1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/devicestat.h> 36 #include <sys/eventhandler.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mount.h> 40 #include <sys/kernel.h> 41 #include <sys/kthread.h> 42 #include <sys/proc.h> 43 #include <sys/reboot.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 #include <sys/dsched.h> 49 #include <sys/proc.h> 50 #include <vm/vm.h> 51 #include <vm/vm_param.h> 52 #include <vm/vm_kern.h> 53 #include <vm/vm_pageout.h> 54 #include <vm/vm_page.h> 55 #include <vm/vm_object.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_pager.h> 59 #include <vm/swap_pager.h> 60 61 #include <sys/buf2.h> 62 #include <sys/thread2.h> 63 #include <sys/spinlock2.h> 64 #include <sys/mplock2.h> 65 #include <vm/vm_page2.h> 66 67 #include "opt_ddb.h" 68 #ifdef DDB 69 #include <ddb/ddb.h> 70 #endif 71 72 /* 73 * Buffer queues. 74 */ 75 enum bufq_type { 76 BQUEUE_NONE, /* not on any queue */ 77 BQUEUE_LOCKED, /* locked buffers */ 78 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 79 BQUEUE_DIRTY, /* B_DELWRI buffers */ 80 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 81 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 82 BQUEUE_EMPTY, /* empty buffer headers */ 83 84 BUFFER_QUEUES /* number of buffer queues */ 85 }; 86 87 typedef enum bufq_type bufq_type_t; 88 89 #define BD_WAKE_SIZE 16384 90 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 91 92 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 93 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin); 94 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin); 95 96 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 97 98 struct buf *buf; /* buffer header pool */ 99 100 static void vfs_clean_pages(struct buf *bp); 101 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 102 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m); 103 static void vfs_vmio_release(struct buf *bp); 104 static int flushbufqueues(bufq_type_t q); 105 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 106 107 static void bd_signal(int totalspace); 108 static void buf_daemon(void); 109 static void buf_daemon_hw(void); 110 111 /* 112 * bogus page -- for I/O to/from partially complete buffers 113 * this is a temporary solution to the problem, but it is not 114 * really that bad. it would be better to split the buffer 115 * for input in the case of buffers partially already in memory, 116 * but the code is intricate enough already. 117 */ 118 vm_page_t bogus_page; 119 120 /* 121 * These are all static, but make the ones we export globals so we do 122 * not need to use compiler magic. 123 */ 124 int bufspace; /* locked by buffer_map */ 125 int maxbufspace; 126 static int bufmallocspace; /* atomic ops */ 127 int maxbufmallocspace, lobufspace, hibufspace; 128 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 129 static int lorunningspace; 130 static int hirunningspace; 131 static int runningbufreq; /* locked by bufcspin */ 132 static int dirtybufspace; /* locked by bufcspin */ 133 static int dirtybufcount; /* locked by bufcspin */ 134 static int dirtybufspacehw; /* locked by bufcspin */ 135 static int dirtybufcounthw; /* locked by bufcspin */ 136 static int runningbufspace; /* locked by bufcspin */ 137 static int runningbufcount; /* locked by bufcspin */ 138 int lodirtybufspace; 139 int hidirtybufspace; 140 static int getnewbufcalls; 141 static int getnewbufrestarts; 142 static int recoverbufcalls; 143 static int needsbuffer; /* locked by bufcspin */ 144 static int bd_request; /* locked by bufcspin */ 145 static int bd_request_hw; /* locked by bufcspin */ 146 static u_int bd_wake_ary[BD_WAKE_SIZE]; 147 static u_int bd_wake_index; 148 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */ 149 static int debug_commit; 150 151 static struct thread *bufdaemon_td; 152 static struct thread *bufdaemonhw_td; 153 static u_int lowmempgallocs; 154 static u_int lowmempgfails; 155 156 /* 157 * Sysctls for operational control of the buffer cache. 158 */ 159 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 160 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 161 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 162 "High watermark used to trigger explicit flushing of dirty buffers"); 163 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 164 "Minimum amount of buffer space required for active I/O"); 165 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 166 "Maximum amount of buffer space to usable for active I/O"); 167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0, 168 "Page allocations done during periods of very low free memory"); 169 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0, 170 "Page allocations which failed during periods of very low free memory"); 171 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0, 172 "Recycle pages to active or inactive queue transition pt 0-64"); 173 /* 174 * Sysctls determining current state of the buffer cache. 175 */ 176 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 177 "Total number of buffers in buffer cache"); 178 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 179 "Pending bytes of dirty buffers (all)"); 180 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 181 "Pending bytes of dirty buffers (heavy weight)"); 182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 183 "Pending number of dirty buffers"); 184 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 185 "Pending number of dirty buffers (heavy weight)"); 186 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 187 "I/O bytes currently in progress due to asynchronous writes"); 188 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 189 "I/O buffers currently in progress due to asynchronous writes"); 190 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 191 "Hard limit on maximum amount of memory usable for buffer space"); 192 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 193 "Soft limit on maximum amount of memory usable for buffer space"); 194 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 195 "Minimum amount of memory to reserve for system buffer space"); 196 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 197 "Amount of memory available for buffers"); 198 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 199 0, "Maximum amount of memory reserved for buffers using malloc"); 200 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 201 "Amount of memory left for buffers using malloc-scheme"); 202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 203 "New buffer header acquisition requests"); 204 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 205 0, "New buffer header acquisition restarts"); 206 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 207 "Recover VM space in an emergency"); 208 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 209 "Buffer acquisition restarts due to fragmented buffer map"); 210 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 211 "Amount of time KVA space was deallocated in an arbitrary buffer"); 212 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 213 "Amount of time buffer re-use operations were successful"); 214 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, ""); 215 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 216 "sizeof(struct buf)"); 217 218 char *buf_wmesg = BUF_WMESG; 219 220 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 221 #define VFS_BIO_NEED_UNUSED02 0x02 222 #define VFS_BIO_NEED_UNUSED04 0x04 223 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 224 225 /* 226 * bufspacewakeup: 227 * 228 * Called when buffer space is potentially available for recovery. 229 * getnewbuf() will block on this flag when it is unable to free 230 * sufficient buffer space. Buffer space becomes recoverable when 231 * bp's get placed back in the queues. 232 */ 233 static __inline void 234 bufspacewakeup(void) 235 { 236 /* 237 * If someone is waiting for BUF space, wake them up. Even 238 * though we haven't freed the kva space yet, the waiting 239 * process will be able to now. 240 */ 241 spin_lock(&bufcspin); 242 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 243 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 244 spin_unlock(&bufcspin); 245 wakeup(&needsbuffer); 246 } else { 247 spin_unlock(&bufcspin); 248 } 249 } 250 251 /* 252 * runningbufwakeup: 253 * 254 * Accounting for I/O in progress. 255 * 256 */ 257 static __inline void 258 runningbufwakeup(struct buf *bp) 259 { 260 int totalspace; 261 int limit; 262 263 if ((totalspace = bp->b_runningbufspace) != 0) { 264 spin_lock(&bufcspin); 265 runningbufspace -= totalspace; 266 --runningbufcount; 267 bp->b_runningbufspace = 0; 268 269 /* 270 * see waitrunningbufspace() for limit test. 271 */ 272 limit = hirunningspace * 4 / 6; 273 if (runningbufreq && runningbufspace <= limit) { 274 runningbufreq = 0; 275 spin_unlock(&bufcspin); 276 wakeup(&runningbufreq); 277 } else { 278 spin_unlock(&bufcspin); 279 } 280 bd_signal(totalspace); 281 } 282 } 283 284 /* 285 * bufcountwakeup: 286 * 287 * Called when a buffer has been added to one of the free queues to 288 * account for the buffer and to wakeup anyone waiting for free buffers. 289 * This typically occurs when large amounts of metadata are being handled 290 * by the buffer cache ( else buffer space runs out first, usually ). 291 * 292 * MPSAFE 293 */ 294 static __inline void 295 bufcountwakeup(void) 296 { 297 spin_lock(&bufcspin); 298 if (needsbuffer) { 299 needsbuffer &= ~VFS_BIO_NEED_ANY; 300 spin_unlock(&bufcspin); 301 wakeup(&needsbuffer); 302 } else { 303 spin_unlock(&bufcspin); 304 } 305 } 306 307 /* 308 * waitrunningbufspace() 309 * 310 * Wait for the amount of running I/O to drop to hirunningspace * 4 / 6. 311 * This is the point where write bursting stops so we don't want to wait 312 * for the running amount to drop below it (at least if we still want bioq 313 * to burst writes). 314 * 315 * The caller may be using this function to block in a tight loop, we 316 * must block while runningbufspace is greater then or equal to 317 * hirunningspace * 4 / 6. 318 * 319 * And even with that it may not be enough, due to the presence of 320 * B_LOCKED dirty buffers, so also wait for at least one running buffer 321 * to complete. 322 */ 323 void 324 waitrunningbufspace(void) 325 { 326 int limit = hirunningspace * 4 / 6; 327 int dummy; 328 329 spin_lock(&bufcspin); 330 if (runningbufspace > limit) { 331 while (runningbufspace > limit) { 332 ++runningbufreq; 333 ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0); 334 } 335 spin_unlock(&bufcspin); 336 } else if (runningbufspace > limit / 2) { 337 ++runningbufreq; 338 spin_unlock(&bufcspin); 339 tsleep(&dummy, 0, "wdrn2", 1); 340 } else { 341 spin_unlock(&bufcspin); 342 } 343 } 344 345 /* 346 * buf_dirty_count_severe: 347 * 348 * Return true if we have too many dirty buffers. 349 */ 350 int 351 buf_dirty_count_severe(void) 352 { 353 return (runningbufspace + dirtybufspace >= hidirtybufspace || 354 dirtybufcount >= nbuf / 2); 355 } 356 357 /* 358 * Return true if the amount of running I/O is severe and BIOQ should 359 * start bursting. 360 */ 361 int 362 buf_runningbufspace_severe(void) 363 { 364 return (runningbufspace >= hirunningspace * 4 / 6); 365 } 366 367 /* 368 * vfs_buf_test_cache: 369 * 370 * Called when a buffer is extended. This function clears the B_CACHE 371 * bit if the newly extended portion of the buffer does not contain 372 * valid data. 373 * 374 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 375 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 376 * them while a clean buffer was present. 377 */ 378 static __inline__ 379 void 380 vfs_buf_test_cache(struct buf *bp, 381 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 382 vm_page_t m) 383 { 384 if (bp->b_flags & B_CACHE) { 385 int base = (foff + off) & PAGE_MASK; 386 if (vm_page_is_valid(m, base, size) == 0) 387 bp->b_flags &= ~B_CACHE; 388 } 389 } 390 391 /* 392 * bd_speedup() 393 * 394 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 395 * low water mark. 396 * 397 * MPSAFE 398 */ 399 static __inline__ 400 void 401 bd_speedup(void) 402 { 403 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 404 return; 405 406 if (bd_request == 0 && 407 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 408 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 409 spin_lock(&bufcspin); 410 bd_request = 1; 411 spin_unlock(&bufcspin); 412 wakeup(&bd_request); 413 } 414 if (bd_request_hw == 0 && 415 (dirtybufspacehw > lodirtybufspace / 2 || 416 dirtybufcounthw >= nbuf / 2)) { 417 spin_lock(&bufcspin); 418 bd_request_hw = 1; 419 spin_unlock(&bufcspin); 420 wakeup(&bd_request_hw); 421 } 422 } 423 424 /* 425 * bd_heatup() 426 * 427 * Get the buf_daemon heated up when the number of running and dirty 428 * buffers exceeds the mid-point. 429 * 430 * Return the total number of dirty bytes past the second mid point 431 * as a measure of how much excess dirty data there is in the system. 432 * 433 * MPSAFE 434 */ 435 int 436 bd_heatup(void) 437 { 438 int mid1; 439 int mid2; 440 int totalspace; 441 442 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 443 444 totalspace = runningbufspace + dirtybufspace; 445 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 446 bd_speedup(); 447 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 448 if (totalspace >= mid2) 449 return(totalspace - mid2); 450 } 451 return(0); 452 } 453 454 /* 455 * bd_wait() 456 * 457 * Wait for the buffer cache to flush (totalspace) bytes worth of 458 * buffers, then return. 459 * 460 * Regardless this function blocks while the number of dirty buffers 461 * exceeds hidirtybufspace. 462 * 463 * MPSAFE 464 */ 465 void 466 bd_wait(int totalspace) 467 { 468 u_int i; 469 int count; 470 471 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 472 return; 473 474 while (totalspace > 0) { 475 bd_heatup(); 476 if (totalspace > runningbufspace + dirtybufspace) 477 totalspace = runningbufspace + dirtybufspace; 478 count = totalspace / BKVASIZE; 479 if (count >= BD_WAKE_SIZE) 480 count = BD_WAKE_SIZE - 1; 481 482 spin_lock(&bufcspin); 483 i = (bd_wake_index + count) & BD_WAKE_MASK; 484 ++bd_wake_ary[i]; 485 486 /* 487 * This is not a strict interlock, so we play a bit loose 488 * with locking access to dirtybufspace* 489 */ 490 tsleep_interlock(&bd_wake_ary[i], 0); 491 spin_unlock(&bufcspin); 492 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 493 494 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 495 } 496 } 497 498 /* 499 * bd_signal() 500 * 501 * This function is called whenever runningbufspace or dirtybufspace 502 * is reduced. Track threads waiting for run+dirty buffer I/O 503 * complete. 504 * 505 * MPSAFE 506 */ 507 static void 508 bd_signal(int totalspace) 509 { 510 u_int i; 511 512 if (totalspace > 0) { 513 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 514 totalspace = BKVASIZE * BD_WAKE_SIZE; 515 spin_lock(&bufcspin); 516 while (totalspace > 0) { 517 i = bd_wake_index++; 518 i &= BD_WAKE_MASK; 519 if (bd_wake_ary[i]) { 520 bd_wake_ary[i] = 0; 521 spin_unlock(&bufcspin); 522 wakeup(&bd_wake_ary[i]); 523 spin_lock(&bufcspin); 524 } 525 totalspace -= BKVASIZE; 526 } 527 spin_unlock(&bufcspin); 528 } 529 } 530 531 /* 532 * BIO tracking support routines. 533 * 534 * Release a ref on a bio_track. Wakeup requests are atomically released 535 * along with the last reference so bk_active will never wind up set to 536 * only 0x80000000. 537 * 538 * MPSAFE 539 */ 540 static 541 void 542 bio_track_rel(struct bio_track *track) 543 { 544 int active; 545 int desired; 546 547 /* 548 * Shortcut 549 */ 550 active = track->bk_active; 551 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 552 return; 553 554 /* 555 * Full-on. Note that the wait flag is only atomically released on 556 * the 1->0 count transition. 557 * 558 * We check for a negative count transition using bit 30 since bit 31 559 * has a different meaning. 560 */ 561 for (;;) { 562 desired = (active & 0x7FFFFFFF) - 1; 563 if (desired) 564 desired |= active & 0x80000000; 565 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 566 if (desired & 0x40000000) 567 panic("bio_track_rel: bad count: %p\n", track); 568 if (active & 0x80000000) 569 wakeup(track); 570 break; 571 } 572 active = track->bk_active; 573 } 574 } 575 576 /* 577 * Wait for the tracking count to reach 0. 578 * 579 * Use atomic ops such that the wait flag is only set atomically when 580 * bk_active is non-zero. 581 * 582 * MPSAFE 583 */ 584 int 585 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 586 { 587 int active; 588 int desired; 589 int error; 590 591 /* 592 * Shortcut 593 */ 594 if (track->bk_active == 0) 595 return(0); 596 597 /* 598 * Full-on. Note that the wait flag may only be atomically set if 599 * the active count is non-zero. 600 * 601 * NOTE: We cannot optimize active == desired since a wakeup could 602 * clear active prior to our tsleep_interlock(). 603 */ 604 error = 0; 605 while ((active = track->bk_active) != 0) { 606 cpu_ccfence(); 607 desired = active | 0x80000000; 608 tsleep_interlock(track, slp_flags); 609 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 610 error = tsleep(track, slp_flags | PINTERLOCKED, 611 "trwait", slp_timo); 612 if (error) 613 break; 614 } 615 } 616 return (error); 617 } 618 619 /* 620 * bufinit: 621 * 622 * Load time initialisation of the buffer cache, called from machine 623 * dependant initialization code. 624 */ 625 void 626 bufinit(void) 627 { 628 struct buf *bp; 629 vm_offset_t bogus_offset; 630 int i; 631 632 /* next, make a null set of free lists */ 633 for (i = 0; i < BUFFER_QUEUES; i++) 634 TAILQ_INIT(&bufqueues[i]); 635 636 /* finally, initialize each buffer header and stick on empty q */ 637 for (i = 0; i < nbuf; i++) { 638 bp = &buf[i]; 639 bzero(bp, sizeof *bp); 640 bp->b_flags = B_INVAL; /* we're just an empty header */ 641 bp->b_cmd = BUF_CMD_DONE; 642 bp->b_qindex = BQUEUE_EMPTY; 643 initbufbio(bp); 644 xio_init(&bp->b_xio); 645 buf_dep_init(bp); 646 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 647 } 648 649 /* 650 * maxbufspace is the absolute maximum amount of buffer space we are 651 * allowed to reserve in KVM and in real terms. The absolute maximum 652 * is nominally used by buf_daemon. hibufspace is the nominal maximum 653 * used by most other processes. The differential is required to 654 * ensure that buf_daemon is able to run when other processes might 655 * be blocked waiting for buffer space. 656 * 657 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 658 * this may result in KVM fragmentation which is not handled optimally 659 * by the system. 660 */ 661 maxbufspace = nbuf * BKVASIZE; 662 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 663 lobufspace = hibufspace - MAXBSIZE; 664 665 lorunningspace = 512 * 1024; 666 /* hirunningspace -- see below */ 667 668 /* 669 * Limit the amount of malloc memory since it is wired permanently 670 * into the kernel space. Even though this is accounted for in 671 * the buffer allocation, we don't want the malloced region to grow 672 * uncontrolled. The malloc scheme improves memory utilization 673 * significantly on average (small) directories. 674 */ 675 maxbufmallocspace = hibufspace / 20; 676 677 /* 678 * Reduce the chance of a deadlock occuring by limiting the number 679 * of delayed-write dirty buffers we allow to stack up. 680 * 681 * We don't want too much actually queued to the device at once 682 * (XXX this needs to be per-mount!), because the buffers will 683 * wind up locked for a very long period of time while the I/O 684 * drains. 685 */ 686 hidirtybufspace = hibufspace / 2; /* dirty + running */ 687 hirunningspace = hibufspace / 16; /* locked & queued to device */ 688 if (hirunningspace < 1024 * 1024) 689 hirunningspace = 1024 * 1024; 690 691 dirtybufspace = 0; 692 dirtybufspacehw = 0; 693 694 lodirtybufspace = hidirtybufspace / 2; 695 696 /* 697 * Maximum number of async ops initiated per buf_daemon loop. This is 698 * somewhat of a hack at the moment, we really need to limit ourselves 699 * based on the number of bytes of I/O in-transit that were initiated 700 * from buf_daemon. 701 */ 702 703 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 704 bogus_page = vm_page_alloc(&kernel_object, 705 (bogus_offset >> PAGE_SHIFT), 706 VM_ALLOC_NORMAL); 707 vmstats.v_wire_count++; 708 709 } 710 711 /* 712 * Initialize the embedded bio structures, typically used by 713 * deprecated code which tries to allocate its own struct bufs. 714 */ 715 void 716 initbufbio(struct buf *bp) 717 { 718 bp->b_bio1.bio_buf = bp; 719 bp->b_bio1.bio_prev = NULL; 720 bp->b_bio1.bio_offset = NOOFFSET; 721 bp->b_bio1.bio_next = &bp->b_bio2; 722 bp->b_bio1.bio_done = NULL; 723 bp->b_bio1.bio_flags = 0; 724 725 bp->b_bio2.bio_buf = bp; 726 bp->b_bio2.bio_prev = &bp->b_bio1; 727 bp->b_bio2.bio_offset = NOOFFSET; 728 bp->b_bio2.bio_next = NULL; 729 bp->b_bio2.bio_done = NULL; 730 bp->b_bio2.bio_flags = 0; 731 732 BUF_LOCKINIT(bp); 733 } 734 735 /* 736 * Reinitialize the embedded bio structures as well as any additional 737 * translation cache layers. 738 */ 739 void 740 reinitbufbio(struct buf *bp) 741 { 742 struct bio *bio; 743 744 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 745 bio->bio_done = NULL; 746 bio->bio_offset = NOOFFSET; 747 } 748 } 749 750 /* 751 * Undo the effects of an initbufbio(). 752 */ 753 void 754 uninitbufbio(struct buf *bp) 755 { 756 dsched_exit_buf(bp); 757 BUF_LOCKFREE(bp); 758 } 759 760 /* 761 * Push another BIO layer onto an existing BIO and return it. The new 762 * BIO layer may already exist, holding cached translation data. 763 */ 764 struct bio * 765 push_bio(struct bio *bio) 766 { 767 struct bio *nbio; 768 769 if ((nbio = bio->bio_next) == NULL) { 770 int index = bio - &bio->bio_buf->b_bio_array[0]; 771 if (index >= NBUF_BIO - 1) { 772 panic("push_bio: too many layers bp %p\n", 773 bio->bio_buf); 774 } 775 nbio = &bio->bio_buf->b_bio_array[index + 1]; 776 bio->bio_next = nbio; 777 nbio->bio_prev = bio; 778 nbio->bio_buf = bio->bio_buf; 779 nbio->bio_offset = NOOFFSET; 780 nbio->bio_done = NULL; 781 nbio->bio_next = NULL; 782 } 783 KKASSERT(nbio->bio_done == NULL); 784 return(nbio); 785 } 786 787 /* 788 * Pop a BIO translation layer, returning the previous layer. The 789 * must have been previously pushed. 790 */ 791 struct bio * 792 pop_bio(struct bio *bio) 793 { 794 return(bio->bio_prev); 795 } 796 797 void 798 clearbiocache(struct bio *bio) 799 { 800 while (bio) { 801 bio->bio_offset = NOOFFSET; 802 bio = bio->bio_next; 803 } 804 } 805 806 /* 807 * bfreekva: 808 * 809 * Free the KVA allocation for buffer 'bp'. 810 * 811 * Must be called from a critical section as this is the only locking for 812 * buffer_map. 813 * 814 * Since this call frees up buffer space, we call bufspacewakeup(). 815 * 816 * MPALMOSTSAFE 817 */ 818 static void 819 bfreekva(struct buf *bp) 820 { 821 int count; 822 823 if (bp->b_kvasize) { 824 ++buffreekvacnt; 825 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 826 vm_map_lock(&buffer_map); 827 bufspace -= bp->b_kvasize; 828 vm_map_delete(&buffer_map, 829 (vm_offset_t) bp->b_kvabase, 830 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 831 &count 832 ); 833 vm_map_unlock(&buffer_map); 834 vm_map_entry_release(count); 835 bp->b_kvasize = 0; 836 bp->b_kvabase = NULL; 837 bufspacewakeup(); 838 } 839 } 840 841 /* 842 * bremfree: 843 * 844 * Remove the buffer from the appropriate free list. 845 */ 846 static __inline void 847 _bremfree(struct buf *bp) 848 { 849 if (bp->b_qindex != BQUEUE_NONE) { 850 KASSERT(BUF_REFCNTNB(bp) == 1, 851 ("bremfree: bp %p not locked",bp)); 852 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 853 bp->b_qindex = BQUEUE_NONE; 854 } else { 855 if (BUF_REFCNTNB(bp) <= 1) 856 panic("bremfree: removing a buffer not on a queue"); 857 } 858 } 859 860 void 861 bremfree(struct buf *bp) 862 { 863 spin_lock(&bufqspin); 864 _bremfree(bp); 865 spin_unlock(&bufqspin); 866 } 867 868 static void 869 bremfree_locked(struct buf *bp) 870 { 871 _bremfree(bp); 872 } 873 874 /* 875 * bread: 876 * 877 * Get a buffer with the specified data. Look in the cache first. We 878 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 879 * is set, the buffer is valid and we do not have to do anything ( see 880 * getblk() ). 881 * 882 */ 883 int 884 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 885 { 886 return (breadn(vp, loffset, size, NULL, NULL, 0, bpp)); 887 } 888 889 /* 890 * This version of bread issues any required I/O asyncnronously and 891 * makes a callback on completion. 892 * 893 * The callback must check whether BIO_DONE is set in the bio and issue 894 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing 895 * BIO_DONE and disposing of the I/O (bqrelse()ing it). 896 */ 897 void 898 breadcb(struct vnode *vp, off_t loffset, int size, 899 void (*func)(struct bio *), void *arg) 900 { 901 struct buf *bp; 902 903 bp = getblk(vp, loffset, size, 0, 0); 904 905 /* if not found in cache, do some I/O */ 906 if ((bp->b_flags & B_CACHE) == 0) { 907 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 908 bp->b_cmd = BUF_CMD_READ; 909 bp->b_bio1.bio_done = func; 910 bp->b_bio1.bio_caller_info1.ptr = arg; 911 vfs_busy_pages(vp, bp); 912 BUF_KERNPROC(bp); 913 vn_strategy(vp, &bp->b_bio1); 914 } else if (func) { 915 /* 916 * Since we are issuing the callback synchronously it cannot 917 * race the BIO_DONE, so no need for atomic ops here. 918 */ 919 /*bp->b_bio1.bio_done = func;*/ 920 bp->b_bio1.bio_caller_info1.ptr = arg; 921 bp->b_bio1.bio_flags |= BIO_DONE; 922 func(&bp->b_bio1); 923 } else { 924 bqrelse(bp); 925 } 926 } 927 928 /* 929 * breadn: 930 * 931 * Operates like bread, but also starts asynchronous I/O on 932 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 933 * to initiating I/O . If B_CACHE is set, the buffer is valid 934 * and we do not have to do anything. 935 * 936 */ 937 int 938 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 939 int *rabsize, int cnt, struct buf **bpp) 940 { 941 struct buf *bp, *rabp; 942 int i; 943 int rv = 0, readwait = 0; 944 945 *bpp = bp = getblk(vp, loffset, size, 0, 0); 946 947 /* if not found in cache, do some I/O */ 948 if ((bp->b_flags & B_CACHE) == 0) { 949 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 950 bp->b_cmd = BUF_CMD_READ; 951 bp->b_bio1.bio_done = biodone_sync; 952 bp->b_bio1.bio_flags |= BIO_SYNC; 953 vfs_busy_pages(vp, bp); 954 vn_strategy(vp, &bp->b_bio1); 955 ++readwait; 956 } 957 958 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 959 if (inmem(vp, *raoffset)) 960 continue; 961 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 962 963 if ((rabp->b_flags & B_CACHE) == 0) { 964 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 965 rabp->b_cmd = BUF_CMD_READ; 966 vfs_busy_pages(vp, rabp); 967 BUF_KERNPROC(rabp); 968 vn_strategy(vp, &rabp->b_bio1); 969 } else { 970 brelse(rabp); 971 } 972 } 973 if (readwait) 974 rv = biowait(&bp->b_bio1, "biord"); 975 return (rv); 976 } 977 978 /* 979 * bwrite: 980 * 981 * Synchronous write, waits for completion. 982 * 983 * Write, release buffer on completion. (Done by iodone 984 * if async). Do not bother writing anything if the buffer 985 * is invalid. 986 * 987 * Note that we set B_CACHE here, indicating that buffer is 988 * fully valid and thus cacheable. This is true even of NFS 989 * now so we set it generally. This could be set either here 990 * or in biodone() since the I/O is synchronous. We put it 991 * here. 992 */ 993 int 994 bwrite(struct buf *bp) 995 { 996 int error; 997 998 if (bp->b_flags & B_INVAL) { 999 brelse(bp); 1000 return (0); 1001 } 1002 if (BUF_REFCNTNB(bp) == 0) 1003 panic("bwrite: buffer is not busy???"); 1004 1005 /* Mark the buffer clean */ 1006 bundirty(bp); 1007 1008 bp->b_flags &= ~(B_ERROR | B_EINTR); 1009 bp->b_flags |= B_CACHE; 1010 bp->b_cmd = BUF_CMD_WRITE; 1011 bp->b_bio1.bio_done = biodone_sync; 1012 bp->b_bio1.bio_flags |= BIO_SYNC; 1013 vfs_busy_pages(bp->b_vp, bp); 1014 1015 /* 1016 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1017 * valid for vnode-backed buffers. 1018 */ 1019 bsetrunningbufspace(bp, bp->b_bufsize); 1020 vn_strategy(bp->b_vp, &bp->b_bio1); 1021 error = biowait(&bp->b_bio1, "biows"); 1022 brelse(bp); 1023 1024 return (error); 1025 } 1026 1027 /* 1028 * bawrite: 1029 * 1030 * Asynchronous write. Start output on a buffer, but do not wait for 1031 * it to complete. The buffer is released when the output completes. 1032 * 1033 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1034 * B_INVAL buffers. Not us. 1035 */ 1036 void 1037 bawrite(struct buf *bp) 1038 { 1039 if (bp->b_flags & B_INVAL) { 1040 brelse(bp); 1041 return; 1042 } 1043 if (BUF_REFCNTNB(bp) == 0) 1044 panic("bwrite: buffer is not busy???"); 1045 1046 /* Mark the buffer clean */ 1047 bundirty(bp); 1048 1049 bp->b_flags &= ~(B_ERROR | B_EINTR); 1050 bp->b_flags |= B_CACHE; 1051 bp->b_cmd = BUF_CMD_WRITE; 1052 KKASSERT(bp->b_bio1.bio_done == NULL); 1053 vfs_busy_pages(bp->b_vp, bp); 1054 1055 /* 1056 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1057 * valid for vnode-backed buffers. 1058 */ 1059 bsetrunningbufspace(bp, bp->b_bufsize); 1060 BUF_KERNPROC(bp); 1061 vn_strategy(bp->b_vp, &bp->b_bio1); 1062 } 1063 1064 /* 1065 * bowrite: 1066 * 1067 * Ordered write. Start output on a buffer, and flag it so that the 1068 * device will write it in the order it was queued. The buffer is 1069 * released when the output completes. bwrite() ( or the VOP routine 1070 * anyway ) is responsible for handling B_INVAL buffers. 1071 */ 1072 int 1073 bowrite(struct buf *bp) 1074 { 1075 bp->b_flags |= B_ORDERED; 1076 bawrite(bp); 1077 return (0); 1078 } 1079 1080 /* 1081 * bdwrite: 1082 * 1083 * Delayed write. (Buffer is marked dirty). Do not bother writing 1084 * anything if the buffer is marked invalid. 1085 * 1086 * Note that since the buffer must be completely valid, we can safely 1087 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1088 * biodone() in order to prevent getblk from writing the buffer 1089 * out synchronously. 1090 */ 1091 void 1092 bdwrite(struct buf *bp) 1093 { 1094 if (BUF_REFCNTNB(bp) == 0) 1095 panic("bdwrite: buffer is not busy"); 1096 1097 if (bp->b_flags & B_INVAL) { 1098 brelse(bp); 1099 return; 1100 } 1101 bdirty(bp); 1102 1103 if (dsched_is_clear_buf_priv(bp)) 1104 dsched_new_buf(bp); 1105 1106 /* 1107 * Set B_CACHE, indicating that the buffer is fully valid. This is 1108 * true even of NFS now. 1109 */ 1110 bp->b_flags |= B_CACHE; 1111 1112 /* 1113 * This bmap keeps the system from needing to do the bmap later, 1114 * perhaps when the system is attempting to do a sync. Since it 1115 * is likely that the indirect block -- or whatever other datastructure 1116 * that the filesystem needs is still in memory now, it is a good 1117 * thing to do this. Note also, that if the pageout daemon is 1118 * requesting a sync -- there might not be enough memory to do 1119 * the bmap then... So, this is important to do. 1120 */ 1121 if (bp->b_bio2.bio_offset == NOOFFSET) { 1122 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1123 NULL, NULL, BUF_CMD_WRITE); 1124 } 1125 1126 /* 1127 * Because the underlying pages may still be mapped and 1128 * writable trying to set the dirty buffer (b_dirtyoff/end) 1129 * range here will be inaccurate. 1130 * 1131 * However, we must still clean the pages to satisfy the 1132 * vnode_pager and pageout daemon, so theythink the pages 1133 * have been "cleaned". What has really occured is that 1134 * they've been earmarked for later writing by the buffer 1135 * cache. 1136 * 1137 * So we get the b_dirtyoff/end update but will not actually 1138 * depend on it (NFS that is) until the pages are busied for 1139 * writing later on. 1140 */ 1141 vfs_clean_pages(bp); 1142 bqrelse(bp); 1143 1144 /* 1145 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1146 * due to the softdep code. 1147 */ 1148 } 1149 1150 /* 1151 * Fake write - return pages to VM system as dirty, leave the buffer clean. 1152 * This is used by tmpfs. 1153 * 1154 * It is important for any VFS using this routine to NOT use it for 1155 * IO_SYNC or IO_ASYNC operations which occur when the system really 1156 * wants to flush VM pages to backing store. 1157 */ 1158 void 1159 buwrite(struct buf *bp) 1160 { 1161 vm_page_t m; 1162 int i; 1163 1164 /* 1165 * Only works for VMIO buffers. If the buffer is already 1166 * marked for delayed-write we can't avoid the bdwrite(). 1167 */ 1168 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) { 1169 bdwrite(bp); 1170 return; 1171 } 1172 1173 /* 1174 * Set valid & dirty. 1175 * 1176 * WARNING! vfs_dirty_one_page() assumes vm_token is held for now. 1177 */ 1178 lwkt_gettoken(&vm_token); 1179 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1180 m = bp->b_xio.xio_pages[i]; 1181 vfs_dirty_one_page(bp, i, m); 1182 } 1183 lwkt_reltoken(&vm_token); 1184 bqrelse(bp); 1185 } 1186 1187 /* 1188 * bdirty: 1189 * 1190 * Turn buffer into delayed write request by marking it B_DELWRI. 1191 * B_RELBUF and B_NOCACHE must be cleared. 1192 * 1193 * We reassign the buffer to itself to properly update it in the 1194 * dirty/clean lists. 1195 * 1196 * Must be called from a critical section. 1197 * The buffer must be on BQUEUE_NONE. 1198 */ 1199 void 1200 bdirty(struct buf *bp) 1201 { 1202 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1203 if (bp->b_flags & B_NOCACHE) { 1204 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1205 bp->b_flags &= ~B_NOCACHE; 1206 } 1207 if (bp->b_flags & B_INVAL) { 1208 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1209 } 1210 bp->b_flags &= ~B_RELBUF; 1211 1212 if ((bp->b_flags & B_DELWRI) == 0) { 1213 lwkt_gettoken(&bp->b_vp->v_token); 1214 bp->b_flags |= B_DELWRI; 1215 reassignbuf(bp); 1216 lwkt_reltoken(&bp->b_vp->v_token); 1217 1218 spin_lock(&bufcspin); 1219 ++dirtybufcount; 1220 dirtybufspace += bp->b_bufsize; 1221 if (bp->b_flags & B_HEAVY) { 1222 ++dirtybufcounthw; 1223 dirtybufspacehw += bp->b_bufsize; 1224 } 1225 spin_unlock(&bufcspin); 1226 1227 bd_heatup(); 1228 } 1229 } 1230 1231 /* 1232 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1233 * needs to be flushed with a different buf_daemon thread to avoid 1234 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1235 */ 1236 void 1237 bheavy(struct buf *bp) 1238 { 1239 if ((bp->b_flags & B_HEAVY) == 0) { 1240 bp->b_flags |= B_HEAVY; 1241 if (bp->b_flags & B_DELWRI) { 1242 spin_lock(&bufcspin); 1243 ++dirtybufcounthw; 1244 dirtybufspacehw += bp->b_bufsize; 1245 spin_unlock(&bufcspin); 1246 } 1247 } 1248 } 1249 1250 /* 1251 * bundirty: 1252 * 1253 * Clear B_DELWRI for buffer. 1254 * 1255 * Must be called from a critical section. 1256 * 1257 * The buffer is typically on BQUEUE_NONE but there is one case in 1258 * brelse() that calls this function after placing the buffer on 1259 * a different queue. 1260 * 1261 * MPSAFE 1262 */ 1263 void 1264 bundirty(struct buf *bp) 1265 { 1266 if (bp->b_flags & B_DELWRI) { 1267 lwkt_gettoken(&bp->b_vp->v_token); 1268 bp->b_flags &= ~B_DELWRI; 1269 reassignbuf(bp); 1270 lwkt_reltoken(&bp->b_vp->v_token); 1271 1272 spin_lock(&bufcspin); 1273 --dirtybufcount; 1274 dirtybufspace -= bp->b_bufsize; 1275 if (bp->b_flags & B_HEAVY) { 1276 --dirtybufcounthw; 1277 dirtybufspacehw -= bp->b_bufsize; 1278 } 1279 spin_unlock(&bufcspin); 1280 1281 bd_signal(bp->b_bufsize); 1282 } 1283 /* 1284 * Since it is now being written, we can clear its deferred write flag. 1285 */ 1286 bp->b_flags &= ~B_DEFERRED; 1287 } 1288 1289 /* 1290 * Set the b_runningbufspace field, used to track how much I/O is 1291 * in progress at any given moment. 1292 */ 1293 void 1294 bsetrunningbufspace(struct buf *bp, int bytes) 1295 { 1296 bp->b_runningbufspace = bytes; 1297 if (bytes) { 1298 spin_lock(&bufcspin); 1299 runningbufspace += bytes; 1300 ++runningbufcount; 1301 spin_unlock(&bufcspin); 1302 } 1303 } 1304 1305 /* 1306 * brelse: 1307 * 1308 * Release a busy buffer and, if requested, free its resources. The 1309 * buffer will be stashed in the appropriate bufqueue[] allowing it 1310 * to be accessed later as a cache entity or reused for other purposes. 1311 * 1312 * MPALMOSTSAFE 1313 */ 1314 void 1315 brelse(struct buf *bp) 1316 { 1317 #ifdef INVARIANTS 1318 int saved_flags = bp->b_flags; 1319 #endif 1320 1321 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1322 1323 /* 1324 * If B_NOCACHE is set we are being asked to destroy the buffer and 1325 * its backing store. Clear B_DELWRI. 1326 * 1327 * B_NOCACHE is set in two cases: (1) when the caller really wants 1328 * to destroy the buffer and backing store and (2) when the caller 1329 * wants to destroy the buffer and backing store after a write 1330 * completes. 1331 */ 1332 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1333 bundirty(bp); 1334 } 1335 1336 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1337 /* 1338 * A re-dirtied buffer is only subject to destruction 1339 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1340 */ 1341 /* leave buffer intact */ 1342 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1343 (bp->b_bufsize <= 0)) { 1344 /* 1345 * Either a failed read or we were asked to free or not 1346 * cache the buffer. This path is reached with B_DELWRI 1347 * set only if B_INVAL is already set. B_NOCACHE governs 1348 * backing store destruction. 1349 * 1350 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1351 * buffer cannot be immediately freed. 1352 */ 1353 bp->b_flags |= B_INVAL; 1354 if (LIST_FIRST(&bp->b_dep) != NULL) 1355 buf_deallocate(bp); 1356 if (bp->b_flags & B_DELWRI) { 1357 spin_lock(&bufcspin); 1358 --dirtybufcount; 1359 dirtybufspace -= bp->b_bufsize; 1360 if (bp->b_flags & B_HEAVY) { 1361 --dirtybufcounthw; 1362 dirtybufspacehw -= bp->b_bufsize; 1363 } 1364 spin_unlock(&bufcspin); 1365 1366 bd_signal(bp->b_bufsize); 1367 } 1368 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1369 } 1370 1371 /* 1372 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set, 1373 * or if b_refs is non-zero. 1374 * 1375 * If vfs_vmio_release() is called with either bit set, the 1376 * underlying pages may wind up getting freed causing a previous 1377 * write (bdwrite()) to get 'lost' because pages associated with 1378 * a B_DELWRI bp are marked clean. Pages associated with a 1379 * B_LOCKED buffer may be mapped by the filesystem. 1380 * 1381 * If we want to release the buffer ourselves (rather then the 1382 * originator asking us to release it), give the originator a 1383 * chance to countermand the release by setting B_LOCKED. 1384 * 1385 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1386 * if B_DELWRI is set. 1387 * 1388 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1389 * on pages to return pages to the VM page queues. 1390 */ 1391 if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) { 1392 bp->b_flags &= ~B_RELBUF; 1393 } else if (vm_page_count_severe()) { 1394 if (LIST_FIRST(&bp->b_dep) != NULL) 1395 buf_deallocate(bp); /* can set B_LOCKED */ 1396 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1397 bp->b_flags &= ~B_RELBUF; 1398 else 1399 bp->b_flags |= B_RELBUF; 1400 } 1401 1402 /* 1403 * Make sure b_cmd is clear. It may have already been cleared by 1404 * biodone(). 1405 * 1406 * At this point destroying the buffer is governed by the B_INVAL 1407 * or B_RELBUF flags. 1408 */ 1409 bp->b_cmd = BUF_CMD_DONE; 1410 dsched_exit_buf(bp); 1411 1412 /* 1413 * VMIO buffer rundown. Make sure the VM page array is restored 1414 * after an I/O may have replaces some of the pages with bogus pages 1415 * in order to not destroy dirty pages in a fill-in read. 1416 * 1417 * Note that due to the code above, if a buffer is marked B_DELWRI 1418 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1419 * B_INVAL may still be set, however. 1420 * 1421 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1422 * but not the backing store. B_NOCACHE will destroy the backing 1423 * store. 1424 * 1425 * Note that dirty NFS buffers contain byte-granular write ranges 1426 * and should not be destroyed w/ B_INVAL even if the backing store 1427 * is left intact. 1428 */ 1429 if (bp->b_flags & B_VMIO) { 1430 /* 1431 * Rundown for VMIO buffers which are not dirty NFS buffers. 1432 */ 1433 int i, j, resid; 1434 vm_page_t m; 1435 off_t foff; 1436 vm_pindex_t poff; 1437 vm_object_t obj; 1438 struct vnode *vp; 1439 1440 vp = bp->b_vp; 1441 1442 /* 1443 * Get the base offset and length of the buffer. Note that 1444 * in the VMIO case if the buffer block size is not 1445 * page-aligned then b_data pointer may not be page-aligned. 1446 * But our b_xio.xio_pages array *IS* page aligned. 1447 * 1448 * block sizes less then DEV_BSIZE (usually 512) are not 1449 * supported due to the page granularity bits (m->valid, 1450 * m->dirty, etc...). 1451 * 1452 * See man buf(9) for more information 1453 */ 1454 1455 resid = bp->b_bufsize; 1456 foff = bp->b_loffset; 1457 1458 lwkt_gettoken(&vm_token); 1459 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1460 m = bp->b_xio.xio_pages[i]; 1461 vm_page_flag_clear(m, PG_ZERO); 1462 /* 1463 * If we hit a bogus page, fixup *all* of them 1464 * now. Note that we left these pages wired 1465 * when we removed them so they had better exist, 1466 * and they cannot be ripped out from under us so 1467 * no critical section protection is necessary. 1468 */ 1469 if (m == bogus_page) { 1470 obj = vp->v_object; 1471 poff = OFF_TO_IDX(bp->b_loffset); 1472 1473 for (j = i; j < bp->b_xio.xio_npages; j++) { 1474 vm_page_t mtmp; 1475 1476 mtmp = bp->b_xio.xio_pages[j]; 1477 if (mtmp == bogus_page) { 1478 mtmp = vm_page_lookup(obj, poff + j); 1479 if (!mtmp) { 1480 panic("brelse: page missing"); 1481 } 1482 bp->b_xio.xio_pages[j] = mtmp; 1483 } 1484 } 1485 bp->b_flags &= ~B_HASBOGUS; 1486 1487 if ((bp->b_flags & B_INVAL) == 0) { 1488 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1489 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1490 } 1491 m = bp->b_xio.xio_pages[i]; 1492 } 1493 1494 /* 1495 * Invalidate the backing store if B_NOCACHE is set 1496 * (e.g. used with vinvalbuf()). If this is NFS 1497 * we impose a requirement that the block size be 1498 * a multiple of PAGE_SIZE and create a temporary 1499 * hack to basically invalidate the whole page. The 1500 * problem is that NFS uses really odd buffer sizes 1501 * especially when tracking piecemeal writes and 1502 * it also vinvalbuf()'s a lot, which would result 1503 * in only partial page validation and invalidation 1504 * here. If the file page is mmap()'d, however, 1505 * all the valid bits get set so after we invalidate 1506 * here we would end up with weird m->valid values 1507 * like 0xfc. nfs_getpages() can't handle this so 1508 * we clear all the valid bits for the NFS case 1509 * instead of just some of them. 1510 * 1511 * The real bug is the VM system having to set m->valid 1512 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1513 * itself is an artifact of the whole 512-byte 1514 * granular mess that exists to support odd block 1515 * sizes and UFS meta-data block sizes (e.g. 6144). 1516 * A complete rewrite is required. 1517 * 1518 * XXX 1519 */ 1520 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1521 int poffset = foff & PAGE_MASK; 1522 int presid; 1523 1524 presid = PAGE_SIZE - poffset; 1525 if (bp->b_vp->v_tag == VT_NFS && 1526 bp->b_vp->v_type == VREG) { 1527 ; /* entire page */ 1528 } else if (presid > resid) { 1529 presid = resid; 1530 } 1531 KASSERT(presid >= 0, ("brelse: extra page")); 1532 vm_page_set_invalid(m, poffset, presid); 1533 1534 /* 1535 * Also make sure any swap cache is removed 1536 * as it is now stale (HAMMER in particular 1537 * uses B_NOCACHE to deal with buffer 1538 * aliasing). 1539 */ 1540 swap_pager_unswapped(m); 1541 } 1542 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1543 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1544 } 1545 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1546 vfs_vmio_release(bp); 1547 lwkt_reltoken(&vm_token); 1548 } else { 1549 /* 1550 * Rundown for non-VMIO buffers. 1551 */ 1552 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1553 if (bp->b_bufsize) 1554 allocbuf(bp, 0); 1555 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1556 if (bp->b_vp) 1557 brelvp(bp); 1558 } 1559 } 1560 1561 if (bp->b_qindex != BQUEUE_NONE) 1562 panic("brelse: free buffer onto another queue???"); 1563 if (BUF_REFCNTNB(bp) > 1) { 1564 /* Temporary panic to verify exclusive locking */ 1565 /* This panic goes away when we allow shared refs */ 1566 panic("brelse: multiple refs"); 1567 /* NOT REACHED */ 1568 return; 1569 } 1570 1571 /* 1572 * Figure out the correct queue to place the cleaned up buffer on. 1573 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1574 * disassociated from their vnode. 1575 */ 1576 spin_lock(&bufqspin); 1577 if (bp->b_flags & B_LOCKED) { 1578 /* 1579 * Buffers that are locked are placed in the locked queue 1580 * immediately, regardless of their state. 1581 */ 1582 bp->b_qindex = BQUEUE_LOCKED; 1583 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1584 } else if (bp->b_bufsize == 0) { 1585 /* 1586 * Buffers with no memory. Due to conditionals near the top 1587 * of brelse() such buffers should probably already be 1588 * marked B_INVAL and disassociated from their vnode. 1589 */ 1590 bp->b_flags |= B_INVAL; 1591 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1592 KKASSERT((bp->b_flags & B_HASHED) == 0); 1593 if (bp->b_kvasize) { 1594 bp->b_qindex = BQUEUE_EMPTYKVA; 1595 } else { 1596 bp->b_qindex = BQUEUE_EMPTY; 1597 } 1598 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1599 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1600 /* 1601 * Buffers with junk contents. Again these buffers had better 1602 * already be disassociated from their vnode. 1603 */ 1604 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1605 KKASSERT((bp->b_flags & B_HASHED) == 0); 1606 bp->b_flags |= B_INVAL; 1607 bp->b_qindex = BQUEUE_CLEAN; 1608 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1609 } else { 1610 /* 1611 * Remaining buffers. These buffers are still associated with 1612 * their vnode. 1613 */ 1614 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1615 case B_DELWRI: 1616 bp->b_qindex = BQUEUE_DIRTY; 1617 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1618 break; 1619 case B_DELWRI | B_HEAVY: 1620 bp->b_qindex = BQUEUE_DIRTY_HW; 1621 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1622 b_freelist); 1623 break; 1624 default: 1625 /* 1626 * NOTE: Buffers are always placed at the end of the 1627 * queue. If B_AGE is not set the buffer will cycle 1628 * through the queue twice. 1629 */ 1630 bp->b_qindex = BQUEUE_CLEAN; 1631 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1632 break; 1633 } 1634 } 1635 spin_unlock(&bufqspin); 1636 1637 /* 1638 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1639 * on the correct queue. 1640 */ 1641 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1642 bundirty(bp); 1643 1644 /* 1645 * The bp is on an appropriate queue unless locked. If it is not 1646 * locked or dirty we can wakeup threads waiting for buffer space. 1647 * 1648 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1649 * if B_INVAL is set ). 1650 */ 1651 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1652 bufcountwakeup(); 1653 1654 /* 1655 * Something we can maybe free or reuse 1656 */ 1657 if (bp->b_bufsize || bp->b_kvasize) 1658 bufspacewakeup(); 1659 1660 /* 1661 * Clean up temporary flags and unlock the buffer. 1662 */ 1663 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1664 BUF_UNLOCK(bp); 1665 } 1666 1667 /* 1668 * bqrelse: 1669 * 1670 * Release a buffer back to the appropriate queue but do not try to free 1671 * it. The buffer is expected to be used again soon. 1672 * 1673 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1674 * biodone() to requeue an async I/O on completion. It is also used when 1675 * known good buffers need to be requeued but we think we may need the data 1676 * again soon. 1677 * 1678 * XXX we should be able to leave the B_RELBUF hint set on completion. 1679 * 1680 * MPSAFE 1681 */ 1682 void 1683 bqrelse(struct buf *bp) 1684 { 1685 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1686 1687 if (bp->b_qindex != BQUEUE_NONE) 1688 panic("bqrelse: free buffer onto another queue???"); 1689 if (BUF_REFCNTNB(bp) > 1) { 1690 /* do not release to free list */ 1691 panic("bqrelse: multiple refs"); 1692 return; 1693 } 1694 1695 buf_act_advance(bp); 1696 1697 spin_lock(&bufqspin); 1698 if (bp->b_flags & B_LOCKED) { 1699 /* 1700 * Locked buffers are released to the locked queue. However, 1701 * if the buffer is dirty it will first go into the dirty 1702 * queue and later on after the I/O completes successfully it 1703 * will be released to the locked queue. 1704 */ 1705 bp->b_qindex = BQUEUE_LOCKED; 1706 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1707 } else if (bp->b_flags & B_DELWRI) { 1708 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1709 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1710 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1711 } else if (vm_page_count_severe()) { 1712 /* 1713 * We are too low on memory, we have to try to free the 1714 * buffer (most importantly: the wired pages making up its 1715 * backing store) *now*. 1716 */ 1717 spin_unlock(&bufqspin); 1718 brelse(bp); 1719 return; 1720 } else { 1721 bp->b_qindex = BQUEUE_CLEAN; 1722 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1723 } 1724 spin_unlock(&bufqspin); 1725 1726 if ((bp->b_flags & B_LOCKED) == 0 && 1727 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1728 bufcountwakeup(); 1729 } 1730 1731 /* 1732 * Something we can maybe free or reuse. 1733 */ 1734 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1735 bufspacewakeup(); 1736 1737 /* 1738 * Final cleanup and unlock. Clear bits that are only used while a 1739 * buffer is actively locked. 1740 */ 1741 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1742 dsched_exit_buf(bp); 1743 BUF_UNLOCK(bp); 1744 } 1745 1746 /* 1747 * Hold a buffer, preventing it from being reused. This will prevent 1748 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL 1749 * operations. If a B_INVAL operation occurs the buffer will remain held 1750 * but the underlying pages may get ripped out. 1751 * 1752 * These functions are typically used in VOP_READ/VOP_WRITE functions 1753 * to hold a buffer during a copyin or copyout, preventing deadlocks 1754 * or recursive lock panics when read()/write() is used over mmap()'d 1755 * space. 1756 * 1757 * NOTE: bqhold() requires that the buffer be locked at the time of the 1758 * hold. bqdrop() has no requirements other than the buffer having 1759 * previously been held. 1760 */ 1761 void 1762 bqhold(struct buf *bp) 1763 { 1764 atomic_add_int(&bp->b_refs, 1); 1765 } 1766 1767 void 1768 bqdrop(struct buf *bp) 1769 { 1770 KKASSERT(bp->b_refs > 0); 1771 atomic_add_int(&bp->b_refs, -1); 1772 } 1773 1774 /* 1775 * vfs_vmio_release: 1776 * 1777 * Return backing pages held by the buffer 'bp' back to the VM system 1778 * if possible. The pages are freed if they are no longer valid or 1779 * attempt to free if it was used for direct I/O otherwise they are 1780 * sent to the page cache. 1781 * 1782 * Pages that were marked busy are left alone and skipped. 1783 * 1784 * The KVA mapping (b_data) for the underlying pages is removed by 1785 * this function. 1786 */ 1787 static void 1788 vfs_vmio_release(struct buf *bp) 1789 { 1790 int i; 1791 vm_page_t m; 1792 1793 lwkt_gettoken(&vm_token); 1794 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1795 m = bp->b_xio.xio_pages[i]; 1796 bp->b_xio.xio_pages[i] = NULL; 1797 1798 /* 1799 * The VFS is telling us this is not a meta-data buffer 1800 * even if it is backed by a block device. 1801 */ 1802 if (bp->b_flags & B_NOTMETA) 1803 vm_page_flag_set(m, PG_NOTMETA); 1804 1805 /* 1806 * This is a very important bit of code. We try to track 1807 * VM page use whether the pages are wired into the buffer 1808 * cache or not. While wired into the buffer cache the 1809 * bp tracks the act_count. 1810 * 1811 * We can choose to place unwired pages on the inactive 1812 * queue (0) or active queue (1). If we place too many 1813 * on the active queue the queue will cycle the act_count 1814 * on pages we'd like to keep, just from single-use pages 1815 * (such as when doing a tar-up or file scan). 1816 */ 1817 if (bp->b_act_count < vm_cycle_point) 1818 vm_page_unwire(m, 0); 1819 else 1820 vm_page_unwire(m, 1); 1821 1822 /* 1823 * We don't mess with busy pages, it is the responsibility 1824 * of the process that busied the pages to deal with them. 1825 * 1826 * However, the caller may have marked the page invalid and 1827 * we must still make sure the page is no longer mapped. 1828 */ 1829 if ((m->flags & PG_BUSY) || (m->busy != 0)) { 1830 vm_page_protect(m, VM_PROT_NONE); 1831 continue; 1832 } 1833 1834 if (m->wire_count == 0) { 1835 vm_page_flag_clear(m, PG_ZERO); 1836 /* 1837 * Might as well free the page if we can and it has 1838 * no valid data. We also free the page if the 1839 * buffer was used for direct I/O. 1840 */ 1841 #if 0 1842 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1843 m->hold_count == 0) { 1844 vm_page_busy(m); 1845 vm_page_protect(m, VM_PROT_NONE); 1846 vm_page_free(m); 1847 } else 1848 #endif 1849 /* 1850 * Cache the page if we are really low on free 1851 * pages. 1852 * 1853 * Also bypass the active and inactive queues 1854 * if B_NOTMETA is set. This flag is set by HAMMER 1855 * on a regular file buffer when double buffering 1856 * is enabled or on a block device buffer representing 1857 * file data when double buffering is not enabled. 1858 * The flag prevents two copies of the same data from 1859 * being cached for long periods of time. 1860 */ 1861 if (bp->b_flags & B_DIRECT) { 1862 vm_page_try_to_free(m); 1863 } else if ((bp->b_flags & B_NOTMETA) || 1864 vm_page_count_severe()) { 1865 m->act_count = bp->b_act_count; 1866 vm_page_try_to_cache(m); 1867 } else { 1868 m->act_count = bp->b_act_count; 1869 } 1870 } 1871 } 1872 lwkt_reltoken(&vm_token); 1873 1874 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), 1875 bp->b_xio.xio_npages); 1876 if (bp->b_bufsize) { 1877 bufspacewakeup(); 1878 bp->b_bufsize = 0; 1879 } 1880 bp->b_xio.xio_npages = 0; 1881 bp->b_flags &= ~B_VMIO; 1882 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1883 if (bp->b_vp) 1884 brelvp(bp); 1885 } 1886 1887 /* 1888 * vfs_bio_awrite: 1889 * 1890 * Implement clustered async writes for clearing out B_DELWRI buffers. 1891 * This is much better then the old way of writing only one buffer at 1892 * a time. Note that we may not be presented with the buffers in the 1893 * correct order, so we search for the cluster in both directions. 1894 * 1895 * The buffer is locked on call. 1896 */ 1897 int 1898 vfs_bio_awrite(struct buf *bp) 1899 { 1900 int i; 1901 int j; 1902 off_t loffset = bp->b_loffset; 1903 struct vnode *vp = bp->b_vp; 1904 int nbytes; 1905 struct buf *bpa; 1906 int nwritten; 1907 int size; 1908 1909 /* 1910 * right now we support clustered writing only to regular files. If 1911 * we find a clusterable block we could be in the middle of a cluster 1912 * rather then at the beginning. 1913 * 1914 * NOTE: b_bio1 contains the logical loffset and is aliased 1915 * to b_loffset. b_bio2 contains the translated block number. 1916 */ 1917 if ((vp->v_type == VREG) && 1918 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1919 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1920 1921 size = vp->v_mount->mnt_stat.f_iosize; 1922 1923 for (i = size; i < MAXPHYS; i += size) { 1924 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1925 BUF_REFCNT(bpa) == 0 && 1926 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1927 (B_DELWRI | B_CLUSTEROK)) && 1928 (bpa->b_bufsize == size)) { 1929 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1930 (bpa->b_bio2.bio_offset != 1931 bp->b_bio2.bio_offset + i)) 1932 break; 1933 } else { 1934 break; 1935 } 1936 } 1937 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1938 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1939 BUF_REFCNT(bpa) == 0 && 1940 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1941 (B_DELWRI | B_CLUSTEROK)) && 1942 (bpa->b_bufsize == size)) { 1943 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1944 (bpa->b_bio2.bio_offset != 1945 bp->b_bio2.bio_offset - j)) 1946 break; 1947 } else { 1948 break; 1949 } 1950 } 1951 j -= size; 1952 nbytes = (i + j); 1953 1954 /* 1955 * this is a possible cluster write 1956 */ 1957 if (nbytes != size) { 1958 BUF_UNLOCK(bp); 1959 nwritten = cluster_wbuild(vp, size, 1960 loffset - j, nbytes); 1961 return nwritten; 1962 } 1963 } 1964 1965 /* 1966 * default (old) behavior, writing out only one block 1967 * 1968 * XXX returns b_bufsize instead of b_bcount for nwritten? 1969 */ 1970 nwritten = bp->b_bufsize; 1971 bremfree(bp); 1972 bawrite(bp); 1973 1974 return nwritten; 1975 } 1976 1977 /* 1978 * getnewbuf: 1979 * 1980 * Find and initialize a new buffer header, freeing up existing buffers 1981 * in the bufqueues as necessary. The new buffer is returned locked. 1982 * 1983 * Important: B_INVAL is not set. If the caller wishes to throw the 1984 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1985 * 1986 * We block if: 1987 * We have insufficient buffer headers 1988 * We have insufficient buffer space 1989 * buffer_map is too fragmented ( space reservation fails ) 1990 * If we have to flush dirty buffers ( but we try to avoid this ) 1991 * 1992 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1993 * Instead we ask the buf daemon to do it for us. We attempt to 1994 * avoid piecemeal wakeups of the pageout daemon. 1995 * 1996 * MPALMOSTSAFE 1997 */ 1998 struct buf * 1999 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 2000 { 2001 struct buf *bp; 2002 struct buf *nbp; 2003 int defrag = 0; 2004 int nqindex; 2005 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2006 static int flushingbufs; 2007 2008 /* 2009 * We can't afford to block since we might be holding a vnode lock, 2010 * which may prevent system daemons from running. We deal with 2011 * low-memory situations by proactively returning memory and running 2012 * async I/O rather then sync I/O. 2013 */ 2014 2015 ++getnewbufcalls; 2016 --getnewbufrestarts; 2017 restart: 2018 ++getnewbufrestarts; 2019 2020 /* 2021 * Setup for scan. If we do not have enough free buffers, 2022 * we setup a degenerate case that immediately fails. Note 2023 * that if we are specially marked process, we are allowed to 2024 * dip into our reserves. 2025 * 2026 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 2027 * 2028 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 2029 * However, there are a number of cases (defragging, reusing, ...) 2030 * where we cannot backup. 2031 */ 2032 nqindex = BQUEUE_EMPTYKVA; 2033 spin_lock(&bufqspin); 2034 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 2035 2036 if (nbp == NULL) { 2037 /* 2038 * If no EMPTYKVA buffers and we are either 2039 * defragging or reusing, locate a CLEAN buffer 2040 * to free or reuse. If bufspace useage is low 2041 * skip this step so we can allocate a new buffer. 2042 */ 2043 if (defrag || bufspace >= lobufspace) { 2044 nqindex = BQUEUE_CLEAN; 2045 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2046 } 2047 2048 /* 2049 * If we could not find or were not allowed to reuse a 2050 * CLEAN buffer, check to see if it is ok to use an EMPTY 2051 * buffer. We can only use an EMPTY buffer if allocating 2052 * its KVA would not otherwise run us out of buffer space. 2053 */ 2054 if (nbp == NULL && defrag == 0 && 2055 bufspace + maxsize < hibufspace) { 2056 nqindex = BQUEUE_EMPTY; 2057 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 2058 } 2059 } 2060 2061 /* 2062 * Run scan, possibly freeing data and/or kva mappings on the fly 2063 * depending. 2064 * 2065 * WARNING! bufqspin is held! 2066 */ 2067 while ((bp = nbp) != NULL) { 2068 int qindex = nqindex; 2069 2070 nbp = TAILQ_NEXT(bp, b_freelist); 2071 2072 /* 2073 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2074 * cycles through the queue twice before being selected. 2075 */ 2076 if (qindex == BQUEUE_CLEAN && 2077 (bp->b_flags & B_AGE) == 0 && nbp) { 2078 bp->b_flags |= B_AGE; 2079 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 2080 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 2081 continue; 2082 } 2083 2084 /* 2085 * Calculate next bp ( we can only use it if we do not block 2086 * or do other fancy things ). 2087 */ 2088 if (nbp == NULL) { 2089 switch(qindex) { 2090 case BQUEUE_EMPTY: 2091 nqindex = BQUEUE_EMPTYKVA; 2092 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 2093 break; 2094 /* fall through */ 2095 case BQUEUE_EMPTYKVA: 2096 nqindex = BQUEUE_CLEAN; 2097 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 2098 break; 2099 /* fall through */ 2100 case BQUEUE_CLEAN: 2101 /* 2102 * nbp is NULL. 2103 */ 2104 break; 2105 } 2106 } 2107 2108 /* 2109 * Sanity Checks 2110 */ 2111 KASSERT(bp->b_qindex == qindex, 2112 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 2113 2114 /* 2115 * Note: we no longer distinguish between VMIO and non-VMIO 2116 * buffers. 2117 */ 2118 KASSERT((bp->b_flags & B_DELWRI) == 0, 2119 ("delwri buffer %p found in queue %d", bp, qindex)); 2120 2121 /* 2122 * Do not try to reuse a buffer with a non-zero b_refs. 2123 * This is an unsynchronized test. A synchronized test 2124 * is also performed after we lock the buffer. 2125 */ 2126 if (bp->b_refs) 2127 continue; 2128 2129 /* 2130 * If we are defragging then we need a buffer with 2131 * b_kvasize != 0. XXX this situation should no longer 2132 * occur, if defrag is non-zero the buffer's b_kvasize 2133 * should also be non-zero at this point. XXX 2134 */ 2135 if (defrag && bp->b_kvasize == 0) { 2136 kprintf("Warning: defrag empty buffer %p\n", bp); 2137 continue; 2138 } 2139 2140 /* 2141 * Start freeing the bp. This is somewhat involved. nbp 2142 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 2143 * on the clean list must be disassociated from their 2144 * current vnode. Buffers on the empty[kva] lists have 2145 * already been disassociated. 2146 * 2147 * b_refs is checked after locking along with queue changes. 2148 * We must check here to deal with zero->nonzero transitions 2149 * made by the owner of the buffer lock, which is used by 2150 * VFS's to hold the buffer while issuing an unlocked 2151 * uiomove()s. We cannot invalidate the buffer's pages 2152 * for this case. Once we successfully lock a buffer the 2153 * only 0->1 transitions of b_refs will occur via findblk(). 2154 * 2155 * We must also check for queue changes after successful 2156 * locking as the current lock holder may dispose of the 2157 * buffer and change its queue. 2158 */ 2159 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2160 spin_unlock(&bufqspin); 2161 tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100); 2162 goto restart; 2163 } 2164 if (bp->b_qindex != qindex || bp->b_refs) { 2165 spin_unlock(&bufqspin); 2166 BUF_UNLOCK(bp); 2167 goto restart; 2168 } 2169 bremfree_locked(bp); 2170 spin_unlock(&bufqspin); 2171 2172 /* 2173 * Dependancies must be handled before we disassociate the 2174 * vnode. 2175 * 2176 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2177 * be immediately disassociated. HAMMER then becomes 2178 * responsible for releasing the buffer. 2179 * 2180 * NOTE: bufqspin is UNLOCKED now. 2181 */ 2182 if (LIST_FIRST(&bp->b_dep) != NULL) { 2183 buf_deallocate(bp); 2184 if (bp->b_flags & B_LOCKED) { 2185 bqrelse(bp); 2186 goto restart; 2187 } 2188 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2189 } 2190 2191 if (qindex == BQUEUE_CLEAN) { 2192 if (bp->b_flags & B_VMIO) 2193 vfs_vmio_release(bp); 2194 if (bp->b_vp) 2195 brelvp(bp); 2196 } 2197 2198 /* 2199 * NOTE: nbp is now entirely invalid. We can only restart 2200 * the scan from this point on. 2201 * 2202 * Get the rest of the buffer freed up. b_kva* is still 2203 * valid after this operation. 2204 */ 2205 KASSERT(bp->b_vp == NULL, 2206 ("bp3 %p flags %08x vnode %p qindex %d " 2207 "unexpectededly still associated!", 2208 bp, bp->b_flags, bp->b_vp, qindex)); 2209 KKASSERT((bp->b_flags & B_HASHED) == 0); 2210 2211 /* 2212 * critical section protection is not required when 2213 * scrapping a buffer's contents because it is already 2214 * wired. 2215 */ 2216 if (bp->b_bufsize) 2217 allocbuf(bp, 0); 2218 2219 bp->b_flags = B_BNOCLIP; 2220 bp->b_cmd = BUF_CMD_DONE; 2221 bp->b_vp = NULL; 2222 bp->b_error = 0; 2223 bp->b_resid = 0; 2224 bp->b_bcount = 0; 2225 bp->b_xio.xio_npages = 0; 2226 bp->b_dirtyoff = bp->b_dirtyend = 0; 2227 bp->b_act_count = ACT_INIT; 2228 reinitbufbio(bp); 2229 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2230 buf_dep_init(bp); 2231 if (blkflags & GETBLK_BHEAVY) 2232 bp->b_flags |= B_HEAVY; 2233 2234 /* 2235 * If we are defragging then free the buffer. 2236 */ 2237 if (defrag) { 2238 bp->b_flags |= B_INVAL; 2239 bfreekva(bp); 2240 brelse(bp); 2241 defrag = 0; 2242 goto restart; 2243 } 2244 2245 /* 2246 * If we are overcomitted then recover the buffer and its 2247 * KVM space. This occurs in rare situations when multiple 2248 * processes are blocked in getnewbuf() or allocbuf(). 2249 */ 2250 if (bufspace >= hibufspace) 2251 flushingbufs = 1; 2252 if (flushingbufs && bp->b_kvasize != 0) { 2253 bp->b_flags |= B_INVAL; 2254 bfreekva(bp); 2255 brelse(bp); 2256 goto restart; 2257 } 2258 if (bufspace < lobufspace) 2259 flushingbufs = 0; 2260 2261 /* 2262 * b_refs can transition to a non-zero value while we hold 2263 * the buffer locked due to a findblk(). Our brelvp() above 2264 * interlocked any future possible transitions due to 2265 * findblk()s. 2266 * 2267 * If we find b_refs to be non-zero we can destroy the 2268 * buffer's contents but we cannot yet reuse the buffer. 2269 */ 2270 if (bp->b_refs) { 2271 bp->b_flags |= B_INVAL; 2272 bfreekva(bp); 2273 brelse(bp); 2274 goto restart; 2275 } 2276 break; 2277 /* NOT REACHED, bufqspin not held */ 2278 } 2279 2280 /* 2281 * If we exhausted our list, sleep as appropriate. We may have to 2282 * wakeup various daemons and write out some dirty buffers. 2283 * 2284 * Generally we are sleeping due to insufficient buffer space. 2285 * 2286 * NOTE: bufqspin is held if bp is NULL, else it is not held. 2287 */ 2288 if (bp == NULL) { 2289 int flags; 2290 char *waitmsg; 2291 2292 spin_unlock(&bufqspin); 2293 if (defrag) { 2294 flags = VFS_BIO_NEED_BUFSPACE; 2295 waitmsg = "nbufkv"; 2296 } else if (bufspace >= hibufspace) { 2297 waitmsg = "nbufbs"; 2298 flags = VFS_BIO_NEED_BUFSPACE; 2299 } else { 2300 waitmsg = "newbuf"; 2301 flags = VFS_BIO_NEED_ANY; 2302 } 2303 2304 bd_speedup(); /* heeeelp */ 2305 spin_lock(&bufcspin); 2306 needsbuffer |= flags; 2307 while (needsbuffer & flags) { 2308 if (ssleep(&needsbuffer, &bufcspin, 2309 slpflags, waitmsg, slptimeo)) { 2310 spin_unlock(&bufcspin); 2311 return (NULL); 2312 } 2313 } 2314 spin_unlock(&bufcspin); 2315 } else { 2316 /* 2317 * We finally have a valid bp. We aren't quite out of the 2318 * woods, we still have to reserve kva space. In order 2319 * to keep fragmentation sane we only allocate kva in 2320 * BKVASIZE chunks. 2321 * 2322 * (bufqspin is not held) 2323 */ 2324 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2325 2326 if (maxsize != bp->b_kvasize) { 2327 vm_offset_t addr = 0; 2328 int count; 2329 2330 bfreekva(bp); 2331 2332 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2333 vm_map_lock(&buffer_map); 2334 2335 if (vm_map_findspace(&buffer_map, 2336 vm_map_min(&buffer_map), maxsize, 2337 maxsize, 0, &addr)) { 2338 /* 2339 * Uh oh. Buffer map is too fragmented. We 2340 * must defragment the map. 2341 */ 2342 vm_map_unlock(&buffer_map); 2343 vm_map_entry_release(count); 2344 ++bufdefragcnt; 2345 defrag = 1; 2346 bp->b_flags |= B_INVAL; 2347 brelse(bp); 2348 goto restart; 2349 } 2350 if (addr) { 2351 vm_map_insert(&buffer_map, &count, 2352 NULL, 0, 2353 addr, addr + maxsize, 2354 VM_MAPTYPE_NORMAL, 2355 VM_PROT_ALL, VM_PROT_ALL, 2356 MAP_NOFAULT); 2357 2358 bp->b_kvabase = (caddr_t) addr; 2359 bp->b_kvasize = maxsize; 2360 bufspace += bp->b_kvasize; 2361 ++bufreusecnt; 2362 } 2363 vm_map_unlock(&buffer_map); 2364 vm_map_entry_release(count); 2365 } 2366 bp->b_data = bp->b_kvabase; 2367 } 2368 return(bp); 2369 } 2370 2371 /* 2372 * This routine is called in an emergency to recover VM pages from the 2373 * buffer cache by cashing in clean buffers. The idea is to recover 2374 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2375 * 2376 * MPSAFE 2377 */ 2378 static int 2379 recoverbufpages(void) 2380 { 2381 struct buf *bp; 2382 int bytes = 0; 2383 2384 ++recoverbufcalls; 2385 2386 spin_lock(&bufqspin); 2387 while (bytes < MAXBSIZE) { 2388 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2389 if (bp == NULL) 2390 break; 2391 2392 /* 2393 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2394 * cycles through the queue twice before being selected. 2395 */ 2396 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2397 bp->b_flags |= B_AGE; 2398 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2399 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2400 bp, b_freelist); 2401 continue; 2402 } 2403 2404 /* 2405 * Sanity Checks 2406 */ 2407 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2408 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2409 2410 /* 2411 * Start freeing the bp. This is somewhat involved. 2412 * 2413 * Buffers on the clean list must be disassociated from 2414 * their current vnode 2415 */ 2416 2417 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2418 kprintf("recoverbufpages: warning, locked buf %p, " 2419 "race corrected\n", 2420 bp); 2421 ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100); 2422 continue; 2423 } 2424 if (bp->b_qindex != BQUEUE_CLEAN) { 2425 kprintf("recoverbufpages: warning, BUF_LOCK blocked " 2426 "unexpectedly on buf %p index %d, race " 2427 "corrected\n", 2428 bp, bp->b_qindex); 2429 BUF_UNLOCK(bp); 2430 continue; 2431 } 2432 bremfree_locked(bp); 2433 spin_unlock(&bufqspin); 2434 2435 /* 2436 * Dependancies must be handled before we disassociate the 2437 * vnode. 2438 * 2439 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2440 * be immediately disassociated. HAMMER then becomes 2441 * responsible for releasing the buffer. 2442 */ 2443 if (LIST_FIRST(&bp->b_dep) != NULL) { 2444 buf_deallocate(bp); 2445 if (bp->b_flags & B_LOCKED) { 2446 bqrelse(bp); 2447 spin_lock(&bufqspin); 2448 continue; 2449 } 2450 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2451 } 2452 2453 bytes += bp->b_bufsize; 2454 2455 if (bp->b_flags & B_VMIO) { 2456 bp->b_flags |= B_DIRECT; /* try to free pages */ 2457 vfs_vmio_release(bp); 2458 } 2459 if (bp->b_vp) 2460 brelvp(bp); 2461 2462 KKASSERT(bp->b_vp == NULL); 2463 KKASSERT((bp->b_flags & B_HASHED) == 0); 2464 2465 /* 2466 * critical section protection is not required when 2467 * scrapping a buffer's contents because it is already 2468 * wired. 2469 */ 2470 if (bp->b_bufsize) 2471 allocbuf(bp, 0); 2472 2473 bp->b_flags = B_BNOCLIP; 2474 bp->b_cmd = BUF_CMD_DONE; 2475 bp->b_vp = NULL; 2476 bp->b_error = 0; 2477 bp->b_resid = 0; 2478 bp->b_bcount = 0; 2479 bp->b_xio.xio_npages = 0; 2480 bp->b_dirtyoff = bp->b_dirtyend = 0; 2481 reinitbufbio(bp); 2482 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2483 buf_dep_init(bp); 2484 bp->b_flags |= B_INVAL; 2485 /* bfreekva(bp); */ 2486 brelse(bp); 2487 spin_lock(&bufqspin); 2488 } 2489 spin_unlock(&bufqspin); 2490 return(bytes); 2491 } 2492 2493 /* 2494 * buf_daemon: 2495 * 2496 * Buffer flushing daemon. Buffers are normally flushed by the 2497 * update daemon but if it cannot keep up this process starts to 2498 * take the load in an attempt to prevent getnewbuf() from blocking. 2499 * 2500 * Once a flush is initiated it does not stop until the number 2501 * of buffers falls below lodirtybuffers, but we will wake up anyone 2502 * waiting at the mid-point. 2503 */ 2504 2505 static struct kproc_desc buf_kp = { 2506 "bufdaemon", 2507 buf_daemon, 2508 &bufdaemon_td 2509 }; 2510 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2511 kproc_start, &buf_kp) 2512 2513 static struct kproc_desc bufhw_kp = { 2514 "bufdaemon_hw", 2515 buf_daemon_hw, 2516 &bufdaemonhw_td 2517 }; 2518 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2519 kproc_start, &bufhw_kp) 2520 2521 /* 2522 * MPSAFE thread 2523 */ 2524 static void 2525 buf_daemon(void) 2526 { 2527 int limit; 2528 2529 /* 2530 * This process needs to be suspended prior to shutdown sync. 2531 */ 2532 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2533 bufdaemon_td, SHUTDOWN_PRI_LAST); 2534 curthread->td_flags |= TDF_SYSTHREAD; 2535 2536 /* 2537 * This process is allowed to take the buffer cache to the limit 2538 */ 2539 for (;;) { 2540 kproc_suspend_loop(); 2541 2542 /* 2543 * Do the flush as long as the number of dirty buffers 2544 * (including those running) exceeds lodirtybufspace. 2545 * 2546 * When flushing limit running I/O to hirunningspace 2547 * Do the flush. Limit the amount of in-transit I/O we 2548 * allow to build up, otherwise we would completely saturate 2549 * the I/O system. Wakeup any waiting processes before we 2550 * normally would so they can run in parallel with our drain. 2551 * 2552 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2553 * but because we split the operation into two threads we 2554 * have to cut it in half for each thread. 2555 */ 2556 waitrunningbufspace(); 2557 limit = lodirtybufspace / 2; 2558 while (runningbufspace + dirtybufspace > limit || 2559 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2560 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2561 break; 2562 if (runningbufspace < hirunningspace) 2563 continue; 2564 waitrunningbufspace(); 2565 } 2566 2567 /* 2568 * We reached our low water mark, reset the 2569 * request and sleep until we are needed again. 2570 * The sleep is just so the suspend code works. 2571 */ 2572 spin_lock(&bufcspin); 2573 if (bd_request == 0) 2574 ssleep(&bd_request, &bufcspin, 0, "psleep", hz); 2575 bd_request = 0; 2576 spin_unlock(&bufcspin); 2577 } 2578 } 2579 2580 /* 2581 * MPSAFE thread 2582 */ 2583 static void 2584 buf_daemon_hw(void) 2585 { 2586 int limit; 2587 2588 /* 2589 * This process needs to be suspended prior to shutdown sync. 2590 */ 2591 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2592 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2593 curthread->td_flags |= TDF_SYSTHREAD; 2594 2595 /* 2596 * This process is allowed to take the buffer cache to the limit 2597 */ 2598 for (;;) { 2599 kproc_suspend_loop(); 2600 2601 /* 2602 * Do the flush. Limit the amount of in-transit I/O we 2603 * allow to build up, otherwise we would completely saturate 2604 * the I/O system. Wakeup any waiting processes before we 2605 * normally would so they can run in parallel with our drain. 2606 * 2607 * Once we decide to flush push the queued I/O up to 2608 * hirunningspace in order to trigger bursting by the bioq 2609 * subsystem. 2610 * 2611 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2612 * but because we split the operation into two threads we 2613 * have to cut it in half for each thread. 2614 */ 2615 waitrunningbufspace(); 2616 limit = lodirtybufspace / 2; 2617 while (runningbufspace + dirtybufspacehw > limit || 2618 dirtybufcounthw >= nbuf / 2) { 2619 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2620 break; 2621 if (runningbufspace < hirunningspace) 2622 continue; 2623 waitrunningbufspace(); 2624 } 2625 2626 /* 2627 * We reached our low water mark, reset the 2628 * request and sleep until we are needed again. 2629 * The sleep is just so the suspend code works. 2630 */ 2631 spin_lock(&bufcspin); 2632 if (bd_request_hw == 0) 2633 ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz); 2634 bd_request_hw = 0; 2635 spin_unlock(&bufcspin); 2636 } 2637 } 2638 2639 /* 2640 * flushbufqueues: 2641 * 2642 * Try to flush a buffer in the dirty queue. We must be careful to 2643 * free up B_INVAL buffers instead of write them, which NFS is 2644 * particularly sensitive to. 2645 * 2646 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2647 * that we really want to try to get the buffer out and reuse it 2648 * due to the write load on the machine. 2649 * 2650 * We must lock the buffer in order to check its validity before we 2651 * can mess with its contents. bufqspin isn't enough. 2652 */ 2653 static int 2654 flushbufqueues(bufq_type_t q) 2655 { 2656 struct buf *bp; 2657 int r = 0; 2658 int spun; 2659 2660 spin_lock(&bufqspin); 2661 spun = 1; 2662 2663 bp = TAILQ_FIRST(&bufqueues[q]); 2664 while (bp) { 2665 if ((bp->b_flags & B_DELWRI) == 0) { 2666 kprintf("Unexpected clean buffer %p\n", bp); 2667 bp = TAILQ_NEXT(bp, b_freelist); 2668 continue; 2669 } 2670 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2671 bp = TAILQ_NEXT(bp, b_freelist); 2672 continue; 2673 } 2674 KKASSERT(bp->b_qindex == q); 2675 2676 /* 2677 * Must recheck B_DELWRI after successfully locking 2678 * the buffer. 2679 */ 2680 if ((bp->b_flags & B_DELWRI) == 0) { 2681 BUF_UNLOCK(bp); 2682 bp = TAILQ_NEXT(bp, b_freelist); 2683 continue; 2684 } 2685 2686 if (bp->b_flags & B_INVAL) { 2687 _bremfree(bp); 2688 spin_unlock(&bufqspin); 2689 spun = 0; 2690 brelse(bp); 2691 ++r; 2692 break; 2693 } 2694 2695 spin_unlock(&bufqspin); 2696 spun = 0; 2697 2698 if (LIST_FIRST(&bp->b_dep) != NULL && 2699 (bp->b_flags & B_DEFERRED) == 0 && 2700 buf_countdeps(bp, 0)) { 2701 spin_lock(&bufqspin); 2702 spun = 1; 2703 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2704 TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist); 2705 bp->b_flags |= B_DEFERRED; 2706 BUF_UNLOCK(bp); 2707 bp = TAILQ_FIRST(&bufqueues[q]); 2708 continue; 2709 } 2710 2711 /* 2712 * If the buffer has a dependancy, buf_checkwrite() must 2713 * also return 0 for us to be able to initate the write. 2714 * 2715 * If the buffer is flagged B_ERROR it may be requeued 2716 * over and over again, we try to avoid a live lock. 2717 * 2718 * NOTE: buf_checkwrite is MPSAFE. 2719 */ 2720 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) { 2721 bremfree(bp); 2722 brelse(bp); 2723 } else if (bp->b_flags & B_ERROR) { 2724 tsleep(bp, 0, "bioer", 1); 2725 bp->b_flags &= ~B_AGE; 2726 vfs_bio_awrite(bp); 2727 } else { 2728 bp->b_flags |= B_AGE; 2729 vfs_bio_awrite(bp); 2730 } 2731 ++r; 2732 break; 2733 } 2734 if (spun) 2735 spin_unlock(&bufqspin); 2736 return (r); 2737 } 2738 2739 /* 2740 * inmem: 2741 * 2742 * Returns true if no I/O is needed to access the associated VM object. 2743 * This is like findblk except it also hunts around in the VM system for 2744 * the data. 2745 * 2746 * Note that we ignore vm_page_free() races from interrupts against our 2747 * lookup, since if the caller is not protected our return value will not 2748 * be any more valid then otherwise once we exit the critical section. 2749 */ 2750 int 2751 inmem(struct vnode *vp, off_t loffset) 2752 { 2753 vm_object_t obj; 2754 vm_offset_t toff, tinc, size; 2755 vm_page_t m; 2756 2757 if (findblk(vp, loffset, FINDBLK_TEST)) 2758 return 1; 2759 if (vp->v_mount == NULL) 2760 return 0; 2761 if ((obj = vp->v_object) == NULL) 2762 return 0; 2763 2764 size = PAGE_SIZE; 2765 if (size > vp->v_mount->mnt_stat.f_iosize) 2766 size = vp->v_mount->mnt_stat.f_iosize; 2767 2768 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2769 lwkt_gettoken(&vm_token); 2770 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2771 lwkt_reltoken(&vm_token); 2772 if (m == NULL) 2773 return 0; 2774 tinc = size; 2775 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2776 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2777 if (vm_page_is_valid(m, 2778 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2779 return 0; 2780 } 2781 return 1; 2782 } 2783 2784 /* 2785 * findblk: 2786 * 2787 * Locate and return the specified buffer. Unless flagged otherwise, 2788 * a locked buffer will be returned if it exists or NULL if it does not. 2789 * 2790 * findblk()'d buffers are still on the bufqueues and if you intend 2791 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2792 * and possibly do other stuff to it. 2793 * 2794 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2795 * for locking the buffer and ensuring that it remains 2796 * the desired buffer after locking. 2797 * 2798 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2799 * to acquire the lock we return NULL, even if the 2800 * buffer exists. 2801 * 2802 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal 2803 * reuse by getnewbuf() but does not prevent 2804 * disassociation (B_INVAL). Used to avoid deadlocks 2805 * against random (vp,loffset)s due to reassignment. 2806 * 2807 * (0) - Lock the buffer blocking. 2808 * 2809 * MPSAFE 2810 */ 2811 struct buf * 2812 findblk(struct vnode *vp, off_t loffset, int flags) 2813 { 2814 struct buf *bp; 2815 int lkflags; 2816 2817 lkflags = LK_EXCLUSIVE; 2818 if (flags & FINDBLK_NBLOCK) 2819 lkflags |= LK_NOWAIT; 2820 2821 for (;;) { 2822 /* 2823 * Lookup. Ref the buf while holding v_token to prevent 2824 * reuse (but does not prevent diassociation). 2825 */ 2826 lwkt_gettoken(&vp->v_token); 2827 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2828 if (bp == NULL) { 2829 lwkt_reltoken(&vp->v_token); 2830 return(NULL); 2831 } 2832 bqhold(bp); 2833 lwkt_reltoken(&vp->v_token); 2834 2835 /* 2836 * If testing only break and return bp, do not lock. 2837 */ 2838 if (flags & FINDBLK_TEST) 2839 break; 2840 2841 /* 2842 * Lock the buffer, return an error if the lock fails. 2843 * (only FINDBLK_NBLOCK can cause the lock to fail). 2844 */ 2845 if (BUF_LOCK(bp, lkflags)) { 2846 atomic_subtract_int(&bp->b_refs, 1); 2847 /* bp = NULL; not needed */ 2848 return(NULL); 2849 } 2850 2851 /* 2852 * Revalidate the locked buf before allowing it to be 2853 * returned. 2854 */ 2855 if (bp->b_vp == vp && bp->b_loffset == loffset) 2856 break; 2857 atomic_subtract_int(&bp->b_refs, 1); 2858 BUF_UNLOCK(bp); 2859 } 2860 2861 /* 2862 * Success 2863 */ 2864 if ((flags & FINDBLK_REF) == 0) 2865 atomic_subtract_int(&bp->b_refs, 1); 2866 return(bp); 2867 } 2868 2869 /* 2870 * getcacheblk: 2871 * 2872 * Similar to getblk() except only returns the buffer if it is 2873 * B_CACHE and requires no other manipulation. Otherwise NULL 2874 * is returned. 2875 * 2876 * If B_RAM is set the buffer might be just fine, but we return 2877 * NULL anyway because we want the code to fall through to the 2878 * cluster read. Otherwise read-ahead breaks. 2879 * 2880 * If blksize is 0 the buffer cache buffer must already be fully 2881 * cached. 2882 * 2883 * If blksize is non-zero getblk() will be used, allowing a buffer 2884 * to be reinstantiated from its VM backing store. The buffer must 2885 * still be fully cached after reinstantiation to be returned. 2886 */ 2887 struct buf * 2888 getcacheblk(struct vnode *vp, off_t loffset, int blksize) 2889 { 2890 struct buf *bp; 2891 2892 if (blksize) { 2893 bp = getblk(vp, loffset, blksize, 0, 0); 2894 if (bp) { 2895 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == 2896 B_CACHE) { 2897 bp->b_flags &= ~B_AGE; 2898 } else { 2899 brelse(bp); 2900 bp = NULL; 2901 } 2902 } 2903 } else { 2904 bp = findblk(vp, loffset, 0); 2905 if (bp) { 2906 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == 2907 B_CACHE) { 2908 bp->b_flags &= ~B_AGE; 2909 bremfree(bp); 2910 } else { 2911 BUF_UNLOCK(bp); 2912 bp = NULL; 2913 } 2914 } 2915 } 2916 return (bp); 2917 } 2918 2919 /* 2920 * getblk: 2921 * 2922 * Get a block given a specified block and offset into a file/device. 2923 * B_INVAL may or may not be set on return. The caller should clear 2924 * B_INVAL prior to initiating a READ. 2925 * 2926 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2927 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2928 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2929 * without doing any of those things the system will likely believe 2930 * the buffer to be valid (especially if it is not B_VMIO), and the 2931 * next getblk() will return the buffer with B_CACHE set. 2932 * 2933 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2934 * an existing buffer. 2935 * 2936 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2937 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2938 * and then cleared based on the backing VM. If the previous buffer is 2939 * non-0-sized but invalid, B_CACHE will be cleared. 2940 * 2941 * If getblk() must create a new buffer, the new buffer is returned with 2942 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2943 * case it is returned with B_INVAL clear and B_CACHE set based on the 2944 * backing VM. 2945 * 2946 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2947 * B_CACHE bit is clear. 2948 * 2949 * What this means, basically, is that the caller should use B_CACHE to 2950 * determine whether the buffer is fully valid or not and should clear 2951 * B_INVAL prior to issuing a read. If the caller intends to validate 2952 * the buffer by loading its data area with something, the caller needs 2953 * to clear B_INVAL. If the caller does this without issuing an I/O, 2954 * the caller should set B_CACHE ( as an optimization ), else the caller 2955 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2956 * a write attempt or if it was a successfull read. If the caller 2957 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2958 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2959 * 2960 * getblk flags: 2961 * 2962 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2963 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2964 * 2965 * MPALMOSTSAFE 2966 */ 2967 struct buf * 2968 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2969 { 2970 struct buf *bp; 2971 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2972 int error; 2973 int lkflags; 2974 2975 if (size > MAXBSIZE) 2976 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2977 if (vp->v_object == NULL) 2978 panic("getblk: vnode %p has no object!", vp); 2979 2980 loop: 2981 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) { 2982 /* 2983 * The buffer was found in the cache, but we need to lock it. 2984 * We must acquire a ref on the bp to prevent reuse, but 2985 * this will not prevent disassociation (brelvp()) so we 2986 * must recheck (vp,loffset) after acquiring the lock. 2987 * 2988 * Without the ref the buffer could potentially be reused 2989 * before we acquire the lock and create a deadlock 2990 * situation between the thread trying to reuse the buffer 2991 * and us due to the fact that we would wind up blocking 2992 * on a random (vp,loffset). 2993 */ 2994 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2995 if (blkflags & GETBLK_NOWAIT) { 2996 bqdrop(bp); 2997 return(NULL); 2998 } 2999 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 3000 if (blkflags & GETBLK_PCATCH) 3001 lkflags |= LK_PCATCH; 3002 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 3003 if (error) { 3004 bqdrop(bp); 3005 if (error == ENOLCK) 3006 goto loop; 3007 return (NULL); 3008 } 3009 /* buffer may have changed on us */ 3010 } 3011 bqdrop(bp); 3012 3013 /* 3014 * Once the buffer has been locked, make sure we didn't race 3015 * a buffer recyclement. Buffers that are no longer hashed 3016 * will have b_vp == NULL, so this takes care of that check 3017 * as well. 3018 */ 3019 if (bp->b_vp != vp || bp->b_loffset != loffset) { 3020 kprintf("Warning buffer %p (vp %p loffset %lld) " 3021 "was recycled\n", 3022 bp, vp, (long long)loffset); 3023 BUF_UNLOCK(bp); 3024 goto loop; 3025 } 3026 3027 /* 3028 * If SZMATCH any pre-existing buffer must be of the requested 3029 * size or NULL is returned. The caller absolutely does not 3030 * want getblk() to bwrite() the buffer on a size mismatch. 3031 */ 3032 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 3033 BUF_UNLOCK(bp); 3034 return(NULL); 3035 } 3036 3037 /* 3038 * All vnode-based buffers must be backed by a VM object. 3039 */ 3040 KKASSERT(bp->b_flags & B_VMIO); 3041 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3042 bp->b_flags &= ~B_AGE; 3043 3044 /* 3045 * Make sure that B_INVAL buffers do not have a cached 3046 * block number translation. 3047 */ 3048 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 3049 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 3050 " did not have cleared bio_offset cache\n", 3051 bp, vp, (long long)loffset); 3052 clearbiocache(&bp->b_bio2); 3053 } 3054 3055 /* 3056 * The buffer is locked. B_CACHE is cleared if the buffer is 3057 * invalid. 3058 */ 3059 if (bp->b_flags & B_INVAL) 3060 bp->b_flags &= ~B_CACHE; 3061 bremfree(bp); 3062 3063 /* 3064 * Any size inconsistancy with a dirty buffer or a buffer 3065 * with a softupdates dependancy must be resolved. Resizing 3066 * the buffer in such circumstances can lead to problems. 3067 * 3068 * Dirty or dependant buffers are written synchronously. 3069 * Other types of buffers are simply released and 3070 * reconstituted as they may be backed by valid, dirty VM 3071 * pages (but not marked B_DELWRI). 3072 * 3073 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 3074 * and may be left over from a prior truncation (and thus 3075 * no longer represent the actual EOF point), so we 3076 * definitely do not want to B_NOCACHE the backing store. 3077 */ 3078 if (size != bp->b_bcount) { 3079 if (bp->b_flags & B_DELWRI) { 3080 bp->b_flags |= B_RELBUF; 3081 bwrite(bp); 3082 } else if (LIST_FIRST(&bp->b_dep)) { 3083 bp->b_flags |= B_RELBUF; 3084 bwrite(bp); 3085 } else { 3086 bp->b_flags |= B_RELBUF; 3087 brelse(bp); 3088 } 3089 goto loop; 3090 } 3091 KKASSERT(size <= bp->b_kvasize); 3092 KASSERT(bp->b_loffset != NOOFFSET, 3093 ("getblk: no buffer offset")); 3094 3095 /* 3096 * A buffer with B_DELWRI set and B_CACHE clear must 3097 * be committed before we can return the buffer in 3098 * order to prevent the caller from issuing a read 3099 * ( due to B_CACHE not being set ) and overwriting 3100 * it. 3101 * 3102 * Most callers, including NFS and FFS, need this to 3103 * operate properly either because they assume they 3104 * can issue a read if B_CACHE is not set, or because 3105 * ( for example ) an uncached B_DELWRI might loop due 3106 * to softupdates re-dirtying the buffer. In the latter 3107 * case, B_CACHE is set after the first write completes, 3108 * preventing further loops. 3109 * 3110 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 3111 * above while extending the buffer, we cannot allow the 3112 * buffer to remain with B_CACHE set after the write 3113 * completes or it will represent a corrupt state. To 3114 * deal with this we set B_NOCACHE to scrap the buffer 3115 * after the write. 3116 * 3117 * XXX Should this be B_RELBUF instead of B_NOCACHE? 3118 * I'm not even sure this state is still possible 3119 * now that getblk() writes out any dirty buffers 3120 * on size changes. 3121 * 3122 * We might be able to do something fancy, like setting 3123 * B_CACHE in bwrite() except if B_DELWRI is already set, 3124 * so the below call doesn't set B_CACHE, but that gets real 3125 * confusing. This is much easier. 3126 */ 3127 3128 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 3129 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 3130 "and CACHE clear, b_flags %08x\n", 3131 bp, (intmax_t)bp->b_loffset, bp->b_flags); 3132 bp->b_flags |= B_NOCACHE; 3133 bwrite(bp); 3134 goto loop; 3135 } 3136 } else { 3137 /* 3138 * Buffer is not in-core, create new buffer. The buffer 3139 * returned by getnewbuf() is locked. Note that the returned 3140 * buffer is also considered valid (not marked B_INVAL). 3141 * 3142 * Calculating the offset for the I/O requires figuring out 3143 * the block size. We use DEV_BSIZE for VBLK or VCHR and 3144 * the mount's f_iosize otherwise. If the vnode does not 3145 * have an associated mount we assume that the passed size is 3146 * the block size. 3147 * 3148 * Note that vn_isdisk() cannot be used here since it may 3149 * return a failure for numerous reasons. Note that the 3150 * buffer size may be larger then the block size (the caller 3151 * will use block numbers with the proper multiple). Beware 3152 * of using any v_* fields which are part of unions. In 3153 * particular, in DragonFly the mount point overloading 3154 * mechanism uses the namecache only and the underlying 3155 * directory vnode is not a special case. 3156 */ 3157 int bsize, maxsize; 3158 3159 if (vp->v_type == VBLK || vp->v_type == VCHR) 3160 bsize = DEV_BSIZE; 3161 else if (vp->v_mount) 3162 bsize = vp->v_mount->mnt_stat.f_iosize; 3163 else 3164 bsize = size; 3165 3166 maxsize = size + (loffset & PAGE_MASK); 3167 maxsize = imax(maxsize, bsize); 3168 3169 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 3170 if (bp == NULL) { 3171 if (slpflags || slptimeo) 3172 return NULL; 3173 goto loop; 3174 } 3175 3176 /* 3177 * Atomically insert the buffer into the hash, so that it can 3178 * be found by findblk(). 3179 * 3180 * If bgetvp() returns non-zero a collision occured, and the 3181 * bp will not be associated with the vnode. 3182 * 3183 * Make sure the translation layer has been cleared. 3184 */ 3185 bp->b_loffset = loffset; 3186 bp->b_bio2.bio_offset = NOOFFSET; 3187 /* bp->b_bio2.bio_next = NULL; */ 3188 3189 if (bgetvp(vp, bp, size)) { 3190 bp->b_flags |= B_INVAL; 3191 brelse(bp); 3192 goto loop; 3193 } 3194 3195 /* 3196 * All vnode-based buffers must be backed by a VM object. 3197 */ 3198 KKASSERT(vp->v_object != NULL); 3199 bp->b_flags |= B_VMIO; 3200 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3201 3202 allocbuf(bp, size); 3203 } 3204 KKASSERT(dsched_is_clear_buf_priv(bp)); 3205 return (bp); 3206 } 3207 3208 /* 3209 * regetblk(bp) 3210 * 3211 * Reacquire a buffer that was previously released to the locked queue, 3212 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 3213 * set B_LOCKED (which handles the acquisition race). 3214 * 3215 * To this end, either B_LOCKED must be set or the dependancy list must be 3216 * non-empty. 3217 * 3218 * MPSAFE 3219 */ 3220 void 3221 regetblk(struct buf *bp) 3222 { 3223 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 3224 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 3225 bremfree(bp); 3226 } 3227 3228 /* 3229 * geteblk: 3230 * 3231 * Get an empty, disassociated buffer of given size. The buffer is 3232 * initially set to B_INVAL. 3233 * 3234 * critical section protection is not required for the allocbuf() 3235 * call because races are impossible here. 3236 * 3237 * MPALMOSTSAFE 3238 */ 3239 struct buf * 3240 geteblk(int size) 3241 { 3242 struct buf *bp; 3243 int maxsize; 3244 3245 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3246 3247 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 3248 ; 3249 allocbuf(bp, size); 3250 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3251 KKASSERT(dsched_is_clear_buf_priv(bp)); 3252 return (bp); 3253 } 3254 3255 3256 /* 3257 * allocbuf: 3258 * 3259 * This code constitutes the buffer memory from either anonymous system 3260 * memory (in the case of non-VMIO operations) or from an associated 3261 * VM object (in the case of VMIO operations). This code is able to 3262 * resize a buffer up or down. 3263 * 3264 * Note that this code is tricky, and has many complications to resolve 3265 * deadlock or inconsistant data situations. Tread lightly!!! 3266 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3267 * the caller. Calling this code willy nilly can result in the loss of 3268 * data. 3269 * 3270 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3271 * B_CACHE for the non-VMIO case. 3272 * 3273 * This routine does not need to be called from a critical section but you 3274 * must own the buffer. 3275 * 3276 * MPSAFE 3277 */ 3278 int 3279 allocbuf(struct buf *bp, int size) 3280 { 3281 int newbsize, mbsize; 3282 int i; 3283 3284 if (BUF_REFCNT(bp) == 0) 3285 panic("allocbuf: buffer not busy"); 3286 3287 if (bp->b_kvasize < size) 3288 panic("allocbuf: buffer too small"); 3289 3290 if ((bp->b_flags & B_VMIO) == 0) { 3291 caddr_t origbuf; 3292 int origbufsize; 3293 /* 3294 * Just get anonymous memory from the kernel. Don't 3295 * mess with B_CACHE. 3296 */ 3297 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3298 if (bp->b_flags & B_MALLOC) 3299 newbsize = mbsize; 3300 else 3301 newbsize = round_page(size); 3302 3303 if (newbsize < bp->b_bufsize) { 3304 /* 3305 * Malloced buffers are not shrunk 3306 */ 3307 if (bp->b_flags & B_MALLOC) { 3308 if (newbsize) { 3309 bp->b_bcount = size; 3310 } else { 3311 kfree(bp->b_data, M_BIOBUF); 3312 if (bp->b_bufsize) { 3313 atomic_subtract_int(&bufmallocspace, bp->b_bufsize); 3314 bufspacewakeup(); 3315 bp->b_bufsize = 0; 3316 } 3317 bp->b_data = bp->b_kvabase; 3318 bp->b_bcount = 0; 3319 bp->b_flags &= ~B_MALLOC; 3320 } 3321 return 1; 3322 } 3323 vm_hold_free_pages( 3324 bp, 3325 (vm_offset_t) bp->b_data + newbsize, 3326 (vm_offset_t) bp->b_data + bp->b_bufsize); 3327 } else if (newbsize > bp->b_bufsize) { 3328 /* 3329 * We only use malloced memory on the first allocation. 3330 * and revert to page-allocated memory when the buffer 3331 * grows. 3332 */ 3333 if ((bufmallocspace < maxbufmallocspace) && 3334 (bp->b_bufsize == 0) && 3335 (mbsize <= PAGE_SIZE/2)) { 3336 3337 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3338 bp->b_bufsize = mbsize; 3339 bp->b_bcount = size; 3340 bp->b_flags |= B_MALLOC; 3341 atomic_add_int(&bufmallocspace, mbsize); 3342 return 1; 3343 } 3344 origbuf = NULL; 3345 origbufsize = 0; 3346 /* 3347 * If the buffer is growing on its other-than-first 3348 * allocation, then we revert to the page-allocation 3349 * scheme. 3350 */ 3351 if (bp->b_flags & B_MALLOC) { 3352 origbuf = bp->b_data; 3353 origbufsize = bp->b_bufsize; 3354 bp->b_data = bp->b_kvabase; 3355 if (bp->b_bufsize) { 3356 atomic_subtract_int(&bufmallocspace, 3357 bp->b_bufsize); 3358 bufspacewakeup(); 3359 bp->b_bufsize = 0; 3360 } 3361 bp->b_flags &= ~B_MALLOC; 3362 newbsize = round_page(newbsize); 3363 } 3364 vm_hold_load_pages( 3365 bp, 3366 (vm_offset_t) bp->b_data + bp->b_bufsize, 3367 (vm_offset_t) bp->b_data + newbsize); 3368 if (origbuf) { 3369 bcopy(origbuf, bp->b_data, origbufsize); 3370 kfree(origbuf, M_BIOBUF); 3371 } 3372 } 3373 } else { 3374 vm_page_t m; 3375 int desiredpages; 3376 3377 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3378 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3379 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3380 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3381 3382 if (bp->b_flags & B_MALLOC) 3383 panic("allocbuf: VMIO buffer can't be malloced"); 3384 /* 3385 * Set B_CACHE initially if buffer is 0 length or will become 3386 * 0-length. 3387 */ 3388 if (size == 0 || bp->b_bufsize == 0) 3389 bp->b_flags |= B_CACHE; 3390 3391 if (newbsize < bp->b_bufsize) { 3392 /* 3393 * DEV_BSIZE aligned new buffer size is less then the 3394 * DEV_BSIZE aligned existing buffer size. Figure out 3395 * if we have to remove any pages. 3396 */ 3397 if (desiredpages < bp->b_xio.xio_npages) { 3398 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3399 /* 3400 * the page is not freed here -- it 3401 * is the responsibility of 3402 * vnode_pager_setsize 3403 */ 3404 m = bp->b_xio.xio_pages[i]; 3405 KASSERT(m != bogus_page, 3406 ("allocbuf: bogus page found")); 3407 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3408 ; 3409 3410 bp->b_xio.xio_pages[i] = NULL; 3411 vm_page_unwire(m, 0); 3412 } 3413 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3414 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3415 bp->b_xio.xio_npages = desiredpages; 3416 } 3417 } else if (size > bp->b_bcount) { 3418 /* 3419 * We are growing the buffer, possibly in a 3420 * byte-granular fashion. 3421 */ 3422 struct vnode *vp; 3423 vm_object_t obj; 3424 vm_offset_t toff; 3425 vm_offset_t tinc; 3426 3427 /* 3428 * Step 1, bring in the VM pages from the object, 3429 * allocating them if necessary. We must clear 3430 * B_CACHE if these pages are not valid for the 3431 * range covered by the buffer. 3432 * 3433 * critical section protection is required to protect 3434 * against interrupts unbusying and freeing pages 3435 * between our vm_page_lookup() and our 3436 * busycheck/wiring call. 3437 */ 3438 vp = bp->b_vp; 3439 obj = vp->v_object; 3440 3441 lwkt_gettoken(&vm_token); 3442 while (bp->b_xio.xio_npages < desiredpages) { 3443 vm_page_t m; 3444 vm_pindex_t pi; 3445 3446 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3447 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3448 /* 3449 * note: must allocate system pages 3450 * since blocking here could intefere 3451 * with paging I/O, no matter which 3452 * process we are. 3453 */ 3454 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3455 if (m) { 3456 vm_page_wire(m); 3457 vm_page_flag_clear(m, PG_ZERO); 3458 vm_page_wakeup(m); 3459 bp->b_flags &= ~B_CACHE; 3460 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3461 ++bp->b_xio.xio_npages; 3462 } 3463 continue; 3464 } 3465 3466 /* 3467 * We found a page. If we have to sleep on it, 3468 * retry because it might have gotten freed out 3469 * from under us. 3470 * 3471 * We can only test PG_BUSY here. Blocking on 3472 * m->busy might lead to a deadlock: 3473 * 3474 * vm_fault->getpages->cluster_read->allocbuf 3475 * 3476 */ 3477 3478 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3479 continue; 3480 vm_page_flag_clear(m, PG_ZERO); 3481 vm_page_wire(m); 3482 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3483 ++bp->b_xio.xio_npages; 3484 if (bp->b_act_count < m->act_count) 3485 bp->b_act_count = m->act_count; 3486 } 3487 lwkt_reltoken(&vm_token); 3488 3489 /* 3490 * Step 2. We've loaded the pages into the buffer, 3491 * we have to figure out if we can still have B_CACHE 3492 * set. Note that B_CACHE is set according to the 3493 * byte-granular range ( bcount and size ), not the 3494 * aligned range ( newbsize ). 3495 * 3496 * The VM test is against m->valid, which is DEV_BSIZE 3497 * aligned. Needless to say, the validity of the data 3498 * needs to also be DEV_BSIZE aligned. Note that this 3499 * fails with NFS if the server or some other client 3500 * extends the file's EOF. If our buffer is resized, 3501 * B_CACHE may remain set! XXX 3502 */ 3503 3504 toff = bp->b_bcount; 3505 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3506 3507 while ((bp->b_flags & B_CACHE) && toff < size) { 3508 vm_pindex_t pi; 3509 3510 if (tinc > (size - toff)) 3511 tinc = size - toff; 3512 3513 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3514 PAGE_SHIFT; 3515 3516 vfs_buf_test_cache( 3517 bp, 3518 bp->b_loffset, 3519 toff, 3520 tinc, 3521 bp->b_xio.xio_pages[pi] 3522 ); 3523 toff += tinc; 3524 tinc = PAGE_SIZE; 3525 } 3526 3527 /* 3528 * Step 3, fixup the KVM pmap. Remember that 3529 * bp->b_data is relative to bp->b_loffset, but 3530 * bp->b_loffset may be offset into the first page. 3531 */ 3532 3533 bp->b_data = (caddr_t) 3534 trunc_page((vm_offset_t)bp->b_data); 3535 pmap_qenter( 3536 (vm_offset_t)bp->b_data, 3537 bp->b_xio.xio_pages, 3538 bp->b_xio.xio_npages 3539 ); 3540 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3541 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3542 } 3543 } 3544 3545 /* adjust space use on already-dirty buffer */ 3546 if (bp->b_flags & B_DELWRI) { 3547 spin_lock(&bufcspin); 3548 dirtybufspace += newbsize - bp->b_bufsize; 3549 if (bp->b_flags & B_HEAVY) 3550 dirtybufspacehw += newbsize - bp->b_bufsize; 3551 spin_unlock(&bufcspin); 3552 } 3553 if (newbsize < bp->b_bufsize) 3554 bufspacewakeup(); 3555 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3556 bp->b_bcount = size; /* requested buffer size */ 3557 return 1; 3558 } 3559 3560 /* 3561 * biowait: 3562 * 3563 * Wait for buffer I/O completion, returning error status. B_EINTR 3564 * is converted into an EINTR error but not cleared (since a chain 3565 * of biowait() calls may occur). 3566 * 3567 * On return bpdone() will have been called but the buffer will remain 3568 * locked and will not have been brelse()'d. 3569 * 3570 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3571 * likely still in progress on return. 3572 * 3573 * NOTE! This operation is on a BIO, not a BUF. 3574 * 3575 * NOTE! BIO_DONE is cleared by vn_strategy() 3576 * 3577 * MPSAFE 3578 */ 3579 static __inline int 3580 _biowait(struct bio *bio, const char *wmesg, int to) 3581 { 3582 struct buf *bp = bio->bio_buf; 3583 u_int32_t flags; 3584 u_int32_t nflags; 3585 int error; 3586 3587 KKASSERT(bio == &bp->b_bio1); 3588 for (;;) { 3589 flags = bio->bio_flags; 3590 if (flags & BIO_DONE) 3591 break; 3592 nflags = flags | BIO_WANT; 3593 tsleep_interlock(bio, 0); 3594 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3595 if (wmesg) 3596 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3597 else if (bp->b_cmd == BUF_CMD_READ) 3598 error = tsleep(bio, PINTERLOCKED, "biord", to); 3599 else 3600 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3601 if (error) { 3602 kprintf("tsleep error biowait %d\n", error); 3603 return (error); 3604 } 3605 } 3606 } 3607 3608 /* 3609 * Finish up. 3610 */ 3611 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3612 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3613 if (bp->b_flags & B_EINTR) 3614 return (EINTR); 3615 if (bp->b_flags & B_ERROR) 3616 return (bp->b_error ? bp->b_error : EIO); 3617 return (0); 3618 } 3619 3620 int 3621 biowait(struct bio *bio, const char *wmesg) 3622 { 3623 return(_biowait(bio, wmesg, 0)); 3624 } 3625 3626 int 3627 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3628 { 3629 return(_biowait(bio, wmesg, to)); 3630 } 3631 3632 /* 3633 * This associates a tracking count with an I/O. vn_strategy() and 3634 * dev_dstrategy() do this automatically but there are a few cases 3635 * where a vnode or device layer is bypassed when a block translation 3636 * is cached. In such cases bio_start_transaction() may be called on 3637 * the bypassed layers so the system gets an I/O in progress indication 3638 * for those higher layers. 3639 */ 3640 void 3641 bio_start_transaction(struct bio *bio, struct bio_track *track) 3642 { 3643 bio->bio_track = track; 3644 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3645 dsched_new_buf(bio->bio_buf); 3646 bio_track_ref(track); 3647 } 3648 3649 /* 3650 * Initiate I/O on a vnode. 3651 * 3652 * SWAPCACHE OPERATION: 3653 * 3654 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately 3655 * devfs also uses b_vp for fake buffers so we also have to check 3656 * that B_PAGING is 0. In this case the passed 'vp' is probably the 3657 * underlying block device. The swap assignments are related to the 3658 * buffer cache buffer's b_vp, not the passed vp. 3659 * 3660 * The passed vp == bp->b_vp only in the case where the strategy call 3661 * is made on the vp itself for its own buffers (a regular file or 3662 * block device vp). The filesystem usually then re-calls vn_strategy() 3663 * after translating the request to an underlying device. 3664 * 3665 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the 3666 * underlying buffer cache buffers. 3667 * 3668 * We can only deal with page-aligned buffers at the moment, because 3669 * we can't tell what the real dirty state for pages straddling a buffer 3670 * are. 3671 * 3672 * In order to call swap_pager_strategy() we must provide the VM object 3673 * and base offset for the underlying buffer cache pages so it can find 3674 * the swap blocks. 3675 */ 3676 void 3677 vn_strategy(struct vnode *vp, struct bio *bio) 3678 { 3679 struct bio_track *track; 3680 struct buf *bp = bio->bio_buf; 3681 3682 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3683 3684 /* 3685 * Set when an I/O is issued on the bp. Cleared by consumers 3686 * (aka HAMMER), allowing the consumer to determine if I/O had 3687 * actually occurred. 3688 */ 3689 bp->b_flags |= B_IODEBUG; 3690 3691 /* 3692 * Handle the swap cache intercept. 3693 */ 3694 if (vn_cache_strategy(vp, bio)) 3695 return; 3696 3697 /* 3698 * Otherwise do the operation through the filesystem 3699 */ 3700 if (bp->b_cmd == BUF_CMD_READ) 3701 track = &vp->v_track_read; 3702 else 3703 track = &vp->v_track_write; 3704 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3705 bio->bio_track = track; 3706 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3707 dsched_new_buf(bio->bio_buf); 3708 bio_track_ref(track); 3709 vop_strategy(*vp->v_ops, vp, bio); 3710 } 3711 3712 static void vn_cache_strategy_callback(struct bio *bio); 3713 3714 int 3715 vn_cache_strategy(struct vnode *vp, struct bio *bio) 3716 { 3717 struct buf *bp = bio->bio_buf; 3718 struct bio *nbio; 3719 vm_object_t object; 3720 vm_page_t m; 3721 int i; 3722 3723 /* 3724 * Is this buffer cache buffer suitable for reading from 3725 * the swap cache? 3726 */ 3727 if (vm_swapcache_read_enable == 0 || 3728 bp->b_cmd != BUF_CMD_READ || 3729 ((bp->b_flags & B_CLUSTER) == 0 && 3730 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) || 3731 ((int)bp->b_loffset & PAGE_MASK) != 0 || 3732 (bp->b_bcount & PAGE_MASK) != 0) { 3733 return(0); 3734 } 3735 3736 /* 3737 * Figure out the original VM object (it will match the underlying 3738 * VM pages). Note that swap cached data uses page indices relative 3739 * to that object, not relative to bio->bio_offset. 3740 */ 3741 if (bp->b_flags & B_CLUSTER) 3742 object = vp->v_object; 3743 else 3744 object = bp->b_vp->v_object; 3745 3746 /* 3747 * In order to be able to use the swap cache all underlying VM 3748 * pages must be marked as such, and we can't have any bogus pages. 3749 */ 3750 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 3751 m = bp->b_xio.xio_pages[i]; 3752 if ((m->flags & PG_SWAPPED) == 0) 3753 break; 3754 if (m == bogus_page) 3755 break; 3756 } 3757 3758 /* 3759 * If we are good then issue the I/O using swap_pager_strategy(). 3760 * 3761 * We can only do this if the buffer actually supports object-backed 3762 * I/O. If it doesn't npages will be 0. 3763 */ 3764 if (i && i == bp->b_xio.xio_npages) { 3765 m = bp->b_xio.xio_pages[0]; 3766 nbio = push_bio(bio); 3767 nbio->bio_done = vn_cache_strategy_callback; 3768 nbio->bio_offset = ptoa(m->pindex); 3769 KKASSERT(m->object == object); 3770 swap_pager_strategy(object, nbio); 3771 return(1); 3772 } 3773 return(0); 3774 } 3775 3776 /* 3777 * This is a bit of a hack but since the vn_cache_strategy() function can 3778 * override a VFS's strategy function we must make sure that the bio, which 3779 * is probably bio2, doesn't leak an unexpected offset value back to the 3780 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the 3781 * bio went through its own file strategy function and the the bio2 offset 3782 * is a cached disk offset when, in fact, it isn't. 3783 */ 3784 static void 3785 vn_cache_strategy_callback(struct bio *bio) 3786 { 3787 bio->bio_offset = NOOFFSET; 3788 biodone(pop_bio(bio)); 3789 } 3790 3791 /* 3792 * bpdone: 3793 * 3794 * Finish I/O on a buffer after all BIOs have been processed. 3795 * Called when the bio chain is exhausted or by biowait. If called 3796 * by biowait, elseit is typically 0. 3797 * 3798 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3799 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3800 * assuming B_INVAL is clear. 3801 * 3802 * For the VMIO case, we set B_CACHE if the op was a read and no 3803 * read error occured, or if the op was a write. B_CACHE is never 3804 * set if the buffer is invalid or otherwise uncacheable. 3805 * 3806 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3807 * initiator to leave B_INVAL set to brelse the buffer out of existance 3808 * in the biodone routine. 3809 */ 3810 void 3811 bpdone(struct buf *bp, int elseit) 3812 { 3813 buf_cmd_t cmd; 3814 3815 KASSERT(BUF_REFCNTNB(bp) > 0, 3816 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3817 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3818 ("biodone: bp %p already done!", bp)); 3819 3820 /* 3821 * No more BIOs are left. All completion functions have been dealt 3822 * with, now we clean up the buffer. 3823 */ 3824 cmd = bp->b_cmd; 3825 bp->b_cmd = BUF_CMD_DONE; 3826 3827 /* 3828 * Only reads and writes are processed past this point. 3829 */ 3830 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3831 if (cmd == BUF_CMD_FREEBLKS) 3832 bp->b_flags |= B_NOCACHE; 3833 if (elseit) 3834 brelse(bp); 3835 return; 3836 } 3837 3838 /* 3839 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3840 * a lot worse. XXX - move this above the clearing of b_cmd 3841 */ 3842 if (LIST_FIRST(&bp->b_dep) != NULL) 3843 buf_complete(bp); /* MPSAFE */ 3844 3845 /* 3846 * A failed write must re-dirty the buffer unless B_INVAL 3847 * was set. Only applicable to normal buffers (with VPs). 3848 * vinum buffers may not have a vp. 3849 */ 3850 if (cmd == BUF_CMD_WRITE && 3851 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3852 bp->b_flags &= ~B_NOCACHE; 3853 if (bp->b_vp) 3854 bdirty(bp); 3855 } 3856 3857 if (bp->b_flags & B_VMIO) { 3858 int i; 3859 vm_ooffset_t foff; 3860 vm_page_t m; 3861 vm_object_t obj; 3862 int iosize; 3863 struct vnode *vp = bp->b_vp; 3864 3865 obj = vp->v_object; 3866 3867 #if defined(VFS_BIO_DEBUG) 3868 if (vp->v_auxrefs == 0) 3869 panic("biodone: zero vnode hold count"); 3870 if ((vp->v_flag & VOBJBUF) == 0) 3871 panic("biodone: vnode is not setup for merged cache"); 3872 #endif 3873 3874 foff = bp->b_loffset; 3875 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3876 KASSERT(obj != NULL, ("biodone: missing VM object")); 3877 3878 #if defined(VFS_BIO_DEBUG) 3879 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3880 kprintf("biodone: paging in progress(%d) < " 3881 "bp->b_xio.xio_npages(%d)\n", 3882 obj->paging_in_progress, 3883 bp->b_xio.xio_npages); 3884 } 3885 #endif 3886 3887 /* 3888 * Set B_CACHE if the op was a normal read and no error 3889 * occured. B_CACHE is set for writes in the b*write() 3890 * routines. 3891 */ 3892 iosize = bp->b_bcount - bp->b_resid; 3893 if (cmd == BUF_CMD_READ && 3894 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3895 bp->b_flags |= B_CACHE; 3896 } 3897 3898 lwkt_gettoken(&vm_token); 3899 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3900 int bogusflag = 0; 3901 int resid; 3902 3903 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3904 if (resid > iosize) 3905 resid = iosize; 3906 3907 /* 3908 * cleanup bogus pages, restoring the originals. Since 3909 * the originals should still be wired, we don't have 3910 * to worry about interrupt/freeing races destroying 3911 * the VM object association. 3912 */ 3913 m = bp->b_xio.xio_pages[i]; 3914 if (m == bogus_page) { 3915 bogusflag = 1; 3916 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3917 if (m == NULL) 3918 panic("biodone: page disappeared"); 3919 bp->b_xio.xio_pages[i] = m; 3920 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3921 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3922 } 3923 #if defined(VFS_BIO_DEBUG) 3924 if (OFF_TO_IDX(foff) != m->pindex) { 3925 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3926 "mismatch\n", 3927 (unsigned long)foff, (long)m->pindex); 3928 } 3929 #endif 3930 3931 /* 3932 * In the write case, the valid and clean bits are 3933 * already changed correctly (see bdwrite()), so we 3934 * only need to do this here in the read case. 3935 */ 3936 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3937 vfs_clean_one_page(bp, i, m); 3938 } 3939 vm_page_flag_clear(m, PG_ZERO); 3940 3941 /* 3942 * when debugging new filesystems or buffer I/O 3943 * methods, this is the most common error that pops 3944 * up. if you see this, you have not set the page 3945 * busy flag correctly!!! 3946 */ 3947 if (m->busy == 0) { 3948 kprintf("biodone: page busy < 0, " 3949 "pindex: %d, foff: 0x(%x,%x), " 3950 "resid: %d, index: %d\n", 3951 (int) m->pindex, (int)(foff >> 32), 3952 (int) foff & 0xffffffff, resid, i); 3953 if (!vn_isdisk(vp, NULL)) 3954 kprintf(" iosize: %ld, loffset: %lld, " 3955 "flags: 0x%08x, npages: %d\n", 3956 bp->b_vp->v_mount->mnt_stat.f_iosize, 3957 (long long)bp->b_loffset, 3958 bp->b_flags, bp->b_xio.xio_npages); 3959 else 3960 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3961 (long long)bp->b_loffset, 3962 bp->b_flags, bp->b_xio.xio_npages); 3963 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3964 m->valid, m->dirty, m->wire_count); 3965 panic("biodone: page busy < 0"); 3966 } 3967 vm_page_io_finish(m); 3968 vm_object_pip_wakeup(obj); 3969 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3970 iosize -= resid; 3971 } 3972 bp->b_flags &= ~B_HASBOGUS; 3973 lwkt_reltoken(&vm_token); 3974 } 3975 3976 /* 3977 * Finish up by releasing the buffer. There are no more synchronous 3978 * or asynchronous completions, those were handled by bio_done 3979 * callbacks. 3980 */ 3981 if (elseit) { 3982 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3983 brelse(bp); 3984 else 3985 bqrelse(bp); 3986 } 3987 } 3988 3989 /* 3990 * Normal biodone. 3991 */ 3992 void 3993 biodone(struct bio *bio) 3994 { 3995 struct buf *bp = bio->bio_buf; 3996 3997 runningbufwakeup(bp); 3998 3999 /* 4000 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 4001 */ 4002 while (bio) { 4003 biodone_t *done_func; 4004 struct bio_track *track; 4005 4006 /* 4007 * BIO tracking. Most but not all BIOs are tracked. 4008 */ 4009 if ((track = bio->bio_track) != NULL) { 4010 bio_track_rel(track); 4011 bio->bio_track = NULL; 4012 } 4013 4014 /* 4015 * A bio_done function terminates the loop. The function 4016 * will be responsible for any further chaining and/or 4017 * buffer management. 4018 * 4019 * WARNING! The done function can deallocate the buffer! 4020 */ 4021 if ((done_func = bio->bio_done) != NULL) { 4022 bio->bio_done = NULL; 4023 done_func(bio); 4024 return; 4025 } 4026 bio = bio->bio_prev; 4027 } 4028 4029 /* 4030 * If we've run out of bio's do normal [a]synchronous completion. 4031 */ 4032 bpdone(bp, 1); 4033 } 4034 4035 /* 4036 * Synchronous biodone - this terminates a synchronous BIO. 4037 * 4038 * bpdone() is called with elseit=FALSE, leaving the buffer completed 4039 * but still locked. The caller must brelse() the buffer after waiting 4040 * for completion. 4041 */ 4042 void 4043 biodone_sync(struct bio *bio) 4044 { 4045 struct buf *bp = bio->bio_buf; 4046 int flags; 4047 int nflags; 4048 4049 KKASSERT(bio == &bp->b_bio1); 4050 bpdone(bp, 0); 4051 4052 for (;;) { 4053 flags = bio->bio_flags; 4054 nflags = (flags | BIO_DONE) & ~BIO_WANT; 4055 4056 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 4057 if (flags & BIO_WANT) 4058 wakeup(bio); 4059 break; 4060 } 4061 } 4062 } 4063 4064 /* 4065 * vfs_unbusy_pages: 4066 * 4067 * This routine is called in lieu of iodone in the case of 4068 * incomplete I/O. This keeps the busy status for pages 4069 * consistant. 4070 */ 4071 void 4072 vfs_unbusy_pages(struct buf *bp) 4073 { 4074 int i; 4075 4076 runningbufwakeup(bp); 4077 4078 lwkt_gettoken(&vm_token); 4079 if (bp->b_flags & B_VMIO) { 4080 struct vnode *vp = bp->b_vp; 4081 vm_object_t obj; 4082 4083 obj = vp->v_object; 4084 4085 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4086 vm_page_t m = bp->b_xio.xio_pages[i]; 4087 4088 /* 4089 * When restoring bogus changes the original pages 4090 * should still be wired, so we are in no danger of 4091 * losing the object association and do not need 4092 * critical section protection particularly. 4093 */ 4094 if (m == bogus_page) { 4095 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 4096 if (!m) { 4097 panic("vfs_unbusy_pages: page missing"); 4098 } 4099 bp->b_xio.xio_pages[i] = m; 4100 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4101 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 4102 } 4103 vm_object_pip_wakeup(obj); 4104 vm_page_flag_clear(m, PG_ZERO); 4105 vm_page_io_finish(m); 4106 } 4107 bp->b_flags &= ~B_HASBOGUS; 4108 } 4109 lwkt_reltoken(&vm_token); 4110 } 4111 4112 /* 4113 * vfs_busy_pages: 4114 * 4115 * This routine is called before a device strategy routine. 4116 * It is used to tell the VM system that paging I/O is in 4117 * progress, and treat the pages associated with the buffer 4118 * almost as being PG_BUSY. Also the object 'paging_in_progress' 4119 * flag is handled to make sure that the object doesn't become 4120 * inconsistant. 4121 * 4122 * Since I/O has not been initiated yet, certain buffer flags 4123 * such as B_ERROR or B_INVAL may be in an inconsistant state 4124 * and should be ignored. 4125 * 4126 * MPSAFE 4127 */ 4128 void 4129 vfs_busy_pages(struct vnode *vp, struct buf *bp) 4130 { 4131 int i, bogus; 4132 struct lwp *lp = curthread->td_lwp; 4133 4134 /* 4135 * The buffer's I/O command must already be set. If reading, 4136 * B_CACHE must be 0 (double check against callers only doing 4137 * I/O when B_CACHE is 0). 4138 */ 4139 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4140 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 4141 4142 if (bp->b_flags & B_VMIO) { 4143 vm_object_t obj; 4144 4145 lwkt_gettoken(&vm_token); 4146 4147 obj = vp->v_object; 4148 KASSERT(bp->b_loffset != NOOFFSET, 4149 ("vfs_busy_pages: no buffer offset")); 4150 4151 /* 4152 * Loop until none of the pages are busy. 4153 */ 4154 retry: 4155 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4156 vm_page_t m = bp->b_xio.xio_pages[i]; 4157 4158 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 4159 goto retry; 4160 } 4161 4162 /* 4163 * Setup for I/O, soft-busy the page right now because 4164 * the next loop may block. 4165 */ 4166 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4167 vm_page_t m = bp->b_xio.xio_pages[i]; 4168 4169 vm_page_flag_clear(m, PG_ZERO); 4170 if ((bp->b_flags & B_CLUSTER) == 0) { 4171 vm_object_pip_add(obj, 1); 4172 vm_page_io_start(m); 4173 } 4174 } 4175 4176 /* 4177 * Adjust protections for I/O and do bogus-page mapping. 4178 * Assume that vm_page_protect() can block (it can block 4179 * if VM_PROT_NONE, don't take any chances regardless). 4180 * 4181 * In particular note that for writes we must incorporate 4182 * page dirtyness from the VM system into the buffer's 4183 * dirty range. 4184 * 4185 * For reads we theoretically must incorporate page dirtyness 4186 * from the VM system to determine if the page needs bogus 4187 * replacement, but we shortcut the test by simply checking 4188 * that all m->valid bits are set, indicating that the page 4189 * is fully valid and does not need to be re-read. For any 4190 * VM system dirtyness the page will also be fully valid 4191 * since it was mapped at one point. 4192 */ 4193 bogus = 0; 4194 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4195 vm_page_t m = bp->b_xio.xio_pages[i]; 4196 4197 vm_page_flag_clear(m, PG_ZERO); /* XXX */ 4198 if (bp->b_cmd == BUF_CMD_WRITE) { 4199 /* 4200 * When readying a vnode-backed buffer for 4201 * a write we must zero-fill any invalid 4202 * portions of the backing VM pages, mark 4203 * it valid and clear related dirty bits. 4204 * 4205 * vfs_clean_one_page() incorporates any 4206 * VM dirtyness and updates the b_dirtyoff 4207 * range (after we've made the page RO). 4208 * 4209 * It is also expected that the pmap modified 4210 * bit has already been cleared by the 4211 * vm_page_protect(). We may not be able 4212 * to clear all dirty bits for a page if it 4213 * was also memory mapped (NFS). 4214 * 4215 * Finally be sure to unassign any swap-cache 4216 * backing store as it is now stale. 4217 */ 4218 vm_page_protect(m, VM_PROT_READ); 4219 vfs_clean_one_page(bp, i, m); 4220 swap_pager_unswapped(m); 4221 } else if (m->valid == VM_PAGE_BITS_ALL) { 4222 /* 4223 * When readying a vnode-backed buffer for 4224 * read we must replace any dirty pages with 4225 * a bogus page so dirty data is not destroyed 4226 * when filling gaps. 4227 * 4228 * To avoid testing whether the page is 4229 * dirty we instead test that the page was 4230 * at some point mapped (m->valid fully 4231 * valid) with the understanding that 4232 * this also covers the dirty case. 4233 */ 4234 bp->b_xio.xio_pages[i] = bogus_page; 4235 bp->b_flags |= B_HASBOGUS; 4236 bogus++; 4237 } else if (m->valid & m->dirty) { 4238 /* 4239 * This case should not occur as partial 4240 * dirtyment can only happen if the buffer 4241 * is B_CACHE, and this code is not entered 4242 * if the buffer is B_CACHE. 4243 */ 4244 kprintf("Warning: vfs_busy_pages - page not " 4245 "fully valid! loff=%jx bpf=%08x " 4246 "idx=%d val=%02x dir=%02x\n", 4247 (intmax_t)bp->b_loffset, bp->b_flags, 4248 i, m->valid, m->dirty); 4249 vm_page_protect(m, VM_PROT_NONE); 4250 } else { 4251 /* 4252 * The page is not valid and can be made 4253 * part of the read. 4254 */ 4255 vm_page_protect(m, VM_PROT_NONE); 4256 } 4257 } 4258 if (bogus) { 4259 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4260 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 4261 } 4262 lwkt_reltoken(&vm_token); 4263 } 4264 4265 /* 4266 * This is the easiest place to put the process accounting for the I/O 4267 * for now. 4268 */ 4269 if (lp != NULL) { 4270 if (bp->b_cmd == BUF_CMD_READ) 4271 lp->lwp_ru.ru_inblock++; 4272 else 4273 lp->lwp_ru.ru_oublock++; 4274 } 4275 } 4276 4277 /* 4278 * Tell the VM system that the pages associated with this buffer 4279 * are clean. This is used for delayed writes where the data is 4280 * going to go to disk eventually without additional VM intevention. 4281 * 4282 * NOTE: While we only really need to clean through to b_bcount, we 4283 * just go ahead and clean through to b_bufsize. 4284 */ 4285 static void 4286 vfs_clean_pages(struct buf *bp) 4287 { 4288 vm_page_t m; 4289 int i; 4290 4291 if ((bp->b_flags & B_VMIO) == 0) 4292 return; 4293 4294 KASSERT(bp->b_loffset != NOOFFSET, 4295 ("vfs_clean_pages: no buffer offset")); 4296 4297 /* 4298 * vm_token must be held for vfs_clean_one_page() calls. 4299 */ 4300 lwkt_gettoken(&vm_token); 4301 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4302 m = bp->b_xio.xio_pages[i]; 4303 vfs_clean_one_page(bp, i, m); 4304 } 4305 lwkt_reltoken(&vm_token); 4306 } 4307 4308 /* 4309 * vfs_clean_one_page: 4310 * 4311 * Set the valid bits and clear the dirty bits in a page within a 4312 * buffer. The range is restricted to the buffer's size and the 4313 * buffer's logical offset might index into the first page. 4314 * 4315 * The caller has busied or soft-busied the page and it is not mapped, 4316 * test and incorporate the dirty bits into b_dirtyoff/end before 4317 * clearing them. Note that we need to clear the pmap modified bits 4318 * after determining the the page was dirty, vm_page_set_validclean() 4319 * does not do it for us. 4320 * 4321 * This routine is typically called after a read completes (dirty should 4322 * be zero in that case as we are not called on bogus-replace pages), 4323 * or before a write is initiated. 4324 * 4325 * NOTE: vm_token must be held by the caller, and vm_page_set_validclean() 4326 * currently assumes the vm_token is held. 4327 */ 4328 static void 4329 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 4330 { 4331 int bcount; 4332 int xoff; 4333 int soff; 4334 int eoff; 4335 4336 /* 4337 * Calculate offset range within the page but relative to buffer's 4338 * loffset. loffset might be offset into the first page. 4339 */ 4340 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4341 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4342 4343 if (pageno == 0) { 4344 soff = xoff; 4345 eoff = PAGE_SIZE; 4346 } else { 4347 soff = (pageno << PAGE_SHIFT); 4348 eoff = soff + PAGE_SIZE; 4349 } 4350 if (eoff > bcount) 4351 eoff = bcount; 4352 if (soff >= eoff) 4353 return; 4354 4355 /* 4356 * Test dirty bits and adjust b_dirtyoff/end. 4357 * 4358 * If dirty pages are incorporated into the bp any prior 4359 * B_NEEDCOMMIT state (NFS) must be cleared because the 4360 * caller has not taken into account the new dirty data. 4361 * 4362 * If the page was memory mapped the dirty bits might go beyond the 4363 * end of the buffer, but we can't really make the assumption that 4364 * a file EOF straddles the buffer (even though this is the case for 4365 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 4366 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 4367 * This also saves some console spam. 4368 * 4369 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK, 4370 * NFS can handle huge commits but not huge writes. 4371 */ 4372 vm_page_test_dirty(m); 4373 if (m->dirty) { 4374 if ((bp->b_flags & B_NEEDCOMMIT) && 4375 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 4376 if (debug_commit) 4377 kprintf("Warning: vfs_clean_one_page: bp %p " 4378 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT" 4379 " cmd %d vd %02x/%02x x/s/e %d %d %d " 4380 "doff/end %d %d\n", 4381 bp, (intmax_t)bp->b_loffset, bp->b_bcount, 4382 bp->b_flags, bp->b_cmd, 4383 m->valid, m->dirty, xoff, soff, eoff, 4384 bp->b_dirtyoff, bp->b_dirtyend); 4385 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 4386 if (debug_commit) 4387 print_backtrace(-1); 4388 } 4389 /* 4390 * Only clear the pmap modified bits if ALL the dirty bits 4391 * are set, otherwise the system might mis-clear portions 4392 * of a page. 4393 */ 4394 if (m->dirty == VM_PAGE_BITS_ALL && 4395 (bp->b_flags & B_NEEDCOMMIT) == 0) { 4396 pmap_clear_modify(m); 4397 } 4398 if (bp->b_dirtyoff > soff - xoff) 4399 bp->b_dirtyoff = soff - xoff; 4400 if (bp->b_dirtyend < eoff - xoff) 4401 bp->b_dirtyend = eoff - xoff; 4402 } 4403 4404 /* 4405 * Set related valid bits, clear related dirty bits. 4406 * Does not mess with the pmap modified bit. 4407 * 4408 * WARNING! We cannot just clear all of m->dirty here as the 4409 * buffer cache buffers may use a DEV_BSIZE'd aligned 4410 * block size, or have an odd size (e.g. NFS at file EOF). 4411 * The putpages code can clear m->dirty to 0. 4412 * 4413 * If a VOP_WRITE generates a buffer cache buffer which 4414 * covers the same space as mapped writable pages the 4415 * buffer flush might not be able to clear all the dirty 4416 * bits and still require a putpages from the VM system 4417 * to finish it off. 4418 * 4419 * WARNING! vm_page_set_validclean() currently assumes vm_token 4420 * is held. The page might not be busied (bdwrite() case). 4421 */ 4422 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 4423 } 4424 4425 /* 4426 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty. 4427 * The page data is assumed to be valid (there is no zeroing here). 4428 */ 4429 static void 4430 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m) 4431 { 4432 int bcount; 4433 int xoff; 4434 int soff; 4435 int eoff; 4436 4437 /* 4438 * Calculate offset range within the page but relative to buffer's 4439 * loffset. loffset might be offset into the first page. 4440 */ 4441 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4442 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4443 4444 if (pageno == 0) { 4445 soff = xoff; 4446 eoff = PAGE_SIZE; 4447 } else { 4448 soff = (pageno << PAGE_SHIFT); 4449 eoff = soff + PAGE_SIZE; 4450 } 4451 if (eoff > bcount) 4452 eoff = bcount; 4453 if (soff >= eoff) 4454 return; 4455 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff); 4456 } 4457 4458 /* 4459 * vfs_bio_clrbuf: 4460 * 4461 * Clear a buffer. This routine essentially fakes an I/O, so we need 4462 * to clear B_ERROR and B_INVAL. 4463 * 4464 * Note that while we only theoretically need to clear through b_bcount, 4465 * we go ahead and clear through b_bufsize. 4466 */ 4467 4468 void 4469 vfs_bio_clrbuf(struct buf *bp) 4470 { 4471 int i, mask = 0; 4472 caddr_t sa, ea; 4473 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 4474 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 4475 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4476 (bp->b_loffset & PAGE_MASK) == 0) { 4477 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4478 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 4479 bp->b_resid = 0; 4480 return; 4481 } 4482 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 4483 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 4484 bzero(bp->b_data, bp->b_bufsize); 4485 bp->b_xio.xio_pages[0]->valid |= mask; 4486 bp->b_resid = 0; 4487 return; 4488 } 4489 } 4490 sa = bp->b_data; 4491 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 4492 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 4493 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 4494 ea = (caddr_t)(vm_offset_t)ulmin( 4495 (u_long)(vm_offset_t)ea, 4496 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 4497 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4498 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 4499 continue; 4500 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 4501 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 4502 bzero(sa, ea - sa); 4503 } 4504 } else { 4505 for (; sa < ea; sa += DEV_BSIZE, j++) { 4506 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 4507 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 4508 bzero(sa, DEV_BSIZE); 4509 } 4510 } 4511 bp->b_xio.xio_pages[i]->valid |= mask; 4512 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 4513 } 4514 bp->b_resid = 0; 4515 } else { 4516 clrbuf(bp); 4517 } 4518 } 4519 4520 /* 4521 * vm_hold_load_pages: 4522 * 4523 * Load pages into the buffer's address space. The pages are 4524 * allocated from the kernel object in order to reduce interference 4525 * with the any VM paging I/O activity. The range of loaded 4526 * pages will be wired. 4527 * 4528 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4529 * retrieve the full range (to - from) of pages. 4530 * 4531 * MPSAFE 4532 */ 4533 void 4534 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4535 { 4536 vm_offset_t pg; 4537 vm_page_t p; 4538 int index; 4539 4540 to = round_page(to); 4541 from = round_page(from); 4542 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4543 4544 pg = from; 4545 while (pg < to) { 4546 /* 4547 * Note: must allocate system pages since blocking here 4548 * could intefere with paging I/O, no matter which 4549 * process we are. 4550 */ 4551 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4552 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4553 if (p) { 4554 vm_page_wire(p); 4555 p->valid = VM_PAGE_BITS_ALL; 4556 vm_page_flag_clear(p, PG_ZERO); 4557 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4558 bp->b_xio.xio_pages[index] = p; 4559 vm_page_wakeup(p); 4560 4561 pg += PAGE_SIZE; 4562 ++index; 4563 } 4564 } 4565 bp->b_xio.xio_npages = index; 4566 } 4567 4568 /* 4569 * Allocate pages for a buffer cache buffer. 4570 * 4571 * Under extremely severe memory conditions even allocating out of the 4572 * system reserve can fail. If this occurs we must allocate out of the 4573 * interrupt reserve to avoid a deadlock with the pageout daemon. 4574 * 4575 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 4576 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 4577 * against the pageout daemon if pages are not freed from other sources. 4578 * 4579 * MPSAFE 4580 */ 4581 static 4582 vm_page_t 4583 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4584 { 4585 vm_page_t p; 4586 4587 /* 4588 * Try a normal allocation, allow use of system reserve. 4589 */ 4590 lwkt_gettoken(&vm_token); 4591 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 4592 if (p) { 4593 lwkt_reltoken(&vm_token); 4594 return(p); 4595 } 4596 4597 /* 4598 * The normal allocation failed and we clearly have a page 4599 * deficit. Try to reclaim some clean VM pages directly 4600 * from the buffer cache. 4601 */ 4602 vm_pageout_deficit += deficit; 4603 recoverbufpages(); 4604 4605 /* 4606 * We may have blocked, the caller will know what to do if the 4607 * page now exists. 4608 */ 4609 if (vm_page_lookup(obj, pg)) { 4610 lwkt_reltoken(&vm_token); 4611 return(NULL); 4612 } 4613 4614 /* 4615 * Allocate and allow use of the interrupt reserve. 4616 * 4617 * If after all that we still can't allocate a VM page we are 4618 * in real trouble, but we slog on anyway hoping that the system 4619 * won't deadlock. 4620 */ 4621 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 4622 VM_ALLOC_INTERRUPT); 4623 if (p) { 4624 if (vm_page_count_severe()) { 4625 ++lowmempgallocs; 4626 vm_wait(hz / 20 + 1); 4627 } 4628 } else { 4629 kprintf("bio_page_alloc: Memory exhausted during bufcache " 4630 "page allocation\n"); 4631 ++lowmempgfails; 4632 vm_wait(hz); 4633 } 4634 lwkt_reltoken(&vm_token); 4635 return(p); 4636 } 4637 4638 /* 4639 * vm_hold_free_pages: 4640 * 4641 * Return pages associated with the buffer back to the VM system. 4642 * 4643 * The range of pages underlying the buffer's address space will 4644 * be unmapped and un-wired. 4645 * 4646 * MPSAFE 4647 */ 4648 void 4649 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4650 { 4651 vm_offset_t pg; 4652 vm_page_t p; 4653 int index, newnpages; 4654 4655 from = round_page(from); 4656 to = round_page(to); 4657 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4658 newnpages = index; 4659 4660 lwkt_gettoken(&vm_token); 4661 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4662 p = bp->b_xio.xio_pages[index]; 4663 if (p && (index < bp->b_xio.xio_npages)) { 4664 if (p->busy) { 4665 kprintf("vm_hold_free_pages: doffset: %lld, " 4666 "loffset: %lld\n", 4667 (long long)bp->b_bio2.bio_offset, 4668 (long long)bp->b_loffset); 4669 } 4670 bp->b_xio.xio_pages[index] = NULL; 4671 pmap_kremove(pg); 4672 vm_page_busy(p); 4673 vm_page_unwire(p, 0); 4674 vm_page_free(p); 4675 } 4676 } 4677 bp->b_xio.xio_npages = newnpages; 4678 lwkt_reltoken(&vm_token); 4679 } 4680 4681 /* 4682 * vmapbuf: 4683 * 4684 * Map a user buffer into KVM via a pbuf. On return the buffer's 4685 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4686 * initialized. 4687 */ 4688 int 4689 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4690 { 4691 caddr_t addr; 4692 vm_offset_t va; 4693 vm_page_t m; 4694 int vmprot; 4695 int error; 4696 int pidx; 4697 int i; 4698 4699 /* 4700 * bp had better have a command and it better be a pbuf. 4701 */ 4702 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4703 KKASSERT(bp->b_flags & B_PAGING); 4704 KKASSERT(bp->b_kvabase); 4705 4706 if (bytes < 0) 4707 return (-1); 4708 4709 /* 4710 * Map the user data into KVM. Mappings have to be page-aligned. 4711 */ 4712 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4713 pidx = 0; 4714 4715 vmprot = VM_PROT_READ; 4716 if (bp->b_cmd == BUF_CMD_READ) 4717 vmprot |= VM_PROT_WRITE; 4718 4719 while (addr < udata + bytes) { 4720 /* 4721 * Do the vm_fault if needed; do the copy-on-write thing 4722 * when reading stuff off device into memory. 4723 * 4724 * vm_fault_page*() returns a held VM page. 4725 */ 4726 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4727 va = trunc_page(va); 4728 4729 m = vm_fault_page_quick(va, vmprot, &error); 4730 if (m == NULL) { 4731 for (i = 0; i < pidx; ++i) { 4732 vm_page_unhold(bp->b_xio.xio_pages[i]); 4733 bp->b_xio.xio_pages[i] = NULL; 4734 } 4735 return(-1); 4736 } 4737 bp->b_xio.xio_pages[pidx] = m; 4738 addr += PAGE_SIZE; 4739 ++pidx; 4740 } 4741 4742 /* 4743 * Map the page array and set the buffer fields to point to 4744 * the mapped data buffer. 4745 */ 4746 if (pidx > btoc(MAXPHYS)) 4747 panic("vmapbuf: mapped more than MAXPHYS"); 4748 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4749 4750 bp->b_xio.xio_npages = pidx; 4751 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4752 bp->b_bcount = bytes; 4753 bp->b_bufsize = bytes; 4754 return(0); 4755 } 4756 4757 /* 4758 * vunmapbuf: 4759 * 4760 * Free the io map PTEs associated with this IO operation. 4761 * We also invalidate the TLB entries and restore the original b_addr. 4762 */ 4763 void 4764 vunmapbuf(struct buf *bp) 4765 { 4766 int pidx; 4767 int npages; 4768 4769 KKASSERT(bp->b_flags & B_PAGING); 4770 4771 npages = bp->b_xio.xio_npages; 4772 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4773 for (pidx = 0; pidx < npages; ++pidx) { 4774 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4775 bp->b_xio.xio_pages[pidx] = NULL; 4776 } 4777 bp->b_xio.xio_npages = 0; 4778 bp->b_data = bp->b_kvabase; 4779 } 4780 4781 /* 4782 * Scan all buffers in the system and issue the callback. 4783 */ 4784 int 4785 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4786 { 4787 int count = 0; 4788 int error; 4789 int n; 4790 4791 for (n = 0; n < nbuf; ++n) { 4792 if ((error = callback(&buf[n], info)) < 0) { 4793 count = error; 4794 break; 4795 } 4796 count += error; 4797 } 4798 return (count); 4799 } 4800 4801 /* 4802 * nestiobuf_iodone: biodone callback for nested buffers and propagate 4803 * completion to the master buffer. 4804 */ 4805 static void 4806 nestiobuf_iodone(struct bio *bio) 4807 { 4808 struct bio *mbio; 4809 struct buf *mbp, *bp; 4810 struct devstat *stats; 4811 int error; 4812 int donebytes; 4813 4814 bp = bio->bio_buf; 4815 mbio = bio->bio_caller_info1.ptr; 4816 stats = bio->bio_caller_info2.ptr; 4817 mbp = mbio->bio_buf; 4818 4819 KKASSERT(bp->b_bcount <= bp->b_bufsize); 4820 KKASSERT(mbp != bp); 4821 4822 error = bp->b_error; 4823 if (bp->b_error == 0 && 4824 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 4825 /* 4826 * Not all got transfered, raise an error. We have no way to 4827 * propagate these conditions to mbp. 4828 */ 4829 error = EIO; 4830 } 4831 4832 donebytes = bp->b_bufsize; 4833 4834 relpbuf(bp, NULL); 4835 4836 nestiobuf_done(mbio, donebytes, error, stats); 4837 } 4838 4839 void 4840 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats) 4841 { 4842 struct buf *mbp; 4843 4844 mbp = mbio->bio_buf; 4845 4846 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0); 4847 4848 /* 4849 * If an error occured, propagate it to the master buffer. 4850 * 4851 * Several biodone()s may wind up running concurrently so 4852 * use an atomic op to adjust b_flags. 4853 */ 4854 if (error) { 4855 mbp->b_error = error; 4856 atomic_set_int(&mbp->b_flags, B_ERROR); 4857 } 4858 4859 /* 4860 * Decrement the operations in progress counter and terminate the 4861 * I/O if this was the last bit. 4862 */ 4863 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4864 mbp->b_resid = 0; 4865 if (stats) 4866 devstat_end_transaction_buf(stats, mbp); 4867 biodone(mbio); 4868 } 4869 } 4870 4871 /* 4872 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent 4873 * the mbio from being biodone()'d while we are still adding sub-bios to 4874 * it. 4875 */ 4876 void 4877 nestiobuf_init(struct bio *bio) 4878 { 4879 bio->bio_driver_info = (void *)1; 4880 } 4881 4882 /* 4883 * The BIOs added to the nestedio have already been started, remove the 4884 * count that placeheld our mbio and biodone() it if the count would 4885 * transition to 0. 4886 */ 4887 void 4888 nestiobuf_start(struct bio *mbio) 4889 { 4890 struct buf *mbp = mbio->bio_buf; 4891 4892 /* 4893 * Decrement the operations in progress counter and terminate the 4894 * I/O if this was the last bit. 4895 */ 4896 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4897 if (mbp->b_flags & B_ERROR) 4898 mbp->b_resid = mbp->b_bcount; 4899 else 4900 mbp->b_resid = 0; 4901 biodone(mbio); 4902 } 4903 } 4904 4905 /* 4906 * Set an intermediate error prior to calling nestiobuf_start() 4907 */ 4908 void 4909 nestiobuf_error(struct bio *mbio, int error) 4910 { 4911 struct buf *mbp = mbio->bio_buf; 4912 4913 if (error) { 4914 mbp->b_error = error; 4915 atomic_set_int(&mbp->b_flags, B_ERROR); 4916 } 4917 } 4918 4919 /* 4920 * nestiobuf_add: setup a "nested" buffer. 4921 * 4922 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 4923 * => 'bp' should be a buffer allocated by getiobuf. 4924 * => 'offset' is a byte offset in the master buffer. 4925 * => 'size' is a size in bytes of this nested buffer. 4926 */ 4927 void 4928 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats) 4929 { 4930 struct buf *mbp = mbio->bio_buf; 4931 struct vnode *vp = mbp->b_vp; 4932 4933 KKASSERT(mbp->b_bcount >= offset + size); 4934 4935 atomic_add_int((int *)&mbio->bio_driver_info, 1); 4936 4937 /* kernel needs to own the lock for it to be released in biodone */ 4938 BUF_KERNPROC(bp); 4939 bp->b_vp = vp; 4940 bp->b_cmd = mbp->b_cmd; 4941 bp->b_bio1.bio_done = nestiobuf_iodone; 4942 bp->b_data = (char *)mbp->b_data + offset; 4943 bp->b_resid = bp->b_bcount = size; 4944 bp->b_bufsize = bp->b_bcount; 4945 4946 bp->b_bio1.bio_track = NULL; 4947 bp->b_bio1.bio_caller_info1.ptr = mbio; 4948 bp->b_bio1.bio_caller_info2.ptr = stats; 4949 } 4950 4951 /* 4952 * print out statistics from the current status of the buffer pool 4953 * this can be toggeled by the system control option debug.syncprt 4954 */ 4955 #ifdef DEBUG 4956 void 4957 vfs_bufstats(void) 4958 { 4959 int i, j, count; 4960 struct buf *bp; 4961 struct bqueues *dp; 4962 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4963 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4964 4965 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4966 count = 0; 4967 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4968 counts[j] = 0; 4969 4970 spin_lock(&bufqspin); 4971 TAILQ_FOREACH(bp, dp, b_freelist) { 4972 counts[bp->b_bufsize/PAGE_SIZE]++; 4973 count++; 4974 } 4975 spin_unlock(&bufqspin); 4976 4977 kprintf("%s: total-%d", bname[i], count); 4978 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4979 if (counts[j] != 0) 4980 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4981 kprintf("\n"); 4982 } 4983 } 4984 #endif 4985 4986 #ifdef DDB 4987 4988 DB_SHOW_COMMAND(buffer, db_show_buffer) 4989 { 4990 /* get args */ 4991 struct buf *bp = (struct buf *)addr; 4992 4993 if (!have_addr) { 4994 db_printf("usage: show buffer <addr>\n"); 4995 return; 4996 } 4997 4998 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4999 db_printf("b_cmd = %d\n", bp->b_cmd); 5000 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 5001 "b_resid = %d\n, b_data = %p, " 5002 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 5003 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 5004 bp->b_data, 5005 (long long)bp->b_bio2.bio_offset, 5006 (long long)(bp->b_bio2.bio_next ? 5007 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 5008 if (bp->b_xio.xio_npages) { 5009 int i; 5010 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 5011 bp->b_xio.xio_npages); 5012 for (i = 0; i < bp->b_xio.xio_npages; i++) { 5013 vm_page_t m; 5014 m = bp->b_xio.xio_pages[i]; 5015 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 5016 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 5017 if ((i + 1) < bp->b_xio.xio_npages) 5018 db_printf(","); 5019 } 5020 db_printf("\n"); 5021 } 5022 } 5023 #endif /* DDB */ 5024