xref: /dflybsd-src/sys/kern/vfs_bio.c (revision e575e508287dfdeb2baf0e6acb1bc7010bef340d)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <sys/proc.h>
50 #include <vm/vm.h>
51 #include <vm/vm_param.h>
52 #include <vm/vm_kern.h>
53 #include <vm/vm_pageout.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_extern.h>
57 #include <vm/vm_map.h>
58 #include <vm/vm_pager.h>
59 #include <vm/swap_pager.h>
60 
61 #include <sys/buf2.h>
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
64 #include <sys/mplock2.h>
65 #include <vm/vm_page2.h>
66 
67 #include "opt_ddb.h"
68 #ifdef DDB
69 #include <ddb/ddb.h>
70 #endif
71 
72 /*
73  * Buffer queues.
74  */
75 enum bufq_type {
76 	BQUEUE_NONE,    	/* not on any queue */
77 	BQUEUE_LOCKED,  	/* locked buffers */
78 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
79 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
80 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
81 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
82 	BQUEUE_EMPTY,    	/* empty buffer headers */
83 
84 	BUFFER_QUEUES		/* number of buffer queues */
85 };
86 
87 typedef enum bufq_type bufq_type_t;
88 
89 #define BD_WAKE_SIZE	16384
90 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
91 
92 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
93 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
94 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
95 
96 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
97 
98 struct buf *buf;		/* buffer header pool */
99 
100 static void vfs_clean_pages(struct buf *bp);
101 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
102 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
103 static void vfs_vmio_release(struct buf *bp);
104 static int flushbufqueues(bufq_type_t q);
105 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
106 
107 static void bd_signal(int totalspace);
108 static void buf_daemon(void);
109 static void buf_daemon_hw(void);
110 
111 /*
112  * bogus page -- for I/O to/from partially complete buffers
113  * this is a temporary solution to the problem, but it is not
114  * really that bad.  it would be better to split the buffer
115  * for input in the case of buffers partially already in memory,
116  * but the code is intricate enough already.
117  */
118 vm_page_t bogus_page;
119 
120 /*
121  * These are all static, but make the ones we export globals so we do
122  * not need to use compiler magic.
123  */
124 int bufspace;			/* locked by buffer_map */
125 int maxbufspace;
126 static int bufmallocspace;	/* atomic ops */
127 int maxbufmallocspace, lobufspace, hibufspace;
128 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
129 static int lorunningspace;
130 static int hirunningspace;
131 static int runningbufreq;		/* locked by bufcspin */
132 static int dirtybufspace;		/* locked by bufcspin */
133 static int dirtybufcount;		/* locked by bufcspin */
134 static int dirtybufspacehw;		/* locked by bufcspin */
135 static int dirtybufcounthw;		/* locked by bufcspin */
136 static int runningbufspace;		/* locked by bufcspin */
137 static int runningbufcount;		/* locked by bufcspin */
138 int lodirtybufspace;
139 int hidirtybufspace;
140 static int getnewbufcalls;
141 static int getnewbufrestarts;
142 static int recoverbufcalls;
143 static int needsbuffer;		/* locked by bufcspin */
144 static int bd_request;		/* locked by bufcspin */
145 static int bd_request_hw;	/* locked by bufcspin */
146 static u_int bd_wake_ary[BD_WAKE_SIZE];
147 static u_int bd_wake_index;
148 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
149 static int debug_commit;
150 
151 static struct thread *bufdaemon_td;
152 static struct thread *bufdaemonhw_td;
153 static u_int lowmempgallocs;
154 static u_int lowmempgfails;
155 
156 /*
157  * Sysctls for operational control of the buffer cache.
158  */
159 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
160 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
161 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
162 	"High watermark used to trigger explicit flushing of dirty buffers");
163 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
164 	"Minimum amount of buffer space required for active I/O");
165 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
166 	"Maximum amount of buffer space to usable for active I/O");
167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
168 	"Page allocations done during periods of very low free memory");
169 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
170 	"Page allocations which failed during periods of very low free memory");
171 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
172 	"Recycle pages to active or inactive queue transition pt 0-64");
173 /*
174  * Sysctls determining current state of the buffer cache.
175  */
176 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
177 	"Total number of buffers in buffer cache");
178 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
179 	"Pending bytes of dirty buffers (all)");
180 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
181 	"Pending bytes of dirty buffers (heavy weight)");
182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
183 	"Pending number of dirty buffers");
184 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
185 	"Pending number of dirty buffers (heavy weight)");
186 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
187 	"I/O bytes currently in progress due to asynchronous writes");
188 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
189 	"I/O buffers currently in progress due to asynchronous writes");
190 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
191 	"Hard limit on maximum amount of memory usable for buffer space");
192 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
193 	"Soft limit on maximum amount of memory usable for buffer space");
194 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
195 	"Minimum amount of memory to reserve for system buffer space");
196 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
197 	"Amount of memory available for buffers");
198 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
199 	0, "Maximum amount of memory reserved for buffers using malloc");
200 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
201 	"Amount of memory left for buffers using malloc-scheme");
202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
203 	"New buffer header acquisition requests");
204 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
205 	0, "New buffer header acquisition restarts");
206 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
207 	"Recover VM space in an emergency");
208 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
209 	"Buffer acquisition restarts due to fragmented buffer map");
210 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
211 	"Amount of time KVA space was deallocated in an arbitrary buffer");
212 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
213 	"Amount of time buffer re-use operations were successful");
214 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
215 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
216 	"sizeof(struct buf)");
217 
218 char *buf_wmesg = BUF_WMESG;
219 
220 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
221 #define VFS_BIO_NEED_UNUSED02	0x02
222 #define VFS_BIO_NEED_UNUSED04	0x04
223 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
224 
225 /*
226  * bufspacewakeup:
227  *
228  *	Called when buffer space is potentially available for recovery.
229  *	getnewbuf() will block on this flag when it is unable to free
230  *	sufficient buffer space.  Buffer space becomes recoverable when
231  *	bp's get placed back in the queues.
232  */
233 static __inline void
234 bufspacewakeup(void)
235 {
236 	/*
237 	 * If someone is waiting for BUF space, wake them up.  Even
238 	 * though we haven't freed the kva space yet, the waiting
239 	 * process will be able to now.
240 	 */
241 	spin_lock(&bufcspin);
242 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
243 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
244 		spin_unlock(&bufcspin);
245 		wakeup(&needsbuffer);
246 	} else {
247 		spin_unlock(&bufcspin);
248 	}
249 }
250 
251 /*
252  * runningbufwakeup:
253  *
254  *	Accounting for I/O in progress.
255  *
256  */
257 static __inline void
258 runningbufwakeup(struct buf *bp)
259 {
260 	int totalspace;
261 	int limit;
262 
263 	if ((totalspace = bp->b_runningbufspace) != 0) {
264 		spin_lock(&bufcspin);
265 		runningbufspace -= totalspace;
266 		--runningbufcount;
267 		bp->b_runningbufspace = 0;
268 
269 		/*
270 		 * see waitrunningbufspace() for limit test.
271 		 */
272 		limit = hirunningspace * 4 / 6;
273 		if (runningbufreq && runningbufspace <= limit) {
274 			runningbufreq = 0;
275 			spin_unlock(&bufcspin);
276 			wakeup(&runningbufreq);
277 		} else {
278 			spin_unlock(&bufcspin);
279 		}
280 		bd_signal(totalspace);
281 	}
282 }
283 
284 /*
285  * bufcountwakeup:
286  *
287  *	Called when a buffer has been added to one of the free queues to
288  *	account for the buffer and to wakeup anyone waiting for free buffers.
289  *	This typically occurs when large amounts of metadata are being handled
290  *	by the buffer cache ( else buffer space runs out first, usually ).
291  *
292  * MPSAFE
293  */
294 static __inline void
295 bufcountwakeup(void)
296 {
297 	spin_lock(&bufcspin);
298 	if (needsbuffer) {
299 		needsbuffer &= ~VFS_BIO_NEED_ANY;
300 		spin_unlock(&bufcspin);
301 		wakeup(&needsbuffer);
302 	} else {
303 		spin_unlock(&bufcspin);
304 	}
305 }
306 
307 /*
308  * waitrunningbufspace()
309  *
310  * Wait for the amount of running I/O to drop to hirunningspace * 4 / 6.
311  * This is the point where write bursting stops so we don't want to wait
312  * for the running amount to drop below it (at least if we still want bioq
313  * to burst writes).
314  *
315  * The caller may be using this function to block in a tight loop, we
316  * must block while runningbufspace is greater then or equal to
317  * hirunningspace * 4 / 6.
318  *
319  * And even with that it may not be enough, due to the presence of
320  * B_LOCKED dirty buffers, so also wait for at least one running buffer
321  * to complete.
322  */
323 void
324 waitrunningbufspace(void)
325 {
326 	int limit = hirunningspace * 4 / 6;
327 	int dummy;
328 
329 	spin_lock(&bufcspin);
330 	if (runningbufspace > limit) {
331 		while (runningbufspace > limit) {
332 			++runningbufreq;
333 			ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
334 		}
335 		spin_unlock(&bufcspin);
336 	} else if (runningbufspace > limit / 2) {
337 		++runningbufreq;
338 		spin_unlock(&bufcspin);
339 		tsleep(&dummy, 0, "wdrn2", 1);
340 	} else {
341 		spin_unlock(&bufcspin);
342 	}
343 }
344 
345 /*
346  * buf_dirty_count_severe:
347  *
348  *	Return true if we have too many dirty buffers.
349  */
350 int
351 buf_dirty_count_severe(void)
352 {
353 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
354 	        dirtybufcount >= nbuf / 2);
355 }
356 
357 /*
358  * Return true if the amount of running I/O is severe and BIOQ should
359  * start bursting.
360  */
361 int
362 buf_runningbufspace_severe(void)
363 {
364 	return (runningbufspace >= hirunningspace * 4 / 6);
365 }
366 
367 /*
368  * vfs_buf_test_cache:
369  *
370  * Called when a buffer is extended.  This function clears the B_CACHE
371  * bit if the newly extended portion of the buffer does not contain
372  * valid data.
373  *
374  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
375  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
376  * them while a clean buffer was present.
377  */
378 static __inline__
379 void
380 vfs_buf_test_cache(struct buf *bp,
381 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
382 		  vm_page_t m)
383 {
384 	if (bp->b_flags & B_CACHE) {
385 		int base = (foff + off) & PAGE_MASK;
386 		if (vm_page_is_valid(m, base, size) == 0)
387 			bp->b_flags &= ~B_CACHE;
388 	}
389 }
390 
391 /*
392  * bd_speedup()
393  *
394  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
395  * low water mark.
396  *
397  * MPSAFE
398  */
399 static __inline__
400 void
401 bd_speedup(void)
402 {
403 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
404 		return;
405 
406 	if (bd_request == 0 &&
407 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
408 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
409 		spin_lock(&bufcspin);
410 		bd_request = 1;
411 		spin_unlock(&bufcspin);
412 		wakeup(&bd_request);
413 	}
414 	if (bd_request_hw == 0 &&
415 	    (dirtybufspacehw > lodirtybufspace / 2 ||
416 	     dirtybufcounthw >= nbuf / 2)) {
417 		spin_lock(&bufcspin);
418 		bd_request_hw = 1;
419 		spin_unlock(&bufcspin);
420 		wakeup(&bd_request_hw);
421 	}
422 }
423 
424 /*
425  * bd_heatup()
426  *
427  *	Get the buf_daemon heated up when the number of running and dirty
428  *	buffers exceeds the mid-point.
429  *
430  *	Return the total number of dirty bytes past the second mid point
431  *	as a measure of how much excess dirty data there is in the system.
432  *
433  * MPSAFE
434  */
435 int
436 bd_heatup(void)
437 {
438 	int mid1;
439 	int mid2;
440 	int totalspace;
441 
442 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
443 
444 	totalspace = runningbufspace + dirtybufspace;
445 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
446 		bd_speedup();
447 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
448 		if (totalspace >= mid2)
449 			return(totalspace - mid2);
450 	}
451 	return(0);
452 }
453 
454 /*
455  * bd_wait()
456  *
457  *	Wait for the buffer cache to flush (totalspace) bytes worth of
458  *	buffers, then return.
459  *
460  *	Regardless this function blocks while the number of dirty buffers
461  *	exceeds hidirtybufspace.
462  *
463  * MPSAFE
464  */
465 void
466 bd_wait(int totalspace)
467 {
468 	u_int i;
469 	int count;
470 
471 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
472 		return;
473 
474 	while (totalspace > 0) {
475 		bd_heatup();
476 		if (totalspace > runningbufspace + dirtybufspace)
477 			totalspace = runningbufspace + dirtybufspace;
478 		count = totalspace / BKVASIZE;
479 		if (count >= BD_WAKE_SIZE)
480 			count = BD_WAKE_SIZE - 1;
481 
482 		spin_lock(&bufcspin);
483 		i = (bd_wake_index + count) & BD_WAKE_MASK;
484 		++bd_wake_ary[i];
485 
486 		/*
487 		 * This is not a strict interlock, so we play a bit loose
488 		 * with locking access to dirtybufspace*
489 		 */
490 		tsleep_interlock(&bd_wake_ary[i], 0);
491 		spin_unlock(&bufcspin);
492 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
493 
494 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
495 	}
496 }
497 
498 /*
499  * bd_signal()
500  *
501  *	This function is called whenever runningbufspace or dirtybufspace
502  *	is reduced.  Track threads waiting for run+dirty buffer I/O
503  *	complete.
504  *
505  * MPSAFE
506  */
507 static void
508 bd_signal(int totalspace)
509 {
510 	u_int i;
511 
512 	if (totalspace > 0) {
513 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
514 			totalspace = BKVASIZE * BD_WAKE_SIZE;
515 		spin_lock(&bufcspin);
516 		while (totalspace > 0) {
517 			i = bd_wake_index++;
518 			i &= BD_WAKE_MASK;
519 			if (bd_wake_ary[i]) {
520 				bd_wake_ary[i] = 0;
521 				spin_unlock(&bufcspin);
522 				wakeup(&bd_wake_ary[i]);
523 				spin_lock(&bufcspin);
524 			}
525 			totalspace -= BKVASIZE;
526 		}
527 		spin_unlock(&bufcspin);
528 	}
529 }
530 
531 /*
532  * BIO tracking support routines.
533  *
534  * Release a ref on a bio_track.  Wakeup requests are atomically released
535  * along with the last reference so bk_active will never wind up set to
536  * only 0x80000000.
537  *
538  * MPSAFE
539  */
540 static
541 void
542 bio_track_rel(struct bio_track *track)
543 {
544 	int	active;
545 	int	desired;
546 
547 	/*
548 	 * Shortcut
549 	 */
550 	active = track->bk_active;
551 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
552 		return;
553 
554 	/*
555 	 * Full-on.  Note that the wait flag is only atomically released on
556 	 * the 1->0 count transition.
557 	 *
558 	 * We check for a negative count transition using bit 30 since bit 31
559 	 * has a different meaning.
560 	 */
561 	for (;;) {
562 		desired = (active & 0x7FFFFFFF) - 1;
563 		if (desired)
564 			desired |= active & 0x80000000;
565 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
566 			if (desired & 0x40000000)
567 				panic("bio_track_rel: bad count: %p\n", track);
568 			if (active & 0x80000000)
569 				wakeup(track);
570 			break;
571 		}
572 		active = track->bk_active;
573 	}
574 }
575 
576 /*
577  * Wait for the tracking count to reach 0.
578  *
579  * Use atomic ops such that the wait flag is only set atomically when
580  * bk_active is non-zero.
581  *
582  * MPSAFE
583  */
584 int
585 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
586 {
587 	int	active;
588 	int	desired;
589 	int	error;
590 
591 	/*
592 	 * Shortcut
593 	 */
594 	if (track->bk_active == 0)
595 		return(0);
596 
597 	/*
598 	 * Full-on.  Note that the wait flag may only be atomically set if
599 	 * the active count is non-zero.
600 	 *
601 	 * NOTE: We cannot optimize active == desired since a wakeup could
602 	 *	 clear active prior to our tsleep_interlock().
603 	 */
604 	error = 0;
605 	while ((active = track->bk_active) != 0) {
606 		cpu_ccfence();
607 		desired = active | 0x80000000;
608 		tsleep_interlock(track, slp_flags);
609 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
610 			error = tsleep(track, slp_flags | PINTERLOCKED,
611 				       "trwait", slp_timo);
612 			if (error)
613 				break;
614 		}
615 	}
616 	return (error);
617 }
618 
619 /*
620  * bufinit:
621  *
622  *	Load time initialisation of the buffer cache, called from machine
623  *	dependant initialization code.
624  */
625 void
626 bufinit(void)
627 {
628 	struct buf *bp;
629 	vm_offset_t bogus_offset;
630 	int i;
631 
632 	/* next, make a null set of free lists */
633 	for (i = 0; i < BUFFER_QUEUES; i++)
634 		TAILQ_INIT(&bufqueues[i]);
635 
636 	/* finally, initialize each buffer header and stick on empty q */
637 	for (i = 0; i < nbuf; i++) {
638 		bp = &buf[i];
639 		bzero(bp, sizeof *bp);
640 		bp->b_flags = B_INVAL;	/* we're just an empty header */
641 		bp->b_cmd = BUF_CMD_DONE;
642 		bp->b_qindex = BQUEUE_EMPTY;
643 		initbufbio(bp);
644 		xio_init(&bp->b_xio);
645 		buf_dep_init(bp);
646 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
647 	}
648 
649 	/*
650 	 * maxbufspace is the absolute maximum amount of buffer space we are
651 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
652 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
653 	 * used by most other processes.  The differential is required to
654 	 * ensure that buf_daemon is able to run when other processes might
655 	 * be blocked waiting for buffer space.
656 	 *
657 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
658 	 * this may result in KVM fragmentation which is not handled optimally
659 	 * by the system.
660 	 */
661 	maxbufspace = nbuf * BKVASIZE;
662 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
663 	lobufspace = hibufspace - MAXBSIZE;
664 
665 	lorunningspace = 512 * 1024;
666 	/* hirunningspace -- see below */
667 
668 	/*
669 	 * Limit the amount of malloc memory since it is wired permanently
670 	 * into the kernel space.  Even though this is accounted for in
671 	 * the buffer allocation, we don't want the malloced region to grow
672 	 * uncontrolled.  The malloc scheme improves memory utilization
673 	 * significantly on average (small) directories.
674 	 */
675 	maxbufmallocspace = hibufspace / 20;
676 
677 	/*
678 	 * Reduce the chance of a deadlock occuring by limiting the number
679 	 * of delayed-write dirty buffers we allow to stack up.
680 	 *
681 	 * We don't want too much actually queued to the device at once
682 	 * (XXX this needs to be per-mount!), because the buffers will
683 	 * wind up locked for a very long period of time while the I/O
684 	 * drains.
685 	 */
686 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
687 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
688 	if (hirunningspace < 1024 * 1024)
689 		hirunningspace = 1024 * 1024;
690 
691 	dirtybufspace = 0;
692 	dirtybufspacehw = 0;
693 
694 	lodirtybufspace = hidirtybufspace / 2;
695 
696 	/*
697 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
698 	 * somewhat of a hack at the moment, we really need to limit ourselves
699 	 * based on the number of bytes of I/O in-transit that were initiated
700 	 * from buf_daemon.
701 	 */
702 
703 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
704 	bogus_page = vm_page_alloc(&kernel_object,
705 				   (bogus_offset >> PAGE_SHIFT),
706 				   VM_ALLOC_NORMAL);
707 	vmstats.v_wire_count++;
708 
709 }
710 
711 /*
712  * Initialize the embedded bio structures, typically used by
713  * deprecated code which tries to allocate its own struct bufs.
714  */
715 void
716 initbufbio(struct buf *bp)
717 {
718 	bp->b_bio1.bio_buf = bp;
719 	bp->b_bio1.bio_prev = NULL;
720 	bp->b_bio1.bio_offset = NOOFFSET;
721 	bp->b_bio1.bio_next = &bp->b_bio2;
722 	bp->b_bio1.bio_done = NULL;
723 	bp->b_bio1.bio_flags = 0;
724 
725 	bp->b_bio2.bio_buf = bp;
726 	bp->b_bio2.bio_prev = &bp->b_bio1;
727 	bp->b_bio2.bio_offset = NOOFFSET;
728 	bp->b_bio2.bio_next = NULL;
729 	bp->b_bio2.bio_done = NULL;
730 	bp->b_bio2.bio_flags = 0;
731 
732 	BUF_LOCKINIT(bp);
733 }
734 
735 /*
736  * Reinitialize the embedded bio structures as well as any additional
737  * translation cache layers.
738  */
739 void
740 reinitbufbio(struct buf *bp)
741 {
742 	struct bio *bio;
743 
744 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
745 		bio->bio_done = NULL;
746 		bio->bio_offset = NOOFFSET;
747 	}
748 }
749 
750 /*
751  * Undo the effects of an initbufbio().
752  */
753 void
754 uninitbufbio(struct buf *bp)
755 {
756 	dsched_exit_buf(bp);
757 	BUF_LOCKFREE(bp);
758 }
759 
760 /*
761  * Push another BIO layer onto an existing BIO and return it.  The new
762  * BIO layer may already exist, holding cached translation data.
763  */
764 struct bio *
765 push_bio(struct bio *bio)
766 {
767 	struct bio *nbio;
768 
769 	if ((nbio = bio->bio_next) == NULL) {
770 		int index = bio - &bio->bio_buf->b_bio_array[0];
771 		if (index >= NBUF_BIO - 1) {
772 			panic("push_bio: too many layers bp %p\n",
773 				bio->bio_buf);
774 		}
775 		nbio = &bio->bio_buf->b_bio_array[index + 1];
776 		bio->bio_next = nbio;
777 		nbio->bio_prev = bio;
778 		nbio->bio_buf = bio->bio_buf;
779 		nbio->bio_offset = NOOFFSET;
780 		nbio->bio_done = NULL;
781 		nbio->bio_next = NULL;
782 	}
783 	KKASSERT(nbio->bio_done == NULL);
784 	return(nbio);
785 }
786 
787 /*
788  * Pop a BIO translation layer, returning the previous layer.  The
789  * must have been previously pushed.
790  */
791 struct bio *
792 pop_bio(struct bio *bio)
793 {
794 	return(bio->bio_prev);
795 }
796 
797 void
798 clearbiocache(struct bio *bio)
799 {
800 	while (bio) {
801 		bio->bio_offset = NOOFFSET;
802 		bio = bio->bio_next;
803 	}
804 }
805 
806 /*
807  * bfreekva:
808  *
809  *	Free the KVA allocation for buffer 'bp'.
810  *
811  *	Must be called from a critical section as this is the only locking for
812  *	buffer_map.
813  *
814  *	Since this call frees up buffer space, we call bufspacewakeup().
815  *
816  * MPALMOSTSAFE
817  */
818 static void
819 bfreekva(struct buf *bp)
820 {
821 	int count;
822 
823 	if (bp->b_kvasize) {
824 		++buffreekvacnt;
825 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
826 		vm_map_lock(&buffer_map);
827 		bufspace -= bp->b_kvasize;
828 		vm_map_delete(&buffer_map,
829 		    (vm_offset_t) bp->b_kvabase,
830 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
831 		    &count
832 		);
833 		vm_map_unlock(&buffer_map);
834 		vm_map_entry_release(count);
835 		bp->b_kvasize = 0;
836 		bp->b_kvabase = NULL;
837 		bufspacewakeup();
838 	}
839 }
840 
841 /*
842  * bremfree:
843  *
844  *	Remove the buffer from the appropriate free list.
845  */
846 static __inline void
847 _bremfree(struct buf *bp)
848 {
849 	if (bp->b_qindex != BQUEUE_NONE) {
850 		KASSERT(BUF_REFCNTNB(bp) == 1,
851 				("bremfree: bp %p not locked",bp));
852 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
853 		bp->b_qindex = BQUEUE_NONE;
854 	} else {
855 		if (BUF_REFCNTNB(bp) <= 1)
856 			panic("bremfree: removing a buffer not on a queue");
857 	}
858 }
859 
860 void
861 bremfree(struct buf *bp)
862 {
863 	spin_lock(&bufqspin);
864 	_bremfree(bp);
865 	spin_unlock(&bufqspin);
866 }
867 
868 static void
869 bremfree_locked(struct buf *bp)
870 {
871 	_bremfree(bp);
872 }
873 
874 /*
875  * bread:
876  *
877  *	Get a buffer with the specified data.  Look in the cache first.  We
878  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
879  *	is set, the buffer is valid and we do not have to do anything ( see
880  *	getblk() ).
881  *
882  * MPALMOSTSAFE
883  */
884 int
885 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
886 {
887 	struct buf *bp;
888 
889 	bp = getblk(vp, loffset, size, 0, 0);
890 	*bpp = bp;
891 
892 	/* if not found in cache, do some I/O */
893 	if ((bp->b_flags & B_CACHE) == 0) {
894 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
895 		bp->b_cmd = BUF_CMD_READ;
896 		bp->b_bio1.bio_done = biodone_sync;
897 		bp->b_bio1.bio_flags |= BIO_SYNC;
898 		vfs_busy_pages(vp, bp);
899 		vn_strategy(vp, &bp->b_bio1);
900 		return (biowait(&bp->b_bio1, "biord"));
901 	}
902 	return (0);
903 }
904 
905 /*
906  * breadn:
907  *
908  *	Operates like bread, but also starts asynchronous I/O on
909  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
910  *	to initiating I/O . If B_CACHE is set, the buffer is valid
911  *	and we do not have to do anything.
912  *
913  * MPALMOSTSAFE
914  */
915 int
916 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
917 	int *rabsize, int cnt, struct buf **bpp)
918 {
919 	struct buf *bp, *rabp;
920 	int i;
921 	int rv = 0, readwait = 0;
922 
923 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
924 
925 	/* if not found in cache, do some I/O */
926 	if ((bp->b_flags & B_CACHE) == 0) {
927 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
928 		bp->b_cmd = BUF_CMD_READ;
929 		bp->b_bio1.bio_done = biodone_sync;
930 		bp->b_bio1.bio_flags |= BIO_SYNC;
931 		vfs_busy_pages(vp, bp);
932 		vn_strategy(vp, &bp->b_bio1);
933 		++readwait;
934 	}
935 
936 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
937 		if (inmem(vp, *raoffset))
938 			continue;
939 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
940 
941 		if ((rabp->b_flags & B_CACHE) == 0) {
942 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
943 			rabp->b_cmd = BUF_CMD_READ;
944 			vfs_busy_pages(vp, rabp);
945 			BUF_KERNPROC(rabp);
946 			vn_strategy(vp, &rabp->b_bio1);
947 		} else {
948 			brelse(rabp);
949 		}
950 	}
951 	if (readwait)
952 		rv = biowait(&bp->b_bio1, "biord");
953 	return (rv);
954 }
955 
956 /*
957  * bwrite:
958  *
959  *	Synchronous write, waits for completion.
960  *
961  *	Write, release buffer on completion.  (Done by iodone
962  *	if async).  Do not bother writing anything if the buffer
963  *	is invalid.
964  *
965  *	Note that we set B_CACHE here, indicating that buffer is
966  *	fully valid and thus cacheable.  This is true even of NFS
967  *	now so we set it generally.  This could be set either here
968  *	or in biodone() since the I/O is synchronous.  We put it
969  *	here.
970  */
971 int
972 bwrite(struct buf *bp)
973 {
974 	int error;
975 
976 	if (bp->b_flags & B_INVAL) {
977 		brelse(bp);
978 		return (0);
979 	}
980 	if (BUF_REFCNTNB(bp) == 0)
981 		panic("bwrite: buffer is not busy???");
982 
983 	/* Mark the buffer clean */
984 	bundirty(bp);
985 
986 	bp->b_flags &= ~(B_ERROR | B_EINTR);
987 	bp->b_flags |= B_CACHE;
988 	bp->b_cmd = BUF_CMD_WRITE;
989 	bp->b_bio1.bio_done = biodone_sync;
990 	bp->b_bio1.bio_flags |= BIO_SYNC;
991 	vfs_busy_pages(bp->b_vp, bp);
992 
993 	/*
994 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
995 	 * valid for vnode-backed buffers.
996 	 */
997 	bsetrunningbufspace(bp, bp->b_bufsize);
998 	vn_strategy(bp->b_vp, &bp->b_bio1);
999 	error = biowait(&bp->b_bio1, "biows");
1000 	brelse(bp);
1001 
1002 	return (error);
1003 }
1004 
1005 /*
1006  * bawrite:
1007  *
1008  *	Asynchronous write.  Start output on a buffer, but do not wait for
1009  *	it to complete.  The buffer is released when the output completes.
1010  *
1011  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1012  *	B_INVAL buffers.  Not us.
1013  */
1014 void
1015 bawrite(struct buf *bp)
1016 {
1017 	if (bp->b_flags & B_INVAL) {
1018 		brelse(bp);
1019 		return;
1020 	}
1021 	if (BUF_REFCNTNB(bp) == 0)
1022 		panic("bwrite: buffer is not busy???");
1023 
1024 	/* Mark the buffer clean */
1025 	bundirty(bp);
1026 
1027 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1028 	bp->b_flags |= B_CACHE;
1029 	bp->b_cmd = BUF_CMD_WRITE;
1030 	KKASSERT(bp->b_bio1.bio_done == NULL);
1031 	vfs_busy_pages(bp->b_vp, bp);
1032 
1033 	/*
1034 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1035 	 * valid for vnode-backed buffers.
1036 	 */
1037 	bsetrunningbufspace(bp, bp->b_bufsize);
1038 	BUF_KERNPROC(bp);
1039 	vn_strategy(bp->b_vp, &bp->b_bio1);
1040 }
1041 
1042 /*
1043  * bowrite:
1044  *
1045  *	Ordered write.  Start output on a buffer, and flag it so that the
1046  *	device will write it in the order it was queued.  The buffer is
1047  *	released when the output completes.  bwrite() ( or the VOP routine
1048  *	anyway ) is responsible for handling B_INVAL buffers.
1049  */
1050 int
1051 bowrite(struct buf *bp)
1052 {
1053 	bp->b_flags |= B_ORDERED;
1054 	bawrite(bp);
1055 	return (0);
1056 }
1057 
1058 /*
1059  * bdwrite:
1060  *
1061  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1062  *	anything if the buffer is marked invalid.
1063  *
1064  *	Note that since the buffer must be completely valid, we can safely
1065  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1066  *	biodone() in order to prevent getblk from writing the buffer
1067  *	out synchronously.
1068  */
1069 void
1070 bdwrite(struct buf *bp)
1071 {
1072 	if (BUF_REFCNTNB(bp) == 0)
1073 		panic("bdwrite: buffer is not busy");
1074 
1075 	if (bp->b_flags & B_INVAL) {
1076 		brelse(bp);
1077 		return;
1078 	}
1079 	bdirty(bp);
1080 
1081 	if (dsched_is_clear_buf_priv(bp))
1082 		dsched_new_buf(bp);
1083 
1084 	/*
1085 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1086 	 * true even of NFS now.
1087 	 */
1088 	bp->b_flags |= B_CACHE;
1089 
1090 	/*
1091 	 * This bmap keeps the system from needing to do the bmap later,
1092 	 * perhaps when the system is attempting to do a sync.  Since it
1093 	 * is likely that the indirect block -- or whatever other datastructure
1094 	 * that the filesystem needs is still in memory now, it is a good
1095 	 * thing to do this.  Note also, that if the pageout daemon is
1096 	 * requesting a sync -- there might not be enough memory to do
1097 	 * the bmap then...  So, this is important to do.
1098 	 */
1099 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1100 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1101 			 NULL, NULL, BUF_CMD_WRITE);
1102 	}
1103 
1104 	/*
1105 	 * Because the underlying pages may still be mapped and
1106 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1107 	 * range here will be inaccurate.
1108 	 *
1109 	 * However, we must still clean the pages to satisfy the
1110 	 * vnode_pager and pageout daemon, so theythink the pages
1111 	 * have been "cleaned".  What has really occured is that
1112 	 * they've been earmarked for later writing by the buffer
1113 	 * cache.
1114 	 *
1115 	 * So we get the b_dirtyoff/end update but will not actually
1116 	 * depend on it (NFS that is) until the pages are busied for
1117 	 * writing later on.
1118 	 */
1119 	vfs_clean_pages(bp);
1120 	bqrelse(bp);
1121 
1122 	/*
1123 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1124 	 * due to the softdep code.
1125 	 */
1126 }
1127 
1128 /*
1129  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1130  * This is used by tmpfs.
1131  *
1132  * It is important for any VFS using this routine to NOT use it for
1133  * IO_SYNC or IO_ASYNC operations which occur when the system really
1134  * wants to flush VM pages to backing store.
1135  */
1136 void
1137 buwrite(struct buf *bp)
1138 {
1139 	vm_page_t m;
1140 	int i;
1141 
1142 	/*
1143 	 * Only works for VMIO buffers.  If the buffer is already
1144 	 * marked for delayed-write we can't avoid the bdwrite().
1145 	 */
1146 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1147 		bdwrite(bp);
1148 		return;
1149 	}
1150 
1151 	/*
1152 	 * Set valid & dirty.
1153 	 *
1154 	 * WARNING! vfs_dirty_one_page() assumes vm_token is held for now.
1155 	 */
1156 	lwkt_gettoken(&vm_token);
1157 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1158 		m = bp->b_xio.xio_pages[i];
1159 		vfs_dirty_one_page(bp, i, m);
1160 	}
1161 	lwkt_reltoken(&vm_token);
1162 	bqrelse(bp);
1163 }
1164 
1165 /*
1166  * bdirty:
1167  *
1168  *	Turn buffer into delayed write request by marking it B_DELWRI.
1169  *	B_RELBUF and B_NOCACHE must be cleared.
1170  *
1171  *	We reassign the buffer to itself to properly update it in the
1172  *	dirty/clean lists.
1173  *
1174  *	Must be called from a critical section.
1175  *	The buffer must be on BQUEUE_NONE.
1176  */
1177 void
1178 bdirty(struct buf *bp)
1179 {
1180 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1181 	if (bp->b_flags & B_NOCACHE) {
1182 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1183 		bp->b_flags &= ~B_NOCACHE;
1184 	}
1185 	if (bp->b_flags & B_INVAL) {
1186 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1187 	}
1188 	bp->b_flags &= ~B_RELBUF;
1189 
1190 	if ((bp->b_flags & B_DELWRI) == 0) {
1191 		lwkt_gettoken(&bp->b_vp->v_token);
1192 		bp->b_flags |= B_DELWRI;
1193 		reassignbuf(bp);
1194 		lwkt_reltoken(&bp->b_vp->v_token);
1195 
1196 		spin_lock(&bufcspin);
1197 		++dirtybufcount;
1198 		dirtybufspace += bp->b_bufsize;
1199 		if (bp->b_flags & B_HEAVY) {
1200 			++dirtybufcounthw;
1201 			dirtybufspacehw += bp->b_bufsize;
1202 		}
1203 		spin_unlock(&bufcspin);
1204 
1205 		bd_heatup();
1206 	}
1207 }
1208 
1209 /*
1210  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1211  * needs to be flushed with a different buf_daemon thread to avoid
1212  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1213  */
1214 void
1215 bheavy(struct buf *bp)
1216 {
1217 	if ((bp->b_flags & B_HEAVY) == 0) {
1218 		bp->b_flags |= B_HEAVY;
1219 		if (bp->b_flags & B_DELWRI) {
1220 			spin_lock(&bufcspin);
1221 			++dirtybufcounthw;
1222 			dirtybufspacehw += bp->b_bufsize;
1223 			spin_unlock(&bufcspin);
1224 		}
1225 	}
1226 }
1227 
1228 /*
1229  * bundirty:
1230  *
1231  *	Clear B_DELWRI for buffer.
1232  *
1233  *	Must be called from a critical section.
1234  *
1235  *	The buffer is typically on BQUEUE_NONE but there is one case in
1236  *	brelse() that calls this function after placing the buffer on
1237  *	a different queue.
1238  *
1239  * MPSAFE
1240  */
1241 void
1242 bundirty(struct buf *bp)
1243 {
1244 	if (bp->b_flags & B_DELWRI) {
1245 		lwkt_gettoken(&bp->b_vp->v_token);
1246 		bp->b_flags &= ~B_DELWRI;
1247 		reassignbuf(bp);
1248 		lwkt_reltoken(&bp->b_vp->v_token);
1249 
1250 		spin_lock(&bufcspin);
1251 		--dirtybufcount;
1252 		dirtybufspace -= bp->b_bufsize;
1253 		if (bp->b_flags & B_HEAVY) {
1254 			--dirtybufcounthw;
1255 			dirtybufspacehw -= bp->b_bufsize;
1256 		}
1257 		spin_unlock(&bufcspin);
1258 
1259 		bd_signal(bp->b_bufsize);
1260 	}
1261 	/*
1262 	 * Since it is now being written, we can clear its deferred write flag.
1263 	 */
1264 	bp->b_flags &= ~B_DEFERRED;
1265 }
1266 
1267 /*
1268  * Set the b_runningbufspace field, used to track how much I/O is
1269  * in progress at any given moment.
1270  */
1271 void
1272 bsetrunningbufspace(struct buf *bp, int bytes)
1273 {
1274 	bp->b_runningbufspace = bytes;
1275 	if (bytes) {
1276 		spin_lock(&bufcspin);
1277 		runningbufspace += bytes;
1278 		++runningbufcount;
1279 		spin_unlock(&bufcspin);
1280 	}
1281 }
1282 
1283 /*
1284  * brelse:
1285  *
1286  *	Release a busy buffer and, if requested, free its resources.  The
1287  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1288  *	to be accessed later as a cache entity or reused for other purposes.
1289  *
1290  * MPALMOSTSAFE
1291  */
1292 void
1293 brelse(struct buf *bp)
1294 {
1295 #ifdef INVARIANTS
1296 	int saved_flags = bp->b_flags;
1297 #endif
1298 
1299 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1300 
1301 	/*
1302 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1303 	 * its backing store.  Clear B_DELWRI.
1304 	 *
1305 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1306 	 * to destroy the buffer and backing store and (2) when the caller
1307 	 * wants to destroy the buffer and backing store after a write
1308 	 * completes.
1309 	 */
1310 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1311 		bundirty(bp);
1312 	}
1313 
1314 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1315 		/*
1316 		 * A re-dirtied buffer is only subject to destruction
1317 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1318 		 */
1319 		/* leave buffer intact */
1320 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1321 		   (bp->b_bufsize <= 0)) {
1322 		/*
1323 		 * Either a failed read or we were asked to free or not
1324 		 * cache the buffer.  This path is reached with B_DELWRI
1325 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1326 		 * backing store destruction.
1327 		 *
1328 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1329 		 * buffer cannot be immediately freed.
1330 		 */
1331 		bp->b_flags |= B_INVAL;
1332 		if (LIST_FIRST(&bp->b_dep) != NULL)
1333 			buf_deallocate(bp);
1334 		if (bp->b_flags & B_DELWRI) {
1335 			spin_lock(&bufcspin);
1336 			--dirtybufcount;
1337 			dirtybufspace -= bp->b_bufsize;
1338 			if (bp->b_flags & B_HEAVY) {
1339 				--dirtybufcounthw;
1340 				dirtybufspacehw -= bp->b_bufsize;
1341 			}
1342 			spin_unlock(&bufcspin);
1343 
1344 			bd_signal(bp->b_bufsize);
1345 		}
1346 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1347 	}
1348 
1349 	/*
1350 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1351 	 * or if b_refs is non-zero.
1352 	 *
1353 	 * If vfs_vmio_release() is called with either bit set, the
1354 	 * underlying pages may wind up getting freed causing a previous
1355 	 * write (bdwrite()) to get 'lost' because pages associated with
1356 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1357 	 * B_LOCKED buffer may be mapped by the filesystem.
1358 	 *
1359 	 * If we want to release the buffer ourselves (rather then the
1360 	 * originator asking us to release it), give the originator a
1361 	 * chance to countermand the release by setting B_LOCKED.
1362 	 *
1363 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1364 	 * if B_DELWRI is set.
1365 	 *
1366 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1367 	 * on pages to return pages to the VM page queues.
1368 	 */
1369 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1370 		bp->b_flags &= ~B_RELBUF;
1371 	} else if (vm_page_count_severe()) {
1372 		if (LIST_FIRST(&bp->b_dep) != NULL)
1373 			buf_deallocate(bp);		/* can set B_LOCKED */
1374 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1375 			bp->b_flags &= ~B_RELBUF;
1376 		else
1377 			bp->b_flags |= B_RELBUF;
1378 	}
1379 
1380 	/*
1381 	 * Make sure b_cmd is clear.  It may have already been cleared by
1382 	 * biodone().
1383 	 *
1384 	 * At this point destroying the buffer is governed by the B_INVAL
1385 	 * or B_RELBUF flags.
1386 	 */
1387 	bp->b_cmd = BUF_CMD_DONE;
1388 	dsched_exit_buf(bp);
1389 
1390 	/*
1391 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1392 	 * after an I/O may have replaces some of the pages with bogus pages
1393 	 * in order to not destroy dirty pages in a fill-in read.
1394 	 *
1395 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1396 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1397 	 * B_INVAL may still be set, however.
1398 	 *
1399 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1400 	 * but not the backing store.   B_NOCACHE will destroy the backing
1401 	 * store.
1402 	 *
1403 	 * Note that dirty NFS buffers contain byte-granular write ranges
1404 	 * and should not be destroyed w/ B_INVAL even if the backing store
1405 	 * is left intact.
1406 	 */
1407 	if (bp->b_flags & B_VMIO) {
1408 		/*
1409 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1410 		 */
1411 		int i, j, resid;
1412 		vm_page_t m;
1413 		off_t foff;
1414 		vm_pindex_t poff;
1415 		vm_object_t obj;
1416 		struct vnode *vp;
1417 
1418 		vp = bp->b_vp;
1419 
1420 		/*
1421 		 * Get the base offset and length of the buffer.  Note that
1422 		 * in the VMIO case if the buffer block size is not
1423 		 * page-aligned then b_data pointer may not be page-aligned.
1424 		 * But our b_xio.xio_pages array *IS* page aligned.
1425 		 *
1426 		 * block sizes less then DEV_BSIZE (usually 512) are not
1427 		 * supported due to the page granularity bits (m->valid,
1428 		 * m->dirty, etc...).
1429 		 *
1430 		 * See man buf(9) for more information
1431 		 */
1432 
1433 		resid = bp->b_bufsize;
1434 		foff = bp->b_loffset;
1435 
1436 		lwkt_gettoken(&vm_token);
1437 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1438 			m = bp->b_xio.xio_pages[i];
1439 			vm_page_flag_clear(m, PG_ZERO);
1440 			/*
1441 			 * If we hit a bogus page, fixup *all* of them
1442 			 * now.  Note that we left these pages wired
1443 			 * when we removed them so they had better exist,
1444 			 * and they cannot be ripped out from under us so
1445 			 * no critical section protection is necessary.
1446 			 */
1447 			if (m == bogus_page) {
1448 				obj = vp->v_object;
1449 				poff = OFF_TO_IDX(bp->b_loffset);
1450 
1451 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1452 					vm_page_t mtmp;
1453 
1454 					mtmp = bp->b_xio.xio_pages[j];
1455 					if (mtmp == bogus_page) {
1456 						mtmp = vm_page_lookup(obj, poff + j);
1457 						if (!mtmp) {
1458 							panic("brelse: page missing");
1459 						}
1460 						bp->b_xio.xio_pages[j] = mtmp;
1461 					}
1462 				}
1463 				bp->b_flags &= ~B_HASBOGUS;
1464 
1465 				if ((bp->b_flags & B_INVAL) == 0) {
1466 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1467 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1468 				}
1469 				m = bp->b_xio.xio_pages[i];
1470 			}
1471 
1472 			/*
1473 			 * Invalidate the backing store if B_NOCACHE is set
1474 			 * (e.g. used with vinvalbuf()).  If this is NFS
1475 			 * we impose a requirement that the block size be
1476 			 * a multiple of PAGE_SIZE and create a temporary
1477 			 * hack to basically invalidate the whole page.  The
1478 			 * problem is that NFS uses really odd buffer sizes
1479 			 * especially when tracking piecemeal writes and
1480 			 * it also vinvalbuf()'s a lot, which would result
1481 			 * in only partial page validation and invalidation
1482 			 * here.  If the file page is mmap()'d, however,
1483 			 * all the valid bits get set so after we invalidate
1484 			 * here we would end up with weird m->valid values
1485 			 * like 0xfc.  nfs_getpages() can't handle this so
1486 			 * we clear all the valid bits for the NFS case
1487 			 * instead of just some of them.
1488 			 *
1489 			 * The real bug is the VM system having to set m->valid
1490 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1491 			 * itself is an artifact of the whole 512-byte
1492 			 * granular mess that exists to support odd block
1493 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1494 			 * A complete rewrite is required.
1495 			 *
1496 			 * XXX
1497 			 */
1498 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1499 				int poffset = foff & PAGE_MASK;
1500 				int presid;
1501 
1502 				presid = PAGE_SIZE - poffset;
1503 				if (bp->b_vp->v_tag == VT_NFS &&
1504 				    bp->b_vp->v_type == VREG) {
1505 					; /* entire page */
1506 				} else if (presid > resid) {
1507 					presid = resid;
1508 				}
1509 				KASSERT(presid >= 0, ("brelse: extra page"));
1510 				vm_page_set_invalid(m, poffset, presid);
1511 
1512 				/*
1513 				 * Also make sure any swap cache is removed
1514 				 * as it is now stale (HAMMER in particular
1515 				 * uses B_NOCACHE to deal with buffer
1516 				 * aliasing).
1517 				 */
1518 				swap_pager_unswapped(m);
1519 			}
1520 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1521 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1522 		}
1523 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1524 			vfs_vmio_release(bp);
1525 		lwkt_reltoken(&vm_token);
1526 	} else {
1527 		/*
1528 		 * Rundown for non-VMIO buffers.
1529 		 */
1530 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1531 			if (bp->b_bufsize)
1532 				allocbuf(bp, 0);
1533 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1534 			if (bp->b_vp)
1535 				brelvp(bp);
1536 		}
1537 	}
1538 
1539 	if (bp->b_qindex != BQUEUE_NONE)
1540 		panic("brelse: free buffer onto another queue???");
1541 	if (BUF_REFCNTNB(bp) > 1) {
1542 		/* Temporary panic to verify exclusive locking */
1543 		/* This panic goes away when we allow shared refs */
1544 		panic("brelse: multiple refs");
1545 		/* NOT REACHED */
1546 		return;
1547 	}
1548 
1549 	/*
1550 	 * Figure out the correct queue to place the cleaned up buffer on.
1551 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1552 	 * disassociated from their vnode.
1553 	 */
1554 	spin_lock(&bufqspin);
1555 	if (bp->b_flags & B_LOCKED) {
1556 		/*
1557 		 * Buffers that are locked are placed in the locked queue
1558 		 * immediately, regardless of their state.
1559 		 */
1560 		bp->b_qindex = BQUEUE_LOCKED;
1561 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1562 	} else if (bp->b_bufsize == 0) {
1563 		/*
1564 		 * Buffers with no memory.  Due to conditionals near the top
1565 		 * of brelse() such buffers should probably already be
1566 		 * marked B_INVAL and disassociated from their vnode.
1567 		 */
1568 		bp->b_flags |= B_INVAL;
1569 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1570 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1571 		if (bp->b_kvasize) {
1572 			bp->b_qindex = BQUEUE_EMPTYKVA;
1573 		} else {
1574 			bp->b_qindex = BQUEUE_EMPTY;
1575 		}
1576 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1577 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1578 		/*
1579 		 * Buffers with junk contents.   Again these buffers had better
1580 		 * already be disassociated from their vnode.
1581 		 */
1582 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1583 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1584 		bp->b_flags |= B_INVAL;
1585 		bp->b_qindex = BQUEUE_CLEAN;
1586 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1587 	} else {
1588 		/*
1589 		 * Remaining buffers.  These buffers are still associated with
1590 		 * their vnode.
1591 		 */
1592 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1593 		case B_DELWRI:
1594 		    bp->b_qindex = BQUEUE_DIRTY;
1595 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1596 		    break;
1597 		case B_DELWRI | B_HEAVY:
1598 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1599 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1600 				      b_freelist);
1601 		    break;
1602 		default:
1603 		    /*
1604 		     * NOTE: Buffers are always placed at the end of the
1605 		     * queue.  If B_AGE is not set the buffer will cycle
1606 		     * through the queue twice.
1607 		     */
1608 		    bp->b_qindex = BQUEUE_CLEAN;
1609 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1610 		    break;
1611 		}
1612 	}
1613 	spin_unlock(&bufqspin);
1614 
1615 	/*
1616 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1617 	 * on the correct queue.
1618 	 */
1619 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1620 		bundirty(bp);
1621 
1622 	/*
1623 	 * The bp is on an appropriate queue unless locked.  If it is not
1624 	 * locked or dirty we can wakeup threads waiting for buffer space.
1625 	 *
1626 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1627 	 * if B_INVAL is set ).
1628 	 */
1629 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1630 		bufcountwakeup();
1631 
1632 	/*
1633 	 * Something we can maybe free or reuse
1634 	 */
1635 	if (bp->b_bufsize || bp->b_kvasize)
1636 		bufspacewakeup();
1637 
1638 	/*
1639 	 * Clean up temporary flags and unlock the buffer.
1640 	 */
1641 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1642 	BUF_UNLOCK(bp);
1643 }
1644 
1645 /*
1646  * bqrelse:
1647  *
1648  *	Release a buffer back to the appropriate queue but do not try to free
1649  *	it.  The buffer is expected to be used again soon.
1650  *
1651  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1652  *	biodone() to requeue an async I/O on completion.  It is also used when
1653  *	known good buffers need to be requeued but we think we may need the data
1654  *	again soon.
1655  *
1656  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1657  *
1658  * MPSAFE
1659  */
1660 void
1661 bqrelse(struct buf *bp)
1662 {
1663 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1664 
1665 	if (bp->b_qindex != BQUEUE_NONE)
1666 		panic("bqrelse: free buffer onto another queue???");
1667 	if (BUF_REFCNTNB(bp) > 1) {
1668 		/* do not release to free list */
1669 		panic("bqrelse: multiple refs");
1670 		return;
1671 	}
1672 
1673 	buf_act_advance(bp);
1674 
1675 	spin_lock(&bufqspin);
1676 	if (bp->b_flags & B_LOCKED) {
1677 		/*
1678 		 * Locked buffers are released to the locked queue.  However,
1679 		 * if the buffer is dirty it will first go into the dirty
1680 		 * queue and later on after the I/O completes successfully it
1681 		 * will be released to the locked queue.
1682 		 */
1683 		bp->b_qindex = BQUEUE_LOCKED;
1684 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1685 	} else if (bp->b_flags & B_DELWRI) {
1686 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1687 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1688 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1689 	} else if (vm_page_count_severe()) {
1690 		/*
1691 		 * We are too low on memory, we have to try to free the
1692 		 * buffer (most importantly: the wired pages making up its
1693 		 * backing store) *now*.
1694 		 */
1695 		spin_unlock(&bufqspin);
1696 		brelse(bp);
1697 		return;
1698 	} else {
1699 		bp->b_qindex = BQUEUE_CLEAN;
1700 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1701 	}
1702 	spin_unlock(&bufqspin);
1703 
1704 	if ((bp->b_flags & B_LOCKED) == 0 &&
1705 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1706 		bufcountwakeup();
1707 	}
1708 
1709 	/*
1710 	 * Something we can maybe free or reuse.
1711 	 */
1712 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1713 		bufspacewakeup();
1714 
1715 	/*
1716 	 * Final cleanup and unlock.  Clear bits that are only used while a
1717 	 * buffer is actively locked.
1718 	 */
1719 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1720 	dsched_exit_buf(bp);
1721 	BUF_UNLOCK(bp);
1722 }
1723 
1724 /*
1725  * Hold a buffer, preventing it from being reused.  This will prevent
1726  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1727  * operations.  If a B_INVAL operation occurs the buffer will remain held
1728  * but the underlying pages may get ripped out.
1729  *
1730  * These functions are typically used in VOP_READ/VOP_WRITE functions
1731  * to hold a buffer during a copyin or copyout, preventing deadlocks
1732  * or recursive lock panics when read()/write() is used over mmap()'d
1733  * space.
1734  *
1735  * NOTE: bqhold() requires that the buffer be locked at the time of the
1736  *	 hold.  bqdrop() has no requirements other than the buffer having
1737  *	 previously been held.
1738  */
1739 void
1740 bqhold(struct buf *bp)
1741 {
1742 	atomic_add_int(&bp->b_refs, 1);
1743 }
1744 
1745 void
1746 bqdrop(struct buf *bp)
1747 {
1748 	KKASSERT(bp->b_refs > 0);
1749 	atomic_add_int(&bp->b_refs, -1);
1750 }
1751 
1752 /*
1753  * vfs_vmio_release:
1754  *
1755  *	Return backing pages held by the buffer 'bp' back to the VM system
1756  *	if possible.  The pages are freed if they are no longer valid or
1757  *	attempt to free if it was used for direct I/O otherwise they are
1758  *	sent to the page cache.
1759  *
1760  *	Pages that were marked busy are left alone and skipped.
1761  *
1762  *	The KVA mapping (b_data) for the underlying pages is removed by
1763  *	this function.
1764  */
1765 static void
1766 vfs_vmio_release(struct buf *bp)
1767 {
1768 	int i;
1769 	vm_page_t m;
1770 
1771 	lwkt_gettoken(&vm_token);
1772 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1773 		m = bp->b_xio.xio_pages[i];
1774 		bp->b_xio.xio_pages[i] = NULL;
1775 
1776 		/*
1777 		 * The VFS is telling us this is not a meta-data buffer
1778 		 * even if it is backed by a block device.
1779 		 */
1780 		if (bp->b_flags & B_NOTMETA)
1781 			vm_page_flag_set(m, PG_NOTMETA);
1782 
1783 		/*
1784 		 * This is a very important bit of code.  We try to track
1785 		 * VM page use whether the pages are wired into the buffer
1786 		 * cache or not.  While wired into the buffer cache the
1787 		 * bp tracks the act_count.
1788 		 *
1789 		 * We can choose to place unwired pages on the inactive
1790 		 * queue (0) or active queue (1).  If we place too many
1791 		 * on the active queue the queue will cycle the act_count
1792 		 * on pages we'd like to keep, just from single-use pages
1793 		 * (such as when doing a tar-up or file scan).
1794 		 */
1795 		if (bp->b_act_count < vm_cycle_point)
1796 			vm_page_unwire(m, 0);
1797 		else
1798 			vm_page_unwire(m, 1);
1799 
1800 		/*
1801 		 * We don't mess with busy pages, it is the responsibility
1802 		 * of the process that busied the pages to deal with them.
1803 		 *
1804 		 * However, the caller may have marked the page invalid and
1805 		 * we must still make sure the page is no longer mapped.
1806 		 */
1807 		if ((m->flags & PG_BUSY) || (m->busy != 0)) {
1808 			vm_page_protect(m, VM_PROT_NONE);
1809 			continue;
1810 		}
1811 
1812 		if (m->wire_count == 0) {
1813 			vm_page_flag_clear(m, PG_ZERO);
1814 			/*
1815 			 * Might as well free the page if we can and it has
1816 			 * no valid data.  We also free the page if the
1817 			 * buffer was used for direct I/O.
1818 			 */
1819 #if 0
1820 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1821 					m->hold_count == 0) {
1822 				vm_page_busy(m);
1823 				vm_page_protect(m, VM_PROT_NONE);
1824 				vm_page_free(m);
1825 			} else
1826 #endif
1827 			if (bp->b_flags & B_DIRECT) {
1828 				vm_page_try_to_free(m);
1829 			} else if (vm_page_count_severe()) {
1830 				m->act_count = bp->b_act_count;
1831 				vm_page_try_to_cache(m);
1832 			} else {
1833 				m->act_count = bp->b_act_count;
1834 			}
1835 		}
1836 	}
1837 	lwkt_reltoken(&vm_token);
1838 
1839 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1840 		     bp->b_xio.xio_npages);
1841 	if (bp->b_bufsize) {
1842 		bufspacewakeup();
1843 		bp->b_bufsize = 0;
1844 	}
1845 	bp->b_xio.xio_npages = 0;
1846 	bp->b_flags &= ~B_VMIO;
1847 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1848 	if (bp->b_vp)
1849 		brelvp(bp);
1850 }
1851 
1852 /*
1853  * vfs_bio_awrite:
1854  *
1855  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1856  *	This is much better then the old way of writing only one buffer at
1857  *	a time.  Note that we may not be presented with the buffers in the
1858  *	correct order, so we search for the cluster in both directions.
1859  *
1860  *	The buffer is locked on call.
1861  */
1862 int
1863 vfs_bio_awrite(struct buf *bp)
1864 {
1865 	int i;
1866 	int j;
1867 	off_t loffset = bp->b_loffset;
1868 	struct vnode *vp = bp->b_vp;
1869 	int nbytes;
1870 	struct buf *bpa;
1871 	int nwritten;
1872 	int size;
1873 
1874 	/*
1875 	 * right now we support clustered writing only to regular files.  If
1876 	 * we find a clusterable block we could be in the middle of a cluster
1877 	 * rather then at the beginning.
1878 	 *
1879 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1880 	 * to b_loffset.  b_bio2 contains the translated block number.
1881 	 */
1882 	if ((vp->v_type == VREG) &&
1883 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1884 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1885 
1886 		size = vp->v_mount->mnt_stat.f_iosize;
1887 
1888 		for (i = size; i < MAXPHYS; i += size) {
1889 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1890 			    BUF_REFCNT(bpa) == 0 &&
1891 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1892 			    (B_DELWRI | B_CLUSTEROK)) &&
1893 			    (bpa->b_bufsize == size)) {
1894 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1895 				    (bpa->b_bio2.bio_offset !=
1896 				     bp->b_bio2.bio_offset + i))
1897 					break;
1898 			} else {
1899 				break;
1900 			}
1901 		}
1902 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1903 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1904 			    BUF_REFCNT(bpa) == 0 &&
1905 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1906 			    (B_DELWRI | B_CLUSTEROK)) &&
1907 			    (bpa->b_bufsize == size)) {
1908 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1909 				    (bpa->b_bio2.bio_offset !=
1910 				     bp->b_bio2.bio_offset - j))
1911 					break;
1912 			} else {
1913 				break;
1914 			}
1915 		}
1916 		j -= size;
1917 		nbytes = (i + j);
1918 
1919 		/*
1920 		 * this is a possible cluster write
1921 		 */
1922 		if (nbytes != size) {
1923 			BUF_UNLOCK(bp);
1924 			nwritten = cluster_wbuild(vp, size,
1925 						  loffset - j, nbytes);
1926 			return nwritten;
1927 		}
1928 	}
1929 
1930 	/*
1931 	 * default (old) behavior, writing out only one block
1932 	 *
1933 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1934 	 */
1935 	nwritten = bp->b_bufsize;
1936 	bremfree(bp);
1937 	bawrite(bp);
1938 
1939 	return nwritten;
1940 }
1941 
1942 /*
1943  * getnewbuf:
1944  *
1945  *	Find and initialize a new buffer header, freeing up existing buffers
1946  *	in the bufqueues as necessary.  The new buffer is returned locked.
1947  *
1948  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1949  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1950  *
1951  *	We block if:
1952  *		We have insufficient buffer headers
1953  *		We have insufficient buffer space
1954  *		buffer_map is too fragmented ( space reservation fails )
1955  *		If we have to flush dirty buffers ( but we try to avoid this )
1956  *
1957  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1958  *	Instead we ask the buf daemon to do it for us.  We attempt to
1959  *	avoid piecemeal wakeups of the pageout daemon.
1960  *
1961  * MPALMOSTSAFE
1962  */
1963 static struct buf *
1964 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1965 {
1966 	struct buf *bp;
1967 	struct buf *nbp;
1968 	int defrag = 0;
1969 	int nqindex;
1970 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1971 	static int flushingbufs;
1972 
1973 	/*
1974 	 * We can't afford to block since we might be holding a vnode lock,
1975 	 * which may prevent system daemons from running.  We deal with
1976 	 * low-memory situations by proactively returning memory and running
1977 	 * async I/O rather then sync I/O.
1978 	 */
1979 
1980 	++getnewbufcalls;
1981 	--getnewbufrestarts;
1982 restart:
1983 	++getnewbufrestarts;
1984 
1985 	/*
1986 	 * Setup for scan.  If we do not have enough free buffers,
1987 	 * we setup a degenerate case that immediately fails.  Note
1988 	 * that if we are specially marked process, we are allowed to
1989 	 * dip into our reserves.
1990 	 *
1991 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1992 	 *
1993 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1994 	 * However, there are a number of cases (defragging, reusing, ...)
1995 	 * where we cannot backup.
1996 	 */
1997 	nqindex = BQUEUE_EMPTYKVA;
1998 	spin_lock(&bufqspin);
1999 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
2000 
2001 	if (nbp == NULL) {
2002 		/*
2003 		 * If no EMPTYKVA buffers and we are either
2004 		 * defragging or reusing, locate a CLEAN buffer
2005 		 * to free or reuse.  If bufspace useage is low
2006 		 * skip this step so we can allocate a new buffer.
2007 		 */
2008 		if (defrag || bufspace >= lobufspace) {
2009 			nqindex = BQUEUE_CLEAN;
2010 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2011 		}
2012 
2013 		/*
2014 		 * If we could not find or were not allowed to reuse a
2015 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
2016 		 * buffer.  We can only use an EMPTY buffer if allocating
2017 		 * its KVA would not otherwise run us out of buffer space.
2018 		 */
2019 		if (nbp == NULL && defrag == 0 &&
2020 		    bufspace + maxsize < hibufspace) {
2021 			nqindex = BQUEUE_EMPTY;
2022 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
2023 		}
2024 	}
2025 
2026 	/*
2027 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2028 	 * depending.
2029 	 *
2030 	 * WARNING!  bufqspin is held!
2031 	 */
2032 	while ((bp = nbp) != NULL) {
2033 		int qindex = nqindex;
2034 
2035 		nbp = TAILQ_NEXT(bp, b_freelist);
2036 
2037 		/*
2038 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2039 		 * cycles through the queue twice before being selected.
2040 		 */
2041 		if (qindex == BQUEUE_CLEAN &&
2042 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2043 			bp->b_flags |= B_AGE;
2044 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
2045 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
2046 			continue;
2047 		}
2048 
2049 		/*
2050 		 * Calculate next bp ( we can only use it if we do not block
2051 		 * or do other fancy things ).
2052 		 */
2053 		if (nbp == NULL) {
2054 			switch(qindex) {
2055 			case BQUEUE_EMPTY:
2056 				nqindex = BQUEUE_EMPTYKVA;
2057 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
2058 					break;
2059 				/* fall through */
2060 			case BQUEUE_EMPTYKVA:
2061 				nqindex = BQUEUE_CLEAN;
2062 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
2063 					break;
2064 				/* fall through */
2065 			case BQUEUE_CLEAN:
2066 				/*
2067 				 * nbp is NULL.
2068 				 */
2069 				break;
2070 			}
2071 		}
2072 
2073 		/*
2074 		 * Sanity Checks
2075 		 */
2076 		KASSERT(bp->b_qindex == qindex,
2077 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2078 
2079 		/*
2080 		 * Note: we no longer distinguish between VMIO and non-VMIO
2081 		 * buffers.
2082 		 */
2083 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2084 			("delwri buffer %p found in queue %d", bp, qindex));
2085 
2086 		/*
2087 		 * Do not try to reuse a buffer with a non-zero b_refs.
2088 		 * This is an unsynchronized test.  A synchronized test
2089 		 * is also performed after we lock the buffer.
2090 		 */
2091 		if (bp->b_refs)
2092 			continue;
2093 
2094 		/*
2095 		 * If we are defragging then we need a buffer with
2096 		 * b_kvasize != 0.  XXX this situation should no longer
2097 		 * occur, if defrag is non-zero the buffer's b_kvasize
2098 		 * should also be non-zero at this point.  XXX
2099 		 */
2100 		if (defrag && bp->b_kvasize == 0) {
2101 			kprintf("Warning: defrag empty buffer %p\n", bp);
2102 			continue;
2103 		}
2104 
2105 		/*
2106 		 * Start freeing the bp.  This is somewhat involved.  nbp
2107 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2108 		 * on the clean list must be disassociated from their
2109 		 * current vnode.  Buffers on the empty[kva] lists have
2110 		 * already been disassociated.
2111 		 *
2112 		 * b_refs is checked after locking along with queue changes.
2113 		 * We must check here to deal with zero->nonzero transitions
2114 		 * made by the owner of the buffer lock, which is used by
2115 		 * VFS's to hold the buffer while issuing an unlocked
2116 		 * uiomove()s.  We cannot invalidate the buffer's pages
2117 		 * for this case.  Once we successfully lock a buffer the
2118 		 * only 0->1 transitions of b_refs will occur via findblk().
2119 		 *
2120 		 * We must also check for queue changes after successful
2121 		 * locking as the current lock holder may dispose of the
2122 		 * buffer and change its queue.
2123 		 */
2124 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2125 			spin_unlock(&bufqspin);
2126 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2127 			goto restart;
2128 		}
2129 		if (bp->b_qindex != qindex || bp->b_refs) {
2130 			spin_unlock(&bufqspin);
2131 			BUF_UNLOCK(bp);
2132 			goto restart;
2133 		}
2134 		bremfree_locked(bp);
2135 		spin_unlock(&bufqspin);
2136 
2137 		/*
2138 		 * Dependancies must be handled before we disassociate the
2139 		 * vnode.
2140 		 *
2141 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2142 		 * be immediately disassociated.  HAMMER then becomes
2143 		 * responsible for releasing the buffer.
2144 		 *
2145 		 * NOTE: bufqspin is UNLOCKED now.
2146 		 */
2147 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2148 			buf_deallocate(bp);
2149 			if (bp->b_flags & B_LOCKED) {
2150 				bqrelse(bp);
2151 				goto restart;
2152 			}
2153 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2154 		}
2155 
2156 		if (qindex == BQUEUE_CLEAN) {
2157 			if (bp->b_flags & B_VMIO)
2158 				vfs_vmio_release(bp);
2159 			if (bp->b_vp)
2160 				brelvp(bp);
2161 		}
2162 
2163 		/*
2164 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2165 		 * the scan from this point on.
2166 		 *
2167 		 * Get the rest of the buffer freed up.  b_kva* is still
2168 		 * valid after this operation.
2169 		 */
2170 		KASSERT(bp->b_vp == NULL,
2171 			("bp3 %p flags %08x vnode %p qindex %d "
2172 			 "unexpectededly still associated!",
2173 			 bp, bp->b_flags, bp->b_vp, qindex));
2174 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2175 
2176 		/*
2177 		 * critical section protection is not required when
2178 		 * scrapping a buffer's contents because it is already
2179 		 * wired.
2180 		 */
2181 		if (bp->b_bufsize)
2182 			allocbuf(bp, 0);
2183 
2184 		bp->b_flags = B_BNOCLIP;
2185 		bp->b_cmd = BUF_CMD_DONE;
2186 		bp->b_vp = NULL;
2187 		bp->b_error = 0;
2188 		bp->b_resid = 0;
2189 		bp->b_bcount = 0;
2190 		bp->b_xio.xio_npages = 0;
2191 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2192 		bp->b_act_count = ACT_INIT;
2193 		reinitbufbio(bp);
2194 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2195 		buf_dep_init(bp);
2196 		if (blkflags & GETBLK_BHEAVY)
2197 			bp->b_flags |= B_HEAVY;
2198 
2199 		/*
2200 		 * If we are defragging then free the buffer.
2201 		 */
2202 		if (defrag) {
2203 			bp->b_flags |= B_INVAL;
2204 			bfreekva(bp);
2205 			brelse(bp);
2206 			defrag = 0;
2207 			goto restart;
2208 		}
2209 
2210 		/*
2211 		 * If we are overcomitted then recover the buffer and its
2212 		 * KVM space.  This occurs in rare situations when multiple
2213 		 * processes are blocked in getnewbuf() or allocbuf().
2214 		 */
2215 		if (bufspace >= hibufspace)
2216 			flushingbufs = 1;
2217 		if (flushingbufs && bp->b_kvasize != 0) {
2218 			bp->b_flags |= B_INVAL;
2219 			bfreekva(bp);
2220 			brelse(bp);
2221 			goto restart;
2222 		}
2223 		if (bufspace < lobufspace)
2224 			flushingbufs = 0;
2225 
2226 		/*
2227 		 * b_refs can transition to a non-zero value while we hold
2228 		 * the buffer locked due to a findblk().  Our brelvp() above
2229 		 * interlocked any future possible transitions due to
2230 		 * findblk()s.
2231 		 *
2232 		 * If we find b_refs to be non-zero we can destroy the
2233 		 * buffer's contents but we cannot yet reuse the buffer.
2234 		 */
2235 		if (bp->b_refs) {
2236 			bp->b_flags |= B_INVAL;
2237 			bfreekva(bp);
2238 			brelse(bp);
2239 			goto restart;
2240 		}
2241 		break;
2242 		/* NOT REACHED, bufqspin not held */
2243 	}
2244 
2245 	/*
2246 	 * If we exhausted our list, sleep as appropriate.  We may have to
2247 	 * wakeup various daemons and write out some dirty buffers.
2248 	 *
2249 	 * Generally we are sleeping due to insufficient buffer space.
2250 	 *
2251 	 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2252 	 */
2253 	if (bp == NULL) {
2254 		int flags;
2255 		char *waitmsg;
2256 
2257 		spin_unlock(&bufqspin);
2258 		if (defrag) {
2259 			flags = VFS_BIO_NEED_BUFSPACE;
2260 			waitmsg = "nbufkv";
2261 		} else if (bufspace >= hibufspace) {
2262 			waitmsg = "nbufbs";
2263 			flags = VFS_BIO_NEED_BUFSPACE;
2264 		} else {
2265 			waitmsg = "newbuf";
2266 			flags = VFS_BIO_NEED_ANY;
2267 		}
2268 
2269 		bd_speedup();	/* heeeelp */
2270 		spin_lock(&bufcspin);
2271 		needsbuffer |= flags;
2272 		while (needsbuffer & flags) {
2273 			if (ssleep(&needsbuffer, &bufcspin,
2274 				   slpflags, waitmsg, slptimeo)) {
2275 				spin_unlock(&bufcspin);
2276 				return (NULL);
2277 			}
2278 		}
2279 		spin_unlock(&bufcspin);
2280 	} else {
2281 		/*
2282 		 * We finally have a valid bp.  We aren't quite out of the
2283 		 * woods, we still have to reserve kva space.  In order
2284 		 * to keep fragmentation sane we only allocate kva in
2285 		 * BKVASIZE chunks.
2286 		 *
2287 		 * (bufqspin is not held)
2288 		 */
2289 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2290 
2291 		if (maxsize != bp->b_kvasize) {
2292 			vm_offset_t addr = 0;
2293 			int count;
2294 
2295 			bfreekva(bp);
2296 
2297 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2298 			vm_map_lock(&buffer_map);
2299 
2300 			if (vm_map_findspace(&buffer_map,
2301 				    vm_map_min(&buffer_map), maxsize,
2302 				    maxsize, 0, &addr)) {
2303 				/*
2304 				 * Uh oh.  Buffer map is too fragmented.  We
2305 				 * must defragment the map.
2306 				 */
2307 				vm_map_unlock(&buffer_map);
2308 				vm_map_entry_release(count);
2309 				++bufdefragcnt;
2310 				defrag = 1;
2311 				bp->b_flags |= B_INVAL;
2312 				brelse(bp);
2313 				goto restart;
2314 			}
2315 			if (addr) {
2316 				vm_map_insert(&buffer_map, &count,
2317 					NULL, 0,
2318 					addr, addr + maxsize,
2319 					VM_MAPTYPE_NORMAL,
2320 					VM_PROT_ALL, VM_PROT_ALL,
2321 					MAP_NOFAULT);
2322 
2323 				bp->b_kvabase = (caddr_t) addr;
2324 				bp->b_kvasize = maxsize;
2325 				bufspace += bp->b_kvasize;
2326 				++bufreusecnt;
2327 			}
2328 			vm_map_unlock(&buffer_map);
2329 			vm_map_entry_release(count);
2330 		}
2331 		bp->b_data = bp->b_kvabase;
2332 	}
2333 	return(bp);
2334 }
2335 
2336 /*
2337  * This routine is called in an emergency to recover VM pages from the
2338  * buffer cache by cashing in clean buffers.  The idea is to recover
2339  * enough pages to be able to satisfy a stuck bio_page_alloc().
2340  *
2341  * MPSAFE
2342  */
2343 static int
2344 recoverbufpages(void)
2345 {
2346 	struct buf *bp;
2347 	int bytes = 0;
2348 
2349 	++recoverbufcalls;
2350 
2351 	spin_lock(&bufqspin);
2352 	while (bytes < MAXBSIZE) {
2353 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2354 		if (bp == NULL)
2355 			break;
2356 
2357 		/*
2358 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2359 		 * cycles through the queue twice before being selected.
2360 		 */
2361 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2362 			bp->b_flags |= B_AGE;
2363 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2364 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2365 					  bp, b_freelist);
2366 			continue;
2367 		}
2368 
2369 		/*
2370 		 * Sanity Checks
2371 		 */
2372 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2373 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2374 
2375 		/*
2376 		 * Start freeing the bp.  This is somewhat involved.
2377 		 *
2378 		 * Buffers on the clean list must be disassociated from
2379 		 * their current vnode
2380 		 */
2381 
2382 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2383 			kprintf("recoverbufpages: warning, locked buf %p, "
2384 				"race corrected\n",
2385 				bp);
2386 			ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2387 			continue;
2388 		}
2389 		if (bp->b_qindex != BQUEUE_CLEAN) {
2390 			kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2391 				"unexpectedly on buf %p index %d, race "
2392 				"corrected\n",
2393 				bp, bp->b_qindex);
2394 			BUF_UNLOCK(bp);
2395 			continue;
2396 		}
2397 		bremfree_locked(bp);
2398 		spin_unlock(&bufqspin);
2399 
2400 		/*
2401 		 * Dependancies must be handled before we disassociate the
2402 		 * vnode.
2403 		 *
2404 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2405 		 * be immediately disassociated.  HAMMER then becomes
2406 		 * responsible for releasing the buffer.
2407 		 */
2408 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2409 			buf_deallocate(bp);
2410 			if (bp->b_flags & B_LOCKED) {
2411 				bqrelse(bp);
2412 				spin_lock(&bufqspin);
2413 				continue;
2414 			}
2415 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2416 		}
2417 
2418 		bytes += bp->b_bufsize;
2419 
2420 		if (bp->b_flags & B_VMIO) {
2421 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2422 			vfs_vmio_release(bp);
2423 		}
2424 		if (bp->b_vp)
2425 			brelvp(bp);
2426 
2427 		KKASSERT(bp->b_vp == NULL);
2428 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2429 
2430 		/*
2431 		 * critical section protection is not required when
2432 		 * scrapping a buffer's contents because it is already
2433 		 * wired.
2434 		 */
2435 		if (bp->b_bufsize)
2436 			allocbuf(bp, 0);
2437 
2438 		bp->b_flags = B_BNOCLIP;
2439 		bp->b_cmd = BUF_CMD_DONE;
2440 		bp->b_vp = NULL;
2441 		bp->b_error = 0;
2442 		bp->b_resid = 0;
2443 		bp->b_bcount = 0;
2444 		bp->b_xio.xio_npages = 0;
2445 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2446 		reinitbufbio(bp);
2447 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2448 		buf_dep_init(bp);
2449 		bp->b_flags |= B_INVAL;
2450 		/* bfreekva(bp); */
2451 		brelse(bp);
2452 		spin_lock(&bufqspin);
2453 	}
2454 	spin_unlock(&bufqspin);
2455 	return(bytes);
2456 }
2457 
2458 /*
2459  * buf_daemon:
2460  *
2461  *	Buffer flushing daemon.  Buffers are normally flushed by the
2462  *	update daemon but if it cannot keep up this process starts to
2463  *	take the load in an attempt to prevent getnewbuf() from blocking.
2464  *
2465  *	Once a flush is initiated it does not stop until the number
2466  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2467  *	waiting at the mid-point.
2468  */
2469 
2470 static struct kproc_desc buf_kp = {
2471 	"bufdaemon",
2472 	buf_daemon,
2473 	&bufdaemon_td
2474 };
2475 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2476 	kproc_start, &buf_kp)
2477 
2478 static struct kproc_desc bufhw_kp = {
2479 	"bufdaemon_hw",
2480 	buf_daemon_hw,
2481 	&bufdaemonhw_td
2482 };
2483 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2484 	kproc_start, &bufhw_kp)
2485 
2486 /*
2487  * MPSAFE thread
2488  */
2489 static void
2490 buf_daemon(void)
2491 {
2492 	int limit;
2493 
2494 	/*
2495 	 * This process needs to be suspended prior to shutdown sync.
2496 	 */
2497 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2498 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2499 	curthread->td_flags |= TDF_SYSTHREAD;
2500 
2501 	/*
2502 	 * This process is allowed to take the buffer cache to the limit
2503 	 */
2504 	for (;;) {
2505 		kproc_suspend_loop();
2506 
2507 		/*
2508 		 * Do the flush as long as the number of dirty buffers
2509 		 * (including those running) exceeds lodirtybufspace.
2510 		 *
2511 		 * When flushing limit running I/O to hirunningspace
2512 		 * Do the flush.  Limit the amount of in-transit I/O we
2513 		 * allow to build up, otherwise we would completely saturate
2514 		 * the I/O system.  Wakeup any waiting processes before we
2515 		 * normally would so they can run in parallel with our drain.
2516 		 *
2517 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2518 		 * but because we split the operation into two threads we
2519 		 * have to cut it in half for each thread.
2520 		 */
2521 		waitrunningbufspace();
2522 		limit = lodirtybufspace / 2;
2523 		while (runningbufspace + dirtybufspace > limit ||
2524 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2525 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2526 				break;
2527 			if (runningbufspace < hirunningspace)
2528 				continue;
2529 			waitrunningbufspace();
2530 		}
2531 
2532 		/*
2533 		 * We reached our low water mark, reset the
2534 		 * request and sleep until we are needed again.
2535 		 * The sleep is just so the suspend code works.
2536 		 */
2537 		spin_lock(&bufcspin);
2538 		if (bd_request == 0)
2539 			ssleep(&bd_request, &bufcspin, 0, "psleep", hz);
2540 		bd_request = 0;
2541 		spin_unlock(&bufcspin);
2542 	}
2543 }
2544 
2545 /*
2546  * MPSAFE thread
2547  */
2548 static void
2549 buf_daemon_hw(void)
2550 {
2551 	int limit;
2552 
2553 	/*
2554 	 * This process needs to be suspended prior to shutdown sync.
2555 	 */
2556 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2557 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2558 	curthread->td_flags |= TDF_SYSTHREAD;
2559 
2560 	/*
2561 	 * This process is allowed to take the buffer cache to the limit
2562 	 */
2563 	for (;;) {
2564 		kproc_suspend_loop();
2565 
2566 		/*
2567 		 * Do the flush.  Limit the amount of in-transit I/O we
2568 		 * allow to build up, otherwise we would completely saturate
2569 		 * the I/O system.  Wakeup any waiting processes before we
2570 		 * normally would so they can run in parallel with our drain.
2571 		 *
2572 		 * Once we decide to flush push the queued I/O up to
2573 		 * hirunningspace in order to trigger bursting by the bioq
2574 		 * subsystem.
2575 		 *
2576 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2577 		 * but because we split the operation into two threads we
2578 		 * have to cut it in half for each thread.
2579 		 */
2580 		waitrunningbufspace();
2581 		limit = lodirtybufspace / 2;
2582 		while (runningbufspace + dirtybufspacehw > limit ||
2583 		       dirtybufcounthw >= nbuf / 2) {
2584 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2585 				break;
2586 			if (runningbufspace < hirunningspace)
2587 				continue;
2588 			waitrunningbufspace();
2589 		}
2590 
2591 		/*
2592 		 * We reached our low water mark, reset the
2593 		 * request and sleep until we are needed again.
2594 		 * The sleep is just so the suspend code works.
2595 		 */
2596 		spin_lock(&bufcspin);
2597 		if (bd_request_hw == 0)
2598 			ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz);
2599 		bd_request_hw = 0;
2600 		spin_unlock(&bufcspin);
2601 	}
2602 }
2603 
2604 /*
2605  * flushbufqueues:
2606  *
2607  *	Try to flush a buffer in the dirty queue.  We must be careful to
2608  *	free up B_INVAL buffers instead of write them, which NFS is
2609  *	particularly sensitive to.
2610  *
2611  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2612  *	that we really want to try to get the buffer out and reuse it
2613  *	due to the write load on the machine.
2614  *
2615  *	We must lock the buffer in order to check its validity before we
2616  *	can mess with its contents.  bufqspin isn't enough.
2617  */
2618 static int
2619 flushbufqueues(bufq_type_t q)
2620 {
2621 	struct buf *bp;
2622 	int r = 0;
2623 	int spun;
2624 
2625 	spin_lock(&bufqspin);
2626 	spun = 1;
2627 
2628 	bp = TAILQ_FIRST(&bufqueues[q]);
2629 	while (bp) {
2630 		if ((bp->b_flags & B_DELWRI) == 0) {
2631 			kprintf("Unexpected clean buffer %p\n", bp);
2632 			bp = TAILQ_NEXT(bp, b_freelist);
2633 			continue;
2634 		}
2635 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2636 			bp = TAILQ_NEXT(bp, b_freelist);
2637 			continue;
2638 		}
2639 		KKASSERT(bp->b_qindex == q);
2640 
2641 		/*
2642 		 * Must recheck B_DELWRI after successfully locking
2643 		 * the buffer.
2644 		 */
2645 		if ((bp->b_flags & B_DELWRI) == 0) {
2646 			BUF_UNLOCK(bp);
2647 			bp = TAILQ_NEXT(bp, b_freelist);
2648 			continue;
2649 		}
2650 
2651 		if (bp->b_flags & B_INVAL) {
2652 			_bremfree(bp);
2653 			spin_unlock(&bufqspin);
2654 			spun = 0;
2655 			brelse(bp);
2656 			++r;
2657 			break;
2658 		}
2659 
2660 		spin_unlock(&bufqspin);
2661 		spun = 0;
2662 
2663 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2664 		    (bp->b_flags & B_DEFERRED) == 0 &&
2665 		    buf_countdeps(bp, 0)) {
2666 			spin_lock(&bufqspin);
2667 			spun = 1;
2668 			TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2669 			TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2670 			bp->b_flags |= B_DEFERRED;
2671 			BUF_UNLOCK(bp);
2672 			bp = TAILQ_FIRST(&bufqueues[q]);
2673 			continue;
2674 		}
2675 
2676 		/*
2677 		 * If the buffer has a dependancy, buf_checkwrite() must
2678 		 * also return 0 for us to be able to initate the write.
2679 		 *
2680 		 * If the buffer is flagged B_ERROR it may be requeued
2681 		 * over and over again, we try to avoid a live lock.
2682 		 *
2683 		 * NOTE: buf_checkwrite is MPSAFE.
2684 		 */
2685 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2686 			bremfree(bp);
2687 			brelse(bp);
2688 		} else if (bp->b_flags & B_ERROR) {
2689 			tsleep(bp, 0, "bioer", 1);
2690 			bp->b_flags &= ~B_AGE;
2691 			vfs_bio_awrite(bp);
2692 		} else {
2693 			bp->b_flags |= B_AGE;
2694 			vfs_bio_awrite(bp);
2695 		}
2696 		++r;
2697 		break;
2698 	}
2699 	if (spun)
2700 		spin_unlock(&bufqspin);
2701 	return (r);
2702 }
2703 
2704 /*
2705  * inmem:
2706  *
2707  *	Returns true if no I/O is needed to access the associated VM object.
2708  *	This is like findblk except it also hunts around in the VM system for
2709  *	the data.
2710  *
2711  *	Note that we ignore vm_page_free() races from interrupts against our
2712  *	lookup, since if the caller is not protected our return value will not
2713  *	be any more valid then otherwise once we exit the critical section.
2714  */
2715 int
2716 inmem(struct vnode *vp, off_t loffset)
2717 {
2718 	vm_object_t obj;
2719 	vm_offset_t toff, tinc, size;
2720 	vm_page_t m;
2721 
2722 	if (findblk(vp, loffset, FINDBLK_TEST))
2723 		return 1;
2724 	if (vp->v_mount == NULL)
2725 		return 0;
2726 	if ((obj = vp->v_object) == NULL)
2727 		return 0;
2728 
2729 	size = PAGE_SIZE;
2730 	if (size > vp->v_mount->mnt_stat.f_iosize)
2731 		size = vp->v_mount->mnt_stat.f_iosize;
2732 
2733 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2734 		lwkt_gettoken(&vm_token);
2735 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2736 		lwkt_reltoken(&vm_token);
2737 		if (m == NULL)
2738 			return 0;
2739 		tinc = size;
2740 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2741 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2742 		if (vm_page_is_valid(m,
2743 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2744 			return 0;
2745 	}
2746 	return 1;
2747 }
2748 
2749 /*
2750  * findblk:
2751  *
2752  *	Locate and return the specified buffer.  Unless flagged otherwise,
2753  *	a locked buffer will be returned if it exists or NULL if it does not.
2754  *
2755  *	findblk()'d buffers are still on the bufqueues and if you intend
2756  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2757  *	and possibly do other stuff to it.
2758  *
2759  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2760  *			  for locking the buffer and ensuring that it remains
2761  *			  the desired buffer after locking.
2762  *
2763  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2764  *			  to acquire the lock we return NULL, even if the
2765  *			  buffer exists.
2766  *
2767  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2768  *			  reuse by getnewbuf() but does not prevent
2769  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2770  *			  against random (vp,loffset)s due to reassignment.
2771  *
2772  *	(0)		- Lock the buffer blocking.
2773  *
2774  * MPSAFE
2775  */
2776 struct buf *
2777 findblk(struct vnode *vp, off_t loffset, int flags)
2778 {
2779 	struct buf *bp;
2780 	int lkflags;
2781 
2782 	lkflags = LK_EXCLUSIVE;
2783 	if (flags & FINDBLK_NBLOCK)
2784 		lkflags |= LK_NOWAIT;
2785 
2786 	for (;;) {
2787 		/*
2788 		 * Lookup.  Ref the buf while holding v_token to prevent
2789 		 * reuse (but does not prevent diassociation).
2790 		 */
2791 		lwkt_gettoken(&vp->v_token);
2792 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2793 		if (bp == NULL) {
2794 			lwkt_reltoken(&vp->v_token);
2795 			return(NULL);
2796 		}
2797 		bqhold(bp);
2798 		lwkt_reltoken(&vp->v_token);
2799 
2800 		/*
2801 		 * If testing only break and return bp, do not lock.
2802 		 */
2803 		if (flags & FINDBLK_TEST)
2804 			break;
2805 
2806 		/*
2807 		 * Lock the buffer, return an error if the lock fails.
2808 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2809 		 */
2810 		if (BUF_LOCK(bp, lkflags)) {
2811 			atomic_subtract_int(&bp->b_refs, 1);
2812 			/* bp = NULL; not needed */
2813 			return(NULL);
2814 		}
2815 
2816 		/*
2817 		 * Revalidate the locked buf before allowing it to be
2818 		 * returned.
2819 		 */
2820 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2821 			break;
2822 		atomic_subtract_int(&bp->b_refs, 1);
2823 		BUF_UNLOCK(bp);
2824 	}
2825 
2826 	/*
2827 	 * Success
2828 	 */
2829 	if ((flags & FINDBLK_REF) == 0)
2830 		atomic_subtract_int(&bp->b_refs, 1);
2831 	return(bp);
2832 }
2833 
2834 /*
2835  * getcacheblk:
2836  *
2837  *	Similar to getblk() except only returns the buffer if it is
2838  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2839  *	is returned.
2840  *
2841  *	If B_RAM is set the buffer might be just fine, but we return
2842  *	NULL anyway because we want the code to fall through to the
2843  *	cluster read.  Otherwise read-ahead breaks.
2844  *
2845  *	If blksize is 0 the buffer cache buffer must already be fully
2846  *	cached.
2847  *
2848  *	If blksize is non-zero getblk() will be used, allowing a buffer
2849  *	to be reinstantiated from its VM backing store.  The buffer must
2850  *	still be fully cached after reinstantiation to be returned.
2851  */
2852 struct buf *
2853 getcacheblk(struct vnode *vp, off_t loffset, int blksize)
2854 {
2855 	struct buf *bp;
2856 
2857 	if (blksize) {
2858 		bp = getblk(vp, loffset, blksize, 0, 0);
2859 		if (bp) {
2860 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2861 			    B_CACHE) {
2862 				bp->b_flags &= ~B_AGE;
2863 			} else {
2864 				brelse(bp);
2865 				bp = NULL;
2866 			}
2867 		}
2868 	} else {
2869 		bp = findblk(vp, loffset, 0);
2870 		if (bp) {
2871 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2872 			    B_CACHE) {
2873 				bp->b_flags &= ~B_AGE;
2874 				bremfree(bp);
2875 			} else {
2876 				BUF_UNLOCK(bp);
2877 				bp = NULL;
2878 			}
2879 		}
2880 	}
2881 	return (bp);
2882 }
2883 
2884 /*
2885  * getblk:
2886  *
2887  *	Get a block given a specified block and offset into a file/device.
2888  * 	B_INVAL may or may not be set on return.  The caller should clear
2889  *	B_INVAL prior to initiating a READ.
2890  *
2891  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2892  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2893  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2894  *	without doing any of those things the system will likely believe
2895  *	the buffer to be valid (especially if it is not B_VMIO), and the
2896  *	next getblk() will return the buffer with B_CACHE set.
2897  *
2898  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2899  *	an existing buffer.
2900  *
2901  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2902  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2903  *	and then cleared based on the backing VM.  If the previous buffer is
2904  *	non-0-sized but invalid, B_CACHE will be cleared.
2905  *
2906  *	If getblk() must create a new buffer, the new buffer is returned with
2907  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2908  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2909  *	backing VM.
2910  *
2911  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2912  *	B_CACHE bit is clear.
2913  *
2914  *	What this means, basically, is that the caller should use B_CACHE to
2915  *	determine whether the buffer is fully valid or not and should clear
2916  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2917  *	the buffer by loading its data area with something, the caller needs
2918  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2919  *	the caller should set B_CACHE ( as an optimization ), else the caller
2920  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2921  *	a write attempt or if it was a successfull read.  If the caller
2922  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2923  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2924  *
2925  *	getblk flags:
2926  *
2927  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2928  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2929  *
2930  * MPALMOSTSAFE
2931  */
2932 struct buf *
2933 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2934 {
2935 	struct buf *bp;
2936 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2937 	int error;
2938 	int lkflags;
2939 
2940 	if (size > MAXBSIZE)
2941 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2942 	if (vp->v_object == NULL)
2943 		panic("getblk: vnode %p has no object!", vp);
2944 
2945 loop:
2946 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2947 		/*
2948 		 * The buffer was found in the cache, but we need to lock it.
2949 		 * We must acquire a ref on the bp to prevent reuse, but
2950 		 * this will not prevent disassociation (brelvp()) so we
2951 		 * must recheck (vp,loffset) after acquiring the lock.
2952 		 *
2953 		 * Without the ref the buffer could potentially be reused
2954 		 * before we acquire the lock and create a deadlock
2955 		 * situation between the thread trying to reuse the buffer
2956 		 * and us due to the fact that we would wind up blocking
2957 		 * on a random (vp,loffset).
2958 		 */
2959 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2960 			if (blkflags & GETBLK_NOWAIT) {
2961 				bqdrop(bp);
2962 				return(NULL);
2963 			}
2964 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2965 			if (blkflags & GETBLK_PCATCH)
2966 				lkflags |= LK_PCATCH;
2967 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2968 			if (error) {
2969 				bqdrop(bp);
2970 				if (error == ENOLCK)
2971 					goto loop;
2972 				return (NULL);
2973 			}
2974 			/* buffer may have changed on us */
2975 		}
2976 		bqdrop(bp);
2977 
2978 		/*
2979 		 * Once the buffer has been locked, make sure we didn't race
2980 		 * a buffer recyclement.  Buffers that are no longer hashed
2981 		 * will have b_vp == NULL, so this takes care of that check
2982 		 * as well.
2983 		 */
2984 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2985 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2986 				"was recycled\n",
2987 				bp, vp, (long long)loffset);
2988 			BUF_UNLOCK(bp);
2989 			goto loop;
2990 		}
2991 
2992 		/*
2993 		 * If SZMATCH any pre-existing buffer must be of the requested
2994 		 * size or NULL is returned.  The caller absolutely does not
2995 		 * want getblk() to bwrite() the buffer on a size mismatch.
2996 		 */
2997 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2998 			BUF_UNLOCK(bp);
2999 			return(NULL);
3000 		}
3001 
3002 		/*
3003 		 * All vnode-based buffers must be backed by a VM object.
3004 		 */
3005 		KKASSERT(bp->b_flags & B_VMIO);
3006 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3007 		bp->b_flags &= ~B_AGE;
3008 
3009 		/*
3010 		 * Make sure that B_INVAL buffers do not have a cached
3011 		 * block number translation.
3012 		 */
3013 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
3014 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
3015 				" did not have cleared bio_offset cache\n",
3016 				bp, vp, (long long)loffset);
3017 			clearbiocache(&bp->b_bio2);
3018 		}
3019 
3020 		/*
3021 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3022 		 * invalid.
3023 		 */
3024 		if (bp->b_flags & B_INVAL)
3025 			bp->b_flags &= ~B_CACHE;
3026 		bremfree(bp);
3027 
3028 		/*
3029 		 * Any size inconsistancy with a dirty buffer or a buffer
3030 		 * with a softupdates dependancy must be resolved.  Resizing
3031 		 * the buffer in such circumstances can lead to problems.
3032 		 *
3033 		 * Dirty or dependant buffers are written synchronously.
3034 		 * Other types of buffers are simply released and
3035 		 * reconstituted as they may be backed by valid, dirty VM
3036 		 * pages (but not marked B_DELWRI).
3037 		 *
3038 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
3039 		 * and may be left over from a prior truncation (and thus
3040 		 * no longer represent the actual EOF point), so we
3041 		 * definitely do not want to B_NOCACHE the backing store.
3042 		 */
3043 		if (size != bp->b_bcount) {
3044 			if (bp->b_flags & B_DELWRI) {
3045 				bp->b_flags |= B_RELBUF;
3046 				bwrite(bp);
3047 			} else if (LIST_FIRST(&bp->b_dep)) {
3048 				bp->b_flags |= B_RELBUF;
3049 				bwrite(bp);
3050 			} else {
3051 				bp->b_flags |= B_RELBUF;
3052 				brelse(bp);
3053 			}
3054 			goto loop;
3055 		}
3056 		KKASSERT(size <= bp->b_kvasize);
3057 		KASSERT(bp->b_loffset != NOOFFSET,
3058 			("getblk: no buffer offset"));
3059 
3060 		/*
3061 		 * A buffer with B_DELWRI set and B_CACHE clear must
3062 		 * be committed before we can return the buffer in
3063 		 * order to prevent the caller from issuing a read
3064 		 * ( due to B_CACHE not being set ) and overwriting
3065 		 * it.
3066 		 *
3067 		 * Most callers, including NFS and FFS, need this to
3068 		 * operate properly either because they assume they
3069 		 * can issue a read if B_CACHE is not set, or because
3070 		 * ( for example ) an uncached B_DELWRI might loop due
3071 		 * to softupdates re-dirtying the buffer.  In the latter
3072 		 * case, B_CACHE is set after the first write completes,
3073 		 * preventing further loops.
3074 		 *
3075 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3076 		 * above while extending the buffer, we cannot allow the
3077 		 * buffer to remain with B_CACHE set after the write
3078 		 * completes or it will represent a corrupt state.  To
3079 		 * deal with this we set B_NOCACHE to scrap the buffer
3080 		 * after the write.
3081 		 *
3082 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3083 		 *     I'm not even sure this state is still possible
3084 		 *     now that getblk() writes out any dirty buffers
3085 		 *     on size changes.
3086 		 *
3087 		 * We might be able to do something fancy, like setting
3088 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3089 		 * so the below call doesn't set B_CACHE, but that gets real
3090 		 * confusing.  This is much easier.
3091 		 */
3092 
3093 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3094 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3095 				"and CACHE clear, b_flags %08x\n",
3096 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
3097 			bp->b_flags |= B_NOCACHE;
3098 			bwrite(bp);
3099 			goto loop;
3100 		}
3101 	} else {
3102 		/*
3103 		 * Buffer is not in-core, create new buffer.  The buffer
3104 		 * returned by getnewbuf() is locked.  Note that the returned
3105 		 * buffer is also considered valid (not marked B_INVAL).
3106 		 *
3107 		 * Calculating the offset for the I/O requires figuring out
3108 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3109 		 * the mount's f_iosize otherwise.  If the vnode does not
3110 		 * have an associated mount we assume that the passed size is
3111 		 * the block size.
3112 		 *
3113 		 * Note that vn_isdisk() cannot be used here since it may
3114 		 * return a failure for numerous reasons.   Note that the
3115 		 * buffer size may be larger then the block size (the caller
3116 		 * will use block numbers with the proper multiple).  Beware
3117 		 * of using any v_* fields which are part of unions.  In
3118 		 * particular, in DragonFly the mount point overloading
3119 		 * mechanism uses the namecache only and the underlying
3120 		 * directory vnode is not a special case.
3121 		 */
3122 		int bsize, maxsize;
3123 
3124 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3125 			bsize = DEV_BSIZE;
3126 		else if (vp->v_mount)
3127 			bsize = vp->v_mount->mnt_stat.f_iosize;
3128 		else
3129 			bsize = size;
3130 
3131 		maxsize = size + (loffset & PAGE_MASK);
3132 		maxsize = imax(maxsize, bsize);
3133 
3134 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3135 		if (bp == NULL) {
3136 			if (slpflags || slptimeo)
3137 				return NULL;
3138 			goto loop;
3139 		}
3140 
3141 		/*
3142 		 * Atomically insert the buffer into the hash, so that it can
3143 		 * be found by findblk().
3144 		 *
3145 		 * If bgetvp() returns non-zero a collision occured, and the
3146 		 * bp will not be associated with the vnode.
3147 		 *
3148 		 * Make sure the translation layer has been cleared.
3149 		 */
3150 		bp->b_loffset = loffset;
3151 		bp->b_bio2.bio_offset = NOOFFSET;
3152 		/* bp->b_bio2.bio_next = NULL; */
3153 
3154 		if (bgetvp(vp, bp, size)) {
3155 			bp->b_flags |= B_INVAL;
3156 			brelse(bp);
3157 			goto loop;
3158 		}
3159 
3160 		/*
3161 		 * All vnode-based buffers must be backed by a VM object.
3162 		 */
3163 		KKASSERT(vp->v_object != NULL);
3164 		bp->b_flags |= B_VMIO;
3165 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3166 
3167 		allocbuf(bp, size);
3168 	}
3169 	KKASSERT(dsched_is_clear_buf_priv(bp));
3170 	return (bp);
3171 }
3172 
3173 /*
3174  * regetblk(bp)
3175  *
3176  * Reacquire a buffer that was previously released to the locked queue,
3177  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3178  * set B_LOCKED (which handles the acquisition race).
3179  *
3180  * To this end, either B_LOCKED must be set or the dependancy list must be
3181  * non-empty.
3182  *
3183  * MPSAFE
3184  */
3185 void
3186 regetblk(struct buf *bp)
3187 {
3188 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3189 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3190 	bremfree(bp);
3191 }
3192 
3193 /*
3194  * geteblk:
3195  *
3196  *	Get an empty, disassociated buffer of given size.  The buffer is
3197  *	initially set to B_INVAL.
3198  *
3199  *	critical section protection is not required for the allocbuf()
3200  *	call because races are impossible here.
3201  *
3202  * MPALMOSTSAFE
3203  */
3204 struct buf *
3205 geteblk(int size)
3206 {
3207 	struct buf *bp;
3208 	int maxsize;
3209 
3210 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3211 
3212 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
3213 		;
3214 	allocbuf(bp, size);
3215 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3216 	KKASSERT(dsched_is_clear_buf_priv(bp));
3217 	return (bp);
3218 }
3219 
3220 
3221 /*
3222  * allocbuf:
3223  *
3224  *	This code constitutes the buffer memory from either anonymous system
3225  *	memory (in the case of non-VMIO operations) or from an associated
3226  *	VM object (in the case of VMIO operations).  This code is able to
3227  *	resize a buffer up or down.
3228  *
3229  *	Note that this code is tricky, and has many complications to resolve
3230  *	deadlock or inconsistant data situations.  Tread lightly!!!
3231  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3232  *	the caller.  Calling this code willy nilly can result in the loss of
3233  *	data.
3234  *
3235  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3236  *	B_CACHE for the non-VMIO case.
3237  *
3238  *	This routine does not need to be called from a critical section but you
3239  *	must own the buffer.
3240  *
3241  * MPSAFE
3242  */
3243 int
3244 allocbuf(struct buf *bp, int size)
3245 {
3246 	int newbsize, mbsize;
3247 	int i;
3248 
3249 	if (BUF_REFCNT(bp) == 0)
3250 		panic("allocbuf: buffer not busy");
3251 
3252 	if (bp->b_kvasize < size)
3253 		panic("allocbuf: buffer too small");
3254 
3255 	if ((bp->b_flags & B_VMIO) == 0) {
3256 		caddr_t origbuf;
3257 		int origbufsize;
3258 		/*
3259 		 * Just get anonymous memory from the kernel.  Don't
3260 		 * mess with B_CACHE.
3261 		 */
3262 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3263 		if (bp->b_flags & B_MALLOC)
3264 			newbsize = mbsize;
3265 		else
3266 			newbsize = round_page(size);
3267 
3268 		if (newbsize < bp->b_bufsize) {
3269 			/*
3270 			 * Malloced buffers are not shrunk
3271 			 */
3272 			if (bp->b_flags & B_MALLOC) {
3273 				if (newbsize) {
3274 					bp->b_bcount = size;
3275 				} else {
3276 					kfree(bp->b_data, M_BIOBUF);
3277 					if (bp->b_bufsize) {
3278 						atomic_subtract_int(&bufmallocspace, bp->b_bufsize);
3279 						bufspacewakeup();
3280 						bp->b_bufsize = 0;
3281 					}
3282 					bp->b_data = bp->b_kvabase;
3283 					bp->b_bcount = 0;
3284 					bp->b_flags &= ~B_MALLOC;
3285 				}
3286 				return 1;
3287 			}
3288 			vm_hold_free_pages(
3289 			    bp,
3290 			    (vm_offset_t) bp->b_data + newbsize,
3291 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3292 		} else if (newbsize > bp->b_bufsize) {
3293 			/*
3294 			 * We only use malloced memory on the first allocation.
3295 			 * and revert to page-allocated memory when the buffer
3296 			 * grows.
3297 			 */
3298 			if ((bufmallocspace < maxbufmallocspace) &&
3299 				(bp->b_bufsize == 0) &&
3300 				(mbsize <= PAGE_SIZE/2)) {
3301 
3302 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3303 				bp->b_bufsize = mbsize;
3304 				bp->b_bcount = size;
3305 				bp->b_flags |= B_MALLOC;
3306 				atomic_add_int(&bufmallocspace, mbsize);
3307 				return 1;
3308 			}
3309 			origbuf = NULL;
3310 			origbufsize = 0;
3311 			/*
3312 			 * If the buffer is growing on its other-than-first
3313 			 * allocation, then we revert to the page-allocation
3314 			 * scheme.
3315 			 */
3316 			if (bp->b_flags & B_MALLOC) {
3317 				origbuf = bp->b_data;
3318 				origbufsize = bp->b_bufsize;
3319 				bp->b_data = bp->b_kvabase;
3320 				if (bp->b_bufsize) {
3321 					atomic_subtract_int(&bufmallocspace,
3322 							    bp->b_bufsize);
3323 					bufspacewakeup();
3324 					bp->b_bufsize = 0;
3325 				}
3326 				bp->b_flags &= ~B_MALLOC;
3327 				newbsize = round_page(newbsize);
3328 			}
3329 			vm_hold_load_pages(
3330 			    bp,
3331 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3332 			    (vm_offset_t) bp->b_data + newbsize);
3333 			if (origbuf) {
3334 				bcopy(origbuf, bp->b_data, origbufsize);
3335 				kfree(origbuf, M_BIOBUF);
3336 			}
3337 		}
3338 	} else {
3339 		vm_page_t m;
3340 		int desiredpages;
3341 
3342 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3343 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3344 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3345 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3346 
3347 		if (bp->b_flags & B_MALLOC)
3348 			panic("allocbuf: VMIO buffer can't be malloced");
3349 		/*
3350 		 * Set B_CACHE initially if buffer is 0 length or will become
3351 		 * 0-length.
3352 		 */
3353 		if (size == 0 || bp->b_bufsize == 0)
3354 			bp->b_flags |= B_CACHE;
3355 
3356 		if (newbsize < bp->b_bufsize) {
3357 			/*
3358 			 * DEV_BSIZE aligned new buffer size is less then the
3359 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3360 			 * if we have to remove any pages.
3361 			 */
3362 			if (desiredpages < bp->b_xio.xio_npages) {
3363 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3364 					/*
3365 					 * the page is not freed here -- it
3366 					 * is the responsibility of
3367 					 * vnode_pager_setsize
3368 					 */
3369 					m = bp->b_xio.xio_pages[i];
3370 					KASSERT(m != bogus_page,
3371 					    ("allocbuf: bogus page found"));
3372 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3373 						;
3374 
3375 					bp->b_xio.xio_pages[i] = NULL;
3376 					vm_page_unwire(m, 0);
3377 				}
3378 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3379 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3380 				bp->b_xio.xio_npages = desiredpages;
3381 			}
3382 		} else if (size > bp->b_bcount) {
3383 			/*
3384 			 * We are growing the buffer, possibly in a
3385 			 * byte-granular fashion.
3386 			 */
3387 			struct vnode *vp;
3388 			vm_object_t obj;
3389 			vm_offset_t toff;
3390 			vm_offset_t tinc;
3391 
3392 			/*
3393 			 * Step 1, bring in the VM pages from the object,
3394 			 * allocating them if necessary.  We must clear
3395 			 * B_CACHE if these pages are not valid for the
3396 			 * range covered by the buffer.
3397 			 *
3398 			 * critical section protection is required to protect
3399 			 * against interrupts unbusying and freeing pages
3400 			 * between our vm_page_lookup() and our
3401 			 * busycheck/wiring call.
3402 			 */
3403 			vp = bp->b_vp;
3404 			obj = vp->v_object;
3405 
3406 			lwkt_gettoken(&vm_token);
3407 			while (bp->b_xio.xio_npages < desiredpages) {
3408 				vm_page_t m;
3409 				vm_pindex_t pi;
3410 
3411 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3412 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3413 					/*
3414 					 * note: must allocate system pages
3415 					 * since blocking here could intefere
3416 					 * with paging I/O, no matter which
3417 					 * process we are.
3418 					 */
3419 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3420 					if (m) {
3421 						vm_page_wire(m);
3422 						vm_page_flag_clear(m, PG_ZERO);
3423 						vm_page_wakeup(m);
3424 						bp->b_flags &= ~B_CACHE;
3425 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3426 						++bp->b_xio.xio_npages;
3427 					}
3428 					continue;
3429 				}
3430 
3431 				/*
3432 				 * We found a page.  If we have to sleep on it,
3433 				 * retry because it might have gotten freed out
3434 				 * from under us.
3435 				 *
3436 				 * We can only test PG_BUSY here.  Blocking on
3437 				 * m->busy might lead to a deadlock:
3438 				 *
3439 				 *  vm_fault->getpages->cluster_read->allocbuf
3440 				 *
3441 				 */
3442 
3443 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3444 					continue;
3445 				vm_page_flag_clear(m, PG_ZERO);
3446 				vm_page_wire(m);
3447 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3448 				++bp->b_xio.xio_npages;
3449 				if (bp->b_act_count < m->act_count)
3450 					bp->b_act_count = m->act_count;
3451 			}
3452 			lwkt_reltoken(&vm_token);
3453 
3454 			/*
3455 			 * Step 2.  We've loaded the pages into the buffer,
3456 			 * we have to figure out if we can still have B_CACHE
3457 			 * set.  Note that B_CACHE is set according to the
3458 			 * byte-granular range ( bcount and size ), not the
3459 			 * aligned range ( newbsize ).
3460 			 *
3461 			 * The VM test is against m->valid, which is DEV_BSIZE
3462 			 * aligned.  Needless to say, the validity of the data
3463 			 * needs to also be DEV_BSIZE aligned.  Note that this
3464 			 * fails with NFS if the server or some other client
3465 			 * extends the file's EOF.  If our buffer is resized,
3466 			 * B_CACHE may remain set! XXX
3467 			 */
3468 
3469 			toff = bp->b_bcount;
3470 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3471 
3472 			while ((bp->b_flags & B_CACHE) && toff < size) {
3473 				vm_pindex_t pi;
3474 
3475 				if (tinc > (size - toff))
3476 					tinc = size - toff;
3477 
3478 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3479 				    PAGE_SHIFT;
3480 
3481 				vfs_buf_test_cache(
3482 				    bp,
3483 				    bp->b_loffset,
3484 				    toff,
3485 				    tinc,
3486 				    bp->b_xio.xio_pages[pi]
3487 				);
3488 				toff += tinc;
3489 				tinc = PAGE_SIZE;
3490 			}
3491 
3492 			/*
3493 			 * Step 3, fixup the KVM pmap.  Remember that
3494 			 * bp->b_data is relative to bp->b_loffset, but
3495 			 * bp->b_loffset may be offset into the first page.
3496 			 */
3497 
3498 			bp->b_data = (caddr_t)
3499 			    trunc_page((vm_offset_t)bp->b_data);
3500 			pmap_qenter(
3501 			    (vm_offset_t)bp->b_data,
3502 			    bp->b_xio.xio_pages,
3503 			    bp->b_xio.xio_npages
3504 			);
3505 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3506 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3507 		}
3508 	}
3509 
3510 	/* adjust space use on already-dirty buffer */
3511 	if (bp->b_flags & B_DELWRI) {
3512 		spin_lock(&bufcspin);
3513 		dirtybufspace += newbsize - bp->b_bufsize;
3514 		if (bp->b_flags & B_HEAVY)
3515 			dirtybufspacehw += newbsize - bp->b_bufsize;
3516 		spin_unlock(&bufcspin);
3517 	}
3518 	if (newbsize < bp->b_bufsize)
3519 		bufspacewakeup();
3520 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3521 	bp->b_bcount = size;		/* requested buffer size	*/
3522 	return 1;
3523 }
3524 
3525 /*
3526  * biowait:
3527  *
3528  *	Wait for buffer I/O completion, returning error status. B_EINTR
3529  *	is converted into an EINTR error but not cleared (since a chain
3530  *	of biowait() calls may occur).
3531  *
3532  *	On return bpdone() will have been called but the buffer will remain
3533  *	locked and will not have been brelse()'d.
3534  *
3535  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3536  *	likely still in progress on return.
3537  *
3538  *	NOTE!  This operation is on a BIO, not a BUF.
3539  *
3540  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3541  *
3542  * MPSAFE
3543  */
3544 static __inline int
3545 _biowait(struct bio *bio, const char *wmesg, int to)
3546 {
3547 	struct buf *bp = bio->bio_buf;
3548 	u_int32_t flags;
3549 	u_int32_t nflags;
3550 	int error;
3551 
3552 	KKASSERT(bio == &bp->b_bio1);
3553 	for (;;) {
3554 		flags = bio->bio_flags;
3555 		if (flags & BIO_DONE)
3556 			break;
3557 		tsleep_interlock(bio, 0);
3558 		nflags = flags | BIO_WANT;
3559 		tsleep_interlock(bio, 0);
3560 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3561 			if (wmesg)
3562 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3563 			else if (bp->b_cmd == BUF_CMD_READ)
3564 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3565 			else
3566 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3567 			if (error) {
3568 				kprintf("tsleep error biowait %d\n", error);
3569 				return (error);
3570 			}
3571 		}
3572 	}
3573 
3574 	/*
3575 	 * Finish up.
3576 	 */
3577 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3578 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3579 	if (bp->b_flags & B_EINTR)
3580 		return (EINTR);
3581 	if (bp->b_flags & B_ERROR)
3582 		return (bp->b_error ? bp->b_error : EIO);
3583 	return (0);
3584 }
3585 
3586 int
3587 biowait(struct bio *bio, const char *wmesg)
3588 {
3589 	return(_biowait(bio, wmesg, 0));
3590 }
3591 
3592 int
3593 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3594 {
3595 	return(_biowait(bio, wmesg, to));
3596 }
3597 
3598 /*
3599  * This associates a tracking count with an I/O.  vn_strategy() and
3600  * dev_dstrategy() do this automatically but there are a few cases
3601  * where a vnode or device layer is bypassed when a block translation
3602  * is cached.  In such cases bio_start_transaction() may be called on
3603  * the bypassed layers so the system gets an I/O in progress indication
3604  * for those higher layers.
3605  */
3606 void
3607 bio_start_transaction(struct bio *bio, struct bio_track *track)
3608 {
3609 	bio->bio_track = track;
3610 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3611 		dsched_new_buf(bio->bio_buf);
3612 	bio_track_ref(track);
3613 }
3614 
3615 /*
3616  * Initiate I/O on a vnode.
3617  *
3618  * SWAPCACHE OPERATION:
3619  *
3620  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3621  *	devfs also uses b_vp for fake buffers so we also have to check
3622  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3623  *	underlying block device.  The swap assignments are related to the
3624  *	buffer cache buffer's b_vp, not the passed vp.
3625  *
3626  *	The passed vp == bp->b_vp only in the case where the strategy call
3627  *	is made on the vp itself for its own buffers (a regular file or
3628  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3629  *	after translating the request to an underlying device.
3630  *
3631  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3632  *	underlying buffer cache buffers.
3633  *
3634  *	We can only deal with page-aligned buffers at the moment, because
3635  *	we can't tell what the real dirty state for pages straddling a buffer
3636  *	are.
3637  *
3638  *	In order to call swap_pager_strategy() we must provide the VM object
3639  *	and base offset for the underlying buffer cache pages so it can find
3640  *	the swap blocks.
3641  */
3642 void
3643 vn_strategy(struct vnode *vp, struct bio *bio)
3644 {
3645 	struct bio_track *track;
3646 	struct buf *bp = bio->bio_buf;
3647 
3648 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3649 
3650 	/*
3651 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3652 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3653 	 * actually occurred.
3654 	 */
3655 	bp->b_flags |= B_IODEBUG;
3656 
3657 	/*
3658 	 * Handle the swap cache intercept.
3659 	 */
3660 	if (vn_cache_strategy(vp, bio))
3661 		return;
3662 
3663 	/*
3664 	 * Otherwise do the operation through the filesystem
3665 	 */
3666         if (bp->b_cmd == BUF_CMD_READ)
3667                 track = &vp->v_track_read;
3668         else
3669                 track = &vp->v_track_write;
3670 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3671 	bio->bio_track = track;
3672 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3673 		dsched_new_buf(bio->bio_buf);
3674 	bio_track_ref(track);
3675         vop_strategy(*vp->v_ops, vp, bio);
3676 }
3677 
3678 static void vn_cache_strategy_callback(struct bio *bio);
3679 
3680 int
3681 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3682 {
3683 	struct buf *bp = bio->bio_buf;
3684 	struct bio *nbio;
3685 	vm_object_t object;
3686 	vm_page_t m;
3687 	int i;
3688 
3689 	/*
3690 	 * Is this buffer cache buffer suitable for reading from
3691 	 * the swap cache?
3692 	 */
3693 	if (vm_swapcache_read_enable == 0 ||
3694 	    bp->b_cmd != BUF_CMD_READ ||
3695 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3696 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3697 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3698 	    (bp->b_bcount & PAGE_MASK) != 0) {
3699 		return(0);
3700 	}
3701 
3702 	/*
3703 	 * Figure out the original VM object (it will match the underlying
3704 	 * VM pages).  Note that swap cached data uses page indices relative
3705 	 * to that object, not relative to bio->bio_offset.
3706 	 */
3707 	if (bp->b_flags & B_CLUSTER)
3708 		object = vp->v_object;
3709 	else
3710 		object = bp->b_vp->v_object;
3711 
3712 	/*
3713 	 * In order to be able to use the swap cache all underlying VM
3714 	 * pages must be marked as such, and we can't have any bogus pages.
3715 	 */
3716 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3717 		m = bp->b_xio.xio_pages[i];
3718 		if ((m->flags & PG_SWAPPED) == 0)
3719 			break;
3720 		if (m == bogus_page)
3721 			break;
3722 	}
3723 
3724 	/*
3725 	 * If we are good then issue the I/O using swap_pager_strategy().
3726 	 */
3727 	if (i == bp->b_xio.xio_npages) {
3728 		m = bp->b_xio.xio_pages[0];
3729 		nbio = push_bio(bio);
3730 		nbio->bio_done = vn_cache_strategy_callback;
3731 		nbio->bio_offset = ptoa(m->pindex);
3732 		KKASSERT(m->object == object);
3733 		swap_pager_strategy(object, nbio);
3734 		return(1);
3735 	}
3736 	return(0);
3737 }
3738 
3739 /*
3740  * This is a bit of a hack but since the vn_cache_strategy() function can
3741  * override a VFS's strategy function we must make sure that the bio, which
3742  * is probably bio2, doesn't leak an unexpected offset value back to the
3743  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3744  * bio went through its own file strategy function and the the bio2 offset
3745  * is a cached disk offset when, in fact, it isn't.
3746  */
3747 static void
3748 vn_cache_strategy_callback(struct bio *bio)
3749 {
3750 	bio->bio_offset = NOOFFSET;
3751 	biodone(pop_bio(bio));
3752 }
3753 
3754 /*
3755  * bpdone:
3756  *
3757  *	Finish I/O on a buffer after all BIOs have been processed.
3758  *	Called when the bio chain is exhausted or by biowait.  If called
3759  *	by biowait, elseit is typically 0.
3760  *
3761  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3762  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3763  *	assuming B_INVAL is clear.
3764  *
3765  *	For the VMIO case, we set B_CACHE if the op was a read and no
3766  *	read error occured, or if the op was a write.  B_CACHE is never
3767  *	set if the buffer is invalid or otherwise uncacheable.
3768  *
3769  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3770  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3771  *	in the biodone routine.
3772  */
3773 void
3774 bpdone(struct buf *bp, int elseit)
3775 {
3776 	buf_cmd_t cmd;
3777 
3778 	KASSERT(BUF_REFCNTNB(bp) > 0,
3779 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3780 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3781 		("biodone: bp %p already done!", bp));
3782 
3783 	/*
3784 	 * No more BIOs are left.  All completion functions have been dealt
3785 	 * with, now we clean up the buffer.
3786 	 */
3787 	cmd = bp->b_cmd;
3788 	bp->b_cmd = BUF_CMD_DONE;
3789 
3790 	/*
3791 	 * Only reads and writes are processed past this point.
3792 	 */
3793 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3794 		if (cmd == BUF_CMD_FREEBLKS)
3795 			bp->b_flags |= B_NOCACHE;
3796 		if (elseit)
3797 			brelse(bp);
3798 		return;
3799 	}
3800 
3801 	/*
3802 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3803 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3804 	 */
3805 	if (LIST_FIRST(&bp->b_dep) != NULL)
3806 		buf_complete(bp);	/* MPSAFE */
3807 
3808 	/*
3809 	 * A failed write must re-dirty the buffer unless B_INVAL
3810 	 * was set.  Only applicable to normal buffers (with VPs).
3811 	 * vinum buffers may not have a vp.
3812 	 */
3813 	if (cmd == BUF_CMD_WRITE &&
3814 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3815 		bp->b_flags &= ~B_NOCACHE;
3816 		if (bp->b_vp)
3817 			bdirty(bp);
3818 	}
3819 
3820 	if (bp->b_flags & B_VMIO) {
3821 		int i;
3822 		vm_ooffset_t foff;
3823 		vm_page_t m;
3824 		vm_object_t obj;
3825 		int iosize;
3826 		struct vnode *vp = bp->b_vp;
3827 
3828 		obj = vp->v_object;
3829 
3830 #if defined(VFS_BIO_DEBUG)
3831 		if (vp->v_auxrefs == 0)
3832 			panic("biodone: zero vnode hold count");
3833 		if ((vp->v_flag & VOBJBUF) == 0)
3834 			panic("biodone: vnode is not setup for merged cache");
3835 #endif
3836 
3837 		foff = bp->b_loffset;
3838 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3839 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3840 
3841 #if defined(VFS_BIO_DEBUG)
3842 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3843 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3844 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3845 		}
3846 #endif
3847 
3848 		/*
3849 		 * Set B_CACHE if the op was a normal read and no error
3850 		 * occured.  B_CACHE is set for writes in the b*write()
3851 		 * routines.
3852 		 */
3853 		iosize = bp->b_bcount - bp->b_resid;
3854 		if (cmd == BUF_CMD_READ &&
3855 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3856 			bp->b_flags |= B_CACHE;
3857 		}
3858 
3859 		lwkt_gettoken(&vm_token);
3860 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3861 			int bogusflag = 0;
3862 			int resid;
3863 
3864 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3865 			if (resid > iosize)
3866 				resid = iosize;
3867 
3868 			/*
3869 			 * cleanup bogus pages, restoring the originals.  Since
3870 			 * the originals should still be wired, we don't have
3871 			 * to worry about interrupt/freeing races destroying
3872 			 * the VM object association.
3873 			 */
3874 			m = bp->b_xio.xio_pages[i];
3875 			if (m == bogus_page) {
3876 				bogusflag = 1;
3877 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3878 				if (m == NULL)
3879 					panic("biodone: page disappeared");
3880 				bp->b_xio.xio_pages[i] = m;
3881 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3882 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3883 			}
3884 #if defined(VFS_BIO_DEBUG)
3885 			if (OFF_TO_IDX(foff) != m->pindex) {
3886 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3887 					"mismatch\n",
3888 					(unsigned long)foff, (long)m->pindex);
3889 			}
3890 #endif
3891 
3892 			/*
3893 			 * In the write case, the valid and clean bits are
3894 			 * already changed correctly (see bdwrite()), so we
3895 			 * only need to do this here in the read case.
3896 			 */
3897 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3898 				vfs_clean_one_page(bp, i, m);
3899 			}
3900 			vm_page_flag_clear(m, PG_ZERO);
3901 
3902 			/*
3903 			 * when debugging new filesystems or buffer I/O
3904 			 * methods, this is the most common error that pops
3905 			 * up.  if you see this, you have not set the page
3906 			 * busy flag correctly!!!
3907 			 */
3908 			if (m->busy == 0) {
3909 				kprintf("biodone: page busy < 0, "
3910 				    "pindex: %d, foff: 0x(%x,%x), "
3911 				    "resid: %d, index: %d\n",
3912 				    (int) m->pindex, (int)(foff >> 32),
3913 						(int) foff & 0xffffffff, resid, i);
3914 				if (!vn_isdisk(vp, NULL))
3915 					kprintf(" iosize: %ld, loffset: %lld, "
3916 						"flags: 0x%08x, npages: %d\n",
3917 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3918 					    (long long)bp->b_loffset,
3919 					    bp->b_flags, bp->b_xio.xio_npages);
3920 				else
3921 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3922 					    (long long)bp->b_loffset,
3923 					    bp->b_flags, bp->b_xio.xio_npages);
3924 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3925 				    m->valid, m->dirty, m->wire_count);
3926 				panic("biodone: page busy < 0");
3927 			}
3928 			vm_page_io_finish(m);
3929 			vm_object_pip_subtract(obj, 1);
3930 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3931 			iosize -= resid;
3932 		}
3933 		bp->b_flags &= ~B_HASBOGUS;
3934 		if (obj)
3935 			vm_object_pip_wakeupn(obj, 0);
3936 		lwkt_reltoken(&vm_token);
3937 	}
3938 
3939 	/*
3940 	 * Finish up by releasing the buffer.  There are no more synchronous
3941 	 * or asynchronous completions, those were handled by bio_done
3942 	 * callbacks.
3943 	 */
3944 	if (elseit) {
3945 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3946 			brelse(bp);
3947 		else
3948 			bqrelse(bp);
3949 	}
3950 }
3951 
3952 /*
3953  * Normal biodone.
3954  */
3955 void
3956 biodone(struct bio *bio)
3957 {
3958 	struct buf *bp = bio->bio_buf;
3959 
3960 	runningbufwakeup(bp);
3961 
3962 	/*
3963 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3964 	 */
3965 	while (bio) {
3966 		biodone_t *done_func;
3967 		struct bio_track *track;
3968 
3969 		/*
3970 		 * BIO tracking.  Most but not all BIOs are tracked.
3971 		 */
3972 		if ((track = bio->bio_track) != NULL) {
3973 			bio_track_rel(track);
3974 			bio->bio_track = NULL;
3975 		}
3976 
3977 		/*
3978 		 * A bio_done function terminates the loop.  The function
3979 		 * will be responsible for any further chaining and/or
3980 		 * buffer management.
3981 		 *
3982 		 * WARNING!  The done function can deallocate the buffer!
3983 		 */
3984 		if ((done_func = bio->bio_done) != NULL) {
3985 			bio->bio_done = NULL;
3986 			done_func(bio);
3987 			return;
3988 		}
3989 		bio = bio->bio_prev;
3990 	}
3991 
3992 	/*
3993 	 * If we've run out of bio's do normal [a]synchronous completion.
3994 	 */
3995 	bpdone(bp, 1);
3996 }
3997 
3998 /*
3999  * Synchronous biodone - this terminates a synchronous BIO.
4000  *
4001  * bpdone() is called with elseit=FALSE, leaving the buffer completed
4002  * but still locked.  The caller must brelse() the buffer after waiting
4003  * for completion.
4004  */
4005 void
4006 biodone_sync(struct bio *bio)
4007 {
4008 	struct buf *bp = bio->bio_buf;
4009 	int flags;
4010 	int nflags;
4011 
4012 	KKASSERT(bio == &bp->b_bio1);
4013 	bpdone(bp, 0);
4014 
4015 	for (;;) {
4016 		flags = bio->bio_flags;
4017 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
4018 
4019 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4020 			if (flags & BIO_WANT)
4021 				wakeup(bio);
4022 			break;
4023 		}
4024 	}
4025 }
4026 
4027 /*
4028  * vfs_unbusy_pages:
4029  *
4030  *	This routine is called in lieu of iodone in the case of
4031  *	incomplete I/O.  This keeps the busy status for pages
4032  *	consistant.
4033  */
4034 void
4035 vfs_unbusy_pages(struct buf *bp)
4036 {
4037 	int i;
4038 
4039 	runningbufwakeup(bp);
4040 
4041 	lwkt_gettoken(&vm_token);
4042 	if (bp->b_flags & B_VMIO) {
4043 		struct vnode *vp = bp->b_vp;
4044 		vm_object_t obj;
4045 
4046 		obj = vp->v_object;
4047 
4048 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4049 			vm_page_t m = bp->b_xio.xio_pages[i];
4050 
4051 			/*
4052 			 * When restoring bogus changes the original pages
4053 			 * should still be wired, so we are in no danger of
4054 			 * losing the object association and do not need
4055 			 * critical section protection particularly.
4056 			 */
4057 			if (m == bogus_page) {
4058 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4059 				if (!m) {
4060 					panic("vfs_unbusy_pages: page missing");
4061 				}
4062 				bp->b_xio.xio_pages[i] = m;
4063 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4064 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4065 			}
4066 			vm_object_pip_subtract(obj, 1);
4067 			vm_page_flag_clear(m, PG_ZERO);
4068 			vm_page_io_finish(m);
4069 		}
4070 		bp->b_flags &= ~B_HASBOGUS;
4071 		vm_object_pip_wakeupn(obj, 0);
4072 	}
4073 	lwkt_reltoken(&vm_token);
4074 }
4075 
4076 /*
4077  * vfs_busy_pages:
4078  *
4079  *	This routine is called before a device strategy routine.
4080  *	It is used to tell the VM system that paging I/O is in
4081  *	progress, and treat the pages associated with the buffer
4082  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4083  *	flag is handled to make sure that the object doesn't become
4084  *	inconsistant.
4085  *
4086  *	Since I/O has not been initiated yet, certain buffer flags
4087  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4088  *	and should be ignored.
4089  *
4090  * MPSAFE
4091  */
4092 void
4093 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4094 {
4095 	int i, bogus;
4096 	struct lwp *lp = curthread->td_lwp;
4097 
4098 	/*
4099 	 * The buffer's I/O command must already be set.  If reading,
4100 	 * B_CACHE must be 0 (double check against callers only doing
4101 	 * I/O when B_CACHE is 0).
4102 	 */
4103 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4104 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4105 
4106 	if (bp->b_flags & B_VMIO) {
4107 		vm_object_t obj;
4108 
4109 		lwkt_gettoken(&vm_token);
4110 
4111 		obj = vp->v_object;
4112 		KASSERT(bp->b_loffset != NOOFFSET,
4113 			("vfs_busy_pages: no buffer offset"));
4114 
4115 		/*
4116 		 * Loop until none of the pages are busy.
4117 		 */
4118 retry:
4119 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4120 			vm_page_t m = bp->b_xio.xio_pages[i];
4121 
4122 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
4123 				goto retry;
4124 		}
4125 
4126 		/*
4127 		 * Setup for I/O, soft-busy the page right now because
4128 		 * the next loop may block.
4129 		 */
4130 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4131 			vm_page_t m = bp->b_xio.xio_pages[i];
4132 
4133 			vm_page_flag_clear(m, PG_ZERO);
4134 			if ((bp->b_flags & B_CLUSTER) == 0) {
4135 				vm_object_pip_add(obj, 1);
4136 				vm_page_io_start(m);
4137 			}
4138 		}
4139 
4140 		/*
4141 		 * Adjust protections for I/O and do bogus-page mapping.
4142 		 * Assume that vm_page_protect() can block (it can block
4143 		 * if VM_PROT_NONE, don't take any chances regardless).
4144 		 *
4145 		 * In particular note that for writes we must incorporate
4146 		 * page dirtyness from the VM system into the buffer's
4147 		 * dirty range.
4148 		 *
4149 		 * For reads we theoretically must incorporate page dirtyness
4150 		 * from the VM system to determine if the page needs bogus
4151 		 * replacement, but we shortcut the test by simply checking
4152 		 * that all m->valid bits are set, indicating that the page
4153 		 * is fully valid and does not need to be re-read.  For any
4154 		 * VM system dirtyness the page will also be fully valid
4155 		 * since it was mapped at one point.
4156 		 */
4157 		bogus = 0;
4158 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4159 			vm_page_t m = bp->b_xio.xio_pages[i];
4160 
4161 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4162 			if (bp->b_cmd == BUF_CMD_WRITE) {
4163 				/*
4164 				 * When readying a vnode-backed buffer for
4165 				 * a write we must zero-fill any invalid
4166 				 * portions of the backing VM pages, mark
4167 				 * it valid and clear related dirty bits.
4168 				 *
4169 				 * vfs_clean_one_page() incorporates any
4170 				 * VM dirtyness and updates the b_dirtyoff
4171 				 * range (after we've made the page RO).
4172 				 *
4173 				 * It is also expected that the pmap modified
4174 				 * bit has already been cleared by the
4175 				 * vm_page_protect().  We may not be able
4176 				 * to clear all dirty bits for a page if it
4177 				 * was also memory mapped (NFS).
4178 				 *
4179 				 * Finally be sure to unassign any swap-cache
4180 				 * backing store as it is now stale.
4181 				 */
4182 				vm_page_protect(m, VM_PROT_READ);
4183 				vfs_clean_one_page(bp, i, m);
4184 				swap_pager_unswapped(m);
4185 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4186 				/*
4187 				 * When readying a vnode-backed buffer for
4188 				 * read we must replace any dirty pages with
4189 				 * a bogus page so dirty data is not destroyed
4190 				 * when filling gaps.
4191 				 *
4192 				 * To avoid testing whether the page is
4193 				 * dirty we instead test that the page was
4194 				 * at some point mapped (m->valid fully
4195 				 * valid) with the understanding that
4196 				 * this also covers the dirty case.
4197 				 */
4198 				bp->b_xio.xio_pages[i] = bogus_page;
4199 				bp->b_flags |= B_HASBOGUS;
4200 				bogus++;
4201 			} else if (m->valid & m->dirty) {
4202 				/*
4203 				 * This case should not occur as partial
4204 				 * dirtyment can only happen if the buffer
4205 				 * is B_CACHE, and this code is not entered
4206 				 * if the buffer is B_CACHE.
4207 				 */
4208 				kprintf("Warning: vfs_busy_pages - page not "
4209 					"fully valid! loff=%jx bpf=%08x "
4210 					"idx=%d val=%02x dir=%02x\n",
4211 					(intmax_t)bp->b_loffset, bp->b_flags,
4212 					i, m->valid, m->dirty);
4213 				vm_page_protect(m, VM_PROT_NONE);
4214 			} else {
4215 				/*
4216 				 * The page is not valid and can be made
4217 				 * part of the read.
4218 				 */
4219 				vm_page_protect(m, VM_PROT_NONE);
4220 			}
4221 		}
4222 		if (bogus) {
4223 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4224 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4225 		}
4226 		lwkt_reltoken(&vm_token);
4227 	}
4228 
4229 	/*
4230 	 * This is the easiest place to put the process accounting for the I/O
4231 	 * for now.
4232 	 */
4233 	if (lp != NULL) {
4234 		if (bp->b_cmd == BUF_CMD_READ)
4235 			lp->lwp_ru.ru_inblock++;
4236 		else
4237 			lp->lwp_ru.ru_oublock++;
4238 	}
4239 }
4240 
4241 /*
4242  * Tell the VM system that the pages associated with this buffer
4243  * are clean.  This is used for delayed writes where the data is
4244  * going to go to disk eventually without additional VM intevention.
4245  *
4246  * NOTE: While we only really need to clean through to b_bcount, we
4247  *	 just go ahead and clean through to b_bufsize.
4248  */
4249 static void
4250 vfs_clean_pages(struct buf *bp)
4251 {
4252 	vm_page_t m;
4253 	int i;
4254 
4255 	if ((bp->b_flags & B_VMIO) == 0)
4256 		return;
4257 
4258 	KASSERT(bp->b_loffset != NOOFFSET,
4259 		("vfs_clean_pages: no buffer offset"));
4260 
4261 	/*
4262 	 * vm_token must be held for vfs_clean_one_page() calls.
4263 	 */
4264 	lwkt_gettoken(&vm_token);
4265 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4266 		m = bp->b_xio.xio_pages[i];
4267 		vfs_clean_one_page(bp, i, m);
4268 	}
4269 	lwkt_reltoken(&vm_token);
4270 }
4271 
4272 /*
4273  * vfs_clean_one_page:
4274  *
4275  *	Set the valid bits and clear the dirty bits in a page within a
4276  *	buffer.  The range is restricted to the buffer's size and the
4277  *	buffer's logical offset might index into the first page.
4278  *
4279  *	The caller has busied or soft-busied the page and it is not mapped,
4280  *	test and incorporate the dirty bits into b_dirtyoff/end before
4281  *	clearing them.  Note that we need to clear the pmap modified bits
4282  *	after determining the the page was dirty, vm_page_set_validclean()
4283  *	does not do it for us.
4284  *
4285  *	This routine is typically called after a read completes (dirty should
4286  *	be zero in that case as we are not called on bogus-replace pages),
4287  *	or before a write is initiated.
4288  *
4289  * NOTE: vm_token must be held by the caller, and vm_page_set_validclean()
4290  *	 currently assumes the vm_token is held.
4291  */
4292 static void
4293 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4294 {
4295 	int bcount;
4296 	int xoff;
4297 	int soff;
4298 	int eoff;
4299 
4300 	/*
4301 	 * Calculate offset range within the page but relative to buffer's
4302 	 * loffset.  loffset might be offset into the first page.
4303 	 */
4304 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4305 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4306 
4307 	if (pageno == 0) {
4308 		soff = xoff;
4309 		eoff = PAGE_SIZE;
4310 	} else {
4311 		soff = (pageno << PAGE_SHIFT);
4312 		eoff = soff + PAGE_SIZE;
4313 	}
4314 	if (eoff > bcount)
4315 		eoff = bcount;
4316 	if (soff >= eoff)
4317 		return;
4318 
4319 	/*
4320 	 * Test dirty bits and adjust b_dirtyoff/end.
4321 	 *
4322 	 * If dirty pages are incorporated into the bp any prior
4323 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4324 	 * caller has not taken into account the new dirty data.
4325 	 *
4326 	 * If the page was memory mapped the dirty bits might go beyond the
4327 	 * end of the buffer, but we can't really make the assumption that
4328 	 * a file EOF straddles the buffer (even though this is the case for
4329 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4330 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4331 	 * This also saves some console spam.
4332 	 *
4333 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4334 	 * NFS can handle huge commits but not huge writes.
4335 	 */
4336 	vm_page_test_dirty(m);
4337 	if (m->dirty) {
4338 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4339 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4340 			if (debug_commit)
4341 			kprintf("Warning: vfs_clean_one_page: bp %p "
4342 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4343 				" cmd %d vd %02x/%02x x/s/e %d %d %d "
4344 				"doff/end %d %d\n",
4345 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4346 				bp->b_flags, bp->b_cmd,
4347 				m->valid, m->dirty, xoff, soff, eoff,
4348 				bp->b_dirtyoff, bp->b_dirtyend);
4349 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4350 			if (debug_commit)
4351 				print_backtrace(-1);
4352 		}
4353 		/*
4354 		 * Only clear the pmap modified bits if ALL the dirty bits
4355 		 * are set, otherwise the system might mis-clear portions
4356 		 * of a page.
4357 		 */
4358 		if (m->dirty == VM_PAGE_BITS_ALL &&
4359 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4360 			pmap_clear_modify(m);
4361 		}
4362 		if (bp->b_dirtyoff > soff - xoff)
4363 			bp->b_dirtyoff = soff - xoff;
4364 		if (bp->b_dirtyend < eoff - xoff)
4365 			bp->b_dirtyend = eoff - xoff;
4366 	}
4367 
4368 	/*
4369 	 * Set related valid bits, clear related dirty bits.
4370 	 * Does not mess with the pmap modified bit.
4371 	 *
4372 	 * WARNING!  We cannot just clear all of m->dirty here as the
4373 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4374 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4375 	 *	     The putpages code can clear m->dirty to 0.
4376 	 *
4377 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4378 	 *	     covers the same space as mapped writable pages the
4379 	 *	     buffer flush might not be able to clear all the dirty
4380 	 *	     bits and still require a putpages from the VM system
4381 	 *	     to finish it off.
4382 	 *
4383 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4384 	 *	     is held.  The page might not be busied (bdwrite() case).
4385 	 */
4386 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4387 }
4388 
4389 /*
4390  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4391  * The page data is assumed to be valid (there is no zeroing here).
4392  */
4393 static void
4394 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4395 {
4396 	int bcount;
4397 	int xoff;
4398 	int soff;
4399 	int eoff;
4400 
4401 	/*
4402 	 * Calculate offset range within the page but relative to buffer's
4403 	 * loffset.  loffset might be offset into the first page.
4404 	 */
4405 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4406 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4407 
4408 	if (pageno == 0) {
4409 		soff = xoff;
4410 		eoff = PAGE_SIZE;
4411 	} else {
4412 		soff = (pageno << PAGE_SHIFT);
4413 		eoff = soff + PAGE_SIZE;
4414 	}
4415 	if (eoff > bcount)
4416 		eoff = bcount;
4417 	if (soff >= eoff)
4418 		return;
4419 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4420 }
4421 
4422 /*
4423  * vfs_bio_clrbuf:
4424  *
4425  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4426  *	to clear B_ERROR and B_INVAL.
4427  *
4428  *	Note that while we only theoretically need to clear through b_bcount,
4429  *	we go ahead and clear through b_bufsize.
4430  */
4431 
4432 void
4433 vfs_bio_clrbuf(struct buf *bp)
4434 {
4435 	int i, mask = 0;
4436 	caddr_t sa, ea;
4437 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4438 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4439 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4440 		    (bp->b_loffset & PAGE_MASK) == 0) {
4441 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4442 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4443 				bp->b_resid = 0;
4444 				return;
4445 			}
4446 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4447 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4448 				bzero(bp->b_data, bp->b_bufsize);
4449 				bp->b_xio.xio_pages[0]->valid |= mask;
4450 				bp->b_resid = 0;
4451 				return;
4452 			}
4453 		}
4454 		sa = bp->b_data;
4455 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4456 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4457 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4458 			ea = (caddr_t)(vm_offset_t)ulmin(
4459 			    (u_long)(vm_offset_t)ea,
4460 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4461 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4462 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4463 				continue;
4464 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4465 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4466 					bzero(sa, ea - sa);
4467 				}
4468 			} else {
4469 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4470 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4471 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4472 						bzero(sa, DEV_BSIZE);
4473 				}
4474 			}
4475 			bp->b_xio.xio_pages[i]->valid |= mask;
4476 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4477 		}
4478 		bp->b_resid = 0;
4479 	} else {
4480 		clrbuf(bp);
4481 	}
4482 }
4483 
4484 /*
4485  * vm_hold_load_pages:
4486  *
4487  *	Load pages into the buffer's address space.  The pages are
4488  *	allocated from the kernel object in order to reduce interference
4489  *	with the any VM paging I/O activity.  The range of loaded
4490  *	pages will be wired.
4491  *
4492  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4493  *	retrieve the full range (to - from) of pages.
4494  *
4495  * MPSAFE
4496  */
4497 void
4498 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4499 {
4500 	vm_offset_t pg;
4501 	vm_page_t p;
4502 	int index;
4503 
4504 	to = round_page(to);
4505 	from = round_page(from);
4506 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4507 
4508 	pg = from;
4509 	while (pg < to) {
4510 		/*
4511 		 * Note: must allocate system pages since blocking here
4512 		 * could intefere with paging I/O, no matter which
4513 		 * process we are.
4514 		 */
4515 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4516 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4517 		if (p) {
4518 			vm_page_wire(p);
4519 			p->valid = VM_PAGE_BITS_ALL;
4520 			vm_page_flag_clear(p, PG_ZERO);
4521 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4522 			bp->b_xio.xio_pages[index] = p;
4523 			vm_page_wakeup(p);
4524 
4525 			pg += PAGE_SIZE;
4526 			++index;
4527 		}
4528 	}
4529 	bp->b_xio.xio_npages = index;
4530 }
4531 
4532 /*
4533  * Allocate pages for a buffer cache buffer.
4534  *
4535  * Under extremely severe memory conditions even allocating out of the
4536  * system reserve can fail.  If this occurs we must allocate out of the
4537  * interrupt reserve to avoid a deadlock with the pageout daemon.
4538  *
4539  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4540  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4541  * against the pageout daemon if pages are not freed from other sources.
4542  *
4543  * MPSAFE
4544  */
4545 static
4546 vm_page_t
4547 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4548 {
4549 	vm_page_t p;
4550 
4551 	/*
4552 	 * Try a normal allocation, allow use of system reserve.
4553 	 */
4554 	lwkt_gettoken(&vm_token);
4555 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4556 	if (p) {
4557 		lwkt_reltoken(&vm_token);
4558 		return(p);
4559 	}
4560 
4561 	/*
4562 	 * The normal allocation failed and we clearly have a page
4563 	 * deficit.  Try to reclaim some clean VM pages directly
4564 	 * from the buffer cache.
4565 	 */
4566 	vm_pageout_deficit += deficit;
4567 	recoverbufpages();
4568 
4569 	/*
4570 	 * We may have blocked, the caller will know what to do if the
4571 	 * page now exists.
4572 	 */
4573 	if (vm_page_lookup(obj, pg)) {
4574 		lwkt_reltoken(&vm_token);
4575 		return(NULL);
4576 	}
4577 
4578 	/*
4579 	 * Allocate and allow use of the interrupt reserve.
4580 	 *
4581 	 * If after all that we still can't allocate a VM page we are
4582 	 * in real trouble, but we slog on anyway hoping that the system
4583 	 * won't deadlock.
4584 	 */
4585 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4586 				   VM_ALLOC_INTERRUPT);
4587 	if (p) {
4588 		if (vm_page_count_severe()) {
4589 			++lowmempgallocs;
4590 			vm_wait(hz / 20 + 1);
4591 		}
4592 	} else {
4593 		kprintf("bio_page_alloc: Memory exhausted during bufcache "
4594 			"page allocation\n");
4595 		++lowmempgfails;
4596 		vm_wait(hz);
4597 	}
4598 	lwkt_reltoken(&vm_token);
4599 	return(p);
4600 }
4601 
4602 /*
4603  * vm_hold_free_pages:
4604  *
4605  *	Return pages associated with the buffer back to the VM system.
4606  *
4607  *	The range of pages underlying the buffer's address space will
4608  *	be unmapped and un-wired.
4609  *
4610  * MPSAFE
4611  */
4612 void
4613 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4614 {
4615 	vm_offset_t pg;
4616 	vm_page_t p;
4617 	int index, newnpages;
4618 
4619 	from = round_page(from);
4620 	to = round_page(to);
4621 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4622 	newnpages = index;
4623 
4624 	lwkt_gettoken(&vm_token);
4625 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4626 		p = bp->b_xio.xio_pages[index];
4627 		if (p && (index < bp->b_xio.xio_npages)) {
4628 			if (p->busy) {
4629 				kprintf("vm_hold_free_pages: doffset: %lld, "
4630 					"loffset: %lld\n",
4631 					(long long)bp->b_bio2.bio_offset,
4632 					(long long)bp->b_loffset);
4633 			}
4634 			bp->b_xio.xio_pages[index] = NULL;
4635 			pmap_kremove(pg);
4636 			vm_page_busy(p);
4637 			vm_page_unwire(p, 0);
4638 			vm_page_free(p);
4639 		}
4640 	}
4641 	bp->b_xio.xio_npages = newnpages;
4642 	lwkt_reltoken(&vm_token);
4643 }
4644 
4645 /*
4646  * vmapbuf:
4647  *
4648  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4649  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4650  *	initialized.
4651  */
4652 int
4653 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4654 {
4655 	caddr_t addr;
4656 	vm_offset_t va;
4657 	vm_page_t m;
4658 	int vmprot;
4659 	int error;
4660 	int pidx;
4661 	int i;
4662 
4663 	/*
4664 	 * bp had better have a command and it better be a pbuf.
4665 	 */
4666 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4667 	KKASSERT(bp->b_flags & B_PAGING);
4668 	KKASSERT(bp->b_kvabase);
4669 
4670 	if (bytes < 0)
4671 		return (-1);
4672 
4673 	/*
4674 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4675 	 */
4676 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4677 	pidx = 0;
4678 
4679 	vmprot = VM_PROT_READ;
4680 	if (bp->b_cmd == BUF_CMD_READ)
4681 		vmprot |= VM_PROT_WRITE;
4682 
4683 	while (addr < udata + bytes) {
4684 		/*
4685 		 * Do the vm_fault if needed; do the copy-on-write thing
4686 		 * when reading stuff off device into memory.
4687 		 *
4688 		 * vm_fault_page*() returns a held VM page.
4689 		 */
4690 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4691 		va = trunc_page(va);
4692 
4693 		m = vm_fault_page_quick(va, vmprot, &error);
4694 		if (m == NULL) {
4695 			for (i = 0; i < pidx; ++i) {
4696 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4697 			    bp->b_xio.xio_pages[i] = NULL;
4698 			}
4699 			return(-1);
4700 		}
4701 		bp->b_xio.xio_pages[pidx] = m;
4702 		addr += PAGE_SIZE;
4703 		++pidx;
4704 	}
4705 
4706 	/*
4707 	 * Map the page array and set the buffer fields to point to
4708 	 * the mapped data buffer.
4709 	 */
4710 	if (pidx > btoc(MAXPHYS))
4711 		panic("vmapbuf: mapped more than MAXPHYS");
4712 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4713 
4714 	bp->b_xio.xio_npages = pidx;
4715 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4716 	bp->b_bcount = bytes;
4717 	bp->b_bufsize = bytes;
4718 	return(0);
4719 }
4720 
4721 /*
4722  * vunmapbuf:
4723  *
4724  *	Free the io map PTEs associated with this IO operation.
4725  *	We also invalidate the TLB entries and restore the original b_addr.
4726  */
4727 void
4728 vunmapbuf(struct buf *bp)
4729 {
4730 	int pidx;
4731 	int npages;
4732 
4733 	KKASSERT(bp->b_flags & B_PAGING);
4734 
4735 	npages = bp->b_xio.xio_npages;
4736 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4737 	for (pidx = 0; pidx < npages; ++pidx) {
4738 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4739 		bp->b_xio.xio_pages[pidx] = NULL;
4740 	}
4741 	bp->b_xio.xio_npages = 0;
4742 	bp->b_data = bp->b_kvabase;
4743 }
4744 
4745 /*
4746  * Scan all buffers in the system and issue the callback.
4747  */
4748 int
4749 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4750 {
4751 	int count = 0;
4752 	int error;
4753 	int n;
4754 
4755 	for (n = 0; n < nbuf; ++n) {
4756 		if ((error = callback(&buf[n], info)) < 0) {
4757 			count = error;
4758 			break;
4759 		}
4760 		count += error;
4761 	}
4762 	return (count);
4763 }
4764 
4765 /*
4766  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4767  * completion to the master buffer.
4768  */
4769 static void
4770 nestiobuf_iodone(struct bio *bio)
4771 {
4772 	struct bio *mbio;
4773 	struct buf *mbp, *bp;
4774 	struct devstat *stats;
4775 	int error;
4776 	int donebytes;
4777 
4778 	bp = bio->bio_buf;
4779 	mbio = bio->bio_caller_info1.ptr;
4780 	stats = bio->bio_caller_info2.ptr;
4781 	mbp = mbio->bio_buf;
4782 
4783 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4784 	KKASSERT(mbp != bp);
4785 
4786 	error = bp->b_error;
4787 	if (bp->b_error == 0 &&
4788 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4789 		/*
4790 		 * Not all got transfered, raise an error. We have no way to
4791 		 * propagate these conditions to mbp.
4792 		 */
4793 		error = EIO;
4794 	}
4795 
4796 	donebytes = bp->b_bufsize;
4797 
4798 	relpbuf(bp, NULL);
4799 
4800 	nestiobuf_done(mbio, donebytes, error, stats);
4801 }
4802 
4803 void
4804 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4805 {
4806 	struct buf *mbp;
4807 
4808 	mbp = mbio->bio_buf;
4809 
4810 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4811 
4812 	/*
4813 	 * If an error occured, propagate it to the master buffer.
4814 	 *
4815 	 * Several biodone()s may wind up running concurrently so
4816 	 * use an atomic op to adjust b_flags.
4817 	 */
4818 	if (error) {
4819 		mbp->b_error = error;
4820 		atomic_set_int(&mbp->b_flags, B_ERROR);
4821 	}
4822 
4823 	/*
4824 	 * Decrement the operations in progress counter and terminate the
4825 	 * I/O if this was the last bit.
4826 	 */
4827 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4828 		mbp->b_resid = 0;
4829 		if (stats)
4830 			devstat_end_transaction_buf(stats, mbp);
4831 		biodone(mbio);
4832 	}
4833 }
4834 
4835 /*
4836  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4837  * the mbio from being biodone()'d while we are still adding sub-bios to
4838  * it.
4839  */
4840 void
4841 nestiobuf_init(struct bio *bio)
4842 {
4843 	bio->bio_driver_info = (void *)1;
4844 }
4845 
4846 /*
4847  * The BIOs added to the nestedio have already been started, remove the
4848  * count that placeheld our mbio and biodone() it if the count would
4849  * transition to 0.
4850  */
4851 void
4852 nestiobuf_start(struct bio *mbio)
4853 {
4854 	struct buf *mbp = mbio->bio_buf;
4855 
4856 	/*
4857 	 * Decrement the operations in progress counter and terminate the
4858 	 * I/O if this was the last bit.
4859 	 */
4860 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4861 		if (mbp->b_flags & B_ERROR)
4862 			mbp->b_resid = mbp->b_bcount;
4863 		else
4864 			mbp->b_resid = 0;
4865 		biodone(mbio);
4866 	}
4867 }
4868 
4869 /*
4870  * Set an intermediate error prior to calling nestiobuf_start()
4871  */
4872 void
4873 nestiobuf_error(struct bio *mbio, int error)
4874 {
4875 	struct buf *mbp = mbio->bio_buf;
4876 
4877 	if (error) {
4878 		mbp->b_error = error;
4879 		atomic_set_int(&mbp->b_flags, B_ERROR);
4880 	}
4881 }
4882 
4883 /*
4884  * nestiobuf_add: setup a "nested" buffer.
4885  *
4886  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4887  * => 'bp' should be a buffer allocated by getiobuf.
4888  * => 'offset' is a byte offset in the master buffer.
4889  * => 'size' is a size in bytes of this nested buffer.
4890  */
4891 void
4892 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4893 {
4894 	struct buf *mbp = mbio->bio_buf;
4895 	struct vnode *vp = mbp->b_vp;
4896 
4897 	KKASSERT(mbp->b_bcount >= offset + size);
4898 
4899 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4900 
4901 	/* kernel needs to own the lock for it to be released in biodone */
4902 	BUF_KERNPROC(bp);
4903 	bp->b_vp = vp;
4904 	bp->b_cmd = mbp->b_cmd;
4905 	bp->b_bio1.bio_done = nestiobuf_iodone;
4906 	bp->b_data = (char *)mbp->b_data + offset;
4907 	bp->b_resid = bp->b_bcount = size;
4908 	bp->b_bufsize = bp->b_bcount;
4909 
4910 	bp->b_bio1.bio_track = NULL;
4911 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4912 	bp->b_bio1.bio_caller_info2.ptr = stats;
4913 }
4914 
4915 /*
4916  * print out statistics from the current status of the buffer pool
4917  * this can be toggeled by the system control option debug.syncprt
4918  */
4919 #ifdef DEBUG
4920 void
4921 vfs_bufstats(void)
4922 {
4923         int i, j, count;
4924         struct buf *bp;
4925         struct bqueues *dp;
4926         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4927         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4928 
4929         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4930                 count = 0;
4931                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4932                         counts[j] = 0;
4933 
4934 		spin_lock(&bufqspin);
4935                 TAILQ_FOREACH(bp, dp, b_freelist) {
4936                         counts[bp->b_bufsize/PAGE_SIZE]++;
4937                         count++;
4938                 }
4939 		spin_unlock(&bufqspin);
4940 
4941                 kprintf("%s: total-%d", bname[i], count);
4942                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4943                         if (counts[j] != 0)
4944                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4945                 kprintf("\n");
4946         }
4947 }
4948 #endif
4949 
4950 #ifdef DDB
4951 
4952 DB_SHOW_COMMAND(buffer, db_show_buffer)
4953 {
4954 	/* get args */
4955 	struct buf *bp = (struct buf *)addr;
4956 
4957 	if (!have_addr) {
4958 		db_printf("usage: show buffer <addr>\n");
4959 		return;
4960 	}
4961 
4962 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4963 	db_printf("b_cmd = %d\n", bp->b_cmd);
4964 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4965 		  "b_resid = %d\n, b_data = %p, "
4966 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4967 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4968 		  bp->b_data,
4969 		  (long long)bp->b_bio2.bio_offset,
4970 		  (long long)(bp->b_bio2.bio_next ?
4971 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4972 	if (bp->b_xio.xio_npages) {
4973 		int i;
4974 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4975 			bp->b_xio.xio_npages);
4976 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4977 			vm_page_t m;
4978 			m = bp->b_xio.xio_pages[i];
4979 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4980 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4981 			if ((i + 1) < bp->b_xio.xio_npages)
4982 				db_printf(",");
4983 		}
4984 		db_printf("\n");
4985 	}
4986 }
4987 #endif /* DDB */
4988