		 * ncp and dvp are both held but not locked.
1137 		 */
1138 		error = cache_inefficient_scan(ncp, cred, dvp);
1139 		cache_drop(ncp);
1140 		if (error) {
1141 			printf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1142 				pvp, ncp->nc_name, dvp);
1143 			ncp = NULL;
1144 			break;
1145 		}
1146 		if (ncvp_debug) {
1147 			printf("cache_fromdvp: scan %p (%s) succeeded\n",
1148 				pvp, ncp->nc_name);
1149 		}
1150 	}
1151 	if (ncp)
1152 		cache_hold(ncp);
1153 	if (saved_dvp)
1154 		vrele(saved_dvp);
1155 	return (ncp);
1156 }
1157 
1158 /*
1159  * Go up the chain of parent directories until we find something
1160  * we can resolve into the namecache.  This is very inefficient.
1161  */
1162 static
1163 int
1164 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1165 		  struct vnode **saved_dvp)
1166 {
1167 	struct namecache *ncp;
1168 	struct vnode *pvp;
1169 	int error;
1170 	static time_t last_fromdvp_report;
1171 
1172 	/*
1173 	 * Loop getting the parent directory vnode until we get something we
1174 	 * can resolve in the namecache.
1175 	 */
1176 	vref(dvp);
1177 	for (;;) {
1178 		error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred);
1179 		if (error) {
1180 			vrele(dvp);
1181 			return (error);
1182 		}
1183 		vn_unlock(pvp);
1184 		if ((ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1185 			cache_hold(ncp);
1186 			vrele(pvp);
1187 			break;
1188 		}
1189 		if (pvp->v_flag & VROOT) {
1190 			ncp = cache_get(pvp->v_mount->mnt_ncp);
1191 			error = cache_resolve_mp(ncp);
1192 			cache_unlock(ncp);
1193 			vrele(pvp);
1194 			if (error) {
1195 				cache_drop(ncp);
1196 				vrele(dvp);
1197 				return (error);
1198 			}
1199 			break;
1200 		}
1201 		vrele(dvp);
1202 		dvp = pvp;
1203 	}
1204 	if (last_fromdvp_report != time_second) {
1205 		last_fromdvp_report = time_second;
1206 		printf("Warning: extremely inefficient path resolution on %s\n",
1207 			ncp->nc_name);
1208 	}
1209 	error = cache_inefficient_scan(ncp, cred, dvp);
1210 
1211 	/*
1212 	 * Hopefully dvp now has a namecache record associated with it.
1213 	 * Leave it referenced to prevent the kernel from recycling the
1214 	 * vnode.  Otherwise extremely long directory paths could result
1215 	 * in endless recycling.
1216 	 */
1217 	if (*saved_dvp)
1218 	    vrele(*saved_dvp);
1219 	*saved_dvp = dvp;
1220 	return (error);
1221 }
1222 
1223 
1224 /*
1225  * Do an inefficient scan of the directory represented by ncp looking for
1226  * the directory vnode dvp.  ncp must be held but not locked on entry and
1227  * will be held on return.  dvp must be refd but not locked on entry and
1228  * will remain refd on return.
1229  *
1230  * Why do this at all?  Well, due to its stateless nature the NFS server
1231  * converts file handles directly to vnodes without necessarily going through
1232  * the namecache ops that would otherwise create the namecache topology
1233  * leading to the vnode.  We could either (1) Change the namecache algorithms
1234  * to allow disconnect namecache records that are re-merged opportunistically,
1235  * or (2) Make the NFS server backtrack and scan to recover a connected
1236  * namecache topology in order to then be able to issue new API lookups.
1237  *
1238  * It turns out that (1) is a huge mess.  It takes a nice clean set of
1239  * namecache algorithms and introduces a lot of complication in every subsystem
1240  * that calls into the namecache to deal with the re-merge case, especially
1241  * since we are using the namecache to placehold negative lookups and the
1242  * vnode might not be immediately assigned. (2) is certainly far less
1243  * efficient then (1), but since we are only talking about directories here
1244  * (which are likely to remain cached), the case does not actually run all
1245  * that often and has the supreme advantage of not polluting the namecache
1246  * algorithms.
1247  */
1248 static int
1249 cache_inefficient_scan(struct namecache *ncp, struct ucred *cred,
1250 		       struct vnode *dvp)
1251 {
1252 	struct nlcomponent nlc;
1253 	struct namecache *rncp;
1254 	struct dirent *den;
1255 	struct vnode *pvp;
1256 	struct vattr vat;
1257 	struct iovec iov;
1258 	struct uio uio;
1259 	int blksize;
1260 	int eofflag;
1261 	int bytes;
1262 	char *rbuf;
1263 	int error;
1264 
1265 	vat.va_blocksize = 0;
1266 	if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1267 		return (error);
1268 	if ((error = cache_vref(ncp, cred, &pvp)) != 0)
1269 		return (error);
1270 	if (ncvp_debug)
1271 		printf("inefficient_scan: directory iosize %ld vattr fileid = %ld\n", vat.va_blocksize, (long)vat.va_fileid);
1272 	if ((blksize = vat.va_blocksize) == 0)
1273 		blksize = DEV_BSIZE;
1274 	rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1275 	rncp = NULL;
1276 
1277 	eofflag = 0;
1278 	uio.uio_offset = 0;
1279 again:
1280 	iov.iov_base = rbuf;
1281 	iov.iov_len = blksize;
1282 	uio.uio_iov = &iov;
1283 	uio.uio_iovcnt = 1;
1284 	uio.uio_resid = blksize;
1285 	uio.uio_segflg = UIO_SYSSPACE;
1286 	uio.uio_rw = UIO_READ;
1287 	uio.uio_td = curthread;
1288 
1289 	if (ncvp_debug >= 2)
1290 		printf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1291 	error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1292 	if (error == 0) {
1293 		den = (struct dirent *)rbuf;
1294 		bytes = blksize - uio.uio_resid;
1295 
1296 		while (bytes > 0) {
1297 			if (ncvp_debug >= 2) {
1298 				printf("cache_inefficient_scan: %*.*s\n",
1299 					den->d_namlen, den->d_namlen,
1300 					den->d_name);
1301 			}
1302 			if (den->d_type != DT_WHT &&
1303 			    den->d_ino == vat.va_fileid) {
1304 				if (ncvp_debug) {
1305 					printf("cache_inefficient_scan: "
1306 					       "MATCHED inode %ld path %s/%*.*s\n",
1307 					       vat.va_fileid, ncp->nc_name,
1308 					       den->d_namlen, den->d_namlen,
1309 					       den->d_name);
1310 				}
1311 				nlc.nlc_nameptr = den->d_name;
1312 				nlc.nlc_namelen = den->d_namlen;
1313 				rncp = cache_nlookup(ncp, &nlc);
1314 				KKASSERT(rncp != NULL);
1315 				break;
1316 			}
1317 			bytes -= _DIRENT_DIRSIZ(den);
1318 			den = _DIRENT_NEXT(den);
1319 		}
1320 		if (rncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1321 			goto again;
1322 	}
1323 	vrele(pvp);
1324 	if (rncp) {
1325 		if (rncp->nc_flag & NCF_UNRESOLVED) {
1326 			cache_setvp(rncp, dvp);
1327 			if (ncvp_debug >= 2) {
1328 				printf("cache_inefficient_scan: setvp %s/%s = %p\n",
1329 					ncp->nc_name, rncp->nc_name, dvp);
1330 			}
1331 		} else {
1332 			if (ncvp_debug >= 2) {
1333 				printf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1334 					ncp->nc_name, rncp->nc_name, dvp,
1335 					rncp->nc_vp);
1336 			}
1337 		}
1338 		if (rncp->nc_vp == NULL)
1339 			error = rncp->nc_error;
1340 		cache_put(rncp);
1341 	} else {
1342 		printf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1343 			dvp, ncp->nc_name);
1344 		error = ENOENT;
1345 	}
1346 	kfree(rbuf, M_TEMP);
1347 	return (error);
1348 }
1349 
1350 /*
1351  * Zap a namecache entry.  The ncp is unconditionally set to an unresolved
1352  * state, which disassociates it from its vnode or ncneglist.
1353  *
1354  * Then, if there are no additional references to the ncp and no children,
1355  * the ncp is removed from the topology and destroyed.  This function will
1356  * also run through the nc_parent chain and destroy parent ncps if possible.
1357  * As a side benefit, it turns out the only conditions that allow running
1358  * up the chain are also the conditions to ensure no deadlock will occur.
1359  *
1360  * References and/or children may exist if the ncp is in the middle of the
1361  * topology, preventing the ncp from being destroyed.
1362  *
1363  * This function must be called with the ncp held and locked and will unlock
1364  * and drop it during zapping.
1365  */
1366 static void
1367 cache_zap(struct namecache *ncp)
1368 {
1369 	struct namecache *par;
1370 
1371 	/*
1372 	 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
1373 	 */
1374 	cache_setunresolved(ncp);
1375 
1376 	/*
1377 	 * Try to scrap the entry and possibly tail-recurse on its parent.
1378 	 * We only scrap unref'd (other then our ref) unresolved entries,
1379 	 * we do not scrap 'live' entries.
1380 	 */
1381 	while (ncp->nc_flag & NCF_UNRESOLVED) {
1382 		/*
1383 		 * Someone other then us has a ref, stop.
1384 		 */
1385 		if (ncp->nc_refs > 1)
1386 			goto done;
1387 
1388 		/*
1389 		 * We have children, stop.
1390 		 */
1391 		if (!TAILQ_EMPTY(&ncp->nc_list))
1392 			goto done;
1393 
1394 		/*
1395 		 * Remove ncp from the topology: hash table and parent linkage.
1396 		 */
1397 		if (ncp->nc_flag & NCF_HASHED) {
1398 			ncp->nc_flag &= ~NCF_HASHED;
1399 			LIST_REMOVE(ncp, nc_hash);
1400 		}
1401 		if ((par = ncp->nc_parent) != NULL) {
1402 			par = cache_hold(par);
1403 			TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
1404 			ncp->nc_parent = NULL;
1405 			if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
1406 				vdrop(par->nc_vp);
1407 		}
1408 
1409 		/*
1410 		 * ncp should not have picked up any refs.  Physically
1411 		 * destroy the ncp.
1412 		 */
1413 		KKASSERT(ncp->nc_refs == 1);
1414 		--numunres;
1415 		/* cache_unlock(ncp) not required */
1416 		ncp->nc_refs = -1;	/* safety */
1417 		if (ncp->nc_name)
1418 			kfree(ncp->nc_name, M_VFSCACHE);
1419 		kfree(ncp, M_VFSCACHE);
1420 
1421 		/*
1422 		 * Loop on the parent (it may be NULL).  Only bother looping
1423 		 * if the parent has a single ref (ours), which also means
1424 		 * we can lock it trivially.
1425 		 */
1426 		ncp = par;
1427 		if (ncp == NULL)
1428 			return;
1429 		if (ncp->nc_refs != 1) {
1430 			cache_drop(ncp);
1431 			return;
1432 		}
1433 		KKASSERT(par->nc_exlocks == 0);
1434 		cache_lock(ncp);
1435 	}
1436 done:
1437 	cache_unlock(ncp);
1438 	atomic_subtract_int(&ncp->nc_refs, 1);
1439 }
1440 
1441 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
1442 
1443 static __inline
1444 void
1445 cache_hysteresis(void)
1446 {
1447 	/*
1448 	 * Don't cache too many negative hits.  We use hysteresis to reduce
1449 	 * the impact on the critical path.
1450 	 */
1451 	switch(cache_hysteresis_state) {
1452 	case CHI_LOW:
1453 		if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
1454 			cache_cleanneg(10);
1455 			cache_hysteresis_state = CHI_HIGH;
1456 		}
1457 		break;
1458 	case CHI_HIGH:
1459 		if (numneg > MINNEG * 9 / 10 &&
1460 		    numneg * ncnegfactor * 9 / 10 > numcache
1461 		) {
1462 			cache_cleanneg(10);
1463 		} else {
1464 			cache_hysteresis_state = CHI_LOW;
1465 		}
1466 		break;
1467 	}
1468 }
1469 
1470 /*
1471  * NEW NAMECACHE LOOKUP API
1472  *
1473  * Lookup an entry in the cache.  A locked, referenced, non-NULL
1474  * entry is *always* returned, even if the supplied component is illegal.
1475  * The resulting namecache entry should be returned to the system with
1476  * cache_put() or cache_unlock() + cache_drop().
1477  *
1478  * namecache locks are recursive but care must be taken to avoid lock order
1479  * reversals.
1480  *
1481  * Nobody else will be able to manipulate the associated namespace (e.g.
1482  * create, delete, rename, rename-target) until the caller unlocks the
1483  * entry.
1484  *
1485  * The returned entry will be in one of three states:  positive hit (non-null
1486  * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
1487  * Unresolved entries must be resolved through the filesystem to associate the
1488  * vnode and/or determine whether a positive or negative hit has occured.
1489  *
1490  * It is not necessary to lock a directory in order to lock namespace under
1491  * that directory.  In fact, it is explicitly not allowed to do that.  A
1492  * directory is typically only locked when being created, renamed, or
1493  * destroyed.
1494  *
1495  * The directory (par) may be unresolved, in which case any returned child
1496  * will likely also be marked unresolved.  Likely but not guarenteed.  Since
1497  * the filesystem lookup requires a resolved directory vnode the caller is
1498  * responsible for resolving the namecache chain top-down.  This API
1499  * specifically allows whole chains to be created in an unresolved state.
1500  */
1501 struct namecache *
1502 cache_nlookup(struct namecache *par, struct nlcomponent *nlc)
1503 {
1504 	struct namecache *ncp;
1505 	struct namecache *new_ncp;
1506 	struct nchashhead *nchpp;
1507 	u_int32_t hash;
1508 	globaldata_t gd;
1509 
1510 	numcalls++;
1511 	gd = mycpu;
1512 
1513 	/*
1514 	 * Try to locate an existing entry
1515 	 */
1516 	hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
1517 	hash = fnv_32_buf(&par, sizeof(par), hash);
1518 	new_ncp = NULL;
1519 restart:
1520 	LIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1521 		numchecks++;
1522 
1523 		/*
1524 		 * Zap entries that have timed out.
1525 		 */
1526 		if (ncp->nc_timeout &&
1527 		    (int)(ncp->nc_timeout - ticks) < 0 &&
1528 		    (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1529 		    ncp->nc_exlocks == 0
1530 		) {
1531 			cache_zap(cache_get(ncp));
1532 			goto restart;
1533 		}
1534 
1535 		/*
1536 		 * Break out if we find a matching entry.  Note that
1537 		 * UNRESOLVED entries may match, but DESTROYED entries
1538 		 * do not.
1539 		 */
1540 		if (ncp->nc_parent == par &&
1541 		    ncp->nc_nlen == nlc->nlc_namelen &&
1542 		    bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
1543 		    (ncp->nc_flag & NCF_DESTROYED) == 0
1544 		) {
1545 			if (cache_get_nonblock(ncp) == 0) {
1546 				if (new_ncp)
1547 					cache_free(new_ncp);
1548 				goto found;
1549 			}
1550 			cache_get(ncp);
1551 			cache_put(ncp);
1552 			goto restart;
1553 		}
1554 	}
1555 
1556 	/*
1557 	 * We failed to locate an entry, create a new entry and add it to
1558 	 * the cache.  We have to relookup after possibly blocking in
1559 	 * malloc.
1560 	 */
1561 	if (new_ncp == NULL) {
1562 		new_ncp = cache_alloc(nlc->nlc_namelen);
1563 		goto restart;
1564 	}
1565 
1566 	ncp = new_ncp;
1567 
1568 	/*
1569 	 * Initialize as a new UNRESOLVED entry, lock (non-blocking),
1570 	 * and link to the parent.  The mount point is usually inherited
1571 	 * from the parent unless this is a special case such as a mount
1572 	 * point where nlc_namelen is 0.  The caller is responsible for
1573 	 * setting nc_mount in that case.  If nlc_namelen is 0 nc_name will
1574 	 * be NULL.
1575 	 */
1576 	if (nlc->nlc_namelen) {
1577 		bcopy(nlc->nlc_nameptr, ncp->nc_name, nlc->nlc_namelen);
1578 		ncp->nc_name[nlc->nlc_namelen] = 0;
1579 		ncp->nc_mount = par->nc_mount;
1580 	}
1581 	nchpp = NCHHASH(hash);
1582 	LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1583 	ncp->nc_flag |= NCF_HASHED;
1584 	cache_link_parent(ncp, par);
1585 found:
1586 	/*
1587 	 * stats and namecache size management
1588 	 */
1589 	if (ncp->nc_flag & NCF_UNRESOLVED)
1590 		++gd->gd_nchstats->ncs_miss;
1591 	else if (ncp->nc_vp)
1592 		++gd->gd_nchstats->ncs_goodhits;
1593 	else
1594 		++gd->gd_nchstats->ncs_neghits;
1595 	cache_hysteresis();
1596 	return(ncp);
1597 }
1598 
1599 /*
1600  * Locate the mount point under a namecache entry.  We locate a special
1601  * child ncp with a 0-length name and retrieve the mount point from it.
1602  */
1603 struct mount *
1604 cache_findmount(struct namecache *par)
1605 {
1606 	struct namecache *ncp;
1607 	u_int32_t hash;
1608 
1609 	hash = FNV1_32_INIT;	/* special 0-length name */
1610 	hash = fnv_32_buf(&par, sizeof(par), hash);
1611 	LIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1612 		if (ncp->nc_nlen == 0 && (ncp->nc_flag & NCF_MOUNTPT))
1613 			return(ncp->nc_mount);
1614 	}
1615 	return(NULL);
1616 }
1617 
1618 /*
1619  * Given a locked ncp, validate that the vnode, if present, is actually
1620  * usable.  If it is not usable set the ncp to an unresolved state.
1621  */
1622 void
1623 cache_validate(struct namecache *ncp)
1624 {
1625 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1626 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1627 			cache_setunresolved(ncp);
1628 	}
1629 }
1630 
1631 /*
1632  * Resolve an unresolved namecache entry, generally by looking it up.
1633  * The passed ncp must be locked and refd.
1634  *
1635  * Theoretically since a vnode cannot be recycled while held, and since
1636  * the nc_parent chain holds its vnode as long as children exist, the
1637  * direct parent of the cache entry we are trying to resolve should
1638  * have a valid vnode.  If not then generate an error that we can
1639  * determine is related to a resolver bug.
1640  *
1641  * However, if a vnode was in the middle of a recyclement when the NCP
1642  * got locked, ncp->nc_vp might point to a vnode that is about to become
1643  * invalid.  cache_resolve() handles this case by unresolving the entry
1644  * and then re-resolving it.
1645  *
1646  * Note that successful resolution does not necessarily return an error
1647  * code of 0.  If the ncp resolves to a negative cache hit then ENOENT
1648  * will be returned.
1649  */
1650 int
1651 cache_resolve(struct namecache *ncp, struct ucred *cred)
1652 {
1653 	struct namecache *par;
1654 	int error;
1655 
1656 restart:
1657 	/*
1658 	 * If the ncp is already resolved we have nothing to do.  However,
1659 	 * we do want to guarentee that a usable vnode is returned when
1660 	 * a vnode is present, so make sure it hasn't been reclaimed.
1661 	 */
1662 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1663 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1664 			cache_setunresolved(ncp);
1665 		if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1666 			return (ncp->nc_error);
1667 	}
1668 
1669 	/*
1670 	 * Mount points need special handling because the parent does not
1671 	 * belong to the same filesystem as the ncp.
1672 	 */
1673 	if (ncp->nc_flag & NCF_MOUNTPT)
1674 		return (cache_resolve_mp(ncp));
1675 
1676 	/*
1677 	 * We expect an unbroken chain of ncps to at least the mount point,
1678 	 * and even all the way to root (but this code doesn't have to go
1679 	 * past the mount point).
1680 	 */
1681 	if (ncp->nc_parent == NULL) {
1682 		printf("EXDEV case 1 %p %*.*s\n", ncp,
1683 			ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
1684 		ncp->nc_error = EXDEV;
1685 		return(ncp->nc_error);
1686 	}
1687 
1688 	/*
1689 	 * The vp's of the parent directories in the chain are held via vhold()
1690 	 * due to the existance of the child, and should not disappear.
1691 	 * However, there are cases where they can disappear:
1692 	 *
1693 	 *	- due to filesystem I/O errors.
1694 	 *	- due to NFS being stupid about tracking the namespace and
1695 	 *	  destroys the namespace for entire directories quite often.
1696 	 *	- due to forced unmounts.
1697 	 *	- due to an rmdir (parent will be marked DESTROYED)
1698 	 *
1699 	 * When this occurs we have to track the chain backwards and resolve
1700 	 * it, looping until the resolver catches up to the current node.  We
1701 	 * could recurse here but we might run ourselves out of kernel stack
1702 	 * so we do it in a more painful manner.  This situation really should
1703 	 * not occur all that often, or if it does not have to go back too
1704 	 * many nodes to resolve the ncp.
1705 	 */
1706 	while (ncp->nc_parent->nc_vp == NULL) {
1707 		/*
1708 		 * This case can occur if a process is CD'd into a
1709 		 * directory which is then rmdir'd.  If the parent is marked
1710 		 * destroyed there is no point trying to resolve it.
1711 		 */
1712 		if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
1713 			return(ENOENT);
1714 
1715 		par = ncp->nc_parent;
1716 		while (par->nc_parent && par->nc_parent->nc_vp == NULL)
1717 			par = par->nc_parent;
1718 		if (par->nc_parent == NULL) {
1719 			printf("EXDEV case 2 %*.*s\n",
1720 				par->nc_nlen, par->nc_nlen, par->nc_name);
1721 			return (EXDEV);
1722 		}
1723 		printf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
1724 			par->nc_nlen, par->nc_nlen, par->nc_name);
1725 		/*
1726 		 * The parent is not set in stone, ref and lock it to prevent
1727 		 * it from disappearing.  Also note that due to renames it
1728 		 * is possible for our ncp to move and for par to no longer
1729 		 * be one of its parents.  We resolve it anyway, the loop
1730 		 * will handle any moves.
1731 		 */
1732 		cache_get(par);
1733 		if (par->nc_flag & NCF_MOUNTPT) {
1734 			cache_resolve_mp(par);
1735 		} else if (par->nc_parent->nc_vp == NULL) {
1736 			printf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
1737 			cache_put(par);
1738 			continue;
1739 		} else if (par->nc_flag & NCF_UNRESOLVED) {
1740 			par->nc_error = VOP_NRESOLVE(par, cred);
1741 		}
1742 		if ((error = par->nc_error) != 0) {
1743 			if (par->nc_error != EAGAIN) {
1744 				printf("EXDEV case 3 %*.*s error %d\n",
1745 				    par->nc_nlen, par->nc_nlen, par->nc_name,
1746 				    par->nc_error);
1747 				cache_put(par);
1748 				return(error);
1749 			}
1750 			printf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
1751 				par, par->nc_nlen, par->nc_nlen, par->nc_name);
1752 		}
1753 		cache_put(par);
1754 		/* loop */
1755 	}
1756 
1757 	/*
1758 	 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
1759 	 * ncp's and reattach them.  If this occurs the original ncp is marked
1760 	 * EAGAIN to force a relookup.
1761 	 *
1762 	 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
1763 	 * ncp must already be resolved.
1764 	 */
1765 	KKASSERT((ncp->nc_flag & NCF_MOUNTPT) == 0);
1766 	ncp->nc_error = VOP_NRESOLVE(ncp, cred);
1767 	/*vop_nresolve(*ncp->nc_parent->nc_vp->v_ops, ncp, cred);*/
1768 	if (ncp->nc_error == EAGAIN) {
1769 		printf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
1770 			ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
1771 		goto restart;
1772 	}
1773 	return(ncp->nc_error);
1774 }
1775 
1776 /*
1777  * Resolve the ncp associated with a mount point.  Such ncp's almost always
1778  * remain resolved and this routine is rarely called.  NFS MPs tends to force
1779  * re-resolution more often due to its mac-truck-smash-the-namecache
1780  * method of tracking namespace changes.
1781  *
1782  * The semantics for this call is that the passed ncp must be locked on
1783  * entry and will be locked on return.  However, if we actually have to
1784  * resolve the mount point we temporarily unlock the entry in order to
1785  * avoid race-to-root deadlocks due to e.g. dead NFS mounts.  Because of
1786  * the unlock we have to recheck the flags after we relock.
1787  */
1788 static int
1789 cache_resolve_mp(struct namecache *ncp)
1790 {
1791 	struct vnode *vp;
1792 	struct mount *mp = ncp->nc_mount;
1793 	int error;
1794 
1795 	KKASSERT(mp != NULL);
1796 
1797 	/*
1798 	 * If the ncp is already resolved we have nothing to do.  However,
1799 	 * we do want to guarentee that a usable vnode is returned when
1800 	 * a vnode is present, so make sure it hasn't been reclaimed.
1801 	 */
1802 	if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1803 		if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1804 			cache_setunresolved(ncp);
1805 	}
1806 
1807 	if (ncp->nc_flag & NCF_UNRESOLVED) {
1808 		cache_unlock(ncp);
1809 		while (vfs_busy(mp, 0))
1810 			;
1811 		error = VFS_ROOT(mp, &vp);
1812 		cache_lock(ncp);
1813 
1814 		/*
1815 		 * recheck the ncp state after relocking.
1816 		 */
1817 		if (ncp->nc_flag & NCF_UNRESOLVED) {
1818 			ncp->nc_error = error;
1819 			if (error == 0) {
1820 				cache_setvp(ncp, vp);
1821 				vput(vp);
1822 			} else {
1823 				printf("[diagnostic] cache_resolve_mp: failed to resolve mount %p\n", mp);
1824 				cache_setvp(ncp, NULL);
1825 			}
1826 		} else if (error == 0) {
1827 			vput(vp);
1828 		}
1829 		vfs_unbusy(mp);
1830 	}
1831 	return(ncp->nc_error);
1832 }
1833 
1834 void
1835 cache_cleanneg(int count)
1836 {
1837 	struct namecache *ncp;
1838 
1839 	/*
1840 	 * Automode from the vnlru proc - clean out 10% of the negative cache
1841 	 * entries.
1842 	 */
1843 	if (count == 0)
1844 		count = numneg / 10 + 1;
1845 
1846 	/*
1847 	 * Attempt to clean out the specified number of negative cache
1848 	 * entries.
1849 	 */
1850 	while (count) {
1851 		ncp = TAILQ_FIRST(&ncneglist);
1852 		if (ncp == NULL) {
1853 			KKASSERT(numneg == 0);
1854 			break;
1855 		}
1856 		TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
1857 		TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
1858 		if (cache_get_nonblock(ncp) == 0)
1859 			cache_zap(ncp);
1860 		--count;
1861 	}
1862 }
1863 
1864 /*
1865  * Rehash a ncp.  Rehashing is typically required if the name changes (should
1866  * not generally occur) or the parent link changes.  This function will
1867  * unhash the ncp if the ncp is no longer hashable.
1868  */
1869 static void
1870 cache_rehash(struct namecache *ncp)
1871 {
1872 	struct nchashhead *nchpp;
1873 	u_int32_t hash;
1874 
1875 	if (ncp->nc_flag & NCF_HASHED) {
1876 		ncp->nc_flag &= ~NCF_HASHED;
1877 		LIST_REMOVE(ncp, nc_hash);
1878 	}
1879 	if (ncp->nc_nlen && ncp->nc_parent) {
1880 		hash = fnv_32_buf(ncp->nc_name, ncp->nc_nlen, FNV1_32_INIT);
1881 		hash = fnv_32_buf(&ncp->nc_parent,
1882 					sizeof(ncp->nc_parent), hash);
1883 		nchpp = NCHHASH(hash);
1884 		LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1885 		ncp->nc_flag |= NCF_HASHED;
1886 	}
1887 }
1888 
1889 /*
1890  * Name cache initialization, from vfsinit() when we are booting
1891  */
1892 void
1893 nchinit(void)
1894 {
1895 	int i;
1896 	globaldata_t gd;
1897 
1898 	/* initialise per-cpu namecache effectiveness statistics. */
1899 	for (i = 0; i < ncpus; ++i) {
1900 		gd = globaldata_find(i);
1901 		gd->gd_nchstats = &nchstats[i];
1902 	}
1903 	TAILQ_INIT(&ncneglist);
1904 	nchashtbl = hashinit(desiredvnodes*2, M_VFSCACHE, &nchash);
1905 	nclockwarn = 1 * hz;
1906 }
1907 
1908 /*
1909  * Called from start_init() to bootstrap the root filesystem.  Returns
1910  * a referenced, unlocked namecache record.
1911  */
1912 struct namecache *
1913 cache_allocroot(struct mount *mp, struct vnode *vp)
1914 {
1915 	struct namecache *ncp = cache_alloc(0);
1916 
1917 	ncp->nc_flag |= NCF_MOUNTPT | NCF_ROOT;
1918 	ncp->nc_mount = mp;
1919 	cache_setvp(ncp, vp);
1920 	return(ncp);
1921 }
1922 
1923 /*
1924  * vfs_cache_setroot()
1925  *
1926  *	Create an association between the root of our namecache and
1927  *	the root vnode.  This routine may be called several times during
1928  *	booting.
1929  *
1930  *	If the caller intends to save the returned namecache pointer somewhere
1931  *	it must cache_hold() it.
1932  */
1933 void
1934 vfs_cache_setroot(struct vnode *nvp, struct namecache *ncp)
1935 {
1936 	struct vnode *ovp;
1937 	struct namecache *oncp;
1938 
1939 	ovp = rootvnode;
1940 	oncp = rootncp;
1941 	rootvnode = nvp;
1942 	rootncp = ncp;
1943 
1944 	if (ovp)
1945 		vrele(ovp);
1946 	if (oncp)
1947 		cache_drop(oncp);
1948 }
1949 
1950 /*
1951  * XXX OLD API COMPAT FUNCTION.  This really messes up the new namecache
1952  * topology and is being removed as quickly as possible.  The new VOP_N*()
1953  * API calls are required to make specific adjustments using the supplied
1954  * ncp pointers rather then just bogusly purging random vnodes.
1955  *
1956  * Invalidate all namecache entries to a particular vnode as well as
1957  * any direct children of that vnode in the namecache.  This is a
1958  * 'catch all' purge used by filesystems that do not know any better.
1959  *
1960  * Note that the linkage between the vnode and its namecache entries will
1961  * be removed, but the namecache entries themselves might stay put due to
1962  * active references from elsewhere in the system or due to the existance of
1963  * the children.   The namecache topology is left intact even if we do not
1964  * know what the vnode association is.  Such entries will be marked
1965  * NCF_UNRESOLVED.
1966  */
1967 void
1968 cache_purge(struct vnode *vp)
1969 {
1970 	cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
1971 }
1972 
1973 /*
1974  * Flush all entries referencing a particular filesystem.
1975  *
1976  * Since we need to check it anyway, we will flush all the invalid
1977  * entries at the same time.
1978  */
1979 void
1980 cache_purgevfs(struct mount *mp)
1981 {
1982 	struct nchashhead *nchpp;
1983 	struct namecache *ncp, *nnp;
1984 
1985 	/*
1986 	 * Scan hash tables for applicable entries.
1987 	 */
1988 	for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
1989 		ncp = LIST_FIRST(nchpp);
1990 		if (ncp)
1991 			cache_hold(ncp);
1992 		while (ncp) {
1993 			nnp = LIST_NEXT(ncp, nc_hash);
1994 			if (nnp)
1995 				cache_hold(nnp);
1996 			if (ncp->nc_mount == mp) {
1997 				cache_lock(ncp);
1998 				cache_zap(ncp);
1999 			} else {
2000 				cache_drop(ncp);
2001 			}
2002 			ncp = nnp;
2003 		}
2004 	}
2005 }
2006 
2007 /*
2008  * Create a new (theoretically) unique fsmid
2009  */
2010 int64_t
2011 cache_getnewfsmid(void)
2012 {
2013 	static int fsmid_roller;
2014 	int64_t fsmid;
2015 
2016 	++fsmid_roller;
2017 	fsmid = ((int64_t)time_second << 32) |
2018 			(fsmid_roller & 0x7FFFFFFF);
2019 	return (fsmid);
2020 }
2021 
2022 
2023 static int disablecwd;
2024 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
2025 
2026 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
2027 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
2028 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
2029 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
2030 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
2031 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
2032 
2033 int
2034 sys___getcwd(struct __getcwd_args *uap)
2035 {
2036 	int buflen;
2037 	int error;
2038 	char *buf;
2039 	char *bp;
2040 
2041 	if (disablecwd)
2042 		return (ENODEV);
2043 
2044 	buflen = uap->buflen;
2045 	if (buflen < 2)
2046 		return (EINVAL);
2047 	if (buflen > MAXPATHLEN)
2048 		buflen = MAXPATHLEN;
2049 
2050 	buf = kmalloc(buflen, M_TEMP, M_WAITOK);
2051 	bp = kern_getcwd(buf, buflen, &error);
2052 	if (error == 0)
2053 		error = copyout(bp, uap->buf, strlen(bp) + 1);
2054 	kfree(buf, M_TEMP);
2055 	return (error);
2056 }
2057 
2058 char *
2059 kern_getcwd(char *buf, size_t buflen, int *error)
2060 {
2061 	struct proc *p = curproc;
2062 	char *bp;
2063 	int i, slash_prefixed;
2064 	struct filedesc *fdp;
2065 	struct namecache *ncp;
2066 
2067 	numcwdcalls++;
2068 	bp = buf;
2069 	bp += buflen - 1;
2070 	*bp = '\0';
2071 	fdp = p->p_fd;
2072 	slash_prefixed = 0;
2073 
2074 	ncp = fdp->fd_ncdir;
2075 	while (ncp && ncp != fdp->fd_nrdir && (ncp->nc_flag & NCF_ROOT) == 0) {
2076 		if (ncp->nc_flag & NCF_MOUNTPT) {
2077 			if (ncp->nc_mount == NULL) {
2078 				*error = EBADF;		/* forced unmount? */
2079 				return(NULL);
2080 			}
2081 			ncp = ncp->nc_parent;
2082 			continue;
2083 		}
2084 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
2085 			if (bp == buf) {
2086 				numcwdfail4++;
2087 				*error = ENOMEM;
2088 				return(NULL);
2089 			}
2090 			*--bp = ncp->nc_name[i];
2091 		}
2092 		if (bp == buf) {
2093 			numcwdfail4++;
2094 			*error = ENOMEM;
2095 			return(NULL);
2096 		}
2097 		*--bp = '/';
2098 		slash_prefixed = 1;
2099 		ncp = ncp->nc_parent;
2100 	}
2101 	if (ncp == NULL) {
2102 		numcwdfail2++;
2103 		*error = ENOENT;
2104 		return(NULL);
2105 	}
2106 	if (!slash_prefixed) {
2107 		if (bp == buf) {
2108 			numcwdfail4++;
2109 			*error = ENOMEM;
2110 			return(NULL);
2111 		}
2112 		*--bp = '/';
2113 	}
2114 	numcwdfound++;
2115 	*error = 0;
2116 	return (bp);
2117 }
2118 
2119 /*
2120  * Thus begins the fullpath magic.
2121  */
2122 
2123 #undef STATNODE
2124 #define STATNODE(name)							\
2125 	static u_int name;						\
2126 	SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
2127 
2128 static int disablefullpath;
2129 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
2130     &disablefullpath, 0, "");
2131 
2132 STATNODE(numfullpathcalls);
2133 STATNODE(numfullpathfail1);
2134 STATNODE(numfullpathfail2);
2135 STATNODE(numfullpathfail3);
2136 STATNODE(numfullpathfail4);
2137 STATNODE(numfullpathfound);
2138 
2139 int
2140 cache_fullpath(struct proc *p, struct namecache *ncp, char **retbuf, char **freebuf)
2141 {
2142 	char *bp, *buf;
2143 	int i, slash_prefixed;
2144 	struct namecache *fd_nrdir;
2145 
2146 	numfullpathcalls--;
2147 
2148 	buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2149 	bp = buf + MAXPATHLEN - 1;
2150 	*bp = '\0';
2151 	if (p != NULL)
2152 		fd_nrdir = p->p_fd->fd_nrdir;
2153 	else
2154 		fd_nrdir = NULL;
2155 	slash_prefixed = 0;
2156 	while (ncp && ncp != fd_nrdir && (ncp->nc_flag & NCF_ROOT) == 0) {
2157 		if (ncp->nc_flag & NCF_MOUNTPT) {
2158 			if (ncp->nc_mount == NULL) {
2159 				kfree(buf, M_TEMP);
2160 				return(EBADF);
2161 			}
2162 			ncp = ncp->nc_parent;
2163 			continue;
2164 		}
2165 		for (i = ncp->nc_nlen - 1; i >= 0; i--) {
2166 			if (bp == buf) {
2167 				numfullpathfail4++;
2168 				kfree(buf, M_TEMP);
2169 				return(ENOMEM);
2170 			}
2171 			*--bp = ncp->nc_name[i];
2172 		}
2173 		if (bp == buf) {
2174 			numfullpathfail4++;
2175 			kfree(buf, M_TEMP);
2176 			return(ENOMEM);
2177 		}
2178 		*--bp = '/';
2179 		slash_prefixed = 1;
2180 		ncp = ncp->nc_parent;
2181 	}
2182 	if (ncp == NULL) {
2183 		numfullpathfail2++;
2184 		kfree(buf, M_TEMP);
2185 		return(ENOENT);
2186 	}
2187 	if (p != NULL && (ncp->nc_flag & NCF_ROOT) && ncp != fd_nrdir) {
2188 		bp = buf + MAXPATHLEN - 1;
2189 		*bp = '\0';
2190 		slash_prefixed = 0;
2191 	}
2192 	if (!slash_prefixed) {
2193 		if (bp == buf) {
2194 			numfullpathfail4++;
2195 			kfree(buf, M_TEMP);
2196 			return(ENOMEM);
2197 		}
2198 		*--bp = '/';
2199 	}
2200 	numfullpathfound++;
2201 	*retbuf = bp;
2202 	*freebuf = buf;
2203 
2204 	return(0);
2205 }
2206 
2207 int
2208 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf)
2209 {
2210 	struct namecache *ncp;
2211 
2212 	numfullpathcalls++;
2213 	if (disablefullpath)
2214 		return (ENODEV);
2215 
2216 	if (p == NULL)
2217 		return (EINVAL);
2218 
2219 	/* vn is NULL, client wants us to use p->p_textvp */
2220 	if (vn == NULL) {
2221 		if ((vn = p->p_textvp) == NULL)
2222 			return (EINVAL);
2223 	}
2224 	TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
2225 		if (ncp->nc_nlen)
2226 			break;
2227 	}
2228 	if (ncp == NULL)
2229 		return (EINVAL);
2230 
2231 	numfullpathcalls--;
2232 	return(cache_fullpath(p, ncp, retbuf, freebuf));
2233 }
2234