1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/devicestat.h> 36 #include <sys/eventhandler.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mount.h> 40 #include <sys/kernel.h> 41 #include <sys/kthread.h> 42 #include <sys/proc.h> 43 #include <sys/reboot.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 #include <sys/dsched.h> 49 #include <sys/proc.h> 50 #include <vm/vm.h> 51 #include <vm/vm_param.h> 52 #include <vm/vm_kern.h> 53 #include <vm/vm_pageout.h> 54 #include <vm/vm_page.h> 55 #include <vm/vm_object.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_pager.h> 59 #include <vm/swap_pager.h> 60 61 #include <sys/buf2.h> 62 #include <sys/thread2.h> 63 #include <sys/spinlock2.h> 64 #include <sys/mplock2.h> 65 #include <vm/vm_page2.h> 66 67 #include "opt_ddb.h" 68 #ifdef DDB 69 #include <ddb/ddb.h> 70 #endif 71 72 /* 73 * Buffer queues. 74 */ 75 enum bufq_type { 76 BQUEUE_NONE, /* not on any queue */ 77 BQUEUE_LOCKED, /* locked buffers */ 78 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 79 BQUEUE_DIRTY, /* B_DELWRI buffers */ 80 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 81 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 82 BQUEUE_EMPTY, /* empty buffer headers */ 83 84 BUFFER_QUEUES /* number of buffer queues */ 85 }; 86 87 typedef enum bufq_type bufq_type_t; 88 89 #define BD_WAKE_SIZE 16384 90 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 91 92 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 93 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin); 94 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin); 95 96 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 97 98 struct buf *buf; /* buffer header pool */ 99 100 static void vfs_clean_pages(struct buf *bp); 101 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 102 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m); 103 static void vfs_vmio_release(struct buf *bp); 104 static int flushbufqueues(bufq_type_t q); 105 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 106 107 static void bd_signal(int totalspace); 108 static void buf_daemon(void); 109 static void buf_daemon_hw(void); 110 111 /* 112 * bogus page -- for I/O to/from partially complete buffers 113 * this is a temporary solution to the problem, but it is not 114 * really that bad. it would be better to split the buffer 115 * for input in the case of buffers partially already in memory, 116 * but the code is intricate enough already. 117 */ 118 vm_page_t bogus_page; 119 120 /* 121 * These are all static, but make the ones we export globals so we do 122 * not need to use compiler magic. 123 */ 124 int bufspace; /* locked by buffer_map */ 125 int maxbufspace; 126 static int bufmallocspace; /* atomic ops */ 127 int maxbufmallocspace, lobufspace, hibufspace; 128 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 129 static int lorunningspace; 130 static int hirunningspace; 131 static int runningbufreq; /* locked by bufcspin */ 132 static int dirtybufspace; /* locked by bufcspin */ 133 static int dirtybufcount; /* locked by bufcspin */ 134 static int dirtybufspacehw; /* locked by bufcspin */ 135 static int dirtybufcounthw; /* locked by bufcspin */ 136 static int runningbufspace; /* locked by bufcspin */ 137 static int runningbufcount; /* locked by bufcspin */ 138 int lodirtybufspace; 139 int hidirtybufspace; 140 static int getnewbufcalls; 141 static int getnewbufrestarts; 142 static int recoverbufcalls; 143 static int needsbuffer; /* locked by bufcspin */ 144 static int bd_request; /* locked by bufcspin */ 145 static int bd_request_hw; /* locked by bufcspin */ 146 static u_int bd_wake_ary[BD_WAKE_SIZE]; 147 static u_int bd_wake_index; 148 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */ 149 static int debug_commit; 150 151 static struct thread *bufdaemon_td; 152 static struct thread *bufdaemonhw_td; 153 static u_int lowmempgallocs; 154 static u_int lowmempgfails; 155 156 /* 157 * Sysctls for operational control of the buffer cache. 158 */ 159 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 160 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 161 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 162 "High watermark used to trigger explicit flushing of dirty buffers"); 163 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 164 "Minimum amount of buffer space required for active I/O"); 165 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 166 "Maximum amount of buffer space to usable for active I/O"); 167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0, 168 "Page allocations done during periods of very low free memory"); 169 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0, 170 "Page allocations which failed during periods of very low free memory"); 171 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0, 172 "Recycle pages to active or inactive queue transition pt 0-64"); 173 /* 174 * Sysctls determining current state of the buffer cache. 175 */ 176 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 177 "Total number of buffers in buffer cache"); 178 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 179 "Pending bytes of dirty buffers (all)"); 180 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 181 "Pending bytes of dirty buffers (heavy weight)"); 182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 183 "Pending number of dirty buffers"); 184 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 185 "Pending number of dirty buffers (heavy weight)"); 186 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 187 "I/O bytes currently in progress due to asynchronous writes"); 188 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 189 "I/O buffers currently in progress due to asynchronous writes"); 190 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 191 "Hard limit on maximum amount of memory usable for buffer space"); 192 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 193 "Soft limit on maximum amount of memory usable for buffer space"); 194 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 195 "Minimum amount of memory to reserve for system buffer space"); 196 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 197 "Amount of memory available for buffers"); 198 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 199 0, "Maximum amount of memory reserved for buffers using malloc"); 200 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 201 "Amount of memory left for buffers using malloc-scheme"); 202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 203 "New buffer header acquisition requests"); 204 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 205 0, "New buffer header acquisition restarts"); 206 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 207 "Recover VM space in an emergency"); 208 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 209 "Buffer acquisition restarts due to fragmented buffer map"); 210 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 211 "Amount of time KVA space was deallocated in an arbitrary buffer"); 212 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 213 "Amount of time buffer re-use operations were successful"); 214 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, ""); 215 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 216 "sizeof(struct buf)"); 217 218 char *buf_wmesg = BUF_WMESG; 219 220 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 221 #define VFS_BIO_NEED_UNUSED02 0x02 222 #define VFS_BIO_NEED_UNUSED04 0x04 223 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 224 225 /* 226 * bufspacewakeup: 227 * 228 * Called when buffer space is potentially available for recovery. 229 * getnewbuf() will block on this flag when it is unable to free 230 * sufficient buffer space. Buffer space becomes recoverable when 231 * bp's get placed back in the queues. 232 */ 233 static __inline void 234 bufspacewakeup(void) 235 { 236 /* 237 * If someone is waiting for BUF space, wake them up. Even 238 * though we haven't freed the kva space yet, the waiting 239 * process will be able to now. 240 */ 241 spin_lock(&bufcspin); 242 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 243 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 244 spin_unlock(&bufcspin); 245 wakeup(&needsbuffer); 246 } else { 247 spin_unlock(&bufcspin); 248 } 249 } 250 251 /* 252 * runningbufwakeup: 253 * 254 * Accounting for I/O in progress. 255 * 256 */ 257 static __inline void 258 runningbufwakeup(struct buf *bp) 259 { 260 int totalspace; 261 int limit; 262 263 if ((totalspace = bp->b_runningbufspace) != 0) { 264 spin_lock(&bufcspin); 265 runningbufspace -= totalspace; 266 --runningbufcount; 267 bp->b_runningbufspace = 0; 268 269 /* 270 * see waitrunningbufspace() for limit test. 271 */ 272 limit = hirunningspace * 4 / 6; 273 if (runningbufreq && runningbufspace <= limit) { 274 runningbufreq = 0; 275 spin_unlock(&bufcspin); 276 wakeup(&runningbufreq); 277 } else { 278 spin_unlock(&bufcspin); 279 } 280 bd_signal(totalspace); 281 } 282 } 283 284 /* 285 * bufcountwakeup: 286 * 287 * Called when a buffer has been added to one of the free queues to 288 * account for the buffer and to wakeup anyone waiting for free buffers. 289 * This typically occurs when large amounts of metadata are being handled 290 * by the buffer cache ( else buffer space runs out first, usually ). 291 * 292 * MPSAFE 293 */ 294 static __inline void 295 bufcountwakeup(void) 296 { 297 spin_lock(&bufcspin); 298 if (needsbuffer) { 299 needsbuffer &= ~VFS_BIO_NEED_ANY; 300 spin_unlock(&bufcspin); 301 wakeup(&needsbuffer); 302 } else { 303 spin_unlock(&bufcspin); 304 } 305 } 306 307 /* 308 * waitrunningbufspace() 309 * 310 * Wait for the amount of running I/O to drop to hirunningspace * 4 / 6. 311 * This is the point where write bursting stops so we don't want to wait 312 * for the running amount to drop below it (at least if we still want bioq 313 * to burst writes). 314 * 315 * The caller may be using this function to block in a tight loop, we 316 * must block while runningbufspace is greater then or equal to 317 * hirunningspace * 4 / 6. 318 * 319 * And even with that it may not be enough, due to the presence of 320 * B_LOCKED dirty buffers, so also wait for at least one running buffer 321 * to complete. 322 */ 323 void 324 waitrunningbufspace(void) 325 { 326 int limit = hirunningspace * 4 / 6; 327 int dummy; 328 329 spin_lock(&bufcspin); 330 if (runningbufspace > limit) { 331 while (runningbufspace > limit) { 332 ++runningbufreq; 333 ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0); 334 } 335 spin_unlock(&bufcspin); 336 } else if (runningbufspace > limit / 2) { 337 ++runningbufreq; 338 spin_unlock(&bufcspin); 339 tsleep(&dummy, 0, "wdrn2", 1); 340 } else { 341 spin_unlock(&bufcspin); 342 } 343 } 344 345 /* 346 * buf_dirty_count_severe: 347 * 348 * Return true if we have too many dirty buffers. 349 */ 350 int 351 buf_dirty_count_severe(void) 352 { 353 return (runningbufspace + dirtybufspace >= hidirtybufspace || 354 dirtybufcount >= nbuf / 2); 355 } 356 357 /* 358 * Return true if the amount of running I/O is severe and BIOQ should 359 * start bursting. 360 */ 361 int 362 buf_runningbufspace_severe(void) 363 { 364 return (runningbufspace >= hirunningspace * 4 / 6); 365 } 366 367 /* 368 * vfs_buf_test_cache: 369 * 370 * Called when a buffer is extended. This function clears the B_CACHE 371 * bit if the newly extended portion of the buffer does not contain 372 * valid data. 373 * 374 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 375 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 376 * them while a clean buffer was present. 377 */ 378 static __inline__ 379 void 380 vfs_buf_test_cache(struct buf *bp, 381 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 382 vm_page_t m) 383 { 384 if (bp->b_flags & B_CACHE) { 385 int base = (foff + off) & PAGE_MASK; 386 if (vm_page_is_valid(m, base, size) == 0) 387 bp->b_flags &= ~B_CACHE; 388 } 389 } 390 391 /* 392 * bd_speedup() 393 * 394 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 395 * low water mark. 396 * 397 * MPSAFE 398 */ 399 static __inline__ 400 void 401 bd_speedup(void) 402 { 403 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 404 return; 405 406 if (bd_request == 0 && 407 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 408 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 409 spin_lock(&bufcspin); 410 bd_request = 1; 411 spin_unlock(&bufcspin); 412 wakeup(&bd_request); 413 } 414 if (bd_request_hw == 0 && 415 (dirtybufspacehw > lodirtybufspace / 2 || 416 dirtybufcounthw >= nbuf / 2)) { 417 spin_lock(&bufcspin); 418 bd_request_hw = 1; 419 spin_unlock(&bufcspin); 420 wakeup(&bd_request_hw); 421 } 422 } 423 424 /* 425 * bd_heatup() 426 * 427 * Get the buf_daemon heated up when the number of running and dirty 428 * buffers exceeds the mid-point. 429 * 430 * Return the total number of dirty bytes past the second mid point 431 * as a measure of how much excess dirty data there is in the system. 432 * 433 * MPSAFE 434 */ 435 int 436 bd_heatup(void) 437 { 438 int mid1; 439 int mid2; 440 int totalspace; 441 442 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 443 444 totalspace = runningbufspace + dirtybufspace; 445 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 446 bd_speedup(); 447 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 448 if (totalspace >= mid2) 449 return(totalspace - mid2); 450 } 451 return(0); 452 } 453 454 /* 455 * bd_wait() 456 * 457 * Wait for the buffer cache to flush (totalspace) bytes worth of 458 * buffers, then return. 459 * 460 * Regardless this function blocks while the number of dirty buffers 461 * exceeds hidirtybufspace. 462 * 463 * MPSAFE 464 */ 465 void 466 bd_wait(int totalspace) 467 { 468 u_int i; 469 int count; 470 471 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 472 return; 473 474 while (totalspace > 0) { 475 bd_heatup(); 476 if (totalspace > runningbufspace + dirtybufspace) 477 totalspace = runningbufspace + dirtybufspace; 478 count = totalspace / BKVASIZE; 479 if (count >= BD_WAKE_SIZE) 480 count = BD_WAKE_SIZE - 1; 481 482 spin_lock(&bufcspin); 483 i = (bd_wake_index + count) & BD_WAKE_MASK; 484 ++bd_wake_ary[i]; 485 486 /* 487 * This is not a strict interlock, so we play a bit loose 488 * with locking access to dirtybufspace* 489 */ 490 tsleep_interlock(&bd_wake_ary[i], 0); 491 spin_unlock(&bufcspin); 492 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 493 494 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 495 } 496 } 497 498 /* 499 * bd_signal() 500 * 501 * This function is called whenever runningbufspace or dirtybufspace 502 * is reduced. Track threads waiting for run+dirty buffer I/O 503 * complete. 504 * 505 * MPSAFE 506 */ 507 static void 508 bd_signal(int totalspace) 509 { 510 u_int i; 511 512 if (totalspace > 0) { 513 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 514 totalspace = BKVASIZE * BD_WAKE_SIZE; 515 spin_lock(&bufcspin); 516 while (totalspace > 0) { 517 i = bd_wake_index++; 518 i &= BD_WAKE_MASK; 519 if (bd_wake_ary[i]) { 520 bd_wake_ary[i] = 0; 521 spin_unlock(&bufcspin); 522 wakeup(&bd_wake_ary[i]); 523 spin_lock(&bufcspin); 524 } 525 totalspace -= BKVASIZE; 526 } 527 spin_unlock(&bufcspin); 528 } 529 } 530 531 /* 532 * BIO tracking support routines. 533 * 534 * Release a ref on a bio_track. Wakeup requests are atomically released 535 * along with the last reference so bk_active will never wind up set to 536 * only 0x80000000. 537 * 538 * MPSAFE 539 */ 540 static 541 void 542 bio_track_rel(struct bio_track *track) 543 { 544 int active; 545 int desired; 546 547 /* 548 * Shortcut 549 */ 550 active = track->bk_active; 551 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 552 return; 553 554 /* 555 * Full-on. Note that the wait flag is only atomically released on 556 * the 1->0 count transition. 557 * 558 * We check for a negative count transition using bit 30 since bit 31 559 * has a different meaning. 560 */ 561 for (;;) { 562 desired = (active & 0x7FFFFFFF) - 1; 563 if (desired) 564 desired |= active & 0x80000000; 565 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 566 if (desired & 0x40000000) 567 panic("bio_track_rel: bad count: %p\n", track); 568 if (active & 0x80000000) 569 wakeup(track); 570 break; 571 } 572 active = track->bk_active; 573 } 574 } 575 576 /* 577 * Wait for the tracking count to reach 0. 578 * 579 * Use atomic ops such that the wait flag is only set atomically when 580 * bk_active is non-zero. 581 * 582 * MPSAFE 583 */ 584 int 585 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 586 { 587 int active; 588 int desired; 589 int error; 590 591 /* 592 * Shortcut 593 */ 594 if (track->bk_active == 0) 595 return(0); 596 597 /* 598 * Full-on. Note that the wait flag may only be atomically set if 599 * the active count is non-zero. 600 * 601 * NOTE: We cannot optimize active == desired since a wakeup could 602 * clear active prior to our tsleep_interlock(). 603 */ 604 error = 0; 605 while ((active = track->bk_active) != 0) { 606 cpu_ccfence(); 607 desired = active | 0x80000000; 608 tsleep_interlock(track, slp_flags); 609 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 610 error = tsleep(track, slp_flags | PINTERLOCKED, 611 "trwait", slp_timo); 612 if (error) 613 break; 614 } 615 } 616 return (error); 617 } 618 619 /* 620 * bufinit: 621 * 622 * Load time initialisation of the buffer cache, called from machine 623 * dependant initialization code. 624 */ 625 void 626 bufinit(void) 627 { 628 struct buf *bp; 629 vm_offset_t bogus_offset; 630 int i; 631 632 /* next, make a null set of free lists */ 633 for (i = 0; i < BUFFER_QUEUES; i++) 634 TAILQ_INIT(&bufqueues[i]); 635 636 /* finally, initialize each buffer header and stick on empty q */ 637 for (i = 0; i < nbuf; i++) { 638 bp = &buf[i]; 639 bzero(bp, sizeof *bp); 640 bp->b_flags = B_INVAL; /* we're just an empty header */ 641 bp->b_cmd = BUF_CMD_DONE; 642 bp->b_qindex = BQUEUE_EMPTY; 643 initbufbio(bp); 644 xio_init(&bp->b_xio); 645 buf_dep_init(bp); 646 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 647 } 648 649 /* 650 * maxbufspace is the absolute maximum amount of buffer space we are 651 * allowed to reserve in KVM and in real terms. The absolute maximum 652 * is nominally used by buf_daemon. hibufspace is the nominal maximum 653 * used by most other processes. The differential is required to 654 * ensure that buf_daemon is able to run when other processes might 655 * be blocked waiting for buffer space. 656 * 657 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 658 * this may result in KVM fragmentation which is not handled optimally 659 * by the system. 660 */ 661 maxbufspace = nbuf * BKVASIZE; 662 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 663 lobufspace = hibufspace - MAXBSIZE; 664 665 lorunningspace = 512 * 1024; 666 /* hirunningspace -- see below */ 667 668 /* 669 * Limit the amount of malloc memory since it is wired permanently 670 * into the kernel space. Even though this is accounted for in 671 * the buffer allocation, we don't want the malloced region to grow 672 * uncontrolled. The malloc scheme improves memory utilization 673 * significantly on average (small) directories. 674 */ 675 maxbufmallocspace = hibufspace / 20; 676 677 /* 678 * Reduce the chance of a deadlock occuring by limiting the number 679 * of delayed-write dirty buffers we allow to stack up. 680 * 681 * We don't want too much actually queued to the device at once 682 * (XXX this needs to be per-mount!), because the buffers will 683 * wind up locked for a very long period of time while the I/O 684 * drains. 685 */ 686 hidirtybufspace = hibufspace / 2; /* dirty + running */ 687 hirunningspace = hibufspace / 16; /* locked & queued to device */ 688 if (hirunningspace < 1024 * 1024) 689 hirunningspace = 1024 * 1024; 690 691 dirtybufspace = 0; 692 dirtybufspacehw = 0; 693 694 lodirtybufspace = hidirtybufspace / 2; 695 696 /* 697 * Maximum number of async ops initiated per buf_daemon loop. This is 698 * somewhat of a hack at the moment, we really need to limit ourselves 699 * based on the number of bytes of I/O in-transit that were initiated 700 * from buf_daemon. 701 */ 702 703 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 704 bogus_page = vm_page_alloc(&kernel_object, 705 (bogus_offset >> PAGE_SHIFT), 706 VM_ALLOC_NORMAL); 707 vmstats.v_wire_count++; 708 709 } 710 711 /* 712 * Initialize the embedded bio structures, typically used by 713 * deprecated code which tries to allocate its own struct bufs. 714 */ 715 void 716 initbufbio(struct buf *bp) 717 { 718 bp->b_bio1.bio_buf = bp; 719 bp->b_bio1.bio_prev = NULL; 720 bp->b_bio1.bio_offset = NOOFFSET; 721 bp->b_bio1.bio_next = &bp->b_bio2; 722 bp->b_bio1.bio_done = NULL; 723 bp->b_bio1.bio_flags = 0; 724 725 bp->b_bio2.bio_buf = bp; 726 bp->b_bio2.bio_prev = &bp->b_bio1; 727 bp->b_bio2.bio_offset = NOOFFSET; 728 bp->b_bio2.bio_next = NULL; 729 bp->b_bio2.bio_done = NULL; 730 bp->b_bio2.bio_flags = 0; 731 732 BUF_LOCKINIT(bp); 733 } 734 735 /* 736 * Reinitialize the embedded bio structures as well as any additional 737 * translation cache layers. 738 */ 739 void 740 reinitbufbio(struct buf *bp) 741 { 742 struct bio *bio; 743 744 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 745 bio->bio_done = NULL; 746 bio->bio_offset = NOOFFSET; 747 } 748 } 749 750 /* 751 * Undo the effects of an initbufbio(). 752 */ 753 void 754 uninitbufbio(struct buf *bp) 755 { 756 dsched_exit_buf(bp); 757 BUF_LOCKFREE(bp); 758 } 759 760 /* 761 * Push another BIO layer onto an existing BIO and return it. The new 762 * BIO layer may already exist, holding cached translation data. 763 */ 764 struct bio * 765 push_bio(struct bio *bio) 766 { 767 struct bio *nbio; 768 769 if ((nbio = bio->bio_next) == NULL) { 770 int index = bio - &bio->bio_buf->b_bio_array[0]; 771 if (index >= NBUF_BIO - 1) { 772 panic("push_bio: too many layers bp %p\n", 773 bio->bio_buf); 774 } 775 nbio = &bio->bio_buf->b_bio_array[index + 1]; 776 bio->bio_next = nbio; 777 nbio->bio_prev = bio; 778 nbio->bio_buf = bio->bio_buf; 779 nbio->bio_offset = NOOFFSET; 780 nbio->bio_done = NULL; 781 nbio->bio_next = NULL; 782 } 783 KKASSERT(nbio->bio_done == NULL); 784 return(nbio); 785 } 786 787 /* 788 * Pop a BIO translation layer, returning the previous layer. The 789 * must have been previously pushed. 790 */ 791 struct bio * 792 pop_bio(struct bio *bio) 793 { 794 return(bio->bio_prev); 795 } 796 797 void 798 clearbiocache(struct bio *bio) 799 { 800 while (bio) { 801 bio->bio_offset = NOOFFSET; 802 bio = bio->bio_next; 803 } 804 } 805 806 /* 807 * bfreekva: 808 * 809 * Free the KVA allocation for buffer 'bp'. 810 * 811 * Must be called from a critical section as this is the only locking for 812 * buffer_map. 813 * 814 * Since this call frees up buffer space, we call bufspacewakeup(). 815 * 816 * MPALMOSTSAFE 817 */ 818 static void 819 bfreekva(struct buf *bp) 820 { 821 int count; 822 823 if (bp->b_kvasize) { 824 ++buffreekvacnt; 825 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 826 vm_map_lock(&buffer_map); 827 bufspace -= bp->b_kvasize; 828 vm_map_delete(&buffer_map, 829 (vm_offset_t) bp->b_kvabase, 830 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 831 &count 832 ); 833 vm_map_unlock(&buffer_map); 834 vm_map_entry_release(count); 835 bp->b_kvasize = 0; 836 bp->b_kvabase = NULL; 837 bufspacewakeup(); 838 } 839 } 840 841 /* 842 * bremfree: 843 * 844 * Remove the buffer from the appropriate free list. 845 */ 846 static __inline void 847 _bremfree(struct buf *bp) 848 { 849 if (bp->b_qindex != BQUEUE_NONE) { 850 KASSERT(BUF_REFCNTNB(bp) == 1, 851 ("bremfree: bp %p not locked",bp)); 852 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 853 bp->b_qindex = BQUEUE_NONE; 854 } else { 855 if (BUF_REFCNTNB(bp) <= 1) 856 panic("bremfree: removing a buffer not on a queue"); 857 } 858 } 859 860 void 861 bremfree(struct buf *bp) 862 { 863 spin_lock(&bufqspin); 864 _bremfree(bp); 865 spin_unlock(&bufqspin); 866 } 867 868 static void 869 bremfree_locked(struct buf *bp) 870 { 871 _bremfree(bp); 872 } 873 874 /* 875 * bread: 876 * 877 * Get a buffer with the specified data. Look in the cache first. We 878 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 879 * is set, the buffer is valid and we do not have to do anything ( see 880 * getblk() ). 881 * 882 * MPALMOSTSAFE 883 */ 884 int 885 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 886 { 887 struct buf *bp; 888 889 bp = getblk(vp, loffset, size, 0, 0); 890 *bpp = bp; 891 892 /* if not found in cache, do some I/O */ 893 if ((bp->b_flags & B_CACHE) == 0) { 894 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 895 bp->b_cmd = BUF_CMD_READ; 896 bp->b_bio1.bio_done = biodone_sync; 897 bp->b_bio1.bio_flags |= BIO_SYNC; 898 vfs_busy_pages(vp, bp); 899 vn_strategy(vp, &bp->b_bio1); 900 return (biowait(&bp->b_bio1, "biord")); 901 } 902 return (0); 903 } 904 905 /* 906 * breadn: 907 * 908 * Operates like bread, but also starts asynchronous I/O on 909 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 910 * to initiating I/O . If B_CACHE is set, the buffer is valid 911 * and we do not have to do anything. 912 * 913 * MPALMOSTSAFE 914 */ 915 int 916 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 917 int *rabsize, int cnt, struct buf **bpp) 918 { 919 struct buf *bp, *rabp; 920 int i; 921 int rv = 0, readwait = 0; 922 923 *bpp = bp = getblk(vp, loffset, size, 0, 0); 924 925 /* if not found in cache, do some I/O */ 926 if ((bp->b_flags & B_CACHE) == 0) { 927 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 928 bp->b_cmd = BUF_CMD_READ; 929 bp->b_bio1.bio_done = biodone_sync; 930 bp->b_bio1.bio_flags |= BIO_SYNC; 931 vfs_busy_pages(vp, bp); 932 vn_strategy(vp, &bp->b_bio1); 933 ++readwait; 934 } 935 936 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 937 if (inmem(vp, *raoffset)) 938 continue; 939 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 940 941 if ((rabp->b_flags & B_CACHE) == 0) { 942 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 943 rabp->b_cmd = BUF_CMD_READ; 944 vfs_busy_pages(vp, rabp); 945 BUF_KERNPROC(rabp); 946 vn_strategy(vp, &rabp->b_bio1); 947 } else { 948 brelse(rabp); 949 } 950 } 951 if (readwait) 952 rv = biowait(&bp->b_bio1, "biord"); 953 return (rv); 954 } 955 956 /* 957 * bwrite: 958 * 959 * Synchronous write, waits for completion. 960 * 961 * Write, release buffer on completion. (Done by iodone 962 * if async). Do not bother writing anything if the buffer 963 * is invalid. 964 * 965 * Note that we set B_CACHE here, indicating that buffer is 966 * fully valid and thus cacheable. This is true even of NFS 967 * now so we set it generally. This could be set either here 968 * or in biodone() since the I/O is synchronous. We put it 969 * here. 970 */ 971 int 972 bwrite(struct buf *bp) 973 { 974 int error; 975 976 if (bp->b_flags & B_INVAL) { 977 brelse(bp); 978 return (0); 979 } 980 if (BUF_REFCNTNB(bp) == 0) 981 panic("bwrite: buffer is not busy???"); 982 983 /* Mark the buffer clean */ 984 bundirty(bp); 985 986 bp->b_flags &= ~(B_ERROR | B_EINTR); 987 bp->b_flags |= B_CACHE; 988 bp->b_cmd = BUF_CMD_WRITE; 989 bp->b_bio1.bio_done = biodone_sync; 990 bp->b_bio1.bio_flags |= BIO_SYNC; 991 vfs_busy_pages(bp->b_vp, bp); 992 993 /* 994 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 995 * valid for vnode-backed buffers. 996 */ 997 bsetrunningbufspace(bp, bp->b_bufsize); 998 vn_strategy(bp->b_vp, &bp->b_bio1); 999 error = biowait(&bp->b_bio1, "biows"); 1000 brelse(bp); 1001 1002 return (error); 1003 } 1004 1005 /* 1006 * bawrite: 1007 * 1008 * Asynchronous write. Start output on a buffer, but do not wait for 1009 * it to complete. The buffer is released when the output completes. 1010 * 1011 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1012 * B_INVAL buffers. Not us. 1013 */ 1014 void 1015 bawrite(struct buf *bp) 1016 { 1017 if (bp->b_flags & B_INVAL) { 1018 brelse(bp); 1019 return; 1020 } 1021 if (BUF_REFCNTNB(bp) == 0) 1022 panic("bwrite: buffer is not busy???"); 1023 1024 /* Mark the buffer clean */ 1025 bundirty(bp); 1026 1027 bp->b_flags &= ~(B_ERROR | B_EINTR); 1028 bp->b_flags |= B_CACHE; 1029 bp->b_cmd = BUF_CMD_WRITE; 1030 KKASSERT(bp->b_bio1.bio_done == NULL); 1031 vfs_busy_pages(bp->b_vp, bp); 1032 1033 /* 1034 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1035 * valid for vnode-backed buffers. 1036 */ 1037 bsetrunningbufspace(bp, bp->b_bufsize); 1038 BUF_KERNPROC(bp); 1039 vn_strategy(bp->b_vp, &bp->b_bio1); 1040 } 1041 1042 /* 1043 * bowrite: 1044 * 1045 * Ordered write. Start output on a buffer, and flag it so that the 1046 * device will write it in the order it was queued. The buffer is 1047 * released when the output completes. bwrite() ( or the VOP routine 1048 * anyway ) is responsible for handling B_INVAL buffers. 1049 */ 1050 int 1051 bowrite(struct buf *bp) 1052 { 1053 bp->b_flags |= B_ORDERED; 1054 bawrite(bp); 1055 return (0); 1056 } 1057 1058 /* 1059 * bdwrite: 1060 * 1061 * Delayed write. (Buffer is marked dirty). Do not bother writing 1062 * anything if the buffer is marked invalid. 1063 * 1064 * Note that since the buffer must be completely valid, we can safely 1065 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1066 * biodone() in order to prevent getblk from writing the buffer 1067 * out synchronously. 1068 */ 1069 void 1070 bdwrite(struct buf *bp) 1071 { 1072 if (BUF_REFCNTNB(bp) == 0) 1073 panic("bdwrite: buffer is not busy"); 1074 1075 if (bp->b_flags & B_INVAL) { 1076 brelse(bp); 1077 return; 1078 } 1079 bdirty(bp); 1080 1081 if (dsched_is_clear_buf_priv(bp)) 1082 dsched_new_buf(bp); 1083 1084 /* 1085 * Set B_CACHE, indicating that the buffer is fully valid. This is 1086 * true even of NFS now. 1087 */ 1088 bp->b_flags |= B_CACHE; 1089 1090 /* 1091 * This bmap keeps the system from needing to do the bmap later, 1092 * perhaps when the system is attempting to do a sync. Since it 1093 * is likely that the indirect block -- or whatever other datastructure 1094 * that the filesystem needs is still in memory now, it is a good 1095 * thing to do this. Note also, that if the pageout daemon is 1096 * requesting a sync -- there might not be enough memory to do 1097 * the bmap then... So, this is important to do. 1098 */ 1099 if (bp->b_bio2.bio_offset == NOOFFSET) { 1100 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1101 NULL, NULL, BUF_CMD_WRITE); 1102 } 1103 1104 /* 1105 * Because the underlying pages may still be mapped and 1106 * writable trying to set the dirty buffer (b_dirtyoff/end) 1107 * range here will be inaccurate. 1108 * 1109 * However, we must still clean the pages to satisfy the 1110 * vnode_pager and pageout daemon, so theythink the pages 1111 * have been "cleaned". What has really occured is that 1112 * they've been earmarked for later writing by the buffer 1113 * cache. 1114 * 1115 * So we get the b_dirtyoff/end update but will not actually 1116 * depend on it (NFS that is) until the pages are busied for 1117 * writing later on. 1118 */ 1119 vfs_clean_pages(bp); 1120 bqrelse(bp); 1121 1122 /* 1123 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1124 * due to the softdep code. 1125 */ 1126 } 1127 1128 /* 1129 * Fake write - return pages to VM system as dirty, leave the buffer clean. 1130 * This is used by tmpfs. 1131 * 1132 * It is important for any VFS using this routine to NOT use it for 1133 * IO_SYNC or IO_ASYNC operations which occur when the system really 1134 * wants to flush VM pages to backing store. 1135 */ 1136 void 1137 buwrite(struct buf *bp) 1138 { 1139 vm_page_t m; 1140 int i; 1141 1142 /* 1143 * Only works for VMIO buffers. If the buffer is already 1144 * marked for delayed-write we can't avoid the bdwrite(). 1145 */ 1146 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) { 1147 bdwrite(bp); 1148 return; 1149 } 1150 1151 /* 1152 * Set valid & dirty. 1153 * 1154 * WARNING! vfs_dirty_one_page() assumes vm_token is held for now. 1155 */ 1156 lwkt_gettoken(&vm_token); 1157 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1158 m = bp->b_xio.xio_pages[i]; 1159 vfs_dirty_one_page(bp, i, m); 1160 } 1161 lwkt_reltoken(&vm_token); 1162 bqrelse(bp); 1163 } 1164 1165 /* 1166 * bdirty: 1167 * 1168 * Turn buffer into delayed write request by marking it B_DELWRI. 1169 * B_RELBUF and B_NOCACHE must be cleared. 1170 * 1171 * We reassign the buffer to itself to properly update it in the 1172 * dirty/clean lists. 1173 * 1174 * Must be called from a critical section. 1175 * The buffer must be on BQUEUE_NONE. 1176 */ 1177 void 1178 bdirty(struct buf *bp) 1179 { 1180 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1181 if (bp->b_flags & B_NOCACHE) { 1182 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1183 bp->b_flags &= ~B_NOCACHE; 1184 } 1185 if (bp->b_flags & B_INVAL) { 1186 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1187 } 1188 bp->b_flags &= ~B_RELBUF; 1189 1190 if ((bp->b_flags & B_DELWRI) == 0) { 1191 lwkt_gettoken(&bp->b_vp->v_token); 1192 bp->b_flags |= B_DELWRI; 1193 reassignbuf(bp); 1194 lwkt_reltoken(&bp->b_vp->v_token); 1195 1196 spin_lock(&bufcspin); 1197 ++dirtybufcount; 1198 dirtybufspace += bp->b_bufsize; 1199 if (bp->b_flags & B_HEAVY) { 1200 ++dirtybufcounthw; 1201 dirtybufspacehw += bp->b_bufsize; 1202 } 1203 spin_unlock(&bufcspin); 1204 1205 bd_heatup(); 1206 } 1207 } 1208 1209 /* 1210 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1211 * needs to be flushed with a different buf_daemon thread to avoid 1212 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1213 */ 1214 void 1215 bheavy(struct buf *bp) 1216 { 1217 if ((bp->b_flags & B_HEAVY) == 0) { 1218 bp->b_flags |= B_HEAVY; 1219 if (bp->b_flags & B_DELWRI) { 1220 spin_lock(&bufcspin); 1221 ++dirtybufcounthw; 1222 dirtybufspacehw += bp->b_bufsize; 1223 spin_unlock(&bufcspin); 1224 } 1225 } 1226 } 1227 1228 /* 1229 * bundirty: 1230 * 1231 * Clear B_DELWRI for buffer. 1232 * 1233 * Must be called from a critical section. 1234 * 1235 * The buffer is typically on BQUEUE_NONE but there is one case in 1236 * brelse() that calls this function after placing the buffer on 1237 * a different queue. 1238 * 1239 * MPSAFE 1240 */ 1241 void 1242 bundirty(struct buf *bp) 1243 { 1244 if (bp->b_flags & B_DELWRI) { 1245 lwkt_gettoken(&bp->b_vp->v_token); 1246 bp->b_flags &= ~B_DELWRI; 1247 reassignbuf(bp); 1248 lwkt_reltoken(&bp->b_vp->v_token); 1249 1250 spin_lock(&bufcspin); 1251 --dirtybufcount; 1252 dirtybufspace -= bp->b_bufsize; 1253 if (bp->b_flags & B_HEAVY) { 1254 --dirtybufcounthw; 1255 dirtybufspacehw -= bp->b_bufsize; 1256 } 1257 spin_unlock(&bufcspin); 1258 1259 bd_signal(bp->b_bufsize); 1260 } 1261 /* 1262 * Since it is now being written, we can clear its deferred write flag. 1263 */ 1264 bp->b_flags &= ~B_DEFERRED; 1265 } 1266 1267 /* 1268 * Set the b_runningbufspace field, used to track how much I/O is 1269 * in progress at any given moment. 1270 */ 1271 void 1272 bsetrunningbufspace(struct buf *bp, int bytes) 1273 { 1274 bp->b_runningbufspace = bytes; 1275 if (bytes) { 1276 spin_lock(&bufcspin); 1277 runningbufspace += bytes; 1278 ++runningbufcount; 1279 spin_unlock(&bufcspin); 1280 } 1281 } 1282 1283 /* 1284 * brelse: 1285 * 1286 * Release a busy buffer and, if requested, free its resources. The 1287 * buffer will be stashed in the appropriate bufqueue[] allowing it 1288 * to be accessed later as a cache entity or reused for other purposes. 1289 * 1290 * MPALMOSTSAFE 1291 */ 1292 void 1293 brelse(struct buf *bp) 1294 { 1295 #ifdef INVARIANTS 1296 int saved_flags = bp->b_flags; 1297 #endif 1298 1299 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1300 1301 /* 1302 * If B_NOCACHE is set we are being asked to destroy the buffer and 1303 * its backing store. Clear B_DELWRI. 1304 * 1305 * B_NOCACHE is set in two cases: (1) when the caller really wants 1306 * to destroy the buffer and backing store and (2) when the caller 1307 * wants to destroy the buffer and backing store after a write 1308 * completes. 1309 */ 1310 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1311 bundirty(bp); 1312 } 1313 1314 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1315 /* 1316 * A re-dirtied buffer is only subject to destruction 1317 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1318 */ 1319 /* leave buffer intact */ 1320 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1321 (bp->b_bufsize <= 0)) { 1322 /* 1323 * Either a failed read or we were asked to free or not 1324 * cache the buffer. This path is reached with B_DELWRI 1325 * set only if B_INVAL is already set. B_NOCACHE governs 1326 * backing store destruction. 1327 * 1328 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1329 * buffer cannot be immediately freed. 1330 */ 1331 bp->b_flags |= B_INVAL; 1332 if (LIST_FIRST(&bp->b_dep) != NULL) 1333 buf_deallocate(bp); 1334 if (bp->b_flags & B_DELWRI) { 1335 spin_lock(&bufcspin); 1336 --dirtybufcount; 1337 dirtybufspace -= bp->b_bufsize; 1338 if (bp->b_flags & B_HEAVY) { 1339 --dirtybufcounthw; 1340 dirtybufspacehw -= bp->b_bufsize; 1341 } 1342 spin_unlock(&bufcspin); 1343 1344 bd_signal(bp->b_bufsize); 1345 } 1346 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1347 } 1348 1349 /* 1350 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set, 1351 * or if b_refs is non-zero. 1352 * 1353 * If vfs_vmio_release() is called with either bit set, the 1354 * underlying pages may wind up getting freed causing a previous 1355 * write (bdwrite()) to get 'lost' because pages associated with 1356 * a B_DELWRI bp are marked clean. Pages associated with a 1357 * B_LOCKED buffer may be mapped by the filesystem. 1358 * 1359 * If we want to release the buffer ourselves (rather then the 1360 * originator asking us to release it), give the originator a 1361 * chance to countermand the release by setting B_LOCKED. 1362 * 1363 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1364 * if B_DELWRI is set. 1365 * 1366 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1367 * on pages to return pages to the VM page queues. 1368 */ 1369 if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) { 1370 bp->b_flags &= ~B_RELBUF; 1371 } else if (vm_page_count_severe()) { 1372 if (LIST_FIRST(&bp->b_dep) != NULL) 1373 buf_deallocate(bp); /* can set B_LOCKED */ 1374 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1375 bp->b_flags &= ~B_RELBUF; 1376 else 1377 bp->b_flags |= B_RELBUF; 1378 } 1379 1380 /* 1381 * Make sure b_cmd is clear. It may have already been cleared by 1382 * biodone(). 1383 * 1384 * At this point destroying the buffer is governed by the B_INVAL 1385 * or B_RELBUF flags. 1386 */ 1387 bp->b_cmd = BUF_CMD_DONE; 1388 dsched_exit_buf(bp); 1389 1390 /* 1391 * VMIO buffer rundown. Make sure the VM page array is restored 1392 * after an I/O may have replaces some of the pages with bogus pages 1393 * in order to not destroy dirty pages in a fill-in read. 1394 * 1395 * Note that due to the code above, if a buffer is marked B_DELWRI 1396 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1397 * B_INVAL may still be set, however. 1398 * 1399 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1400 * but not the backing store. B_NOCACHE will destroy the backing 1401 * store. 1402 * 1403 * Note that dirty NFS buffers contain byte-granular write ranges 1404 * and should not be destroyed w/ B_INVAL even if the backing store 1405 * is left intact. 1406 */ 1407 if (bp->b_flags & B_VMIO) { 1408 /* 1409 * Rundown for VMIO buffers which are not dirty NFS buffers. 1410 */ 1411 int i, j, resid; 1412 vm_page_t m; 1413 off_t foff; 1414 vm_pindex_t poff; 1415 vm_object_t obj; 1416 struct vnode *vp; 1417 1418 vp = bp->b_vp; 1419 1420 /* 1421 * Get the base offset and length of the buffer. Note that 1422 * in the VMIO case if the buffer block size is not 1423 * page-aligned then b_data pointer may not be page-aligned. 1424 * But our b_xio.xio_pages array *IS* page aligned. 1425 * 1426 * block sizes less then DEV_BSIZE (usually 512) are not 1427 * supported due to the page granularity bits (m->valid, 1428 * m->dirty, etc...). 1429 * 1430 * See man buf(9) for more information 1431 */ 1432 1433 resid = bp->b_bufsize; 1434 foff = bp->b_loffset; 1435 1436 lwkt_gettoken(&vm_token); 1437 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1438 m = bp->b_xio.xio_pages[i]; 1439 vm_page_flag_clear(m, PG_ZERO); 1440 /* 1441 * If we hit a bogus page, fixup *all* of them 1442 * now. Note that we left these pages wired 1443 * when we removed them so they had better exist, 1444 * and they cannot be ripped out from under us so 1445 * no critical section protection is necessary. 1446 */ 1447 if (m == bogus_page) { 1448 obj = vp->v_object; 1449 poff = OFF_TO_IDX(bp->b_loffset); 1450 1451 for (j = i; j < bp->b_xio.xio_npages; j++) { 1452 vm_page_t mtmp; 1453 1454 mtmp = bp->b_xio.xio_pages[j]; 1455 if (mtmp == bogus_page) { 1456 mtmp = vm_page_lookup(obj, poff + j); 1457 if (!mtmp) { 1458 panic("brelse: page missing"); 1459 } 1460 bp->b_xio.xio_pages[j] = mtmp; 1461 } 1462 } 1463 bp->b_flags &= ~B_HASBOGUS; 1464 1465 if ((bp->b_flags & B_INVAL) == 0) { 1466 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1467 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1468 } 1469 m = bp->b_xio.xio_pages[i]; 1470 } 1471 1472 /* 1473 * Invalidate the backing store if B_NOCACHE is set 1474 * (e.g. used with vinvalbuf()). If this is NFS 1475 * we impose a requirement that the block size be 1476 * a multiple of PAGE_SIZE and create a temporary 1477 * hack to basically invalidate the whole page. The 1478 * problem is that NFS uses really odd buffer sizes 1479 * especially when tracking piecemeal writes and 1480 * it also vinvalbuf()'s a lot, which would result 1481 * in only partial page validation and invalidation 1482 * here. If the file page is mmap()'d, however, 1483 * all the valid bits get set so after we invalidate 1484 * here we would end up with weird m->valid values 1485 * like 0xfc. nfs_getpages() can't handle this so 1486 * we clear all the valid bits for the NFS case 1487 * instead of just some of them. 1488 * 1489 * The real bug is the VM system having to set m->valid 1490 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1491 * itself is an artifact of the whole 512-byte 1492 * granular mess that exists to support odd block 1493 * sizes and UFS meta-data block sizes (e.g. 6144). 1494 * A complete rewrite is required. 1495 * 1496 * XXX 1497 */ 1498 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1499 int poffset = foff & PAGE_MASK; 1500 int presid; 1501 1502 presid = PAGE_SIZE - poffset; 1503 if (bp->b_vp->v_tag == VT_NFS && 1504 bp->b_vp->v_type == VREG) { 1505 ; /* entire page */ 1506 } else if (presid > resid) { 1507 presid = resid; 1508 } 1509 KASSERT(presid >= 0, ("brelse: extra page")); 1510 vm_page_set_invalid(m, poffset, presid); 1511 1512 /* 1513 * Also make sure any swap cache is removed 1514 * as it is now stale (HAMMER in particular 1515 * uses B_NOCACHE to deal with buffer 1516 * aliasing). 1517 */ 1518 swap_pager_unswapped(m); 1519 } 1520 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1521 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1522 } 1523 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1524 vfs_vmio_release(bp); 1525 lwkt_reltoken(&vm_token); 1526 } else { 1527 /* 1528 * Rundown for non-VMIO buffers. 1529 */ 1530 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1531 if (bp->b_bufsize) 1532 allocbuf(bp, 0); 1533 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1534 if (bp->b_vp) 1535 brelvp(bp); 1536 } 1537 } 1538 1539 if (bp->b_qindex != BQUEUE_NONE) 1540 panic("brelse: free buffer onto another queue???"); 1541 if (BUF_REFCNTNB(bp) > 1) { 1542 /* Temporary panic to verify exclusive locking */ 1543 /* This panic goes away when we allow shared refs */ 1544 panic("brelse: multiple refs"); 1545 /* NOT REACHED */ 1546 return; 1547 } 1548 1549 /* 1550 * Figure out the correct queue to place the cleaned up buffer on. 1551 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1552 * disassociated from their vnode. 1553 */ 1554 spin_lock(&bufqspin); 1555 if (bp->b_flags & B_LOCKED) { 1556 /* 1557 * Buffers that are locked are placed in the locked queue 1558 * immediately, regardless of their state. 1559 */ 1560 bp->b_qindex = BQUEUE_LOCKED; 1561 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1562 } else if (bp->b_bufsize == 0) { 1563 /* 1564 * Buffers with no memory. Due to conditionals near the top 1565 * of brelse() such buffers should probably already be 1566 * marked B_INVAL and disassociated from their vnode. 1567 */ 1568 bp->b_flags |= B_INVAL; 1569 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1570 KKASSERT((bp->b_flags & B_HASHED) == 0); 1571 if (bp->b_kvasize) { 1572 bp->b_qindex = BQUEUE_EMPTYKVA; 1573 } else { 1574 bp->b_qindex = BQUEUE_EMPTY; 1575 } 1576 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1577 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1578 /* 1579 * Buffers with junk contents. Again these buffers had better 1580 * already be disassociated from their vnode. 1581 */ 1582 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1583 KKASSERT((bp->b_flags & B_HASHED) == 0); 1584 bp->b_flags |= B_INVAL; 1585 bp->b_qindex = BQUEUE_CLEAN; 1586 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1587 } else { 1588 /* 1589 * Remaining buffers. These buffers are still associated with 1590 * their vnode. 1591 */ 1592 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1593 case B_DELWRI: 1594 bp->b_qindex = BQUEUE_DIRTY; 1595 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1596 break; 1597 case B_DELWRI | B_HEAVY: 1598 bp->b_qindex = BQUEUE_DIRTY_HW; 1599 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1600 b_freelist); 1601 break; 1602 default: 1603 /* 1604 * NOTE: Buffers are always placed at the end of the 1605 * queue. If B_AGE is not set the buffer will cycle 1606 * through the queue twice. 1607 */ 1608 bp->b_qindex = BQUEUE_CLEAN; 1609 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1610 break; 1611 } 1612 } 1613 spin_unlock(&bufqspin); 1614 1615 /* 1616 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1617 * on the correct queue. 1618 */ 1619 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1620 bundirty(bp); 1621 1622 /* 1623 * The bp is on an appropriate queue unless locked. If it is not 1624 * locked or dirty we can wakeup threads waiting for buffer space. 1625 * 1626 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1627 * if B_INVAL is set ). 1628 */ 1629 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1630 bufcountwakeup(); 1631 1632 /* 1633 * Something we can maybe free or reuse 1634 */ 1635 if (bp->b_bufsize || bp->b_kvasize) 1636 bufspacewakeup(); 1637 1638 /* 1639 * Clean up temporary flags and unlock the buffer. 1640 */ 1641 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1642 BUF_UNLOCK(bp); 1643 } 1644 1645 /* 1646 * bqrelse: 1647 * 1648 * Release a buffer back to the appropriate queue but do not try to free 1649 * it. The buffer is expected to be used again soon. 1650 * 1651 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1652 * biodone() to requeue an async I/O on completion. It is also used when 1653 * known good buffers need to be requeued but we think we may need the data 1654 * again soon. 1655 * 1656 * XXX we should be able to leave the B_RELBUF hint set on completion. 1657 * 1658 * MPSAFE 1659 */ 1660 void 1661 bqrelse(struct buf *bp) 1662 { 1663 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1664 1665 if (bp->b_qindex != BQUEUE_NONE) 1666 panic("bqrelse: free buffer onto another queue???"); 1667 if (BUF_REFCNTNB(bp) > 1) { 1668 /* do not release to free list */ 1669 panic("bqrelse: multiple refs"); 1670 return; 1671 } 1672 1673 buf_act_advance(bp); 1674 1675 spin_lock(&bufqspin); 1676 if (bp->b_flags & B_LOCKED) { 1677 /* 1678 * Locked buffers are released to the locked queue. However, 1679 * if the buffer is dirty it will first go into the dirty 1680 * queue and later on after the I/O completes successfully it 1681 * will be released to the locked queue. 1682 */ 1683 bp->b_qindex = BQUEUE_LOCKED; 1684 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1685 } else if (bp->b_flags & B_DELWRI) { 1686 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1687 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1688 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1689 } else if (vm_page_count_severe()) { 1690 /* 1691 * We are too low on memory, we have to try to free the 1692 * buffer (most importantly: the wired pages making up its 1693 * backing store) *now*. 1694 */ 1695 spin_unlock(&bufqspin); 1696 brelse(bp); 1697 return; 1698 } else { 1699 bp->b_qindex = BQUEUE_CLEAN; 1700 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1701 } 1702 spin_unlock(&bufqspin); 1703 1704 if ((bp->b_flags & B_LOCKED) == 0 && 1705 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1706 bufcountwakeup(); 1707 } 1708 1709 /* 1710 * Something we can maybe free or reuse. 1711 */ 1712 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1713 bufspacewakeup(); 1714 1715 /* 1716 * Final cleanup and unlock. Clear bits that are only used while a 1717 * buffer is actively locked. 1718 */ 1719 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1720 dsched_exit_buf(bp); 1721 BUF_UNLOCK(bp); 1722 } 1723 1724 /* 1725 * Hold a buffer, preventing it from being reused. This will prevent 1726 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL 1727 * operations. If a B_INVAL operation occurs the buffer will remain held 1728 * but the underlying pages may get ripped out. 1729 * 1730 * These functions are typically used in VOP_READ/VOP_WRITE functions 1731 * to hold a buffer during a copyin or copyout, preventing deadlocks 1732 * or recursive lock panics when read()/write() is used over mmap()'d 1733 * space. 1734 * 1735 * NOTE: bqhold() requires that the buffer be locked at the time of the 1736 * hold. bqdrop() has no requirements other than the buffer having 1737 * previously been held. 1738 */ 1739 void 1740 bqhold(struct buf *bp) 1741 { 1742 atomic_add_int(&bp->b_refs, 1); 1743 } 1744 1745 void 1746 bqdrop(struct buf *bp) 1747 { 1748 KKASSERT(bp->b_refs > 0); 1749 atomic_add_int(&bp->b_refs, -1); 1750 } 1751 1752 /* 1753 * vfs_vmio_release: 1754 * 1755 * Return backing pages held by the buffer 'bp' back to the VM system 1756 * if possible. The pages are freed if they are no longer valid or 1757 * attempt to free if it was used for direct I/O otherwise they are 1758 * sent to the page cache. 1759 * 1760 * Pages that were marked busy are left alone and skipped. 1761 * 1762 * The KVA mapping (b_data) for the underlying pages is removed by 1763 * this function. 1764 */ 1765 static void 1766 vfs_vmio_release(struct buf *bp) 1767 { 1768 int i; 1769 vm_page_t m; 1770 1771 lwkt_gettoken(&vm_token); 1772 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1773 m = bp->b_xio.xio_pages[i]; 1774 bp->b_xio.xio_pages[i] = NULL; 1775 1776 /* 1777 * The VFS is telling us this is not a meta-data buffer 1778 * even if it is backed by a block device. 1779 */ 1780 if (bp->b_flags & B_NOTMETA) 1781 vm_page_flag_set(m, PG_NOTMETA); 1782 1783 /* 1784 * This is a very important bit of code. We try to track 1785 * VM page use whether the pages are wired into the buffer 1786 * cache or not. While wired into the buffer cache the 1787 * bp tracks the act_count. 1788 * 1789 * We can choose to place unwired pages on the inactive 1790 * queue (0) or active queue (1). If we place too many 1791 * on the active queue the queue will cycle the act_count 1792 * on pages we'd like to keep, just from single-use pages 1793 * (such as when doing a tar-up or file scan). 1794 */ 1795 if (bp->b_act_count < vm_cycle_point) 1796 vm_page_unwire(m, 0); 1797 else 1798 vm_page_unwire(m, 1); 1799 1800 /* 1801 * We don't mess with busy pages, it is the responsibility 1802 * of the process that busied the pages to deal with them. 1803 * 1804 * However, the caller may have marked the page invalid and 1805 * we must still make sure the page is no longer mapped. 1806 */ 1807 if ((m->flags & PG_BUSY) || (m->busy != 0)) { 1808 vm_page_protect(m, VM_PROT_NONE); 1809 continue; 1810 } 1811 1812 if (m->wire_count == 0) { 1813 vm_page_flag_clear(m, PG_ZERO); 1814 /* 1815 * Might as well free the page if we can and it has 1816 * no valid data. We also free the page if the 1817 * buffer was used for direct I/O. 1818 */ 1819 #if 0 1820 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1821 m->hold_count == 0) { 1822 vm_page_busy(m); 1823 vm_page_protect(m, VM_PROT_NONE); 1824 vm_page_free(m); 1825 } else 1826 #endif 1827 if (bp->b_flags & B_DIRECT) { 1828 vm_page_try_to_free(m); 1829 } else if (vm_page_count_severe()) { 1830 m->act_count = bp->b_act_count; 1831 vm_page_try_to_cache(m); 1832 } else { 1833 m->act_count = bp->b_act_count; 1834 } 1835 } 1836 } 1837 lwkt_reltoken(&vm_token); 1838 1839 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), 1840 bp->b_xio.xio_npages); 1841 if (bp->b_bufsize) { 1842 bufspacewakeup(); 1843 bp->b_bufsize = 0; 1844 } 1845 bp->b_xio.xio_npages = 0; 1846 bp->b_flags &= ~B_VMIO; 1847 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1848 if (bp->b_vp) 1849 brelvp(bp); 1850 } 1851 1852 /* 1853 * vfs_bio_awrite: 1854 * 1855 * Implement clustered async writes for clearing out B_DELWRI buffers. 1856 * This is much better then the old way of writing only one buffer at 1857 * a time. Note that we may not be presented with the buffers in the 1858 * correct order, so we search for the cluster in both directions. 1859 * 1860 * The buffer is locked on call. 1861 */ 1862 int 1863 vfs_bio_awrite(struct buf *bp) 1864 { 1865 int i; 1866 int j; 1867 off_t loffset = bp->b_loffset; 1868 struct vnode *vp = bp->b_vp; 1869 int nbytes; 1870 struct buf *bpa; 1871 int nwritten; 1872 int size; 1873 1874 /* 1875 * right now we support clustered writing only to regular files. If 1876 * we find a clusterable block we could be in the middle of a cluster 1877 * rather then at the beginning. 1878 * 1879 * NOTE: b_bio1 contains the logical loffset and is aliased 1880 * to b_loffset. b_bio2 contains the translated block number. 1881 */ 1882 if ((vp->v_type == VREG) && 1883 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1884 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1885 1886 size = vp->v_mount->mnt_stat.f_iosize; 1887 1888 for (i = size; i < MAXPHYS; i += size) { 1889 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1890 BUF_REFCNT(bpa) == 0 && 1891 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1892 (B_DELWRI | B_CLUSTEROK)) && 1893 (bpa->b_bufsize == size)) { 1894 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1895 (bpa->b_bio2.bio_offset != 1896 bp->b_bio2.bio_offset + i)) 1897 break; 1898 } else { 1899 break; 1900 } 1901 } 1902 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1903 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1904 BUF_REFCNT(bpa) == 0 && 1905 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1906 (B_DELWRI | B_CLUSTEROK)) && 1907 (bpa->b_bufsize == size)) { 1908 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1909 (bpa->b_bio2.bio_offset != 1910 bp->b_bio2.bio_offset - j)) 1911 break; 1912 } else { 1913 break; 1914 } 1915 } 1916 j -= size; 1917 nbytes = (i + j); 1918 1919 /* 1920 * this is a possible cluster write 1921 */ 1922 if (nbytes != size) { 1923 BUF_UNLOCK(bp); 1924 nwritten = cluster_wbuild(vp, size, 1925 loffset - j, nbytes); 1926 return nwritten; 1927 } 1928 } 1929 1930 /* 1931 * default (old) behavior, writing out only one block 1932 * 1933 * XXX returns b_bufsize instead of b_bcount for nwritten? 1934 */ 1935 nwritten = bp->b_bufsize; 1936 bremfree(bp); 1937 bawrite(bp); 1938 1939 return nwritten; 1940 } 1941 1942 /* 1943 * getnewbuf: 1944 * 1945 * Find and initialize a new buffer header, freeing up existing buffers 1946 * in the bufqueues as necessary. The new buffer is returned locked. 1947 * 1948 * Important: B_INVAL is not set. If the caller wishes to throw the 1949 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1950 * 1951 * We block if: 1952 * We have insufficient buffer headers 1953 * We have insufficient buffer space 1954 * buffer_map is too fragmented ( space reservation fails ) 1955 * If we have to flush dirty buffers ( but we try to avoid this ) 1956 * 1957 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1958 * Instead we ask the buf daemon to do it for us. We attempt to 1959 * avoid piecemeal wakeups of the pageout daemon. 1960 * 1961 * MPALMOSTSAFE 1962 */ 1963 static struct buf * 1964 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1965 { 1966 struct buf *bp; 1967 struct buf *nbp; 1968 int defrag = 0; 1969 int nqindex; 1970 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1971 static int flushingbufs; 1972 1973 /* 1974 * We can't afford to block since we might be holding a vnode lock, 1975 * which may prevent system daemons from running. We deal with 1976 * low-memory situations by proactively returning memory and running 1977 * async I/O rather then sync I/O. 1978 */ 1979 1980 ++getnewbufcalls; 1981 --getnewbufrestarts; 1982 restart: 1983 ++getnewbufrestarts; 1984 1985 /* 1986 * Setup for scan. If we do not have enough free buffers, 1987 * we setup a degenerate case that immediately fails. Note 1988 * that if we are specially marked process, we are allowed to 1989 * dip into our reserves. 1990 * 1991 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1992 * 1993 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1994 * However, there are a number of cases (defragging, reusing, ...) 1995 * where we cannot backup. 1996 */ 1997 nqindex = BQUEUE_EMPTYKVA; 1998 spin_lock(&bufqspin); 1999 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 2000 2001 if (nbp == NULL) { 2002 /* 2003 * If no EMPTYKVA buffers and we are either 2004 * defragging or reusing, locate a CLEAN buffer 2005 * to free or reuse. If bufspace useage is low 2006 * skip this step so we can allocate a new buffer. 2007 */ 2008 if (defrag || bufspace >= lobufspace) { 2009 nqindex = BQUEUE_CLEAN; 2010 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2011 } 2012 2013 /* 2014 * If we could not find or were not allowed to reuse a 2015 * CLEAN buffer, check to see if it is ok to use an EMPTY 2016 * buffer. We can only use an EMPTY buffer if allocating 2017 * its KVA would not otherwise run us out of buffer space. 2018 */ 2019 if (nbp == NULL && defrag == 0 && 2020 bufspace + maxsize < hibufspace) { 2021 nqindex = BQUEUE_EMPTY; 2022 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 2023 } 2024 } 2025 2026 /* 2027 * Run scan, possibly freeing data and/or kva mappings on the fly 2028 * depending. 2029 * 2030 * WARNING! bufqspin is held! 2031 */ 2032 while ((bp = nbp) != NULL) { 2033 int qindex = nqindex; 2034 2035 nbp = TAILQ_NEXT(bp, b_freelist); 2036 2037 /* 2038 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2039 * cycles through the queue twice before being selected. 2040 */ 2041 if (qindex == BQUEUE_CLEAN && 2042 (bp->b_flags & B_AGE) == 0 && nbp) { 2043 bp->b_flags |= B_AGE; 2044 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 2045 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 2046 continue; 2047 } 2048 2049 /* 2050 * Calculate next bp ( we can only use it if we do not block 2051 * or do other fancy things ). 2052 */ 2053 if (nbp == NULL) { 2054 switch(qindex) { 2055 case BQUEUE_EMPTY: 2056 nqindex = BQUEUE_EMPTYKVA; 2057 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 2058 break; 2059 /* fall through */ 2060 case BQUEUE_EMPTYKVA: 2061 nqindex = BQUEUE_CLEAN; 2062 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 2063 break; 2064 /* fall through */ 2065 case BQUEUE_CLEAN: 2066 /* 2067 * nbp is NULL. 2068 */ 2069 break; 2070 } 2071 } 2072 2073 /* 2074 * Sanity Checks 2075 */ 2076 KASSERT(bp->b_qindex == qindex, 2077 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 2078 2079 /* 2080 * Note: we no longer distinguish between VMIO and non-VMIO 2081 * buffers. 2082 */ 2083 KASSERT((bp->b_flags & B_DELWRI) == 0, 2084 ("delwri buffer %p found in queue %d", bp, qindex)); 2085 2086 /* 2087 * Do not try to reuse a buffer with a non-zero b_refs. 2088 * This is an unsynchronized test. A synchronized test 2089 * is also performed after we lock the buffer. 2090 */ 2091 if (bp->b_refs) 2092 continue; 2093 2094 /* 2095 * If we are defragging then we need a buffer with 2096 * b_kvasize != 0. XXX this situation should no longer 2097 * occur, if defrag is non-zero the buffer's b_kvasize 2098 * should also be non-zero at this point. XXX 2099 */ 2100 if (defrag && bp->b_kvasize == 0) { 2101 kprintf("Warning: defrag empty buffer %p\n", bp); 2102 continue; 2103 } 2104 2105 /* 2106 * Start freeing the bp. This is somewhat involved. nbp 2107 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 2108 * on the clean list must be disassociated from their 2109 * current vnode. Buffers on the empty[kva] lists have 2110 * already been disassociated. 2111 * 2112 * b_refs is checked after locking along with queue changes. 2113 * We must check here to deal with zero->nonzero transitions 2114 * made by the owner of the buffer lock, which is used by 2115 * VFS's to hold the buffer while issuing an unlocked 2116 * uiomove()s. We cannot invalidate the buffer's pages 2117 * for this case. Once we successfully lock a buffer the 2118 * only 0->1 transitions of b_refs will occur via findblk(). 2119 * 2120 * We must also check for queue changes after successful 2121 * locking as the current lock holder may dispose of the 2122 * buffer and change its queue. 2123 */ 2124 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2125 spin_unlock(&bufqspin); 2126 tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100); 2127 goto restart; 2128 } 2129 if (bp->b_qindex != qindex || bp->b_refs) { 2130 spin_unlock(&bufqspin); 2131 BUF_UNLOCK(bp); 2132 goto restart; 2133 } 2134 bremfree_locked(bp); 2135 spin_unlock(&bufqspin); 2136 2137 /* 2138 * Dependancies must be handled before we disassociate the 2139 * vnode. 2140 * 2141 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2142 * be immediately disassociated. HAMMER then becomes 2143 * responsible for releasing the buffer. 2144 * 2145 * NOTE: bufqspin is UNLOCKED now. 2146 */ 2147 if (LIST_FIRST(&bp->b_dep) != NULL) { 2148 buf_deallocate(bp); 2149 if (bp->b_flags & B_LOCKED) { 2150 bqrelse(bp); 2151 goto restart; 2152 } 2153 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2154 } 2155 2156 if (qindex == BQUEUE_CLEAN) { 2157 if (bp->b_flags & B_VMIO) 2158 vfs_vmio_release(bp); 2159 if (bp->b_vp) 2160 brelvp(bp); 2161 } 2162 2163 /* 2164 * NOTE: nbp is now entirely invalid. We can only restart 2165 * the scan from this point on. 2166 * 2167 * Get the rest of the buffer freed up. b_kva* is still 2168 * valid after this operation. 2169 */ 2170 KASSERT(bp->b_vp == NULL, 2171 ("bp3 %p flags %08x vnode %p qindex %d " 2172 "unexpectededly still associated!", 2173 bp, bp->b_flags, bp->b_vp, qindex)); 2174 KKASSERT((bp->b_flags & B_HASHED) == 0); 2175 2176 /* 2177 * critical section protection is not required when 2178 * scrapping a buffer's contents because it is already 2179 * wired. 2180 */ 2181 if (bp->b_bufsize) 2182 allocbuf(bp, 0); 2183 2184 bp->b_flags = B_BNOCLIP; 2185 bp->b_cmd = BUF_CMD_DONE; 2186 bp->b_vp = NULL; 2187 bp->b_error = 0; 2188 bp->b_resid = 0; 2189 bp->b_bcount = 0; 2190 bp->b_xio.xio_npages = 0; 2191 bp->b_dirtyoff = bp->b_dirtyend = 0; 2192 bp->b_act_count = ACT_INIT; 2193 reinitbufbio(bp); 2194 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2195 buf_dep_init(bp); 2196 if (blkflags & GETBLK_BHEAVY) 2197 bp->b_flags |= B_HEAVY; 2198 2199 /* 2200 * If we are defragging then free the buffer. 2201 */ 2202 if (defrag) { 2203 bp->b_flags |= B_INVAL; 2204 bfreekva(bp); 2205 brelse(bp); 2206 defrag = 0; 2207 goto restart; 2208 } 2209 2210 /* 2211 * If we are overcomitted then recover the buffer and its 2212 * KVM space. This occurs in rare situations when multiple 2213 * processes are blocked in getnewbuf() or allocbuf(). 2214 */ 2215 if (bufspace >= hibufspace) 2216 flushingbufs = 1; 2217 if (flushingbufs && bp->b_kvasize != 0) { 2218 bp->b_flags |= B_INVAL; 2219 bfreekva(bp); 2220 brelse(bp); 2221 goto restart; 2222 } 2223 if (bufspace < lobufspace) 2224 flushingbufs = 0; 2225 2226 /* 2227 * b_refs can transition to a non-zero value while we hold 2228 * the buffer locked due to a findblk(). Our brelvp() above 2229 * interlocked any future possible transitions due to 2230 * findblk()s. 2231 * 2232 * If we find b_refs to be non-zero we can destroy the 2233 * buffer's contents but we cannot yet reuse the buffer. 2234 */ 2235 if (bp->b_refs) { 2236 bp->b_flags |= B_INVAL; 2237 bfreekva(bp); 2238 brelse(bp); 2239 goto restart; 2240 } 2241 break; 2242 /* NOT REACHED, bufqspin not held */ 2243 } 2244 2245 /* 2246 * If we exhausted our list, sleep as appropriate. We may have to 2247 * wakeup various daemons and write out some dirty buffers. 2248 * 2249 * Generally we are sleeping due to insufficient buffer space. 2250 * 2251 * NOTE: bufqspin is held if bp is NULL, else it is not held. 2252 */ 2253 if (bp == NULL) { 2254 int flags; 2255 char *waitmsg; 2256 2257 spin_unlock(&bufqspin); 2258 if (defrag) { 2259 flags = VFS_BIO_NEED_BUFSPACE; 2260 waitmsg = "nbufkv"; 2261 } else if (bufspace >= hibufspace) { 2262 waitmsg = "nbufbs"; 2263 flags = VFS_BIO_NEED_BUFSPACE; 2264 } else { 2265 waitmsg = "newbuf"; 2266 flags = VFS_BIO_NEED_ANY; 2267 } 2268 2269 bd_speedup(); /* heeeelp */ 2270 spin_lock(&bufcspin); 2271 needsbuffer |= flags; 2272 while (needsbuffer & flags) { 2273 if (ssleep(&needsbuffer, &bufcspin, 2274 slpflags, waitmsg, slptimeo)) { 2275 spin_unlock(&bufcspin); 2276 return (NULL); 2277 } 2278 } 2279 spin_unlock(&bufcspin); 2280 } else { 2281 /* 2282 * We finally have a valid bp. We aren't quite out of the 2283 * woods, we still have to reserve kva space. In order 2284 * to keep fragmentation sane we only allocate kva in 2285 * BKVASIZE chunks. 2286 * 2287 * (bufqspin is not held) 2288 */ 2289 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2290 2291 if (maxsize != bp->b_kvasize) { 2292 vm_offset_t addr = 0; 2293 int count; 2294 2295 bfreekva(bp); 2296 2297 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2298 vm_map_lock(&buffer_map); 2299 2300 if (vm_map_findspace(&buffer_map, 2301 vm_map_min(&buffer_map), maxsize, 2302 maxsize, 0, &addr)) { 2303 /* 2304 * Uh oh. Buffer map is too fragmented. We 2305 * must defragment the map. 2306 */ 2307 vm_map_unlock(&buffer_map); 2308 vm_map_entry_release(count); 2309 ++bufdefragcnt; 2310 defrag = 1; 2311 bp->b_flags |= B_INVAL; 2312 brelse(bp); 2313 goto restart; 2314 } 2315 if (addr) { 2316 vm_map_insert(&buffer_map, &count, 2317 NULL, 0, 2318 addr, addr + maxsize, 2319 VM_MAPTYPE_NORMAL, 2320 VM_PROT_ALL, VM_PROT_ALL, 2321 MAP_NOFAULT); 2322 2323 bp->b_kvabase = (caddr_t) addr; 2324 bp->b_kvasize = maxsize; 2325 bufspace += bp->b_kvasize; 2326 ++bufreusecnt; 2327 } 2328 vm_map_unlock(&buffer_map); 2329 vm_map_entry_release(count); 2330 } 2331 bp->b_data = bp->b_kvabase; 2332 } 2333 return(bp); 2334 } 2335 2336 /* 2337 * This routine is called in an emergency to recover VM pages from the 2338 * buffer cache by cashing in clean buffers. The idea is to recover 2339 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2340 * 2341 * MPSAFE 2342 */ 2343 static int 2344 recoverbufpages(void) 2345 { 2346 struct buf *bp; 2347 int bytes = 0; 2348 2349 ++recoverbufcalls; 2350 2351 spin_lock(&bufqspin); 2352 while (bytes < MAXBSIZE) { 2353 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2354 if (bp == NULL) 2355 break; 2356 2357 /* 2358 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2359 * cycles through the queue twice before being selected. 2360 */ 2361 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2362 bp->b_flags |= B_AGE; 2363 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2364 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2365 bp, b_freelist); 2366 continue; 2367 } 2368 2369 /* 2370 * Sanity Checks 2371 */ 2372 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2373 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2374 2375 /* 2376 * Start freeing the bp. This is somewhat involved. 2377 * 2378 * Buffers on the clean list must be disassociated from 2379 * their current vnode 2380 */ 2381 2382 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2383 kprintf("recoverbufpages: warning, locked buf %p, " 2384 "race corrected\n", 2385 bp); 2386 ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100); 2387 continue; 2388 } 2389 if (bp->b_qindex != BQUEUE_CLEAN) { 2390 kprintf("recoverbufpages: warning, BUF_LOCK blocked " 2391 "unexpectedly on buf %p index %d, race " 2392 "corrected\n", 2393 bp, bp->b_qindex); 2394 BUF_UNLOCK(bp); 2395 continue; 2396 } 2397 bremfree_locked(bp); 2398 spin_unlock(&bufqspin); 2399 2400 /* 2401 * Dependancies must be handled before we disassociate the 2402 * vnode. 2403 * 2404 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2405 * be immediately disassociated. HAMMER then becomes 2406 * responsible for releasing the buffer. 2407 */ 2408 if (LIST_FIRST(&bp->b_dep) != NULL) { 2409 buf_deallocate(bp); 2410 if (bp->b_flags & B_LOCKED) { 2411 bqrelse(bp); 2412 spin_lock(&bufqspin); 2413 continue; 2414 } 2415 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2416 } 2417 2418 bytes += bp->b_bufsize; 2419 2420 if (bp->b_flags & B_VMIO) { 2421 bp->b_flags |= B_DIRECT; /* try to free pages */ 2422 vfs_vmio_release(bp); 2423 } 2424 if (bp->b_vp) 2425 brelvp(bp); 2426 2427 KKASSERT(bp->b_vp == NULL); 2428 KKASSERT((bp->b_flags & B_HASHED) == 0); 2429 2430 /* 2431 * critical section protection is not required when 2432 * scrapping a buffer's contents because it is already 2433 * wired. 2434 */ 2435 if (bp->b_bufsize) 2436 allocbuf(bp, 0); 2437 2438 bp->b_flags = B_BNOCLIP; 2439 bp->b_cmd = BUF_CMD_DONE; 2440 bp->b_vp = NULL; 2441 bp->b_error = 0; 2442 bp->b_resid = 0; 2443 bp->b_bcount = 0; 2444 bp->b_xio.xio_npages = 0; 2445 bp->b_dirtyoff = bp->b_dirtyend = 0; 2446 reinitbufbio(bp); 2447 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2448 buf_dep_init(bp); 2449 bp->b_flags |= B_INVAL; 2450 /* bfreekva(bp); */ 2451 brelse(bp); 2452 spin_lock(&bufqspin); 2453 } 2454 spin_unlock(&bufqspin); 2455 return(bytes); 2456 } 2457 2458 /* 2459 * buf_daemon: 2460 * 2461 * Buffer flushing daemon. Buffers are normally flushed by the 2462 * update daemon but if it cannot keep up this process starts to 2463 * take the load in an attempt to prevent getnewbuf() from blocking. 2464 * 2465 * Once a flush is initiated it does not stop until the number 2466 * of buffers falls below lodirtybuffers, but we will wake up anyone 2467 * waiting at the mid-point. 2468 */ 2469 2470 static struct kproc_desc buf_kp = { 2471 "bufdaemon", 2472 buf_daemon, 2473 &bufdaemon_td 2474 }; 2475 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2476 kproc_start, &buf_kp) 2477 2478 static struct kproc_desc bufhw_kp = { 2479 "bufdaemon_hw", 2480 buf_daemon_hw, 2481 &bufdaemonhw_td 2482 }; 2483 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2484 kproc_start, &bufhw_kp) 2485 2486 /* 2487 * MPSAFE thread 2488 */ 2489 static void 2490 buf_daemon(void) 2491 { 2492 int limit; 2493 2494 /* 2495 * This process needs to be suspended prior to shutdown sync. 2496 */ 2497 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2498 bufdaemon_td, SHUTDOWN_PRI_LAST); 2499 curthread->td_flags |= TDF_SYSTHREAD; 2500 2501 /* 2502 * This process is allowed to take the buffer cache to the limit 2503 */ 2504 for (;;) { 2505 kproc_suspend_loop(); 2506 2507 /* 2508 * Do the flush as long as the number of dirty buffers 2509 * (including those running) exceeds lodirtybufspace. 2510 * 2511 * When flushing limit running I/O to hirunningspace 2512 * Do the flush. Limit the amount of in-transit I/O we 2513 * allow to build up, otherwise we would completely saturate 2514 * the I/O system. Wakeup any waiting processes before we 2515 * normally would so they can run in parallel with our drain. 2516 * 2517 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2518 * but because we split the operation into two threads we 2519 * have to cut it in half for each thread. 2520 */ 2521 waitrunningbufspace(); 2522 limit = lodirtybufspace / 2; 2523 while (runningbufspace + dirtybufspace > limit || 2524 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2525 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2526 break; 2527 if (runningbufspace < hirunningspace) 2528 continue; 2529 waitrunningbufspace(); 2530 } 2531 2532 /* 2533 * We reached our low water mark, reset the 2534 * request and sleep until we are needed again. 2535 * The sleep is just so the suspend code works. 2536 */ 2537 spin_lock(&bufcspin); 2538 if (bd_request == 0) 2539 ssleep(&bd_request, &bufcspin, 0, "psleep", hz); 2540 bd_request = 0; 2541 spin_unlock(&bufcspin); 2542 } 2543 } 2544 2545 /* 2546 * MPSAFE thread 2547 */ 2548 static void 2549 buf_daemon_hw(void) 2550 { 2551 int limit; 2552 2553 /* 2554 * This process needs to be suspended prior to shutdown sync. 2555 */ 2556 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2557 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2558 curthread->td_flags |= TDF_SYSTHREAD; 2559 2560 /* 2561 * This process is allowed to take the buffer cache to the limit 2562 */ 2563 for (;;) { 2564 kproc_suspend_loop(); 2565 2566 /* 2567 * Do the flush. Limit the amount of in-transit I/O we 2568 * allow to build up, otherwise we would completely saturate 2569 * the I/O system. Wakeup any waiting processes before we 2570 * normally would so they can run in parallel with our drain. 2571 * 2572 * Once we decide to flush push the queued I/O up to 2573 * hirunningspace in order to trigger bursting by the bioq 2574 * subsystem. 2575 * 2576 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2577 * but because we split the operation into two threads we 2578 * have to cut it in half for each thread. 2579 */ 2580 waitrunningbufspace(); 2581 limit = lodirtybufspace / 2; 2582 while (runningbufspace + dirtybufspacehw > limit || 2583 dirtybufcounthw >= nbuf / 2) { 2584 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2585 break; 2586 if (runningbufspace < hirunningspace) 2587 continue; 2588 waitrunningbufspace(); 2589 } 2590 2591 /* 2592 * We reached our low water mark, reset the 2593 * request and sleep until we are needed again. 2594 * The sleep is just so the suspend code works. 2595 */ 2596 spin_lock(&bufcspin); 2597 if (bd_request_hw == 0) 2598 ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz); 2599 bd_request_hw = 0; 2600 spin_unlock(&bufcspin); 2601 } 2602 } 2603 2604 /* 2605 * flushbufqueues: 2606 * 2607 * Try to flush a buffer in the dirty queue. We must be careful to 2608 * free up B_INVAL buffers instead of write them, which NFS is 2609 * particularly sensitive to. 2610 * 2611 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2612 * that we really want to try to get the buffer out and reuse it 2613 * due to the write load on the machine. 2614 * 2615 * We must lock the buffer in order to check its validity before we 2616 * can mess with its contents. bufqspin isn't enough. 2617 */ 2618 static int 2619 flushbufqueues(bufq_type_t q) 2620 { 2621 struct buf *bp; 2622 int r = 0; 2623 int spun; 2624 2625 spin_lock(&bufqspin); 2626 spun = 1; 2627 2628 bp = TAILQ_FIRST(&bufqueues[q]); 2629 while (bp) { 2630 if ((bp->b_flags & B_DELWRI) == 0) { 2631 kprintf("Unexpected clean buffer %p\n", bp); 2632 bp = TAILQ_NEXT(bp, b_freelist); 2633 continue; 2634 } 2635 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2636 bp = TAILQ_NEXT(bp, b_freelist); 2637 continue; 2638 } 2639 KKASSERT(bp->b_qindex == q); 2640 2641 /* 2642 * Must recheck B_DELWRI after successfully locking 2643 * the buffer. 2644 */ 2645 if ((bp->b_flags & B_DELWRI) == 0) { 2646 BUF_UNLOCK(bp); 2647 bp = TAILQ_NEXT(bp, b_freelist); 2648 continue; 2649 } 2650 2651 if (bp->b_flags & B_INVAL) { 2652 _bremfree(bp); 2653 spin_unlock(&bufqspin); 2654 spun = 0; 2655 brelse(bp); 2656 ++r; 2657 break; 2658 } 2659 2660 spin_unlock(&bufqspin); 2661 spun = 0; 2662 2663 if (LIST_FIRST(&bp->b_dep) != NULL && 2664 (bp->b_flags & B_DEFERRED) == 0 && 2665 buf_countdeps(bp, 0)) { 2666 spin_lock(&bufqspin); 2667 spun = 1; 2668 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2669 TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist); 2670 bp->b_flags |= B_DEFERRED; 2671 BUF_UNLOCK(bp); 2672 bp = TAILQ_FIRST(&bufqueues[q]); 2673 continue; 2674 } 2675 2676 /* 2677 * If the buffer has a dependancy, buf_checkwrite() must 2678 * also return 0 for us to be able to initate the write. 2679 * 2680 * If the buffer is flagged B_ERROR it may be requeued 2681 * over and over again, we try to avoid a live lock. 2682 * 2683 * NOTE: buf_checkwrite is MPSAFE. 2684 */ 2685 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) { 2686 bremfree(bp); 2687 brelse(bp); 2688 } else if (bp->b_flags & B_ERROR) { 2689 tsleep(bp, 0, "bioer", 1); 2690 bp->b_flags &= ~B_AGE; 2691 vfs_bio_awrite(bp); 2692 } else { 2693 bp->b_flags |= B_AGE; 2694 vfs_bio_awrite(bp); 2695 } 2696 ++r; 2697 break; 2698 } 2699 if (spun) 2700 spin_unlock(&bufqspin); 2701 return (r); 2702 } 2703 2704 /* 2705 * inmem: 2706 * 2707 * Returns true if no I/O is needed to access the associated VM object. 2708 * This is like findblk except it also hunts around in the VM system for 2709 * the data. 2710 * 2711 * Note that we ignore vm_page_free() races from interrupts against our 2712 * lookup, since if the caller is not protected our return value will not 2713 * be any more valid then otherwise once we exit the critical section. 2714 */ 2715 int 2716 inmem(struct vnode *vp, off_t loffset) 2717 { 2718 vm_object_t obj; 2719 vm_offset_t toff, tinc, size; 2720 vm_page_t m; 2721 2722 if (findblk(vp, loffset, FINDBLK_TEST)) 2723 return 1; 2724 if (vp->v_mount == NULL) 2725 return 0; 2726 if ((obj = vp->v_object) == NULL) 2727 return 0; 2728 2729 size = PAGE_SIZE; 2730 if (size > vp->v_mount->mnt_stat.f_iosize) 2731 size = vp->v_mount->mnt_stat.f_iosize; 2732 2733 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2734 lwkt_gettoken(&vm_token); 2735 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2736 lwkt_reltoken(&vm_token); 2737 if (m == NULL) 2738 return 0; 2739 tinc = size; 2740 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2741 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2742 if (vm_page_is_valid(m, 2743 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2744 return 0; 2745 } 2746 return 1; 2747 } 2748 2749 /* 2750 * findblk: 2751 * 2752 * Locate and return the specified buffer. Unless flagged otherwise, 2753 * a locked buffer will be returned if it exists or NULL if it does not. 2754 * 2755 * findblk()'d buffers are still on the bufqueues and if you intend 2756 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2757 * and possibly do other stuff to it. 2758 * 2759 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2760 * for locking the buffer and ensuring that it remains 2761 * the desired buffer after locking. 2762 * 2763 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2764 * to acquire the lock we return NULL, even if the 2765 * buffer exists. 2766 * 2767 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal 2768 * reuse by getnewbuf() but does not prevent 2769 * disassociation (B_INVAL). Used to avoid deadlocks 2770 * against random (vp,loffset)s due to reassignment. 2771 * 2772 * (0) - Lock the buffer blocking. 2773 * 2774 * MPSAFE 2775 */ 2776 struct buf * 2777 findblk(struct vnode *vp, off_t loffset, int flags) 2778 { 2779 struct buf *bp; 2780 int lkflags; 2781 2782 lkflags = LK_EXCLUSIVE; 2783 if (flags & FINDBLK_NBLOCK) 2784 lkflags |= LK_NOWAIT; 2785 2786 for (;;) { 2787 /* 2788 * Lookup. Ref the buf while holding v_token to prevent 2789 * reuse (but does not prevent diassociation). 2790 */ 2791 lwkt_gettoken(&vp->v_token); 2792 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2793 if (bp == NULL) { 2794 lwkt_reltoken(&vp->v_token); 2795 return(NULL); 2796 } 2797 bqhold(bp); 2798 lwkt_reltoken(&vp->v_token); 2799 2800 /* 2801 * If testing only break and return bp, do not lock. 2802 */ 2803 if (flags & FINDBLK_TEST) 2804 break; 2805 2806 /* 2807 * Lock the buffer, return an error if the lock fails. 2808 * (only FINDBLK_NBLOCK can cause the lock to fail). 2809 */ 2810 if (BUF_LOCK(bp, lkflags)) { 2811 atomic_subtract_int(&bp->b_refs, 1); 2812 /* bp = NULL; not needed */ 2813 return(NULL); 2814 } 2815 2816 /* 2817 * Revalidate the locked buf before allowing it to be 2818 * returned. 2819 */ 2820 if (bp->b_vp == vp && bp->b_loffset == loffset) 2821 break; 2822 atomic_subtract_int(&bp->b_refs, 1); 2823 BUF_UNLOCK(bp); 2824 } 2825 2826 /* 2827 * Success 2828 */ 2829 if ((flags & FINDBLK_REF) == 0) 2830 atomic_subtract_int(&bp->b_refs, 1); 2831 return(bp); 2832 } 2833 2834 /* 2835 * getcacheblk: 2836 * 2837 * Similar to getblk() except only returns the buffer if it is 2838 * B_CACHE and requires no other manipulation. Otherwise NULL 2839 * is returned. 2840 * 2841 * If B_RAM is set the buffer might be just fine, but we return 2842 * NULL anyway because we want the code to fall through to the 2843 * cluster read. Otherwise read-ahead breaks. 2844 * 2845 * If blksize is 0 the buffer cache buffer must already be fully 2846 * cached. 2847 * 2848 * If blksize is non-zero getblk() will be used, allowing a buffer 2849 * to be reinstantiated from its VM backing store. The buffer must 2850 * still be fully cached after reinstantiation to be returned. 2851 */ 2852 struct buf * 2853 getcacheblk(struct vnode *vp, off_t loffset, int blksize) 2854 { 2855 struct buf *bp; 2856 2857 if (blksize) { 2858 bp = getblk(vp, loffset, blksize, 0, 0); 2859 if (bp) { 2860 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == 2861 B_CACHE) { 2862 bp->b_flags &= ~B_AGE; 2863 } else { 2864 brelse(bp); 2865 bp = NULL; 2866 } 2867 } 2868 } else { 2869 bp = findblk(vp, loffset, 0); 2870 if (bp) { 2871 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == 2872 B_CACHE) { 2873 bp->b_flags &= ~B_AGE; 2874 bremfree(bp); 2875 } else { 2876 BUF_UNLOCK(bp); 2877 bp = NULL; 2878 } 2879 } 2880 } 2881 return (bp); 2882 } 2883 2884 /* 2885 * getblk: 2886 * 2887 * Get a block given a specified block and offset into a file/device. 2888 * B_INVAL may or may not be set on return. The caller should clear 2889 * B_INVAL prior to initiating a READ. 2890 * 2891 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2892 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2893 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2894 * without doing any of those things the system will likely believe 2895 * the buffer to be valid (especially if it is not B_VMIO), and the 2896 * next getblk() will return the buffer with B_CACHE set. 2897 * 2898 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2899 * an existing buffer. 2900 * 2901 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2902 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2903 * and then cleared based on the backing VM. If the previous buffer is 2904 * non-0-sized but invalid, B_CACHE will be cleared. 2905 * 2906 * If getblk() must create a new buffer, the new buffer is returned with 2907 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2908 * case it is returned with B_INVAL clear and B_CACHE set based on the 2909 * backing VM. 2910 * 2911 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2912 * B_CACHE bit is clear. 2913 * 2914 * What this means, basically, is that the caller should use B_CACHE to 2915 * determine whether the buffer is fully valid or not and should clear 2916 * B_INVAL prior to issuing a read. If the caller intends to validate 2917 * the buffer by loading its data area with something, the caller needs 2918 * to clear B_INVAL. If the caller does this without issuing an I/O, 2919 * the caller should set B_CACHE ( as an optimization ), else the caller 2920 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2921 * a write attempt or if it was a successfull read. If the caller 2922 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2923 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2924 * 2925 * getblk flags: 2926 * 2927 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2928 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2929 * 2930 * MPALMOSTSAFE 2931 */ 2932 struct buf * 2933 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2934 { 2935 struct buf *bp; 2936 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2937 int error; 2938 int lkflags; 2939 2940 if (size > MAXBSIZE) 2941 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2942 if (vp->v_object == NULL) 2943 panic("getblk: vnode %p has no object!", vp); 2944 2945 loop: 2946 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) { 2947 /* 2948 * The buffer was found in the cache, but we need to lock it. 2949 * We must acquire a ref on the bp to prevent reuse, but 2950 * this will not prevent disassociation (brelvp()) so we 2951 * must recheck (vp,loffset) after acquiring the lock. 2952 * 2953 * Without the ref the buffer could potentially be reused 2954 * before we acquire the lock and create a deadlock 2955 * situation between the thread trying to reuse the buffer 2956 * and us due to the fact that we would wind up blocking 2957 * on a random (vp,loffset). 2958 */ 2959 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2960 if (blkflags & GETBLK_NOWAIT) { 2961 bqdrop(bp); 2962 return(NULL); 2963 } 2964 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2965 if (blkflags & GETBLK_PCATCH) 2966 lkflags |= LK_PCATCH; 2967 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2968 if (error) { 2969 bqdrop(bp); 2970 if (error == ENOLCK) 2971 goto loop; 2972 return (NULL); 2973 } 2974 /* buffer may have changed on us */ 2975 } 2976 bqdrop(bp); 2977 2978 /* 2979 * Once the buffer has been locked, make sure we didn't race 2980 * a buffer recyclement. Buffers that are no longer hashed 2981 * will have b_vp == NULL, so this takes care of that check 2982 * as well. 2983 */ 2984 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2985 kprintf("Warning buffer %p (vp %p loffset %lld) " 2986 "was recycled\n", 2987 bp, vp, (long long)loffset); 2988 BUF_UNLOCK(bp); 2989 goto loop; 2990 } 2991 2992 /* 2993 * If SZMATCH any pre-existing buffer must be of the requested 2994 * size or NULL is returned. The caller absolutely does not 2995 * want getblk() to bwrite() the buffer on a size mismatch. 2996 */ 2997 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2998 BUF_UNLOCK(bp); 2999 return(NULL); 3000 } 3001 3002 /* 3003 * All vnode-based buffers must be backed by a VM object. 3004 */ 3005 KKASSERT(bp->b_flags & B_VMIO); 3006 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3007 bp->b_flags &= ~B_AGE; 3008 3009 /* 3010 * Make sure that B_INVAL buffers do not have a cached 3011 * block number translation. 3012 */ 3013 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 3014 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 3015 " did not have cleared bio_offset cache\n", 3016 bp, vp, (long long)loffset); 3017 clearbiocache(&bp->b_bio2); 3018 } 3019 3020 /* 3021 * The buffer is locked. B_CACHE is cleared if the buffer is 3022 * invalid. 3023 */ 3024 if (bp->b_flags & B_INVAL) 3025 bp->b_flags &= ~B_CACHE; 3026 bremfree(bp); 3027 3028 /* 3029 * Any size inconsistancy with a dirty buffer or a buffer 3030 * with a softupdates dependancy must be resolved. Resizing 3031 * the buffer in such circumstances can lead to problems. 3032 * 3033 * Dirty or dependant buffers are written synchronously. 3034 * Other types of buffers are simply released and 3035 * reconstituted as they may be backed by valid, dirty VM 3036 * pages (but not marked B_DELWRI). 3037 * 3038 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 3039 * and may be left over from a prior truncation (and thus 3040 * no longer represent the actual EOF point), so we 3041 * definitely do not want to B_NOCACHE the backing store. 3042 */ 3043 if (size != bp->b_bcount) { 3044 if (bp->b_flags & B_DELWRI) { 3045 bp->b_flags |= B_RELBUF; 3046 bwrite(bp); 3047 } else if (LIST_FIRST(&bp->b_dep)) { 3048 bp->b_flags |= B_RELBUF; 3049 bwrite(bp); 3050 } else { 3051 bp->b_flags |= B_RELBUF; 3052 brelse(bp); 3053 } 3054 goto loop; 3055 } 3056 KKASSERT(size <= bp->b_kvasize); 3057 KASSERT(bp->b_loffset != NOOFFSET, 3058 ("getblk: no buffer offset")); 3059 3060 /* 3061 * A buffer with B_DELWRI set and B_CACHE clear must 3062 * be committed before we can return the buffer in 3063 * order to prevent the caller from issuing a read 3064 * ( due to B_CACHE not being set ) and overwriting 3065 * it. 3066 * 3067 * Most callers, including NFS and FFS, need this to 3068 * operate properly either because they assume they 3069 * can issue a read if B_CACHE is not set, or because 3070 * ( for example ) an uncached B_DELWRI might loop due 3071 * to softupdates re-dirtying the buffer. In the latter 3072 * case, B_CACHE is set after the first write completes, 3073 * preventing further loops. 3074 * 3075 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 3076 * above while extending the buffer, we cannot allow the 3077 * buffer to remain with B_CACHE set after the write 3078 * completes or it will represent a corrupt state. To 3079 * deal with this we set B_NOCACHE to scrap the buffer 3080 * after the write. 3081 * 3082 * XXX Should this be B_RELBUF instead of B_NOCACHE? 3083 * I'm not even sure this state is still possible 3084 * now that getblk() writes out any dirty buffers 3085 * on size changes. 3086 * 3087 * We might be able to do something fancy, like setting 3088 * B_CACHE in bwrite() except if B_DELWRI is already set, 3089 * so the below call doesn't set B_CACHE, but that gets real 3090 * confusing. This is much easier. 3091 */ 3092 3093 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 3094 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 3095 "and CACHE clear, b_flags %08x\n", 3096 bp, (intmax_t)bp->b_loffset, bp->b_flags); 3097 bp->b_flags |= B_NOCACHE; 3098 bwrite(bp); 3099 goto loop; 3100 } 3101 } else { 3102 /* 3103 * Buffer is not in-core, create new buffer. The buffer 3104 * returned by getnewbuf() is locked. Note that the returned 3105 * buffer is also considered valid (not marked B_INVAL). 3106 * 3107 * Calculating the offset for the I/O requires figuring out 3108 * the block size. We use DEV_BSIZE for VBLK or VCHR and 3109 * the mount's f_iosize otherwise. If the vnode does not 3110 * have an associated mount we assume that the passed size is 3111 * the block size. 3112 * 3113 * Note that vn_isdisk() cannot be used here since it may 3114 * return a failure for numerous reasons. Note that the 3115 * buffer size may be larger then the block size (the caller 3116 * will use block numbers with the proper multiple). Beware 3117 * of using any v_* fields which are part of unions. In 3118 * particular, in DragonFly the mount point overloading 3119 * mechanism uses the namecache only and the underlying 3120 * directory vnode is not a special case. 3121 */ 3122 int bsize, maxsize; 3123 3124 if (vp->v_type == VBLK || vp->v_type == VCHR) 3125 bsize = DEV_BSIZE; 3126 else if (vp->v_mount) 3127 bsize = vp->v_mount->mnt_stat.f_iosize; 3128 else 3129 bsize = size; 3130 3131 maxsize = size + (loffset & PAGE_MASK); 3132 maxsize = imax(maxsize, bsize); 3133 3134 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 3135 if (bp == NULL) { 3136 if (slpflags || slptimeo) 3137 return NULL; 3138 goto loop; 3139 } 3140 3141 /* 3142 * Atomically insert the buffer into the hash, so that it can 3143 * be found by findblk(). 3144 * 3145 * If bgetvp() returns non-zero a collision occured, and the 3146 * bp will not be associated with the vnode. 3147 * 3148 * Make sure the translation layer has been cleared. 3149 */ 3150 bp->b_loffset = loffset; 3151 bp->b_bio2.bio_offset = NOOFFSET; 3152 /* bp->b_bio2.bio_next = NULL; */ 3153 3154 if (bgetvp(vp, bp, size)) { 3155 bp->b_flags |= B_INVAL; 3156 brelse(bp); 3157 goto loop; 3158 } 3159 3160 /* 3161 * All vnode-based buffers must be backed by a VM object. 3162 */ 3163 KKASSERT(vp->v_object != NULL); 3164 bp->b_flags |= B_VMIO; 3165 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3166 3167 allocbuf(bp, size); 3168 } 3169 KKASSERT(dsched_is_clear_buf_priv(bp)); 3170 return (bp); 3171 } 3172 3173 /* 3174 * regetblk(bp) 3175 * 3176 * Reacquire a buffer that was previously released to the locked queue, 3177 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 3178 * set B_LOCKED (which handles the acquisition race). 3179 * 3180 * To this end, either B_LOCKED must be set or the dependancy list must be 3181 * non-empty. 3182 * 3183 * MPSAFE 3184 */ 3185 void 3186 regetblk(struct buf *bp) 3187 { 3188 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 3189 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 3190 bremfree(bp); 3191 } 3192 3193 /* 3194 * geteblk: 3195 * 3196 * Get an empty, disassociated buffer of given size. The buffer is 3197 * initially set to B_INVAL. 3198 * 3199 * critical section protection is not required for the allocbuf() 3200 * call because races are impossible here. 3201 * 3202 * MPALMOSTSAFE 3203 */ 3204 struct buf * 3205 geteblk(int size) 3206 { 3207 struct buf *bp; 3208 int maxsize; 3209 3210 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3211 3212 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 3213 ; 3214 allocbuf(bp, size); 3215 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3216 KKASSERT(dsched_is_clear_buf_priv(bp)); 3217 return (bp); 3218 } 3219 3220 3221 /* 3222 * allocbuf: 3223 * 3224 * This code constitutes the buffer memory from either anonymous system 3225 * memory (in the case of non-VMIO operations) or from an associated 3226 * VM object (in the case of VMIO operations). This code is able to 3227 * resize a buffer up or down. 3228 * 3229 * Note that this code is tricky, and has many complications to resolve 3230 * deadlock or inconsistant data situations. Tread lightly!!! 3231 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3232 * the caller. Calling this code willy nilly can result in the loss of 3233 * data. 3234 * 3235 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3236 * B_CACHE for the non-VMIO case. 3237 * 3238 * This routine does not need to be called from a critical section but you 3239 * must own the buffer. 3240 * 3241 * MPSAFE 3242 */ 3243 int 3244 allocbuf(struct buf *bp, int size) 3245 { 3246 int newbsize, mbsize; 3247 int i; 3248 3249 if (BUF_REFCNT(bp) == 0) 3250 panic("allocbuf: buffer not busy"); 3251 3252 if (bp->b_kvasize < size) 3253 panic("allocbuf: buffer too small"); 3254 3255 if ((bp->b_flags & B_VMIO) == 0) { 3256 caddr_t origbuf; 3257 int origbufsize; 3258 /* 3259 * Just get anonymous memory from the kernel. Don't 3260 * mess with B_CACHE. 3261 */ 3262 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3263 if (bp->b_flags & B_MALLOC) 3264 newbsize = mbsize; 3265 else 3266 newbsize = round_page(size); 3267 3268 if (newbsize < bp->b_bufsize) { 3269 /* 3270 * Malloced buffers are not shrunk 3271 */ 3272 if (bp->b_flags & B_MALLOC) { 3273 if (newbsize) { 3274 bp->b_bcount = size; 3275 } else { 3276 kfree(bp->b_data, M_BIOBUF); 3277 if (bp->b_bufsize) { 3278 atomic_subtract_int(&bufmallocspace, bp->b_bufsize); 3279 bufspacewakeup(); 3280 bp->b_bufsize = 0; 3281 } 3282 bp->b_data = bp->b_kvabase; 3283 bp->b_bcount = 0; 3284 bp->b_flags &= ~B_MALLOC; 3285 } 3286 return 1; 3287 } 3288 vm_hold_free_pages( 3289 bp, 3290 (vm_offset_t) bp->b_data + newbsize, 3291 (vm_offset_t) bp->b_data + bp->b_bufsize); 3292 } else if (newbsize > bp->b_bufsize) { 3293 /* 3294 * We only use malloced memory on the first allocation. 3295 * and revert to page-allocated memory when the buffer 3296 * grows. 3297 */ 3298 if ((bufmallocspace < maxbufmallocspace) && 3299 (bp->b_bufsize == 0) && 3300 (mbsize <= PAGE_SIZE/2)) { 3301 3302 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3303 bp->b_bufsize = mbsize; 3304 bp->b_bcount = size; 3305 bp->b_flags |= B_MALLOC; 3306 atomic_add_int(&bufmallocspace, mbsize); 3307 return 1; 3308 } 3309 origbuf = NULL; 3310 origbufsize = 0; 3311 /* 3312 * If the buffer is growing on its other-than-first 3313 * allocation, then we revert to the page-allocation 3314 * scheme. 3315 */ 3316 if (bp->b_flags & B_MALLOC) { 3317 origbuf = bp->b_data; 3318 origbufsize = bp->b_bufsize; 3319 bp->b_data = bp->b_kvabase; 3320 if (bp->b_bufsize) { 3321 atomic_subtract_int(&bufmallocspace, 3322 bp->b_bufsize); 3323 bufspacewakeup(); 3324 bp->b_bufsize = 0; 3325 } 3326 bp->b_flags &= ~B_MALLOC; 3327 newbsize = round_page(newbsize); 3328 } 3329 vm_hold_load_pages( 3330 bp, 3331 (vm_offset_t) bp->b_data + bp->b_bufsize, 3332 (vm_offset_t) bp->b_data + newbsize); 3333 if (origbuf) { 3334 bcopy(origbuf, bp->b_data, origbufsize); 3335 kfree(origbuf, M_BIOBUF); 3336 } 3337 } 3338 } else { 3339 vm_page_t m; 3340 int desiredpages; 3341 3342 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3343 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3344 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3345 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3346 3347 if (bp->b_flags & B_MALLOC) 3348 panic("allocbuf: VMIO buffer can't be malloced"); 3349 /* 3350 * Set B_CACHE initially if buffer is 0 length or will become 3351 * 0-length. 3352 */ 3353 if (size == 0 || bp->b_bufsize == 0) 3354 bp->b_flags |= B_CACHE; 3355 3356 if (newbsize < bp->b_bufsize) { 3357 /* 3358 * DEV_BSIZE aligned new buffer size is less then the 3359 * DEV_BSIZE aligned existing buffer size. Figure out 3360 * if we have to remove any pages. 3361 */ 3362 if (desiredpages < bp->b_xio.xio_npages) { 3363 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3364 /* 3365 * the page is not freed here -- it 3366 * is the responsibility of 3367 * vnode_pager_setsize 3368 */ 3369 m = bp->b_xio.xio_pages[i]; 3370 KASSERT(m != bogus_page, 3371 ("allocbuf: bogus page found")); 3372 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3373 ; 3374 3375 bp->b_xio.xio_pages[i] = NULL; 3376 vm_page_unwire(m, 0); 3377 } 3378 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3379 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3380 bp->b_xio.xio_npages = desiredpages; 3381 } 3382 } else if (size > bp->b_bcount) { 3383 /* 3384 * We are growing the buffer, possibly in a 3385 * byte-granular fashion. 3386 */ 3387 struct vnode *vp; 3388 vm_object_t obj; 3389 vm_offset_t toff; 3390 vm_offset_t tinc; 3391 3392 /* 3393 * Step 1, bring in the VM pages from the object, 3394 * allocating them if necessary. We must clear 3395 * B_CACHE if these pages are not valid for the 3396 * range covered by the buffer. 3397 * 3398 * critical section protection is required to protect 3399 * against interrupts unbusying and freeing pages 3400 * between our vm_page_lookup() and our 3401 * busycheck/wiring call. 3402 */ 3403 vp = bp->b_vp; 3404 obj = vp->v_object; 3405 3406 lwkt_gettoken(&vm_token); 3407 while (bp->b_xio.xio_npages < desiredpages) { 3408 vm_page_t m; 3409 vm_pindex_t pi; 3410 3411 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3412 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3413 /* 3414 * note: must allocate system pages 3415 * since blocking here could intefere 3416 * with paging I/O, no matter which 3417 * process we are. 3418 */ 3419 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3420 if (m) { 3421 vm_page_wire(m); 3422 vm_page_flag_clear(m, PG_ZERO); 3423 vm_page_wakeup(m); 3424 bp->b_flags &= ~B_CACHE; 3425 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3426 ++bp->b_xio.xio_npages; 3427 } 3428 continue; 3429 } 3430 3431 /* 3432 * We found a page. If we have to sleep on it, 3433 * retry because it might have gotten freed out 3434 * from under us. 3435 * 3436 * We can only test PG_BUSY here. Blocking on 3437 * m->busy might lead to a deadlock: 3438 * 3439 * vm_fault->getpages->cluster_read->allocbuf 3440 * 3441 */ 3442 3443 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3444 continue; 3445 vm_page_flag_clear(m, PG_ZERO); 3446 vm_page_wire(m); 3447 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3448 ++bp->b_xio.xio_npages; 3449 if (bp->b_act_count < m->act_count) 3450 bp->b_act_count = m->act_count; 3451 } 3452 lwkt_reltoken(&vm_token); 3453 3454 /* 3455 * Step 2. We've loaded the pages into the buffer, 3456 * we have to figure out if we can still have B_CACHE 3457 * set. Note that B_CACHE is set according to the 3458 * byte-granular range ( bcount and size ), not the 3459 * aligned range ( newbsize ). 3460 * 3461 * The VM test is against m->valid, which is DEV_BSIZE 3462 * aligned. Needless to say, the validity of the data 3463 * needs to also be DEV_BSIZE aligned. Note that this 3464 * fails with NFS if the server or some other client 3465 * extends the file's EOF. If our buffer is resized, 3466 * B_CACHE may remain set! XXX 3467 */ 3468 3469 toff = bp->b_bcount; 3470 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3471 3472 while ((bp->b_flags & B_CACHE) && toff < size) { 3473 vm_pindex_t pi; 3474 3475 if (tinc > (size - toff)) 3476 tinc = size - toff; 3477 3478 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3479 PAGE_SHIFT; 3480 3481 vfs_buf_test_cache( 3482 bp, 3483 bp->b_loffset, 3484 toff, 3485 tinc, 3486 bp->b_xio.xio_pages[pi] 3487 ); 3488 toff += tinc; 3489 tinc = PAGE_SIZE; 3490 } 3491 3492 /* 3493 * Step 3, fixup the KVM pmap. Remember that 3494 * bp->b_data is relative to bp->b_loffset, but 3495 * bp->b_loffset may be offset into the first page. 3496 */ 3497 3498 bp->b_data = (caddr_t) 3499 trunc_page((vm_offset_t)bp->b_data); 3500 pmap_qenter( 3501 (vm_offset_t)bp->b_data, 3502 bp->b_xio.xio_pages, 3503 bp->b_xio.xio_npages 3504 ); 3505 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3506 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3507 } 3508 } 3509 3510 /* adjust space use on already-dirty buffer */ 3511 if (bp->b_flags & B_DELWRI) { 3512 spin_lock(&bufcspin); 3513 dirtybufspace += newbsize - bp->b_bufsize; 3514 if (bp->b_flags & B_HEAVY) 3515 dirtybufspacehw += newbsize - bp->b_bufsize; 3516 spin_unlock(&bufcspin); 3517 } 3518 if (newbsize < bp->b_bufsize) 3519 bufspacewakeup(); 3520 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3521 bp->b_bcount = size; /* requested buffer size */ 3522 return 1; 3523 } 3524 3525 /* 3526 * biowait: 3527 * 3528 * Wait for buffer I/O completion, returning error status. B_EINTR 3529 * is converted into an EINTR error but not cleared (since a chain 3530 * of biowait() calls may occur). 3531 * 3532 * On return bpdone() will have been called but the buffer will remain 3533 * locked and will not have been brelse()'d. 3534 * 3535 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3536 * likely still in progress on return. 3537 * 3538 * NOTE! This operation is on a BIO, not a BUF. 3539 * 3540 * NOTE! BIO_DONE is cleared by vn_strategy() 3541 * 3542 * MPSAFE 3543 */ 3544 static __inline int 3545 _biowait(struct bio *bio, const char *wmesg, int to) 3546 { 3547 struct buf *bp = bio->bio_buf; 3548 u_int32_t flags; 3549 u_int32_t nflags; 3550 int error; 3551 3552 KKASSERT(bio == &bp->b_bio1); 3553 for (;;) { 3554 flags = bio->bio_flags; 3555 if (flags & BIO_DONE) 3556 break; 3557 tsleep_interlock(bio, 0); 3558 nflags = flags | BIO_WANT; 3559 tsleep_interlock(bio, 0); 3560 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3561 if (wmesg) 3562 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3563 else if (bp->b_cmd == BUF_CMD_READ) 3564 error = tsleep(bio, PINTERLOCKED, "biord", to); 3565 else 3566 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3567 if (error) { 3568 kprintf("tsleep error biowait %d\n", error); 3569 return (error); 3570 } 3571 } 3572 } 3573 3574 /* 3575 * Finish up. 3576 */ 3577 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3578 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3579 if (bp->b_flags & B_EINTR) 3580 return (EINTR); 3581 if (bp->b_flags & B_ERROR) 3582 return (bp->b_error ? bp->b_error : EIO); 3583 return (0); 3584 } 3585 3586 int 3587 biowait(struct bio *bio, const char *wmesg) 3588 { 3589 return(_biowait(bio, wmesg, 0)); 3590 } 3591 3592 int 3593 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3594 { 3595 return(_biowait(bio, wmesg, to)); 3596 } 3597 3598 /* 3599 * This associates a tracking count with an I/O. vn_strategy() and 3600 * dev_dstrategy() do this automatically but there are a few cases 3601 * where a vnode or device layer is bypassed when a block translation 3602 * is cached. In such cases bio_start_transaction() may be called on 3603 * the bypassed layers so the system gets an I/O in progress indication 3604 * for those higher layers. 3605 */ 3606 void 3607 bio_start_transaction(struct bio *bio, struct bio_track *track) 3608 { 3609 bio->bio_track = track; 3610 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3611 dsched_new_buf(bio->bio_buf); 3612 bio_track_ref(track); 3613 } 3614 3615 /* 3616 * Initiate I/O on a vnode. 3617 * 3618 * SWAPCACHE OPERATION: 3619 * 3620 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately 3621 * devfs also uses b_vp for fake buffers so we also have to check 3622 * that B_PAGING is 0. In this case the passed 'vp' is probably the 3623 * underlying block device. The swap assignments are related to the 3624 * buffer cache buffer's b_vp, not the passed vp. 3625 * 3626 * The passed vp == bp->b_vp only in the case where the strategy call 3627 * is made on the vp itself for its own buffers (a regular file or 3628 * block device vp). The filesystem usually then re-calls vn_strategy() 3629 * after translating the request to an underlying device. 3630 * 3631 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the 3632 * underlying buffer cache buffers. 3633 * 3634 * We can only deal with page-aligned buffers at the moment, because 3635 * we can't tell what the real dirty state for pages straddling a buffer 3636 * are. 3637 * 3638 * In order to call swap_pager_strategy() we must provide the VM object 3639 * and base offset for the underlying buffer cache pages so it can find 3640 * the swap blocks. 3641 */ 3642 void 3643 vn_strategy(struct vnode *vp, struct bio *bio) 3644 { 3645 struct bio_track *track; 3646 struct buf *bp = bio->bio_buf; 3647 3648 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3649 3650 /* 3651 * Set when an I/O is issued on the bp. Cleared by consumers 3652 * (aka HAMMER), allowing the consumer to determine if I/O had 3653 * actually occurred. 3654 */ 3655 bp->b_flags |= B_IODEBUG; 3656 3657 /* 3658 * Handle the swap cache intercept. 3659 */ 3660 if (vn_cache_strategy(vp, bio)) 3661 return; 3662 3663 /* 3664 * Otherwise do the operation through the filesystem 3665 */ 3666 if (bp->b_cmd == BUF_CMD_READ) 3667 track = &vp->v_track_read; 3668 else 3669 track = &vp->v_track_write; 3670 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3671 bio->bio_track = track; 3672 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3673 dsched_new_buf(bio->bio_buf); 3674 bio_track_ref(track); 3675 vop_strategy(*vp->v_ops, vp, bio); 3676 } 3677 3678 static void vn_cache_strategy_callback(struct bio *bio); 3679 3680 int 3681 vn_cache_strategy(struct vnode *vp, struct bio *bio) 3682 { 3683 struct buf *bp = bio->bio_buf; 3684 struct bio *nbio; 3685 vm_object_t object; 3686 vm_page_t m; 3687 int i; 3688 3689 /* 3690 * Is this buffer cache buffer suitable for reading from 3691 * the swap cache? 3692 */ 3693 if (vm_swapcache_read_enable == 0 || 3694 bp->b_cmd != BUF_CMD_READ || 3695 ((bp->b_flags & B_CLUSTER) == 0 && 3696 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) || 3697 ((int)bp->b_loffset & PAGE_MASK) != 0 || 3698 (bp->b_bcount & PAGE_MASK) != 0) { 3699 return(0); 3700 } 3701 3702 /* 3703 * Figure out the original VM object (it will match the underlying 3704 * VM pages). Note that swap cached data uses page indices relative 3705 * to that object, not relative to bio->bio_offset. 3706 */ 3707 if (bp->b_flags & B_CLUSTER) 3708 object = vp->v_object; 3709 else 3710 object = bp->b_vp->v_object; 3711 3712 /* 3713 * In order to be able to use the swap cache all underlying VM 3714 * pages must be marked as such, and we can't have any bogus pages. 3715 */ 3716 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 3717 m = bp->b_xio.xio_pages[i]; 3718 if ((m->flags & PG_SWAPPED) == 0) 3719 break; 3720 if (m == bogus_page) 3721 break; 3722 } 3723 3724 /* 3725 * If we are good then issue the I/O using swap_pager_strategy(). 3726 */ 3727 if (i == bp->b_xio.xio_npages) { 3728 m = bp->b_xio.xio_pages[0]; 3729 nbio = push_bio(bio); 3730 nbio->bio_done = vn_cache_strategy_callback; 3731 nbio->bio_offset = ptoa(m->pindex); 3732 KKASSERT(m->object == object); 3733 swap_pager_strategy(object, nbio); 3734 return(1); 3735 } 3736 return(0); 3737 } 3738 3739 /* 3740 * This is a bit of a hack but since the vn_cache_strategy() function can 3741 * override a VFS's strategy function we must make sure that the bio, which 3742 * is probably bio2, doesn't leak an unexpected offset value back to the 3743 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the 3744 * bio went through its own file strategy function and the the bio2 offset 3745 * is a cached disk offset when, in fact, it isn't. 3746 */ 3747 static void 3748 vn_cache_strategy_callback(struct bio *bio) 3749 { 3750 bio->bio_offset = NOOFFSET; 3751 biodone(pop_bio(bio)); 3752 } 3753 3754 /* 3755 * bpdone: 3756 * 3757 * Finish I/O on a buffer after all BIOs have been processed. 3758 * Called when the bio chain is exhausted or by biowait. If called 3759 * by biowait, elseit is typically 0. 3760 * 3761 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3762 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3763 * assuming B_INVAL is clear. 3764 * 3765 * For the VMIO case, we set B_CACHE if the op was a read and no 3766 * read error occured, or if the op was a write. B_CACHE is never 3767 * set if the buffer is invalid or otherwise uncacheable. 3768 * 3769 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3770 * initiator to leave B_INVAL set to brelse the buffer out of existance 3771 * in the biodone routine. 3772 */ 3773 void 3774 bpdone(struct buf *bp, int elseit) 3775 { 3776 buf_cmd_t cmd; 3777 3778 KASSERT(BUF_REFCNTNB(bp) > 0, 3779 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3780 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3781 ("biodone: bp %p already done!", bp)); 3782 3783 /* 3784 * No more BIOs are left. All completion functions have been dealt 3785 * with, now we clean up the buffer. 3786 */ 3787 cmd = bp->b_cmd; 3788 bp->b_cmd = BUF_CMD_DONE; 3789 3790 /* 3791 * Only reads and writes are processed past this point. 3792 */ 3793 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3794 if (cmd == BUF_CMD_FREEBLKS) 3795 bp->b_flags |= B_NOCACHE; 3796 if (elseit) 3797 brelse(bp); 3798 return; 3799 } 3800 3801 /* 3802 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3803 * a lot worse. XXX - move this above the clearing of b_cmd 3804 */ 3805 if (LIST_FIRST(&bp->b_dep) != NULL) 3806 buf_complete(bp); /* MPSAFE */ 3807 3808 /* 3809 * A failed write must re-dirty the buffer unless B_INVAL 3810 * was set. Only applicable to normal buffers (with VPs). 3811 * vinum buffers may not have a vp. 3812 */ 3813 if (cmd == BUF_CMD_WRITE && 3814 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3815 bp->b_flags &= ~B_NOCACHE; 3816 if (bp->b_vp) 3817 bdirty(bp); 3818 } 3819 3820 if (bp->b_flags & B_VMIO) { 3821 int i; 3822 vm_ooffset_t foff; 3823 vm_page_t m; 3824 vm_object_t obj; 3825 int iosize; 3826 struct vnode *vp = bp->b_vp; 3827 3828 obj = vp->v_object; 3829 3830 #if defined(VFS_BIO_DEBUG) 3831 if (vp->v_auxrefs == 0) 3832 panic("biodone: zero vnode hold count"); 3833 if ((vp->v_flag & VOBJBUF) == 0) 3834 panic("biodone: vnode is not setup for merged cache"); 3835 #endif 3836 3837 foff = bp->b_loffset; 3838 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3839 KASSERT(obj != NULL, ("biodone: missing VM object")); 3840 3841 #if defined(VFS_BIO_DEBUG) 3842 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3843 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3844 obj->paging_in_progress, bp->b_xio.xio_npages); 3845 } 3846 #endif 3847 3848 /* 3849 * Set B_CACHE if the op was a normal read and no error 3850 * occured. B_CACHE is set for writes in the b*write() 3851 * routines. 3852 */ 3853 iosize = bp->b_bcount - bp->b_resid; 3854 if (cmd == BUF_CMD_READ && 3855 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3856 bp->b_flags |= B_CACHE; 3857 } 3858 3859 lwkt_gettoken(&vm_token); 3860 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3861 int bogusflag = 0; 3862 int resid; 3863 3864 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3865 if (resid > iosize) 3866 resid = iosize; 3867 3868 /* 3869 * cleanup bogus pages, restoring the originals. Since 3870 * the originals should still be wired, we don't have 3871 * to worry about interrupt/freeing races destroying 3872 * the VM object association. 3873 */ 3874 m = bp->b_xio.xio_pages[i]; 3875 if (m == bogus_page) { 3876 bogusflag = 1; 3877 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3878 if (m == NULL) 3879 panic("biodone: page disappeared"); 3880 bp->b_xio.xio_pages[i] = m; 3881 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3882 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3883 } 3884 #if defined(VFS_BIO_DEBUG) 3885 if (OFF_TO_IDX(foff) != m->pindex) { 3886 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3887 "mismatch\n", 3888 (unsigned long)foff, (long)m->pindex); 3889 } 3890 #endif 3891 3892 /* 3893 * In the write case, the valid and clean bits are 3894 * already changed correctly (see bdwrite()), so we 3895 * only need to do this here in the read case. 3896 */ 3897 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3898 vfs_clean_one_page(bp, i, m); 3899 } 3900 vm_page_flag_clear(m, PG_ZERO); 3901 3902 /* 3903 * when debugging new filesystems or buffer I/O 3904 * methods, this is the most common error that pops 3905 * up. if you see this, you have not set the page 3906 * busy flag correctly!!! 3907 */ 3908 if (m->busy == 0) { 3909 kprintf("biodone: page busy < 0, " 3910 "pindex: %d, foff: 0x(%x,%x), " 3911 "resid: %d, index: %d\n", 3912 (int) m->pindex, (int)(foff >> 32), 3913 (int) foff & 0xffffffff, resid, i); 3914 if (!vn_isdisk(vp, NULL)) 3915 kprintf(" iosize: %ld, loffset: %lld, " 3916 "flags: 0x%08x, npages: %d\n", 3917 bp->b_vp->v_mount->mnt_stat.f_iosize, 3918 (long long)bp->b_loffset, 3919 bp->b_flags, bp->b_xio.xio_npages); 3920 else 3921 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3922 (long long)bp->b_loffset, 3923 bp->b_flags, bp->b_xio.xio_npages); 3924 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3925 m->valid, m->dirty, m->wire_count); 3926 panic("biodone: page busy < 0"); 3927 } 3928 vm_page_io_finish(m); 3929 vm_object_pip_subtract(obj, 1); 3930 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3931 iosize -= resid; 3932 } 3933 bp->b_flags &= ~B_HASBOGUS; 3934 if (obj) 3935 vm_object_pip_wakeupn(obj, 0); 3936 lwkt_reltoken(&vm_token); 3937 } 3938 3939 /* 3940 * Finish up by releasing the buffer. There are no more synchronous 3941 * or asynchronous completions, those were handled by bio_done 3942 * callbacks. 3943 */ 3944 if (elseit) { 3945 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3946 brelse(bp); 3947 else 3948 bqrelse(bp); 3949 } 3950 } 3951 3952 /* 3953 * Normal biodone. 3954 */ 3955 void 3956 biodone(struct bio *bio) 3957 { 3958 struct buf *bp = bio->bio_buf; 3959 3960 runningbufwakeup(bp); 3961 3962 /* 3963 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3964 */ 3965 while (bio) { 3966 biodone_t *done_func; 3967 struct bio_track *track; 3968 3969 /* 3970 * BIO tracking. Most but not all BIOs are tracked. 3971 */ 3972 if ((track = bio->bio_track) != NULL) { 3973 bio_track_rel(track); 3974 bio->bio_track = NULL; 3975 } 3976 3977 /* 3978 * A bio_done function terminates the loop. The function 3979 * will be responsible for any further chaining and/or 3980 * buffer management. 3981 * 3982 * WARNING! The done function can deallocate the buffer! 3983 */ 3984 if ((done_func = bio->bio_done) != NULL) { 3985 bio->bio_done = NULL; 3986 done_func(bio); 3987 return; 3988 } 3989 bio = bio->bio_prev; 3990 } 3991 3992 /* 3993 * If we've run out of bio's do normal [a]synchronous completion. 3994 */ 3995 bpdone(bp, 1); 3996 } 3997 3998 /* 3999 * Synchronous biodone - this terminates a synchronous BIO. 4000 * 4001 * bpdone() is called with elseit=FALSE, leaving the buffer completed 4002 * but still locked. The caller must brelse() the buffer after waiting 4003 * for completion. 4004 */ 4005 void 4006 biodone_sync(struct bio *bio) 4007 { 4008 struct buf *bp = bio->bio_buf; 4009 int flags; 4010 int nflags; 4011 4012 KKASSERT(bio == &bp->b_bio1); 4013 bpdone(bp, 0); 4014 4015 for (;;) { 4016 flags = bio->bio_flags; 4017 nflags = (flags | BIO_DONE) & ~BIO_WANT; 4018 4019 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 4020 if (flags & BIO_WANT) 4021 wakeup(bio); 4022 break; 4023 } 4024 } 4025 } 4026 4027 /* 4028 * vfs_unbusy_pages: 4029 * 4030 * This routine is called in lieu of iodone in the case of 4031 * incomplete I/O. This keeps the busy status for pages 4032 * consistant. 4033 */ 4034 void 4035 vfs_unbusy_pages(struct buf *bp) 4036 { 4037 int i; 4038 4039 runningbufwakeup(bp); 4040 4041 lwkt_gettoken(&vm_token); 4042 if (bp->b_flags & B_VMIO) { 4043 struct vnode *vp = bp->b_vp; 4044 vm_object_t obj; 4045 4046 obj = vp->v_object; 4047 4048 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4049 vm_page_t m = bp->b_xio.xio_pages[i]; 4050 4051 /* 4052 * When restoring bogus changes the original pages 4053 * should still be wired, so we are in no danger of 4054 * losing the object association and do not need 4055 * critical section protection particularly. 4056 */ 4057 if (m == bogus_page) { 4058 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 4059 if (!m) { 4060 panic("vfs_unbusy_pages: page missing"); 4061 } 4062 bp->b_xio.xio_pages[i] = m; 4063 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4064 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 4065 } 4066 vm_object_pip_subtract(obj, 1); 4067 vm_page_flag_clear(m, PG_ZERO); 4068 vm_page_io_finish(m); 4069 } 4070 bp->b_flags &= ~B_HASBOGUS; 4071 vm_object_pip_wakeupn(obj, 0); 4072 } 4073 lwkt_reltoken(&vm_token); 4074 } 4075 4076 /* 4077 * vfs_busy_pages: 4078 * 4079 * This routine is called before a device strategy routine. 4080 * It is used to tell the VM system that paging I/O is in 4081 * progress, and treat the pages associated with the buffer 4082 * almost as being PG_BUSY. Also the object 'paging_in_progress' 4083 * flag is handled to make sure that the object doesn't become 4084 * inconsistant. 4085 * 4086 * Since I/O has not been initiated yet, certain buffer flags 4087 * such as B_ERROR or B_INVAL may be in an inconsistant state 4088 * and should be ignored. 4089 * 4090 * MPSAFE 4091 */ 4092 void 4093 vfs_busy_pages(struct vnode *vp, struct buf *bp) 4094 { 4095 int i, bogus; 4096 struct lwp *lp = curthread->td_lwp; 4097 4098 /* 4099 * The buffer's I/O command must already be set. If reading, 4100 * B_CACHE must be 0 (double check against callers only doing 4101 * I/O when B_CACHE is 0). 4102 */ 4103 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4104 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 4105 4106 if (bp->b_flags & B_VMIO) { 4107 vm_object_t obj; 4108 4109 lwkt_gettoken(&vm_token); 4110 4111 obj = vp->v_object; 4112 KASSERT(bp->b_loffset != NOOFFSET, 4113 ("vfs_busy_pages: no buffer offset")); 4114 4115 /* 4116 * Loop until none of the pages are busy. 4117 */ 4118 retry: 4119 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4120 vm_page_t m = bp->b_xio.xio_pages[i]; 4121 4122 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 4123 goto retry; 4124 } 4125 4126 /* 4127 * Setup for I/O, soft-busy the page right now because 4128 * the next loop may block. 4129 */ 4130 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4131 vm_page_t m = bp->b_xio.xio_pages[i]; 4132 4133 vm_page_flag_clear(m, PG_ZERO); 4134 if ((bp->b_flags & B_CLUSTER) == 0) { 4135 vm_object_pip_add(obj, 1); 4136 vm_page_io_start(m); 4137 } 4138 } 4139 4140 /* 4141 * Adjust protections for I/O and do bogus-page mapping. 4142 * Assume that vm_page_protect() can block (it can block 4143 * if VM_PROT_NONE, don't take any chances regardless). 4144 * 4145 * In particular note that for writes we must incorporate 4146 * page dirtyness from the VM system into the buffer's 4147 * dirty range. 4148 * 4149 * For reads we theoretically must incorporate page dirtyness 4150 * from the VM system to determine if the page needs bogus 4151 * replacement, but we shortcut the test by simply checking 4152 * that all m->valid bits are set, indicating that the page 4153 * is fully valid and does not need to be re-read. For any 4154 * VM system dirtyness the page will also be fully valid 4155 * since it was mapped at one point. 4156 */ 4157 bogus = 0; 4158 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4159 vm_page_t m = bp->b_xio.xio_pages[i]; 4160 4161 vm_page_flag_clear(m, PG_ZERO); /* XXX */ 4162 if (bp->b_cmd == BUF_CMD_WRITE) { 4163 /* 4164 * When readying a vnode-backed buffer for 4165 * a write we must zero-fill any invalid 4166 * portions of the backing VM pages, mark 4167 * it valid and clear related dirty bits. 4168 * 4169 * vfs_clean_one_page() incorporates any 4170 * VM dirtyness and updates the b_dirtyoff 4171 * range (after we've made the page RO). 4172 * 4173 * It is also expected that the pmap modified 4174 * bit has already been cleared by the 4175 * vm_page_protect(). We may not be able 4176 * to clear all dirty bits for a page if it 4177 * was also memory mapped (NFS). 4178 * 4179 * Finally be sure to unassign any swap-cache 4180 * backing store as it is now stale. 4181 */ 4182 vm_page_protect(m, VM_PROT_READ); 4183 vfs_clean_one_page(bp, i, m); 4184 swap_pager_unswapped(m); 4185 } else if (m->valid == VM_PAGE_BITS_ALL) { 4186 /* 4187 * When readying a vnode-backed buffer for 4188 * read we must replace any dirty pages with 4189 * a bogus page so dirty data is not destroyed 4190 * when filling gaps. 4191 * 4192 * To avoid testing whether the page is 4193 * dirty we instead test that the page was 4194 * at some point mapped (m->valid fully 4195 * valid) with the understanding that 4196 * this also covers the dirty case. 4197 */ 4198 bp->b_xio.xio_pages[i] = bogus_page; 4199 bp->b_flags |= B_HASBOGUS; 4200 bogus++; 4201 } else if (m->valid & m->dirty) { 4202 /* 4203 * This case should not occur as partial 4204 * dirtyment can only happen if the buffer 4205 * is B_CACHE, and this code is not entered 4206 * if the buffer is B_CACHE. 4207 */ 4208 kprintf("Warning: vfs_busy_pages - page not " 4209 "fully valid! loff=%jx bpf=%08x " 4210 "idx=%d val=%02x dir=%02x\n", 4211 (intmax_t)bp->b_loffset, bp->b_flags, 4212 i, m->valid, m->dirty); 4213 vm_page_protect(m, VM_PROT_NONE); 4214 } else { 4215 /* 4216 * The page is not valid and can be made 4217 * part of the read. 4218 */ 4219 vm_page_protect(m, VM_PROT_NONE); 4220 } 4221 } 4222 if (bogus) { 4223 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4224 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 4225 } 4226 lwkt_reltoken(&vm_token); 4227 } 4228 4229 /* 4230 * This is the easiest place to put the process accounting for the I/O 4231 * for now. 4232 */ 4233 if (lp != NULL) { 4234 if (bp->b_cmd == BUF_CMD_READ) 4235 lp->lwp_ru.ru_inblock++; 4236 else 4237 lp->lwp_ru.ru_oublock++; 4238 } 4239 } 4240 4241 /* 4242 * Tell the VM system that the pages associated with this buffer 4243 * are clean. This is used for delayed writes where the data is 4244 * going to go to disk eventually without additional VM intevention. 4245 * 4246 * NOTE: While we only really need to clean through to b_bcount, we 4247 * just go ahead and clean through to b_bufsize. 4248 */ 4249 static void 4250 vfs_clean_pages(struct buf *bp) 4251 { 4252 vm_page_t m; 4253 int i; 4254 4255 if ((bp->b_flags & B_VMIO) == 0) 4256 return; 4257 4258 KASSERT(bp->b_loffset != NOOFFSET, 4259 ("vfs_clean_pages: no buffer offset")); 4260 4261 /* 4262 * vm_token must be held for vfs_clean_one_page() calls. 4263 */ 4264 lwkt_gettoken(&vm_token); 4265 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4266 m = bp->b_xio.xio_pages[i]; 4267 vfs_clean_one_page(bp, i, m); 4268 } 4269 lwkt_reltoken(&vm_token); 4270 } 4271 4272 /* 4273 * vfs_clean_one_page: 4274 * 4275 * Set the valid bits and clear the dirty bits in a page within a 4276 * buffer. The range is restricted to the buffer's size and the 4277 * buffer's logical offset might index into the first page. 4278 * 4279 * The caller has busied or soft-busied the page and it is not mapped, 4280 * test and incorporate the dirty bits into b_dirtyoff/end before 4281 * clearing them. Note that we need to clear the pmap modified bits 4282 * after determining the the page was dirty, vm_page_set_validclean() 4283 * does not do it for us. 4284 * 4285 * This routine is typically called after a read completes (dirty should 4286 * be zero in that case as we are not called on bogus-replace pages), 4287 * or before a write is initiated. 4288 * 4289 * NOTE: vm_token must be held by the caller, and vm_page_set_validclean() 4290 * currently assumes the vm_token is held. 4291 */ 4292 static void 4293 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 4294 { 4295 int bcount; 4296 int xoff; 4297 int soff; 4298 int eoff; 4299 4300 /* 4301 * Calculate offset range within the page but relative to buffer's 4302 * loffset. loffset might be offset into the first page. 4303 */ 4304 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4305 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4306 4307 if (pageno == 0) { 4308 soff = xoff; 4309 eoff = PAGE_SIZE; 4310 } else { 4311 soff = (pageno << PAGE_SHIFT); 4312 eoff = soff + PAGE_SIZE; 4313 } 4314 if (eoff > bcount) 4315 eoff = bcount; 4316 if (soff >= eoff) 4317 return; 4318 4319 /* 4320 * Test dirty bits and adjust b_dirtyoff/end. 4321 * 4322 * If dirty pages are incorporated into the bp any prior 4323 * B_NEEDCOMMIT state (NFS) must be cleared because the 4324 * caller has not taken into account the new dirty data. 4325 * 4326 * If the page was memory mapped the dirty bits might go beyond the 4327 * end of the buffer, but we can't really make the assumption that 4328 * a file EOF straddles the buffer (even though this is the case for 4329 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 4330 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 4331 * This also saves some console spam. 4332 * 4333 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK, 4334 * NFS can handle huge commits but not huge writes. 4335 */ 4336 vm_page_test_dirty(m); 4337 if (m->dirty) { 4338 if ((bp->b_flags & B_NEEDCOMMIT) && 4339 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 4340 if (debug_commit) 4341 kprintf("Warning: vfs_clean_one_page: bp %p " 4342 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT" 4343 " cmd %d vd %02x/%02x x/s/e %d %d %d " 4344 "doff/end %d %d\n", 4345 bp, (intmax_t)bp->b_loffset, bp->b_bcount, 4346 bp->b_flags, bp->b_cmd, 4347 m->valid, m->dirty, xoff, soff, eoff, 4348 bp->b_dirtyoff, bp->b_dirtyend); 4349 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 4350 if (debug_commit) 4351 print_backtrace(-1); 4352 } 4353 /* 4354 * Only clear the pmap modified bits if ALL the dirty bits 4355 * are set, otherwise the system might mis-clear portions 4356 * of a page. 4357 */ 4358 if (m->dirty == VM_PAGE_BITS_ALL && 4359 (bp->b_flags & B_NEEDCOMMIT) == 0) { 4360 pmap_clear_modify(m); 4361 } 4362 if (bp->b_dirtyoff > soff - xoff) 4363 bp->b_dirtyoff = soff - xoff; 4364 if (bp->b_dirtyend < eoff - xoff) 4365 bp->b_dirtyend = eoff - xoff; 4366 } 4367 4368 /* 4369 * Set related valid bits, clear related dirty bits. 4370 * Does not mess with the pmap modified bit. 4371 * 4372 * WARNING! We cannot just clear all of m->dirty here as the 4373 * buffer cache buffers may use a DEV_BSIZE'd aligned 4374 * block size, or have an odd size (e.g. NFS at file EOF). 4375 * The putpages code can clear m->dirty to 0. 4376 * 4377 * If a VOP_WRITE generates a buffer cache buffer which 4378 * covers the same space as mapped writable pages the 4379 * buffer flush might not be able to clear all the dirty 4380 * bits and still require a putpages from the VM system 4381 * to finish it off. 4382 * 4383 * WARNING! vm_page_set_validclean() currently assumes vm_token 4384 * is held. The page might not be busied (bdwrite() case). 4385 */ 4386 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 4387 } 4388 4389 /* 4390 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty. 4391 * The page data is assumed to be valid (there is no zeroing here). 4392 */ 4393 static void 4394 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m) 4395 { 4396 int bcount; 4397 int xoff; 4398 int soff; 4399 int eoff; 4400 4401 /* 4402 * Calculate offset range within the page but relative to buffer's 4403 * loffset. loffset might be offset into the first page. 4404 */ 4405 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4406 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4407 4408 if (pageno == 0) { 4409 soff = xoff; 4410 eoff = PAGE_SIZE; 4411 } else { 4412 soff = (pageno << PAGE_SHIFT); 4413 eoff = soff + PAGE_SIZE; 4414 } 4415 if (eoff > bcount) 4416 eoff = bcount; 4417 if (soff >= eoff) 4418 return; 4419 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff); 4420 } 4421 4422 /* 4423 * vfs_bio_clrbuf: 4424 * 4425 * Clear a buffer. This routine essentially fakes an I/O, so we need 4426 * to clear B_ERROR and B_INVAL. 4427 * 4428 * Note that while we only theoretically need to clear through b_bcount, 4429 * we go ahead and clear through b_bufsize. 4430 */ 4431 4432 void 4433 vfs_bio_clrbuf(struct buf *bp) 4434 { 4435 int i, mask = 0; 4436 caddr_t sa, ea; 4437 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 4438 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 4439 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4440 (bp->b_loffset & PAGE_MASK) == 0) { 4441 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4442 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 4443 bp->b_resid = 0; 4444 return; 4445 } 4446 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 4447 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 4448 bzero(bp->b_data, bp->b_bufsize); 4449 bp->b_xio.xio_pages[0]->valid |= mask; 4450 bp->b_resid = 0; 4451 return; 4452 } 4453 } 4454 sa = bp->b_data; 4455 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 4456 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 4457 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 4458 ea = (caddr_t)(vm_offset_t)ulmin( 4459 (u_long)(vm_offset_t)ea, 4460 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 4461 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4462 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 4463 continue; 4464 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 4465 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 4466 bzero(sa, ea - sa); 4467 } 4468 } else { 4469 for (; sa < ea; sa += DEV_BSIZE, j++) { 4470 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 4471 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 4472 bzero(sa, DEV_BSIZE); 4473 } 4474 } 4475 bp->b_xio.xio_pages[i]->valid |= mask; 4476 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 4477 } 4478 bp->b_resid = 0; 4479 } else { 4480 clrbuf(bp); 4481 } 4482 } 4483 4484 /* 4485 * vm_hold_load_pages: 4486 * 4487 * Load pages into the buffer's address space. The pages are 4488 * allocated from the kernel object in order to reduce interference 4489 * with the any VM paging I/O activity. The range of loaded 4490 * pages will be wired. 4491 * 4492 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4493 * retrieve the full range (to - from) of pages. 4494 * 4495 * MPSAFE 4496 */ 4497 void 4498 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4499 { 4500 vm_offset_t pg; 4501 vm_page_t p; 4502 int index; 4503 4504 to = round_page(to); 4505 from = round_page(from); 4506 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4507 4508 pg = from; 4509 while (pg < to) { 4510 /* 4511 * Note: must allocate system pages since blocking here 4512 * could intefere with paging I/O, no matter which 4513 * process we are. 4514 */ 4515 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4516 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4517 if (p) { 4518 vm_page_wire(p); 4519 p->valid = VM_PAGE_BITS_ALL; 4520 vm_page_flag_clear(p, PG_ZERO); 4521 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4522 bp->b_xio.xio_pages[index] = p; 4523 vm_page_wakeup(p); 4524 4525 pg += PAGE_SIZE; 4526 ++index; 4527 } 4528 } 4529 bp->b_xio.xio_npages = index; 4530 } 4531 4532 /* 4533 * Allocate pages for a buffer cache buffer. 4534 * 4535 * Under extremely severe memory conditions even allocating out of the 4536 * system reserve can fail. If this occurs we must allocate out of the 4537 * interrupt reserve to avoid a deadlock with the pageout daemon. 4538 * 4539 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 4540 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 4541 * against the pageout daemon if pages are not freed from other sources. 4542 * 4543 * MPSAFE 4544 */ 4545 static 4546 vm_page_t 4547 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4548 { 4549 vm_page_t p; 4550 4551 /* 4552 * Try a normal allocation, allow use of system reserve. 4553 */ 4554 lwkt_gettoken(&vm_token); 4555 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 4556 if (p) { 4557 lwkt_reltoken(&vm_token); 4558 return(p); 4559 } 4560 4561 /* 4562 * The normal allocation failed and we clearly have a page 4563 * deficit. Try to reclaim some clean VM pages directly 4564 * from the buffer cache. 4565 */ 4566 vm_pageout_deficit += deficit; 4567 recoverbufpages(); 4568 4569 /* 4570 * We may have blocked, the caller will know what to do if the 4571 * page now exists. 4572 */ 4573 if (vm_page_lookup(obj, pg)) { 4574 lwkt_reltoken(&vm_token); 4575 return(NULL); 4576 } 4577 4578 /* 4579 * Allocate and allow use of the interrupt reserve. 4580 * 4581 * If after all that we still can't allocate a VM page we are 4582 * in real trouble, but we slog on anyway hoping that the system 4583 * won't deadlock. 4584 */ 4585 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 4586 VM_ALLOC_INTERRUPT); 4587 if (p) { 4588 if (vm_page_count_severe()) { 4589 ++lowmempgallocs; 4590 vm_wait(hz / 20 + 1); 4591 } 4592 } else { 4593 kprintf("bio_page_alloc: Memory exhausted during bufcache " 4594 "page allocation\n"); 4595 ++lowmempgfails; 4596 vm_wait(hz); 4597 } 4598 lwkt_reltoken(&vm_token); 4599 return(p); 4600 } 4601 4602 /* 4603 * vm_hold_free_pages: 4604 * 4605 * Return pages associated with the buffer back to the VM system. 4606 * 4607 * The range of pages underlying the buffer's address space will 4608 * be unmapped and un-wired. 4609 * 4610 * MPSAFE 4611 */ 4612 void 4613 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4614 { 4615 vm_offset_t pg; 4616 vm_page_t p; 4617 int index, newnpages; 4618 4619 from = round_page(from); 4620 to = round_page(to); 4621 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4622 newnpages = index; 4623 4624 lwkt_gettoken(&vm_token); 4625 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4626 p = bp->b_xio.xio_pages[index]; 4627 if (p && (index < bp->b_xio.xio_npages)) { 4628 if (p->busy) { 4629 kprintf("vm_hold_free_pages: doffset: %lld, " 4630 "loffset: %lld\n", 4631 (long long)bp->b_bio2.bio_offset, 4632 (long long)bp->b_loffset); 4633 } 4634 bp->b_xio.xio_pages[index] = NULL; 4635 pmap_kremove(pg); 4636 vm_page_busy(p); 4637 vm_page_unwire(p, 0); 4638 vm_page_free(p); 4639 } 4640 } 4641 bp->b_xio.xio_npages = newnpages; 4642 lwkt_reltoken(&vm_token); 4643 } 4644 4645 /* 4646 * vmapbuf: 4647 * 4648 * Map a user buffer into KVM via a pbuf. On return the buffer's 4649 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4650 * initialized. 4651 */ 4652 int 4653 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4654 { 4655 caddr_t addr; 4656 vm_offset_t va; 4657 vm_page_t m; 4658 int vmprot; 4659 int error; 4660 int pidx; 4661 int i; 4662 4663 /* 4664 * bp had better have a command and it better be a pbuf. 4665 */ 4666 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4667 KKASSERT(bp->b_flags & B_PAGING); 4668 KKASSERT(bp->b_kvabase); 4669 4670 if (bytes < 0) 4671 return (-1); 4672 4673 /* 4674 * Map the user data into KVM. Mappings have to be page-aligned. 4675 */ 4676 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4677 pidx = 0; 4678 4679 vmprot = VM_PROT_READ; 4680 if (bp->b_cmd == BUF_CMD_READ) 4681 vmprot |= VM_PROT_WRITE; 4682 4683 while (addr < udata + bytes) { 4684 /* 4685 * Do the vm_fault if needed; do the copy-on-write thing 4686 * when reading stuff off device into memory. 4687 * 4688 * vm_fault_page*() returns a held VM page. 4689 */ 4690 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4691 va = trunc_page(va); 4692 4693 m = vm_fault_page_quick(va, vmprot, &error); 4694 if (m == NULL) { 4695 for (i = 0; i < pidx; ++i) { 4696 vm_page_unhold(bp->b_xio.xio_pages[i]); 4697 bp->b_xio.xio_pages[i] = NULL; 4698 } 4699 return(-1); 4700 } 4701 bp->b_xio.xio_pages[pidx] = m; 4702 addr += PAGE_SIZE; 4703 ++pidx; 4704 } 4705 4706 /* 4707 * Map the page array and set the buffer fields to point to 4708 * the mapped data buffer. 4709 */ 4710 if (pidx > btoc(MAXPHYS)) 4711 panic("vmapbuf: mapped more than MAXPHYS"); 4712 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4713 4714 bp->b_xio.xio_npages = pidx; 4715 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4716 bp->b_bcount = bytes; 4717 bp->b_bufsize = bytes; 4718 return(0); 4719 } 4720 4721 /* 4722 * vunmapbuf: 4723 * 4724 * Free the io map PTEs associated with this IO operation. 4725 * We also invalidate the TLB entries and restore the original b_addr. 4726 */ 4727 void 4728 vunmapbuf(struct buf *bp) 4729 { 4730 int pidx; 4731 int npages; 4732 4733 KKASSERT(bp->b_flags & B_PAGING); 4734 4735 npages = bp->b_xio.xio_npages; 4736 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4737 for (pidx = 0; pidx < npages; ++pidx) { 4738 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4739 bp->b_xio.xio_pages[pidx] = NULL; 4740 } 4741 bp->b_xio.xio_npages = 0; 4742 bp->b_data = bp->b_kvabase; 4743 } 4744 4745 /* 4746 * Scan all buffers in the system and issue the callback. 4747 */ 4748 int 4749 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4750 { 4751 int count = 0; 4752 int error; 4753 int n; 4754 4755 for (n = 0; n < nbuf; ++n) { 4756 if ((error = callback(&buf[n], info)) < 0) { 4757 count = error; 4758 break; 4759 } 4760 count += error; 4761 } 4762 return (count); 4763 } 4764 4765 /* 4766 * nestiobuf_iodone: biodone callback for nested buffers and propagate 4767 * completion to the master buffer. 4768 */ 4769 static void 4770 nestiobuf_iodone(struct bio *bio) 4771 { 4772 struct bio *mbio; 4773 struct buf *mbp, *bp; 4774 struct devstat *stats; 4775 int error; 4776 int donebytes; 4777 4778 bp = bio->bio_buf; 4779 mbio = bio->bio_caller_info1.ptr; 4780 stats = bio->bio_caller_info2.ptr; 4781 mbp = mbio->bio_buf; 4782 4783 KKASSERT(bp->b_bcount <= bp->b_bufsize); 4784 KKASSERT(mbp != bp); 4785 4786 error = bp->b_error; 4787 if (bp->b_error == 0 && 4788 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 4789 /* 4790 * Not all got transfered, raise an error. We have no way to 4791 * propagate these conditions to mbp. 4792 */ 4793 error = EIO; 4794 } 4795 4796 donebytes = bp->b_bufsize; 4797 4798 relpbuf(bp, NULL); 4799 4800 nestiobuf_done(mbio, donebytes, error, stats); 4801 } 4802 4803 void 4804 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats) 4805 { 4806 struct buf *mbp; 4807 4808 mbp = mbio->bio_buf; 4809 4810 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0); 4811 4812 /* 4813 * If an error occured, propagate it to the master buffer. 4814 * 4815 * Several biodone()s may wind up running concurrently so 4816 * use an atomic op to adjust b_flags. 4817 */ 4818 if (error) { 4819 mbp->b_error = error; 4820 atomic_set_int(&mbp->b_flags, B_ERROR); 4821 } 4822 4823 /* 4824 * Decrement the operations in progress counter and terminate the 4825 * I/O if this was the last bit. 4826 */ 4827 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4828 mbp->b_resid = 0; 4829 if (stats) 4830 devstat_end_transaction_buf(stats, mbp); 4831 biodone(mbio); 4832 } 4833 } 4834 4835 /* 4836 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent 4837 * the mbio from being biodone()'d while we are still adding sub-bios to 4838 * it. 4839 */ 4840 void 4841 nestiobuf_init(struct bio *bio) 4842 { 4843 bio->bio_driver_info = (void *)1; 4844 } 4845 4846 /* 4847 * The BIOs added to the nestedio have already been started, remove the 4848 * count that placeheld our mbio and biodone() it if the count would 4849 * transition to 0. 4850 */ 4851 void 4852 nestiobuf_start(struct bio *mbio) 4853 { 4854 struct buf *mbp = mbio->bio_buf; 4855 4856 /* 4857 * Decrement the operations in progress counter and terminate the 4858 * I/O if this was the last bit. 4859 */ 4860 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4861 if (mbp->b_flags & B_ERROR) 4862 mbp->b_resid = mbp->b_bcount; 4863 else 4864 mbp->b_resid = 0; 4865 biodone(mbio); 4866 } 4867 } 4868 4869 /* 4870 * Set an intermediate error prior to calling nestiobuf_start() 4871 */ 4872 void 4873 nestiobuf_error(struct bio *mbio, int error) 4874 { 4875 struct buf *mbp = mbio->bio_buf; 4876 4877 if (error) { 4878 mbp->b_error = error; 4879 atomic_set_int(&mbp->b_flags, B_ERROR); 4880 } 4881 } 4882 4883 /* 4884 * nestiobuf_add: setup a "nested" buffer. 4885 * 4886 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 4887 * => 'bp' should be a buffer allocated by getiobuf. 4888 * => 'offset' is a byte offset in the master buffer. 4889 * => 'size' is a size in bytes of this nested buffer. 4890 */ 4891 void 4892 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats) 4893 { 4894 struct buf *mbp = mbio->bio_buf; 4895 struct vnode *vp = mbp->b_vp; 4896 4897 KKASSERT(mbp->b_bcount >= offset + size); 4898 4899 atomic_add_int((int *)&mbio->bio_driver_info, 1); 4900 4901 /* kernel needs to own the lock for it to be released in biodone */ 4902 BUF_KERNPROC(bp); 4903 bp->b_vp = vp; 4904 bp->b_cmd = mbp->b_cmd; 4905 bp->b_bio1.bio_done = nestiobuf_iodone; 4906 bp->b_data = (char *)mbp->b_data + offset; 4907 bp->b_resid = bp->b_bcount = size; 4908 bp->b_bufsize = bp->b_bcount; 4909 4910 bp->b_bio1.bio_track = NULL; 4911 bp->b_bio1.bio_caller_info1.ptr = mbio; 4912 bp->b_bio1.bio_caller_info2.ptr = stats; 4913 } 4914 4915 /* 4916 * print out statistics from the current status of the buffer pool 4917 * this can be toggeled by the system control option debug.syncprt 4918 */ 4919 #ifdef DEBUG 4920 void 4921 vfs_bufstats(void) 4922 { 4923 int i, j, count; 4924 struct buf *bp; 4925 struct bqueues *dp; 4926 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4927 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4928 4929 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4930 count = 0; 4931 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4932 counts[j] = 0; 4933 4934 spin_lock(&bufqspin); 4935 TAILQ_FOREACH(bp, dp, b_freelist) { 4936 counts[bp->b_bufsize/PAGE_SIZE]++; 4937 count++; 4938 } 4939 spin_unlock(&bufqspin); 4940 4941 kprintf("%s: total-%d", bname[i], count); 4942 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4943 if (counts[j] != 0) 4944 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4945 kprintf("\n"); 4946 } 4947 } 4948 #endif 4949 4950 #ifdef DDB 4951 4952 DB_SHOW_COMMAND(buffer, db_show_buffer) 4953 { 4954 /* get args */ 4955 struct buf *bp = (struct buf *)addr; 4956 4957 if (!have_addr) { 4958 db_printf("usage: show buffer <addr>\n"); 4959 return; 4960 } 4961 4962 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4963 db_printf("b_cmd = %d\n", bp->b_cmd); 4964 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4965 "b_resid = %d\n, b_data = %p, " 4966 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4967 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4968 bp->b_data, 4969 (long long)bp->b_bio2.bio_offset, 4970 (long long)(bp->b_bio2.bio_next ? 4971 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4972 if (bp->b_xio.xio_npages) { 4973 int i; 4974 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4975 bp->b_xio.xio_npages); 4976 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4977 vm_page_t m; 4978 m = bp->b_xio.xio_pages[i]; 4979 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4980 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4981 if ((i + 1) < bp->b_xio.xio_npages) 4982 db_printf(","); 4983 } 4984 db_printf("\n"); 4985 } 4986 } 4987 #endif /* DDB */ 4988