1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.37 2005/06/06 15:02:28 dillon Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/proc.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 #include <sys/buf2.h> 58 #include <sys/thread2.h> 59 #include <vm/vm_page2.h> 60 61 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 62 63 struct bio_ops bioops; /* I/O operation notification */ 64 65 struct buf *buf; /* buffer header pool */ 66 struct swqueue bswlist; 67 68 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 69 vm_offset_t to); 70 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 71 vm_offset_t to); 72 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 73 int pageno, vm_page_t m); 74 static void vfs_clean_pages(struct buf * bp); 75 static void vfs_setdirty(struct buf *bp); 76 static void vfs_vmio_release(struct buf *bp); 77 #if 0 78 static void vfs_backgroundwritedone(struct buf *bp); 79 #endif 80 static int flushbufqueues(void); 81 82 static int bd_request; 83 84 static void buf_daemon (void); 85 /* 86 * bogus page -- for I/O to/from partially complete buffers 87 * this is a temporary solution to the problem, but it is not 88 * really that bad. it would be better to split the buffer 89 * for input in the case of buffers partially already in memory, 90 * but the code is intricate enough already. 91 */ 92 vm_page_t bogus_page; 93 int vmiodirenable = TRUE; 94 int runningbufspace; 95 struct lwkt_token buftimetoken; /* Interlock on setting prio and timo */ 96 97 static vm_offset_t bogus_offset; 98 99 static int bufspace, maxbufspace, 100 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 101 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 102 static int needsbuffer; 103 static int lorunningspace, hirunningspace, runningbufreq; 104 static int numdirtybuffers, lodirtybuffers, hidirtybuffers; 105 static int numfreebuffers, lofreebuffers, hifreebuffers; 106 static int getnewbufcalls; 107 static int getnewbufrestarts; 108 109 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, 110 &numdirtybuffers, 0, ""); 111 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, 112 &lodirtybuffers, 0, ""); 113 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, 114 &hidirtybuffers, 0, ""); 115 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, 116 &numfreebuffers, 0, ""); 117 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, 118 &lofreebuffers, 0, ""); 119 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, 120 &hifreebuffers, 0, ""); 121 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, 122 &runningbufspace, 0, ""); 123 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, 124 &lorunningspace, 0, ""); 125 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, 126 &hirunningspace, 0, ""); 127 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, 128 &maxbufspace, 0, ""); 129 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, 130 &hibufspace, 0, ""); 131 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, 132 &lobufspace, 0, ""); 133 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, 134 &bufspace, 0, ""); 135 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, 136 &maxbufmallocspace, 0, ""); 137 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, 138 &bufmallocspace, 0, ""); 139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, 140 &getnewbufcalls, 0, ""); 141 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, 142 &getnewbufrestarts, 0, ""); 143 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, 144 &vmiodirenable, 0, ""); 145 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, 146 &bufdefragcnt, 0, ""); 147 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, 148 &buffreekvacnt, 0, ""); 149 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, 150 &bufreusecnt, 0, ""); 151 152 #if 0 153 /* 154 * Disable background writes for now. There appear to be races in the 155 * flags tests and locking operations as well as races in the completion 156 * code modifying the original bp (origbp) without holding a lock, assuming 157 * critical section protection when there might not be critical section 158 * protection. 159 * 160 * XXX disable also because the RB tree can't handle multiple blocks with 161 * the same lblkno. 162 */ 163 static int dobkgrdwrite = 0; 164 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 165 "Do background writes (honoring the BV_BKGRDWRITE flag)?"); 166 #endif 167 168 static int bufhashmask; 169 static int bufhashshift; 170 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 171 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } }; 172 char *buf_wmesg = BUF_WMESG; 173 174 extern int vm_swap_size; 175 176 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 177 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 178 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 179 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 180 181 /* 182 * Buffer hash table code. Note that the logical block scans linearly, which 183 * gives us some L1 cache locality. 184 */ 185 186 static __inline 187 struct bufhashhdr * 188 bufhash(struct vnode *vnp, daddr_t bn) 189 { 190 u_int64_t hashkey64; 191 int hashkey; 192 193 /* 194 * A variation on the Fibonacci hash that Knuth credits to 195 * R. W. Floyd, see Knuth's _Art of Computer Programming, 196 * Volume 3 / Sorting and Searching_ 197 * 198 * We reduce the argument to 32 bits before doing the hash to 199 * avoid the need for a slow 64x64 multiply on 32 bit platforms. 200 * 201 * sizeof(struct vnode) is 168 on i386, so toss some of the lower 202 * bits of the vnode address to reduce the key range, which 203 * improves the distribution of keys across buckets. 204 * 205 * The file system cylinder group blocks are very heavily 206 * used. They are located at invervals of fbg, which is 207 * on the order of 89 to 94 * 2^10, depending on other 208 * filesystem parameters, for a 16k block size. Smaller block 209 * sizes will reduce fpg approximately proportionally. This 210 * will cause the cylinder group index to be hashed using the 211 * lower bits of the hash multiplier, which will not distribute 212 * the keys as uniformly in a classic Fibonacci hash where a 213 * relatively small number of the upper bits of the result 214 * are used. Using 2^16 as a close-enough approximation to 215 * fpg, split the hash multiplier in half, with the upper 16 216 * bits being the inverse of the golden ratio, and the lower 217 * 16 bits being a fraction between 1/3 and 3/7 (closer to 218 * 3/7 in this case), that gives good experimental results. 219 */ 220 hashkey64 = ((u_int64_t)(uintptr_t)vnp >> 3) + (u_int64_t)bn; 221 hashkey = (((u_int32_t)(hashkey64 + (hashkey64 >> 32)) * 0x9E376DB1u) >> 222 bufhashshift) & bufhashmask; 223 return(&bufhashtbl[hashkey]); 224 } 225 226 /* 227 * numdirtywakeup: 228 * 229 * If someone is blocked due to there being too many dirty buffers, 230 * and numdirtybuffers is now reasonable, wake them up. 231 */ 232 233 static __inline void 234 numdirtywakeup(int level) 235 { 236 if (numdirtybuffers <= level) { 237 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 238 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 239 wakeup(&needsbuffer); 240 } 241 } 242 } 243 244 /* 245 * bufspacewakeup: 246 * 247 * Called when buffer space is potentially available for recovery. 248 * getnewbuf() will block on this flag when it is unable to free 249 * sufficient buffer space. Buffer space becomes recoverable when 250 * bp's get placed back in the queues. 251 */ 252 253 static __inline void 254 bufspacewakeup(void) 255 { 256 /* 257 * If someone is waiting for BUF space, wake them up. Even 258 * though we haven't freed the kva space yet, the waiting 259 * process will be able to now. 260 */ 261 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 262 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 263 wakeup(&needsbuffer); 264 } 265 } 266 267 /* 268 * runningbufwakeup() - in-progress I/O accounting. 269 * 270 */ 271 static __inline void 272 runningbufwakeup(struct buf *bp) 273 { 274 if (bp->b_runningbufspace) { 275 runningbufspace -= bp->b_runningbufspace; 276 bp->b_runningbufspace = 0; 277 if (runningbufreq && runningbufspace <= lorunningspace) { 278 runningbufreq = 0; 279 wakeup(&runningbufreq); 280 } 281 } 282 } 283 284 /* 285 * bufcountwakeup: 286 * 287 * Called when a buffer has been added to one of the free queues to 288 * account for the buffer and to wakeup anyone waiting for free buffers. 289 * This typically occurs when large amounts of metadata are being handled 290 * by the buffer cache ( else buffer space runs out first, usually ). 291 */ 292 293 static __inline void 294 bufcountwakeup(void) 295 { 296 ++numfreebuffers; 297 if (needsbuffer) { 298 needsbuffer &= ~VFS_BIO_NEED_ANY; 299 if (numfreebuffers >= hifreebuffers) 300 needsbuffer &= ~VFS_BIO_NEED_FREE; 301 wakeup(&needsbuffer); 302 } 303 } 304 305 /* 306 * waitrunningbufspace() 307 * 308 * runningbufspace is a measure of the amount of I/O currently 309 * running. This routine is used in async-write situations to 310 * prevent creating huge backups of pending writes to a device. 311 * Only asynchronous writes are governed by this function. 312 * 313 * Reads will adjust runningbufspace, but will not block based on it. 314 * The read load has a side effect of reducing the allowed write load. 315 * 316 * This does NOT turn an async write into a sync write. It waits 317 * for earlier writes to complete and generally returns before the 318 * caller's write has reached the device. 319 */ 320 static __inline void 321 waitrunningbufspace(void) 322 { 323 if (runningbufspace > hirunningspace) { 324 crit_enter(); 325 while (runningbufspace > hirunningspace) { 326 ++runningbufreq; 327 tsleep(&runningbufreq, 0, "wdrain", 0); 328 } 329 crit_exit(); 330 } 331 } 332 333 /* 334 * vfs_buf_test_cache: 335 * 336 * Called when a buffer is extended. This function clears the B_CACHE 337 * bit if the newly extended portion of the buffer does not contain 338 * valid data. 339 */ 340 static __inline__ 341 void 342 vfs_buf_test_cache(struct buf *bp, 343 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 344 vm_page_t m) 345 { 346 if (bp->b_flags & B_CACHE) { 347 int base = (foff + off) & PAGE_MASK; 348 if (vm_page_is_valid(m, base, size) == 0) 349 bp->b_flags &= ~B_CACHE; 350 } 351 } 352 353 static __inline__ 354 void 355 bd_wakeup(int dirtybuflevel) 356 { 357 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 358 bd_request = 1; 359 wakeup(&bd_request); 360 } 361 } 362 363 /* 364 * bd_speedup - speedup the buffer cache flushing code 365 */ 366 367 static __inline__ 368 void 369 bd_speedup(void) 370 { 371 bd_wakeup(1); 372 } 373 374 /* 375 * Initialize buffer headers and related structures. 376 */ 377 378 caddr_t 379 bufhashinit(caddr_t vaddr) 380 { 381 /* first, make a null hash table */ 382 bufhashshift = 29; 383 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) 384 bufhashshift--; 385 bufhashtbl = (void *)vaddr; 386 vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask; 387 --bufhashmask; 388 return(vaddr); 389 } 390 391 void 392 bufinit(void) 393 { 394 struct buf *bp; 395 int i; 396 397 TAILQ_INIT(&bswlist); 398 LIST_INIT(&invalhash); 399 lwkt_token_init(&buftimetoken); 400 401 for (i = 0; i <= bufhashmask; i++) 402 LIST_INIT(&bufhashtbl[i]); 403 404 /* next, make a null set of free lists */ 405 for (i = 0; i < BUFFER_QUEUES; i++) 406 TAILQ_INIT(&bufqueues[i]); 407 408 /* finally, initialize each buffer header and stick on empty q */ 409 for (i = 0; i < nbuf; i++) { 410 bp = &buf[i]; 411 bzero(bp, sizeof *bp); 412 bp->b_flags = B_INVAL; /* we're just an empty header */ 413 bp->b_dev = NODEV; 414 bp->b_qindex = QUEUE_EMPTY; 415 bp->b_xflags = 0; 416 xio_init(&bp->b_xio); 417 LIST_INIT(&bp->b_dep); 418 BUF_LOCKINIT(bp); 419 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 420 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 421 } 422 423 /* 424 * maxbufspace is the absolute maximum amount of buffer space we are 425 * allowed to reserve in KVM and in real terms. The absolute maximum 426 * is nominally used by buf_daemon. hibufspace is the nominal maximum 427 * used by most other processes. The differential is required to 428 * ensure that buf_daemon is able to run when other processes might 429 * be blocked waiting for buffer space. 430 * 431 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 432 * this may result in KVM fragmentation which is not handled optimally 433 * by the system. 434 */ 435 maxbufspace = nbuf * BKVASIZE; 436 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 437 lobufspace = hibufspace - MAXBSIZE; 438 439 lorunningspace = 512 * 1024; 440 hirunningspace = 1024 * 1024; 441 442 /* 443 * Limit the amount of malloc memory since it is wired permanently into 444 * the kernel space. Even though this is accounted for in the buffer 445 * allocation, we don't want the malloced region to grow uncontrolled. 446 * The malloc scheme improves memory utilization significantly on average 447 * (small) directories. 448 */ 449 maxbufmallocspace = hibufspace / 20; 450 451 /* 452 * Reduce the chance of a deadlock occuring by limiting the number 453 * of delayed-write dirty buffers we allow to stack up. 454 */ 455 hidirtybuffers = nbuf / 4 + 20; 456 numdirtybuffers = 0; 457 /* 458 * To support extreme low-memory systems, make sure hidirtybuffers cannot 459 * eat up all available buffer space. This occurs when our minimum cannot 460 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 461 * BKVASIZE'd (8K) buffers. 462 */ 463 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 464 hidirtybuffers >>= 1; 465 } 466 lodirtybuffers = hidirtybuffers / 2; 467 468 /* 469 * Try to keep the number of free buffers in the specified range, 470 * and give special processes (e.g. like buf_daemon) access to an 471 * emergency reserve. 472 */ 473 lofreebuffers = nbuf / 18 + 5; 474 hifreebuffers = 2 * lofreebuffers; 475 numfreebuffers = nbuf; 476 477 /* 478 * Maximum number of async ops initiated per buf_daemon loop. This is 479 * somewhat of a hack at the moment, we really need to limit ourselves 480 * based on the number of bytes of I/O in-transit that were initiated 481 * from buf_daemon. 482 */ 483 484 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 485 bogus_page = vm_page_alloc(kernel_object, 486 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 487 VM_ALLOC_NORMAL); 488 vmstats.v_wire_count++; 489 490 } 491 492 /* 493 * bfreekva() - free the kva allocation for a buffer. 494 * 495 * Must be called from a critical section as this is the only locking for 496 * buffer_map. 497 * 498 * Since this call frees up buffer space, we call bufspacewakeup(). 499 */ 500 static void 501 bfreekva(struct buf * bp) 502 { 503 int count; 504 505 if (bp->b_kvasize) { 506 ++buffreekvacnt; 507 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 508 vm_map_lock(buffer_map); 509 bufspace -= bp->b_kvasize; 510 vm_map_delete(buffer_map, 511 (vm_offset_t) bp->b_kvabase, 512 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 513 &count 514 ); 515 vm_map_unlock(buffer_map); 516 vm_map_entry_release(count); 517 bp->b_kvasize = 0; 518 bufspacewakeup(); 519 } 520 } 521 522 /* 523 * bremfree: 524 * 525 * Remove the buffer from the appropriate free list. 526 */ 527 void 528 bremfree(struct buf * bp) 529 { 530 int old_qindex; 531 532 crit_enter(); 533 old_qindex = bp->b_qindex; 534 535 if (bp->b_qindex != QUEUE_NONE) { 536 KASSERT(BUF_REFCNTNB(bp) == 1, 537 ("bremfree: bp %p not locked",bp)); 538 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 539 bp->b_qindex = QUEUE_NONE; 540 } else { 541 if (BUF_REFCNTNB(bp) <= 1) 542 panic("bremfree: removing a buffer not on a queue"); 543 } 544 545 /* 546 * Fixup numfreebuffers count. If the buffer is invalid or not 547 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 548 * the buffer was free and we must decrement numfreebuffers. 549 */ 550 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 551 switch(old_qindex) { 552 case QUEUE_DIRTY: 553 case QUEUE_CLEAN: 554 case QUEUE_EMPTY: 555 case QUEUE_EMPTYKVA: 556 --numfreebuffers; 557 break; 558 default: 559 break; 560 } 561 } 562 crit_exit(); 563 } 564 565 566 /* 567 * Get a buffer with the specified data. Look in the cache first. We 568 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 569 * is set, the buffer is valid and we do not have to do anything ( see 570 * getblk() ). 571 */ 572 int 573 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp) 574 { 575 struct buf *bp; 576 577 bp = getblk(vp, blkno, size, 0, 0); 578 *bpp = bp; 579 580 /* if not found in cache, do some I/O */ 581 if ((bp->b_flags & B_CACHE) == 0) { 582 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp)); 583 bp->b_flags |= B_READ; 584 bp->b_flags &= ~(B_ERROR | B_INVAL); 585 vfs_busy_pages(bp, 0); 586 VOP_STRATEGY(vp, bp); 587 return (biowait(bp)); 588 } 589 return (0); 590 } 591 592 /* 593 * Operates like bread, but also starts asynchronous I/O on 594 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 595 * to initiating I/O . If B_CACHE is set, the buffer is valid 596 * and we do not have to do anything. 597 */ 598 int 599 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno, 600 int *rabsize, int cnt, struct buf ** bpp) 601 { 602 struct buf *bp, *rabp; 603 int i; 604 int rv = 0, readwait = 0; 605 606 *bpp = bp = getblk(vp, blkno, size, 0, 0); 607 608 /* if not found in cache, do some I/O */ 609 if ((bp->b_flags & B_CACHE) == 0) { 610 bp->b_flags |= B_READ; 611 bp->b_flags &= ~(B_ERROR | B_INVAL); 612 vfs_busy_pages(bp, 0); 613 VOP_STRATEGY(vp, bp); 614 ++readwait; 615 } 616 617 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 618 if (inmem(vp, *rablkno)) 619 continue; 620 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 621 622 if ((rabp->b_flags & B_CACHE) == 0) { 623 rabp->b_flags |= B_READ | B_ASYNC; 624 rabp->b_flags &= ~(B_ERROR | B_INVAL); 625 vfs_busy_pages(rabp, 0); 626 BUF_KERNPROC(rabp); 627 VOP_STRATEGY(vp, rabp); 628 } else { 629 brelse(rabp); 630 } 631 } 632 633 if (readwait) { 634 rv = biowait(bp); 635 } 636 return (rv); 637 } 638 639 /* 640 * Write, release buffer on completion. (Done by iodone 641 * if async). Do not bother writing anything if the buffer 642 * is invalid. 643 * 644 * Note that we set B_CACHE here, indicating that buffer is 645 * fully valid and thus cacheable. This is true even of NFS 646 * now so we set it generally. This could be set either here 647 * or in biodone() since the I/O is synchronous. We put it 648 * here. 649 */ 650 int 651 bwrite(struct buf * bp) 652 { 653 int oldflags; 654 #if 0 655 struct buf *newbp; 656 #endif 657 658 if (bp->b_flags & B_INVAL) { 659 brelse(bp); 660 return (0); 661 } 662 663 oldflags = bp->b_flags; 664 665 if (BUF_REFCNTNB(bp) == 0) 666 panic("bwrite: buffer is not busy???"); 667 crit_enter(); 668 /* 669 * If a background write is already in progress, delay 670 * writing this block if it is asynchronous. Otherwise 671 * wait for the background write to complete. 672 */ 673 if (bp->b_xflags & BX_BKGRDINPROG) { 674 if (bp->b_flags & B_ASYNC) { 675 crit_exit(); 676 bdwrite(bp); 677 return (0); 678 } 679 bp->b_xflags |= BX_BKGRDWAIT; 680 tsleep(&bp->b_xflags, 0, "biord", 0); 681 if (bp->b_xflags & BX_BKGRDINPROG) 682 panic("bwrite: still writing"); 683 } 684 685 /* Mark the buffer clean */ 686 bundirty(bp); 687 688 #if 0 689 /* 690 * If this buffer is marked for background writing and we 691 * do not have to wait for it, make a copy and write the 692 * copy so as to leave this buffer ready for further use. 693 * 694 * This optimization eats a lot of memory. If we have a page 695 * or buffer shortfull we can't do it. 696 * 697 * XXX DISABLED! This had to be removed to support the RB_TREE 698 * work and, really, this isn't the best place to do this sort 699 * of thing anyway. We really need a device copy-on-write feature. 700 */ 701 if (dobkgrdwrite && 702 (bp->b_xflags & BX_BKGRDWRITE) && 703 (bp->b_flags & B_ASYNC) && 704 !vm_page_count_severe() && 705 !buf_dirty_count_severe()) { 706 if (bp->b_flags & B_CALL) 707 panic("bwrite: need chained iodone"); 708 709 /* get a new block */ 710 newbp = geteblk(bp->b_bufsize); 711 712 /* set it to be identical to the old block */ 713 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 714 newbp->b_lblkno = bp->b_lblkno; 715 newbp->b_blkno = bp->b_blkno; 716 newbp->b_offset = bp->b_offset; 717 newbp->b_iodone = vfs_backgroundwritedone; 718 newbp->b_flags |= B_ASYNC | B_CALL; 719 newbp->b_flags &= ~B_INVAL; 720 bgetvp(bp->b_vp, newbp); 721 722 /* move over the dependencies */ 723 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps) 724 (*bioops.io_movedeps)(bp, newbp); 725 726 /* 727 * Initiate write on the copy, release the original to 728 * the B_LOCKED queue so that it cannot go away until 729 * the background write completes. If not locked it could go 730 * away and then be reconstituted while it was being written. 731 * If the reconstituted buffer were written, we could end up 732 * with two background copies being written at the same time. 733 */ 734 bp->b_xflags |= BX_BKGRDINPROG; 735 bp->b_flags |= B_LOCKED; 736 bqrelse(bp); 737 bp = newbp; 738 } 739 #endif 740 741 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR); 742 bp->b_flags |= B_CACHE; 743 744 bp->b_vp->v_numoutput++; 745 vfs_busy_pages(bp, 1); 746 747 /* 748 * Normal bwrites pipeline writes 749 */ 750 bp->b_runningbufspace = bp->b_bufsize; 751 runningbufspace += bp->b_runningbufspace; 752 753 crit_exit(); 754 if (oldflags & B_ASYNC) 755 BUF_KERNPROC(bp); 756 VOP_STRATEGY(bp->b_vp, bp); 757 758 if ((oldflags & B_ASYNC) == 0) { 759 int rtval = biowait(bp); 760 brelse(bp); 761 return (rtval); 762 } else if ((oldflags & B_NOWDRAIN) == 0) { 763 /* 764 * don't allow the async write to saturate the I/O 765 * system. Deadlocks can occur only if a device strategy 766 * routine (like in VN) turns around and issues another 767 * high-level write, in which case B_NOWDRAIN is expected 768 * to be set. Otherwise we will not deadlock here because 769 * we are blocking waiting for I/O that is already in-progress 770 * to complete. 771 */ 772 waitrunningbufspace(); 773 } 774 775 return (0); 776 } 777 778 #if 0 779 /* 780 * Complete a background write started from bwrite. 781 */ 782 static void 783 vfs_backgroundwritedone(struct buf *bp) 784 { 785 struct buf *origbp; 786 787 /* 788 * Find the original buffer that we are writing. 789 */ 790 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 791 panic("backgroundwritedone: lost buffer"); 792 /* 793 * Process dependencies then return any unfinished ones. 794 */ 795 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 796 (*bioops.io_complete)(bp); 797 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps) 798 (*bioops.io_movedeps)(bp, origbp); 799 /* 800 * Clear the BX_BKGRDINPROG flag in the original buffer 801 * and awaken it if it is waiting for the write to complete. 802 * If BX_BKGRDINPROG is not set in the original buffer it must 803 * have been released and re-instantiated - which is not legal. 804 */ 805 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2")); 806 origbp->b_xflags &= ~BX_BKGRDINPROG; 807 if (origbp->b_xflags & BX_BKGRDWAIT) { 808 origbp->b_xflags &= ~BX_BKGRDWAIT; 809 wakeup(&origbp->b_xflags); 810 } 811 /* 812 * Clear the B_LOCKED flag and remove it from the locked 813 * queue if it currently resides there. 814 */ 815 origbp->b_flags &= ~B_LOCKED; 816 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 817 bremfree(origbp); 818 bqrelse(origbp); 819 } 820 /* 821 * This buffer is marked B_NOCACHE, so when it is released 822 * by biodone, it will be tossed. We mark it with B_READ 823 * to avoid biodone doing a second vwakeup. 824 */ 825 bp->b_flags |= B_NOCACHE | B_READ; 826 bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE); 827 bp->b_iodone = 0; 828 biodone(bp); 829 } 830 #endif 831 832 /* 833 * Delayed write. (Buffer is marked dirty). Do not bother writing 834 * anything if the buffer is marked invalid. 835 * 836 * Note that since the buffer must be completely valid, we can safely 837 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 838 * biodone() in order to prevent getblk from writing the buffer 839 * out synchronously. 840 */ 841 void 842 bdwrite(struct buf *bp) 843 { 844 if (BUF_REFCNTNB(bp) == 0) 845 panic("bdwrite: buffer is not busy"); 846 847 if (bp->b_flags & B_INVAL) { 848 brelse(bp); 849 return; 850 } 851 bdirty(bp); 852 853 /* 854 * Set B_CACHE, indicating that the buffer is fully valid. This is 855 * true even of NFS now. 856 */ 857 bp->b_flags |= B_CACHE; 858 859 /* 860 * This bmap keeps the system from needing to do the bmap later, 861 * perhaps when the system is attempting to do a sync. Since it 862 * is likely that the indirect block -- or whatever other datastructure 863 * that the filesystem needs is still in memory now, it is a good 864 * thing to do this. Note also, that if the pageout daemon is 865 * requesting a sync -- there might not be enough memory to do 866 * the bmap then... So, this is important to do. 867 */ 868 if (bp->b_lblkno == bp->b_blkno) { 869 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 870 } 871 872 /* 873 * Set the *dirty* buffer range based upon the VM system dirty pages. 874 */ 875 vfs_setdirty(bp); 876 877 /* 878 * We need to do this here to satisfy the vnode_pager and the 879 * pageout daemon, so that it thinks that the pages have been 880 * "cleaned". Note that since the pages are in a delayed write 881 * buffer -- the VFS layer "will" see that the pages get written 882 * out on the next sync, or perhaps the cluster will be completed. 883 */ 884 vfs_clean_pages(bp); 885 bqrelse(bp); 886 887 /* 888 * Wakeup the buffer flushing daemon if we have a lot of dirty 889 * buffers (midpoint between our recovery point and our stall 890 * point). 891 */ 892 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 893 894 /* 895 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 896 * due to the softdep code. 897 */ 898 } 899 900 /* 901 * bdirty: 902 * 903 * Turn buffer into delayed write request. We must clear B_READ and 904 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 905 * itself to properly update it in the dirty/clean lists. We mark it 906 * B_DONE to ensure that any asynchronization of the buffer properly 907 * clears B_DONE ( else a panic will occur later ). 908 * 909 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 910 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 911 * should only be called if the buffer is known-good. 912 * 913 * Since the buffer is not on a queue, we do not update the numfreebuffers 914 * count. 915 * 916 * Must be called from a critical section. 917 * The buffer must be on QUEUE_NONE. 918 */ 919 void 920 bdirty(struct buf *bp) 921 { 922 KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 923 bp->b_flags &= ~(B_READ|B_RELBUF); 924 925 if ((bp->b_flags & B_DELWRI) == 0) { 926 bp->b_flags |= B_DONE | B_DELWRI; 927 reassignbuf(bp, bp->b_vp); 928 ++numdirtybuffers; 929 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 930 } 931 } 932 933 /* 934 * bundirty: 935 * 936 * Clear B_DELWRI for buffer. 937 * 938 * Since the buffer is not on a queue, we do not update the numfreebuffers 939 * count. 940 * 941 * Must be called from a critical section. 942 * 943 * The buffer is typically on QUEUE_NONE but there is one case in 944 * brelse() that calls this function after placing the buffer on 945 * a different queue. 946 */ 947 948 void 949 bundirty(struct buf *bp) 950 { 951 if (bp->b_flags & B_DELWRI) { 952 bp->b_flags &= ~B_DELWRI; 953 reassignbuf(bp, bp->b_vp); 954 --numdirtybuffers; 955 numdirtywakeup(lodirtybuffers); 956 } 957 /* 958 * Since it is now being written, we can clear its deferred write flag. 959 */ 960 bp->b_flags &= ~B_DEFERRED; 961 } 962 963 /* 964 * bawrite: 965 * 966 * Asynchronous write. Start output on a buffer, but do not wait for 967 * it to complete. The buffer is released when the output completes. 968 * 969 * bwrite() ( or the VOP routine anyway ) is responsible for handling 970 * B_INVAL buffers. Not us. 971 */ 972 void 973 bawrite(struct buf * bp) 974 { 975 bp->b_flags |= B_ASYNC; 976 (void) VOP_BWRITE(bp->b_vp, bp); 977 } 978 979 /* 980 * bowrite: 981 * 982 * Ordered write. Start output on a buffer, and flag it so that the 983 * device will write it in the order it was queued. The buffer is 984 * released when the output completes. bwrite() ( or the VOP routine 985 * anyway ) is responsible for handling B_INVAL buffers. 986 */ 987 int 988 bowrite(struct buf * bp) 989 { 990 bp->b_flags |= B_ORDERED | B_ASYNC; 991 return (VOP_BWRITE(bp->b_vp, bp)); 992 } 993 994 /* 995 * bwillwrite: 996 * 997 * Called prior to the locking of any vnodes when we are expecting to 998 * write. We do not want to starve the buffer cache with too many 999 * dirty buffers so we block here. By blocking prior to the locking 1000 * of any vnodes we attempt to avoid the situation where a locked vnode 1001 * prevents the various system daemons from flushing related buffers. 1002 */ 1003 1004 void 1005 bwillwrite(void) 1006 { 1007 if (numdirtybuffers >= hidirtybuffers) { 1008 crit_enter(); 1009 while (numdirtybuffers >= hidirtybuffers) { 1010 bd_wakeup(1); 1011 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 1012 tsleep(&needsbuffer, 0, "flswai", 0); 1013 } 1014 crit_exit(); 1015 } 1016 } 1017 1018 /* 1019 * Return true if we have too many dirty buffers. 1020 */ 1021 int 1022 buf_dirty_count_severe(void) 1023 { 1024 return(numdirtybuffers >= hidirtybuffers); 1025 } 1026 1027 /* 1028 * brelse: 1029 * 1030 * Release a busy buffer and, if requested, free its resources. The 1031 * buffer will be stashed in the appropriate bufqueue[] allowing it 1032 * to be accessed later as a cache entity or reused for other purposes. 1033 */ 1034 void 1035 brelse(struct buf * bp) 1036 { 1037 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1038 1039 crit_enter(); 1040 1041 if (bp->b_flags & B_LOCKED) 1042 bp->b_flags &= ~B_ERROR; 1043 1044 if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) { 1045 /* 1046 * Failed write, redirty. Must clear B_ERROR to prevent 1047 * pages from being scrapped. If B_INVAL is set then 1048 * this case is not run and the next case is run to 1049 * destroy the buffer. B_INVAL can occur if the buffer 1050 * is outside the range supported by the underlying device. 1051 */ 1052 bp->b_flags &= ~B_ERROR; 1053 bdirty(bp); 1054 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) || 1055 (bp->b_bufsize <= 0)) { 1056 /* 1057 * Either a failed I/O or we were asked to free or not 1058 * cache the buffer. 1059 */ 1060 bp->b_flags |= B_INVAL; 1061 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1062 (*bioops.io_deallocate)(bp); 1063 if (bp->b_flags & B_DELWRI) { 1064 --numdirtybuffers; 1065 numdirtywakeup(lodirtybuffers); 1066 } 1067 bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF); 1068 if ((bp->b_flags & B_VMIO) == 0) { 1069 if (bp->b_bufsize) 1070 allocbuf(bp, 0); 1071 if (bp->b_vp) 1072 brelvp(bp); 1073 } 1074 } 1075 1076 /* 1077 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1078 * is called with B_DELWRI set, the underlying pages may wind up 1079 * getting freed causing a previous write (bdwrite()) to get 'lost' 1080 * because pages associated with a B_DELWRI bp are marked clean. 1081 * 1082 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1083 * if B_DELWRI is set. 1084 * 1085 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1086 * on pages to return pages to the VM page queues. 1087 */ 1088 if (bp->b_flags & B_DELWRI) 1089 bp->b_flags &= ~B_RELBUF; 1090 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1091 bp->b_flags |= B_RELBUF; 1092 1093 /* 1094 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1095 * constituted, not even NFS buffers now. Two flags effect this. If 1096 * B_INVAL, the struct buf is invalidated but the VM object is kept 1097 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1098 * 1099 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be 1100 * invalidated. B_ERROR cannot be set for a failed write unless the 1101 * buffer is also B_INVAL because it hits the re-dirtying code above. 1102 * 1103 * Normally we can do this whether a buffer is B_DELWRI or not. If 1104 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1105 * the commit state and we cannot afford to lose the buffer. If the 1106 * buffer has a background write in progress, we need to keep it 1107 * around to prevent it from being reconstituted and starting a second 1108 * background write. 1109 */ 1110 if ((bp->b_flags & B_VMIO) 1111 && !(bp->b_vp->v_tag == VT_NFS && 1112 !vn_isdisk(bp->b_vp, NULL) && 1113 (bp->b_flags & B_DELWRI)) 1114 ) { 1115 1116 int i, j, resid; 1117 vm_page_t m; 1118 off_t foff; 1119 vm_pindex_t poff; 1120 vm_object_t obj; 1121 struct vnode *vp; 1122 1123 vp = bp->b_vp; 1124 1125 /* 1126 * Get the base offset and length of the buffer. Note that 1127 * in the VMIO case if the buffer block size is not 1128 * page-aligned then b_data pointer may not be page-aligned. 1129 * But our b_xio.xio_pages array *IS* page aligned. 1130 * 1131 * block sizes less then DEV_BSIZE (usually 512) are not 1132 * supported due to the page granularity bits (m->valid, 1133 * m->dirty, etc...). 1134 * 1135 * See man buf(9) for more information 1136 */ 1137 1138 resid = bp->b_bufsize; 1139 foff = bp->b_offset; 1140 1141 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1142 m = bp->b_xio.xio_pages[i]; 1143 vm_page_flag_clear(m, PG_ZERO); 1144 /* 1145 * If we hit a bogus page, fixup *all* of them 1146 * now. Note that we left these pages wired 1147 * when we removed them so they had better exist, 1148 * and they cannot be ripped out from under us so 1149 * no critical section protection is necessary. 1150 */ 1151 if (m == bogus_page) { 1152 VOP_GETVOBJECT(vp, &obj); 1153 poff = OFF_TO_IDX(bp->b_offset); 1154 1155 for (j = i; j < bp->b_xio.xio_npages; j++) { 1156 vm_page_t mtmp; 1157 1158 mtmp = bp->b_xio.xio_pages[j]; 1159 if (mtmp == bogus_page) { 1160 mtmp = vm_page_lookup(obj, poff + j); 1161 if (!mtmp) { 1162 panic("brelse: page missing"); 1163 } 1164 bp->b_xio.xio_pages[j] = mtmp; 1165 } 1166 } 1167 1168 if ((bp->b_flags & B_INVAL) == 0) { 1169 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1170 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1171 } 1172 m = bp->b_xio.xio_pages[i]; 1173 } 1174 1175 /* 1176 * Invalidate the backing store if B_NOCACHE is set 1177 * (e.g. used with vinvalbuf()). If this is NFS 1178 * we impose a requirement that the block size be 1179 * a multiple of PAGE_SIZE and create a temporary 1180 * hack to basically invalidate the whole page. The 1181 * problem is that NFS uses really odd buffer sizes 1182 * especially when tracking piecemeal writes and 1183 * it also vinvalbuf()'s a lot, which would result 1184 * in only partial page validation and invalidation 1185 * here. If the file page is mmap()'d, however, 1186 * all the valid bits get set so after we invalidate 1187 * here we would end up with weird m->valid values 1188 * like 0xfc. nfs_getpages() can't handle this so 1189 * we clear all the valid bits for the NFS case 1190 * instead of just some of them. 1191 * 1192 * The real bug is the VM system having to set m->valid 1193 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1194 * itself is an artifact of the whole 512-byte 1195 * granular mess that exists to support odd block 1196 * sizes and UFS meta-data block sizes (e.g. 6144). 1197 * A complete rewrite is required. 1198 */ 1199 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1200 int poffset = foff & PAGE_MASK; 1201 int presid; 1202 1203 presid = PAGE_SIZE - poffset; 1204 if (bp->b_vp->v_tag == VT_NFS && 1205 bp->b_vp->v_type == VREG) { 1206 ; /* entire page */ 1207 } else if (presid > resid) { 1208 presid = resid; 1209 } 1210 KASSERT(presid >= 0, ("brelse: extra page")); 1211 vm_page_set_invalid(m, poffset, presid); 1212 } 1213 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1214 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1215 } 1216 1217 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1218 vfs_vmio_release(bp); 1219 1220 } else if (bp->b_flags & B_VMIO) { 1221 1222 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1223 vfs_vmio_release(bp); 1224 1225 } 1226 1227 if (bp->b_qindex != QUEUE_NONE) 1228 panic("brelse: free buffer onto another queue???"); 1229 if (BUF_REFCNTNB(bp) > 1) { 1230 /* Temporary panic to verify exclusive locking */ 1231 /* This panic goes away when we allow shared refs */ 1232 panic("brelse: multiple refs"); 1233 /* do not release to free list */ 1234 BUF_UNLOCK(bp); 1235 crit_exit(); 1236 return; 1237 } 1238 1239 /* enqueue */ 1240 1241 /* buffers with no memory */ 1242 if (bp->b_bufsize == 0) { 1243 bp->b_flags |= B_INVAL; 1244 bp->b_xflags &= ~BX_BKGRDWRITE; 1245 if (bp->b_xflags & BX_BKGRDINPROG) 1246 panic("losing buffer 1"); 1247 if (bp->b_kvasize) { 1248 bp->b_qindex = QUEUE_EMPTYKVA; 1249 } else { 1250 bp->b_qindex = QUEUE_EMPTY; 1251 } 1252 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1253 LIST_REMOVE(bp, b_hash); 1254 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1255 bp->b_dev = NODEV; 1256 /* buffers with junk contents */ 1257 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) { 1258 bp->b_flags |= B_INVAL; 1259 bp->b_xflags &= ~BX_BKGRDWRITE; 1260 if (bp->b_xflags & BX_BKGRDINPROG) 1261 panic("losing buffer 2"); 1262 bp->b_qindex = QUEUE_CLEAN; 1263 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1264 LIST_REMOVE(bp, b_hash); 1265 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1266 bp->b_dev = NODEV; 1267 1268 /* buffers that are locked */ 1269 } else if (bp->b_flags & B_LOCKED) { 1270 bp->b_qindex = QUEUE_LOCKED; 1271 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1272 1273 /* remaining buffers */ 1274 } else { 1275 switch(bp->b_flags & (B_DELWRI|B_AGE)) { 1276 case B_DELWRI | B_AGE: 1277 bp->b_qindex = QUEUE_DIRTY; 1278 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1279 break; 1280 case B_DELWRI: 1281 bp->b_qindex = QUEUE_DIRTY; 1282 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1283 break; 1284 case B_AGE: 1285 bp->b_qindex = QUEUE_CLEAN; 1286 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1287 break; 1288 default: 1289 bp->b_qindex = QUEUE_CLEAN; 1290 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1291 break; 1292 } 1293 } 1294 1295 /* 1296 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1297 * on the correct queue. 1298 */ 1299 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1300 bundirty(bp); 1301 1302 /* 1303 * Fixup numfreebuffers count. The bp is on an appropriate queue 1304 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1305 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1306 * if B_INVAL is set ). 1307 */ 1308 1309 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1310 bufcountwakeup(); 1311 1312 /* 1313 * Something we can maybe free or reuse 1314 */ 1315 if (bp->b_bufsize || bp->b_kvasize) 1316 bufspacewakeup(); 1317 1318 /* unlock */ 1319 BUF_UNLOCK(bp); 1320 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | 1321 B_DIRECT | B_NOWDRAIN); 1322 crit_exit(); 1323 } 1324 1325 /* 1326 * Release a buffer back to the appropriate queue but do not try to free 1327 * it. The buffer is expected to be used again soon. 1328 * 1329 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1330 * biodone() to requeue an async I/O on completion. It is also used when 1331 * known good buffers need to be requeued but we think we may need the data 1332 * again soon. 1333 * 1334 * XXX we should be able to leave the B_RELBUF hint set on completion. 1335 */ 1336 void 1337 bqrelse(struct buf * bp) 1338 { 1339 crit_enter(); 1340 1341 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1342 1343 if (bp->b_qindex != QUEUE_NONE) 1344 panic("bqrelse: free buffer onto another queue???"); 1345 if (BUF_REFCNTNB(bp) > 1) { 1346 /* do not release to free list */ 1347 panic("bqrelse: multiple refs"); 1348 BUF_UNLOCK(bp); 1349 crit_exit(); 1350 return; 1351 } 1352 if (bp->b_flags & B_LOCKED) { 1353 bp->b_flags &= ~B_ERROR; 1354 bp->b_qindex = QUEUE_LOCKED; 1355 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1356 /* buffers with stale but valid contents */ 1357 } else if (bp->b_flags & B_DELWRI) { 1358 bp->b_qindex = QUEUE_DIRTY; 1359 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1360 } else if (vm_page_count_severe()) { 1361 /* 1362 * We are too low on memory, we have to try to free the 1363 * buffer (most importantly: the wired pages making up its 1364 * backing store) *now*. 1365 */ 1366 crit_exit(); 1367 brelse(bp); 1368 return; 1369 } else { 1370 bp->b_qindex = QUEUE_CLEAN; 1371 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1372 } 1373 1374 if ((bp->b_flags & B_LOCKED) == 0 && 1375 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1376 bufcountwakeup(); 1377 } 1378 1379 /* 1380 * Something we can maybe free or reuse. 1381 */ 1382 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1383 bufspacewakeup(); 1384 1385 /* unlock */ 1386 BUF_UNLOCK(bp); 1387 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1388 crit_exit(); 1389 } 1390 1391 static void 1392 vfs_vmio_release(struct buf *bp) 1393 { 1394 int i; 1395 vm_page_t m; 1396 1397 crit_enter(); 1398 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1399 m = bp->b_xio.xio_pages[i]; 1400 bp->b_xio.xio_pages[i] = NULL; 1401 /* 1402 * In order to keep page LRU ordering consistent, put 1403 * everything on the inactive queue. 1404 */ 1405 vm_page_unwire(m, 0); 1406 /* 1407 * We don't mess with busy pages, it is 1408 * the responsibility of the process that 1409 * busied the pages to deal with them. 1410 */ 1411 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1412 continue; 1413 1414 if (m->wire_count == 0) { 1415 vm_page_flag_clear(m, PG_ZERO); 1416 /* 1417 * Might as well free the page if we can and it has 1418 * no valid data. We also free the page if the 1419 * buffer was used for direct I/O. 1420 */ 1421 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) { 1422 vm_page_busy(m); 1423 vm_page_protect(m, VM_PROT_NONE); 1424 vm_page_free(m); 1425 } else if (bp->b_flags & B_DIRECT) { 1426 vm_page_try_to_free(m); 1427 } else if (vm_page_count_severe()) { 1428 vm_page_try_to_cache(m); 1429 } 1430 } 1431 } 1432 crit_exit(); 1433 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages); 1434 if (bp->b_bufsize) { 1435 bufspacewakeup(); 1436 bp->b_bufsize = 0; 1437 } 1438 bp->b_xio.xio_npages = 0; 1439 bp->b_flags &= ~B_VMIO; 1440 if (bp->b_vp) 1441 brelvp(bp); 1442 } 1443 1444 /* 1445 * Check to see if a block is currently memory resident. 1446 */ 1447 struct buf * 1448 gbincore(struct vnode * vp, daddr_t blkno) 1449 { 1450 struct buf *bp; 1451 struct bufhashhdr *bh; 1452 1453 bh = bufhash(vp, blkno); 1454 1455 /* Search hash chain */ 1456 LIST_FOREACH(bp, bh, b_hash) { 1457 /* hit */ 1458 if (bp->b_vp == vp && bp->b_lblkno == blkno) 1459 break; 1460 } 1461 return (bp); 1462 } 1463 1464 /* 1465 * vfs_bio_awrite: 1466 * 1467 * Implement clustered async writes for clearing out B_DELWRI buffers. 1468 * This is much better then the old way of writing only one buffer at 1469 * a time. Note that we may not be presented with the buffers in the 1470 * correct order, so we search for the cluster in both directions. 1471 */ 1472 int 1473 vfs_bio_awrite(struct buf * bp) 1474 { 1475 int i; 1476 int j; 1477 daddr_t lblkno = bp->b_lblkno; 1478 struct vnode *vp = bp->b_vp; 1479 int ncl; 1480 struct buf *bpa; 1481 int nwritten; 1482 int size; 1483 int maxcl; 1484 1485 crit_enter(); 1486 /* 1487 * right now we support clustered writing only to regular files. If 1488 * we find a clusterable block we could be in the middle of a cluster 1489 * rather then at the beginning. 1490 */ 1491 if ((vp->v_type == VREG) && 1492 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1493 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1494 1495 size = vp->v_mount->mnt_stat.f_iosize; 1496 maxcl = MAXPHYS / size; 1497 1498 for (i = 1; i < maxcl; i++) { 1499 if ((bpa = gbincore(vp, lblkno + i)) && 1500 BUF_REFCNT(bpa) == 0 && 1501 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1502 (B_DELWRI | B_CLUSTEROK)) && 1503 (bpa->b_bufsize == size)) { 1504 if ((bpa->b_blkno == bpa->b_lblkno) || 1505 (bpa->b_blkno != 1506 bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1507 break; 1508 } else { 1509 break; 1510 } 1511 } 1512 for (j = 1; i + j <= maxcl && j <= lblkno; j++) { 1513 if ((bpa = gbincore(vp, lblkno - j)) && 1514 BUF_REFCNT(bpa) == 0 && 1515 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1516 (B_DELWRI | B_CLUSTEROK)) && 1517 (bpa->b_bufsize == size)) { 1518 if ((bpa->b_blkno == bpa->b_lblkno) || 1519 (bpa->b_blkno != 1520 bp->b_blkno - ((j * size) >> DEV_BSHIFT))) 1521 break; 1522 } else { 1523 break; 1524 } 1525 } 1526 --j; 1527 ncl = i + j; 1528 /* 1529 * this is a possible cluster write 1530 */ 1531 if (ncl != 1) { 1532 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1533 crit_exit(); 1534 return nwritten; 1535 } 1536 } 1537 1538 BUF_LOCK(bp, LK_EXCLUSIVE); 1539 bremfree(bp); 1540 bp->b_flags |= B_ASYNC; 1541 1542 crit_exit(); 1543 /* 1544 * default (old) behavior, writing out only one block 1545 * 1546 * XXX returns b_bufsize instead of b_bcount for nwritten? 1547 */ 1548 nwritten = bp->b_bufsize; 1549 (void) VOP_BWRITE(bp->b_vp, bp); 1550 1551 return nwritten; 1552 } 1553 1554 /* 1555 * getnewbuf: 1556 * 1557 * Find and initialize a new buffer header, freeing up existing buffers 1558 * in the bufqueues as necessary. The new buffer is returned locked. 1559 * 1560 * Important: B_INVAL is not set. If the caller wishes to throw the 1561 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1562 * 1563 * We block if: 1564 * We have insufficient buffer headers 1565 * We have insufficient buffer space 1566 * buffer_map is too fragmented ( space reservation fails ) 1567 * If we have to flush dirty buffers ( but we try to avoid this ) 1568 * 1569 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1570 * Instead we ask the buf daemon to do it for us. We attempt to 1571 * avoid piecemeal wakeups of the pageout daemon. 1572 */ 1573 1574 static struct buf * 1575 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1576 { 1577 struct buf *bp; 1578 struct buf *nbp; 1579 int defrag = 0; 1580 int nqindex; 1581 static int flushingbufs; 1582 1583 /* 1584 * We can't afford to block since we might be holding a vnode lock, 1585 * which may prevent system daemons from running. We deal with 1586 * low-memory situations by proactively returning memory and running 1587 * async I/O rather then sync I/O. 1588 */ 1589 1590 ++getnewbufcalls; 1591 --getnewbufrestarts; 1592 restart: 1593 ++getnewbufrestarts; 1594 1595 /* 1596 * Setup for scan. If we do not have enough free buffers, 1597 * we setup a degenerate case that immediately fails. Note 1598 * that if we are specially marked process, we are allowed to 1599 * dip into our reserves. 1600 * 1601 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1602 * 1603 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1604 * However, there are a number of cases (defragging, reusing, ...) 1605 * where we cannot backup. 1606 */ 1607 nqindex = QUEUE_EMPTYKVA; 1608 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1609 1610 if (nbp == NULL) { 1611 /* 1612 * If no EMPTYKVA buffers and we are either 1613 * defragging or reusing, locate a CLEAN buffer 1614 * to free or reuse. If bufspace useage is low 1615 * skip this step so we can allocate a new buffer. 1616 */ 1617 if (defrag || bufspace >= lobufspace) { 1618 nqindex = QUEUE_CLEAN; 1619 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1620 } 1621 1622 /* 1623 * If we could not find or were not allowed to reuse a 1624 * CLEAN buffer, check to see if it is ok to use an EMPTY 1625 * buffer. We can only use an EMPTY buffer if allocating 1626 * its KVA would not otherwise run us out of buffer space. 1627 */ 1628 if (nbp == NULL && defrag == 0 && 1629 bufspace + maxsize < hibufspace) { 1630 nqindex = QUEUE_EMPTY; 1631 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1632 } 1633 } 1634 1635 /* 1636 * Run scan, possibly freeing data and/or kva mappings on the fly 1637 * depending. 1638 */ 1639 1640 while ((bp = nbp) != NULL) { 1641 int qindex = nqindex; 1642 1643 /* 1644 * Calculate next bp ( we can only use it if we do not block 1645 * or do other fancy things ). 1646 */ 1647 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1648 switch(qindex) { 1649 case QUEUE_EMPTY: 1650 nqindex = QUEUE_EMPTYKVA; 1651 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1652 break; 1653 /* fall through */ 1654 case QUEUE_EMPTYKVA: 1655 nqindex = QUEUE_CLEAN; 1656 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1657 break; 1658 /* fall through */ 1659 case QUEUE_CLEAN: 1660 /* 1661 * nbp is NULL. 1662 */ 1663 break; 1664 } 1665 } 1666 1667 /* 1668 * Sanity Checks 1669 */ 1670 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1671 1672 /* 1673 * Note: we no longer distinguish between VMIO and non-VMIO 1674 * buffers. 1675 */ 1676 1677 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1678 1679 /* 1680 * If we are defragging then we need a buffer with 1681 * b_kvasize != 0. XXX this situation should no longer 1682 * occur, if defrag is non-zero the buffer's b_kvasize 1683 * should also be non-zero at this point. XXX 1684 */ 1685 if (defrag && bp->b_kvasize == 0) { 1686 printf("Warning: defrag empty buffer %p\n", bp); 1687 continue; 1688 } 1689 1690 /* 1691 * Start freeing the bp. This is somewhat involved. nbp 1692 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1693 */ 1694 1695 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1696 panic("getnewbuf: locked buf"); 1697 bremfree(bp); 1698 1699 if (qindex == QUEUE_CLEAN) { 1700 if (bp->b_flags & B_VMIO) { 1701 bp->b_flags &= ~B_ASYNC; 1702 vfs_vmio_release(bp); 1703 } 1704 if (bp->b_vp) 1705 brelvp(bp); 1706 } 1707 1708 /* 1709 * NOTE: nbp is now entirely invalid. We can only restart 1710 * the scan from this point on. 1711 * 1712 * Get the rest of the buffer freed up. b_kva* is still 1713 * valid after this operation. 1714 */ 1715 1716 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1717 (*bioops.io_deallocate)(bp); 1718 if (bp->b_xflags & BX_BKGRDINPROG) 1719 panic("losing buffer 3"); 1720 LIST_REMOVE(bp, b_hash); 1721 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1722 1723 /* 1724 * critical section protection is not required when 1725 * scrapping a buffer's contents because it is already 1726 * wired. 1727 */ 1728 if (bp->b_bufsize) 1729 allocbuf(bp, 0); 1730 1731 bp->b_flags = 0; 1732 bp->b_xflags = 0; 1733 bp->b_dev = NODEV; 1734 bp->b_vp = NULL; 1735 bp->b_blkno = bp->b_lblkno = 0; 1736 bp->b_offset = NOOFFSET; 1737 bp->b_iodone = 0; 1738 bp->b_error = 0; 1739 bp->b_resid = 0; 1740 bp->b_bcount = 0; 1741 bp->b_xio.xio_npages = 0; 1742 bp->b_dirtyoff = bp->b_dirtyend = 0; 1743 1744 LIST_INIT(&bp->b_dep); 1745 1746 /* 1747 * If we are defragging then free the buffer. 1748 */ 1749 if (defrag) { 1750 bp->b_flags |= B_INVAL; 1751 bfreekva(bp); 1752 brelse(bp); 1753 defrag = 0; 1754 goto restart; 1755 } 1756 1757 /* 1758 * If we are overcomitted then recover the buffer and its 1759 * KVM space. This occurs in rare situations when multiple 1760 * processes are blocked in getnewbuf() or allocbuf(). 1761 */ 1762 if (bufspace >= hibufspace) 1763 flushingbufs = 1; 1764 if (flushingbufs && bp->b_kvasize != 0) { 1765 bp->b_flags |= B_INVAL; 1766 bfreekva(bp); 1767 brelse(bp); 1768 goto restart; 1769 } 1770 if (bufspace < lobufspace) 1771 flushingbufs = 0; 1772 break; 1773 } 1774 1775 /* 1776 * If we exhausted our list, sleep as appropriate. We may have to 1777 * wakeup various daemons and write out some dirty buffers. 1778 * 1779 * Generally we are sleeping due to insufficient buffer space. 1780 */ 1781 1782 if (bp == NULL) { 1783 int flags; 1784 char *waitmsg; 1785 1786 if (defrag) { 1787 flags = VFS_BIO_NEED_BUFSPACE; 1788 waitmsg = "nbufkv"; 1789 } else if (bufspace >= hibufspace) { 1790 waitmsg = "nbufbs"; 1791 flags = VFS_BIO_NEED_BUFSPACE; 1792 } else { 1793 waitmsg = "newbuf"; 1794 flags = VFS_BIO_NEED_ANY; 1795 } 1796 1797 bd_speedup(); /* heeeelp */ 1798 1799 needsbuffer |= flags; 1800 while (needsbuffer & flags) { 1801 if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo)) 1802 return (NULL); 1803 } 1804 } else { 1805 /* 1806 * We finally have a valid bp. We aren't quite out of the 1807 * woods, we still have to reserve kva space. In order 1808 * to keep fragmentation sane we only allocate kva in 1809 * BKVASIZE chunks. 1810 */ 1811 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1812 1813 if (maxsize != bp->b_kvasize) { 1814 vm_offset_t addr = 0; 1815 int count; 1816 1817 bfreekva(bp); 1818 1819 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1820 vm_map_lock(buffer_map); 1821 1822 if (vm_map_findspace(buffer_map, 1823 vm_map_min(buffer_map), maxsize, 1824 maxsize, &addr)) { 1825 /* 1826 * Uh oh. Buffer map is to fragmented. We 1827 * must defragment the map. 1828 */ 1829 vm_map_unlock(buffer_map); 1830 vm_map_entry_release(count); 1831 ++bufdefragcnt; 1832 defrag = 1; 1833 bp->b_flags |= B_INVAL; 1834 brelse(bp); 1835 goto restart; 1836 } 1837 if (addr) { 1838 vm_map_insert(buffer_map, &count, 1839 NULL, 0, 1840 addr, addr + maxsize, 1841 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1842 1843 bp->b_kvabase = (caddr_t) addr; 1844 bp->b_kvasize = maxsize; 1845 bufspace += bp->b_kvasize; 1846 ++bufreusecnt; 1847 } 1848 vm_map_unlock(buffer_map); 1849 vm_map_entry_release(count); 1850 } 1851 bp->b_data = bp->b_kvabase; 1852 } 1853 return(bp); 1854 } 1855 1856 /* 1857 * buf_daemon: 1858 * 1859 * buffer flushing daemon. Buffers are normally flushed by the 1860 * update daemon but if it cannot keep up this process starts to 1861 * take the load in an attempt to prevent getnewbuf() from blocking. 1862 */ 1863 1864 static struct thread *bufdaemonthread; 1865 1866 static struct kproc_desc buf_kp = { 1867 "bufdaemon", 1868 buf_daemon, 1869 &bufdaemonthread 1870 }; 1871 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 1872 1873 static void 1874 buf_daemon() 1875 { 1876 /* 1877 * This process needs to be suspended prior to shutdown sync. 1878 */ 1879 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 1880 bufdaemonthread, SHUTDOWN_PRI_LAST); 1881 1882 /* 1883 * This process is allowed to take the buffer cache to the limit 1884 */ 1885 crit_enter(); 1886 1887 for (;;) { 1888 kproc_suspend_loop(); 1889 1890 /* 1891 * Do the flush. Limit the amount of in-transit I/O we 1892 * allow to build up, otherwise we would completely saturate 1893 * the I/O system. Wakeup any waiting processes before we 1894 * normally would so they can run in parallel with our drain. 1895 */ 1896 while (numdirtybuffers > lodirtybuffers) { 1897 if (flushbufqueues() == 0) 1898 break; 1899 waitrunningbufspace(); 1900 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 1901 } 1902 1903 /* 1904 * Only clear bd_request if we have reached our low water 1905 * mark. The buf_daemon normally waits 5 seconds and 1906 * then incrementally flushes any dirty buffers that have 1907 * built up, within reason. 1908 * 1909 * If we were unable to hit our low water mark and couldn't 1910 * find any flushable buffers, we sleep half a second. 1911 * Otherwise we loop immediately. 1912 */ 1913 if (numdirtybuffers <= lodirtybuffers) { 1914 /* 1915 * We reached our low water mark, reset the 1916 * request and sleep until we are needed again. 1917 * The sleep is just so the suspend code works. 1918 */ 1919 bd_request = 0; 1920 tsleep(&bd_request, 0, "psleep", hz); 1921 } else { 1922 /* 1923 * We couldn't find any flushable dirty buffers but 1924 * still have too many dirty buffers, we 1925 * have to sleep and try again. (rare) 1926 */ 1927 tsleep(&bd_request, 0, "qsleep", hz / 2); 1928 } 1929 } 1930 } 1931 1932 /* 1933 * flushbufqueues: 1934 * 1935 * Try to flush a buffer in the dirty queue. We must be careful to 1936 * free up B_INVAL buffers instead of write them, which NFS is 1937 * particularly sensitive to. 1938 */ 1939 1940 static int 1941 flushbufqueues(void) 1942 { 1943 struct buf *bp; 1944 int r = 0; 1945 1946 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1947 1948 while (bp) { 1949 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp)); 1950 if ((bp->b_flags & B_DELWRI) != 0 && 1951 (bp->b_xflags & BX_BKGRDINPROG) == 0) { 1952 if (bp->b_flags & B_INVAL) { 1953 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1954 panic("flushbufqueues: locked buf"); 1955 bremfree(bp); 1956 brelse(bp); 1957 ++r; 1958 break; 1959 } 1960 if (LIST_FIRST(&bp->b_dep) != NULL && 1961 bioops.io_countdeps && 1962 (bp->b_flags & B_DEFERRED) == 0 && 1963 (*bioops.io_countdeps)(bp, 0)) { 1964 TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], 1965 bp, b_freelist); 1966 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], 1967 bp, b_freelist); 1968 bp->b_flags |= B_DEFERRED; 1969 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1970 continue; 1971 } 1972 vfs_bio_awrite(bp); 1973 ++r; 1974 break; 1975 } 1976 bp = TAILQ_NEXT(bp, b_freelist); 1977 } 1978 return (r); 1979 } 1980 1981 /* 1982 * Check to see if a block is currently memory resident. 1983 */ 1984 struct buf * 1985 incore(struct vnode * vp, daddr_t blkno) 1986 { 1987 struct buf *bp; 1988 1989 crit_enter(); 1990 bp = gbincore(vp, blkno); 1991 crit_exit(); 1992 return (bp); 1993 } 1994 1995 /* 1996 * Returns true if no I/O is needed to access the associated VM object. 1997 * This is like incore except it also hunts around in the VM system for 1998 * the data. 1999 * 2000 * Note that we ignore vm_page_free() races from interrupts against our 2001 * lookup, since if the caller is not protected our return value will not 2002 * be any more valid then otherwise once we exit the critical section. 2003 */ 2004 int 2005 inmem(struct vnode * vp, daddr_t blkno) 2006 { 2007 vm_object_t obj; 2008 vm_offset_t toff, tinc, size; 2009 vm_page_t m; 2010 vm_ooffset_t off; 2011 2012 if (incore(vp, blkno)) 2013 return 1; 2014 if (vp->v_mount == NULL) 2015 return 0; 2016 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0) 2017 return 0; 2018 2019 size = PAGE_SIZE; 2020 if (size > vp->v_mount->mnt_stat.f_iosize) 2021 size = vp->v_mount->mnt_stat.f_iosize; 2022 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 2023 2024 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2025 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 2026 if (!m) 2027 return 0; 2028 tinc = size; 2029 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 2030 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 2031 if (vm_page_is_valid(m, 2032 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 2033 return 0; 2034 } 2035 return 1; 2036 } 2037 2038 /* 2039 * vfs_setdirty: 2040 * 2041 * Sets the dirty range for a buffer based on the status of the dirty 2042 * bits in the pages comprising the buffer. 2043 * 2044 * The range is limited to the size of the buffer. 2045 * 2046 * This routine is primarily used by NFS, but is generalized for the 2047 * B_VMIO case. 2048 */ 2049 static void 2050 vfs_setdirty(struct buf *bp) 2051 { 2052 int i; 2053 vm_object_t object; 2054 2055 /* 2056 * Degenerate case - empty buffer 2057 */ 2058 2059 if (bp->b_bufsize == 0) 2060 return; 2061 2062 /* 2063 * We qualify the scan for modified pages on whether the 2064 * object has been flushed yet. The OBJ_WRITEABLE flag 2065 * is not cleared simply by protecting pages off. 2066 */ 2067 2068 if ((bp->b_flags & B_VMIO) == 0) 2069 return; 2070 2071 object = bp->b_xio.xio_pages[0]->object; 2072 2073 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2074 printf("Warning: object %p writeable but not mightbedirty\n", object); 2075 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2076 printf("Warning: object %p mightbedirty but not writeable\n", object); 2077 2078 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2079 vm_offset_t boffset; 2080 vm_offset_t eoffset; 2081 2082 /* 2083 * test the pages to see if they have been modified directly 2084 * by users through the VM system. 2085 */ 2086 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2087 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 2088 vm_page_test_dirty(bp->b_xio.xio_pages[i]); 2089 } 2090 2091 /* 2092 * Calculate the encompassing dirty range, boffset and eoffset, 2093 * (eoffset - boffset) bytes. 2094 */ 2095 2096 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2097 if (bp->b_xio.xio_pages[i]->dirty) 2098 break; 2099 } 2100 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2101 2102 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) { 2103 if (bp->b_xio.xio_pages[i]->dirty) { 2104 break; 2105 } 2106 } 2107 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2108 2109 /* 2110 * Fit it to the buffer. 2111 */ 2112 2113 if (eoffset > bp->b_bcount) 2114 eoffset = bp->b_bcount; 2115 2116 /* 2117 * If we have a good dirty range, merge with the existing 2118 * dirty range. 2119 */ 2120 2121 if (boffset < eoffset) { 2122 if (bp->b_dirtyoff > boffset) 2123 bp->b_dirtyoff = boffset; 2124 if (bp->b_dirtyend < eoffset) 2125 bp->b_dirtyend = eoffset; 2126 } 2127 } 2128 } 2129 2130 /* 2131 * getblk: 2132 * 2133 * Get a block given a specified block and offset into a file/device. 2134 * The buffers B_DONE bit will be cleared on return, making it almost 2135 * ready for an I/O initiation. B_INVAL may or may not be set on 2136 * return. The caller should clear B_INVAL prior to initiating a 2137 * READ. 2138 * 2139 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2140 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2141 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2142 * without doing any of those things the system will likely believe 2143 * the buffer to be valid (especially if it is not B_VMIO), and the 2144 * next getblk() will return the buffer with B_CACHE set. 2145 * 2146 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2147 * an existing buffer. 2148 * 2149 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2150 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2151 * and then cleared based on the backing VM. If the previous buffer is 2152 * non-0-sized but invalid, B_CACHE will be cleared. 2153 * 2154 * If getblk() must create a new buffer, the new buffer is returned with 2155 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2156 * case it is returned with B_INVAL clear and B_CACHE set based on the 2157 * backing VM. 2158 * 2159 * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos 2160 * B_CACHE bit is clear. 2161 * 2162 * What this means, basically, is that the caller should use B_CACHE to 2163 * determine whether the buffer is fully valid or not and should clear 2164 * B_INVAL prior to issuing a read. If the caller intends to validate 2165 * the buffer by loading its data area with something, the caller needs 2166 * to clear B_INVAL. If the caller does this without issuing an I/O, 2167 * the caller should set B_CACHE ( as an optimization ), else the caller 2168 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2169 * a write attempt or if it was a successfull read. If the caller 2170 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2171 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2172 */ 2173 struct buf * 2174 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 2175 { 2176 struct buf *bp; 2177 struct bufhashhdr *bh; 2178 2179 if (size > MAXBSIZE) 2180 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2181 2182 crit_enter(); 2183 loop: 2184 /* 2185 * Block if we are low on buffers. Certain processes are allowed 2186 * to completely exhaust the buffer cache. 2187 * 2188 * If this check ever becomes a bottleneck it may be better to 2189 * move it into the else, when gbincore() fails. At the moment 2190 * it isn't a problem. 2191 * 2192 * XXX remove, we cannot afford to block anywhere if holding a vnode 2193 * lock in low-memory situation, so take it to the max. 2194 */ 2195 if (numfreebuffers == 0) { 2196 if (!curproc) 2197 return NULL; 2198 needsbuffer |= VFS_BIO_NEED_ANY; 2199 tsleep(&needsbuffer, slpflag, "newbuf", slptimeo); 2200 } 2201 2202 if ((bp = gbincore(vp, blkno))) { 2203 /* 2204 * Buffer is in-core. If the buffer is not busy, it must 2205 * be on a queue. 2206 */ 2207 2208 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2209 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, 2210 "getblk", slpflag, slptimeo) == ENOLCK) 2211 goto loop; 2212 crit_exit(); 2213 return (struct buf *) NULL; 2214 } 2215 2216 /* 2217 * The buffer is locked. B_CACHE is cleared if the buffer is 2218 * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set 2219 * and for a VMIO buffer B_CACHE is adjusted according to the 2220 * backing VM cache. 2221 */ 2222 if (bp->b_flags & B_INVAL) 2223 bp->b_flags &= ~B_CACHE; 2224 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2225 bp->b_flags |= B_CACHE; 2226 bremfree(bp); 2227 2228 /* 2229 * check for size inconsistancies for non-VMIO case. 2230 */ 2231 2232 if (bp->b_bcount != size) { 2233 if ((bp->b_flags & B_VMIO) == 0 || 2234 (size > bp->b_kvasize)) { 2235 if (bp->b_flags & B_DELWRI) { 2236 bp->b_flags |= B_NOCACHE; 2237 VOP_BWRITE(bp->b_vp, bp); 2238 } else { 2239 if ((bp->b_flags & B_VMIO) && 2240 (LIST_FIRST(&bp->b_dep) == NULL)) { 2241 bp->b_flags |= B_RELBUF; 2242 brelse(bp); 2243 } else { 2244 bp->b_flags |= B_NOCACHE; 2245 VOP_BWRITE(bp->b_vp, bp); 2246 } 2247 } 2248 goto loop; 2249 } 2250 } 2251 2252 /* 2253 * If the size is inconsistant in the VMIO case, we can resize 2254 * the buffer. This might lead to B_CACHE getting set or 2255 * cleared. If the size has not changed, B_CACHE remains 2256 * unchanged from its previous state. 2257 */ 2258 2259 if (bp->b_bcount != size) 2260 allocbuf(bp, size); 2261 2262 KASSERT(bp->b_offset != NOOFFSET, 2263 ("getblk: no buffer offset")); 2264 2265 /* 2266 * A buffer with B_DELWRI set and B_CACHE clear must 2267 * be committed before we can return the buffer in 2268 * order to prevent the caller from issuing a read 2269 * ( due to B_CACHE not being set ) and overwriting 2270 * it. 2271 * 2272 * Most callers, including NFS and FFS, need this to 2273 * operate properly either because they assume they 2274 * can issue a read if B_CACHE is not set, or because 2275 * ( for example ) an uncached B_DELWRI might loop due 2276 * to softupdates re-dirtying the buffer. In the latter 2277 * case, B_CACHE is set after the first write completes, 2278 * preventing further loops. 2279 * 2280 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2281 * above while extending the buffer, we cannot allow the 2282 * buffer to remain with B_CACHE set after the write 2283 * completes or it will represent a corrupt state. To 2284 * deal with this we set B_NOCACHE to scrap the buffer 2285 * after the write. 2286 * 2287 * We might be able to do something fancy, like setting 2288 * B_CACHE in bwrite() except if B_DELWRI is already set, 2289 * so the below call doesn't set B_CACHE, but that gets real 2290 * confusing. This is much easier. 2291 */ 2292 2293 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2294 bp->b_flags |= B_NOCACHE; 2295 VOP_BWRITE(bp->b_vp, bp); 2296 goto loop; 2297 } 2298 2299 crit_exit(); 2300 bp->b_flags &= ~B_DONE; 2301 } else { 2302 /* 2303 * Buffer is not in-core, create new buffer. The buffer 2304 * returned by getnewbuf() is locked. Note that the returned 2305 * buffer is also considered valid (not marked B_INVAL). 2306 * 2307 * Calculating the offset for the I/O requires figuring out 2308 * the block size. We use DEV_BSIZE for VBLK or VCHR and 2309 * the mount's f_iosize otherwise. If the vnode does not 2310 * have an associated mount we assume that the passed size is 2311 * the block size. 2312 * 2313 * Note that vn_isdisk() cannot be used here since it may 2314 * return a failure for numerous reasons. Note that the 2315 * buffer size may be larger then the block size (the caller 2316 * will use block numbers with the proper multiple). Beware 2317 * of using any v_* fields which are part of unions. In 2318 * particular, in DragonFly the mount point overloading 2319 * mechanism is such that the underlying directory (with a 2320 * non-NULL v_mountedhere) is not a special case. 2321 */ 2322 int bsize, maxsize, vmio; 2323 off_t offset; 2324 2325 if (vp->v_type == VBLK || vp->v_type == VCHR) 2326 bsize = DEV_BSIZE; 2327 else if (vp->v_mount) 2328 bsize = vp->v_mount->mnt_stat.f_iosize; 2329 else 2330 bsize = size; 2331 2332 offset = (off_t)blkno * bsize; 2333 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF); 2334 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2335 maxsize = imax(maxsize, bsize); 2336 2337 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2338 if (slpflag || slptimeo) { 2339 crit_exit(); 2340 return NULL; 2341 } 2342 goto loop; 2343 } 2344 2345 /* 2346 * This code is used to make sure that a buffer is not 2347 * created while the getnewbuf routine is blocked. 2348 * This can be a problem whether the vnode is locked or not. 2349 * If the buffer is created out from under us, we have to 2350 * throw away the one we just created. There is now window 2351 * race because we are safely running in a critical section 2352 * from the point of the duplicate buffer creation through 2353 * to here, and we've locked the buffer. 2354 */ 2355 if (gbincore(vp, blkno)) { 2356 bp->b_flags |= B_INVAL; 2357 brelse(bp); 2358 goto loop; 2359 } 2360 2361 /* 2362 * Insert the buffer into the hash, so that it can 2363 * be found by incore. 2364 */ 2365 bp->b_blkno = bp->b_lblkno = blkno; 2366 bp->b_offset = offset; 2367 2368 bgetvp(vp, bp); 2369 LIST_REMOVE(bp, b_hash); 2370 bh = bufhash(vp, blkno); 2371 LIST_INSERT_HEAD(bh, bp, b_hash); 2372 2373 /* 2374 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2375 * buffer size starts out as 0, B_CACHE will be set by 2376 * allocbuf() for the VMIO case prior to it testing the 2377 * backing store for validity. 2378 */ 2379 2380 if (vmio) { 2381 bp->b_flags |= B_VMIO; 2382 #if defined(VFS_BIO_DEBUG) 2383 if (vn_canvmio(vp) != TRUE) 2384 printf("getblk: vmioing file type %d???\n", vp->v_type); 2385 #endif 2386 } else { 2387 bp->b_flags &= ~B_VMIO; 2388 } 2389 2390 allocbuf(bp, size); 2391 2392 crit_exit(); 2393 bp->b_flags &= ~B_DONE; 2394 } 2395 return (bp); 2396 } 2397 2398 /* 2399 * Get an empty, disassociated buffer of given size. The buffer is initially 2400 * set to B_INVAL. 2401 * 2402 * critical section protection is not required for the allocbuf() call 2403 * because races are impossible here. 2404 */ 2405 struct buf * 2406 geteblk(int size) 2407 { 2408 struct buf *bp; 2409 int maxsize; 2410 2411 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2412 2413 crit_enter(); 2414 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2415 ; 2416 crit_exit(); 2417 allocbuf(bp, size); 2418 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2419 return (bp); 2420 } 2421 2422 2423 /* 2424 * This code constitutes the buffer memory from either anonymous system 2425 * memory (in the case of non-VMIO operations) or from an associated 2426 * VM object (in the case of VMIO operations). This code is able to 2427 * resize a buffer up or down. 2428 * 2429 * Note that this code is tricky, and has many complications to resolve 2430 * deadlock or inconsistant data situations. Tread lightly!!! 2431 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2432 * the caller. Calling this code willy nilly can result in the loss of data. 2433 * 2434 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2435 * B_CACHE for the non-VMIO case. 2436 * 2437 * This routine does not need to be called from a critical section but you 2438 * must own the buffer. 2439 */ 2440 int 2441 allocbuf(struct buf *bp, int size) 2442 { 2443 int newbsize, mbsize; 2444 int i; 2445 2446 if (BUF_REFCNT(bp) == 0) 2447 panic("allocbuf: buffer not busy"); 2448 2449 if (bp->b_kvasize < size) 2450 panic("allocbuf: buffer too small"); 2451 2452 if ((bp->b_flags & B_VMIO) == 0) { 2453 caddr_t origbuf; 2454 int origbufsize; 2455 /* 2456 * Just get anonymous memory from the kernel. Don't 2457 * mess with B_CACHE. 2458 */ 2459 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2460 #if !defined(NO_B_MALLOC) 2461 if (bp->b_flags & B_MALLOC) 2462 newbsize = mbsize; 2463 else 2464 #endif 2465 newbsize = round_page(size); 2466 2467 if (newbsize < bp->b_bufsize) { 2468 #if !defined(NO_B_MALLOC) 2469 /* 2470 * malloced buffers are not shrunk 2471 */ 2472 if (bp->b_flags & B_MALLOC) { 2473 if (newbsize) { 2474 bp->b_bcount = size; 2475 } else { 2476 free(bp->b_data, M_BIOBUF); 2477 if (bp->b_bufsize) { 2478 bufmallocspace -= bp->b_bufsize; 2479 bufspacewakeup(); 2480 bp->b_bufsize = 0; 2481 } 2482 bp->b_data = bp->b_kvabase; 2483 bp->b_bcount = 0; 2484 bp->b_flags &= ~B_MALLOC; 2485 } 2486 return 1; 2487 } 2488 #endif 2489 vm_hold_free_pages( 2490 bp, 2491 (vm_offset_t) bp->b_data + newbsize, 2492 (vm_offset_t) bp->b_data + bp->b_bufsize); 2493 } else if (newbsize > bp->b_bufsize) { 2494 #if !defined(NO_B_MALLOC) 2495 /* 2496 * We only use malloced memory on the first allocation. 2497 * and revert to page-allocated memory when the buffer 2498 * grows. 2499 */ 2500 if ( (bufmallocspace < maxbufmallocspace) && 2501 (bp->b_bufsize == 0) && 2502 (mbsize <= PAGE_SIZE/2)) { 2503 2504 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2505 bp->b_bufsize = mbsize; 2506 bp->b_bcount = size; 2507 bp->b_flags |= B_MALLOC; 2508 bufmallocspace += mbsize; 2509 return 1; 2510 } 2511 #endif 2512 origbuf = NULL; 2513 origbufsize = 0; 2514 #if !defined(NO_B_MALLOC) 2515 /* 2516 * If the buffer is growing on its other-than-first allocation, 2517 * then we revert to the page-allocation scheme. 2518 */ 2519 if (bp->b_flags & B_MALLOC) { 2520 origbuf = bp->b_data; 2521 origbufsize = bp->b_bufsize; 2522 bp->b_data = bp->b_kvabase; 2523 if (bp->b_bufsize) { 2524 bufmallocspace -= bp->b_bufsize; 2525 bufspacewakeup(); 2526 bp->b_bufsize = 0; 2527 } 2528 bp->b_flags &= ~B_MALLOC; 2529 newbsize = round_page(newbsize); 2530 } 2531 #endif 2532 vm_hold_load_pages( 2533 bp, 2534 (vm_offset_t) bp->b_data + bp->b_bufsize, 2535 (vm_offset_t) bp->b_data + newbsize); 2536 #if !defined(NO_B_MALLOC) 2537 if (origbuf) { 2538 bcopy(origbuf, bp->b_data, origbufsize); 2539 free(origbuf, M_BIOBUF); 2540 } 2541 #endif 2542 } 2543 } else { 2544 vm_page_t m; 2545 int desiredpages; 2546 2547 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2548 desiredpages = (size == 0) ? 0 : 2549 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2550 2551 #if !defined(NO_B_MALLOC) 2552 if (bp->b_flags & B_MALLOC) 2553 panic("allocbuf: VMIO buffer can't be malloced"); 2554 #endif 2555 /* 2556 * Set B_CACHE initially if buffer is 0 length or will become 2557 * 0-length. 2558 */ 2559 if (size == 0 || bp->b_bufsize == 0) 2560 bp->b_flags |= B_CACHE; 2561 2562 if (newbsize < bp->b_bufsize) { 2563 /* 2564 * DEV_BSIZE aligned new buffer size is less then the 2565 * DEV_BSIZE aligned existing buffer size. Figure out 2566 * if we have to remove any pages. 2567 */ 2568 if (desiredpages < bp->b_xio.xio_npages) { 2569 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 2570 /* 2571 * the page is not freed here -- it 2572 * is the responsibility of 2573 * vnode_pager_setsize 2574 */ 2575 m = bp->b_xio.xio_pages[i]; 2576 KASSERT(m != bogus_page, 2577 ("allocbuf: bogus page found")); 2578 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2579 ; 2580 2581 bp->b_xio.xio_pages[i] = NULL; 2582 vm_page_unwire(m, 0); 2583 } 2584 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2585 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 2586 bp->b_xio.xio_npages = desiredpages; 2587 } 2588 } else if (size > bp->b_bcount) { 2589 /* 2590 * We are growing the buffer, possibly in a 2591 * byte-granular fashion. 2592 */ 2593 struct vnode *vp; 2594 vm_object_t obj; 2595 vm_offset_t toff; 2596 vm_offset_t tinc; 2597 2598 /* 2599 * Step 1, bring in the VM pages from the object, 2600 * allocating them if necessary. We must clear 2601 * B_CACHE if these pages are not valid for the 2602 * range covered by the buffer. 2603 * 2604 * critical section protection is required to protect 2605 * against interrupts unbusying and freeing pages 2606 * between our vm_page_lookup() and our 2607 * busycheck/wiring call. 2608 */ 2609 vp = bp->b_vp; 2610 VOP_GETVOBJECT(vp, &obj); 2611 2612 crit_enter(); 2613 while (bp->b_xio.xio_npages < desiredpages) { 2614 vm_page_t m; 2615 vm_pindex_t pi; 2616 2617 pi = OFF_TO_IDX(bp->b_offset) + bp->b_xio.xio_npages; 2618 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2619 /* 2620 * note: must allocate system pages 2621 * since blocking here could intefere 2622 * with paging I/O, no matter which 2623 * process we are. 2624 */ 2625 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 2626 if (m == NULL) { 2627 vm_wait(); 2628 vm_pageout_deficit += desiredpages - 2629 bp->b_xio.xio_npages; 2630 } else { 2631 vm_page_wire(m); 2632 vm_page_wakeup(m); 2633 bp->b_flags &= ~B_CACHE; 2634 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 2635 ++bp->b_xio.xio_npages; 2636 } 2637 continue; 2638 } 2639 2640 /* 2641 * We found a page. If we have to sleep on it, 2642 * retry because it might have gotten freed out 2643 * from under us. 2644 * 2645 * We can only test PG_BUSY here. Blocking on 2646 * m->busy might lead to a deadlock: 2647 * 2648 * vm_fault->getpages->cluster_read->allocbuf 2649 * 2650 */ 2651 2652 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2653 continue; 2654 2655 /* 2656 * We have a good page. Should we wakeup the 2657 * page daemon? 2658 */ 2659 if ((curthread != pagethread) && 2660 ((m->queue - m->pc) == PQ_CACHE) && 2661 ((vmstats.v_free_count + vmstats.v_cache_count) < 2662 (vmstats.v_free_min + vmstats.v_cache_min))) { 2663 pagedaemon_wakeup(); 2664 } 2665 vm_page_flag_clear(m, PG_ZERO); 2666 vm_page_wire(m); 2667 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 2668 ++bp->b_xio.xio_npages; 2669 } 2670 crit_exit(); 2671 2672 /* 2673 * Step 2. We've loaded the pages into the buffer, 2674 * we have to figure out if we can still have B_CACHE 2675 * set. Note that B_CACHE is set according to the 2676 * byte-granular range ( bcount and size ), new the 2677 * aligned range ( newbsize ). 2678 * 2679 * The VM test is against m->valid, which is DEV_BSIZE 2680 * aligned. Needless to say, the validity of the data 2681 * needs to also be DEV_BSIZE aligned. Note that this 2682 * fails with NFS if the server or some other client 2683 * extends the file's EOF. If our buffer is resized, 2684 * B_CACHE may remain set! XXX 2685 */ 2686 2687 toff = bp->b_bcount; 2688 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2689 2690 while ((bp->b_flags & B_CACHE) && toff < size) { 2691 vm_pindex_t pi; 2692 2693 if (tinc > (size - toff)) 2694 tinc = size - toff; 2695 2696 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2697 PAGE_SHIFT; 2698 2699 vfs_buf_test_cache( 2700 bp, 2701 bp->b_offset, 2702 toff, 2703 tinc, 2704 bp->b_xio.xio_pages[pi] 2705 ); 2706 toff += tinc; 2707 tinc = PAGE_SIZE; 2708 } 2709 2710 /* 2711 * Step 3, fixup the KVM pmap. Remember that 2712 * bp->b_data is relative to bp->b_offset, but 2713 * bp->b_offset may be offset into the first page. 2714 */ 2715 2716 bp->b_data = (caddr_t) 2717 trunc_page((vm_offset_t)bp->b_data); 2718 pmap_qenter( 2719 (vm_offset_t)bp->b_data, 2720 bp->b_xio.xio_pages, 2721 bp->b_xio.xio_npages 2722 ); 2723 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2724 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2725 } 2726 } 2727 if (newbsize < bp->b_bufsize) 2728 bufspacewakeup(); 2729 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2730 bp->b_bcount = size; /* requested buffer size */ 2731 return 1; 2732 } 2733 2734 /* 2735 * biowait: 2736 * 2737 * Wait for buffer I/O completion, returning error status. The buffer 2738 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR 2739 * error and cleared. 2740 */ 2741 int 2742 biowait(struct buf * bp) 2743 { 2744 crit_enter(); 2745 while ((bp->b_flags & B_DONE) == 0) { 2746 #if defined(NO_SCHEDULE_MODS) 2747 tsleep(bp, 0, "biowait", 0); 2748 #else 2749 if (bp->b_flags & B_READ) 2750 tsleep(bp, 0, "biord", 0); 2751 else 2752 tsleep(bp, 0, "biowr", 0); 2753 #endif 2754 } 2755 crit_exit(); 2756 if (bp->b_flags & B_EINTR) { 2757 bp->b_flags &= ~B_EINTR; 2758 return (EINTR); 2759 } 2760 if (bp->b_flags & B_ERROR) { 2761 return (bp->b_error ? bp->b_error : EIO); 2762 } else { 2763 return (0); 2764 } 2765 } 2766 2767 /* 2768 * biodone: 2769 * 2770 * Finish I/O on a buffer, optionally calling a completion function. 2771 * This is usually called from an interrupt so process blocking is 2772 * not allowed. 2773 * 2774 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2775 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2776 * assuming B_INVAL is clear. 2777 * 2778 * For the VMIO case, we set B_CACHE if the op was a read and no 2779 * read error occured, or if the op was a write. B_CACHE is never 2780 * set if the buffer is invalid or otherwise uncacheable. 2781 * 2782 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2783 * initiator to leave B_INVAL set to brelse the buffer out of existance 2784 * in the biodone routine. 2785 * 2786 * b_dev is required to be reinitialized prior to the top level strategy 2787 * call in a device stack. To avoid improper reuse, biodone() sets 2788 * b_dev to NODEV. 2789 */ 2790 void 2791 biodone(struct buf *bp) 2792 { 2793 int error; 2794 2795 crit_enter(); 2796 2797 KASSERT(BUF_REFCNTNB(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 2798 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 2799 2800 bp->b_flags |= B_DONE; 2801 bp->b_dev = NODEV; 2802 runningbufwakeup(bp); 2803 2804 if (bp->b_flags & B_FREEBUF) { 2805 brelse(bp); 2806 crit_exit(); 2807 return; 2808 } 2809 2810 if ((bp->b_flags & B_READ) == 0) { 2811 vwakeup(bp); 2812 } 2813 2814 /* call optional completion function if requested */ 2815 if (bp->b_flags & B_CALL) { 2816 bp->b_flags &= ~B_CALL; 2817 (*bp->b_iodone) (bp); 2818 crit_exit(); 2819 return; 2820 } 2821 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 2822 (*bioops.io_complete)(bp); 2823 2824 if (bp->b_flags & B_VMIO) { 2825 int i; 2826 vm_ooffset_t foff; 2827 vm_page_t m; 2828 vm_object_t obj; 2829 int iosize; 2830 struct vnode *vp = bp->b_vp; 2831 2832 error = VOP_GETVOBJECT(vp, &obj); 2833 2834 #if defined(VFS_BIO_DEBUG) 2835 if (vp->v_holdcnt == 0) { 2836 panic("biodone: zero vnode hold count"); 2837 } 2838 2839 if (error) { 2840 panic("biodone: missing VM object"); 2841 } 2842 2843 if ((vp->v_flag & VOBJBUF) == 0) { 2844 panic("biodone: vnode is not setup for merged cache"); 2845 } 2846 #endif 2847 2848 foff = bp->b_offset; 2849 KASSERT(bp->b_offset != NOOFFSET, 2850 ("biodone: no buffer offset")); 2851 2852 if (error) { 2853 panic("biodone: no object"); 2854 } 2855 #if defined(VFS_BIO_DEBUG) 2856 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 2857 printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 2858 obj->paging_in_progress, bp->b_xio.xio_npages); 2859 } 2860 #endif 2861 2862 /* 2863 * Set B_CACHE if the op was a normal read and no error 2864 * occured. B_CACHE is set for writes in the b*write() 2865 * routines. 2866 */ 2867 iosize = bp->b_bcount - bp->b_resid; 2868 if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) { 2869 bp->b_flags |= B_CACHE; 2870 } 2871 2872 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2873 int bogusflag = 0; 2874 int resid; 2875 2876 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2877 if (resid > iosize) 2878 resid = iosize; 2879 2880 /* 2881 * cleanup bogus pages, restoring the originals. Since 2882 * the originals should still be wired, we don't have 2883 * to worry about interrupt/freeing races destroying 2884 * the VM object association. 2885 */ 2886 m = bp->b_xio.xio_pages[i]; 2887 if (m == bogus_page) { 2888 bogusflag = 1; 2889 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2890 if (m == NULL) 2891 panic("biodone: page disappeared"); 2892 bp->b_xio.xio_pages[i] = m; 2893 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 2894 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 2895 } 2896 #if defined(VFS_BIO_DEBUG) 2897 if (OFF_TO_IDX(foff) != m->pindex) { 2898 printf( 2899 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 2900 (unsigned long)foff, m->pindex); 2901 } 2902 #endif 2903 2904 /* 2905 * In the write case, the valid and clean bits are 2906 * already changed correctly ( see bdwrite() ), so we 2907 * only need to do this here in the read case. 2908 */ 2909 if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) { 2910 vfs_page_set_valid(bp, foff, i, m); 2911 } 2912 vm_page_flag_clear(m, PG_ZERO); 2913 2914 /* 2915 * when debugging new filesystems or buffer I/O methods, this 2916 * is the most common error that pops up. if you see this, you 2917 * have not set the page busy flag correctly!!! 2918 */ 2919 if (m->busy == 0) { 2920 printf("biodone: page busy < 0, " 2921 "pindex: %d, foff: 0x(%x,%x), " 2922 "resid: %d, index: %d\n", 2923 (int) m->pindex, (int)(foff >> 32), 2924 (int) foff & 0xffffffff, resid, i); 2925 if (!vn_isdisk(vp, NULL)) 2926 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n", 2927 bp->b_vp->v_mount->mnt_stat.f_iosize, 2928 (int) bp->b_lblkno, 2929 bp->b_flags, bp->b_xio.xio_npages); 2930 else 2931 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n", 2932 (int) bp->b_lblkno, 2933 bp->b_flags, bp->b_xio.xio_npages); 2934 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 2935 m->valid, m->dirty, m->wire_count); 2936 panic("biodone: page busy < 0"); 2937 } 2938 vm_page_io_finish(m); 2939 vm_object_pip_subtract(obj, 1); 2940 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2941 iosize -= resid; 2942 } 2943 if (obj) 2944 vm_object_pip_wakeupn(obj, 0); 2945 } 2946 2947 /* 2948 * For asynchronous completions, release the buffer now. The brelse 2949 * will do a wakeup there if necessary - so no need to do a wakeup 2950 * here in the async case. The sync case always needs to do a wakeup. 2951 */ 2952 2953 if (bp->b_flags & B_ASYNC) { 2954 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0) 2955 brelse(bp); 2956 else 2957 bqrelse(bp); 2958 } else { 2959 wakeup(bp); 2960 } 2961 crit_exit(); 2962 } 2963 2964 /* 2965 * This routine is called in lieu of iodone in the case of 2966 * incomplete I/O. This keeps the busy status for pages 2967 * consistant. 2968 */ 2969 void 2970 vfs_unbusy_pages(struct buf *bp) 2971 { 2972 int i; 2973 2974 runningbufwakeup(bp); 2975 if (bp->b_flags & B_VMIO) { 2976 struct vnode *vp = bp->b_vp; 2977 vm_object_t obj; 2978 2979 VOP_GETVOBJECT(vp, &obj); 2980 2981 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2982 vm_page_t m = bp->b_xio.xio_pages[i]; 2983 2984 /* 2985 * When restoring bogus changes the original pages 2986 * should still be wired, so we are in no danger of 2987 * losing the object association and do not need 2988 * critical section protection particularly. 2989 */ 2990 if (m == bogus_page) { 2991 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 2992 if (!m) { 2993 panic("vfs_unbusy_pages: page missing"); 2994 } 2995 bp->b_xio.xio_pages[i] = m; 2996 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 2997 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 2998 } 2999 vm_object_pip_subtract(obj, 1); 3000 vm_page_flag_clear(m, PG_ZERO); 3001 vm_page_io_finish(m); 3002 } 3003 vm_object_pip_wakeupn(obj, 0); 3004 } 3005 } 3006 3007 /* 3008 * vfs_page_set_valid: 3009 * 3010 * Set the valid bits in a page based on the supplied offset. The 3011 * range is restricted to the buffer's size. 3012 * 3013 * This routine is typically called after a read completes. 3014 */ 3015 static void 3016 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3017 { 3018 vm_ooffset_t soff, eoff; 3019 3020 /* 3021 * Start and end offsets in buffer. eoff - soff may not cross a 3022 * page boundry or cross the end of the buffer. The end of the 3023 * buffer, in this case, is our file EOF, not the allocation size 3024 * of the buffer. 3025 */ 3026 soff = off; 3027 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3028 if (eoff > bp->b_offset + bp->b_bcount) 3029 eoff = bp->b_offset + bp->b_bcount; 3030 3031 /* 3032 * Set valid range. This is typically the entire buffer and thus the 3033 * entire page. 3034 */ 3035 if (eoff > soff) { 3036 vm_page_set_validclean( 3037 m, 3038 (vm_offset_t) (soff & PAGE_MASK), 3039 (vm_offset_t) (eoff - soff) 3040 ); 3041 } 3042 } 3043 3044 /* 3045 * This routine is called before a device strategy routine. 3046 * It is used to tell the VM system that paging I/O is in 3047 * progress, and treat the pages associated with the buffer 3048 * almost as being PG_BUSY. Also the object paging_in_progress 3049 * flag is handled to make sure that the object doesn't become 3050 * inconsistant. 3051 * 3052 * Since I/O has not been initiated yet, certain buffer flags 3053 * such as B_ERROR or B_INVAL may be in an inconsistant state 3054 * and should be ignored. 3055 */ 3056 void 3057 vfs_busy_pages(struct buf *bp, int clear_modify) 3058 { 3059 int i, bogus; 3060 3061 if (bp->b_flags & B_VMIO) { 3062 struct vnode *vp = bp->b_vp; 3063 vm_object_t obj; 3064 vm_ooffset_t foff; 3065 3066 VOP_GETVOBJECT(vp, &obj); 3067 foff = bp->b_offset; 3068 KASSERT(bp->b_offset != NOOFFSET, 3069 ("vfs_busy_pages: no buffer offset")); 3070 vfs_setdirty(bp); 3071 3072 retry: 3073 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3074 vm_page_t m = bp->b_xio.xio_pages[i]; 3075 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3076 goto retry; 3077 } 3078 3079 bogus = 0; 3080 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3081 vm_page_t m = bp->b_xio.xio_pages[i]; 3082 3083 vm_page_flag_clear(m, PG_ZERO); 3084 if ((bp->b_flags & B_CLUSTER) == 0) { 3085 vm_object_pip_add(obj, 1); 3086 vm_page_io_start(m); 3087 } 3088 3089 /* 3090 * When readying a buffer for a read ( i.e 3091 * clear_modify == 0 ), it is important to do 3092 * bogus_page replacement for valid pages in 3093 * partially instantiated buffers. Partially 3094 * instantiated buffers can, in turn, occur when 3095 * reconstituting a buffer from its VM backing store 3096 * base. We only have to do this if B_CACHE is 3097 * clear ( which causes the I/O to occur in the 3098 * first place ). The replacement prevents the read 3099 * I/O from overwriting potentially dirty VM-backed 3100 * pages. XXX bogus page replacement is, uh, bogus. 3101 * It may not work properly with small-block devices. 3102 * We need to find a better way. 3103 */ 3104 3105 vm_page_protect(m, VM_PROT_NONE); 3106 if (clear_modify) 3107 vfs_page_set_valid(bp, foff, i, m); 3108 else if (m->valid == VM_PAGE_BITS_ALL && 3109 (bp->b_flags & B_CACHE) == 0) { 3110 bp->b_xio.xio_pages[i] = bogus_page; 3111 bogus++; 3112 } 3113 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3114 } 3115 if (bogus) 3116 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3117 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3118 } 3119 3120 /* 3121 * This is the easiest place to put the process accounting for the I/O 3122 * for now. 3123 */ 3124 { 3125 struct proc *p; 3126 3127 if ((p = curthread->td_proc) != NULL) { 3128 if (bp->b_flags & B_READ) 3129 p->p_stats->p_ru.ru_inblock++; 3130 else 3131 p->p_stats->p_ru.ru_oublock++; 3132 } 3133 } 3134 } 3135 3136 /* 3137 * Tell the VM system that the pages associated with this buffer 3138 * are clean. This is used for delayed writes where the data is 3139 * going to go to disk eventually without additional VM intevention. 3140 * 3141 * Note that while we only really need to clean through to b_bcount, we 3142 * just go ahead and clean through to b_bufsize. 3143 */ 3144 static void 3145 vfs_clean_pages(struct buf *bp) 3146 { 3147 int i; 3148 3149 if (bp->b_flags & B_VMIO) { 3150 vm_ooffset_t foff; 3151 3152 foff = bp->b_offset; 3153 KASSERT(bp->b_offset != NOOFFSET, 3154 ("vfs_clean_pages: no buffer offset")); 3155 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3156 vm_page_t m = bp->b_xio.xio_pages[i]; 3157 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3158 vm_ooffset_t eoff = noff; 3159 3160 if (eoff > bp->b_offset + bp->b_bufsize) 3161 eoff = bp->b_offset + bp->b_bufsize; 3162 vfs_page_set_valid(bp, foff, i, m); 3163 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3164 foff = noff; 3165 } 3166 } 3167 } 3168 3169 /* 3170 * vfs_bio_set_validclean: 3171 * 3172 * Set the range within the buffer to valid and clean. The range is 3173 * relative to the beginning of the buffer, b_offset. Note that b_offset 3174 * itself may be offset from the beginning of the first page. 3175 */ 3176 3177 void 3178 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3179 { 3180 if (bp->b_flags & B_VMIO) { 3181 int i; 3182 int n; 3183 3184 /* 3185 * Fixup base to be relative to beginning of first page. 3186 * Set initial n to be the maximum number of bytes in the 3187 * first page that can be validated. 3188 */ 3189 3190 base += (bp->b_offset & PAGE_MASK); 3191 n = PAGE_SIZE - (base & PAGE_MASK); 3192 3193 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) { 3194 vm_page_t m = bp->b_xio.xio_pages[i]; 3195 3196 if (n > size) 3197 n = size; 3198 3199 vm_page_set_validclean(m, base & PAGE_MASK, n); 3200 base += n; 3201 size -= n; 3202 n = PAGE_SIZE; 3203 } 3204 } 3205 } 3206 3207 /* 3208 * vfs_bio_clrbuf: 3209 * 3210 * clear a buffer. This routine essentially fakes an I/O, so we need 3211 * to clear B_ERROR and B_INVAL. 3212 * 3213 * Note that while we only theoretically need to clear through b_bcount, 3214 * we go ahead and clear through b_bufsize. 3215 */ 3216 3217 void 3218 vfs_bio_clrbuf(struct buf *bp) 3219 { 3220 int i, mask = 0; 3221 caddr_t sa, ea; 3222 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3223 bp->b_flags &= ~(B_INVAL|B_ERROR); 3224 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3225 (bp->b_offset & PAGE_MASK) == 0) { 3226 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3227 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 3228 bp->b_resid = 0; 3229 return; 3230 } 3231 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 3232 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 3233 bzero(bp->b_data, bp->b_bufsize); 3234 bp->b_xio.xio_pages[0]->valid |= mask; 3235 bp->b_resid = 0; 3236 return; 3237 } 3238 } 3239 ea = sa = bp->b_data; 3240 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 3241 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3242 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3243 ea = (caddr_t)(vm_offset_t)ulmin( 3244 (u_long)(vm_offset_t)ea, 3245 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3246 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3247 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 3248 continue; 3249 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 3250 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 3251 bzero(sa, ea - sa); 3252 } 3253 } else { 3254 for (; sa < ea; sa += DEV_BSIZE, j++) { 3255 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 3256 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 3257 bzero(sa, DEV_BSIZE); 3258 } 3259 } 3260 bp->b_xio.xio_pages[i]->valid |= mask; 3261 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 3262 } 3263 bp->b_resid = 0; 3264 } else { 3265 clrbuf(bp); 3266 } 3267 } 3268 3269 /* 3270 * vm_hold_load_pages and vm_hold_unload pages get pages into 3271 * a buffers address space. The pages are anonymous and are 3272 * not associated with a file object. 3273 */ 3274 void 3275 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 3276 { 3277 vm_offset_t pg; 3278 vm_page_t p; 3279 int index; 3280 3281 to = round_page(to); 3282 from = round_page(from); 3283 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3284 3285 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3286 3287 tryagain: 3288 3289 /* 3290 * note: must allocate system pages since blocking here 3291 * could intefere with paging I/O, no matter which 3292 * process we are. 3293 */ 3294 p = vm_page_alloc(kernel_object, 3295 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3296 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 3297 if (!p) { 3298 vm_pageout_deficit += (to - from) >> PAGE_SHIFT; 3299 vm_wait(); 3300 goto tryagain; 3301 } 3302 vm_page_wire(p); 3303 p->valid = VM_PAGE_BITS_ALL; 3304 vm_page_flag_clear(p, PG_ZERO); 3305 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 3306 bp->b_xio.xio_pages[index] = p; 3307 vm_page_wakeup(p); 3308 } 3309 bp->b_xio.xio_npages = index; 3310 } 3311 3312 void 3313 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 3314 { 3315 vm_offset_t pg; 3316 vm_page_t p; 3317 int index, newnpages; 3318 3319 from = round_page(from); 3320 to = round_page(to); 3321 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3322 3323 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3324 p = bp->b_xio.xio_pages[index]; 3325 if (p && (index < bp->b_xio.xio_npages)) { 3326 if (p->busy) { 3327 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n", 3328 bp->b_blkno, bp->b_lblkno); 3329 } 3330 bp->b_xio.xio_pages[index] = NULL; 3331 pmap_kremove(pg); 3332 vm_page_busy(p); 3333 vm_page_unwire(p, 0); 3334 vm_page_free(p); 3335 } 3336 } 3337 bp->b_xio.xio_npages = newnpages; 3338 } 3339 3340 /* 3341 * Map an IO request into kernel virtual address space. 3342 * 3343 * All requests are (re)mapped into kernel VA space. 3344 * Notice that we use b_bufsize for the size of the buffer 3345 * to be mapped. b_bcount might be modified by the driver. 3346 */ 3347 int 3348 vmapbuf(struct buf *bp) 3349 { 3350 caddr_t addr, v, kva; 3351 vm_paddr_t pa; 3352 int pidx; 3353 int i; 3354 struct vm_page *m; 3355 3356 if ((bp->b_flags & B_PHYS) == 0) 3357 panic("vmapbuf"); 3358 if (bp->b_bufsize < 0) 3359 return (-1); 3360 for (v = bp->b_saveaddr, 3361 addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), 3362 pidx = 0; 3363 addr < bp->b_data + bp->b_bufsize; 3364 addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) { 3365 /* 3366 * Do the vm_fault if needed; do the copy-on-write thing 3367 * when reading stuff off device into memory. 3368 */ 3369 retry: 3370 i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data, 3371 (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ); 3372 if (i < 0) { 3373 for (i = 0; i < pidx; ++i) { 3374 vm_page_unhold(bp->b_xio.xio_pages[i]); 3375 bp->b_xio.xio_pages[i] = NULL; 3376 } 3377 return(-1); 3378 } 3379 3380 /* 3381 * WARNING! If sparc support is MFCd in the future this will 3382 * have to be changed from pmap_kextract() to pmap_extract() 3383 * ala -current. 3384 */ 3385 #ifdef __sparc64__ 3386 #error "If MFCing sparc support use pmap_extract" 3387 #endif 3388 pa = pmap_kextract((vm_offset_t)addr); 3389 if (pa == 0) { 3390 printf("vmapbuf: warning, race against user address during I/O"); 3391 goto retry; 3392 } 3393 m = PHYS_TO_VM_PAGE(pa); 3394 vm_page_hold(m); 3395 bp->b_xio.xio_pages[pidx] = m; 3396 } 3397 if (pidx > btoc(MAXPHYS)) 3398 panic("vmapbuf: mapped more than MAXPHYS"); 3399 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx); 3400 3401 kva = bp->b_saveaddr; 3402 bp->b_xio.xio_npages = pidx; 3403 bp->b_saveaddr = bp->b_data; 3404 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); 3405 return(0); 3406 } 3407 3408 /* 3409 * Free the io map PTEs associated with this IO operation. 3410 * We also invalidate the TLB entries and restore the original b_addr. 3411 */ 3412 void 3413 vunmapbuf(struct buf *bp) 3414 { 3415 int pidx; 3416 int npages; 3417 vm_page_t *m; 3418 3419 if ((bp->b_flags & B_PHYS) == 0) 3420 panic("vunmapbuf"); 3421 3422 npages = bp->b_xio.xio_npages; 3423 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), 3424 npages); 3425 m = bp->b_xio.xio_pages; 3426 for (pidx = 0; pidx < npages; pidx++) 3427 vm_page_unhold(*m++); 3428 3429 bp->b_data = bp->b_saveaddr; 3430 } 3431 3432 #include "opt_ddb.h" 3433 #ifdef DDB 3434 #include <ddb/ddb.h> 3435 3436 DB_SHOW_COMMAND(buffer, db_show_buffer) 3437 { 3438 /* get args */ 3439 struct buf *bp = (struct buf *)addr; 3440 3441 if (!have_addr) { 3442 db_printf("usage: show buffer <addr>\n"); 3443 return; 3444 } 3445 3446 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3447 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, " 3448 "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, " 3449 "b_blkno = %d, b_pblkno = %d\n", 3450 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3451 major(bp->b_dev), minor(bp->b_dev), 3452 bp->b_data, bp->b_blkno, bp->b_pblkno); 3453 if (bp->b_xio.xio_npages) { 3454 int i; 3455 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 3456 bp->b_xio.xio_npages); 3457 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3458 vm_page_t m; 3459 m = bp->b_xio.xio_pages[i]; 3460 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3461 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3462 if ((i + 1) < bp->b_xio.xio_npages) 3463 db_printf(","); 3464 } 3465 db_printf("\n"); 3466 } 3467 } 3468 #endif /* DDB */ 3469