1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/dsched.h> 48 #include <sys/proc.h> 49 #include <vm/vm.h> 50 #include <vm/vm_param.h> 51 #include <vm/vm_kern.h> 52 #include <vm/vm_pageout.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_map.h> 57 #include <vm/vm_pager.h> 58 #include <vm/swap_pager.h> 59 60 #include <sys/buf2.h> 61 #include <sys/thread2.h> 62 #include <sys/spinlock2.h> 63 #include <sys/mplock2.h> 64 #include <vm/vm_page2.h> 65 66 #include "opt_ddb.h" 67 #ifdef DDB 68 #include <ddb/ddb.h> 69 #endif 70 71 /* 72 * Buffer queues. 73 */ 74 enum bufq_type { 75 BQUEUE_NONE, /* not on any queue */ 76 BQUEUE_LOCKED, /* locked buffers */ 77 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 78 BQUEUE_DIRTY, /* B_DELWRI buffers */ 79 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 80 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 81 BQUEUE_EMPTY, /* empty buffer headers */ 82 83 BUFFER_QUEUES /* number of buffer queues */ 84 }; 85 86 typedef enum bufq_type bufq_type_t; 87 88 #define BD_WAKE_SIZE 16384 89 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 90 91 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 92 struct spinlock bufspin = SPINLOCK_INITIALIZER(&bufspin); 93 94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 95 96 struct buf *buf; /* buffer header pool */ 97 98 static void vfs_clean_pages(struct buf *bp); 99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 100 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m); 101 static void vfs_vmio_release(struct buf *bp); 102 static int flushbufqueues(bufq_type_t q); 103 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 104 105 static void bd_signal(int totalspace); 106 static void buf_daemon(void); 107 static void buf_daemon_hw(void); 108 109 /* 110 * bogus page -- for I/O to/from partially complete buffers 111 * this is a temporary solution to the problem, but it is not 112 * really that bad. it would be better to split the buffer 113 * for input in the case of buffers partially already in memory, 114 * but the code is intricate enough already. 115 */ 116 vm_page_t bogus_page; 117 118 /* 119 * These are all static, but make the ones we export globals so we do 120 * not need to use compiler magic. 121 */ 122 int bufspace, maxbufspace, 123 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 124 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 125 static int lorunningspace, hirunningspace, runningbufreq; 126 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace; 127 int dirtybufcount, dirtybufcounthw; 128 int runningbufspace, runningbufcount; 129 static int getnewbufcalls; 130 static int getnewbufrestarts; 131 static int recoverbufcalls; 132 static int needsbuffer; /* locked by needsbuffer_spin */ 133 static int bd_request; /* locked by needsbuffer_spin */ 134 static int bd_request_hw; /* locked by needsbuffer_spin */ 135 static u_int bd_wake_ary[BD_WAKE_SIZE]; 136 static u_int bd_wake_index; 137 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */ 138 static struct spinlock needsbuffer_spin; 139 static int debug_commit; 140 141 static struct thread *bufdaemon_td; 142 static struct thread *bufdaemonhw_td; 143 144 145 /* 146 * Sysctls for operational control of the buffer cache. 147 */ 148 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 149 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 150 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 151 "High watermark used to trigger explicit flushing of dirty buffers"); 152 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 153 "Minimum amount of buffer space required for active I/O"); 154 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 155 "Maximum amount of buffer space to usable for active I/O"); 156 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0, 157 "Recycle pages to active or inactive queue transition pt 0-64"); 158 /* 159 * Sysctls determining current state of the buffer cache. 160 */ 161 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 162 "Total number of buffers in buffer cache"); 163 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 164 "Pending bytes of dirty buffers (all)"); 165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 166 "Pending bytes of dirty buffers (heavy weight)"); 167 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 168 "Pending number of dirty buffers"); 169 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 170 "Pending number of dirty buffers (heavy weight)"); 171 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 172 "I/O bytes currently in progress due to asynchronous writes"); 173 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 174 "I/O buffers currently in progress due to asynchronous writes"); 175 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 176 "Hard limit on maximum amount of memory usable for buffer space"); 177 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 178 "Soft limit on maximum amount of memory usable for buffer space"); 179 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 180 "Minimum amount of memory to reserve for system buffer space"); 181 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 182 "Amount of memory available for buffers"); 183 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 184 0, "Maximum amount of memory reserved for buffers using malloc"); 185 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 186 "Amount of memory left for buffers using malloc-scheme"); 187 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 188 "New buffer header acquisition requests"); 189 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 190 0, "New buffer header acquisition restarts"); 191 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 192 "Recover VM space in an emergency"); 193 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 194 "Buffer acquisition restarts due to fragmented buffer map"); 195 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 196 "Amount of time KVA space was deallocated in an arbitrary buffer"); 197 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 198 "Amount of time buffer re-use operations were successful"); 199 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, ""); 200 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 201 "sizeof(struct buf)"); 202 203 char *buf_wmesg = BUF_WMESG; 204 205 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 206 #define VFS_BIO_NEED_UNUSED02 0x02 207 #define VFS_BIO_NEED_UNUSED04 0x04 208 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 209 210 /* 211 * bufspacewakeup: 212 * 213 * Called when buffer space is potentially available for recovery. 214 * getnewbuf() will block on this flag when it is unable to free 215 * sufficient buffer space. Buffer space becomes recoverable when 216 * bp's get placed back in the queues. 217 */ 218 219 static __inline void 220 bufspacewakeup(void) 221 { 222 /* 223 * If someone is waiting for BUF space, wake them up. Even 224 * though we haven't freed the kva space yet, the waiting 225 * process will be able to now. 226 */ 227 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 228 spin_lock_wr(&needsbuffer_spin); 229 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 230 spin_unlock_wr(&needsbuffer_spin); 231 wakeup(&needsbuffer); 232 } 233 } 234 235 /* 236 * runningbufwakeup: 237 * 238 * Accounting for I/O in progress. 239 * 240 */ 241 static __inline void 242 runningbufwakeup(struct buf *bp) 243 { 244 int totalspace; 245 int limit; 246 247 if ((totalspace = bp->b_runningbufspace) != 0) { 248 atomic_subtract_int(&runningbufspace, totalspace); 249 atomic_subtract_int(&runningbufcount, 1); 250 bp->b_runningbufspace = 0; 251 252 /* 253 * see waitrunningbufspace() for limit test. 254 */ 255 limit = hirunningspace * 2 / 3; 256 if (runningbufreq && runningbufspace <= limit) { 257 runningbufreq = 0; 258 wakeup(&runningbufreq); 259 } 260 bd_signal(totalspace); 261 } 262 } 263 264 /* 265 * bufcountwakeup: 266 * 267 * Called when a buffer has been added to one of the free queues to 268 * account for the buffer and to wakeup anyone waiting for free buffers. 269 * This typically occurs when large amounts of metadata are being handled 270 * by the buffer cache ( else buffer space runs out first, usually ). 271 * 272 * MPSAFE 273 */ 274 static __inline void 275 bufcountwakeup(void) 276 { 277 if (needsbuffer) { 278 spin_lock_wr(&needsbuffer_spin); 279 needsbuffer &= ~VFS_BIO_NEED_ANY; 280 spin_unlock_wr(&needsbuffer_spin); 281 wakeup(&needsbuffer); 282 } 283 } 284 285 /* 286 * waitrunningbufspace() 287 * 288 * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3. 289 * This is the point where write bursting stops so we don't want to wait 290 * for the running amount to drop below it (at least if we still want bioq 291 * to burst writes). 292 * 293 * The caller may be using this function to block in a tight loop, we 294 * must block while runningbufspace is greater then or equal to 295 * hirunningspace * 2 / 3. 296 * 297 * And even with that it may not be enough, due to the presence of 298 * B_LOCKED dirty buffers, so also wait for at least one running buffer 299 * to complete. 300 */ 301 void 302 waitrunningbufspace(void) 303 { 304 int limit = hirunningspace * 2 / 3; 305 306 crit_enter(); 307 if (runningbufspace > limit) { 308 while (runningbufspace > limit) { 309 ++runningbufreq; 310 tsleep(&runningbufreq, 0, "wdrn1", 0); 311 } 312 } else if (runningbufspace) { 313 ++runningbufreq; 314 tsleep(&runningbufreq, 0, "wdrn2", 1); 315 } 316 crit_exit(); 317 } 318 319 /* 320 * buf_dirty_count_severe: 321 * 322 * Return true if we have too many dirty buffers. 323 */ 324 int 325 buf_dirty_count_severe(void) 326 { 327 return (runningbufspace + dirtybufspace >= hidirtybufspace || 328 dirtybufcount >= nbuf / 2); 329 } 330 331 /* 332 * Return true if the amount of running I/O is severe and BIOQ should 333 * start bursting. 334 */ 335 int 336 buf_runningbufspace_severe(void) 337 { 338 return (runningbufspace >= hirunningspace * 2 / 3); 339 } 340 341 /* 342 * vfs_buf_test_cache: 343 * 344 * Called when a buffer is extended. This function clears the B_CACHE 345 * bit if the newly extended portion of the buffer does not contain 346 * valid data. 347 * 348 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 349 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 350 * them while a clean buffer was present. 351 */ 352 static __inline__ 353 void 354 vfs_buf_test_cache(struct buf *bp, 355 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 356 vm_page_t m) 357 { 358 if (bp->b_flags & B_CACHE) { 359 int base = (foff + off) & PAGE_MASK; 360 if (vm_page_is_valid(m, base, size) == 0) 361 bp->b_flags &= ~B_CACHE; 362 } 363 } 364 365 /* 366 * bd_speedup() 367 * 368 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 369 * low water mark. 370 * 371 * MPSAFE 372 */ 373 static __inline__ 374 void 375 bd_speedup(void) 376 { 377 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 378 return; 379 380 if (bd_request == 0 && 381 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 382 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 383 spin_lock_wr(&needsbuffer_spin); 384 bd_request = 1; 385 spin_unlock_wr(&needsbuffer_spin); 386 wakeup(&bd_request); 387 } 388 if (bd_request_hw == 0 && 389 (dirtybufspacehw > lodirtybufspace / 2 || 390 dirtybufcounthw >= nbuf / 2)) { 391 spin_lock_wr(&needsbuffer_spin); 392 bd_request_hw = 1; 393 spin_unlock_wr(&needsbuffer_spin); 394 wakeup(&bd_request_hw); 395 } 396 } 397 398 /* 399 * bd_heatup() 400 * 401 * Get the buf_daemon heated up when the number of running and dirty 402 * buffers exceeds the mid-point. 403 * 404 * Return the total number of dirty bytes past the second mid point 405 * as a measure of how much excess dirty data there is in the system. 406 * 407 * MPSAFE 408 */ 409 int 410 bd_heatup(void) 411 { 412 int mid1; 413 int mid2; 414 int totalspace; 415 416 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 417 418 totalspace = runningbufspace + dirtybufspace; 419 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 420 bd_speedup(); 421 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 422 if (totalspace >= mid2) 423 return(totalspace - mid2); 424 } 425 return(0); 426 } 427 428 /* 429 * bd_wait() 430 * 431 * Wait for the buffer cache to flush (totalspace) bytes worth of 432 * buffers, then return. 433 * 434 * Regardless this function blocks while the number of dirty buffers 435 * exceeds hidirtybufspace. 436 * 437 * MPSAFE 438 */ 439 void 440 bd_wait(int totalspace) 441 { 442 u_int i; 443 int count; 444 445 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 446 return; 447 448 while (totalspace > 0) { 449 bd_heatup(); 450 if (totalspace > runningbufspace + dirtybufspace) 451 totalspace = runningbufspace + dirtybufspace; 452 count = totalspace / BKVASIZE; 453 if (count >= BD_WAKE_SIZE) 454 count = BD_WAKE_SIZE - 1; 455 456 spin_lock_wr(&needsbuffer_spin); 457 i = (bd_wake_index + count) & BD_WAKE_MASK; 458 ++bd_wake_ary[i]; 459 tsleep_interlock(&bd_wake_ary[i], 0); 460 spin_unlock_wr(&needsbuffer_spin); 461 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 462 463 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 464 } 465 } 466 467 /* 468 * bd_signal() 469 * 470 * This function is called whenever runningbufspace or dirtybufspace 471 * is reduced. Track threads waiting for run+dirty buffer I/O 472 * complete. 473 * 474 * MPSAFE 475 */ 476 static void 477 bd_signal(int totalspace) 478 { 479 u_int i; 480 481 if (totalspace > 0) { 482 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 483 totalspace = BKVASIZE * BD_WAKE_SIZE; 484 spin_lock_wr(&needsbuffer_spin); 485 while (totalspace > 0) { 486 i = bd_wake_index++; 487 i &= BD_WAKE_MASK; 488 if (bd_wake_ary[i]) { 489 bd_wake_ary[i] = 0; 490 spin_unlock_wr(&needsbuffer_spin); 491 wakeup(&bd_wake_ary[i]); 492 spin_lock_wr(&needsbuffer_spin); 493 } 494 totalspace -= BKVASIZE; 495 } 496 spin_unlock_wr(&needsbuffer_spin); 497 } 498 } 499 500 /* 501 * BIO tracking support routines. 502 * 503 * Release a ref on a bio_track. Wakeup requests are atomically released 504 * along with the last reference so bk_active will never wind up set to 505 * only 0x80000000. 506 * 507 * MPSAFE 508 */ 509 static 510 void 511 bio_track_rel(struct bio_track *track) 512 { 513 int active; 514 int desired; 515 516 /* 517 * Shortcut 518 */ 519 active = track->bk_active; 520 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 521 return; 522 523 /* 524 * Full-on. Note that the wait flag is only atomically released on 525 * the 1->0 count transition. 526 * 527 * We check for a negative count transition using bit 30 since bit 31 528 * has a different meaning. 529 */ 530 for (;;) { 531 desired = (active & 0x7FFFFFFF) - 1; 532 if (desired) 533 desired |= active & 0x80000000; 534 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 535 if (desired & 0x40000000) 536 panic("bio_track_rel: bad count: %p\n", track); 537 if (active & 0x80000000) 538 wakeup(track); 539 break; 540 } 541 active = track->bk_active; 542 } 543 } 544 545 /* 546 * Wait for the tracking count to reach 0. 547 * 548 * Use atomic ops such that the wait flag is only set atomically when 549 * bk_active is non-zero. 550 * 551 * MPSAFE 552 */ 553 int 554 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 555 { 556 int active; 557 int desired; 558 int error; 559 560 /* 561 * Shortcut 562 */ 563 if (track->bk_active == 0) 564 return(0); 565 566 /* 567 * Full-on. Note that the wait flag may only be atomically set if 568 * the active count is non-zero. 569 */ 570 error = 0; 571 while ((active = track->bk_active) != 0) { 572 desired = active | 0x80000000; 573 tsleep_interlock(track, slp_flags); 574 if (active == desired || 575 atomic_cmpset_int(&track->bk_active, active, desired)) { 576 error = tsleep(track, slp_flags | PINTERLOCKED, 577 "iowait", slp_timo); 578 if (error) 579 break; 580 } 581 } 582 return (error); 583 } 584 585 /* 586 * bufinit: 587 * 588 * Load time initialisation of the buffer cache, called from machine 589 * dependant initialization code. 590 */ 591 void 592 bufinit(void) 593 { 594 struct buf *bp; 595 vm_offset_t bogus_offset; 596 int i; 597 598 spin_init(&needsbuffer_spin); 599 600 /* next, make a null set of free lists */ 601 for (i = 0; i < BUFFER_QUEUES; i++) 602 TAILQ_INIT(&bufqueues[i]); 603 604 /* finally, initialize each buffer header and stick on empty q */ 605 for (i = 0; i < nbuf; i++) { 606 bp = &buf[i]; 607 bzero(bp, sizeof *bp); 608 bp->b_flags = B_INVAL; /* we're just an empty header */ 609 bp->b_cmd = BUF_CMD_DONE; 610 bp->b_qindex = BQUEUE_EMPTY; 611 initbufbio(bp); 612 xio_init(&bp->b_xio); 613 buf_dep_init(bp); 614 BUF_LOCKINIT(bp); 615 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 616 } 617 618 /* 619 * maxbufspace is the absolute maximum amount of buffer space we are 620 * allowed to reserve in KVM and in real terms. The absolute maximum 621 * is nominally used by buf_daemon. hibufspace is the nominal maximum 622 * used by most other processes. The differential is required to 623 * ensure that buf_daemon is able to run when other processes might 624 * be blocked waiting for buffer space. 625 * 626 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 627 * this may result in KVM fragmentation which is not handled optimally 628 * by the system. 629 */ 630 maxbufspace = nbuf * BKVASIZE; 631 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 632 lobufspace = hibufspace - MAXBSIZE; 633 634 lorunningspace = 512 * 1024; 635 /* hirunningspace -- see below */ 636 637 /* 638 * Limit the amount of malloc memory since it is wired permanently 639 * into the kernel space. Even though this is accounted for in 640 * the buffer allocation, we don't want the malloced region to grow 641 * uncontrolled. The malloc scheme improves memory utilization 642 * significantly on average (small) directories. 643 */ 644 maxbufmallocspace = hibufspace / 20; 645 646 /* 647 * Reduce the chance of a deadlock occuring by limiting the number 648 * of delayed-write dirty buffers we allow to stack up. 649 * 650 * We don't want too much actually queued to the device at once 651 * (XXX this needs to be per-mount!), because the buffers will 652 * wind up locked for a very long period of time while the I/O 653 * drains. 654 */ 655 hidirtybufspace = hibufspace / 2; /* dirty + running */ 656 hirunningspace = hibufspace / 16; /* locked & queued to device */ 657 if (hirunningspace < 1024 * 1024) 658 hirunningspace = 1024 * 1024; 659 660 dirtybufspace = 0; 661 dirtybufspacehw = 0; 662 663 lodirtybufspace = hidirtybufspace / 2; 664 665 /* 666 * Maximum number of async ops initiated per buf_daemon loop. This is 667 * somewhat of a hack at the moment, we really need to limit ourselves 668 * based on the number of bytes of I/O in-transit that were initiated 669 * from buf_daemon. 670 */ 671 672 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 673 bogus_page = vm_page_alloc(&kernel_object, 674 (bogus_offset >> PAGE_SHIFT), 675 VM_ALLOC_NORMAL); 676 vmstats.v_wire_count++; 677 678 } 679 680 /* 681 * Initialize the embedded bio structures 682 */ 683 void 684 initbufbio(struct buf *bp) 685 { 686 bp->b_bio1.bio_buf = bp; 687 bp->b_bio1.bio_prev = NULL; 688 bp->b_bio1.bio_offset = NOOFFSET; 689 bp->b_bio1.bio_next = &bp->b_bio2; 690 bp->b_bio1.bio_done = NULL; 691 bp->b_bio1.bio_flags = 0; 692 693 bp->b_bio2.bio_buf = bp; 694 bp->b_bio2.bio_prev = &bp->b_bio1; 695 bp->b_bio2.bio_offset = NOOFFSET; 696 bp->b_bio2.bio_next = NULL; 697 bp->b_bio2.bio_done = NULL; 698 bp->b_bio2.bio_flags = 0; 699 } 700 701 /* 702 * Reinitialize the embedded bio structures as well as any additional 703 * translation cache layers. 704 */ 705 void 706 reinitbufbio(struct buf *bp) 707 { 708 struct bio *bio; 709 710 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 711 bio->bio_done = NULL; 712 bio->bio_offset = NOOFFSET; 713 } 714 } 715 716 /* 717 * Push another BIO layer onto an existing BIO and return it. The new 718 * BIO layer may already exist, holding cached translation data. 719 */ 720 struct bio * 721 push_bio(struct bio *bio) 722 { 723 struct bio *nbio; 724 725 if ((nbio = bio->bio_next) == NULL) { 726 int index = bio - &bio->bio_buf->b_bio_array[0]; 727 if (index >= NBUF_BIO - 1) { 728 panic("push_bio: too many layers bp %p\n", 729 bio->bio_buf); 730 } 731 nbio = &bio->bio_buf->b_bio_array[index + 1]; 732 bio->bio_next = nbio; 733 nbio->bio_prev = bio; 734 nbio->bio_buf = bio->bio_buf; 735 nbio->bio_offset = NOOFFSET; 736 nbio->bio_done = NULL; 737 nbio->bio_next = NULL; 738 } 739 KKASSERT(nbio->bio_done == NULL); 740 return(nbio); 741 } 742 743 /* 744 * Pop a BIO translation layer, returning the previous layer. The 745 * must have been previously pushed. 746 */ 747 struct bio * 748 pop_bio(struct bio *bio) 749 { 750 return(bio->bio_prev); 751 } 752 753 void 754 clearbiocache(struct bio *bio) 755 { 756 while (bio) { 757 bio->bio_offset = NOOFFSET; 758 bio = bio->bio_next; 759 } 760 } 761 762 /* 763 * bfreekva: 764 * 765 * Free the KVA allocation for buffer 'bp'. 766 * 767 * Must be called from a critical section as this is the only locking for 768 * buffer_map. 769 * 770 * Since this call frees up buffer space, we call bufspacewakeup(). 771 * 772 * MPALMOSTSAFE 773 */ 774 static void 775 bfreekva(struct buf *bp) 776 { 777 int count; 778 779 if (bp->b_kvasize) { 780 get_mplock(); 781 ++buffreekvacnt; 782 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 783 vm_map_lock(&buffer_map); 784 bufspace -= bp->b_kvasize; 785 vm_map_delete(&buffer_map, 786 (vm_offset_t) bp->b_kvabase, 787 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 788 &count 789 ); 790 vm_map_unlock(&buffer_map); 791 vm_map_entry_release(count); 792 bp->b_kvasize = 0; 793 bp->b_kvabase = NULL; 794 bufspacewakeup(); 795 rel_mplock(); 796 } 797 } 798 799 /* 800 * bremfree: 801 * 802 * Remove the buffer from the appropriate free list. 803 */ 804 static __inline void 805 _bremfree(struct buf *bp) 806 { 807 if (bp->b_qindex != BQUEUE_NONE) { 808 KASSERT(BUF_REFCNTNB(bp) == 1, 809 ("bremfree: bp %p not locked",bp)); 810 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 811 bp->b_qindex = BQUEUE_NONE; 812 } else { 813 if (BUF_REFCNTNB(bp) <= 1) 814 panic("bremfree: removing a buffer not on a queue"); 815 } 816 } 817 818 void 819 bremfree(struct buf *bp) 820 { 821 spin_lock_wr(&bufspin); 822 _bremfree(bp); 823 spin_unlock_wr(&bufspin); 824 } 825 826 static void 827 bremfree_locked(struct buf *bp) 828 { 829 _bremfree(bp); 830 } 831 832 /* 833 * bread: 834 * 835 * Get a buffer with the specified data. Look in the cache first. We 836 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 837 * is set, the buffer is valid and we do not have to do anything ( see 838 * getblk() ). 839 * 840 * MPALMOSTSAFE 841 */ 842 int 843 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 844 { 845 struct buf *bp; 846 847 bp = getblk(vp, loffset, size, 0, 0); 848 *bpp = bp; 849 850 /* if not found in cache, do some I/O */ 851 if ((bp->b_flags & B_CACHE) == 0) { 852 get_mplock(); 853 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 854 bp->b_cmd = BUF_CMD_READ; 855 bp->b_bio1.bio_done = biodone_sync; 856 bp->b_bio1.bio_flags |= BIO_SYNC; 857 vfs_busy_pages(vp, bp); 858 vn_strategy(vp, &bp->b_bio1); 859 rel_mplock(); 860 return (biowait(&bp->b_bio1, "biord")); 861 } 862 return (0); 863 } 864 865 /* 866 * breadn: 867 * 868 * Operates like bread, but also starts asynchronous I/O on 869 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 870 * to initiating I/O . If B_CACHE is set, the buffer is valid 871 * and we do not have to do anything. 872 * 873 * MPALMOSTSAFE 874 */ 875 int 876 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 877 int *rabsize, int cnt, struct buf **bpp) 878 { 879 struct buf *bp, *rabp; 880 int i; 881 int rv = 0, readwait = 0; 882 883 *bpp = bp = getblk(vp, loffset, size, 0, 0); 884 885 /* if not found in cache, do some I/O */ 886 if ((bp->b_flags & B_CACHE) == 0) { 887 get_mplock(); 888 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 889 bp->b_cmd = BUF_CMD_READ; 890 bp->b_bio1.bio_done = biodone_sync; 891 bp->b_bio1.bio_flags |= BIO_SYNC; 892 vfs_busy_pages(vp, bp); 893 vn_strategy(vp, &bp->b_bio1); 894 ++readwait; 895 rel_mplock(); 896 } 897 898 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 899 if (inmem(vp, *raoffset)) 900 continue; 901 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 902 903 if ((rabp->b_flags & B_CACHE) == 0) { 904 get_mplock(); 905 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 906 rabp->b_cmd = BUF_CMD_READ; 907 vfs_busy_pages(vp, rabp); 908 BUF_KERNPROC(rabp); 909 vn_strategy(vp, &rabp->b_bio1); 910 rel_mplock(); 911 } else { 912 brelse(rabp); 913 } 914 } 915 if (readwait) 916 rv = biowait(&bp->b_bio1, "biord"); 917 return (rv); 918 } 919 920 /* 921 * bwrite: 922 * 923 * Synchronous write, waits for completion. 924 * 925 * Write, release buffer on completion. (Done by iodone 926 * if async). Do not bother writing anything if the buffer 927 * is invalid. 928 * 929 * Note that we set B_CACHE here, indicating that buffer is 930 * fully valid and thus cacheable. This is true even of NFS 931 * now so we set it generally. This could be set either here 932 * or in biodone() since the I/O is synchronous. We put it 933 * here. 934 */ 935 int 936 bwrite(struct buf *bp) 937 { 938 int error; 939 940 if (bp->b_flags & B_INVAL) { 941 brelse(bp); 942 return (0); 943 } 944 if (BUF_REFCNTNB(bp) == 0) 945 panic("bwrite: buffer is not busy???"); 946 947 /* Mark the buffer clean */ 948 bundirty(bp); 949 950 bp->b_flags &= ~(B_ERROR | B_EINTR); 951 bp->b_flags |= B_CACHE; 952 bp->b_cmd = BUF_CMD_WRITE; 953 bp->b_bio1.bio_done = biodone_sync; 954 bp->b_bio1.bio_flags |= BIO_SYNC; 955 vfs_busy_pages(bp->b_vp, bp); 956 957 /* 958 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 959 * valid for vnode-backed buffers. 960 */ 961 bp->b_runningbufspace = bp->b_bufsize; 962 if (bp->b_runningbufspace) { 963 runningbufspace += bp->b_runningbufspace; 964 ++runningbufcount; 965 } 966 967 vn_strategy(bp->b_vp, &bp->b_bio1); 968 error = biowait(&bp->b_bio1, "biows"); 969 brelse(bp); 970 return (error); 971 } 972 973 /* 974 * bawrite: 975 * 976 * Asynchronous write. Start output on a buffer, but do not wait for 977 * it to complete. The buffer is released when the output completes. 978 * 979 * bwrite() ( or the VOP routine anyway ) is responsible for handling 980 * B_INVAL buffers. Not us. 981 */ 982 void 983 bawrite(struct buf *bp) 984 { 985 if (bp->b_flags & B_INVAL) { 986 brelse(bp); 987 return; 988 } 989 if (BUF_REFCNTNB(bp) == 0) 990 panic("bwrite: buffer is not busy???"); 991 992 /* Mark the buffer clean */ 993 bundirty(bp); 994 995 bp->b_flags &= ~(B_ERROR | B_EINTR); 996 bp->b_flags |= B_CACHE; 997 bp->b_cmd = BUF_CMD_WRITE; 998 KKASSERT(bp->b_bio1.bio_done == NULL); 999 vfs_busy_pages(bp->b_vp, bp); 1000 1001 /* 1002 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1003 * valid for vnode-backed buffers. 1004 */ 1005 bp->b_runningbufspace = bp->b_bufsize; 1006 if (bp->b_runningbufspace) { 1007 runningbufspace += bp->b_runningbufspace; 1008 ++runningbufcount; 1009 } 1010 1011 BUF_KERNPROC(bp); 1012 vn_strategy(bp->b_vp, &bp->b_bio1); 1013 } 1014 1015 /* 1016 * bowrite: 1017 * 1018 * Ordered write. Start output on a buffer, and flag it so that the 1019 * device will write it in the order it was queued. The buffer is 1020 * released when the output completes. bwrite() ( or the VOP routine 1021 * anyway ) is responsible for handling B_INVAL buffers. 1022 */ 1023 int 1024 bowrite(struct buf *bp) 1025 { 1026 bp->b_flags |= B_ORDERED; 1027 bawrite(bp); 1028 return (0); 1029 } 1030 1031 /* 1032 * bdwrite: 1033 * 1034 * Delayed write. (Buffer is marked dirty). Do not bother writing 1035 * anything if the buffer is marked invalid. 1036 * 1037 * Note that since the buffer must be completely valid, we can safely 1038 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1039 * biodone() in order to prevent getblk from writing the buffer 1040 * out synchronously. 1041 */ 1042 void 1043 bdwrite(struct buf *bp) 1044 { 1045 if (BUF_REFCNTNB(bp) == 0) 1046 panic("bdwrite: buffer is not busy"); 1047 1048 if (bp->b_flags & B_INVAL) { 1049 brelse(bp); 1050 return; 1051 } 1052 bdirty(bp); 1053 1054 if (dsched_is_clear_buf_priv(bp)) 1055 dsched_new_buf(bp); 1056 1057 /* 1058 * Set B_CACHE, indicating that the buffer is fully valid. This is 1059 * true even of NFS now. 1060 */ 1061 bp->b_flags |= B_CACHE; 1062 1063 /* 1064 * This bmap keeps the system from needing to do the bmap later, 1065 * perhaps when the system is attempting to do a sync. Since it 1066 * is likely that the indirect block -- or whatever other datastructure 1067 * that the filesystem needs is still in memory now, it is a good 1068 * thing to do this. Note also, that if the pageout daemon is 1069 * requesting a sync -- there might not be enough memory to do 1070 * the bmap then... So, this is important to do. 1071 */ 1072 if (bp->b_bio2.bio_offset == NOOFFSET) { 1073 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1074 NULL, NULL, BUF_CMD_WRITE); 1075 } 1076 1077 /* 1078 * Because the underlying pages may still be mapped and 1079 * writable trying to set the dirty buffer (b_dirtyoff/end) 1080 * range here will be inaccurate. 1081 * 1082 * However, we must still clean the pages to satisfy the 1083 * vnode_pager and pageout daemon, so theythink the pages 1084 * have been "cleaned". What has really occured is that 1085 * they've been earmarked for later writing by the buffer 1086 * cache. 1087 * 1088 * So we get the b_dirtyoff/end update but will not actually 1089 * depend on it (NFS that is) until the pages are busied for 1090 * writing later on. 1091 */ 1092 vfs_clean_pages(bp); 1093 bqrelse(bp); 1094 1095 /* 1096 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1097 * due to the softdep code. 1098 */ 1099 } 1100 1101 /* 1102 * Fake write - return pages to VM system as dirty, leave the buffer clean. 1103 * This is used by tmpfs. 1104 * 1105 * It is important for any VFS using this routine to NOT use it for 1106 * IO_SYNC or IO_ASYNC operations which occur when the system really 1107 * wants to flush VM pages to backing store. 1108 */ 1109 void 1110 buwrite(struct buf *bp) 1111 { 1112 vm_page_t m; 1113 int i; 1114 1115 /* 1116 * Only works for VMIO buffers. If the buffer is already 1117 * marked for delayed-write we can't avoid the bdwrite(). 1118 */ 1119 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) { 1120 bdwrite(bp); 1121 return; 1122 } 1123 1124 /* 1125 * Set valid & dirty. 1126 */ 1127 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1128 m = bp->b_xio.xio_pages[i]; 1129 vfs_dirty_one_page(bp, i, m); 1130 } 1131 bqrelse(bp); 1132 } 1133 1134 /* 1135 * bdirty: 1136 * 1137 * Turn buffer into delayed write request by marking it B_DELWRI. 1138 * B_RELBUF and B_NOCACHE must be cleared. 1139 * 1140 * We reassign the buffer to itself to properly update it in the 1141 * dirty/clean lists. 1142 * 1143 * Must be called from a critical section. 1144 * The buffer must be on BQUEUE_NONE. 1145 */ 1146 void 1147 bdirty(struct buf *bp) 1148 { 1149 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1150 if (bp->b_flags & B_NOCACHE) { 1151 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1152 bp->b_flags &= ~B_NOCACHE; 1153 } 1154 if (bp->b_flags & B_INVAL) { 1155 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1156 } 1157 bp->b_flags &= ~B_RELBUF; 1158 1159 if ((bp->b_flags & B_DELWRI) == 0) { 1160 bp->b_flags |= B_DELWRI; 1161 reassignbuf(bp); 1162 atomic_add_int(&dirtybufcount, 1); 1163 dirtybufspace += bp->b_bufsize; 1164 if (bp->b_flags & B_HEAVY) { 1165 atomic_add_int(&dirtybufcounthw, 1); 1166 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1167 } 1168 bd_heatup(); 1169 } 1170 } 1171 1172 /* 1173 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1174 * needs to be flushed with a different buf_daemon thread to avoid 1175 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1176 */ 1177 void 1178 bheavy(struct buf *bp) 1179 { 1180 if ((bp->b_flags & B_HEAVY) == 0) { 1181 bp->b_flags |= B_HEAVY; 1182 if (bp->b_flags & B_DELWRI) { 1183 atomic_add_int(&dirtybufcounthw, 1); 1184 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1185 } 1186 } 1187 } 1188 1189 /* 1190 * bundirty: 1191 * 1192 * Clear B_DELWRI for buffer. 1193 * 1194 * Must be called from a critical section. 1195 * 1196 * The buffer is typically on BQUEUE_NONE but there is one case in 1197 * brelse() that calls this function after placing the buffer on 1198 * a different queue. 1199 * 1200 * MPSAFE 1201 */ 1202 void 1203 bundirty(struct buf *bp) 1204 { 1205 if (bp->b_flags & B_DELWRI) { 1206 bp->b_flags &= ~B_DELWRI; 1207 reassignbuf(bp); 1208 atomic_subtract_int(&dirtybufcount, 1); 1209 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1210 if (bp->b_flags & B_HEAVY) { 1211 atomic_subtract_int(&dirtybufcounthw, 1); 1212 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1213 } 1214 bd_signal(bp->b_bufsize); 1215 } 1216 /* 1217 * Since it is now being written, we can clear its deferred write flag. 1218 */ 1219 bp->b_flags &= ~B_DEFERRED; 1220 } 1221 1222 /* 1223 * brelse: 1224 * 1225 * Release a busy buffer and, if requested, free its resources. The 1226 * buffer will be stashed in the appropriate bufqueue[] allowing it 1227 * to be accessed later as a cache entity or reused for other purposes. 1228 * 1229 * MPALMOSTSAFE 1230 */ 1231 void 1232 brelse(struct buf *bp) 1233 { 1234 #ifdef INVARIANTS 1235 int saved_flags = bp->b_flags; 1236 #endif 1237 1238 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1239 1240 /* 1241 * If B_NOCACHE is set we are being asked to destroy the buffer and 1242 * its backing store. Clear B_DELWRI. 1243 * 1244 * B_NOCACHE is set in two cases: (1) when the caller really wants 1245 * to destroy the buffer and backing store and (2) when the caller 1246 * wants to destroy the buffer and backing store after a write 1247 * completes. 1248 */ 1249 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1250 bundirty(bp); 1251 } 1252 1253 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1254 /* 1255 * A re-dirtied buffer is only subject to destruction 1256 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1257 */ 1258 /* leave buffer intact */ 1259 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1260 (bp->b_bufsize <= 0)) { 1261 /* 1262 * Either a failed read or we were asked to free or not 1263 * cache the buffer. This path is reached with B_DELWRI 1264 * set only if B_INVAL is already set. B_NOCACHE governs 1265 * backing store destruction. 1266 * 1267 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1268 * buffer cannot be immediately freed. 1269 */ 1270 bp->b_flags |= B_INVAL; 1271 if (LIST_FIRST(&bp->b_dep) != NULL) { 1272 get_mplock(); 1273 buf_deallocate(bp); 1274 rel_mplock(); 1275 } 1276 if (bp->b_flags & B_DELWRI) { 1277 atomic_subtract_int(&dirtybufcount, 1); 1278 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1279 if (bp->b_flags & B_HEAVY) { 1280 atomic_subtract_int(&dirtybufcounthw, 1); 1281 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1282 } 1283 bd_signal(bp->b_bufsize); 1284 } 1285 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1286 } 1287 1288 /* 1289 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1290 * If vfs_vmio_release() is called with either bit set, the 1291 * underlying pages may wind up getting freed causing a previous 1292 * write (bdwrite()) to get 'lost' because pages associated with 1293 * a B_DELWRI bp are marked clean. Pages associated with a 1294 * B_LOCKED buffer may be mapped by the filesystem. 1295 * 1296 * If we want to release the buffer ourselves (rather then the 1297 * originator asking us to release it), give the originator a 1298 * chance to countermand the release by setting B_LOCKED. 1299 * 1300 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1301 * if B_DELWRI is set. 1302 * 1303 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1304 * on pages to return pages to the VM page queues. 1305 */ 1306 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1307 bp->b_flags &= ~B_RELBUF; 1308 } else if (vm_page_count_severe()) { 1309 if (LIST_FIRST(&bp->b_dep) != NULL) { 1310 get_mplock(); 1311 buf_deallocate(bp); /* can set B_LOCKED */ 1312 rel_mplock(); 1313 } 1314 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1315 bp->b_flags &= ~B_RELBUF; 1316 else 1317 bp->b_flags |= B_RELBUF; 1318 } 1319 1320 /* 1321 * Make sure b_cmd is clear. It may have already been cleared by 1322 * biodone(). 1323 * 1324 * At this point destroying the buffer is governed by the B_INVAL 1325 * or B_RELBUF flags. 1326 */ 1327 bp->b_cmd = BUF_CMD_DONE; 1328 dsched_exit_buf(bp); 1329 1330 /* 1331 * VMIO buffer rundown. Make sure the VM page array is restored 1332 * after an I/O may have replaces some of the pages with bogus pages 1333 * in order to not destroy dirty pages in a fill-in read. 1334 * 1335 * Note that due to the code above, if a buffer is marked B_DELWRI 1336 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1337 * B_INVAL may still be set, however. 1338 * 1339 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1340 * but not the backing store. B_NOCACHE will destroy the backing 1341 * store. 1342 * 1343 * Note that dirty NFS buffers contain byte-granular write ranges 1344 * and should not be destroyed w/ B_INVAL even if the backing store 1345 * is left intact. 1346 */ 1347 if (bp->b_flags & B_VMIO) { 1348 /* 1349 * Rundown for VMIO buffers which are not dirty NFS buffers. 1350 */ 1351 int i, j, resid; 1352 vm_page_t m; 1353 off_t foff; 1354 vm_pindex_t poff; 1355 vm_object_t obj; 1356 struct vnode *vp; 1357 1358 vp = bp->b_vp; 1359 1360 /* 1361 * Get the base offset and length of the buffer. Note that 1362 * in the VMIO case if the buffer block size is not 1363 * page-aligned then b_data pointer may not be page-aligned. 1364 * But our b_xio.xio_pages array *IS* page aligned. 1365 * 1366 * block sizes less then DEV_BSIZE (usually 512) are not 1367 * supported due to the page granularity bits (m->valid, 1368 * m->dirty, etc...). 1369 * 1370 * See man buf(9) for more information 1371 */ 1372 1373 resid = bp->b_bufsize; 1374 foff = bp->b_loffset; 1375 1376 get_mplock(); 1377 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1378 m = bp->b_xio.xio_pages[i]; 1379 vm_page_flag_clear(m, PG_ZERO); 1380 /* 1381 * If we hit a bogus page, fixup *all* of them 1382 * now. Note that we left these pages wired 1383 * when we removed them so they had better exist, 1384 * and they cannot be ripped out from under us so 1385 * no critical section protection is necessary. 1386 */ 1387 if (m == bogus_page) { 1388 obj = vp->v_object; 1389 poff = OFF_TO_IDX(bp->b_loffset); 1390 1391 for (j = i; j < bp->b_xio.xio_npages; j++) { 1392 vm_page_t mtmp; 1393 1394 mtmp = bp->b_xio.xio_pages[j]; 1395 if (mtmp == bogus_page) { 1396 mtmp = vm_page_lookup(obj, poff + j); 1397 if (!mtmp) { 1398 panic("brelse: page missing"); 1399 } 1400 bp->b_xio.xio_pages[j] = mtmp; 1401 } 1402 } 1403 bp->b_flags &= ~B_HASBOGUS; 1404 1405 if ((bp->b_flags & B_INVAL) == 0) { 1406 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1407 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1408 } 1409 m = bp->b_xio.xio_pages[i]; 1410 } 1411 1412 /* 1413 * Invalidate the backing store if B_NOCACHE is set 1414 * (e.g. used with vinvalbuf()). If this is NFS 1415 * we impose a requirement that the block size be 1416 * a multiple of PAGE_SIZE and create a temporary 1417 * hack to basically invalidate the whole page. The 1418 * problem is that NFS uses really odd buffer sizes 1419 * especially when tracking piecemeal writes and 1420 * it also vinvalbuf()'s a lot, which would result 1421 * in only partial page validation and invalidation 1422 * here. If the file page is mmap()'d, however, 1423 * all the valid bits get set so after we invalidate 1424 * here we would end up with weird m->valid values 1425 * like 0xfc. nfs_getpages() can't handle this so 1426 * we clear all the valid bits for the NFS case 1427 * instead of just some of them. 1428 * 1429 * The real bug is the VM system having to set m->valid 1430 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1431 * itself is an artifact of the whole 512-byte 1432 * granular mess that exists to support odd block 1433 * sizes and UFS meta-data block sizes (e.g. 6144). 1434 * A complete rewrite is required. 1435 * 1436 * XXX 1437 */ 1438 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1439 int poffset = foff & PAGE_MASK; 1440 int presid; 1441 1442 presid = PAGE_SIZE - poffset; 1443 if (bp->b_vp->v_tag == VT_NFS && 1444 bp->b_vp->v_type == VREG) { 1445 ; /* entire page */ 1446 } else if (presid > resid) { 1447 presid = resid; 1448 } 1449 KASSERT(presid >= 0, ("brelse: extra page")); 1450 vm_page_set_invalid(m, poffset, presid); 1451 1452 /* 1453 * Also make sure any swap cache is removed 1454 * as it is now stale (HAMMER in particular 1455 * uses B_NOCACHE to deal with buffer 1456 * aliasing). 1457 */ 1458 swap_pager_unswapped(m); 1459 } 1460 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1461 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1462 } 1463 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1464 vfs_vmio_release(bp); 1465 rel_mplock(); 1466 } else { 1467 /* 1468 * Rundown for non-VMIO buffers. 1469 */ 1470 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1471 get_mplock(); 1472 if (bp->b_bufsize) 1473 allocbuf(bp, 0); 1474 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1475 if (bp->b_vp) 1476 brelvp(bp); 1477 rel_mplock(); 1478 } 1479 } 1480 1481 if (bp->b_qindex != BQUEUE_NONE) 1482 panic("brelse: free buffer onto another queue???"); 1483 if (BUF_REFCNTNB(bp) > 1) { 1484 /* Temporary panic to verify exclusive locking */ 1485 /* This panic goes away when we allow shared refs */ 1486 panic("brelse: multiple refs"); 1487 /* NOT REACHED */ 1488 return; 1489 } 1490 1491 /* 1492 * Figure out the correct queue to place the cleaned up buffer on. 1493 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1494 * disassociated from their vnode. 1495 */ 1496 spin_lock_wr(&bufspin); 1497 if (bp->b_flags & B_LOCKED) { 1498 /* 1499 * Buffers that are locked are placed in the locked queue 1500 * immediately, regardless of their state. 1501 */ 1502 bp->b_qindex = BQUEUE_LOCKED; 1503 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1504 } else if (bp->b_bufsize == 0) { 1505 /* 1506 * Buffers with no memory. Due to conditionals near the top 1507 * of brelse() such buffers should probably already be 1508 * marked B_INVAL and disassociated from their vnode. 1509 */ 1510 bp->b_flags |= B_INVAL; 1511 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1512 KKASSERT((bp->b_flags & B_HASHED) == 0); 1513 if (bp->b_kvasize) { 1514 bp->b_qindex = BQUEUE_EMPTYKVA; 1515 } else { 1516 bp->b_qindex = BQUEUE_EMPTY; 1517 } 1518 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1519 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1520 /* 1521 * Buffers with junk contents. Again these buffers had better 1522 * already be disassociated from their vnode. 1523 */ 1524 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1525 KKASSERT((bp->b_flags & B_HASHED) == 0); 1526 bp->b_flags |= B_INVAL; 1527 bp->b_qindex = BQUEUE_CLEAN; 1528 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1529 } else { 1530 /* 1531 * Remaining buffers. These buffers are still associated with 1532 * their vnode. 1533 */ 1534 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1535 case B_DELWRI: 1536 bp->b_qindex = BQUEUE_DIRTY; 1537 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1538 break; 1539 case B_DELWRI | B_HEAVY: 1540 bp->b_qindex = BQUEUE_DIRTY_HW; 1541 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1542 b_freelist); 1543 break; 1544 default: 1545 /* 1546 * NOTE: Buffers are always placed at the end of the 1547 * queue. If B_AGE is not set the buffer will cycle 1548 * through the queue twice. 1549 */ 1550 bp->b_qindex = BQUEUE_CLEAN; 1551 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1552 break; 1553 } 1554 } 1555 spin_unlock_wr(&bufspin); 1556 1557 /* 1558 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1559 * on the correct queue. 1560 */ 1561 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1562 bundirty(bp); 1563 1564 /* 1565 * The bp is on an appropriate queue unless locked. If it is not 1566 * locked or dirty we can wakeup threads waiting for buffer space. 1567 * 1568 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1569 * if B_INVAL is set ). 1570 */ 1571 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1572 bufcountwakeup(); 1573 1574 /* 1575 * Something we can maybe free or reuse 1576 */ 1577 if (bp->b_bufsize || bp->b_kvasize) 1578 bufspacewakeup(); 1579 1580 /* 1581 * Clean up temporary flags and unlock the buffer. 1582 */ 1583 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1584 BUF_UNLOCK(bp); 1585 } 1586 1587 /* 1588 * bqrelse: 1589 * 1590 * Release a buffer back to the appropriate queue but do not try to free 1591 * it. The buffer is expected to be used again soon. 1592 * 1593 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1594 * biodone() to requeue an async I/O on completion. It is also used when 1595 * known good buffers need to be requeued but we think we may need the data 1596 * again soon. 1597 * 1598 * XXX we should be able to leave the B_RELBUF hint set on completion. 1599 * 1600 * MPSAFE 1601 */ 1602 void 1603 bqrelse(struct buf *bp) 1604 { 1605 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1606 1607 if (bp->b_qindex != BQUEUE_NONE) 1608 panic("bqrelse: free buffer onto another queue???"); 1609 if (BUF_REFCNTNB(bp) > 1) { 1610 /* do not release to free list */ 1611 panic("bqrelse: multiple refs"); 1612 return; 1613 } 1614 1615 buf_act_advance(bp); 1616 1617 spin_lock_wr(&bufspin); 1618 if (bp->b_flags & B_LOCKED) { 1619 /* 1620 * Locked buffers are released to the locked queue. However, 1621 * if the buffer is dirty it will first go into the dirty 1622 * queue and later on after the I/O completes successfully it 1623 * will be released to the locked queue. 1624 */ 1625 bp->b_qindex = BQUEUE_LOCKED; 1626 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1627 } else if (bp->b_flags & B_DELWRI) { 1628 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1629 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1630 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1631 } else if (vm_page_count_severe()) { 1632 /* 1633 * We are too low on memory, we have to try to free the 1634 * buffer (most importantly: the wired pages making up its 1635 * backing store) *now*. 1636 */ 1637 spin_unlock_wr(&bufspin); 1638 brelse(bp); 1639 return; 1640 } else { 1641 bp->b_qindex = BQUEUE_CLEAN; 1642 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1643 } 1644 spin_unlock_wr(&bufspin); 1645 1646 if ((bp->b_flags & B_LOCKED) == 0 && 1647 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1648 bufcountwakeup(); 1649 } 1650 1651 /* 1652 * Something we can maybe free or reuse. 1653 */ 1654 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1655 bufspacewakeup(); 1656 1657 /* 1658 * Final cleanup and unlock. Clear bits that are only used while a 1659 * buffer is actively locked. 1660 */ 1661 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1662 dsched_exit_buf(bp); 1663 BUF_UNLOCK(bp); 1664 } 1665 1666 /* 1667 * vfs_vmio_release: 1668 * 1669 * Return backing pages held by the buffer 'bp' back to the VM system 1670 * if possible. The pages are freed if they are no longer valid or 1671 * attempt to free if it was used for direct I/O otherwise they are 1672 * sent to the page cache. 1673 * 1674 * Pages that were marked busy are left alone and skipped. 1675 * 1676 * The KVA mapping (b_data) for the underlying pages is removed by 1677 * this function. 1678 */ 1679 static void 1680 vfs_vmio_release(struct buf *bp) 1681 { 1682 int i; 1683 vm_page_t m; 1684 1685 lwkt_gettoken(&vm_token); 1686 crit_enter(); 1687 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1688 m = bp->b_xio.xio_pages[i]; 1689 bp->b_xio.xio_pages[i] = NULL; 1690 1691 /* 1692 * The VFS is telling us this is not a meta-data buffer 1693 * even if it is backed by a block device. 1694 */ 1695 if (bp->b_flags & B_NOTMETA) 1696 vm_page_flag_set(m, PG_NOTMETA); 1697 1698 /* 1699 * This is a very important bit of code. We try to track 1700 * VM page use whether the pages are wired into the buffer 1701 * cache or not. While wired into the buffer cache the 1702 * bp tracks the act_count. 1703 * 1704 * We can choose to place unwired pages on the inactive 1705 * queue (0) or active queue (1). If we place too many 1706 * on the active queue the queue will cycle the act_count 1707 * on pages we'd like to keep, just from single-use pages 1708 * (such as when doing a tar-up or file scan). 1709 */ 1710 if (bp->b_act_count < vm_cycle_point) 1711 vm_page_unwire(m, 0); 1712 else 1713 vm_page_unwire(m, 1); 1714 1715 /* 1716 * We don't mess with busy pages, it is 1717 * the responsibility of the process that 1718 * busied the pages to deal with them. 1719 */ 1720 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1721 continue; 1722 1723 if (m->wire_count == 0) { 1724 vm_page_flag_clear(m, PG_ZERO); 1725 /* 1726 * Might as well free the page if we can and it has 1727 * no valid data. We also free the page if the 1728 * buffer was used for direct I/O. 1729 */ 1730 #if 0 1731 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1732 m->hold_count == 0) { 1733 vm_page_busy(m); 1734 vm_page_protect(m, VM_PROT_NONE); 1735 vm_page_free(m); 1736 } else 1737 #endif 1738 if (bp->b_flags & B_DIRECT) { 1739 vm_page_try_to_free(m); 1740 } else if (vm_page_count_severe()) { 1741 m->act_count = bp->b_act_count; 1742 vm_page_try_to_cache(m); 1743 } else { 1744 m->act_count = bp->b_act_count; 1745 } 1746 } 1747 } 1748 crit_exit(); 1749 lwkt_reltoken(&vm_token); 1750 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages); 1751 if (bp->b_bufsize) { 1752 bufspacewakeup(); 1753 bp->b_bufsize = 0; 1754 } 1755 bp->b_xio.xio_npages = 0; 1756 bp->b_flags &= ~B_VMIO; 1757 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1758 if (bp->b_vp) { 1759 get_mplock(); 1760 brelvp(bp); 1761 rel_mplock(); 1762 } 1763 } 1764 1765 /* 1766 * vfs_bio_awrite: 1767 * 1768 * Implement clustered async writes for clearing out B_DELWRI buffers. 1769 * This is much better then the old way of writing only one buffer at 1770 * a time. Note that we may not be presented with the buffers in the 1771 * correct order, so we search for the cluster in both directions. 1772 * 1773 * The buffer is locked on call. 1774 */ 1775 int 1776 vfs_bio_awrite(struct buf *bp) 1777 { 1778 int i; 1779 int j; 1780 off_t loffset = bp->b_loffset; 1781 struct vnode *vp = bp->b_vp; 1782 int nbytes; 1783 struct buf *bpa; 1784 int nwritten; 1785 int size; 1786 1787 /* 1788 * right now we support clustered writing only to regular files. If 1789 * we find a clusterable block we could be in the middle of a cluster 1790 * rather then at the beginning. 1791 * 1792 * NOTE: b_bio1 contains the logical loffset and is aliased 1793 * to b_loffset. b_bio2 contains the translated block number. 1794 */ 1795 if ((vp->v_type == VREG) && 1796 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1797 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1798 1799 size = vp->v_mount->mnt_stat.f_iosize; 1800 1801 for (i = size; i < MAXPHYS; i += size) { 1802 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1803 BUF_REFCNT(bpa) == 0 && 1804 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1805 (B_DELWRI | B_CLUSTEROK)) && 1806 (bpa->b_bufsize == size)) { 1807 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1808 (bpa->b_bio2.bio_offset != 1809 bp->b_bio2.bio_offset + i)) 1810 break; 1811 } else { 1812 break; 1813 } 1814 } 1815 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1816 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1817 BUF_REFCNT(bpa) == 0 && 1818 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1819 (B_DELWRI | B_CLUSTEROK)) && 1820 (bpa->b_bufsize == size)) { 1821 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1822 (bpa->b_bio2.bio_offset != 1823 bp->b_bio2.bio_offset - j)) 1824 break; 1825 } else { 1826 break; 1827 } 1828 } 1829 j -= size; 1830 nbytes = (i + j); 1831 1832 /* 1833 * this is a possible cluster write 1834 */ 1835 if (nbytes != size) { 1836 BUF_UNLOCK(bp); 1837 nwritten = cluster_wbuild(vp, size, 1838 loffset - j, nbytes); 1839 return nwritten; 1840 } 1841 } 1842 1843 /* 1844 * default (old) behavior, writing out only one block 1845 * 1846 * XXX returns b_bufsize instead of b_bcount for nwritten? 1847 */ 1848 nwritten = bp->b_bufsize; 1849 bremfree(bp); 1850 bawrite(bp); 1851 1852 return nwritten; 1853 } 1854 1855 /* 1856 * getnewbuf: 1857 * 1858 * Find and initialize a new buffer header, freeing up existing buffers 1859 * in the bufqueues as necessary. The new buffer is returned locked. 1860 * 1861 * Important: B_INVAL is not set. If the caller wishes to throw the 1862 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1863 * 1864 * We block if: 1865 * We have insufficient buffer headers 1866 * We have insufficient buffer space 1867 * buffer_map is too fragmented ( space reservation fails ) 1868 * If we have to flush dirty buffers ( but we try to avoid this ) 1869 * 1870 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1871 * Instead we ask the buf daemon to do it for us. We attempt to 1872 * avoid piecemeal wakeups of the pageout daemon. 1873 * 1874 * MPALMOSTSAFE 1875 */ 1876 static struct buf * 1877 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1878 { 1879 struct buf *bp; 1880 struct buf *nbp; 1881 int defrag = 0; 1882 int nqindex; 1883 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1884 static int flushingbufs; 1885 1886 /* 1887 * We can't afford to block since we might be holding a vnode lock, 1888 * which may prevent system daemons from running. We deal with 1889 * low-memory situations by proactively returning memory and running 1890 * async I/O rather then sync I/O. 1891 */ 1892 1893 ++getnewbufcalls; 1894 --getnewbufrestarts; 1895 restart: 1896 ++getnewbufrestarts; 1897 1898 /* 1899 * Setup for scan. If we do not have enough free buffers, 1900 * we setup a degenerate case that immediately fails. Note 1901 * that if we are specially marked process, we are allowed to 1902 * dip into our reserves. 1903 * 1904 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1905 * 1906 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1907 * However, there are a number of cases (defragging, reusing, ...) 1908 * where we cannot backup. 1909 */ 1910 nqindex = BQUEUE_EMPTYKVA; 1911 spin_lock_wr(&bufspin); 1912 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1913 1914 if (nbp == NULL) { 1915 /* 1916 * If no EMPTYKVA buffers and we are either 1917 * defragging or reusing, locate a CLEAN buffer 1918 * to free or reuse. If bufspace useage is low 1919 * skip this step so we can allocate a new buffer. 1920 */ 1921 if (defrag || bufspace >= lobufspace) { 1922 nqindex = BQUEUE_CLEAN; 1923 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1924 } 1925 1926 /* 1927 * If we could not find or were not allowed to reuse a 1928 * CLEAN buffer, check to see if it is ok to use an EMPTY 1929 * buffer. We can only use an EMPTY buffer if allocating 1930 * its KVA would not otherwise run us out of buffer space. 1931 */ 1932 if (nbp == NULL && defrag == 0 && 1933 bufspace + maxsize < hibufspace) { 1934 nqindex = BQUEUE_EMPTY; 1935 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1936 } 1937 } 1938 1939 /* 1940 * Run scan, possibly freeing data and/or kva mappings on the fly 1941 * depending. 1942 * 1943 * WARNING! bufspin is held! 1944 */ 1945 while ((bp = nbp) != NULL) { 1946 int qindex = nqindex; 1947 1948 nbp = TAILQ_NEXT(bp, b_freelist); 1949 1950 /* 1951 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1952 * cycles through the queue twice before being selected. 1953 */ 1954 if (qindex == BQUEUE_CLEAN && 1955 (bp->b_flags & B_AGE) == 0 && nbp) { 1956 bp->b_flags |= B_AGE; 1957 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 1958 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 1959 continue; 1960 } 1961 1962 /* 1963 * Calculate next bp ( we can only use it if we do not block 1964 * or do other fancy things ). 1965 */ 1966 if (nbp == NULL) { 1967 switch(qindex) { 1968 case BQUEUE_EMPTY: 1969 nqindex = BQUEUE_EMPTYKVA; 1970 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 1971 break; 1972 /* fall through */ 1973 case BQUEUE_EMPTYKVA: 1974 nqindex = BQUEUE_CLEAN; 1975 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 1976 break; 1977 /* fall through */ 1978 case BQUEUE_CLEAN: 1979 /* 1980 * nbp is NULL. 1981 */ 1982 break; 1983 } 1984 } 1985 1986 /* 1987 * Sanity Checks 1988 */ 1989 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 1990 1991 /* 1992 * Note: we no longer distinguish between VMIO and non-VMIO 1993 * buffers. 1994 */ 1995 1996 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1997 1998 /* 1999 * If we are defragging then we need a buffer with 2000 * b_kvasize != 0. XXX this situation should no longer 2001 * occur, if defrag is non-zero the buffer's b_kvasize 2002 * should also be non-zero at this point. XXX 2003 */ 2004 if (defrag && bp->b_kvasize == 0) { 2005 kprintf("Warning: defrag empty buffer %p\n", bp); 2006 continue; 2007 } 2008 2009 /* 2010 * Start freeing the bp. This is somewhat involved. nbp 2011 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 2012 * on the clean list must be disassociated from their 2013 * current vnode. Buffers on the empty[kva] lists have 2014 * already been disassociated. 2015 */ 2016 2017 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2018 spin_unlock_wr(&bufspin); 2019 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2020 goto restart; 2021 } 2022 if (bp->b_qindex != qindex) { 2023 spin_unlock_wr(&bufspin); 2024 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex); 2025 BUF_UNLOCK(bp); 2026 goto restart; 2027 } 2028 bremfree_locked(bp); 2029 spin_unlock_wr(&bufspin); 2030 2031 /* 2032 * Dependancies must be handled before we disassociate the 2033 * vnode. 2034 * 2035 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2036 * be immediately disassociated. HAMMER then becomes 2037 * responsible for releasing the buffer. 2038 * 2039 * NOTE: bufspin is UNLOCKED now. 2040 */ 2041 if (LIST_FIRST(&bp->b_dep) != NULL) { 2042 get_mplock(); 2043 buf_deallocate(bp); 2044 rel_mplock(); 2045 if (bp->b_flags & B_LOCKED) { 2046 bqrelse(bp); 2047 goto restart; 2048 } 2049 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2050 } 2051 2052 if (qindex == BQUEUE_CLEAN) { 2053 get_mplock(); 2054 if (bp->b_flags & B_VMIO) { 2055 get_mplock(); 2056 vfs_vmio_release(bp); 2057 rel_mplock(); 2058 } 2059 if (bp->b_vp) 2060 brelvp(bp); 2061 rel_mplock(); 2062 } 2063 2064 /* 2065 * NOTE: nbp is now entirely invalid. We can only restart 2066 * the scan from this point on. 2067 * 2068 * Get the rest of the buffer freed up. b_kva* is still 2069 * valid after this operation. 2070 */ 2071 2072 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 2073 KKASSERT((bp->b_flags & B_HASHED) == 0); 2074 2075 /* 2076 * critical section protection is not required when 2077 * scrapping a buffer's contents because it is already 2078 * wired. 2079 */ 2080 if (bp->b_bufsize) { 2081 get_mplock(); 2082 allocbuf(bp, 0); 2083 rel_mplock(); 2084 } 2085 2086 bp->b_flags = B_BNOCLIP; 2087 bp->b_cmd = BUF_CMD_DONE; 2088 bp->b_vp = NULL; 2089 bp->b_error = 0; 2090 bp->b_resid = 0; 2091 bp->b_bcount = 0; 2092 bp->b_xio.xio_npages = 0; 2093 bp->b_dirtyoff = bp->b_dirtyend = 0; 2094 bp->b_act_count = ACT_INIT; 2095 reinitbufbio(bp); 2096 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2097 buf_dep_init(bp); 2098 if (blkflags & GETBLK_BHEAVY) 2099 bp->b_flags |= B_HEAVY; 2100 2101 /* 2102 * If we are defragging then free the buffer. 2103 */ 2104 if (defrag) { 2105 bp->b_flags |= B_INVAL; 2106 bfreekva(bp); 2107 brelse(bp); 2108 defrag = 0; 2109 goto restart; 2110 } 2111 2112 /* 2113 * If we are overcomitted then recover the buffer and its 2114 * KVM space. This occurs in rare situations when multiple 2115 * processes are blocked in getnewbuf() or allocbuf(). 2116 */ 2117 if (bufspace >= hibufspace) 2118 flushingbufs = 1; 2119 if (flushingbufs && bp->b_kvasize != 0) { 2120 bp->b_flags |= B_INVAL; 2121 bfreekva(bp); 2122 brelse(bp); 2123 goto restart; 2124 } 2125 if (bufspace < lobufspace) 2126 flushingbufs = 0; 2127 break; 2128 /* NOT REACHED, bufspin not held */ 2129 } 2130 2131 /* 2132 * If we exhausted our list, sleep as appropriate. We may have to 2133 * wakeup various daemons and write out some dirty buffers. 2134 * 2135 * Generally we are sleeping due to insufficient buffer space. 2136 * 2137 * NOTE: bufspin is held if bp is NULL, else it is not held. 2138 */ 2139 if (bp == NULL) { 2140 int flags; 2141 char *waitmsg; 2142 2143 spin_unlock_wr(&bufspin); 2144 if (defrag) { 2145 flags = VFS_BIO_NEED_BUFSPACE; 2146 waitmsg = "nbufkv"; 2147 } else if (bufspace >= hibufspace) { 2148 waitmsg = "nbufbs"; 2149 flags = VFS_BIO_NEED_BUFSPACE; 2150 } else { 2151 waitmsg = "newbuf"; 2152 flags = VFS_BIO_NEED_ANY; 2153 } 2154 2155 needsbuffer |= flags; 2156 bd_speedup(); /* heeeelp */ 2157 while (needsbuffer & flags) { 2158 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo)) 2159 return (NULL); 2160 } 2161 } else { 2162 /* 2163 * We finally have a valid bp. We aren't quite out of the 2164 * woods, we still have to reserve kva space. In order 2165 * to keep fragmentation sane we only allocate kva in 2166 * BKVASIZE chunks. 2167 * 2168 * (bufspin is not held) 2169 */ 2170 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2171 2172 if (maxsize != bp->b_kvasize) { 2173 vm_offset_t addr = 0; 2174 int count; 2175 2176 bfreekva(bp); 2177 2178 get_mplock(); 2179 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2180 vm_map_lock(&buffer_map); 2181 2182 if (vm_map_findspace(&buffer_map, 2183 vm_map_min(&buffer_map), maxsize, 2184 maxsize, 0, &addr)) { 2185 /* 2186 * Uh oh. Buffer map is too fragmented. We 2187 * must defragment the map. 2188 */ 2189 vm_map_unlock(&buffer_map); 2190 vm_map_entry_release(count); 2191 ++bufdefragcnt; 2192 defrag = 1; 2193 bp->b_flags |= B_INVAL; 2194 rel_mplock(); 2195 brelse(bp); 2196 goto restart; 2197 } 2198 if (addr) { 2199 vm_map_insert(&buffer_map, &count, 2200 NULL, 0, 2201 addr, addr + maxsize, 2202 VM_MAPTYPE_NORMAL, 2203 VM_PROT_ALL, VM_PROT_ALL, 2204 MAP_NOFAULT); 2205 2206 bp->b_kvabase = (caddr_t) addr; 2207 bp->b_kvasize = maxsize; 2208 bufspace += bp->b_kvasize; 2209 ++bufreusecnt; 2210 } 2211 vm_map_unlock(&buffer_map); 2212 vm_map_entry_release(count); 2213 rel_mplock(); 2214 } 2215 bp->b_data = bp->b_kvabase; 2216 } 2217 return(bp); 2218 } 2219 2220 /* 2221 * This routine is called in an emergency to recover VM pages from the 2222 * buffer cache by cashing in clean buffers. The idea is to recover 2223 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2224 */ 2225 static int 2226 recoverbufpages(void) 2227 { 2228 struct buf *bp; 2229 int bytes = 0; 2230 2231 ++recoverbufcalls; 2232 2233 spin_lock_wr(&bufspin); 2234 while (bytes < MAXBSIZE) { 2235 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2236 if (bp == NULL) 2237 break; 2238 2239 /* 2240 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2241 * cycles through the queue twice before being selected. 2242 */ 2243 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2244 bp->b_flags |= B_AGE; 2245 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2246 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2247 bp, b_freelist); 2248 continue; 2249 } 2250 2251 /* 2252 * Sanity Checks 2253 */ 2254 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2255 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2256 2257 /* 2258 * Start freeing the bp. This is somewhat involved. 2259 * 2260 * Buffers on the clean list must be disassociated from 2261 * their current vnode 2262 */ 2263 2264 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2265 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp); 2266 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2267 continue; 2268 } 2269 if (bp->b_qindex != BQUEUE_CLEAN) { 2270 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex); 2271 BUF_UNLOCK(bp); 2272 continue; 2273 } 2274 bremfree_locked(bp); 2275 spin_unlock_wr(&bufspin); 2276 2277 /* 2278 * Dependancies must be handled before we disassociate the 2279 * vnode. 2280 * 2281 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2282 * be immediately disassociated. HAMMER then becomes 2283 * responsible for releasing the buffer. 2284 */ 2285 if (LIST_FIRST(&bp->b_dep) != NULL) { 2286 buf_deallocate(bp); 2287 if (bp->b_flags & B_LOCKED) { 2288 bqrelse(bp); 2289 spin_lock_wr(&bufspin); 2290 continue; 2291 } 2292 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2293 } 2294 2295 bytes += bp->b_bufsize; 2296 2297 get_mplock(); 2298 if (bp->b_flags & B_VMIO) { 2299 bp->b_flags |= B_DIRECT; /* try to free pages */ 2300 vfs_vmio_release(bp); 2301 } 2302 if (bp->b_vp) 2303 brelvp(bp); 2304 2305 KKASSERT(bp->b_vp == NULL); 2306 KKASSERT((bp->b_flags & B_HASHED) == 0); 2307 2308 /* 2309 * critical section protection is not required when 2310 * scrapping a buffer's contents because it is already 2311 * wired. 2312 */ 2313 if (bp->b_bufsize) 2314 allocbuf(bp, 0); 2315 rel_mplock(); 2316 2317 bp->b_flags = B_BNOCLIP; 2318 bp->b_cmd = BUF_CMD_DONE; 2319 bp->b_vp = NULL; 2320 bp->b_error = 0; 2321 bp->b_resid = 0; 2322 bp->b_bcount = 0; 2323 bp->b_xio.xio_npages = 0; 2324 bp->b_dirtyoff = bp->b_dirtyend = 0; 2325 reinitbufbio(bp); 2326 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2327 buf_dep_init(bp); 2328 bp->b_flags |= B_INVAL; 2329 /* bfreekva(bp); */ 2330 brelse(bp); 2331 spin_lock_wr(&bufspin); 2332 } 2333 spin_unlock_wr(&bufspin); 2334 return(bytes); 2335 } 2336 2337 /* 2338 * buf_daemon: 2339 * 2340 * Buffer flushing daemon. Buffers are normally flushed by the 2341 * update daemon but if it cannot keep up this process starts to 2342 * take the load in an attempt to prevent getnewbuf() from blocking. 2343 * 2344 * Once a flush is initiated it does not stop until the number 2345 * of buffers falls below lodirtybuffers, but we will wake up anyone 2346 * waiting at the mid-point. 2347 */ 2348 2349 static struct kproc_desc buf_kp = { 2350 "bufdaemon", 2351 buf_daemon, 2352 &bufdaemon_td 2353 }; 2354 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2355 kproc_start, &buf_kp) 2356 2357 static struct kproc_desc bufhw_kp = { 2358 "bufdaemon_hw", 2359 buf_daemon_hw, 2360 &bufdaemonhw_td 2361 }; 2362 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2363 kproc_start, &bufhw_kp) 2364 2365 static void 2366 buf_daemon(void) 2367 { 2368 int limit; 2369 2370 /* 2371 * This process needs to be suspended prior to shutdown sync. 2372 */ 2373 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2374 bufdaemon_td, SHUTDOWN_PRI_LAST); 2375 curthread->td_flags |= TDF_SYSTHREAD; 2376 2377 /* 2378 * This process is allowed to take the buffer cache to the limit 2379 */ 2380 crit_enter(); 2381 2382 for (;;) { 2383 kproc_suspend_loop(); 2384 2385 /* 2386 * Do the flush as long as the number of dirty buffers 2387 * (including those running) exceeds lodirtybufspace. 2388 * 2389 * When flushing limit running I/O to hirunningspace 2390 * Do the flush. Limit the amount of in-transit I/O we 2391 * allow to build up, otherwise we would completely saturate 2392 * the I/O system. Wakeup any waiting processes before we 2393 * normally would so they can run in parallel with our drain. 2394 * 2395 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2396 * but because we split the operation into two threads we 2397 * have to cut it in half for each thread. 2398 */ 2399 waitrunningbufspace(); 2400 limit = lodirtybufspace / 2; 2401 while (runningbufspace + dirtybufspace > limit || 2402 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2403 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2404 break; 2405 if (runningbufspace < hirunningspace) 2406 continue; 2407 waitrunningbufspace(); 2408 } 2409 2410 /* 2411 * We reached our low water mark, reset the 2412 * request and sleep until we are needed again. 2413 * The sleep is just so the suspend code works. 2414 */ 2415 spin_lock_wr(&needsbuffer_spin); 2416 if (bd_request == 0) { 2417 ssleep(&bd_request, &needsbuffer_spin, 0, 2418 "psleep", hz); 2419 } 2420 bd_request = 0; 2421 spin_unlock_wr(&needsbuffer_spin); 2422 } 2423 } 2424 2425 static void 2426 buf_daemon_hw(void) 2427 { 2428 int limit; 2429 2430 /* 2431 * This process needs to be suspended prior to shutdown sync. 2432 */ 2433 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2434 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2435 curthread->td_flags |= TDF_SYSTHREAD; 2436 2437 /* 2438 * This process is allowed to take the buffer cache to the limit 2439 */ 2440 crit_enter(); 2441 2442 for (;;) { 2443 kproc_suspend_loop(); 2444 2445 /* 2446 * Do the flush. Limit the amount of in-transit I/O we 2447 * allow to build up, otherwise we would completely saturate 2448 * the I/O system. Wakeup any waiting processes before we 2449 * normally would so they can run in parallel with our drain. 2450 * 2451 * Once we decide to flush push the queued I/O up to 2452 * hirunningspace in order to trigger bursting by the bioq 2453 * subsystem. 2454 * 2455 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2456 * but because we split the operation into two threads we 2457 * have to cut it in half for each thread. 2458 */ 2459 waitrunningbufspace(); 2460 limit = lodirtybufspace / 2; 2461 while (runningbufspace + dirtybufspacehw > limit || 2462 dirtybufcounthw >= nbuf / 2) { 2463 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2464 break; 2465 if (runningbufspace < hirunningspace) 2466 continue; 2467 waitrunningbufspace(); 2468 } 2469 2470 /* 2471 * We reached our low water mark, reset the 2472 * request and sleep until we are needed again. 2473 * The sleep is just so the suspend code works. 2474 */ 2475 spin_lock_wr(&needsbuffer_spin); 2476 if (bd_request_hw == 0) { 2477 ssleep(&bd_request_hw, &needsbuffer_spin, 0, 2478 "psleep", hz); 2479 } 2480 bd_request_hw = 0; 2481 spin_unlock_wr(&needsbuffer_spin); 2482 } 2483 } 2484 2485 /* 2486 * flushbufqueues: 2487 * 2488 * Try to flush a buffer in the dirty queue. We must be careful to 2489 * free up B_INVAL buffers instead of write them, which NFS is 2490 * particularly sensitive to. 2491 * 2492 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2493 * that we really want to try to get the buffer out and reuse it 2494 * due to the write load on the machine. 2495 */ 2496 static int 2497 flushbufqueues(bufq_type_t q) 2498 { 2499 struct buf *bp; 2500 int r = 0; 2501 int spun; 2502 2503 spin_lock_wr(&bufspin); 2504 spun = 1; 2505 2506 bp = TAILQ_FIRST(&bufqueues[q]); 2507 while (bp) { 2508 KASSERT((bp->b_flags & B_DELWRI), 2509 ("unexpected clean buffer %p", bp)); 2510 2511 if (bp->b_flags & B_DELWRI) { 2512 if (bp->b_flags & B_INVAL) { 2513 spin_unlock_wr(&bufspin); 2514 spun = 0; 2515 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 2516 panic("flushbufqueues: locked buf"); 2517 bremfree(bp); 2518 brelse(bp); 2519 ++r; 2520 break; 2521 } 2522 if (LIST_FIRST(&bp->b_dep) != NULL && 2523 (bp->b_flags & B_DEFERRED) == 0 && 2524 buf_countdeps(bp, 0)) { 2525 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2526 TAILQ_INSERT_TAIL(&bufqueues[q], bp, 2527 b_freelist); 2528 bp->b_flags |= B_DEFERRED; 2529 bp = TAILQ_FIRST(&bufqueues[q]); 2530 continue; 2531 } 2532 2533 /* 2534 * Only write it out if we can successfully lock 2535 * it. If the buffer has a dependancy, 2536 * buf_checkwrite must also return 0 for us to 2537 * be able to initate the write. 2538 * 2539 * If the buffer is flagged B_ERROR it may be 2540 * requeued over and over again, we try to 2541 * avoid a live lock. 2542 * 2543 * NOTE: buf_checkwrite is MPSAFE. 2544 */ 2545 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 2546 spin_unlock_wr(&bufspin); 2547 spun = 0; 2548 if (LIST_FIRST(&bp->b_dep) != NULL && 2549 buf_checkwrite(bp)) { 2550 bremfree(bp); 2551 brelse(bp); 2552 } else if (bp->b_flags & B_ERROR) { 2553 tsleep(bp, 0, "bioer", 1); 2554 bp->b_flags &= ~B_AGE; 2555 vfs_bio_awrite(bp); 2556 } else { 2557 bp->b_flags |= B_AGE; 2558 vfs_bio_awrite(bp); 2559 } 2560 ++r; 2561 break; 2562 } 2563 } 2564 bp = TAILQ_NEXT(bp, b_freelist); 2565 } 2566 if (spun) 2567 spin_unlock_wr(&bufspin); 2568 return (r); 2569 } 2570 2571 /* 2572 * inmem: 2573 * 2574 * Returns true if no I/O is needed to access the associated VM object. 2575 * This is like findblk except it also hunts around in the VM system for 2576 * the data. 2577 * 2578 * Note that we ignore vm_page_free() races from interrupts against our 2579 * lookup, since if the caller is not protected our return value will not 2580 * be any more valid then otherwise once we exit the critical section. 2581 */ 2582 int 2583 inmem(struct vnode *vp, off_t loffset) 2584 { 2585 vm_object_t obj; 2586 vm_offset_t toff, tinc, size; 2587 vm_page_t m; 2588 2589 if (findblk(vp, loffset, FINDBLK_TEST)) 2590 return 1; 2591 if (vp->v_mount == NULL) 2592 return 0; 2593 if ((obj = vp->v_object) == NULL) 2594 return 0; 2595 2596 size = PAGE_SIZE; 2597 if (size > vp->v_mount->mnt_stat.f_iosize) 2598 size = vp->v_mount->mnt_stat.f_iosize; 2599 2600 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2601 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2602 if (m == NULL) 2603 return 0; 2604 tinc = size; 2605 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2606 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2607 if (vm_page_is_valid(m, 2608 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2609 return 0; 2610 } 2611 return 1; 2612 } 2613 2614 /* 2615 * findblk: 2616 * 2617 * Locate and return the specified buffer. Unless flagged otherwise, 2618 * a locked buffer will be returned if it exists or NULL if it does not. 2619 * 2620 * findblk()'d buffers are still on the bufqueues and if you intend 2621 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2622 * and possibly do other stuff to it. 2623 * 2624 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2625 * for locking the buffer and ensuring that it remains 2626 * the desired buffer after locking. 2627 * 2628 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2629 * to acquire the lock we return NULL, even if the 2630 * buffer exists. 2631 * 2632 * (0) - Lock the buffer blocking. 2633 * 2634 * MPSAFE 2635 */ 2636 struct buf * 2637 findblk(struct vnode *vp, off_t loffset, int flags) 2638 { 2639 struct buf *bp; 2640 int lkflags; 2641 2642 lkflags = LK_EXCLUSIVE; 2643 if (flags & FINDBLK_NBLOCK) 2644 lkflags |= LK_NOWAIT; 2645 2646 for (;;) { 2647 lwkt_gettoken(&vp->v_token); 2648 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2649 lwkt_reltoken(&vp->v_token); 2650 if (bp == NULL || (flags & FINDBLK_TEST)) 2651 break; 2652 if (BUF_LOCK(bp, lkflags)) { 2653 bp = NULL; 2654 break; 2655 } 2656 if (bp->b_vp == vp && bp->b_loffset == loffset) 2657 break; 2658 BUF_UNLOCK(bp); 2659 } 2660 return(bp); 2661 } 2662 2663 /* 2664 * getcacheblk: 2665 * 2666 * Similar to getblk() except only returns the buffer if it is 2667 * B_CACHE and requires no other manipulation. Otherwise NULL 2668 * is returned. 2669 * 2670 * If B_RAM is set the buffer might be just fine, but we return 2671 * NULL anyway because we want the code to fall through to the 2672 * cluster read. Otherwise read-ahead breaks. 2673 */ 2674 struct buf * 2675 getcacheblk(struct vnode *vp, off_t loffset) 2676 { 2677 struct buf *bp; 2678 2679 bp = findblk(vp, loffset, 0); 2680 if (bp) { 2681 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) { 2682 bp->b_flags &= ~B_AGE; 2683 bremfree(bp); 2684 } else { 2685 BUF_UNLOCK(bp); 2686 bp = NULL; 2687 } 2688 } 2689 return (bp); 2690 } 2691 2692 /* 2693 * getblk: 2694 * 2695 * Get a block given a specified block and offset into a file/device. 2696 * B_INVAL may or may not be set on return. The caller should clear 2697 * B_INVAL prior to initiating a READ. 2698 * 2699 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2700 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2701 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2702 * without doing any of those things the system will likely believe 2703 * the buffer to be valid (especially if it is not B_VMIO), and the 2704 * next getblk() will return the buffer with B_CACHE set. 2705 * 2706 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2707 * an existing buffer. 2708 * 2709 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2710 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2711 * and then cleared based on the backing VM. If the previous buffer is 2712 * non-0-sized but invalid, B_CACHE will be cleared. 2713 * 2714 * If getblk() must create a new buffer, the new buffer is returned with 2715 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2716 * case it is returned with B_INVAL clear and B_CACHE set based on the 2717 * backing VM. 2718 * 2719 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2720 * B_CACHE bit is clear. 2721 * 2722 * What this means, basically, is that the caller should use B_CACHE to 2723 * determine whether the buffer is fully valid or not and should clear 2724 * B_INVAL prior to issuing a read. If the caller intends to validate 2725 * the buffer by loading its data area with something, the caller needs 2726 * to clear B_INVAL. If the caller does this without issuing an I/O, 2727 * the caller should set B_CACHE ( as an optimization ), else the caller 2728 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2729 * a write attempt or if it was a successfull read. If the caller 2730 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2731 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2732 * 2733 * getblk flags: 2734 * 2735 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2736 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2737 * 2738 * MPALMOSTSAFE 2739 */ 2740 struct buf * 2741 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2742 { 2743 struct buf *bp; 2744 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2745 int error; 2746 int lkflags; 2747 2748 if (size > MAXBSIZE) 2749 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2750 if (vp->v_object == NULL) 2751 panic("getblk: vnode %p has no object!", vp); 2752 2753 loop: 2754 if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) { 2755 /* 2756 * The buffer was found in the cache, but we need to lock it. 2757 * Even with LK_NOWAIT the lockmgr may break our critical 2758 * section, so double-check the validity of the buffer 2759 * once the lock has been obtained. 2760 */ 2761 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2762 if (blkflags & GETBLK_NOWAIT) 2763 return(NULL); 2764 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2765 if (blkflags & GETBLK_PCATCH) 2766 lkflags |= LK_PCATCH; 2767 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2768 if (error) { 2769 if (error == ENOLCK) 2770 goto loop; 2771 return (NULL); 2772 } 2773 /* buffer may have changed on us */ 2774 } 2775 2776 /* 2777 * Once the buffer has been locked, make sure we didn't race 2778 * a buffer recyclement. Buffers that are no longer hashed 2779 * will have b_vp == NULL, so this takes care of that check 2780 * as well. 2781 */ 2782 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2783 kprintf("Warning buffer %p (vp %p loffset %lld) " 2784 "was recycled\n", 2785 bp, vp, (long long)loffset); 2786 BUF_UNLOCK(bp); 2787 goto loop; 2788 } 2789 2790 /* 2791 * If SZMATCH any pre-existing buffer must be of the requested 2792 * size or NULL is returned. The caller absolutely does not 2793 * want getblk() to bwrite() the buffer on a size mismatch. 2794 */ 2795 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2796 BUF_UNLOCK(bp); 2797 return(NULL); 2798 } 2799 2800 /* 2801 * All vnode-based buffers must be backed by a VM object. 2802 */ 2803 KKASSERT(bp->b_flags & B_VMIO); 2804 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2805 bp->b_flags &= ~B_AGE; 2806 2807 /* 2808 * Make sure that B_INVAL buffers do not have a cached 2809 * block number translation. 2810 */ 2811 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2812 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 2813 " did not have cleared bio_offset cache\n", 2814 bp, vp, (long long)loffset); 2815 clearbiocache(&bp->b_bio2); 2816 } 2817 2818 /* 2819 * The buffer is locked. B_CACHE is cleared if the buffer is 2820 * invalid. 2821 */ 2822 if (bp->b_flags & B_INVAL) 2823 bp->b_flags &= ~B_CACHE; 2824 bremfree(bp); 2825 2826 /* 2827 * Any size inconsistancy with a dirty buffer or a buffer 2828 * with a softupdates dependancy must be resolved. Resizing 2829 * the buffer in such circumstances can lead to problems. 2830 * 2831 * Dirty or dependant buffers are written synchronously. 2832 * Other types of buffers are simply released and 2833 * reconstituted as they may be backed by valid, dirty VM 2834 * pages (but not marked B_DELWRI). 2835 * 2836 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 2837 * and may be left over from a prior truncation (and thus 2838 * no longer represent the actual EOF point), so we 2839 * definitely do not want to B_NOCACHE the backing store. 2840 */ 2841 if (size != bp->b_bcount) { 2842 get_mplock(); 2843 if (bp->b_flags & B_DELWRI) { 2844 bp->b_flags |= B_RELBUF; 2845 bwrite(bp); 2846 } else if (LIST_FIRST(&bp->b_dep)) { 2847 bp->b_flags |= B_RELBUF; 2848 bwrite(bp); 2849 } else { 2850 bp->b_flags |= B_RELBUF; 2851 brelse(bp); 2852 } 2853 rel_mplock(); 2854 goto loop; 2855 } 2856 KKASSERT(size <= bp->b_kvasize); 2857 KASSERT(bp->b_loffset != NOOFFSET, 2858 ("getblk: no buffer offset")); 2859 2860 /* 2861 * A buffer with B_DELWRI set and B_CACHE clear must 2862 * be committed before we can return the buffer in 2863 * order to prevent the caller from issuing a read 2864 * ( due to B_CACHE not being set ) and overwriting 2865 * it. 2866 * 2867 * Most callers, including NFS and FFS, need this to 2868 * operate properly either because they assume they 2869 * can issue a read if B_CACHE is not set, or because 2870 * ( for example ) an uncached B_DELWRI might loop due 2871 * to softupdates re-dirtying the buffer. In the latter 2872 * case, B_CACHE is set after the first write completes, 2873 * preventing further loops. 2874 * 2875 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2876 * above while extending the buffer, we cannot allow the 2877 * buffer to remain with B_CACHE set after the write 2878 * completes or it will represent a corrupt state. To 2879 * deal with this we set B_NOCACHE to scrap the buffer 2880 * after the write. 2881 * 2882 * XXX Should this be B_RELBUF instead of B_NOCACHE? 2883 * I'm not even sure this state is still possible 2884 * now that getblk() writes out any dirty buffers 2885 * on size changes. 2886 * 2887 * We might be able to do something fancy, like setting 2888 * B_CACHE in bwrite() except if B_DELWRI is already set, 2889 * so the below call doesn't set B_CACHE, but that gets real 2890 * confusing. This is much easier. 2891 */ 2892 2893 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2894 get_mplock(); 2895 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 2896 "and CACHE clear, b_flags %08x\n", 2897 bp, (intmax_t)bp->b_loffset, bp->b_flags); 2898 bp->b_flags |= B_NOCACHE; 2899 bwrite(bp); 2900 rel_mplock(); 2901 goto loop; 2902 } 2903 } else { 2904 /* 2905 * Buffer is not in-core, create new buffer. The buffer 2906 * returned by getnewbuf() is locked. Note that the returned 2907 * buffer is also considered valid (not marked B_INVAL). 2908 * 2909 * Calculating the offset for the I/O requires figuring out 2910 * the block size. We use DEV_BSIZE for VBLK or VCHR and 2911 * the mount's f_iosize otherwise. If the vnode does not 2912 * have an associated mount we assume that the passed size is 2913 * the block size. 2914 * 2915 * Note that vn_isdisk() cannot be used here since it may 2916 * return a failure for numerous reasons. Note that the 2917 * buffer size may be larger then the block size (the caller 2918 * will use block numbers with the proper multiple). Beware 2919 * of using any v_* fields which are part of unions. In 2920 * particular, in DragonFly the mount point overloading 2921 * mechanism uses the namecache only and the underlying 2922 * directory vnode is not a special case. 2923 */ 2924 int bsize, maxsize; 2925 2926 if (vp->v_type == VBLK || vp->v_type == VCHR) 2927 bsize = DEV_BSIZE; 2928 else if (vp->v_mount) 2929 bsize = vp->v_mount->mnt_stat.f_iosize; 2930 else 2931 bsize = size; 2932 2933 maxsize = size + (loffset & PAGE_MASK); 2934 maxsize = imax(maxsize, bsize); 2935 2936 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 2937 if (bp == NULL) { 2938 if (slpflags || slptimeo) 2939 return NULL; 2940 goto loop; 2941 } 2942 2943 /* 2944 * Atomically insert the buffer into the hash, so that it can 2945 * be found by findblk(). 2946 * 2947 * If bgetvp() returns non-zero a collision occured, and the 2948 * bp will not be associated with the vnode. 2949 * 2950 * Make sure the translation layer has been cleared. 2951 */ 2952 bp->b_loffset = loffset; 2953 bp->b_bio2.bio_offset = NOOFFSET; 2954 /* bp->b_bio2.bio_next = NULL; */ 2955 2956 if (bgetvp(vp, bp, size)) { 2957 bp->b_flags |= B_INVAL; 2958 brelse(bp); 2959 goto loop; 2960 } 2961 2962 /* 2963 * All vnode-based buffers must be backed by a VM object. 2964 */ 2965 KKASSERT(vp->v_object != NULL); 2966 bp->b_flags |= B_VMIO; 2967 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2968 2969 get_mplock(); 2970 allocbuf(bp, size); 2971 rel_mplock(); 2972 } 2973 KKASSERT(dsched_is_clear_buf_priv(bp)); 2974 return (bp); 2975 } 2976 2977 /* 2978 * regetblk(bp) 2979 * 2980 * Reacquire a buffer that was previously released to the locked queue, 2981 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 2982 * set B_LOCKED (which handles the acquisition race). 2983 * 2984 * To this end, either B_LOCKED must be set or the dependancy list must be 2985 * non-empty. 2986 * 2987 * MPSAFE 2988 */ 2989 void 2990 regetblk(struct buf *bp) 2991 { 2992 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 2993 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 2994 bremfree(bp); 2995 } 2996 2997 /* 2998 * geteblk: 2999 * 3000 * Get an empty, disassociated buffer of given size. The buffer is 3001 * initially set to B_INVAL. 3002 * 3003 * critical section protection is not required for the allocbuf() 3004 * call because races are impossible here. 3005 * 3006 * MPALMOSTSAFE 3007 */ 3008 struct buf * 3009 geteblk(int size) 3010 { 3011 struct buf *bp; 3012 int maxsize; 3013 3014 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3015 3016 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 3017 ; 3018 get_mplock(); 3019 allocbuf(bp, size); 3020 rel_mplock(); 3021 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3022 KKASSERT(dsched_is_clear_buf_priv(bp)); 3023 return (bp); 3024 } 3025 3026 3027 /* 3028 * allocbuf: 3029 * 3030 * This code constitutes the buffer memory from either anonymous system 3031 * memory (in the case of non-VMIO operations) or from an associated 3032 * VM object (in the case of VMIO operations). This code is able to 3033 * resize a buffer up or down. 3034 * 3035 * Note that this code is tricky, and has many complications to resolve 3036 * deadlock or inconsistant data situations. Tread lightly!!! 3037 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3038 * the caller. Calling this code willy nilly can result in the loss of data. 3039 * 3040 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3041 * B_CACHE for the non-VMIO case. 3042 * 3043 * This routine does not need to be called from a critical section but you 3044 * must own the buffer. 3045 * 3046 * NOTMPSAFE 3047 */ 3048 int 3049 allocbuf(struct buf *bp, int size) 3050 { 3051 int newbsize, mbsize; 3052 int i; 3053 3054 if (BUF_REFCNT(bp) == 0) 3055 panic("allocbuf: buffer not busy"); 3056 3057 if (bp->b_kvasize < size) 3058 panic("allocbuf: buffer too small"); 3059 3060 if ((bp->b_flags & B_VMIO) == 0) { 3061 caddr_t origbuf; 3062 int origbufsize; 3063 /* 3064 * Just get anonymous memory from the kernel. Don't 3065 * mess with B_CACHE. 3066 */ 3067 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3068 if (bp->b_flags & B_MALLOC) 3069 newbsize = mbsize; 3070 else 3071 newbsize = round_page(size); 3072 3073 if (newbsize < bp->b_bufsize) { 3074 /* 3075 * Malloced buffers are not shrunk 3076 */ 3077 if (bp->b_flags & B_MALLOC) { 3078 if (newbsize) { 3079 bp->b_bcount = size; 3080 } else { 3081 kfree(bp->b_data, M_BIOBUF); 3082 if (bp->b_bufsize) { 3083 bufmallocspace -= bp->b_bufsize; 3084 bufspacewakeup(); 3085 bp->b_bufsize = 0; 3086 } 3087 bp->b_data = bp->b_kvabase; 3088 bp->b_bcount = 0; 3089 bp->b_flags &= ~B_MALLOC; 3090 } 3091 return 1; 3092 } 3093 vm_hold_free_pages( 3094 bp, 3095 (vm_offset_t) bp->b_data + newbsize, 3096 (vm_offset_t) bp->b_data + bp->b_bufsize); 3097 } else if (newbsize > bp->b_bufsize) { 3098 /* 3099 * We only use malloced memory on the first allocation. 3100 * and revert to page-allocated memory when the buffer 3101 * grows. 3102 */ 3103 if ((bufmallocspace < maxbufmallocspace) && 3104 (bp->b_bufsize == 0) && 3105 (mbsize <= PAGE_SIZE/2)) { 3106 3107 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3108 bp->b_bufsize = mbsize; 3109 bp->b_bcount = size; 3110 bp->b_flags |= B_MALLOC; 3111 bufmallocspace += mbsize; 3112 return 1; 3113 } 3114 origbuf = NULL; 3115 origbufsize = 0; 3116 /* 3117 * If the buffer is growing on its other-than-first 3118 * allocation, then we revert to the page-allocation 3119 * scheme. 3120 */ 3121 if (bp->b_flags & B_MALLOC) { 3122 origbuf = bp->b_data; 3123 origbufsize = bp->b_bufsize; 3124 bp->b_data = bp->b_kvabase; 3125 if (bp->b_bufsize) { 3126 bufmallocspace -= bp->b_bufsize; 3127 bufspacewakeup(); 3128 bp->b_bufsize = 0; 3129 } 3130 bp->b_flags &= ~B_MALLOC; 3131 newbsize = round_page(newbsize); 3132 } 3133 vm_hold_load_pages( 3134 bp, 3135 (vm_offset_t) bp->b_data + bp->b_bufsize, 3136 (vm_offset_t) bp->b_data + newbsize); 3137 if (origbuf) { 3138 bcopy(origbuf, bp->b_data, origbufsize); 3139 kfree(origbuf, M_BIOBUF); 3140 } 3141 } 3142 } else { 3143 vm_page_t m; 3144 int desiredpages; 3145 3146 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3147 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3148 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3149 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3150 3151 if (bp->b_flags & B_MALLOC) 3152 panic("allocbuf: VMIO buffer can't be malloced"); 3153 /* 3154 * Set B_CACHE initially if buffer is 0 length or will become 3155 * 0-length. 3156 */ 3157 if (size == 0 || bp->b_bufsize == 0) 3158 bp->b_flags |= B_CACHE; 3159 3160 if (newbsize < bp->b_bufsize) { 3161 /* 3162 * DEV_BSIZE aligned new buffer size is less then the 3163 * DEV_BSIZE aligned existing buffer size. Figure out 3164 * if we have to remove any pages. 3165 */ 3166 if (desiredpages < bp->b_xio.xio_npages) { 3167 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3168 /* 3169 * the page is not freed here -- it 3170 * is the responsibility of 3171 * vnode_pager_setsize 3172 */ 3173 m = bp->b_xio.xio_pages[i]; 3174 KASSERT(m != bogus_page, 3175 ("allocbuf: bogus page found")); 3176 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3177 ; 3178 3179 bp->b_xio.xio_pages[i] = NULL; 3180 vm_page_unwire(m, 0); 3181 } 3182 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3183 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3184 bp->b_xio.xio_npages = desiredpages; 3185 } 3186 } else if (size > bp->b_bcount) { 3187 /* 3188 * We are growing the buffer, possibly in a 3189 * byte-granular fashion. 3190 */ 3191 struct vnode *vp; 3192 vm_object_t obj; 3193 vm_offset_t toff; 3194 vm_offset_t tinc; 3195 3196 /* 3197 * Step 1, bring in the VM pages from the object, 3198 * allocating them if necessary. We must clear 3199 * B_CACHE if these pages are not valid for the 3200 * range covered by the buffer. 3201 * 3202 * critical section protection is required to protect 3203 * against interrupts unbusying and freeing pages 3204 * between our vm_page_lookup() and our 3205 * busycheck/wiring call. 3206 */ 3207 vp = bp->b_vp; 3208 obj = vp->v_object; 3209 3210 crit_enter(); 3211 while (bp->b_xio.xio_npages < desiredpages) { 3212 vm_page_t m; 3213 vm_pindex_t pi; 3214 3215 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3216 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3217 /* 3218 * note: must allocate system pages 3219 * since blocking here could intefere 3220 * with paging I/O, no matter which 3221 * process we are. 3222 */ 3223 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3224 if (m) { 3225 vm_page_wire(m); 3226 vm_page_wakeup(m); 3227 vm_page_flag_clear(m, PG_ZERO); 3228 bp->b_flags &= ~B_CACHE; 3229 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3230 ++bp->b_xio.xio_npages; 3231 } 3232 continue; 3233 } 3234 3235 /* 3236 * We found a page. If we have to sleep on it, 3237 * retry because it might have gotten freed out 3238 * from under us. 3239 * 3240 * We can only test PG_BUSY here. Blocking on 3241 * m->busy might lead to a deadlock: 3242 * 3243 * vm_fault->getpages->cluster_read->allocbuf 3244 * 3245 */ 3246 3247 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3248 continue; 3249 vm_page_flag_clear(m, PG_ZERO); 3250 vm_page_wire(m); 3251 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3252 ++bp->b_xio.xio_npages; 3253 if (bp->b_act_count < m->act_count) 3254 bp->b_act_count = m->act_count; 3255 } 3256 crit_exit(); 3257 3258 /* 3259 * Step 2. We've loaded the pages into the buffer, 3260 * we have to figure out if we can still have B_CACHE 3261 * set. Note that B_CACHE is set according to the 3262 * byte-granular range ( bcount and size ), not the 3263 * aligned range ( newbsize ). 3264 * 3265 * The VM test is against m->valid, which is DEV_BSIZE 3266 * aligned. Needless to say, the validity of the data 3267 * needs to also be DEV_BSIZE aligned. Note that this 3268 * fails with NFS if the server or some other client 3269 * extends the file's EOF. If our buffer is resized, 3270 * B_CACHE may remain set! XXX 3271 */ 3272 3273 toff = bp->b_bcount; 3274 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3275 3276 while ((bp->b_flags & B_CACHE) && toff < size) { 3277 vm_pindex_t pi; 3278 3279 if (tinc > (size - toff)) 3280 tinc = size - toff; 3281 3282 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3283 PAGE_SHIFT; 3284 3285 vfs_buf_test_cache( 3286 bp, 3287 bp->b_loffset, 3288 toff, 3289 tinc, 3290 bp->b_xio.xio_pages[pi] 3291 ); 3292 toff += tinc; 3293 tinc = PAGE_SIZE; 3294 } 3295 3296 /* 3297 * Step 3, fixup the KVM pmap. Remember that 3298 * bp->b_data is relative to bp->b_loffset, but 3299 * bp->b_loffset may be offset into the first page. 3300 */ 3301 3302 bp->b_data = (caddr_t) 3303 trunc_page((vm_offset_t)bp->b_data); 3304 pmap_qenter( 3305 (vm_offset_t)bp->b_data, 3306 bp->b_xio.xio_pages, 3307 bp->b_xio.xio_npages 3308 ); 3309 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3310 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3311 } 3312 } 3313 3314 /* adjust space use on already-dirty buffer */ 3315 if (bp->b_flags & B_DELWRI) { 3316 dirtybufspace += newbsize - bp->b_bufsize; 3317 if (bp->b_flags & B_HEAVY) 3318 dirtybufspacehw += newbsize - bp->b_bufsize; 3319 } 3320 if (newbsize < bp->b_bufsize) 3321 bufspacewakeup(); 3322 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3323 bp->b_bcount = size; /* requested buffer size */ 3324 return 1; 3325 } 3326 3327 /* 3328 * biowait: 3329 * 3330 * Wait for buffer I/O completion, returning error status. B_EINTR 3331 * is converted into an EINTR error but not cleared (since a chain 3332 * of biowait() calls may occur). 3333 * 3334 * On return bpdone() will have been called but the buffer will remain 3335 * locked and will not have been brelse()'d. 3336 * 3337 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3338 * likely still in progress on return. 3339 * 3340 * NOTE! This operation is on a BIO, not a BUF. 3341 * 3342 * NOTE! BIO_DONE is cleared by vn_strategy() 3343 * 3344 * MPSAFE 3345 */ 3346 static __inline int 3347 _biowait(struct bio *bio, const char *wmesg, int to) 3348 { 3349 struct buf *bp = bio->bio_buf; 3350 u_int32_t flags; 3351 u_int32_t nflags; 3352 int error; 3353 3354 KKASSERT(bio == &bp->b_bio1); 3355 for (;;) { 3356 flags = bio->bio_flags; 3357 if (flags & BIO_DONE) 3358 break; 3359 tsleep_interlock(bio, 0); 3360 nflags = flags | BIO_WANT; 3361 tsleep_interlock(bio, 0); 3362 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3363 if (wmesg) 3364 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3365 else if (bp->b_cmd == BUF_CMD_READ) 3366 error = tsleep(bio, PINTERLOCKED, "biord", to); 3367 else 3368 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3369 if (error) { 3370 kprintf("tsleep error biowait %d\n", error); 3371 return (error); 3372 } 3373 } 3374 } 3375 3376 /* 3377 * Finish up. 3378 */ 3379 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3380 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3381 if (bp->b_flags & B_EINTR) 3382 return (EINTR); 3383 if (bp->b_flags & B_ERROR) 3384 return (bp->b_error ? bp->b_error : EIO); 3385 return (0); 3386 } 3387 3388 int 3389 biowait(struct bio *bio, const char *wmesg) 3390 { 3391 return(_biowait(bio, wmesg, 0)); 3392 } 3393 3394 int 3395 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3396 { 3397 return(_biowait(bio, wmesg, to)); 3398 } 3399 3400 /* 3401 * This associates a tracking count with an I/O. vn_strategy() and 3402 * dev_dstrategy() do this automatically but there are a few cases 3403 * where a vnode or device layer is bypassed when a block translation 3404 * is cached. In such cases bio_start_transaction() may be called on 3405 * the bypassed layers so the system gets an I/O in progress indication 3406 * for those higher layers. 3407 */ 3408 void 3409 bio_start_transaction(struct bio *bio, struct bio_track *track) 3410 { 3411 bio->bio_track = track; 3412 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3413 dsched_new_buf(bio->bio_buf); 3414 bio_track_ref(track); 3415 } 3416 3417 /* 3418 * Initiate I/O on a vnode. 3419 * 3420 * SWAPCACHE OPERATION: 3421 * 3422 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately 3423 * devfs also uses b_vp for fake buffers so we also have to check 3424 * that B_PAGING is 0. In this case the passed 'vp' is probably the 3425 * underlying block device. The swap assignments are related to the 3426 * buffer cache buffer's b_vp, not the passed vp. 3427 * 3428 * The passed vp == bp->b_vp only in the case where the strategy call 3429 * is made on the vp itself for its own buffers (a regular file or 3430 * block device vp). The filesystem usually then re-calls vn_strategy() 3431 * after translating the request to an underlying device. 3432 * 3433 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the 3434 * underlying buffer cache buffers. 3435 * 3436 * We can only deal with page-aligned buffers at the moment, because 3437 * we can't tell what the real dirty state for pages straddling a buffer 3438 * are. 3439 * 3440 * In order to call swap_pager_strategy() we must provide the VM object 3441 * and base offset for the underlying buffer cache pages so it can find 3442 * the swap blocks. 3443 */ 3444 void 3445 vn_strategy(struct vnode *vp, struct bio *bio) 3446 { 3447 struct bio_track *track; 3448 struct buf *bp = bio->bio_buf; 3449 3450 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3451 3452 /* 3453 * Set when an I/O is issued on the bp. Cleared by consumers 3454 * (aka HAMMER), allowing the consumer to determine if I/O had 3455 * actually occurred. 3456 */ 3457 bp->b_flags |= B_IODEBUG; 3458 3459 /* 3460 * Handle the swap cache intercept. 3461 */ 3462 if (vn_cache_strategy(vp, bio)) 3463 return; 3464 3465 /* 3466 * Otherwise do the operation through the filesystem 3467 */ 3468 if (bp->b_cmd == BUF_CMD_READ) 3469 track = &vp->v_track_read; 3470 else 3471 track = &vp->v_track_write; 3472 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3473 bio->bio_track = track; 3474 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3475 dsched_new_buf(bio->bio_buf); 3476 bio_track_ref(track); 3477 vop_strategy(*vp->v_ops, vp, bio); 3478 } 3479 3480 int 3481 vn_cache_strategy(struct vnode *vp, struct bio *bio) 3482 { 3483 struct buf *bp = bio->bio_buf; 3484 struct bio *nbio; 3485 vm_object_t object; 3486 vm_page_t m; 3487 int i; 3488 3489 /* 3490 * Is this buffer cache buffer suitable for reading from 3491 * the swap cache? 3492 */ 3493 if (vm_swapcache_read_enable == 0 || 3494 bp->b_cmd != BUF_CMD_READ || 3495 ((bp->b_flags & B_CLUSTER) == 0 && 3496 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) || 3497 ((int)bp->b_loffset & PAGE_MASK) != 0 || 3498 (bp->b_bcount & PAGE_MASK) != 0) { 3499 return(0); 3500 } 3501 3502 /* 3503 * Figure out the original VM object (it will match the underlying 3504 * VM pages). Note that swap cached data uses page indices relative 3505 * to that object, not relative to bio->bio_offset. 3506 */ 3507 if (bp->b_flags & B_CLUSTER) 3508 object = vp->v_object; 3509 else 3510 object = bp->b_vp->v_object; 3511 3512 /* 3513 * In order to be able to use the swap cache all underlying VM 3514 * pages must be marked as such, and we can't have any bogus pages. 3515 */ 3516 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 3517 m = bp->b_xio.xio_pages[i]; 3518 if ((m->flags & PG_SWAPPED) == 0) 3519 break; 3520 if (m == bogus_page) 3521 break; 3522 } 3523 3524 /* 3525 * If we are good then issue the I/O using swap_pager_strategy() 3526 */ 3527 if (i == bp->b_xio.xio_npages) { 3528 m = bp->b_xio.xio_pages[0]; 3529 nbio = push_bio(bio); 3530 nbio->bio_offset = ptoa(m->pindex); 3531 KKASSERT(m->object == object); 3532 swap_pager_strategy(object, nbio); 3533 return(1); 3534 } 3535 return(0); 3536 } 3537 3538 /* 3539 * bpdone: 3540 * 3541 * Finish I/O on a buffer after all BIOs have been processed. 3542 * Called when the bio chain is exhausted or by biowait. If called 3543 * by biowait, elseit is typically 0. 3544 * 3545 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3546 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3547 * assuming B_INVAL is clear. 3548 * 3549 * For the VMIO case, we set B_CACHE if the op was a read and no 3550 * read error occured, or if the op was a write. B_CACHE is never 3551 * set if the buffer is invalid or otherwise uncacheable. 3552 * 3553 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3554 * initiator to leave B_INVAL set to brelse the buffer out of existance 3555 * in the biodone routine. 3556 */ 3557 void 3558 bpdone(struct buf *bp, int elseit) 3559 { 3560 buf_cmd_t cmd; 3561 3562 KASSERT(BUF_REFCNTNB(bp) > 0, 3563 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3564 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3565 ("biodone: bp %p already done!", bp)); 3566 3567 /* 3568 * No more BIOs are left. All completion functions have been dealt 3569 * with, now we clean up the buffer. 3570 */ 3571 cmd = bp->b_cmd; 3572 bp->b_cmd = BUF_CMD_DONE; 3573 3574 /* 3575 * Only reads and writes are processed past this point. 3576 */ 3577 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3578 if (cmd == BUF_CMD_FREEBLKS) 3579 bp->b_flags |= B_NOCACHE; 3580 if (elseit) 3581 brelse(bp); 3582 return; 3583 } 3584 3585 /* 3586 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3587 * a lot worse. XXX - move this above the clearing of b_cmd 3588 */ 3589 if (LIST_FIRST(&bp->b_dep) != NULL) 3590 buf_complete(bp); /* MPSAFE */ 3591 3592 /* 3593 * A failed write must re-dirty the buffer unless B_INVAL 3594 * was set. Only applicable to normal buffers (with VPs). 3595 * vinum buffers may not have a vp. 3596 */ 3597 if (cmd == BUF_CMD_WRITE && 3598 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3599 bp->b_flags &= ~B_NOCACHE; 3600 if (bp->b_vp) 3601 bdirty(bp); 3602 } 3603 3604 if (bp->b_flags & B_VMIO) { 3605 int i; 3606 vm_ooffset_t foff; 3607 vm_page_t m; 3608 vm_object_t obj; 3609 int iosize; 3610 struct vnode *vp = bp->b_vp; 3611 3612 obj = vp->v_object; 3613 3614 #if defined(VFS_BIO_DEBUG) 3615 if (vp->v_auxrefs == 0) 3616 panic("biodone: zero vnode hold count"); 3617 if ((vp->v_flag & VOBJBUF) == 0) 3618 panic("biodone: vnode is not setup for merged cache"); 3619 #endif 3620 3621 foff = bp->b_loffset; 3622 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3623 KASSERT(obj != NULL, ("biodone: missing VM object")); 3624 3625 #if defined(VFS_BIO_DEBUG) 3626 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3627 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3628 obj->paging_in_progress, bp->b_xio.xio_npages); 3629 } 3630 #endif 3631 3632 /* 3633 * Set B_CACHE if the op was a normal read and no error 3634 * occured. B_CACHE is set for writes in the b*write() 3635 * routines. 3636 */ 3637 iosize = bp->b_bcount - bp->b_resid; 3638 if (cmd == BUF_CMD_READ && 3639 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3640 bp->b_flags |= B_CACHE; 3641 } 3642 3643 crit_enter(); 3644 get_mplock(); 3645 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3646 int bogusflag = 0; 3647 int resid; 3648 3649 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3650 if (resid > iosize) 3651 resid = iosize; 3652 3653 /* 3654 * cleanup bogus pages, restoring the originals. Since 3655 * the originals should still be wired, we don't have 3656 * to worry about interrupt/freeing races destroying 3657 * the VM object association. 3658 */ 3659 m = bp->b_xio.xio_pages[i]; 3660 if (m == bogus_page) { 3661 bogusflag = 1; 3662 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3663 if (m == NULL) 3664 panic("biodone: page disappeared"); 3665 bp->b_xio.xio_pages[i] = m; 3666 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3667 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3668 } 3669 #if defined(VFS_BIO_DEBUG) 3670 if (OFF_TO_IDX(foff) != m->pindex) { 3671 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3672 "mismatch\n", 3673 (unsigned long)foff, (long)m->pindex); 3674 } 3675 #endif 3676 3677 /* 3678 * In the write case, the valid and clean bits are 3679 * already changed correctly (see bdwrite()), so we 3680 * only need to do this here in the read case. 3681 */ 3682 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3683 vfs_clean_one_page(bp, i, m); 3684 } 3685 vm_page_flag_clear(m, PG_ZERO); 3686 3687 /* 3688 * when debugging new filesystems or buffer I/O 3689 * methods, this is the most common error that pops 3690 * up. if you see this, you have not set the page 3691 * busy flag correctly!!! 3692 */ 3693 if (m->busy == 0) { 3694 kprintf("biodone: page busy < 0, " 3695 "pindex: %d, foff: 0x(%x,%x), " 3696 "resid: %d, index: %d\n", 3697 (int) m->pindex, (int)(foff >> 32), 3698 (int) foff & 0xffffffff, resid, i); 3699 if (!vn_isdisk(vp, NULL)) 3700 kprintf(" iosize: %ld, loffset: %lld, " 3701 "flags: 0x%08x, npages: %d\n", 3702 bp->b_vp->v_mount->mnt_stat.f_iosize, 3703 (long long)bp->b_loffset, 3704 bp->b_flags, bp->b_xio.xio_npages); 3705 else 3706 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3707 (long long)bp->b_loffset, 3708 bp->b_flags, bp->b_xio.xio_npages); 3709 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3710 m->valid, m->dirty, m->wire_count); 3711 panic("biodone: page busy < 0"); 3712 } 3713 vm_page_io_finish(m); 3714 vm_object_pip_subtract(obj, 1); 3715 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3716 iosize -= resid; 3717 } 3718 bp->b_flags &= ~B_HASBOGUS; 3719 if (obj) 3720 vm_object_pip_wakeupn(obj, 0); 3721 rel_mplock(); 3722 crit_exit(); 3723 } 3724 3725 /* 3726 * Finish up by releasing the buffer. There are no more synchronous 3727 * or asynchronous completions, those were handled by bio_done 3728 * callbacks. 3729 */ 3730 if (elseit) { 3731 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3732 brelse(bp); 3733 else 3734 bqrelse(bp); 3735 } 3736 } 3737 3738 /* 3739 * Normal biodone. 3740 */ 3741 void 3742 biodone(struct bio *bio) 3743 { 3744 struct buf *bp = bio->bio_buf; 3745 3746 runningbufwakeup(bp); 3747 3748 /* 3749 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3750 */ 3751 while (bio) { 3752 biodone_t *done_func; 3753 struct bio_track *track; 3754 3755 /* 3756 * BIO tracking. Most but not all BIOs are tracked. 3757 */ 3758 if ((track = bio->bio_track) != NULL) { 3759 bio_track_rel(track); 3760 bio->bio_track = NULL; 3761 } 3762 3763 /* 3764 * A bio_done function terminates the loop. The function 3765 * will be responsible for any further chaining and/or 3766 * buffer management. 3767 * 3768 * WARNING! The done function can deallocate the buffer! 3769 */ 3770 if ((done_func = bio->bio_done) != NULL) { 3771 bio->bio_done = NULL; 3772 done_func(bio); 3773 return; 3774 } 3775 bio = bio->bio_prev; 3776 } 3777 3778 /* 3779 * If we've run out of bio's do normal [a]synchronous completion. 3780 */ 3781 bpdone(bp, 1); 3782 } 3783 3784 /* 3785 * Synchronous biodone - this terminates a synchronous BIO. 3786 * 3787 * bpdone() is called with elseit=FALSE, leaving the buffer completed 3788 * but still locked. The caller must brelse() the buffer after waiting 3789 * for completion. 3790 */ 3791 void 3792 biodone_sync(struct bio *bio) 3793 { 3794 struct buf *bp = bio->bio_buf; 3795 int flags; 3796 int nflags; 3797 3798 KKASSERT(bio == &bp->b_bio1); 3799 bpdone(bp, 0); 3800 3801 for (;;) { 3802 flags = bio->bio_flags; 3803 nflags = (flags | BIO_DONE) & ~BIO_WANT; 3804 3805 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3806 if (flags & BIO_WANT) 3807 wakeup(bio); 3808 break; 3809 } 3810 } 3811 } 3812 3813 /* 3814 * vfs_unbusy_pages: 3815 * 3816 * This routine is called in lieu of iodone in the case of 3817 * incomplete I/O. This keeps the busy status for pages 3818 * consistant. 3819 */ 3820 void 3821 vfs_unbusy_pages(struct buf *bp) 3822 { 3823 int i; 3824 3825 runningbufwakeup(bp); 3826 if (bp->b_flags & B_VMIO) { 3827 struct vnode *vp = bp->b_vp; 3828 vm_object_t obj; 3829 3830 obj = vp->v_object; 3831 3832 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3833 vm_page_t m = bp->b_xio.xio_pages[i]; 3834 3835 /* 3836 * When restoring bogus changes the original pages 3837 * should still be wired, so we are in no danger of 3838 * losing the object association and do not need 3839 * critical section protection particularly. 3840 */ 3841 if (m == bogus_page) { 3842 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3843 if (!m) { 3844 panic("vfs_unbusy_pages: page missing"); 3845 } 3846 bp->b_xio.xio_pages[i] = m; 3847 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3848 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3849 } 3850 vm_object_pip_subtract(obj, 1); 3851 vm_page_flag_clear(m, PG_ZERO); 3852 vm_page_io_finish(m); 3853 } 3854 bp->b_flags &= ~B_HASBOGUS; 3855 vm_object_pip_wakeupn(obj, 0); 3856 } 3857 } 3858 3859 /* 3860 * vfs_busy_pages: 3861 * 3862 * This routine is called before a device strategy routine. 3863 * It is used to tell the VM system that paging I/O is in 3864 * progress, and treat the pages associated with the buffer 3865 * almost as being PG_BUSY. Also the object 'paging_in_progress' 3866 * flag is handled to make sure that the object doesn't become 3867 * inconsistant. 3868 * 3869 * Since I/O has not been initiated yet, certain buffer flags 3870 * such as B_ERROR or B_INVAL may be in an inconsistant state 3871 * and should be ignored. 3872 */ 3873 void 3874 vfs_busy_pages(struct vnode *vp, struct buf *bp) 3875 { 3876 int i, bogus; 3877 struct lwp *lp = curthread->td_lwp; 3878 3879 /* 3880 * The buffer's I/O command must already be set. If reading, 3881 * B_CACHE must be 0 (double check against callers only doing 3882 * I/O when B_CACHE is 0). 3883 */ 3884 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3885 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 3886 3887 if (bp->b_flags & B_VMIO) { 3888 vm_object_t obj; 3889 3890 obj = vp->v_object; 3891 KASSERT(bp->b_loffset != NOOFFSET, 3892 ("vfs_busy_pages: no buffer offset")); 3893 3894 /* 3895 * Loop until none of the pages are busy. 3896 */ 3897 retry: 3898 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3899 vm_page_t m = bp->b_xio.xio_pages[i]; 3900 3901 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3902 goto retry; 3903 } 3904 3905 /* 3906 * Setup for I/O, soft-busy the page right now because 3907 * the next loop may block. 3908 */ 3909 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3910 vm_page_t m = bp->b_xio.xio_pages[i]; 3911 3912 vm_page_flag_clear(m, PG_ZERO); 3913 if ((bp->b_flags & B_CLUSTER) == 0) { 3914 vm_object_pip_add(obj, 1); 3915 vm_page_io_start(m); 3916 } 3917 } 3918 3919 /* 3920 * Adjust protections for I/O and do bogus-page mapping. 3921 * Assume that vm_page_protect() can block (it can block 3922 * if VM_PROT_NONE, don't take any chances regardless). 3923 * 3924 * In particular note that for writes we must incorporate 3925 * page dirtyness from the VM system into the buffer's 3926 * dirty range. 3927 * 3928 * For reads we theoretically must incorporate page dirtyness 3929 * from the VM system to determine if the page needs bogus 3930 * replacement, but we shortcut the test by simply checking 3931 * that all m->valid bits are set, indicating that the page 3932 * is fully valid and does not need to be re-read. For any 3933 * VM system dirtyness the page will also be fully valid 3934 * since it was mapped at one point. 3935 */ 3936 bogus = 0; 3937 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3938 vm_page_t m = bp->b_xio.xio_pages[i]; 3939 3940 vm_page_flag_clear(m, PG_ZERO); /* XXX */ 3941 if (bp->b_cmd == BUF_CMD_WRITE) { 3942 /* 3943 * When readying a vnode-backed buffer for 3944 * a write we must zero-fill any invalid 3945 * portions of the backing VM pages, mark 3946 * it valid and clear related dirty bits. 3947 * 3948 * vfs_clean_one_page() incorporates any 3949 * VM dirtyness and updates the b_dirtyoff 3950 * range (after we've made the page RO). 3951 * 3952 * It is also expected that the pmap modified 3953 * bit has already been cleared by the 3954 * vm_page_protect(). We may not be able 3955 * to clear all dirty bits for a page if it 3956 * was also memory mapped (NFS). 3957 * 3958 * Finally be sure to unassign any swap-cache 3959 * backing store as it is now stale. 3960 */ 3961 vm_page_protect(m, VM_PROT_READ); 3962 vfs_clean_one_page(bp, i, m); 3963 swap_pager_unswapped(m); 3964 } else if (m->valid == VM_PAGE_BITS_ALL) { 3965 /* 3966 * When readying a vnode-backed buffer for 3967 * read we must replace any dirty pages with 3968 * a bogus page so dirty data is not destroyed 3969 * when filling gaps. 3970 * 3971 * To avoid testing whether the page is 3972 * dirty we instead test that the page was 3973 * at some point mapped (m->valid fully 3974 * valid) with the understanding that 3975 * this also covers the dirty case. 3976 */ 3977 bp->b_xio.xio_pages[i] = bogus_page; 3978 bp->b_flags |= B_HASBOGUS; 3979 bogus++; 3980 } else if (m->valid & m->dirty) { 3981 /* 3982 * This case should not occur as partial 3983 * dirtyment can only happen if the buffer 3984 * is B_CACHE, and this code is not entered 3985 * if the buffer is B_CACHE. 3986 */ 3987 kprintf("Warning: vfs_busy_pages - page not " 3988 "fully valid! loff=%jx bpf=%08x " 3989 "idx=%d val=%02x dir=%02x\n", 3990 (intmax_t)bp->b_loffset, bp->b_flags, 3991 i, m->valid, m->dirty); 3992 vm_page_protect(m, VM_PROT_NONE); 3993 } else { 3994 /* 3995 * The page is not valid and can be made 3996 * part of the read. 3997 */ 3998 vm_page_protect(m, VM_PROT_NONE); 3999 } 4000 } 4001 if (bogus) { 4002 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4003 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 4004 } 4005 } 4006 4007 /* 4008 * This is the easiest place to put the process accounting for the I/O 4009 * for now. 4010 */ 4011 if (lp != NULL) { 4012 if (bp->b_cmd == BUF_CMD_READ) 4013 lp->lwp_ru.ru_inblock++; 4014 else 4015 lp->lwp_ru.ru_oublock++; 4016 } 4017 } 4018 4019 /* 4020 * vfs_clean_pages: 4021 * 4022 * Tell the VM system that the pages associated with this buffer 4023 * are clean. This is used for delayed writes where the data is 4024 * going to go to disk eventually without additional VM intevention. 4025 * 4026 * Note that while we only really need to clean through to b_bcount, we 4027 * just go ahead and clean through to b_bufsize. 4028 */ 4029 static void 4030 vfs_clean_pages(struct buf *bp) 4031 { 4032 vm_page_t m; 4033 int i; 4034 4035 if ((bp->b_flags & B_VMIO) == 0) 4036 return; 4037 4038 KASSERT(bp->b_loffset != NOOFFSET, 4039 ("vfs_clean_pages: no buffer offset")); 4040 4041 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4042 m = bp->b_xio.xio_pages[i]; 4043 vfs_clean_one_page(bp, i, m); 4044 } 4045 } 4046 4047 /* 4048 * vfs_clean_one_page: 4049 * 4050 * Set the valid bits and clear the dirty bits in a page within a 4051 * buffer. The range is restricted to the buffer's size and the 4052 * buffer's logical offset might index into the first page. 4053 * 4054 * The caller has busied or soft-busied the page and it is not mapped, 4055 * test and incorporate the dirty bits into b_dirtyoff/end before 4056 * clearing them. Note that we need to clear the pmap modified bits 4057 * after determining the the page was dirty, vm_page_set_validclean() 4058 * does not do it for us. 4059 * 4060 * This routine is typically called after a read completes (dirty should 4061 * be zero in that case as we are not called on bogus-replace pages), 4062 * or before a write is initiated. 4063 */ 4064 static void 4065 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 4066 { 4067 int bcount; 4068 int xoff; 4069 int soff; 4070 int eoff; 4071 4072 /* 4073 * Calculate offset range within the page but relative to buffer's 4074 * loffset. loffset might be offset into the first page. 4075 */ 4076 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4077 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4078 4079 if (pageno == 0) { 4080 soff = xoff; 4081 eoff = PAGE_SIZE; 4082 } else { 4083 soff = (pageno << PAGE_SHIFT); 4084 eoff = soff + PAGE_SIZE; 4085 } 4086 if (eoff > bcount) 4087 eoff = bcount; 4088 if (soff >= eoff) 4089 return; 4090 4091 /* 4092 * Test dirty bits and adjust b_dirtyoff/end. 4093 * 4094 * If dirty pages are incorporated into the bp any prior 4095 * B_NEEDCOMMIT state (NFS) must be cleared because the 4096 * caller has not taken into account the new dirty data. 4097 * 4098 * If the page was memory mapped the dirty bits might go beyond the 4099 * end of the buffer, but we can't really make the assumption that 4100 * a file EOF straddles the buffer (even though this is the case for 4101 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 4102 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 4103 * This also saves some console spam. 4104 * 4105 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK, 4106 * NFS can handle huge commits but not huge writes. 4107 */ 4108 vm_page_test_dirty(m); 4109 if (m->dirty) { 4110 if ((bp->b_flags & B_NEEDCOMMIT) && 4111 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 4112 if (debug_commit) 4113 kprintf("Warning: vfs_clean_one_page: bp %p " 4114 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT" 4115 " cmd %d vd %02x/%02x x/s/e %d %d %d " 4116 "doff/end %d %d\n", 4117 bp, (intmax_t)bp->b_loffset, bp->b_bcount, 4118 bp->b_flags, bp->b_cmd, 4119 m->valid, m->dirty, xoff, soff, eoff, 4120 bp->b_dirtyoff, bp->b_dirtyend); 4121 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 4122 if (debug_commit) 4123 print_backtrace(-1); 4124 } 4125 /* 4126 * Only clear the pmap modified bits if ALL the dirty bits 4127 * are set, otherwise the system might mis-clear portions 4128 * of a page. 4129 */ 4130 if (m->dirty == VM_PAGE_BITS_ALL && 4131 (bp->b_flags & B_NEEDCOMMIT) == 0) { 4132 pmap_clear_modify(m); 4133 } 4134 if (bp->b_dirtyoff > soff - xoff) 4135 bp->b_dirtyoff = soff - xoff; 4136 if (bp->b_dirtyend < eoff - xoff) 4137 bp->b_dirtyend = eoff - xoff; 4138 } 4139 4140 /* 4141 * Set related valid bits, clear related dirty bits. 4142 * Does not mess with the pmap modified bit. 4143 * 4144 * WARNING! We cannot just clear all of m->dirty here as the 4145 * buffer cache buffers may use a DEV_BSIZE'd aligned 4146 * block size, or have an odd size (e.g. NFS at file EOF). 4147 * The putpages code can clear m->dirty to 0. 4148 * 4149 * If a VOP_WRITE generates a buffer cache buffer which 4150 * covers the same space as mapped writable pages the 4151 * buffer flush might not be able to clear all the dirty 4152 * bits and still require a putpages from the VM system 4153 * to finish it off. 4154 */ 4155 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 4156 } 4157 4158 /* 4159 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty. 4160 * The page data is assumed to be valid (there is no zeroing here). 4161 */ 4162 static void 4163 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m) 4164 { 4165 int bcount; 4166 int xoff; 4167 int soff; 4168 int eoff; 4169 4170 /* 4171 * Calculate offset range within the page but relative to buffer's 4172 * loffset. loffset might be offset into the first page. 4173 */ 4174 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4175 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4176 4177 if (pageno == 0) { 4178 soff = xoff; 4179 eoff = PAGE_SIZE; 4180 } else { 4181 soff = (pageno << PAGE_SHIFT); 4182 eoff = soff + PAGE_SIZE; 4183 } 4184 if (eoff > bcount) 4185 eoff = bcount; 4186 if (soff >= eoff) 4187 return; 4188 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff); 4189 } 4190 4191 /* 4192 * vfs_bio_clrbuf: 4193 * 4194 * Clear a buffer. This routine essentially fakes an I/O, so we need 4195 * to clear B_ERROR and B_INVAL. 4196 * 4197 * Note that while we only theoretically need to clear through b_bcount, 4198 * we go ahead and clear through b_bufsize. 4199 */ 4200 4201 void 4202 vfs_bio_clrbuf(struct buf *bp) 4203 { 4204 int i, mask = 0; 4205 caddr_t sa, ea; 4206 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 4207 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 4208 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4209 (bp->b_loffset & PAGE_MASK) == 0) { 4210 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4211 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 4212 bp->b_resid = 0; 4213 return; 4214 } 4215 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 4216 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 4217 bzero(bp->b_data, bp->b_bufsize); 4218 bp->b_xio.xio_pages[0]->valid |= mask; 4219 bp->b_resid = 0; 4220 return; 4221 } 4222 } 4223 sa = bp->b_data; 4224 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 4225 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 4226 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 4227 ea = (caddr_t)(vm_offset_t)ulmin( 4228 (u_long)(vm_offset_t)ea, 4229 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 4230 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4231 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 4232 continue; 4233 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 4234 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 4235 bzero(sa, ea - sa); 4236 } 4237 } else { 4238 for (; sa < ea; sa += DEV_BSIZE, j++) { 4239 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 4240 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 4241 bzero(sa, DEV_BSIZE); 4242 } 4243 } 4244 bp->b_xio.xio_pages[i]->valid |= mask; 4245 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 4246 } 4247 bp->b_resid = 0; 4248 } else { 4249 clrbuf(bp); 4250 } 4251 } 4252 4253 /* 4254 * vm_hold_load_pages: 4255 * 4256 * Load pages into the buffer's address space. The pages are 4257 * allocated from the kernel object in order to reduce interference 4258 * with the any VM paging I/O activity. The range of loaded 4259 * pages will be wired. 4260 * 4261 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4262 * retrieve the full range (to - from) of pages. 4263 * 4264 */ 4265 void 4266 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4267 { 4268 vm_offset_t pg; 4269 vm_page_t p; 4270 int index; 4271 4272 to = round_page(to); 4273 from = round_page(from); 4274 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4275 4276 pg = from; 4277 while (pg < to) { 4278 /* 4279 * Note: must allocate system pages since blocking here 4280 * could intefere with paging I/O, no matter which 4281 * process we are. 4282 */ 4283 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4284 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4285 if (p) { 4286 vm_page_wire(p); 4287 p->valid = VM_PAGE_BITS_ALL; 4288 vm_page_flag_clear(p, PG_ZERO); 4289 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4290 bp->b_xio.xio_pages[index] = p; 4291 vm_page_wakeup(p); 4292 4293 pg += PAGE_SIZE; 4294 ++index; 4295 } 4296 } 4297 bp->b_xio.xio_npages = index; 4298 } 4299 4300 /* 4301 * Allocate pages for a buffer cache buffer. 4302 * 4303 * Under extremely severe memory conditions even allocating out of the 4304 * system reserve can fail. If this occurs we must allocate out of the 4305 * interrupt reserve to avoid a deadlock with the pageout daemon. 4306 * 4307 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 4308 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 4309 * against the pageout daemon if pages are not freed from other sources. 4310 */ 4311 static 4312 vm_page_t 4313 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4314 { 4315 vm_page_t p; 4316 4317 /* 4318 * Try a normal allocation, allow use of system reserve. 4319 */ 4320 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 4321 if (p) 4322 return(p); 4323 4324 /* 4325 * The normal allocation failed and we clearly have a page 4326 * deficit. Try to reclaim some clean VM pages directly 4327 * from the buffer cache. 4328 */ 4329 vm_pageout_deficit += deficit; 4330 recoverbufpages(); 4331 4332 /* 4333 * We may have blocked, the caller will know what to do if the 4334 * page now exists. 4335 */ 4336 if (vm_page_lookup(obj, pg)) 4337 return(NULL); 4338 4339 /* 4340 * Allocate and allow use of the interrupt reserve. 4341 * 4342 * If after all that we still can't allocate a VM page we are 4343 * in real trouble, but we slog on anyway hoping that the system 4344 * won't deadlock. 4345 */ 4346 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 4347 VM_ALLOC_INTERRUPT); 4348 if (p) { 4349 if (vm_page_count_severe()) { 4350 kprintf("bio_page_alloc: WARNING emergency page " 4351 "allocation\n"); 4352 vm_wait(hz / 20); 4353 } 4354 } else { 4355 kprintf("bio_page_alloc: WARNING emergency page " 4356 "allocation failed\n"); 4357 vm_wait(hz * 5); 4358 } 4359 return(p); 4360 } 4361 4362 /* 4363 * vm_hold_free_pages: 4364 * 4365 * Return pages associated with the buffer back to the VM system. 4366 * 4367 * The range of pages underlying the buffer's address space will 4368 * be unmapped and un-wired. 4369 */ 4370 void 4371 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4372 { 4373 vm_offset_t pg; 4374 vm_page_t p; 4375 int index, newnpages; 4376 4377 from = round_page(from); 4378 to = round_page(to); 4379 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4380 newnpages = index; 4381 4382 lwkt_gettoken(&vm_token); 4383 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4384 p = bp->b_xio.xio_pages[index]; 4385 if (p && (index < bp->b_xio.xio_npages)) { 4386 if (p->busy) { 4387 kprintf("vm_hold_free_pages: doffset: %lld, " 4388 "loffset: %lld\n", 4389 (long long)bp->b_bio2.bio_offset, 4390 (long long)bp->b_loffset); 4391 } 4392 bp->b_xio.xio_pages[index] = NULL; 4393 pmap_kremove(pg); 4394 vm_page_busy(p); 4395 vm_page_unwire(p, 0); 4396 vm_page_free(p); 4397 } 4398 } 4399 bp->b_xio.xio_npages = newnpages; 4400 lwkt_reltoken(&vm_token); 4401 } 4402 4403 /* 4404 * vmapbuf: 4405 * 4406 * Map a user buffer into KVM via a pbuf. On return the buffer's 4407 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4408 * initialized. 4409 */ 4410 int 4411 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4412 { 4413 caddr_t addr; 4414 vm_offset_t va; 4415 vm_page_t m; 4416 int vmprot; 4417 int error; 4418 int pidx; 4419 int i; 4420 4421 /* 4422 * bp had better have a command and it better be a pbuf. 4423 */ 4424 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4425 KKASSERT(bp->b_flags & B_PAGING); 4426 KKASSERT(bp->b_kvabase); 4427 4428 if (bytes < 0) 4429 return (-1); 4430 4431 /* 4432 * Map the user data into KVM. Mappings have to be page-aligned. 4433 */ 4434 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4435 pidx = 0; 4436 4437 vmprot = VM_PROT_READ; 4438 if (bp->b_cmd == BUF_CMD_READ) 4439 vmprot |= VM_PROT_WRITE; 4440 4441 while (addr < udata + bytes) { 4442 /* 4443 * Do the vm_fault if needed; do the copy-on-write thing 4444 * when reading stuff off device into memory. 4445 * 4446 * vm_fault_page*() returns a held VM page. 4447 */ 4448 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4449 va = trunc_page(va); 4450 4451 m = vm_fault_page_quick(va, vmprot, &error); 4452 if (m == NULL) { 4453 for (i = 0; i < pidx; ++i) { 4454 vm_page_unhold(bp->b_xio.xio_pages[i]); 4455 bp->b_xio.xio_pages[i] = NULL; 4456 } 4457 return(-1); 4458 } 4459 bp->b_xio.xio_pages[pidx] = m; 4460 addr += PAGE_SIZE; 4461 ++pidx; 4462 } 4463 4464 /* 4465 * Map the page array and set the buffer fields to point to 4466 * the mapped data buffer. 4467 */ 4468 if (pidx > btoc(MAXPHYS)) 4469 panic("vmapbuf: mapped more than MAXPHYS"); 4470 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4471 4472 bp->b_xio.xio_npages = pidx; 4473 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4474 bp->b_bcount = bytes; 4475 bp->b_bufsize = bytes; 4476 return(0); 4477 } 4478 4479 /* 4480 * vunmapbuf: 4481 * 4482 * Free the io map PTEs associated with this IO operation. 4483 * We also invalidate the TLB entries and restore the original b_addr. 4484 */ 4485 void 4486 vunmapbuf(struct buf *bp) 4487 { 4488 int pidx; 4489 int npages; 4490 4491 KKASSERT(bp->b_flags & B_PAGING); 4492 4493 npages = bp->b_xio.xio_npages; 4494 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4495 for (pidx = 0; pidx < npages; ++pidx) { 4496 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4497 bp->b_xio.xio_pages[pidx] = NULL; 4498 } 4499 bp->b_xio.xio_npages = 0; 4500 bp->b_data = bp->b_kvabase; 4501 } 4502 4503 /* 4504 * Scan all buffers in the system and issue the callback. 4505 */ 4506 int 4507 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4508 { 4509 int count = 0; 4510 int error; 4511 int n; 4512 4513 for (n = 0; n < nbuf; ++n) { 4514 if ((error = callback(&buf[n], info)) < 0) { 4515 count = error; 4516 break; 4517 } 4518 count += error; 4519 } 4520 return (count); 4521 } 4522 4523 /* 4524 * nestiobuf_iodone: biodone callback for nested buffers and propagate 4525 * completion to the master buffer. 4526 */ 4527 static void 4528 nestiobuf_iodone(struct bio *bio) 4529 { 4530 struct bio *mbio; 4531 struct buf *mbp, *bp; 4532 int error; 4533 int donebytes; 4534 4535 bp = bio->bio_buf; 4536 mbio = bio->bio_caller_info1.ptr; 4537 mbp = mbio->bio_buf; 4538 4539 KKASSERT(bp->b_bcount <= bp->b_bufsize); 4540 KKASSERT(mbp != bp); 4541 4542 error = bp->b_error; 4543 if (bp->b_error == 0 && 4544 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 4545 /* 4546 * Not all got transfered, raise an error. We have no way to 4547 * propagate these conditions to mbp. 4548 */ 4549 error = EIO; 4550 } 4551 4552 donebytes = bp->b_bufsize; 4553 4554 relpbuf(bp, NULL); 4555 nestiobuf_done(mbio, donebytes, error); 4556 } 4557 4558 void 4559 nestiobuf_done(struct bio *mbio, int donebytes, int error) 4560 { 4561 struct buf *mbp; 4562 4563 mbp = mbio->bio_buf; 4564 4565 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0); 4566 4567 /* 4568 * If an error occured, propagate it to the master buffer. 4569 * 4570 * Several biodone()s may wind up running concurrently so 4571 * use an atomic op to adjust b_flags. 4572 */ 4573 if (error) { 4574 mbp->b_error = error; 4575 atomic_set_int(&mbp->b_flags, B_ERROR); 4576 } 4577 4578 /* 4579 * Decrement the operations in progress counter and terminate the 4580 * I/O if this was the last bit. 4581 */ 4582 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4583 mbp->b_resid = 0; 4584 biodone(mbio); 4585 } 4586 } 4587 4588 /* 4589 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent 4590 * the mbio from being biodone()'d while we are still adding sub-bios to 4591 * it. 4592 */ 4593 void 4594 nestiobuf_init(struct bio *bio) 4595 { 4596 bio->bio_driver_info = (void *)1; 4597 } 4598 4599 /* 4600 * The BIOs added to the nestedio have already been started, remove the 4601 * count that placeheld our mbio and biodone() it if the count would 4602 * transition to 0. 4603 */ 4604 void 4605 nestiobuf_start(struct bio *mbio) 4606 { 4607 struct buf *mbp = mbio->bio_buf; 4608 4609 /* 4610 * Decrement the operations in progress counter and terminate the 4611 * I/O if this was the last bit. 4612 */ 4613 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4614 if (mbp->b_flags & B_ERROR) 4615 mbp->b_resid = mbp->b_bcount; 4616 else 4617 mbp->b_resid = 0; 4618 biodone(mbio); 4619 } 4620 } 4621 4622 /* 4623 * Set an intermediate error prior to calling nestiobuf_start() 4624 */ 4625 void 4626 nestiobuf_error(struct bio *mbio, int error) 4627 { 4628 struct buf *mbp = mbio->bio_buf; 4629 4630 if (error) { 4631 mbp->b_error = error; 4632 atomic_set_int(&mbp->b_flags, B_ERROR); 4633 } 4634 } 4635 4636 /* 4637 * nestiobuf_add: setup a "nested" buffer. 4638 * 4639 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 4640 * => 'bp' should be a buffer allocated by getiobuf. 4641 * => 'offset' is a byte offset in the master buffer. 4642 * => 'size' is a size in bytes of this nested buffer. 4643 */ 4644 void 4645 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size) 4646 { 4647 struct buf *mbp = mbio->bio_buf; 4648 struct vnode *vp = mbp->b_vp; 4649 4650 KKASSERT(mbp->b_bcount >= offset + size); 4651 4652 atomic_add_int((int *)&mbio->bio_driver_info, 1); 4653 4654 /* kernel needs to own the lock for it to be released in biodone */ 4655 BUF_KERNPROC(bp); 4656 bp->b_vp = vp; 4657 bp->b_cmd = mbp->b_cmd; 4658 bp->b_bio1.bio_done = nestiobuf_iodone; 4659 bp->b_data = (char *)mbp->b_data + offset; 4660 bp->b_resid = bp->b_bcount = size; 4661 bp->b_bufsize = bp->b_bcount; 4662 4663 bp->b_bio1.bio_track = NULL; 4664 bp->b_bio1.bio_caller_info1.ptr = mbio; 4665 } 4666 4667 /* 4668 * print out statistics from the current status of the buffer pool 4669 * this can be toggeled by the system control option debug.syncprt 4670 */ 4671 #ifdef DEBUG 4672 void 4673 vfs_bufstats(void) 4674 { 4675 int i, j, count; 4676 struct buf *bp; 4677 struct bqueues *dp; 4678 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4679 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4680 4681 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4682 count = 0; 4683 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4684 counts[j] = 0; 4685 crit_enter(); 4686 TAILQ_FOREACH(bp, dp, b_freelist) { 4687 counts[bp->b_bufsize/PAGE_SIZE]++; 4688 count++; 4689 } 4690 crit_exit(); 4691 kprintf("%s: total-%d", bname[i], count); 4692 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4693 if (counts[j] != 0) 4694 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4695 kprintf("\n"); 4696 } 4697 } 4698 #endif 4699 4700 #ifdef DDB 4701 4702 DB_SHOW_COMMAND(buffer, db_show_buffer) 4703 { 4704 /* get args */ 4705 struct buf *bp = (struct buf *)addr; 4706 4707 if (!have_addr) { 4708 db_printf("usage: show buffer <addr>\n"); 4709 return; 4710 } 4711 4712 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4713 db_printf("b_cmd = %d\n", bp->b_cmd); 4714 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4715 "b_resid = %d\n, b_data = %p, " 4716 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4717 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4718 bp->b_data, 4719 (long long)bp->b_bio2.bio_offset, 4720 (long long)(bp->b_bio2.bio_next ? 4721 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4722 if (bp->b_xio.xio_npages) { 4723 int i; 4724 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4725 bp->b_xio.xio_npages); 4726 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4727 vm_page_t m; 4728 m = bp->b_xio.xio_pages[i]; 4729 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4730 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4731 if ((i + 1) < bp->b_xio.xio_npages) 4732 db_printf(","); 4733 } 4734 db_printf("\n"); 4735 } 4736 } 4737 #endif /* DDB */ 4738