xref: /dflybsd-src/sys/kern/vfs_bio.c (revision e6f30c11b835a7878a0ca02133e6bbb9abfad4ab)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.37 2005/06/06 15:02:28 dillon Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <vm/vm_page2.h>
60 
61 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
62 
63 struct	bio_ops bioops;		/* I/O operation notification */
64 
65 struct buf *buf;		/* buffer header pool */
66 struct swqueue bswlist;
67 
68 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
69 		vm_offset_t to);
70 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
71 		vm_offset_t to);
72 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
73 			       int pageno, vm_page_t m);
74 static void vfs_clean_pages(struct buf * bp);
75 static void vfs_setdirty(struct buf *bp);
76 static void vfs_vmio_release(struct buf *bp);
77 #if 0
78 static void vfs_backgroundwritedone(struct buf *bp);
79 #endif
80 static int flushbufqueues(void);
81 
82 static int bd_request;
83 
84 static void buf_daemon (void);
85 /*
86  * bogus page -- for I/O to/from partially complete buffers
87  * this is a temporary solution to the problem, but it is not
88  * really that bad.  it would be better to split the buffer
89  * for input in the case of buffers partially already in memory,
90  * but the code is intricate enough already.
91  */
92 vm_page_t bogus_page;
93 int vmiodirenable = TRUE;
94 int runningbufspace;
95 struct lwkt_token buftimetoken;  /* Interlock on setting prio and timo */
96 
97 static vm_offset_t bogus_offset;
98 
99 static int bufspace, maxbufspace,
100 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
101 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
102 static int needsbuffer;
103 static int lorunningspace, hirunningspace, runningbufreq;
104 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
105 static int numfreebuffers, lofreebuffers, hifreebuffers;
106 static int getnewbufcalls;
107 static int getnewbufrestarts;
108 
109 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
110 	&numdirtybuffers, 0, "");
111 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
112 	&lodirtybuffers, 0, "");
113 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
114 	&hidirtybuffers, 0, "");
115 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
116 	&numfreebuffers, 0, "");
117 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
118 	&lofreebuffers, 0, "");
119 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
120 	&hifreebuffers, 0, "");
121 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
122 	&runningbufspace, 0, "");
123 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
124 	&lorunningspace, 0, "");
125 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
126 	&hirunningspace, 0, "");
127 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
128 	&maxbufspace, 0, "");
129 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
130 	&hibufspace, 0, "");
131 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
132 	&lobufspace, 0, "");
133 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
134 	&bufspace, 0, "");
135 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
136 	&maxbufmallocspace, 0, "");
137 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
138 	&bufmallocspace, 0, "");
139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
140 	&getnewbufcalls, 0, "");
141 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
142 	&getnewbufrestarts, 0, "");
143 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
144 	&vmiodirenable, 0, "");
145 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
146 	&bufdefragcnt, 0, "");
147 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
148 	&buffreekvacnt, 0, "");
149 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
150 	&bufreusecnt, 0, "");
151 
152 #if 0
153 /*
154  * Disable background writes for now.  There appear to be races in the
155  * flags tests and locking operations as well as races in the completion
156  * code modifying the original bp (origbp) without holding a lock, assuming
157  * critical section protection when there might not be critical section
158  * protection.
159  *
160  * XXX disable also because the RB tree can't handle multiple blocks with
161  * the same lblkno.
162  */
163 static int dobkgrdwrite = 0;
164 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
165 	"Do background writes (honoring the BV_BKGRDWRITE flag)?");
166 #endif
167 
168 static int bufhashmask;
169 static int bufhashshift;
170 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
171 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
172 char *buf_wmesg = BUF_WMESG;
173 
174 extern int vm_swap_size;
175 
176 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
177 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
178 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
179 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
180 
181 /*
182  * Buffer hash table code.  Note that the logical block scans linearly, which
183  * gives us some L1 cache locality.
184  */
185 
186 static __inline
187 struct bufhashhdr *
188 bufhash(struct vnode *vnp, daddr_t bn)
189 {
190 	u_int64_t hashkey64;
191 	int hashkey;
192 
193 	/*
194 	 * A variation on the Fibonacci hash that Knuth credits to
195 	 * R. W. Floyd, see Knuth's _Art of Computer Programming,
196 	 * Volume 3 / Sorting and Searching_
197 	 *
198          * We reduce the argument to 32 bits before doing the hash to
199 	 * avoid the need for a slow 64x64 multiply on 32 bit platforms.
200 	 *
201 	 * sizeof(struct vnode) is 168 on i386, so toss some of the lower
202 	 * bits of the vnode address to reduce the key range, which
203 	 * improves the distribution of keys across buckets.
204 	 *
205 	 * The file system cylinder group blocks are very heavily
206 	 * used.  They are located at invervals of fbg, which is
207 	 * on the order of 89 to 94 * 2^10, depending on other
208 	 * filesystem parameters, for a 16k block size.  Smaller block
209 	 * sizes will reduce fpg approximately proportionally.  This
210 	 * will cause the cylinder group index to be hashed using the
211 	 * lower bits of the hash multiplier, which will not distribute
212 	 * the keys as uniformly in a classic Fibonacci hash where a
213 	 * relatively small number of the upper bits of the result
214 	 * are used.  Using 2^16 as a close-enough approximation to
215 	 * fpg, split the hash multiplier in half, with the upper 16
216 	 * bits being the inverse of the golden ratio, and the lower
217 	 * 16 bits being a fraction between 1/3 and 3/7 (closer to
218 	 * 3/7 in this case), that gives good experimental results.
219 	 */
220 	hashkey64 = ((u_int64_t)(uintptr_t)vnp >> 3) + (u_int64_t)bn;
221 	hashkey = (((u_int32_t)(hashkey64 + (hashkey64 >> 32)) * 0x9E376DB1u) >>
222 	    bufhashshift) & bufhashmask;
223 	return(&bufhashtbl[hashkey]);
224 }
225 
226 /*
227  *	numdirtywakeup:
228  *
229  *	If someone is blocked due to there being too many dirty buffers,
230  *	and numdirtybuffers is now reasonable, wake them up.
231  */
232 
233 static __inline void
234 numdirtywakeup(int level)
235 {
236 	if (numdirtybuffers <= level) {
237 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
238 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
239 			wakeup(&needsbuffer);
240 		}
241 	}
242 }
243 
244 /*
245  *	bufspacewakeup:
246  *
247  *	Called when buffer space is potentially available for recovery.
248  *	getnewbuf() will block on this flag when it is unable to free
249  *	sufficient buffer space.  Buffer space becomes recoverable when
250  *	bp's get placed back in the queues.
251  */
252 
253 static __inline void
254 bufspacewakeup(void)
255 {
256 	/*
257 	 * If someone is waiting for BUF space, wake them up.  Even
258 	 * though we haven't freed the kva space yet, the waiting
259 	 * process will be able to now.
260 	 */
261 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
262 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
263 		wakeup(&needsbuffer);
264 	}
265 }
266 
267 /*
268  * runningbufwakeup() - in-progress I/O accounting.
269  *
270  */
271 static __inline void
272 runningbufwakeup(struct buf *bp)
273 {
274 	if (bp->b_runningbufspace) {
275 		runningbufspace -= bp->b_runningbufspace;
276 		bp->b_runningbufspace = 0;
277 		if (runningbufreq && runningbufspace <= lorunningspace) {
278 			runningbufreq = 0;
279 			wakeup(&runningbufreq);
280 		}
281 	}
282 }
283 
284 /*
285  *	bufcountwakeup:
286  *
287  *	Called when a buffer has been added to one of the free queues to
288  *	account for the buffer and to wakeup anyone waiting for free buffers.
289  *	This typically occurs when large amounts of metadata are being handled
290  *	by the buffer cache ( else buffer space runs out first, usually ).
291  */
292 
293 static __inline void
294 bufcountwakeup(void)
295 {
296 	++numfreebuffers;
297 	if (needsbuffer) {
298 		needsbuffer &= ~VFS_BIO_NEED_ANY;
299 		if (numfreebuffers >= hifreebuffers)
300 			needsbuffer &= ~VFS_BIO_NEED_FREE;
301 		wakeup(&needsbuffer);
302 	}
303 }
304 
305 /*
306  *	waitrunningbufspace()
307  *
308  *	runningbufspace is a measure of the amount of I/O currently
309  *	running.  This routine is used in async-write situations to
310  *	prevent creating huge backups of pending writes to a device.
311  *	Only asynchronous writes are governed by this function.
312  *
313  *	Reads will adjust runningbufspace, but will not block based on it.
314  *	The read load has a side effect of reducing the allowed write load.
315  *
316  *	This does NOT turn an async write into a sync write.  It waits
317  *	for earlier writes to complete and generally returns before the
318  *	caller's write has reached the device.
319  */
320 static __inline void
321 waitrunningbufspace(void)
322 {
323 	if (runningbufspace > hirunningspace) {
324 		crit_enter();
325 		while (runningbufspace > hirunningspace) {
326 			++runningbufreq;
327 			tsleep(&runningbufreq, 0, "wdrain", 0);
328 		}
329 		crit_exit();
330 	}
331 }
332 
333 /*
334  *	vfs_buf_test_cache:
335  *
336  *	Called when a buffer is extended.  This function clears the B_CACHE
337  *	bit if the newly extended portion of the buffer does not contain
338  *	valid data.
339  */
340 static __inline__
341 void
342 vfs_buf_test_cache(struct buf *bp,
343 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
344 		  vm_page_t m)
345 {
346 	if (bp->b_flags & B_CACHE) {
347 		int base = (foff + off) & PAGE_MASK;
348 		if (vm_page_is_valid(m, base, size) == 0)
349 			bp->b_flags &= ~B_CACHE;
350 	}
351 }
352 
353 static __inline__
354 void
355 bd_wakeup(int dirtybuflevel)
356 {
357 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
358 		bd_request = 1;
359 		wakeup(&bd_request);
360 	}
361 }
362 
363 /*
364  * bd_speedup - speedup the buffer cache flushing code
365  */
366 
367 static __inline__
368 void
369 bd_speedup(void)
370 {
371 	bd_wakeup(1);
372 }
373 
374 /*
375  * Initialize buffer headers and related structures.
376  */
377 
378 caddr_t
379 bufhashinit(caddr_t vaddr)
380 {
381 	/* first, make a null hash table */
382 	bufhashshift = 29;
383 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
384 		bufhashshift--;
385 	bufhashtbl = (void *)vaddr;
386 	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
387 	--bufhashmask;
388 	return(vaddr);
389 }
390 
391 void
392 bufinit(void)
393 {
394 	struct buf *bp;
395 	int i;
396 
397 	TAILQ_INIT(&bswlist);
398 	LIST_INIT(&invalhash);
399 	lwkt_token_init(&buftimetoken);
400 
401 	for (i = 0; i <= bufhashmask; i++)
402 		LIST_INIT(&bufhashtbl[i]);
403 
404 	/* next, make a null set of free lists */
405 	for (i = 0; i < BUFFER_QUEUES; i++)
406 		TAILQ_INIT(&bufqueues[i]);
407 
408 	/* finally, initialize each buffer header and stick on empty q */
409 	for (i = 0; i < nbuf; i++) {
410 		bp = &buf[i];
411 		bzero(bp, sizeof *bp);
412 		bp->b_flags = B_INVAL;	/* we're just an empty header */
413 		bp->b_dev = NODEV;
414 		bp->b_qindex = QUEUE_EMPTY;
415 		bp->b_xflags = 0;
416 		xio_init(&bp->b_xio);
417 		LIST_INIT(&bp->b_dep);
418 		BUF_LOCKINIT(bp);
419 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
420 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
421 	}
422 
423 	/*
424 	 * maxbufspace is the absolute maximum amount of buffer space we are
425 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
426 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
427 	 * used by most other processes.  The differential is required to
428 	 * ensure that buf_daemon is able to run when other processes might
429 	 * be blocked waiting for buffer space.
430 	 *
431 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
432 	 * this may result in KVM fragmentation which is not handled optimally
433 	 * by the system.
434 	 */
435 	maxbufspace = nbuf * BKVASIZE;
436 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
437 	lobufspace = hibufspace - MAXBSIZE;
438 
439 	lorunningspace = 512 * 1024;
440 	hirunningspace = 1024 * 1024;
441 
442 /*
443  * Limit the amount of malloc memory since it is wired permanently into
444  * the kernel space.  Even though this is accounted for in the buffer
445  * allocation, we don't want the malloced region to grow uncontrolled.
446  * The malloc scheme improves memory utilization significantly on average
447  * (small) directories.
448  */
449 	maxbufmallocspace = hibufspace / 20;
450 
451 /*
452  * Reduce the chance of a deadlock occuring by limiting the number
453  * of delayed-write dirty buffers we allow to stack up.
454  */
455 	hidirtybuffers = nbuf / 4 + 20;
456 	numdirtybuffers = 0;
457 /*
458  * To support extreme low-memory systems, make sure hidirtybuffers cannot
459  * eat up all available buffer space.  This occurs when our minimum cannot
460  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
461  * BKVASIZE'd (8K) buffers.
462  */
463 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
464 		hidirtybuffers >>= 1;
465 	}
466 	lodirtybuffers = hidirtybuffers / 2;
467 
468 /*
469  * Try to keep the number of free buffers in the specified range,
470  * and give special processes (e.g. like buf_daemon) access to an
471  * emergency reserve.
472  */
473 	lofreebuffers = nbuf / 18 + 5;
474 	hifreebuffers = 2 * lofreebuffers;
475 	numfreebuffers = nbuf;
476 
477 /*
478  * Maximum number of async ops initiated per buf_daemon loop.  This is
479  * somewhat of a hack at the moment, we really need to limit ourselves
480  * based on the number of bytes of I/O in-transit that were initiated
481  * from buf_daemon.
482  */
483 
484 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
485 	bogus_page = vm_page_alloc(kernel_object,
486 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
487 			VM_ALLOC_NORMAL);
488 	vmstats.v_wire_count++;
489 
490 }
491 
492 /*
493  * bfreekva() - free the kva allocation for a buffer.
494  *
495  *	Must be called from a critical section as this is the only locking for
496  *	buffer_map.
497  *
498  *	Since this call frees up buffer space, we call bufspacewakeup().
499  */
500 static void
501 bfreekva(struct buf * bp)
502 {
503 	int count;
504 
505 	if (bp->b_kvasize) {
506 		++buffreekvacnt;
507 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
508 		vm_map_lock(buffer_map);
509 		bufspace -= bp->b_kvasize;
510 		vm_map_delete(buffer_map,
511 		    (vm_offset_t) bp->b_kvabase,
512 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
513 		    &count
514 		);
515 		vm_map_unlock(buffer_map);
516 		vm_map_entry_release(count);
517 		bp->b_kvasize = 0;
518 		bufspacewakeup();
519 	}
520 }
521 
522 /*
523  *	bremfree:
524  *
525  *	Remove the buffer from the appropriate free list.
526  */
527 void
528 bremfree(struct buf * bp)
529 {
530 	int old_qindex;
531 
532 	crit_enter();
533 	old_qindex = bp->b_qindex;
534 
535 	if (bp->b_qindex != QUEUE_NONE) {
536 		KASSERT(BUF_REFCNTNB(bp) == 1,
537 				("bremfree: bp %p not locked",bp));
538 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
539 		bp->b_qindex = QUEUE_NONE;
540 	} else {
541 		if (BUF_REFCNTNB(bp) <= 1)
542 			panic("bremfree: removing a buffer not on a queue");
543 	}
544 
545 	/*
546 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
547 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
548 	 * the buffer was free and we must decrement numfreebuffers.
549 	 */
550 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
551 		switch(old_qindex) {
552 		case QUEUE_DIRTY:
553 		case QUEUE_CLEAN:
554 		case QUEUE_EMPTY:
555 		case QUEUE_EMPTYKVA:
556 			--numfreebuffers;
557 			break;
558 		default:
559 			break;
560 		}
561 	}
562 	crit_exit();
563 }
564 
565 
566 /*
567  * Get a buffer with the specified data.  Look in the cache first.  We
568  * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
569  * is set, the buffer is valid and we do not have to do anything ( see
570  * getblk() ).
571  */
572 int
573 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp)
574 {
575 	struct buf *bp;
576 
577 	bp = getblk(vp, blkno, size, 0, 0);
578 	*bpp = bp;
579 
580 	/* if not found in cache, do some I/O */
581 	if ((bp->b_flags & B_CACHE) == 0) {
582 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
583 		bp->b_flags |= B_READ;
584 		bp->b_flags &= ~(B_ERROR | B_INVAL);
585 		vfs_busy_pages(bp, 0);
586 		VOP_STRATEGY(vp, bp);
587 		return (biowait(bp));
588 	}
589 	return (0);
590 }
591 
592 /*
593  * Operates like bread, but also starts asynchronous I/O on
594  * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
595  * to initiating I/O . If B_CACHE is set, the buffer is valid
596  * and we do not have to do anything.
597  */
598 int
599 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno,
600 	int *rabsize, int cnt, struct buf ** bpp)
601 {
602 	struct buf *bp, *rabp;
603 	int i;
604 	int rv = 0, readwait = 0;
605 
606 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
607 
608 	/* if not found in cache, do some I/O */
609 	if ((bp->b_flags & B_CACHE) == 0) {
610 		bp->b_flags |= B_READ;
611 		bp->b_flags &= ~(B_ERROR | B_INVAL);
612 		vfs_busy_pages(bp, 0);
613 		VOP_STRATEGY(vp, bp);
614 		++readwait;
615 	}
616 
617 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
618 		if (inmem(vp, *rablkno))
619 			continue;
620 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
621 
622 		if ((rabp->b_flags & B_CACHE) == 0) {
623 			rabp->b_flags |= B_READ | B_ASYNC;
624 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
625 			vfs_busy_pages(rabp, 0);
626 			BUF_KERNPROC(rabp);
627 			VOP_STRATEGY(vp, rabp);
628 		} else {
629 			brelse(rabp);
630 		}
631 	}
632 
633 	if (readwait) {
634 		rv = biowait(bp);
635 	}
636 	return (rv);
637 }
638 
639 /*
640  * Write, release buffer on completion.  (Done by iodone
641  * if async).  Do not bother writing anything if the buffer
642  * is invalid.
643  *
644  * Note that we set B_CACHE here, indicating that buffer is
645  * fully valid and thus cacheable.  This is true even of NFS
646  * now so we set it generally.  This could be set either here
647  * or in biodone() since the I/O is synchronous.  We put it
648  * here.
649  */
650 int
651 bwrite(struct buf * bp)
652 {
653 	int oldflags;
654 #if 0
655 	struct buf *newbp;
656 #endif
657 
658 	if (bp->b_flags & B_INVAL) {
659 		brelse(bp);
660 		return (0);
661 	}
662 
663 	oldflags = bp->b_flags;
664 
665 	if (BUF_REFCNTNB(bp) == 0)
666 		panic("bwrite: buffer is not busy???");
667 	crit_enter();
668 	/*
669 	 * If a background write is already in progress, delay
670 	 * writing this block if it is asynchronous. Otherwise
671 	 * wait for the background write to complete.
672 	 */
673 	if (bp->b_xflags & BX_BKGRDINPROG) {
674 		if (bp->b_flags & B_ASYNC) {
675 			crit_exit();
676 			bdwrite(bp);
677 			return (0);
678 		}
679 		bp->b_xflags |= BX_BKGRDWAIT;
680 		tsleep(&bp->b_xflags, 0, "biord", 0);
681 		if (bp->b_xflags & BX_BKGRDINPROG)
682 			panic("bwrite: still writing");
683 	}
684 
685 	/* Mark the buffer clean */
686 	bundirty(bp);
687 
688 #if 0
689 	/*
690 	 * If this buffer is marked for background writing and we
691 	 * do not have to wait for it, make a copy and write the
692 	 * copy so as to leave this buffer ready for further use.
693 	 *
694 	 * This optimization eats a lot of memory.  If we have a page
695 	 * or buffer shortfull we can't do it.
696 	 *
697 	 * XXX DISABLED!  This had to be removed to support the RB_TREE
698 	 * work and, really, this isn't the best place to do this sort
699 	 * of thing anyway.  We really need a device copy-on-write feature.
700 	 */
701 	if (dobkgrdwrite &&
702 	    (bp->b_xflags & BX_BKGRDWRITE) &&
703 	    (bp->b_flags & B_ASYNC) &&
704 	    !vm_page_count_severe() &&
705 	    !buf_dirty_count_severe()) {
706 		if (bp->b_flags & B_CALL)
707 			panic("bwrite: need chained iodone");
708 
709 		/* get a new block */
710 		newbp = geteblk(bp->b_bufsize);
711 
712 		/* set it to be identical to the old block */
713 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
714 		newbp->b_lblkno = bp->b_lblkno;
715 		newbp->b_blkno = bp->b_blkno;
716 		newbp->b_offset = bp->b_offset;
717 		newbp->b_iodone = vfs_backgroundwritedone;
718 		newbp->b_flags |= B_ASYNC | B_CALL;
719 		newbp->b_flags &= ~B_INVAL;
720 		bgetvp(bp->b_vp, newbp);
721 
722 		/* move over the dependencies */
723 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
724 			(*bioops.io_movedeps)(bp, newbp);
725 
726 		/*
727 		 * Initiate write on the copy, release the original to
728 		 * the B_LOCKED queue so that it cannot go away until
729 		 * the background write completes. If not locked it could go
730 		 * away and then be reconstituted while it was being written.
731 		 * If the reconstituted buffer were written, we could end up
732 		 * with two background copies being written at the same time.
733 		 */
734 		bp->b_xflags |= BX_BKGRDINPROG;
735 		bp->b_flags |= B_LOCKED;
736 		bqrelse(bp);
737 		bp = newbp;
738 	}
739 #endif
740 
741 	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
742 	bp->b_flags |= B_CACHE;
743 
744 	bp->b_vp->v_numoutput++;
745 	vfs_busy_pages(bp, 1);
746 
747 	/*
748 	 * Normal bwrites pipeline writes
749 	 */
750 	bp->b_runningbufspace = bp->b_bufsize;
751 	runningbufspace += bp->b_runningbufspace;
752 
753 	crit_exit();
754 	if (oldflags & B_ASYNC)
755 		BUF_KERNPROC(bp);
756 	VOP_STRATEGY(bp->b_vp, bp);
757 
758 	if ((oldflags & B_ASYNC) == 0) {
759 		int rtval = biowait(bp);
760 		brelse(bp);
761 		return (rtval);
762 	} else if ((oldflags & B_NOWDRAIN) == 0) {
763 		/*
764 		 * don't allow the async write to saturate the I/O
765 		 * system.  Deadlocks can occur only if a device strategy
766 		 * routine (like in VN) turns around and issues another
767 		 * high-level write, in which case B_NOWDRAIN is expected
768 		 * to be set.   Otherwise we will not deadlock here because
769 		 * we are blocking waiting for I/O that is already in-progress
770 		 * to complete.
771 		 */
772 		waitrunningbufspace();
773 	}
774 
775 	return (0);
776 }
777 
778 #if 0
779 /*
780  * Complete a background write started from bwrite.
781  */
782 static void
783 vfs_backgroundwritedone(struct buf *bp)
784 {
785 	struct buf *origbp;
786 
787 	/*
788 	 * Find the original buffer that we are writing.
789 	 */
790 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
791 		panic("backgroundwritedone: lost buffer");
792 	/*
793 	 * Process dependencies then return any unfinished ones.
794 	 */
795 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
796 		(*bioops.io_complete)(bp);
797 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
798 		(*bioops.io_movedeps)(bp, origbp);
799 	/*
800 	 * Clear the BX_BKGRDINPROG flag in the original buffer
801 	 * and awaken it if it is waiting for the write to complete.
802 	 * If BX_BKGRDINPROG is not set in the original buffer it must
803 	 * have been released and re-instantiated - which is not legal.
804 	 */
805 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
806 	origbp->b_xflags &= ~BX_BKGRDINPROG;
807 	if (origbp->b_xflags & BX_BKGRDWAIT) {
808 		origbp->b_xflags &= ~BX_BKGRDWAIT;
809 		wakeup(&origbp->b_xflags);
810 	}
811 	/*
812 	 * Clear the B_LOCKED flag and remove it from the locked
813 	 * queue if it currently resides there.
814 	 */
815 	origbp->b_flags &= ~B_LOCKED;
816 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
817 		bremfree(origbp);
818 		bqrelse(origbp);
819 	}
820 	/*
821 	 * This buffer is marked B_NOCACHE, so when it is released
822 	 * by biodone, it will be tossed. We mark it with B_READ
823 	 * to avoid biodone doing a second vwakeup.
824 	 */
825 	bp->b_flags |= B_NOCACHE | B_READ;
826 	bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE);
827 	bp->b_iodone = 0;
828 	biodone(bp);
829 }
830 #endif
831 
832 /*
833  * Delayed write. (Buffer is marked dirty).  Do not bother writing
834  * anything if the buffer is marked invalid.
835  *
836  * Note that since the buffer must be completely valid, we can safely
837  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
838  * biodone() in order to prevent getblk from writing the buffer
839  * out synchronously.
840  */
841 void
842 bdwrite(struct buf *bp)
843 {
844 	if (BUF_REFCNTNB(bp) == 0)
845 		panic("bdwrite: buffer is not busy");
846 
847 	if (bp->b_flags & B_INVAL) {
848 		brelse(bp);
849 		return;
850 	}
851 	bdirty(bp);
852 
853 	/*
854 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
855 	 * true even of NFS now.
856 	 */
857 	bp->b_flags |= B_CACHE;
858 
859 	/*
860 	 * This bmap keeps the system from needing to do the bmap later,
861 	 * perhaps when the system is attempting to do a sync.  Since it
862 	 * is likely that the indirect block -- or whatever other datastructure
863 	 * that the filesystem needs is still in memory now, it is a good
864 	 * thing to do this.  Note also, that if the pageout daemon is
865 	 * requesting a sync -- there might not be enough memory to do
866 	 * the bmap then...  So, this is important to do.
867 	 */
868 	if (bp->b_lblkno == bp->b_blkno) {
869 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
870 	}
871 
872 	/*
873 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
874 	 */
875 	vfs_setdirty(bp);
876 
877 	/*
878 	 * We need to do this here to satisfy the vnode_pager and the
879 	 * pageout daemon, so that it thinks that the pages have been
880 	 * "cleaned".  Note that since the pages are in a delayed write
881 	 * buffer -- the VFS layer "will" see that the pages get written
882 	 * out on the next sync, or perhaps the cluster will be completed.
883 	 */
884 	vfs_clean_pages(bp);
885 	bqrelse(bp);
886 
887 	/*
888 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
889 	 * buffers (midpoint between our recovery point and our stall
890 	 * point).
891 	 */
892 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
893 
894 	/*
895 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
896 	 * due to the softdep code.
897 	 */
898 }
899 
900 /*
901  *	bdirty:
902  *
903  *	Turn buffer into delayed write request.  We must clear B_READ and
904  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
905  *	itself to properly update it in the dirty/clean lists.  We mark it
906  *	B_DONE to ensure that any asynchronization of the buffer properly
907  *	clears B_DONE ( else a panic will occur later ).
908  *
909  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
910  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
911  *	should only be called if the buffer is known-good.
912  *
913  *	Since the buffer is not on a queue, we do not update the numfreebuffers
914  *	count.
915  *
916  *	Must be called from a critical section.
917  *	The buffer must be on QUEUE_NONE.
918  */
919 void
920 bdirty(struct buf *bp)
921 {
922 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
923 	bp->b_flags &= ~(B_READ|B_RELBUF);
924 
925 	if ((bp->b_flags & B_DELWRI) == 0) {
926 		bp->b_flags |= B_DONE | B_DELWRI;
927 		reassignbuf(bp, bp->b_vp);
928 		++numdirtybuffers;
929 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
930 	}
931 }
932 
933 /*
934  *	bundirty:
935  *
936  *	Clear B_DELWRI for buffer.
937  *
938  *	Since the buffer is not on a queue, we do not update the numfreebuffers
939  *	count.
940  *
941  *	Must be called from a critical section.
942  *
943  *	The buffer is typically on QUEUE_NONE but there is one case in
944  *	brelse() that calls this function after placing the buffer on
945  *	a different queue.
946  */
947 
948 void
949 bundirty(struct buf *bp)
950 {
951 	if (bp->b_flags & B_DELWRI) {
952 		bp->b_flags &= ~B_DELWRI;
953 		reassignbuf(bp, bp->b_vp);
954 		--numdirtybuffers;
955 		numdirtywakeup(lodirtybuffers);
956 	}
957 	/*
958 	 * Since it is now being written, we can clear its deferred write flag.
959 	 */
960 	bp->b_flags &= ~B_DEFERRED;
961 }
962 
963 /*
964  *	bawrite:
965  *
966  *	Asynchronous write.  Start output on a buffer, but do not wait for
967  *	it to complete.  The buffer is released when the output completes.
968  *
969  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
970  *	B_INVAL buffers.  Not us.
971  */
972 void
973 bawrite(struct buf * bp)
974 {
975 	bp->b_flags |= B_ASYNC;
976 	(void) VOP_BWRITE(bp->b_vp, bp);
977 }
978 
979 /*
980  *	bowrite:
981  *
982  *	Ordered write.  Start output on a buffer, and flag it so that the
983  *	device will write it in the order it was queued.  The buffer is
984  *	released when the output completes.  bwrite() ( or the VOP routine
985  *	anyway ) is responsible for handling B_INVAL buffers.
986  */
987 int
988 bowrite(struct buf * bp)
989 {
990 	bp->b_flags |= B_ORDERED | B_ASYNC;
991 	return (VOP_BWRITE(bp->b_vp, bp));
992 }
993 
994 /*
995  *	bwillwrite:
996  *
997  *	Called prior to the locking of any vnodes when we are expecting to
998  *	write.  We do not want to starve the buffer cache with too many
999  *	dirty buffers so we block here.  By blocking prior to the locking
1000  *	of any vnodes we attempt to avoid the situation where a locked vnode
1001  *	prevents the various system daemons from flushing related buffers.
1002  */
1003 
1004 void
1005 bwillwrite(void)
1006 {
1007 	if (numdirtybuffers >= hidirtybuffers) {
1008 		crit_enter();
1009 		while (numdirtybuffers >= hidirtybuffers) {
1010 			bd_wakeup(1);
1011 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1012 			tsleep(&needsbuffer, 0, "flswai", 0);
1013 		}
1014 		crit_exit();
1015 	}
1016 }
1017 
1018 /*
1019  * Return true if we have too many dirty buffers.
1020  */
1021 int
1022 buf_dirty_count_severe(void)
1023 {
1024 	return(numdirtybuffers >= hidirtybuffers);
1025 }
1026 
1027 /*
1028  *	brelse:
1029  *
1030  *	Release a busy buffer and, if requested, free its resources.  The
1031  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1032  *	to be accessed later as a cache entity or reused for other purposes.
1033  */
1034 void
1035 brelse(struct buf * bp)
1036 {
1037 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1038 
1039 	crit_enter();
1040 
1041 	if (bp->b_flags & B_LOCKED)
1042 		bp->b_flags &= ~B_ERROR;
1043 
1044 	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
1045 		/*
1046 		 * Failed write, redirty.  Must clear B_ERROR to prevent
1047 		 * pages from being scrapped.  If B_INVAL is set then
1048 		 * this case is not run and the next case is run to
1049 		 * destroy the buffer.  B_INVAL can occur if the buffer
1050 		 * is outside the range supported by the underlying device.
1051 		 */
1052 		bp->b_flags &= ~B_ERROR;
1053 		bdirty(bp);
1054 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
1055 	    (bp->b_bufsize <= 0)) {
1056 		/*
1057 		 * Either a failed I/O or we were asked to free or not
1058 		 * cache the buffer.
1059 		 */
1060 		bp->b_flags |= B_INVAL;
1061 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1062 			(*bioops.io_deallocate)(bp);
1063 		if (bp->b_flags & B_DELWRI) {
1064 			--numdirtybuffers;
1065 			numdirtywakeup(lodirtybuffers);
1066 		}
1067 		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
1068 		if ((bp->b_flags & B_VMIO) == 0) {
1069 			if (bp->b_bufsize)
1070 				allocbuf(bp, 0);
1071 			if (bp->b_vp)
1072 				brelvp(bp);
1073 		}
1074 	}
1075 
1076 	/*
1077 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1078 	 * is called with B_DELWRI set, the underlying pages may wind up
1079 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1080 	 * because pages associated with a B_DELWRI bp are marked clean.
1081 	 *
1082 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1083 	 * if B_DELWRI is set.
1084 	 *
1085 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1086 	 * on pages to return pages to the VM page queues.
1087 	 */
1088 	if (bp->b_flags & B_DELWRI)
1089 		bp->b_flags &= ~B_RELBUF;
1090 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1091 		bp->b_flags |= B_RELBUF;
1092 
1093 	/*
1094 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1095 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1096 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1097 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1098 	 *
1099 	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1100 	 * invalidated.  B_ERROR cannot be set for a failed write unless the
1101 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1102 	 *
1103 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1104 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1105 	 * the commit state and we cannot afford to lose the buffer. If the
1106 	 * buffer has a background write in progress, we need to keep it
1107 	 * around to prevent it from being reconstituted and starting a second
1108 	 * background write.
1109 	 */
1110 	if ((bp->b_flags & B_VMIO)
1111 	    && !(bp->b_vp->v_tag == VT_NFS &&
1112 		 !vn_isdisk(bp->b_vp, NULL) &&
1113 		 (bp->b_flags & B_DELWRI))
1114 	    ) {
1115 
1116 		int i, j, resid;
1117 		vm_page_t m;
1118 		off_t foff;
1119 		vm_pindex_t poff;
1120 		vm_object_t obj;
1121 		struct vnode *vp;
1122 
1123 		vp = bp->b_vp;
1124 
1125 		/*
1126 		 * Get the base offset and length of the buffer.  Note that
1127 		 * in the VMIO case if the buffer block size is not
1128 		 * page-aligned then b_data pointer may not be page-aligned.
1129 		 * But our b_xio.xio_pages array *IS* page aligned.
1130 		 *
1131 		 * block sizes less then DEV_BSIZE (usually 512) are not
1132 		 * supported due to the page granularity bits (m->valid,
1133 		 * m->dirty, etc...).
1134 		 *
1135 		 * See man buf(9) for more information
1136 		 */
1137 
1138 		resid = bp->b_bufsize;
1139 		foff = bp->b_offset;
1140 
1141 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1142 			m = bp->b_xio.xio_pages[i];
1143 			vm_page_flag_clear(m, PG_ZERO);
1144 			/*
1145 			 * If we hit a bogus page, fixup *all* of them
1146 			 * now.  Note that we left these pages wired
1147 			 * when we removed them so they had better exist,
1148 			 * and they cannot be ripped out from under us so
1149 			 * no critical section protection is necessary.
1150 			 */
1151 			if (m == bogus_page) {
1152 				VOP_GETVOBJECT(vp, &obj);
1153 				poff = OFF_TO_IDX(bp->b_offset);
1154 
1155 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1156 					vm_page_t mtmp;
1157 
1158 					mtmp = bp->b_xio.xio_pages[j];
1159 					if (mtmp == bogus_page) {
1160 						mtmp = vm_page_lookup(obj, poff + j);
1161 						if (!mtmp) {
1162 							panic("brelse: page missing");
1163 						}
1164 						bp->b_xio.xio_pages[j] = mtmp;
1165 					}
1166 				}
1167 
1168 				if ((bp->b_flags & B_INVAL) == 0) {
1169 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1170 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1171 				}
1172 				m = bp->b_xio.xio_pages[i];
1173 			}
1174 
1175 			/*
1176 			 * Invalidate the backing store if B_NOCACHE is set
1177 			 * (e.g. used with vinvalbuf()).  If this is NFS
1178 			 * we impose a requirement that the block size be
1179 			 * a multiple of PAGE_SIZE and create a temporary
1180 			 * hack to basically invalidate the whole page.  The
1181 			 * problem is that NFS uses really odd buffer sizes
1182 			 * especially when tracking piecemeal writes and
1183 			 * it also vinvalbuf()'s a lot, which would result
1184 			 * in only partial page validation and invalidation
1185 			 * here.  If the file page is mmap()'d, however,
1186 			 * all the valid bits get set so after we invalidate
1187 			 * here we would end up with weird m->valid values
1188 			 * like 0xfc.  nfs_getpages() can't handle this so
1189 			 * we clear all the valid bits for the NFS case
1190 			 * instead of just some of them.
1191 			 *
1192 			 * The real bug is the VM system having to set m->valid
1193 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1194 			 * itself is an artifact of the whole 512-byte
1195 			 * granular mess that exists to support odd block
1196 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1197 			 * A complete rewrite is required.
1198 			 */
1199 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1200 				int poffset = foff & PAGE_MASK;
1201 				int presid;
1202 
1203 				presid = PAGE_SIZE - poffset;
1204 				if (bp->b_vp->v_tag == VT_NFS &&
1205 				    bp->b_vp->v_type == VREG) {
1206 					; /* entire page */
1207 				} else if (presid > resid) {
1208 					presid = resid;
1209 				}
1210 				KASSERT(presid >= 0, ("brelse: extra page"));
1211 				vm_page_set_invalid(m, poffset, presid);
1212 			}
1213 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1214 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1215 		}
1216 
1217 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1218 			vfs_vmio_release(bp);
1219 
1220 	} else if (bp->b_flags & B_VMIO) {
1221 
1222 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1223 			vfs_vmio_release(bp);
1224 
1225 	}
1226 
1227 	if (bp->b_qindex != QUEUE_NONE)
1228 		panic("brelse: free buffer onto another queue???");
1229 	if (BUF_REFCNTNB(bp) > 1) {
1230 		/* Temporary panic to verify exclusive locking */
1231 		/* This panic goes away when we allow shared refs */
1232 		panic("brelse: multiple refs");
1233 		/* do not release to free list */
1234 		BUF_UNLOCK(bp);
1235 		crit_exit();
1236 		return;
1237 	}
1238 
1239 	/* enqueue */
1240 
1241 	/* buffers with no memory */
1242 	if (bp->b_bufsize == 0) {
1243 		bp->b_flags |= B_INVAL;
1244 		bp->b_xflags &= ~BX_BKGRDWRITE;
1245 		if (bp->b_xflags & BX_BKGRDINPROG)
1246 			panic("losing buffer 1");
1247 		if (bp->b_kvasize) {
1248 			bp->b_qindex = QUEUE_EMPTYKVA;
1249 		} else {
1250 			bp->b_qindex = QUEUE_EMPTY;
1251 		}
1252 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1253 		LIST_REMOVE(bp, b_hash);
1254 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1255 		bp->b_dev = NODEV;
1256 	/* buffers with junk contents */
1257 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1258 		bp->b_flags |= B_INVAL;
1259 		bp->b_xflags &= ~BX_BKGRDWRITE;
1260 		if (bp->b_xflags & BX_BKGRDINPROG)
1261 			panic("losing buffer 2");
1262 		bp->b_qindex = QUEUE_CLEAN;
1263 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1264 		LIST_REMOVE(bp, b_hash);
1265 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1266 		bp->b_dev = NODEV;
1267 
1268 	/* buffers that are locked */
1269 	} else if (bp->b_flags & B_LOCKED) {
1270 		bp->b_qindex = QUEUE_LOCKED;
1271 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1272 
1273 	/* remaining buffers */
1274 	} else {
1275 		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1276 		case B_DELWRI | B_AGE:
1277 		    bp->b_qindex = QUEUE_DIRTY;
1278 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1279 		    break;
1280 		case B_DELWRI:
1281 		    bp->b_qindex = QUEUE_DIRTY;
1282 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1283 		    break;
1284 		case B_AGE:
1285 		    bp->b_qindex = QUEUE_CLEAN;
1286 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1287 		    break;
1288 		default:
1289 		    bp->b_qindex = QUEUE_CLEAN;
1290 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1291 		    break;
1292 		}
1293 	}
1294 
1295 	/*
1296 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1297 	 * on the correct queue.
1298 	 */
1299 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1300 		bundirty(bp);
1301 
1302 	/*
1303 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1304 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1305 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1306 	 * if B_INVAL is set ).
1307 	 */
1308 
1309 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1310 		bufcountwakeup();
1311 
1312 	/*
1313 	 * Something we can maybe free or reuse
1314 	 */
1315 	if (bp->b_bufsize || bp->b_kvasize)
1316 		bufspacewakeup();
1317 
1318 	/* unlock */
1319 	BUF_UNLOCK(bp);
1320 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1321 			B_DIRECT | B_NOWDRAIN);
1322 	crit_exit();
1323 }
1324 
1325 /*
1326  * Release a buffer back to the appropriate queue but do not try to free
1327  * it.  The buffer is expected to be used again soon.
1328  *
1329  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1330  * biodone() to requeue an async I/O on completion.  It is also used when
1331  * known good buffers need to be requeued but we think we may need the data
1332  * again soon.
1333  *
1334  * XXX we should be able to leave the B_RELBUF hint set on completion.
1335  */
1336 void
1337 bqrelse(struct buf * bp)
1338 {
1339 	crit_enter();
1340 
1341 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1342 
1343 	if (bp->b_qindex != QUEUE_NONE)
1344 		panic("bqrelse: free buffer onto another queue???");
1345 	if (BUF_REFCNTNB(bp) > 1) {
1346 		/* do not release to free list */
1347 		panic("bqrelse: multiple refs");
1348 		BUF_UNLOCK(bp);
1349 		crit_exit();
1350 		return;
1351 	}
1352 	if (bp->b_flags & B_LOCKED) {
1353 		bp->b_flags &= ~B_ERROR;
1354 		bp->b_qindex = QUEUE_LOCKED;
1355 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1356 		/* buffers with stale but valid contents */
1357 	} else if (bp->b_flags & B_DELWRI) {
1358 		bp->b_qindex = QUEUE_DIRTY;
1359 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1360 	} else if (vm_page_count_severe()) {
1361 		/*
1362 		 * We are too low on memory, we have to try to free the
1363 		 * buffer (most importantly: the wired pages making up its
1364 		 * backing store) *now*.
1365 		 */
1366 		crit_exit();
1367 		brelse(bp);
1368 		return;
1369 	} else {
1370 		bp->b_qindex = QUEUE_CLEAN;
1371 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1372 	}
1373 
1374 	if ((bp->b_flags & B_LOCKED) == 0 &&
1375 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1376 		bufcountwakeup();
1377 	}
1378 
1379 	/*
1380 	 * Something we can maybe free or reuse.
1381 	 */
1382 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1383 		bufspacewakeup();
1384 
1385 	/* unlock */
1386 	BUF_UNLOCK(bp);
1387 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1388 	crit_exit();
1389 }
1390 
1391 static void
1392 vfs_vmio_release(struct buf *bp)
1393 {
1394 	int i;
1395 	vm_page_t m;
1396 
1397 	crit_enter();
1398 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1399 		m = bp->b_xio.xio_pages[i];
1400 		bp->b_xio.xio_pages[i] = NULL;
1401 		/*
1402 		 * In order to keep page LRU ordering consistent, put
1403 		 * everything on the inactive queue.
1404 		 */
1405 		vm_page_unwire(m, 0);
1406 		/*
1407 		 * We don't mess with busy pages, it is
1408 		 * the responsibility of the process that
1409 		 * busied the pages to deal with them.
1410 		 */
1411 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1412 			continue;
1413 
1414 		if (m->wire_count == 0) {
1415 			vm_page_flag_clear(m, PG_ZERO);
1416 			/*
1417 			 * Might as well free the page if we can and it has
1418 			 * no valid data.  We also free the page if the
1419 			 * buffer was used for direct I/O.
1420 			 */
1421 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1422 				vm_page_busy(m);
1423 				vm_page_protect(m, VM_PROT_NONE);
1424 				vm_page_free(m);
1425 			} else if (bp->b_flags & B_DIRECT) {
1426 				vm_page_try_to_free(m);
1427 			} else if (vm_page_count_severe()) {
1428 				vm_page_try_to_cache(m);
1429 			}
1430 		}
1431 	}
1432 	crit_exit();
1433 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1434 	if (bp->b_bufsize) {
1435 		bufspacewakeup();
1436 		bp->b_bufsize = 0;
1437 	}
1438 	bp->b_xio.xio_npages = 0;
1439 	bp->b_flags &= ~B_VMIO;
1440 	if (bp->b_vp)
1441 		brelvp(bp);
1442 }
1443 
1444 /*
1445  * Check to see if a block is currently memory resident.
1446  */
1447 struct buf *
1448 gbincore(struct vnode * vp, daddr_t blkno)
1449 {
1450 	struct buf *bp;
1451 	struct bufhashhdr *bh;
1452 
1453 	bh = bufhash(vp, blkno);
1454 
1455 	/* Search hash chain */
1456 	LIST_FOREACH(bp, bh, b_hash) {
1457 		/* hit */
1458 		if (bp->b_vp == vp && bp->b_lblkno == blkno)
1459 			break;
1460 	}
1461 	return (bp);
1462 }
1463 
1464 /*
1465  *	vfs_bio_awrite:
1466  *
1467  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1468  *	This is much better then the old way of writing only one buffer at
1469  *	a time.  Note that we may not be presented with the buffers in the
1470  *	correct order, so we search for the cluster in both directions.
1471  */
1472 int
1473 vfs_bio_awrite(struct buf * bp)
1474 {
1475 	int i;
1476 	int j;
1477 	daddr_t lblkno = bp->b_lblkno;
1478 	struct vnode *vp = bp->b_vp;
1479 	int ncl;
1480 	struct buf *bpa;
1481 	int nwritten;
1482 	int size;
1483 	int maxcl;
1484 
1485 	crit_enter();
1486 	/*
1487 	 * right now we support clustered writing only to regular files.  If
1488 	 * we find a clusterable block we could be in the middle of a cluster
1489 	 * rather then at the beginning.
1490 	 */
1491 	if ((vp->v_type == VREG) &&
1492 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1493 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1494 
1495 		size = vp->v_mount->mnt_stat.f_iosize;
1496 		maxcl = MAXPHYS / size;
1497 
1498 		for (i = 1; i < maxcl; i++) {
1499 			if ((bpa = gbincore(vp, lblkno + i)) &&
1500 			    BUF_REFCNT(bpa) == 0 &&
1501 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1502 			    (B_DELWRI | B_CLUSTEROK)) &&
1503 			    (bpa->b_bufsize == size)) {
1504 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1505 				    (bpa->b_blkno !=
1506 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1507 					break;
1508 			} else {
1509 				break;
1510 			}
1511 		}
1512 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1513 			if ((bpa = gbincore(vp, lblkno - j)) &&
1514 			    BUF_REFCNT(bpa) == 0 &&
1515 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1516 			    (B_DELWRI | B_CLUSTEROK)) &&
1517 			    (bpa->b_bufsize == size)) {
1518 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1519 				    (bpa->b_blkno !=
1520 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1521 					break;
1522 			} else {
1523 				break;
1524 			}
1525 		}
1526 		--j;
1527 		ncl = i + j;
1528 		/*
1529 		 * this is a possible cluster write
1530 		 */
1531 		if (ncl != 1) {
1532 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1533 			crit_exit();
1534 			return nwritten;
1535 		}
1536 	}
1537 
1538 	BUF_LOCK(bp, LK_EXCLUSIVE);
1539 	bremfree(bp);
1540 	bp->b_flags |= B_ASYNC;
1541 
1542 	crit_exit();
1543 	/*
1544 	 * default (old) behavior, writing out only one block
1545 	 *
1546 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1547 	 */
1548 	nwritten = bp->b_bufsize;
1549 	(void) VOP_BWRITE(bp->b_vp, bp);
1550 
1551 	return nwritten;
1552 }
1553 
1554 /*
1555  *	getnewbuf:
1556  *
1557  *	Find and initialize a new buffer header, freeing up existing buffers
1558  *	in the bufqueues as necessary.  The new buffer is returned locked.
1559  *
1560  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1561  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1562  *
1563  *	We block if:
1564  *		We have insufficient buffer headers
1565  *		We have insufficient buffer space
1566  *		buffer_map is too fragmented ( space reservation fails )
1567  *		If we have to flush dirty buffers ( but we try to avoid this )
1568  *
1569  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1570  *	Instead we ask the buf daemon to do it for us.  We attempt to
1571  *	avoid piecemeal wakeups of the pageout daemon.
1572  */
1573 
1574 static struct buf *
1575 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1576 {
1577 	struct buf *bp;
1578 	struct buf *nbp;
1579 	int defrag = 0;
1580 	int nqindex;
1581 	static int flushingbufs;
1582 
1583 	/*
1584 	 * We can't afford to block since we might be holding a vnode lock,
1585 	 * which may prevent system daemons from running.  We deal with
1586 	 * low-memory situations by proactively returning memory and running
1587 	 * async I/O rather then sync I/O.
1588 	 */
1589 
1590 	++getnewbufcalls;
1591 	--getnewbufrestarts;
1592 restart:
1593 	++getnewbufrestarts;
1594 
1595 	/*
1596 	 * Setup for scan.  If we do not have enough free buffers,
1597 	 * we setup a degenerate case that immediately fails.  Note
1598 	 * that if we are specially marked process, we are allowed to
1599 	 * dip into our reserves.
1600 	 *
1601 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1602 	 *
1603 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1604 	 * However, there are a number of cases (defragging, reusing, ...)
1605 	 * where we cannot backup.
1606 	 */
1607 	nqindex = QUEUE_EMPTYKVA;
1608 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1609 
1610 	if (nbp == NULL) {
1611 		/*
1612 		 * If no EMPTYKVA buffers and we are either
1613 		 * defragging or reusing, locate a CLEAN buffer
1614 		 * to free or reuse.  If bufspace useage is low
1615 		 * skip this step so we can allocate a new buffer.
1616 		 */
1617 		if (defrag || bufspace >= lobufspace) {
1618 			nqindex = QUEUE_CLEAN;
1619 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1620 		}
1621 
1622 		/*
1623 		 * If we could not find or were not allowed to reuse a
1624 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1625 		 * buffer.  We can only use an EMPTY buffer if allocating
1626 		 * its KVA would not otherwise run us out of buffer space.
1627 		 */
1628 		if (nbp == NULL && defrag == 0 &&
1629 		    bufspace + maxsize < hibufspace) {
1630 			nqindex = QUEUE_EMPTY;
1631 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1632 		}
1633 	}
1634 
1635 	/*
1636 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1637 	 * depending.
1638 	 */
1639 
1640 	while ((bp = nbp) != NULL) {
1641 		int qindex = nqindex;
1642 
1643 		/*
1644 		 * Calculate next bp ( we can only use it if we do not block
1645 		 * or do other fancy things ).
1646 		 */
1647 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1648 			switch(qindex) {
1649 			case QUEUE_EMPTY:
1650 				nqindex = QUEUE_EMPTYKVA;
1651 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1652 					break;
1653 				/* fall through */
1654 			case QUEUE_EMPTYKVA:
1655 				nqindex = QUEUE_CLEAN;
1656 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1657 					break;
1658 				/* fall through */
1659 			case QUEUE_CLEAN:
1660 				/*
1661 				 * nbp is NULL.
1662 				 */
1663 				break;
1664 			}
1665 		}
1666 
1667 		/*
1668 		 * Sanity Checks
1669 		 */
1670 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1671 
1672 		/*
1673 		 * Note: we no longer distinguish between VMIO and non-VMIO
1674 		 * buffers.
1675 		 */
1676 
1677 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1678 
1679 		/*
1680 		 * If we are defragging then we need a buffer with
1681 		 * b_kvasize != 0.  XXX this situation should no longer
1682 		 * occur, if defrag is non-zero the buffer's b_kvasize
1683 		 * should also be non-zero at this point.  XXX
1684 		 */
1685 		if (defrag && bp->b_kvasize == 0) {
1686 			printf("Warning: defrag empty buffer %p\n", bp);
1687 			continue;
1688 		}
1689 
1690 		/*
1691 		 * Start freeing the bp.  This is somewhat involved.  nbp
1692 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1693 		 */
1694 
1695 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1696 			panic("getnewbuf: locked buf");
1697 		bremfree(bp);
1698 
1699 		if (qindex == QUEUE_CLEAN) {
1700 			if (bp->b_flags & B_VMIO) {
1701 				bp->b_flags &= ~B_ASYNC;
1702 				vfs_vmio_release(bp);
1703 			}
1704 			if (bp->b_vp)
1705 				brelvp(bp);
1706 		}
1707 
1708 		/*
1709 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1710 		 * the scan from this point on.
1711 		 *
1712 		 * Get the rest of the buffer freed up.  b_kva* is still
1713 		 * valid after this operation.
1714 		 */
1715 
1716 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1717 			(*bioops.io_deallocate)(bp);
1718 		if (bp->b_xflags & BX_BKGRDINPROG)
1719 			panic("losing buffer 3");
1720 		LIST_REMOVE(bp, b_hash);
1721 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1722 
1723 		/*
1724 		 * critical section protection is not required when
1725 		 * scrapping a buffer's contents because it is already
1726 		 * wired.
1727 		 */
1728 		if (bp->b_bufsize)
1729 			allocbuf(bp, 0);
1730 
1731 		bp->b_flags = 0;
1732 		bp->b_xflags = 0;
1733 		bp->b_dev = NODEV;
1734 		bp->b_vp = NULL;
1735 		bp->b_blkno = bp->b_lblkno = 0;
1736 		bp->b_offset = NOOFFSET;
1737 		bp->b_iodone = 0;
1738 		bp->b_error = 0;
1739 		bp->b_resid = 0;
1740 		bp->b_bcount = 0;
1741 		bp->b_xio.xio_npages = 0;
1742 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1743 
1744 		LIST_INIT(&bp->b_dep);
1745 
1746 		/*
1747 		 * If we are defragging then free the buffer.
1748 		 */
1749 		if (defrag) {
1750 			bp->b_flags |= B_INVAL;
1751 			bfreekva(bp);
1752 			brelse(bp);
1753 			defrag = 0;
1754 			goto restart;
1755 		}
1756 
1757 		/*
1758 		 * If we are overcomitted then recover the buffer and its
1759 		 * KVM space.  This occurs in rare situations when multiple
1760 		 * processes are blocked in getnewbuf() or allocbuf().
1761 		 */
1762 		if (bufspace >= hibufspace)
1763 			flushingbufs = 1;
1764 		if (flushingbufs && bp->b_kvasize != 0) {
1765 			bp->b_flags |= B_INVAL;
1766 			bfreekva(bp);
1767 			brelse(bp);
1768 			goto restart;
1769 		}
1770 		if (bufspace < lobufspace)
1771 			flushingbufs = 0;
1772 		break;
1773 	}
1774 
1775 	/*
1776 	 * If we exhausted our list, sleep as appropriate.  We may have to
1777 	 * wakeup various daemons and write out some dirty buffers.
1778 	 *
1779 	 * Generally we are sleeping due to insufficient buffer space.
1780 	 */
1781 
1782 	if (bp == NULL) {
1783 		int flags;
1784 		char *waitmsg;
1785 
1786 		if (defrag) {
1787 			flags = VFS_BIO_NEED_BUFSPACE;
1788 			waitmsg = "nbufkv";
1789 		} else if (bufspace >= hibufspace) {
1790 			waitmsg = "nbufbs";
1791 			flags = VFS_BIO_NEED_BUFSPACE;
1792 		} else {
1793 			waitmsg = "newbuf";
1794 			flags = VFS_BIO_NEED_ANY;
1795 		}
1796 
1797 		bd_speedup();	/* heeeelp */
1798 
1799 		needsbuffer |= flags;
1800 		while (needsbuffer & flags) {
1801 			if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1802 				return (NULL);
1803 		}
1804 	} else {
1805 		/*
1806 		 * We finally have a valid bp.  We aren't quite out of the
1807 		 * woods, we still have to reserve kva space.  In order
1808 		 * to keep fragmentation sane we only allocate kva in
1809 		 * BKVASIZE chunks.
1810 		 */
1811 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1812 
1813 		if (maxsize != bp->b_kvasize) {
1814 			vm_offset_t addr = 0;
1815 			int count;
1816 
1817 			bfreekva(bp);
1818 
1819 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1820 			vm_map_lock(buffer_map);
1821 
1822 			if (vm_map_findspace(buffer_map,
1823 				    vm_map_min(buffer_map), maxsize,
1824 				    maxsize, &addr)) {
1825 				/*
1826 				 * Uh oh.  Buffer map is to fragmented.  We
1827 				 * must defragment the map.
1828 				 */
1829 				vm_map_unlock(buffer_map);
1830 				vm_map_entry_release(count);
1831 				++bufdefragcnt;
1832 				defrag = 1;
1833 				bp->b_flags |= B_INVAL;
1834 				brelse(bp);
1835 				goto restart;
1836 			}
1837 			if (addr) {
1838 				vm_map_insert(buffer_map, &count,
1839 					NULL, 0,
1840 					addr, addr + maxsize,
1841 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1842 
1843 				bp->b_kvabase = (caddr_t) addr;
1844 				bp->b_kvasize = maxsize;
1845 				bufspace += bp->b_kvasize;
1846 				++bufreusecnt;
1847 			}
1848 			vm_map_unlock(buffer_map);
1849 			vm_map_entry_release(count);
1850 		}
1851 		bp->b_data = bp->b_kvabase;
1852 	}
1853 	return(bp);
1854 }
1855 
1856 /*
1857  *	buf_daemon:
1858  *
1859  *	buffer flushing daemon.  Buffers are normally flushed by the
1860  *	update daemon but if it cannot keep up this process starts to
1861  *	take the load in an attempt to prevent getnewbuf() from blocking.
1862  */
1863 
1864 static struct thread *bufdaemonthread;
1865 
1866 static struct kproc_desc buf_kp = {
1867 	"bufdaemon",
1868 	buf_daemon,
1869 	&bufdaemonthread
1870 };
1871 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1872 
1873 static void
1874 buf_daemon()
1875 {
1876 	/*
1877 	 * This process needs to be suspended prior to shutdown sync.
1878 	 */
1879 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1880 	    bufdaemonthread, SHUTDOWN_PRI_LAST);
1881 
1882 	/*
1883 	 * This process is allowed to take the buffer cache to the limit
1884 	 */
1885 	crit_enter();
1886 
1887 	for (;;) {
1888 		kproc_suspend_loop();
1889 
1890 		/*
1891 		 * Do the flush.  Limit the amount of in-transit I/O we
1892 		 * allow to build up, otherwise we would completely saturate
1893 		 * the I/O system.  Wakeup any waiting processes before we
1894 		 * normally would so they can run in parallel with our drain.
1895 		 */
1896 		while (numdirtybuffers > lodirtybuffers) {
1897 			if (flushbufqueues() == 0)
1898 				break;
1899 			waitrunningbufspace();
1900 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1901 		}
1902 
1903 		/*
1904 		 * Only clear bd_request if we have reached our low water
1905 		 * mark.  The buf_daemon normally waits 5 seconds and
1906 		 * then incrementally flushes any dirty buffers that have
1907 		 * built up, within reason.
1908 		 *
1909 		 * If we were unable to hit our low water mark and couldn't
1910 		 * find any flushable buffers, we sleep half a second.
1911 		 * Otherwise we loop immediately.
1912 		 */
1913 		if (numdirtybuffers <= lodirtybuffers) {
1914 			/*
1915 			 * We reached our low water mark, reset the
1916 			 * request and sleep until we are needed again.
1917 			 * The sleep is just so the suspend code works.
1918 			 */
1919 			bd_request = 0;
1920 			tsleep(&bd_request, 0, "psleep", hz);
1921 		} else {
1922 			/*
1923 			 * We couldn't find any flushable dirty buffers but
1924 			 * still have too many dirty buffers, we
1925 			 * have to sleep and try again.  (rare)
1926 			 */
1927 			tsleep(&bd_request, 0, "qsleep", hz / 2);
1928 		}
1929 	}
1930 }
1931 
1932 /*
1933  *	flushbufqueues:
1934  *
1935  *	Try to flush a buffer in the dirty queue.  We must be careful to
1936  *	free up B_INVAL buffers instead of write them, which NFS is
1937  *	particularly sensitive to.
1938  */
1939 
1940 static int
1941 flushbufqueues(void)
1942 {
1943 	struct buf *bp;
1944 	int r = 0;
1945 
1946 	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1947 
1948 	while (bp) {
1949 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1950 		if ((bp->b_flags & B_DELWRI) != 0 &&
1951 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1952 			if (bp->b_flags & B_INVAL) {
1953 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1954 					panic("flushbufqueues: locked buf");
1955 				bremfree(bp);
1956 				brelse(bp);
1957 				++r;
1958 				break;
1959 			}
1960 			if (LIST_FIRST(&bp->b_dep) != NULL &&
1961 			    bioops.io_countdeps &&
1962 			    (bp->b_flags & B_DEFERRED) == 0 &&
1963 			    (*bioops.io_countdeps)(bp, 0)) {
1964 				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1965 				    bp, b_freelist);
1966 				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1967 				    bp, b_freelist);
1968 				bp->b_flags |= B_DEFERRED;
1969 				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1970 				continue;
1971 			}
1972 			vfs_bio_awrite(bp);
1973 			++r;
1974 			break;
1975 		}
1976 		bp = TAILQ_NEXT(bp, b_freelist);
1977 	}
1978 	return (r);
1979 }
1980 
1981 /*
1982  * Check to see if a block is currently memory resident.
1983  */
1984 struct buf *
1985 incore(struct vnode * vp, daddr_t blkno)
1986 {
1987 	struct buf *bp;
1988 
1989 	crit_enter();
1990 	bp = gbincore(vp, blkno);
1991 	crit_exit();
1992 	return (bp);
1993 }
1994 
1995 /*
1996  * Returns true if no I/O is needed to access the associated VM object.
1997  * This is like incore except it also hunts around in the VM system for
1998  * the data.
1999  *
2000  * Note that we ignore vm_page_free() races from interrupts against our
2001  * lookup, since if the caller is not protected our return value will not
2002  * be any more valid then otherwise once we exit the critical section.
2003  */
2004 int
2005 inmem(struct vnode * vp, daddr_t blkno)
2006 {
2007 	vm_object_t obj;
2008 	vm_offset_t toff, tinc, size;
2009 	vm_page_t m;
2010 	vm_ooffset_t off;
2011 
2012 	if (incore(vp, blkno))
2013 		return 1;
2014 	if (vp->v_mount == NULL)
2015 		return 0;
2016 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2017  		return 0;
2018 
2019 	size = PAGE_SIZE;
2020 	if (size > vp->v_mount->mnt_stat.f_iosize)
2021 		size = vp->v_mount->mnt_stat.f_iosize;
2022 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2023 
2024 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2025 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2026 		if (!m)
2027 			return 0;
2028 		tinc = size;
2029 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2030 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2031 		if (vm_page_is_valid(m,
2032 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2033 			return 0;
2034 	}
2035 	return 1;
2036 }
2037 
2038 /*
2039  *	vfs_setdirty:
2040  *
2041  *	Sets the dirty range for a buffer based on the status of the dirty
2042  *	bits in the pages comprising the buffer.
2043  *
2044  *	The range is limited to the size of the buffer.
2045  *
2046  *	This routine is primarily used by NFS, but is generalized for the
2047  *	B_VMIO case.
2048  */
2049 static void
2050 vfs_setdirty(struct buf *bp)
2051 {
2052 	int i;
2053 	vm_object_t object;
2054 
2055 	/*
2056 	 * Degenerate case - empty buffer
2057 	 */
2058 
2059 	if (bp->b_bufsize == 0)
2060 		return;
2061 
2062 	/*
2063 	 * We qualify the scan for modified pages on whether the
2064 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2065 	 * is not cleared simply by protecting pages off.
2066 	 */
2067 
2068 	if ((bp->b_flags & B_VMIO) == 0)
2069 		return;
2070 
2071 	object = bp->b_xio.xio_pages[0]->object;
2072 
2073 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2074 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2075 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2076 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2077 
2078 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2079 		vm_offset_t boffset;
2080 		vm_offset_t eoffset;
2081 
2082 		/*
2083 		 * test the pages to see if they have been modified directly
2084 		 * by users through the VM system.
2085 		 */
2086 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2087 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2088 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2089 		}
2090 
2091 		/*
2092 		 * Calculate the encompassing dirty range, boffset and eoffset,
2093 		 * (eoffset - boffset) bytes.
2094 		 */
2095 
2096 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2097 			if (bp->b_xio.xio_pages[i]->dirty)
2098 				break;
2099 		}
2100 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2101 
2102 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2103 			if (bp->b_xio.xio_pages[i]->dirty) {
2104 				break;
2105 			}
2106 		}
2107 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2108 
2109 		/*
2110 		 * Fit it to the buffer.
2111 		 */
2112 
2113 		if (eoffset > bp->b_bcount)
2114 			eoffset = bp->b_bcount;
2115 
2116 		/*
2117 		 * If we have a good dirty range, merge with the existing
2118 		 * dirty range.
2119 		 */
2120 
2121 		if (boffset < eoffset) {
2122 			if (bp->b_dirtyoff > boffset)
2123 				bp->b_dirtyoff = boffset;
2124 			if (bp->b_dirtyend < eoffset)
2125 				bp->b_dirtyend = eoffset;
2126 		}
2127 	}
2128 }
2129 
2130 /*
2131  *	getblk:
2132  *
2133  *	Get a block given a specified block and offset into a file/device.
2134  *	The buffers B_DONE bit will be cleared on return, making it almost
2135  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2136  *	return.  The caller should clear B_INVAL prior to initiating a
2137  *	READ.
2138  *
2139  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2140  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2141  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2142  *	without doing any of those things the system will likely believe
2143  *	the buffer to be valid (especially if it is not B_VMIO), and the
2144  *	next getblk() will return the buffer with B_CACHE set.
2145  *
2146  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2147  *	an existing buffer.
2148  *
2149  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2150  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2151  *	and then cleared based on the backing VM.  If the previous buffer is
2152  *	non-0-sized but invalid, B_CACHE will be cleared.
2153  *
2154  *	If getblk() must create a new buffer, the new buffer is returned with
2155  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2156  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2157  *	backing VM.
2158  *
2159  *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2160  *	B_CACHE bit is clear.
2161  *
2162  *	What this means, basically, is that the caller should use B_CACHE to
2163  *	determine whether the buffer is fully valid or not and should clear
2164  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2165  *	the buffer by loading its data area with something, the caller needs
2166  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2167  *	the caller should set B_CACHE ( as an optimization ), else the caller
2168  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2169  *	a write attempt or if it was a successfull read.  If the caller
2170  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2171  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2172  */
2173 struct buf *
2174 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2175 {
2176 	struct buf *bp;
2177 	struct bufhashhdr *bh;
2178 
2179 	if (size > MAXBSIZE)
2180 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2181 
2182 	crit_enter();
2183 loop:
2184 	/*
2185 	 * Block if we are low on buffers.   Certain processes are allowed
2186 	 * to completely exhaust the buffer cache.
2187          *
2188          * If this check ever becomes a bottleneck it may be better to
2189          * move it into the else, when gbincore() fails.  At the moment
2190          * it isn't a problem.
2191 	 *
2192 	 * XXX remove, we cannot afford to block anywhere if holding a vnode
2193 	 * lock in low-memory situation, so take it to the max.
2194          */
2195 	if (numfreebuffers == 0) {
2196 		if (!curproc)
2197 			return NULL;
2198 		needsbuffer |= VFS_BIO_NEED_ANY;
2199 		tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2200 	}
2201 
2202 	if ((bp = gbincore(vp, blkno))) {
2203 		/*
2204 		 * Buffer is in-core.  If the buffer is not busy, it must
2205 		 * be on a queue.
2206 		 */
2207 
2208 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2209 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2210 			    "getblk", slpflag, slptimeo) == ENOLCK)
2211 				goto loop;
2212 			crit_exit();
2213 			return (struct buf *) NULL;
2214 		}
2215 
2216 		/*
2217 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2218 		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2219 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2220 		 * backing VM cache.
2221 		 */
2222 		if (bp->b_flags & B_INVAL)
2223 			bp->b_flags &= ~B_CACHE;
2224 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2225 			bp->b_flags |= B_CACHE;
2226 		bremfree(bp);
2227 
2228 		/*
2229 		 * check for size inconsistancies for non-VMIO case.
2230 		 */
2231 
2232 		if (bp->b_bcount != size) {
2233 			if ((bp->b_flags & B_VMIO) == 0 ||
2234 			    (size > bp->b_kvasize)) {
2235 				if (bp->b_flags & B_DELWRI) {
2236 					bp->b_flags |= B_NOCACHE;
2237 					VOP_BWRITE(bp->b_vp, bp);
2238 				} else {
2239 					if ((bp->b_flags & B_VMIO) &&
2240 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2241 						bp->b_flags |= B_RELBUF;
2242 						brelse(bp);
2243 					} else {
2244 						bp->b_flags |= B_NOCACHE;
2245 						VOP_BWRITE(bp->b_vp, bp);
2246 					}
2247 				}
2248 				goto loop;
2249 			}
2250 		}
2251 
2252 		/*
2253 		 * If the size is inconsistant in the VMIO case, we can resize
2254 		 * the buffer.  This might lead to B_CACHE getting set or
2255 		 * cleared.  If the size has not changed, B_CACHE remains
2256 		 * unchanged from its previous state.
2257 		 */
2258 
2259 		if (bp->b_bcount != size)
2260 			allocbuf(bp, size);
2261 
2262 		KASSERT(bp->b_offset != NOOFFSET,
2263 		    ("getblk: no buffer offset"));
2264 
2265 		/*
2266 		 * A buffer with B_DELWRI set and B_CACHE clear must
2267 		 * be committed before we can return the buffer in
2268 		 * order to prevent the caller from issuing a read
2269 		 * ( due to B_CACHE not being set ) and overwriting
2270 		 * it.
2271 		 *
2272 		 * Most callers, including NFS and FFS, need this to
2273 		 * operate properly either because they assume they
2274 		 * can issue a read if B_CACHE is not set, or because
2275 		 * ( for example ) an uncached B_DELWRI might loop due
2276 		 * to softupdates re-dirtying the buffer.  In the latter
2277 		 * case, B_CACHE is set after the first write completes,
2278 		 * preventing further loops.
2279 		 *
2280 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2281 		 * above while extending the buffer, we cannot allow the
2282 		 * buffer to remain with B_CACHE set after the write
2283 		 * completes or it will represent a corrupt state.  To
2284 		 * deal with this we set B_NOCACHE to scrap the buffer
2285 		 * after the write.
2286 		 *
2287 		 * We might be able to do something fancy, like setting
2288 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2289 		 * so the below call doesn't set B_CACHE, but that gets real
2290 		 * confusing.  This is much easier.
2291 		 */
2292 
2293 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2294 			bp->b_flags |= B_NOCACHE;
2295 			VOP_BWRITE(bp->b_vp, bp);
2296 			goto loop;
2297 		}
2298 
2299 		crit_exit();
2300 		bp->b_flags &= ~B_DONE;
2301 	} else {
2302 		/*
2303 		 * Buffer is not in-core, create new buffer.  The buffer
2304 		 * returned by getnewbuf() is locked.  Note that the returned
2305 		 * buffer is also considered valid (not marked B_INVAL).
2306 		 *
2307 		 * Calculating the offset for the I/O requires figuring out
2308 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2309 		 * the mount's f_iosize otherwise.  If the vnode does not
2310 		 * have an associated mount we assume that the passed size is
2311 		 * the block size.
2312 		 *
2313 		 * Note that vn_isdisk() cannot be used here since it may
2314 		 * return a failure for numerous reasons.   Note that the
2315 		 * buffer size may be larger then the block size (the caller
2316 		 * will use block numbers with the proper multiple).  Beware
2317 		 * of using any v_* fields which are part of unions.  In
2318 		 * particular, in DragonFly the mount point overloading
2319 		 * mechanism is such that the underlying directory (with a
2320 		 * non-NULL v_mountedhere) is not a special case.
2321 		 */
2322 		int bsize, maxsize, vmio;
2323 		off_t offset;
2324 
2325 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2326 			bsize = DEV_BSIZE;
2327 		else if (vp->v_mount)
2328 			bsize = vp->v_mount->mnt_stat.f_iosize;
2329 		else
2330 			bsize = size;
2331 
2332 		offset = (off_t)blkno * bsize;
2333 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2334 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2335 		maxsize = imax(maxsize, bsize);
2336 
2337 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2338 			if (slpflag || slptimeo) {
2339 				crit_exit();
2340 				return NULL;
2341 			}
2342 			goto loop;
2343 		}
2344 
2345 		/*
2346 		 * This code is used to make sure that a buffer is not
2347 		 * created while the getnewbuf routine is blocked.
2348 		 * This can be a problem whether the vnode is locked or not.
2349 		 * If the buffer is created out from under us, we have to
2350 		 * throw away the one we just created.  There is now window
2351 		 * race because we are safely running in a critical section
2352 		 * from the point of the duplicate buffer creation through
2353 		 * to here, and we've locked the buffer.
2354 		 */
2355 		if (gbincore(vp, blkno)) {
2356 			bp->b_flags |= B_INVAL;
2357 			brelse(bp);
2358 			goto loop;
2359 		}
2360 
2361 		/*
2362 		 * Insert the buffer into the hash, so that it can
2363 		 * be found by incore.
2364 		 */
2365 		bp->b_blkno = bp->b_lblkno = blkno;
2366 		bp->b_offset = offset;
2367 
2368 		bgetvp(vp, bp);
2369 		LIST_REMOVE(bp, b_hash);
2370 		bh = bufhash(vp, blkno);
2371 		LIST_INSERT_HEAD(bh, bp, b_hash);
2372 
2373 		/*
2374 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2375 		 * buffer size starts out as 0, B_CACHE will be set by
2376 		 * allocbuf() for the VMIO case prior to it testing the
2377 		 * backing store for validity.
2378 		 */
2379 
2380 		if (vmio) {
2381 			bp->b_flags |= B_VMIO;
2382 #if defined(VFS_BIO_DEBUG)
2383 			if (vn_canvmio(vp) != TRUE)
2384 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2385 #endif
2386 		} else {
2387 			bp->b_flags &= ~B_VMIO;
2388 		}
2389 
2390 		allocbuf(bp, size);
2391 
2392 		crit_exit();
2393 		bp->b_flags &= ~B_DONE;
2394 	}
2395 	return (bp);
2396 }
2397 
2398 /*
2399  * Get an empty, disassociated buffer of given size.  The buffer is initially
2400  * set to B_INVAL.
2401  *
2402  * critical section protection is not required for the allocbuf() call
2403  * because races are impossible here.
2404  */
2405 struct buf *
2406 geteblk(int size)
2407 {
2408 	struct buf *bp;
2409 	int maxsize;
2410 
2411 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2412 
2413 	crit_enter();
2414 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2415 		;
2416 	crit_exit();
2417 	allocbuf(bp, size);
2418 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2419 	return (bp);
2420 }
2421 
2422 
2423 /*
2424  * This code constitutes the buffer memory from either anonymous system
2425  * memory (in the case of non-VMIO operations) or from an associated
2426  * VM object (in the case of VMIO operations).  This code is able to
2427  * resize a buffer up or down.
2428  *
2429  * Note that this code is tricky, and has many complications to resolve
2430  * deadlock or inconsistant data situations.  Tread lightly!!!
2431  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2432  * the caller.  Calling this code willy nilly can result in the loss of data.
2433  *
2434  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2435  * B_CACHE for the non-VMIO case.
2436  *
2437  * This routine does not need to be called from a critical section but you
2438  * must own the buffer.
2439  */
2440 int
2441 allocbuf(struct buf *bp, int size)
2442 {
2443 	int newbsize, mbsize;
2444 	int i;
2445 
2446 	if (BUF_REFCNT(bp) == 0)
2447 		panic("allocbuf: buffer not busy");
2448 
2449 	if (bp->b_kvasize < size)
2450 		panic("allocbuf: buffer too small");
2451 
2452 	if ((bp->b_flags & B_VMIO) == 0) {
2453 		caddr_t origbuf;
2454 		int origbufsize;
2455 		/*
2456 		 * Just get anonymous memory from the kernel.  Don't
2457 		 * mess with B_CACHE.
2458 		 */
2459 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2460 #if !defined(NO_B_MALLOC)
2461 		if (bp->b_flags & B_MALLOC)
2462 			newbsize = mbsize;
2463 		else
2464 #endif
2465 			newbsize = round_page(size);
2466 
2467 		if (newbsize < bp->b_bufsize) {
2468 #if !defined(NO_B_MALLOC)
2469 			/*
2470 			 * malloced buffers are not shrunk
2471 			 */
2472 			if (bp->b_flags & B_MALLOC) {
2473 				if (newbsize) {
2474 					bp->b_bcount = size;
2475 				} else {
2476 					free(bp->b_data, M_BIOBUF);
2477 					if (bp->b_bufsize) {
2478 						bufmallocspace -= bp->b_bufsize;
2479 						bufspacewakeup();
2480 						bp->b_bufsize = 0;
2481 					}
2482 					bp->b_data = bp->b_kvabase;
2483 					bp->b_bcount = 0;
2484 					bp->b_flags &= ~B_MALLOC;
2485 				}
2486 				return 1;
2487 			}
2488 #endif
2489 			vm_hold_free_pages(
2490 			    bp,
2491 			    (vm_offset_t) bp->b_data + newbsize,
2492 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2493 		} else if (newbsize > bp->b_bufsize) {
2494 #if !defined(NO_B_MALLOC)
2495 			/*
2496 			 * We only use malloced memory on the first allocation.
2497 			 * and revert to page-allocated memory when the buffer
2498 			 * grows.
2499 			 */
2500 			if ( (bufmallocspace < maxbufmallocspace) &&
2501 				(bp->b_bufsize == 0) &&
2502 				(mbsize <= PAGE_SIZE/2)) {
2503 
2504 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2505 				bp->b_bufsize = mbsize;
2506 				bp->b_bcount = size;
2507 				bp->b_flags |= B_MALLOC;
2508 				bufmallocspace += mbsize;
2509 				return 1;
2510 			}
2511 #endif
2512 			origbuf = NULL;
2513 			origbufsize = 0;
2514 #if !defined(NO_B_MALLOC)
2515 			/*
2516 			 * If the buffer is growing on its other-than-first allocation,
2517 			 * then we revert to the page-allocation scheme.
2518 			 */
2519 			if (bp->b_flags & B_MALLOC) {
2520 				origbuf = bp->b_data;
2521 				origbufsize = bp->b_bufsize;
2522 				bp->b_data = bp->b_kvabase;
2523 				if (bp->b_bufsize) {
2524 					bufmallocspace -= bp->b_bufsize;
2525 					bufspacewakeup();
2526 					bp->b_bufsize = 0;
2527 				}
2528 				bp->b_flags &= ~B_MALLOC;
2529 				newbsize = round_page(newbsize);
2530 			}
2531 #endif
2532 			vm_hold_load_pages(
2533 			    bp,
2534 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2535 			    (vm_offset_t) bp->b_data + newbsize);
2536 #if !defined(NO_B_MALLOC)
2537 			if (origbuf) {
2538 				bcopy(origbuf, bp->b_data, origbufsize);
2539 				free(origbuf, M_BIOBUF);
2540 			}
2541 #endif
2542 		}
2543 	} else {
2544 		vm_page_t m;
2545 		int desiredpages;
2546 
2547 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2548 		desiredpages = (size == 0) ? 0 :
2549 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2550 
2551 #if !defined(NO_B_MALLOC)
2552 		if (bp->b_flags & B_MALLOC)
2553 			panic("allocbuf: VMIO buffer can't be malloced");
2554 #endif
2555 		/*
2556 		 * Set B_CACHE initially if buffer is 0 length or will become
2557 		 * 0-length.
2558 		 */
2559 		if (size == 0 || bp->b_bufsize == 0)
2560 			bp->b_flags |= B_CACHE;
2561 
2562 		if (newbsize < bp->b_bufsize) {
2563 			/*
2564 			 * DEV_BSIZE aligned new buffer size is less then the
2565 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2566 			 * if we have to remove any pages.
2567 			 */
2568 			if (desiredpages < bp->b_xio.xio_npages) {
2569 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2570 					/*
2571 					 * the page is not freed here -- it
2572 					 * is the responsibility of
2573 					 * vnode_pager_setsize
2574 					 */
2575 					m = bp->b_xio.xio_pages[i];
2576 					KASSERT(m != bogus_page,
2577 					    ("allocbuf: bogus page found"));
2578 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2579 						;
2580 
2581 					bp->b_xio.xio_pages[i] = NULL;
2582 					vm_page_unwire(m, 0);
2583 				}
2584 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2585 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2586 				bp->b_xio.xio_npages = desiredpages;
2587 			}
2588 		} else if (size > bp->b_bcount) {
2589 			/*
2590 			 * We are growing the buffer, possibly in a
2591 			 * byte-granular fashion.
2592 			 */
2593 			struct vnode *vp;
2594 			vm_object_t obj;
2595 			vm_offset_t toff;
2596 			vm_offset_t tinc;
2597 
2598 			/*
2599 			 * Step 1, bring in the VM pages from the object,
2600 			 * allocating them if necessary.  We must clear
2601 			 * B_CACHE if these pages are not valid for the
2602 			 * range covered by the buffer.
2603 			 *
2604 			 * critical section protection is required to protect
2605 			 * against interrupts unbusying and freeing pages
2606 			 * between our vm_page_lookup() and our
2607 			 * busycheck/wiring call.
2608 			 */
2609 			vp = bp->b_vp;
2610 			VOP_GETVOBJECT(vp, &obj);
2611 
2612 			crit_enter();
2613 			while (bp->b_xio.xio_npages < desiredpages) {
2614 				vm_page_t m;
2615 				vm_pindex_t pi;
2616 
2617 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_xio.xio_npages;
2618 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2619 					/*
2620 					 * note: must allocate system pages
2621 					 * since blocking here could intefere
2622 					 * with paging I/O, no matter which
2623 					 * process we are.
2624 					 */
2625 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2626 					if (m == NULL) {
2627 						vm_wait();
2628 						vm_pageout_deficit += desiredpages -
2629 							bp->b_xio.xio_npages;
2630 					} else {
2631 						vm_page_wire(m);
2632 						vm_page_wakeup(m);
2633 						bp->b_flags &= ~B_CACHE;
2634 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2635 						++bp->b_xio.xio_npages;
2636 					}
2637 					continue;
2638 				}
2639 
2640 				/*
2641 				 * We found a page.  If we have to sleep on it,
2642 				 * retry because it might have gotten freed out
2643 				 * from under us.
2644 				 *
2645 				 * We can only test PG_BUSY here.  Blocking on
2646 				 * m->busy might lead to a deadlock:
2647 				 *
2648 				 *  vm_fault->getpages->cluster_read->allocbuf
2649 				 *
2650 				 */
2651 
2652 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2653 					continue;
2654 
2655 				/*
2656 				 * We have a good page.  Should we wakeup the
2657 				 * page daemon?
2658 				 */
2659 				if ((curthread != pagethread) &&
2660 				    ((m->queue - m->pc) == PQ_CACHE) &&
2661 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2662 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2663 					pagedaemon_wakeup();
2664 				}
2665 				vm_page_flag_clear(m, PG_ZERO);
2666 				vm_page_wire(m);
2667 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2668 				++bp->b_xio.xio_npages;
2669 			}
2670 			crit_exit();
2671 
2672 			/*
2673 			 * Step 2.  We've loaded the pages into the buffer,
2674 			 * we have to figure out if we can still have B_CACHE
2675 			 * set.  Note that B_CACHE is set according to the
2676 			 * byte-granular range ( bcount and size ), new the
2677 			 * aligned range ( newbsize ).
2678 			 *
2679 			 * The VM test is against m->valid, which is DEV_BSIZE
2680 			 * aligned.  Needless to say, the validity of the data
2681 			 * needs to also be DEV_BSIZE aligned.  Note that this
2682 			 * fails with NFS if the server or some other client
2683 			 * extends the file's EOF.  If our buffer is resized,
2684 			 * B_CACHE may remain set! XXX
2685 			 */
2686 
2687 			toff = bp->b_bcount;
2688 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2689 
2690 			while ((bp->b_flags & B_CACHE) && toff < size) {
2691 				vm_pindex_t pi;
2692 
2693 				if (tinc > (size - toff))
2694 					tinc = size - toff;
2695 
2696 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2697 				    PAGE_SHIFT;
2698 
2699 				vfs_buf_test_cache(
2700 				    bp,
2701 				    bp->b_offset,
2702 				    toff,
2703 				    tinc,
2704 				    bp->b_xio.xio_pages[pi]
2705 				);
2706 				toff += tinc;
2707 				tinc = PAGE_SIZE;
2708 			}
2709 
2710 			/*
2711 			 * Step 3, fixup the KVM pmap.  Remember that
2712 			 * bp->b_data is relative to bp->b_offset, but
2713 			 * bp->b_offset may be offset into the first page.
2714 			 */
2715 
2716 			bp->b_data = (caddr_t)
2717 			    trunc_page((vm_offset_t)bp->b_data);
2718 			pmap_qenter(
2719 			    (vm_offset_t)bp->b_data,
2720 			    bp->b_xio.xio_pages,
2721 			    bp->b_xio.xio_npages
2722 			);
2723 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2724 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2725 		}
2726 	}
2727 	if (newbsize < bp->b_bufsize)
2728 		bufspacewakeup();
2729 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2730 	bp->b_bcount = size;		/* requested buffer size	*/
2731 	return 1;
2732 }
2733 
2734 /*
2735  *	biowait:
2736  *
2737  *	Wait for buffer I/O completion, returning error status.  The buffer
2738  *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2739  *	error and cleared.
2740  */
2741 int
2742 biowait(struct buf * bp)
2743 {
2744 	crit_enter();
2745 	while ((bp->b_flags & B_DONE) == 0) {
2746 #if defined(NO_SCHEDULE_MODS)
2747 		tsleep(bp, 0, "biowait", 0);
2748 #else
2749 		if (bp->b_flags & B_READ)
2750 			tsleep(bp, 0, "biord", 0);
2751 		else
2752 			tsleep(bp, 0, "biowr", 0);
2753 #endif
2754 	}
2755 	crit_exit();
2756 	if (bp->b_flags & B_EINTR) {
2757 		bp->b_flags &= ~B_EINTR;
2758 		return (EINTR);
2759 	}
2760 	if (bp->b_flags & B_ERROR) {
2761 		return (bp->b_error ? bp->b_error : EIO);
2762 	} else {
2763 		return (0);
2764 	}
2765 }
2766 
2767 /*
2768  *	biodone:
2769  *
2770  *	Finish I/O on a buffer, optionally calling a completion function.
2771  *	This is usually called from an interrupt so process blocking is
2772  *	not allowed.
2773  *
2774  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2775  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2776  *	assuming B_INVAL is clear.
2777  *
2778  *	For the VMIO case, we set B_CACHE if the op was a read and no
2779  *	read error occured, or if the op was a write.  B_CACHE is never
2780  *	set if the buffer is invalid or otherwise uncacheable.
2781  *
2782  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2783  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2784  *	in the biodone routine.
2785  *
2786  *	b_dev is required to be reinitialized prior to the top level strategy
2787  *	call in a device stack.  To avoid improper reuse, biodone() sets
2788  *	b_dev to NODEV.
2789  */
2790 void
2791 biodone(struct buf *bp)
2792 {
2793 	int error;
2794 
2795 	crit_enter();
2796 
2797 	KASSERT(BUF_REFCNTNB(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2798 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2799 
2800 	bp->b_flags |= B_DONE;
2801 	bp->b_dev = NODEV;
2802 	runningbufwakeup(bp);
2803 
2804 	if (bp->b_flags & B_FREEBUF) {
2805 		brelse(bp);
2806 		crit_exit();
2807 		return;
2808 	}
2809 
2810 	if ((bp->b_flags & B_READ) == 0) {
2811 		vwakeup(bp);
2812 	}
2813 
2814 	/* call optional completion function if requested */
2815 	if (bp->b_flags & B_CALL) {
2816 		bp->b_flags &= ~B_CALL;
2817 		(*bp->b_iodone) (bp);
2818 		crit_exit();
2819 		return;
2820 	}
2821 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2822 		(*bioops.io_complete)(bp);
2823 
2824 	if (bp->b_flags & B_VMIO) {
2825 		int i;
2826 		vm_ooffset_t foff;
2827 		vm_page_t m;
2828 		vm_object_t obj;
2829 		int iosize;
2830 		struct vnode *vp = bp->b_vp;
2831 
2832 		error = VOP_GETVOBJECT(vp, &obj);
2833 
2834 #if defined(VFS_BIO_DEBUG)
2835 		if (vp->v_holdcnt == 0) {
2836 			panic("biodone: zero vnode hold count");
2837 		}
2838 
2839 		if (error) {
2840 			panic("biodone: missing VM object");
2841 		}
2842 
2843 		if ((vp->v_flag & VOBJBUF) == 0) {
2844 			panic("biodone: vnode is not setup for merged cache");
2845 		}
2846 #endif
2847 
2848 		foff = bp->b_offset;
2849 		KASSERT(bp->b_offset != NOOFFSET,
2850 		    ("biodone: no buffer offset"));
2851 
2852 		if (error) {
2853 			panic("biodone: no object");
2854 		}
2855 #if defined(VFS_BIO_DEBUG)
2856 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2857 			printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2858 			    obj->paging_in_progress, bp->b_xio.xio_npages);
2859 		}
2860 #endif
2861 
2862 		/*
2863 		 * Set B_CACHE if the op was a normal read and no error
2864 		 * occured.  B_CACHE is set for writes in the b*write()
2865 		 * routines.
2866 		 */
2867 		iosize = bp->b_bcount - bp->b_resid;
2868 		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2869 			bp->b_flags |= B_CACHE;
2870 		}
2871 
2872 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2873 			int bogusflag = 0;
2874 			int resid;
2875 
2876 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2877 			if (resid > iosize)
2878 				resid = iosize;
2879 
2880 			/*
2881 			 * cleanup bogus pages, restoring the originals.  Since
2882 			 * the originals should still be wired, we don't have
2883 			 * to worry about interrupt/freeing races destroying
2884 			 * the VM object association.
2885 			 */
2886 			m = bp->b_xio.xio_pages[i];
2887 			if (m == bogus_page) {
2888 				bogusflag = 1;
2889 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2890 				if (m == NULL)
2891 					panic("biodone: page disappeared");
2892 				bp->b_xio.xio_pages[i] = m;
2893 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2894 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2895 			}
2896 #if defined(VFS_BIO_DEBUG)
2897 			if (OFF_TO_IDX(foff) != m->pindex) {
2898 				printf(
2899 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2900 				    (unsigned long)foff, m->pindex);
2901 			}
2902 #endif
2903 
2904 			/*
2905 			 * In the write case, the valid and clean bits are
2906 			 * already changed correctly ( see bdwrite() ), so we
2907 			 * only need to do this here in the read case.
2908 			 */
2909 			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2910 				vfs_page_set_valid(bp, foff, i, m);
2911 			}
2912 			vm_page_flag_clear(m, PG_ZERO);
2913 
2914 			/*
2915 			 * when debugging new filesystems or buffer I/O methods, this
2916 			 * is the most common error that pops up.  if you see this, you
2917 			 * have not set the page busy flag correctly!!!
2918 			 */
2919 			if (m->busy == 0) {
2920 				printf("biodone: page busy < 0, "
2921 				    "pindex: %d, foff: 0x(%x,%x), "
2922 				    "resid: %d, index: %d\n",
2923 				    (int) m->pindex, (int)(foff >> 32),
2924 						(int) foff & 0xffffffff, resid, i);
2925 				if (!vn_isdisk(vp, NULL))
2926 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2927 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2928 					    (int) bp->b_lblkno,
2929 					    bp->b_flags, bp->b_xio.xio_npages);
2930 				else
2931 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2932 					    (int) bp->b_lblkno,
2933 					    bp->b_flags, bp->b_xio.xio_npages);
2934 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2935 				    m->valid, m->dirty, m->wire_count);
2936 				panic("biodone: page busy < 0");
2937 			}
2938 			vm_page_io_finish(m);
2939 			vm_object_pip_subtract(obj, 1);
2940 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2941 			iosize -= resid;
2942 		}
2943 		if (obj)
2944 			vm_object_pip_wakeupn(obj, 0);
2945 	}
2946 
2947 	/*
2948 	 * For asynchronous completions, release the buffer now. The brelse
2949 	 * will do a wakeup there if necessary - so no need to do a wakeup
2950 	 * here in the async case. The sync case always needs to do a wakeup.
2951 	 */
2952 
2953 	if (bp->b_flags & B_ASYNC) {
2954 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2955 			brelse(bp);
2956 		else
2957 			bqrelse(bp);
2958 	} else {
2959 		wakeup(bp);
2960 	}
2961 	crit_exit();
2962 }
2963 
2964 /*
2965  * This routine is called in lieu of iodone in the case of
2966  * incomplete I/O.  This keeps the busy status for pages
2967  * consistant.
2968  */
2969 void
2970 vfs_unbusy_pages(struct buf *bp)
2971 {
2972 	int i;
2973 
2974 	runningbufwakeup(bp);
2975 	if (bp->b_flags & B_VMIO) {
2976 		struct vnode *vp = bp->b_vp;
2977 		vm_object_t obj;
2978 
2979 		VOP_GETVOBJECT(vp, &obj);
2980 
2981 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2982 			vm_page_t m = bp->b_xio.xio_pages[i];
2983 
2984 			/*
2985 			 * When restoring bogus changes the original pages
2986 			 * should still be wired, so we are in no danger of
2987 			 * losing the object association and do not need
2988 			 * critical section protection particularly.
2989 			 */
2990 			if (m == bogus_page) {
2991 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2992 				if (!m) {
2993 					panic("vfs_unbusy_pages: page missing");
2994 				}
2995 				bp->b_xio.xio_pages[i] = m;
2996 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2997 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2998 			}
2999 			vm_object_pip_subtract(obj, 1);
3000 			vm_page_flag_clear(m, PG_ZERO);
3001 			vm_page_io_finish(m);
3002 		}
3003 		vm_object_pip_wakeupn(obj, 0);
3004 	}
3005 }
3006 
3007 /*
3008  * vfs_page_set_valid:
3009  *
3010  *	Set the valid bits in a page based on the supplied offset.   The
3011  *	range is restricted to the buffer's size.
3012  *
3013  *	This routine is typically called after a read completes.
3014  */
3015 static void
3016 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3017 {
3018 	vm_ooffset_t soff, eoff;
3019 
3020 	/*
3021 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3022 	 * page boundry or cross the end of the buffer.  The end of the
3023 	 * buffer, in this case, is our file EOF, not the allocation size
3024 	 * of the buffer.
3025 	 */
3026 	soff = off;
3027 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3028 	if (eoff > bp->b_offset + bp->b_bcount)
3029 		eoff = bp->b_offset + bp->b_bcount;
3030 
3031 	/*
3032 	 * Set valid range.  This is typically the entire buffer and thus the
3033 	 * entire page.
3034 	 */
3035 	if (eoff > soff) {
3036 		vm_page_set_validclean(
3037 		    m,
3038 		   (vm_offset_t) (soff & PAGE_MASK),
3039 		   (vm_offset_t) (eoff - soff)
3040 		);
3041 	}
3042 }
3043 
3044 /*
3045  * This routine is called before a device strategy routine.
3046  * It is used to tell the VM system that paging I/O is in
3047  * progress, and treat the pages associated with the buffer
3048  * almost as being PG_BUSY.  Also the object paging_in_progress
3049  * flag is handled to make sure that the object doesn't become
3050  * inconsistant.
3051  *
3052  * Since I/O has not been initiated yet, certain buffer flags
3053  * such as B_ERROR or B_INVAL may be in an inconsistant state
3054  * and should be ignored.
3055  */
3056 void
3057 vfs_busy_pages(struct buf *bp, int clear_modify)
3058 {
3059 	int i, bogus;
3060 
3061 	if (bp->b_flags & B_VMIO) {
3062 		struct vnode *vp = bp->b_vp;
3063 		vm_object_t obj;
3064 		vm_ooffset_t foff;
3065 
3066 		VOP_GETVOBJECT(vp, &obj);
3067 		foff = bp->b_offset;
3068 		KASSERT(bp->b_offset != NOOFFSET,
3069 		    ("vfs_busy_pages: no buffer offset"));
3070 		vfs_setdirty(bp);
3071 
3072 retry:
3073 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3074 			vm_page_t m = bp->b_xio.xio_pages[i];
3075 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3076 				goto retry;
3077 		}
3078 
3079 		bogus = 0;
3080 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3081 			vm_page_t m = bp->b_xio.xio_pages[i];
3082 
3083 			vm_page_flag_clear(m, PG_ZERO);
3084 			if ((bp->b_flags & B_CLUSTER) == 0) {
3085 				vm_object_pip_add(obj, 1);
3086 				vm_page_io_start(m);
3087 			}
3088 
3089 			/*
3090 			 * When readying a buffer for a read ( i.e
3091 			 * clear_modify == 0 ), it is important to do
3092 			 * bogus_page replacement for valid pages in
3093 			 * partially instantiated buffers.  Partially
3094 			 * instantiated buffers can, in turn, occur when
3095 			 * reconstituting a buffer from its VM backing store
3096 			 * base.  We only have to do this if B_CACHE is
3097 			 * clear ( which causes the I/O to occur in the
3098 			 * first place ).  The replacement prevents the read
3099 			 * I/O from overwriting potentially dirty VM-backed
3100 			 * pages.  XXX bogus page replacement is, uh, bogus.
3101 			 * It may not work properly with small-block devices.
3102 			 * We need to find a better way.
3103 			 */
3104 
3105 			vm_page_protect(m, VM_PROT_NONE);
3106 			if (clear_modify)
3107 				vfs_page_set_valid(bp, foff, i, m);
3108 			else if (m->valid == VM_PAGE_BITS_ALL &&
3109 				(bp->b_flags & B_CACHE) == 0) {
3110 				bp->b_xio.xio_pages[i] = bogus_page;
3111 				bogus++;
3112 			}
3113 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3114 		}
3115 		if (bogus)
3116 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3117 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3118 	}
3119 
3120 	/*
3121 	 * This is the easiest place to put the process accounting for the I/O
3122 	 * for now.
3123 	 */
3124 	{
3125 		struct proc *p;
3126 
3127 		if ((p = curthread->td_proc) != NULL) {
3128 			if (bp->b_flags & B_READ)
3129 				p->p_stats->p_ru.ru_inblock++;
3130 			else
3131 				p->p_stats->p_ru.ru_oublock++;
3132 		}
3133 	}
3134 }
3135 
3136 /*
3137  * Tell the VM system that the pages associated with this buffer
3138  * are clean.  This is used for delayed writes where the data is
3139  * going to go to disk eventually without additional VM intevention.
3140  *
3141  * Note that while we only really need to clean through to b_bcount, we
3142  * just go ahead and clean through to b_bufsize.
3143  */
3144 static void
3145 vfs_clean_pages(struct buf *bp)
3146 {
3147 	int i;
3148 
3149 	if (bp->b_flags & B_VMIO) {
3150 		vm_ooffset_t foff;
3151 
3152 		foff = bp->b_offset;
3153 		KASSERT(bp->b_offset != NOOFFSET,
3154 		    ("vfs_clean_pages: no buffer offset"));
3155 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3156 			vm_page_t m = bp->b_xio.xio_pages[i];
3157 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3158 			vm_ooffset_t eoff = noff;
3159 
3160 			if (eoff > bp->b_offset + bp->b_bufsize)
3161 				eoff = bp->b_offset + bp->b_bufsize;
3162 			vfs_page_set_valid(bp, foff, i, m);
3163 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3164 			foff = noff;
3165 		}
3166 	}
3167 }
3168 
3169 /*
3170  *	vfs_bio_set_validclean:
3171  *
3172  *	Set the range within the buffer to valid and clean.  The range is
3173  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3174  *	itself may be offset from the beginning of the first page.
3175  */
3176 
3177 void
3178 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3179 {
3180 	if (bp->b_flags & B_VMIO) {
3181 		int i;
3182 		int n;
3183 
3184 		/*
3185 		 * Fixup base to be relative to beginning of first page.
3186 		 * Set initial n to be the maximum number of bytes in the
3187 		 * first page that can be validated.
3188 		 */
3189 
3190 		base += (bp->b_offset & PAGE_MASK);
3191 		n = PAGE_SIZE - (base & PAGE_MASK);
3192 
3193 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3194 			vm_page_t m = bp->b_xio.xio_pages[i];
3195 
3196 			if (n > size)
3197 				n = size;
3198 
3199 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3200 			base += n;
3201 			size -= n;
3202 			n = PAGE_SIZE;
3203 		}
3204 	}
3205 }
3206 
3207 /*
3208  *	vfs_bio_clrbuf:
3209  *
3210  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3211  *	to clear B_ERROR and B_INVAL.
3212  *
3213  *	Note that while we only theoretically need to clear through b_bcount,
3214  *	we go ahead and clear through b_bufsize.
3215  */
3216 
3217 void
3218 vfs_bio_clrbuf(struct buf *bp)
3219 {
3220 	int i, mask = 0;
3221 	caddr_t sa, ea;
3222 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3223 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3224 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3225 		    (bp->b_offset & PAGE_MASK) == 0) {
3226 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3227 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3228 				bp->b_resid = 0;
3229 				return;
3230 			}
3231 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3232 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3233 				bzero(bp->b_data, bp->b_bufsize);
3234 				bp->b_xio.xio_pages[0]->valid |= mask;
3235 				bp->b_resid = 0;
3236 				return;
3237 			}
3238 		}
3239 		ea = sa = bp->b_data;
3240 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3241 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3242 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3243 			ea = (caddr_t)(vm_offset_t)ulmin(
3244 			    (u_long)(vm_offset_t)ea,
3245 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3246 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3247 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3248 				continue;
3249 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3250 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3251 					bzero(sa, ea - sa);
3252 				}
3253 			} else {
3254 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3255 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3256 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3257 						bzero(sa, DEV_BSIZE);
3258 				}
3259 			}
3260 			bp->b_xio.xio_pages[i]->valid |= mask;
3261 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3262 		}
3263 		bp->b_resid = 0;
3264 	} else {
3265 		clrbuf(bp);
3266 	}
3267 }
3268 
3269 /*
3270  * vm_hold_load_pages and vm_hold_unload pages get pages into
3271  * a buffers address space.  The pages are anonymous and are
3272  * not associated with a file object.
3273  */
3274 void
3275 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3276 {
3277 	vm_offset_t pg;
3278 	vm_page_t p;
3279 	int index;
3280 
3281 	to = round_page(to);
3282 	from = round_page(from);
3283 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3284 
3285 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3286 
3287 tryagain:
3288 
3289 		/*
3290 		 * note: must allocate system pages since blocking here
3291 		 * could intefere with paging I/O, no matter which
3292 		 * process we are.
3293 		 */
3294 		p = vm_page_alloc(kernel_object,
3295 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3296 			VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3297 		if (!p) {
3298 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3299 			vm_wait();
3300 			goto tryagain;
3301 		}
3302 		vm_page_wire(p);
3303 		p->valid = VM_PAGE_BITS_ALL;
3304 		vm_page_flag_clear(p, PG_ZERO);
3305 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3306 		bp->b_xio.xio_pages[index] = p;
3307 		vm_page_wakeup(p);
3308 	}
3309 	bp->b_xio.xio_npages = index;
3310 }
3311 
3312 void
3313 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3314 {
3315 	vm_offset_t pg;
3316 	vm_page_t p;
3317 	int index, newnpages;
3318 
3319 	from = round_page(from);
3320 	to = round_page(to);
3321 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3322 
3323 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3324 		p = bp->b_xio.xio_pages[index];
3325 		if (p && (index < bp->b_xio.xio_npages)) {
3326 			if (p->busy) {
3327 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3328 					bp->b_blkno, bp->b_lblkno);
3329 			}
3330 			bp->b_xio.xio_pages[index] = NULL;
3331 			pmap_kremove(pg);
3332 			vm_page_busy(p);
3333 			vm_page_unwire(p, 0);
3334 			vm_page_free(p);
3335 		}
3336 	}
3337 	bp->b_xio.xio_npages = newnpages;
3338 }
3339 
3340 /*
3341  * Map an IO request into kernel virtual address space.
3342  *
3343  * All requests are (re)mapped into kernel VA space.
3344  * Notice that we use b_bufsize for the size of the buffer
3345  * to be mapped.  b_bcount might be modified by the driver.
3346  */
3347 int
3348 vmapbuf(struct buf *bp)
3349 {
3350 	caddr_t addr, v, kva;
3351 	vm_paddr_t pa;
3352 	int pidx;
3353 	int i;
3354 	struct vm_page *m;
3355 
3356 	if ((bp->b_flags & B_PHYS) == 0)
3357 		panic("vmapbuf");
3358 	if (bp->b_bufsize < 0)
3359 		return (-1);
3360 	for (v = bp->b_saveaddr,
3361 		     addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3362 		     pidx = 0;
3363 	     addr < bp->b_data + bp->b_bufsize;
3364 	     addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3365 		/*
3366 		 * Do the vm_fault if needed; do the copy-on-write thing
3367 		 * when reading stuff off device into memory.
3368 		 */
3369 retry:
3370 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3371 			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3372 		if (i < 0) {
3373 			for (i = 0; i < pidx; ++i) {
3374 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3375 			    bp->b_xio.xio_pages[i] = NULL;
3376 			}
3377 			return(-1);
3378 		}
3379 
3380 		/*
3381 		 * WARNING!  If sparc support is MFCd in the future this will
3382 		 * have to be changed from pmap_kextract() to pmap_extract()
3383 		 * ala -current.
3384 		 */
3385 #ifdef __sparc64__
3386 #error "If MFCing sparc support use pmap_extract"
3387 #endif
3388 		pa = pmap_kextract((vm_offset_t)addr);
3389 		if (pa == 0) {
3390 			printf("vmapbuf: warning, race against user address during I/O");
3391 			goto retry;
3392 		}
3393 		m = PHYS_TO_VM_PAGE(pa);
3394 		vm_page_hold(m);
3395 		bp->b_xio.xio_pages[pidx] = m;
3396 	}
3397 	if (pidx > btoc(MAXPHYS))
3398 		panic("vmapbuf: mapped more than MAXPHYS");
3399 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx);
3400 
3401 	kva = bp->b_saveaddr;
3402 	bp->b_xio.xio_npages = pidx;
3403 	bp->b_saveaddr = bp->b_data;
3404 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3405 	return(0);
3406 }
3407 
3408 /*
3409  * Free the io map PTEs associated with this IO operation.
3410  * We also invalidate the TLB entries and restore the original b_addr.
3411  */
3412 void
3413 vunmapbuf(struct buf *bp)
3414 {
3415 	int pidx;
3416 	int npages;
3417 	vm_page_t *m;
3418 
3419 	if ((bp->b_flags & B_PHYS) == 0)
3420 		panic("vunmapbuf");
3421 
3422 	npages = bp->b_xio.xio_npages;
3423 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3424 		     npages);
3425 	m = bp->b_xio.xio_pages;
3426 	for (pidx = 0; pidx < npages; pidx++)
3427 		vm_page_unhold(*m++);
3428 
3429 	bp->b_data = bp->b_saveaddr;
3430 }
3431 
3432 #include "opt_ddb.h"
3433 #ifdef DDB
3434 #include <ddb/ddb.h>
3435 
3436 DB_SHOW_COMMAND(buffer, db_show_buffer)
3437 {
3438 	/* get args */
3439 	struct buf *bp = (struct buf *)addr;
3440 
3441 	if (!have_addr) {
3442 		db_printf("usage: show buffer <addr>\n");
3443 		return;
3444 	}
3445 
3446 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3447 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3448 		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3449 		  "b_blkno = %d, b_pblkno = %d\n",
3450 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3451 		  major(bp->b_dev), minor(bp->b_dev),
3452 		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3453 	if (bp->b_xio.xio_npages) {
3454 		int i;
3455 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3456 			bp->b_xio.xio_npages);
3457 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3458 			vm_page_t m;
3459 			m = bp->b_xio.xio_pages[i];
3460 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3461 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3462 			if ((i + 1) < bp->b_xio.xio_npages)
3463 				db_printf(",");
3464 		}
3465 		db_printf("\n");
3466 	}
3467 }
3468 #endif /* DDB */
3469