1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/dsched.h> 48 #include <sys/proc.h> 49 #include <vm/vm.h> 50 #include <vm/vm_param.h> 51 #include <vm/vm_kern.h> 52 #include <vm/vm_pageout.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_map.h> 57 #include <vm/vm_pager.h> 58 #include <vm/swap_pager.h> 59 60 #include <sys/buf2.h> 61 #include <sys/thread2.h> 62 #include <sys/spinlock2.h> 63 #include <sys/mplock2.h> 64 #include <vm/vm_page2.h> 65 66 #include "opt_ddb.h" 67 #ifdef DDB 68 #include <ddb/ddb.h> 69 #endif 70 71 /* 72 * Buffer queues. 73 */ 74 enum bufq_type { 75 BQUEUE_NONE, /* not on any queue */ 76 BQUEUE_LOCKED, /* locked buffers */ 77 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 78 BQUEUE_DIRTY, /* B_DELWRI buffers */ 79 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 80 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 81 BQUEUE_EMPTY, /* empty buffer headers */ 82 83 BUFFER_QUEUES /* number of buffer queues */ 84 }; 85 86 typedef enum bufq_type bufq_type_t; 87 88 #define BD_WAKE_SIZE 16384 89 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 90 91 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 92 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin); 93 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin); 94 95 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 96 97 struct buf *buf; /* buffer header pool */ 98 99 static void vfs_clean_pages(struct buf *bp); 100 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 101 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m); 102 static void vfs_vmio_release(struct buf *bp); 103 static int flushbufqueues(bufq_type_t q); 104 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 105 106 static void bd_signal(int totalspace); 107 static void buf_daemon(void); 108 static void buf_daemon_hw(void); 109 110 /* 111 * bogus page -- for I/O to/from partially complete buffers 112 * this is a temporary solution to the problem, but it is not 113 * really that bad. it would be better to split the buffer 114 * for input in the case of buffers partially already in memory, 115 * but the code is intricate enough already. 116 */ 117 vm_page_t bogus_page; 118 119 /* 120 * These are all static, but make the ones we export globals so we do 121 * not need to use compiler magic. 122 */ 123 int bufspace; /* locked by buffer_map */ 124 int maxbufspace; 125 static int bufmallocspace; /* atomic ops */ 126 int maxbufmallocspace, lobufspace, hibufspace; 127 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 128 static int lorunningspace; 129 static int hirunningspace; 130 static int runningbufreq; /* locked by bufcspin */ 131 static int dirtybufspace; /* locked by bufcspin */ 132 static int dirtybufcount; /* locked by bufcspin */ 133 static int dirtybufspacehw; /* locked by bufcspin */ 134 static int dirtybufcounthw; /* locked by bufcspin */ 135 static int runningbufspace; /* locked by bufcspin */ 136 static int runningbufcount; /* locked by bufcspin */ 137 int lodirtybufspace; 138 int hidirtybufspace; 139 static int getnewbufcalls; 140 static int getnewbufrestarts; 141 static int recoverbufcalls; 142 static int needsbuffer; /* locked by bufcspin */ 143 static int bd_request; /* locked by bufcspin */ 144 static int bd_request_hw; /* locked by bufcspin */ 145 static u_int bd_wake_ary[BD_WAKE_SIZE]; 146 static u_int bd_wake_index; 147 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */ 148 static int debug_commit; 149 150 static struct thread *bufdaemon_td; 151 static struct thread *bufdaemonhw_td; 152 153 154 /* 155 * Sysctls for operational control of the buffer cache. 156 */ 157 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 158 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 159 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 160 "High watermark used to trigger explicit flushing of dirty buffers"); 161 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 162 "Minimum amount of buffer space required for active I/O"); 163 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 164 "Maximum amount of buffer space to usable for active I/O"); 165 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0, 166 "Recycle pages to active or inactive queue transition pt 0-64"); 167 /* 168 * Sysctls determining current state of the buffer cache. 169 */ 170 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 171 "Total number of buffers in buffer cache"); 172 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 173 "Pending bytes of dirty buffers (all)"); 174 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 175 "Pending bytes of dirty buffers (heavy weight)"); 176 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 177 "Pending number of dirty buffers"); 178 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 179 "Pending number of dirty buffers (heavy weight)"); 180 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 181 "I/O bytes currently in progress due to asynchronous writes"); 182 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 183 "I/O buffers currently in progress due to asynchronous writes"); 184 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 185 "Hard limit on maximum amount of memory usable for buffer space"); 186 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 187 "Soft limit on maximum amount of memory usable for buffer space"); 188 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 189 "Minimum amount of memory to reserve for system buffer space"); 190 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 191 "Amount of memory available for buffers"); 192 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 193 0, "Maximum amount of memory reserved for buffers using malloc"); 194 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 195 "Amount of memory left for buffers using malloc-scheme"); 196 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 197 "New buffer header acquisition requests"); 198 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 199 0, "New buffer header acquisition restarts"); 200 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 201 "Recover VM space in an emergency"); 202 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 203 "Buffer acquisition restarts due to fragmented buffer map"); 204 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 205 "Amount of time KVA space was deallocated in an arbitrary buffer"); 206 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 207 "Amount of time buffer re-use operations were successful"); 208 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, ""); 209 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 210 "sizeof(struct buf)"); 211 212 char *buf_wmesg = BUF_WMESG; 213 214 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 215 #define VFS_BIO_NEED_UNUSED02 0x02 216 #define VFS_BIO_NEED_UNUSED04 0x04 217 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 218 219 /* 220 * bufspacewakeup: 221 * 222 * Called when buffer space is potentially available for recovery. 223 * getnewbuf() will block on this flag when it is unable to free 224 * sufficient buffer space. Buffer space becomes recoverable when 225 * bp's get placed back in the queues. 226 */ 227 static __inline void 228 bufspacewakeup(void) 229 { 230 /* 231 * If someone is waiting for BUF space, wake them up. Even 232 * though we haven't freed the kva space yet, the waiting 233 * process will be able to now. 234 */ 235 spin_lock(&bufcspin); 236 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 237 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 238 spin_unlock(&bufcspin); 239 wakeup(&needsbuffer); 240 } else { 241 spin_unlock(&bufcspin); 242 } 243 } 244 245 /* 246 * runningbufwakeup: 247 * 248 * Accounting for I/O in progress. 249 * 250 */ 251 static __inline void 252 runningbufwakeup(struct buf *bp) 253 { 254 int totalspace; 255 int limit; 256 257 if ((totalspace = bp->b_runningbufspace) != 0) { 258 spin_lock(&bufcspin); 259 runningbufspace -= totalspace; 260 --runningbufcount; 261 bp->b_runningbufspace = 0; 262 263 /* 264 * see waitrunningbufspace() for limit test. 265 */ 266 limit = hirunningspace * 4 / 6; 267 if (runningbufreq && runningbufspace <= limit) { 268 runningbufreq = 0; 269 spin_unlock(&bufcspin); 270 wakeup(&runningbufreq); 271 } else { 272 spin_unlock(&bufcspin); 273 } 274 bd_signal(totalspace); 275 } 276 } 277 278 /* 279 * bufcountwakeup: 280 * 281 * Called when a buffer has been added to one of the free queues to 282 * account for the buffer and to wakeup anyone waiting for free buffers. 283 * This typically occurs when large amounts of metadata are being handled 284 * by the buffer cache ( else buffer space runs out first, usually ). 285 * 286 * MPSAFE 287 */ 288 static __inline void 289 bufcountwakeup(void) 290 { 291 spin_lock(&bufcspin); 292 if (needsbuffer) { 293 needsbuffer &= ~VFS_BIO_NEED_ANY; 294 spin_unlock(&bufcspin); 295 wakeup(&needsbuffer); 296 } else { 297 spin_unlock(&bufcspin); 298 } 299 } 300 301 /* 302 * waitrunningbufspace() 303 * 304 * Wait for the amount of running I/O to drop to hirunningspace * 4 / 6. 305 * This is the point where write bursting stops so we don't want to wait 306 * for the running amount to drop below it (at least if we still want bioq 307 * to burst writes). 308 * 309 * The caller may be using this function to block in a tight loop, we 310 * must block while runningbufspace is greater then or equal to 311 * hirunningspace * 4 / 6. 312 * 313 * And even with that it may not be enough, due to the presence of 314 * B_LOCKED dirty buffers, so also wait for at least one running buffer 315 * to complete. 316 */ 317 void 318 waitrunningbufspace(void) 319 { 320 int limit = hirunningspace * 4 / 6; 321 int dummy; 322 323 spin_lock(&bufcspin); 324 if (runningbufspace > limit) { 325 while (runningbufspace > limit) { 326 ++runningbufreq; 327 ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0); 328 } 329 spin_unlock(&bufcspin); 330 } else if (runningbufspace > limit / 2) { 331 ++runningbufreq; 332 spin_unlock(&bufcspin); 333 tsleep(&dummy, 0, "wdrn2", 1); 334 } else { 335 spin_unlock(&bufcspin); 336 } 337 } 338 339 /* 340 * buf_dirty_count_severe: 341 * 342 * Return true if we have too many dirty buffers. 343 */ 344 int 345 buf_dirty_count_severe(void) 346 { 347 return (runningbufspace + dirtybufspace >= hidirtybufspace || 348 dirtybufcount >= nbuf / 2); 349 } 350 351 /* 352 * Return true if the amount of running I/O is severe and BIOQ should 353 * start bursting. 354 */ 355 int 356 buf_runningbufspace_severe(void) 357 { 358 return (runningbufspace >= hirunningspace * 4 / 6); 359 } 360 361 /* 362 * vfs_buf_test_cache: 363 * 364 * Called when a buffer is extended. This function clears the B_CACHE 365 * bit if the newly extended portion of the buffer does not contain 366 * valid data. 367 * 368 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 369 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 370 * them while a clean buffer was present. 371 */ 372 static __inline__ 373 void 374 vfs_buf_test_cache(struct buf *bp, 375 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 376 vm_page_t m) 377 { 378 if (bp->b_flags & B_CACHE) { 379 int base = (foff + off) & PAGE_MASK; 380 if (vm_page_is_valid(m, base, size) == 0) 381 bp->b_flags &= ~B_CACHE; 382 } 383 } 384 385 /* 386 * bd_speedup() 387 * 388 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 389 * low water mark. 390 * 391 * MPSAFE 392 */ 393 static __inline__ 394 void 395 bd_speedup(void) 396 { 397 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 398 return; 399 400 if (bd_request == 0 && 401 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 402 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 403 spin_lock(&bufcspin); 404 bd_request = 1; 405 spin_unlock(&bufcspin); 406 wakeup(&bd_request); 407 } 408 if (bd_request_hw == 0 && 409 (dirtybufspacehw > lodirtybufspace / 2 || 410 dirtybufcounthw >= nbuf / 2)) { 411 spin_lock(&bufcspin); 412 bd_request_hw = 1; 413 spin_unlock(&bufcspin); 414 wakeup(&bd_request_hw); 415 } 416 } 417 418 /* 419 * bd_heatup() 420 * 421 * Get the buf_daemon heated up when the number of running and dirty 422 * buffers exceeds the mid-point. 423 * 424 * Return the total number of dirty bytes past the second mid point 425 * as a measure of how much excess dirty data there is in the system. 426 * 427 * MPSAFE 428 */ 429 int 430 bd_heatup(void) 431 { 432 int mid1; 433 int mid2; 434 int totalspace; 435 436 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 437 438 totalspace = runningbufspace + dirtybufspace; 439 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 440 bd_speedup(); 441 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 442 if (totalspace >= mid2) 443 return(totalspace - mid2); 444 } 445 return(0); 446 } 447 448 /* 449 * bd_wait() 450 * 451 * Wait for the buffer cache to flush (totalspace) bytes worth of 452 * buffers, then return. 453 * 454 * Regardless this function blocks while the number of dirty buffers 455 * exceeds hidirtybufspace. 456 * 457 * MPSAFE 458 */ 459 void 460 bd_wait(int totalspace) 461 { 462 u_int i; 463 int count; 464 465 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 466 return; 467 468 while (totalspace > 0) { 469 bd_heatup(); 470 if (totalspace > runningbufspace + dirtybufspace) 471 totalspace = runningbufspace + dirtybufspace; 472 count = totalspace / BKVASIZE; 473 if (count >= BD_WAKE_SIZE) 474 count = BD_WAKE_SIZE - 1; 475 476 spin_lock(&bufcspin); 477 i = (bd_wake_index + count) & BD_WAKE_MASK; 478 ++bd_wake_ary[i]; 479 480 /* 481 * This is not a strict interlock, so we play a bit loose 482 * with locking access to dirtybufspace* 483 */ 484 tsleep_interlock(&bd_wake_ary[i], 0); 485 spin_unlock(&bufcspin); 486 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 487 488 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 489 } 490 } 491 492 /* 493 * bd_signal() 494 * 495 * This function is called whenever runningbufspace or dirtybufspace 496 * is reduced. Track threads waiting for run+dirty buffer I/O 497 * complete. 498 * 499 * MPSAFE 500 */ 501 static void 502 bd_signal(int totalspace) 503 { 504 u_int i; 505 506 if (totalspace > 0) { 507 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 508 totalspace = BKVASIZE * BD_WAKE_SIZE; 509 spin_lock(&bufcspin); 510 while (totalspace > 0) { 511 i = bd_wake_index++; 512 i &= BD_WAKE_MASK; 513 if (bd_wake_ary[i]) { 514 bd_wake_ary[i] = 0; 515 spin_unlock(&bufcspin); 516 wakeup(&bd_wake_ary[i]); 517 spin_lock(&bufcspin); 518 } 519 totalspace -= BKVASIZE; 520 } 521 spin_unlock(&bufcspin); 522 } 523 } 524 525 /* 526 * BIO tracking support routines. 527 * 528 * Release a ref on a bio_track. Wakeup requests are atomically released 529 * along with the last reference so bk_active will never wind up set to 530 * only 0x80000000. 531 * 532 * MPSAFE 533 */ 534 static 535 void 536 bio_track_rel(struct bio_track *track) 537 { 538 int active; 539 int desired; 540 541 /* 542 * Shortcut 543 */ 544 active = track->bk_active; 545 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 546 return; 547 548 /* 549 * Full-on. Note that the wait flag is only atomically released on 550 * the 1->0 count transition. 551 * 552 * We check for a negative count transition using bit 30 since bit 31 553 * has a different meaning. 554 */ 555 for (;;) { 556 desired = (active & 0x7FFFFFFF) - 1; 557 if (desired) 558 desired |= active & 0x80000000; 559 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 560 if (desired & 0x40000000) 561 panic("bio_track_rel: bad count: %p\n", track); 562 if (active & 0x80000000) 563 wakeup(track); 564 break; 565 } 566 active = track->bk_active; 567 } 568 } 569 570 /* 571 * Wait for the tracking count to reach 0. 572 * 573 * Use atomic ops such that the wait flag is only set atomically when 574 * bk_active is non-zero. 575 * 576 * MPSAFE 577 */ 578 int 579 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 580 { 581 int active; 582 int desired; 583 int error; 584 585 /* 586 * Shortcut 587 */ 588 if (track->bk_active == 0) 589 return(0); 590 591 /* 592 * Full-on. Note that the wait flag may only be atomically set if 593 * the active count is non-zero. 594 */ 595 error = 0; 596 while ((active = track->bk_active) != 0) { 597 desired = active | 0x80000000; 598 tsleep_interlock(track, slp_flags); 599 if (active == desired || 600 atomic_cmpset_int(&track->bk_active, active, desired)) { 601 error = tsleep(track, slp_flags | PINTERLOCKED, 602 "iowait", slp_timo); 603 if (error) 604 break; 605 } 606 } 607 return (error); 608 } 609 610 /* 611 * bufinit: 612 * 613 * Load time initialisation of the buffer cache, called from machine 614 * dependant initialization code. 615 */ 616 void 617 bufinit(void) 618 { 619 struct buf *bp; 620 vm_offset_t bogus_offset; 621 int i; 622 623 /* next, make a null set of free lists */ 624 for (i = 0; i < BUFFER_QUEUES; i++) 625 TAILQ_INIT(&bufqueues[i]); 626 627 /* finally, initialize each buffer header and stick on empty q */ 628 for (i = 0; i < nbuf; i++) { 629 bp = &buf[i]; 630 bzero(bp, sizeof *bp); 631 bp->b_flags = B_INVAL; /* we're just an empty header */ 632 bp->b_cmd = BUF_CMD_DONE; 633 bp->b_qindex = BQUEUE_EMPTY; 634 initbufbio(bp); 635 xio_init(&bp->b_xio); 636 buf_dep_init(bp); 637 BUF_LOCKINIT(bp); 638 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 639 } 640 641 /* 642 * maxbufspace is the absolute maximum amount of buffer space we are 643 * allowed to reserve in KVM and in real terms. The absolute maximum 644 * is nominally used by buf_daemon. hibufspace is the nominal maximum 645 * used by most other processes. The differential is required to 646 * ensure that buf_daemon is able to run when other processes might 647 * be blocked waiting for buffer space. 648 * 649 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 650 * this may result in KVM fragmentation which is not handled optimally 651 * by the system. 652 */ 653 maxbufspace = nbuf * BKVASIZE; 654 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 655 lobufspace = hibufspace - MAXBSIZE; 656 657 lorunningspace = 512 * 1024; 658 /* hirunningspace -- see below */ 659 660 /* 661 * Limit the amount of malloc memory since it is wired permanently 662 * into the kernel space. Even though this is accounted for in 663 * the buffer allocation, we don't want the malloced region to grow 664 * uncontrolled. The malloc scheme improves memory utilization 665 * significantly on average (small) directories. 666 */ 667 maxbufmallocspace = hibufspace / 20; 668 669 /* 670 * Reduce the chance of a deadlock occuring by limiting the number 671 * of delayed-write dirty buffers we allow to stack up. 672 * 673 * We don't want too much actually queued to the device at once 674 * (XXX this needs to be per-mount!), because the buffers will 675 * wind up locked for a very long period of time while the I/O 676 * drains. 677 */ 678 hidirtybufspace = hibufspace / 2; /* dirty + running */ 679 hirunningspace = hibufspace / 16; /* locked & queued to device */ 680 if (hirunningspace < 1024 * 1024) 681 hirunningspace = 1024 * 1024; 682 683 dirtybufspace = 0; 684 dirtybufspacehw = 0; 685 686 lodirtybufspace = hidirtybufspace / 2; 687 688 /* 689 * Maximum number of async ops initiated per buf_daemon loop. This is 690 * somewhat of a hack at the moment, we really need to limit ourselves 691 * based on the number of bytes of I/O in-transit that were initiated 692 * from buf_daemon. 693 */ 694 695 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 696 bogus_page = vm_page_alloc(&kernel_object, 697 (bogus_offset >> PAGE_SHIFT), 698 VM_ALLOC_NORMAL); 699 vmstats.v_wire_count++; 700 701 } 702 703 /* 704 * Initialize the embedded bio structures 705 */ 706 void 707 initbufbio(struct buf *bp) 708 { 709 bp->b_bio1.bio_buf = bp; 710 bp->b_bio1.bio_prev = NULL; 711 bp->b_bio1.bio_offset = NOOFFSET; 712 bp->b_bio1.bio_next = &bp->b_bio2; 713 bp->b_bio1.bio_done = NULL; 714 bp->b_bio1.bio_flags = 0; 715 716 bp->b_bio2.bio_buf = bp; 717 bp->b_bio2.bio_prev = &bp->b_bio1; 718 bp->b_bio2.bio_offset = NOOFFSET; 719 bp->b_bio2.bio_next = NULL; 720 bp->b_bio2.bio_done = NULL; 721 bp->b_bio2.bio_flags = 0; 722 } 723 724 /* 725 * Reinitialize the embedded bio structures as well as any additional 726 * translation cache layers. 727 */ 728 void 729 reinitbufbio(struct buf *bp) 730 { 731 struct bio *bio; 732 733 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 734 bio->bio_done = NULL; 735 bio->bio_offset = NOOFFSET; 736 } 737 } 738 739 /* 740 * Push another BIO layer onto an existing BIO and return it. The new 741 * BIO layer may already exist, holding cached translation data. 742 */ 743 struct bio * 744 push_bio(struct bio *bio) 745 { 746 struct bio *nbio; 747 748 if ((nbio = bio->bio_next) == NULL) { 749 int index = bio - &bio->bio_buf->b_bio_array[0]; 750 if (index >= NBUF_BIO - 1) { 751 panic("push_bio: too many layers bp %p\n", 752 bio->bio_buf); 753 } 754 nbio = &bio->bio_buf->b_bio_array[index + 1]; 755 bio->bio_next = nbio; 756 nbio->bio_prev = bio; 757 nbio->bio_buf = bio->bio_buf; 758 nbio->bio_offset = NOOFFSET; 759 nbio->bio_done = NULL; 760 nbio->bio_next = NULL; 761 } 762 KKASSERT(nbio->bio_done == NULL); 763 return(nbio); 764 } 765 766 /* 767 * Pop a BIO translation layer, returning the previous layer. The 768 * must have been previously pushed. 769 */ 770 struct bio * 771 pop_bio(struct bio *bio) 772 { 773 return(bio->bio_prev); 774 } 775 776 void 777 clearbiocache(struct bio *bio) 778 { 779 while (bio) { 780 bio->bio_offset = NOOFFSET; 781 bio = bio->bio_next; 782 } 783 } 784 785 /* 786 * bfreekva: 787 * 788 * Free the KVA allocation for buffer 'bp'. 789 * 790 * Must be called from a critical section as this is the only locking for 791 * buffer_map. 792 * 793 * Since this call frees up buffer space, we call bufspacewakeup(). 794 * 795 * MPALMOSTSAFE 796 */ 797 static void 798 bfreekva(struct buf *bp) 799 { 800 int count; 801 802 if (bp->b_kvasize) { 803 ++buffreekvacnt; 804 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 805 vm_map_lock(&buffer_map); 806 bufspace -= bp->b_kvasize; 807 vm_map_delete(&buffer_map, 808 (vm_offset_t) bp->b_kvabase, 809 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 810 &count 811 ); 812 vm_map_unlock(&buffer_map); 813 vm_map_entry_release(count); 814 bp->b_kvasize = 0; 815 bp->b_kvabase = NULL; 816 bufspacewakeup(); 817 } 818 } 819 820 /* 821 * bremfree: 822 * 823 * Remove the buffer from the appropriate free list. 824 */ 825 static __inline void 826 _bremfree(struct buf *bp) 827 { 828 if (bp->b_qindex != BQUEUE_NONE) { 829 KASSERT(BUF_REFCNTNB(bp) == 1, 830 ("bremfree: bp %p not locked",bp)); 831 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 832 bp->b_qindex = BQUEUE_NONE; 833 } else { 834 if (BUF_REFCNTNB(bp) <= 1) 835 panic("bremfree: removing a buffer not on a queue"); 836 } 837 } 838 839 void 840 bremfree(struct buf *bp) 841 { 842 spin_lock(&bufqspin); 843 _bremfree(bp); 844 spin_unlock(&bufqspin); 845 } 846 847 static void 848 bremfree_locked(struct buf *bp) 849 { 850 _bremfree(bp); 851 } 852 853 /* 854 * bread: 855 * 856 * Get a buffer with the specified data. Look in the cache first. We 857 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 858 * is set, the buffer is valid and we do not have to do anything ( see 859 * getblk() ). 860 * 861 * MPALMOSTSAFE 862 */ 863 int 864 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 865 { 866 struct buf *bp; 867 868 bp = getblk(vp, loffset, size, 0, 0); 869 *bpp = bp; 870 871 /* if not found in cache, do some I/O */ 872 if ((bp->b_flags & B_CACHE) == 0) { 873 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 874 bp->b_cmd = BUF_CMD_READ; 875 bp->b_bio1.bio_done = biodone_sync; 876 bp->b_bio1.bio_flags |= BIO_SYNC; 877 vfs_busy_pages(vp, bp); 878 vn_strategy(vp, &bp->b_bio1); 879 return (biowait(&bp->b_bio1, "biord")); 880 } 881 return (0); 882 } 883 884 /* 885 * breadn: 886 * 887 * Operates like bread, but also starts asynchronous I/O on 888 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 889 * to initiating I/O . If B_CACHE is set, the buffer is valid 890 * and we do not have to do anything. 891 * 892 * MPALMOSTSAFE 893 */ 894 int 895 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 896 int *rabsize, int cnt, struct buf **bpp) 897 { 898 struct buf *bp, *rabp; 899 int i; 900 int rv = 0, readwait = 0; 901 902 *bpp = bp = getblk(vp, loffset, size, 0, 0); 903 904 /* if not found in cache, do some I/O */ 905 if ((bp->b_flags & B_CACHE) == 0) { 906 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 907 bp->b_cmd = BUF_CMD_READ; 908 bp->b_bio1.bio_done = biodone_sync; 909 bp->b_bio1.bio_flags |= BIO_SYNC; 910 vfs_busy_pages(vp, bp); 911 vn_strategy(vp, &bp->b_bio1); 912 ++readwait; 913 } 914 915 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 916 if (inmem(vp, *raoffset)) 917 continue; 918 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 919 920 if ((rabp->b_flags & B_CACHE) == 0) { 921 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 922 rabp->b_cmd = BUF_CMD_READ; 923 vfs_busy_pages(vp, rabp); 924 BUF_KERNPROC(rabp); 925 vn_strategy(vp, &rabp->b_bio1); 926 } else { 927 brelse(rabp); 928 } 929 } 930 if (readwait) 931 rv = biowait(&bp->b_bio1, "biord"); 932 return (rv); 933 } 934 935 /* 936 * bwrite: 937 * 938 * Synchronous write, waits for completion. 939 * 940 * Write, release buffer on completion. (Done by iodone 941 * if async). Do not bother writing anything if the buffer 942 * is invalid. 943 * 944 * Note that we set B_CACHE here, indicating that buffer is 945 * fully valid and thus cacheable. This is true even of NFS 946 * now so we set it generally. This could be set either here 947 * or in biodone() since the I/O is synchronous. We put it 948 * here. 949 */ 950 int 951 bwrite(struct buf *bp) 952 { 953 int error; 954 955 if (bp->b_flags & B_INVAL) { 956 brelse(bp); 957 return (0); 958 } 959 if (BUF_REFCNTNB(bp) == 0) 960 panic("bwrite: buffer is not busy???"); 961 962 /* Mark the buffer clean */ 963 bundirty(bp); 964 965 bp->b_flags &= ~(B_ERROR | B_EINTR); 966 bp->b_flags |= B_CACHE; 967 bp->b_cmd = BUF_CMD_WRITE; 968 bp->b_bio1.bio_done = biodone_sync; 969 bp->b_bio1.bio_flags |= BIO_SYNC; 970 vfs_busy_pages(bp->b_vp, bp); 971 972 /* 973 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 974 * valid for vnode-backed buffers. 975 */ 976 bsetrunningbufspace(bp, bp->b_bufsize); 977 vn_strategy(bp->b_vp, &bp->b_bio1); 978 error = biowait(&bp->b_bio1, "biows"); 979 brelse(bp); 980 981 return (error); 982 } 983 984 /* 985 * bawrite: 986 * 987 * Asynchronous write. Start output on a buffer, but do not wait for 988 * it to complete. The buffer is released when the output completes. 989 * 990 * bwrite() ( or the VOP routine anyway ) is responsible for handling 991 * B_INVAL buffers. Not us. 992 */ 993 void 994 bawrite(struct buf *bp) 995 { 996 if (bp->b_flags & B_INVAL) { 997 brelse(bp); 998 return; 999 } 1000 if (BUF_REFCNTNB(bp) == 0) 1001 panic("bwrite: buffer is not busy???"); 1002 1003 /* Mark the buffer clean */ 1004 bundirty(bp); 1005 1006 bp->b_flags &= ~(B_ERROR | B_EINTR); 1007 bp->b_flags |= B_CACHE; 1008 bp->b_cmd = BUF_CMD_WRITE; 1009 KKASSERT(bp->b_bio1.bio_done == NULL); 1010 vfs_busy_pages(bp->b_vp, bp); 1011 1012 /* 1013 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1014 * valid for vnode-backed buffers. 1015 */ 1016 bsetrunningbufspace(bp, bp->b_bufsize); 1017 BUF_KERNPROC(bp); 1018 vn_strategy(bp->b_vp, &bp->b_bio1); 1019 } 1020 1021 /* 1022 * bowrite: 1023 * 1024 * Ordered write. Start output on a buffer, and flag it so that the 1025 * device will write it in the order it was queued. The buffer is 1026 * released when the output completes. bwrite() ( or the VOP routine 1027 * anyway ) is responsible for handling B_INVAL buffers. 1028 */ 1029 int 1030 bowrite(struct buf *bp) 1031 { 1032 bp->b_flags |= B_ORDERED; 1033 bawrite(bp); 1034 return (0); 1035 } 1036 1037 /* 1038 * bdwrite: 1039 * 1040 * Delayed write. (Buffer is marked dirty). Do not bother writing 1041 * anything if the buffer is marked invalid. 1042 * 1043 * Note that since the buffer must be completely valid, we can safely 1044 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1045 * biodone() in order to prevent getblk from writing the buffer 1046 * out synchronously. 1047 */ 1048 void 1049 bdwrite(struct buf *bp) 1050 { 1051 if (BUF_REFCNTNB(bp) == 0) 1052 panic("bdwrite: buffer is not busy"); 1053 1054 if (bp->b_flags & B_INVAL) { 1055 brelse(bp); 1056 return; 1057 } 1058 bdirty(bp); 1059 1060 if (dsched_is_clear_buf_priv(bp)) 1061 dsched_new_buf(bp); 1062 1063 /* 1064 * Set B_CACHE, indicating that the buffer is fully valid. This is 1065 * true even of NFS now. 1066 */ 1067 bp->b_flags |= B_CACHE; 1068 1069 /* 1070 * This bmap keeps the system from needing to do the bmap later, 1071 * perhaps when the system is attempting to do a sync. Since it 1072 * is likely that the indirect block -- or whatever other datastructure 1073 * that the filesystem needs is still in memory now, it is a good 1074 * thing to do this. Note also, that if the pageout daemon is 1075 * requesting a sync -- there might not be enough memory to do 1076 * the bmap then... So, this is important to do. 1077 */ 1078 if (bp->b_bio2.bio_offset == NOOFFSET) { 1079 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1080 NULL, NULL, BUF_CMD_WRITE); 1081 } 1082 1083 /* 1084 * Because the underlying pages may still be mapped and 1085 * writable trying to set the dirty buffer (b_dirtyoff/end) 1086 * range here will be inaccurate. 1087 * 1088 * However, we must still clean the pages to satisfy the 1089 * vnode_pager and pageout daemon, so theythink the pages 1090 * have been "cleaned". What has really occured is that 1091 * they've been earmarked for later writing by the buffer 1092 * cache. 1093 * 1094 * So we get the b_dirtyoff/end update but will not actually 1095 * depend on it (NFS that is) until the pages are busied for 1096 * writing later on. 1097 */ 1098 vfs_clean_pages(bp); 1099 bqrelse(bp); 1100 1101 /* 1102 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1103 * due to the softdep code. 1104 */ 1105 } 1106 1107 /* 1108 * Fake write - return pages to VM system as dirty, leave the buffer clean. 1109 * This is used by tmpfs. 1110 * 1111 * It is important for any VFS using this routine to NOT use it for 1112 * IO_SYNC or IO_ASYNC operations which occur when the system really 1113 * wants to flush VM pages to backing store. 1114 */ 1115 void 1116 buwrite(struct buf *bp) 1117 { 1118 vm_page_t m; 1119 int i; 1120 1121 /* 1122 * Only works for VMIO buffers. If the buffer is already 1123 * marked for delayed-write we can't avoid the bdwrite(). 1124 */ 1125 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) { 1126 bdwrite(bp); 1127 return; 1128 } 1129 1130 /* 1131 * Set valid & dirty. 1132 */ 1133 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1134 m = bp->b_xio.xio_pages[i]; 1135 vfs_dirty_one_page(bp, i, m); 1136 } 1137 bqrelse(bp); 1138 } 1139 1140 /* 1141 * bdirty: 1142 * 1143 * Turn buffer into delayed write request by marking it B_DELWRI. 1144 * B_RELBUF and B_NOCACHE must be cleared. 1145 * 1146 * We reassign the buffer to itself to properly update it in the 1147 * dirty/clean lists. 1148 * 1149 * Must be called from a critical section. 1150 * The buffer must be on BQUEUE_NONE. 1151 */ 1152 void 1153 bdirty(struct buf *bp) 1154 { 1155 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1156 if (bp->b_flags & B_NOCACHE) { 1157 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1158 bp->b_flags &= ~B_NOCACHE; 1159 } 1160 if (bp->b_flags & B_INVAL) { 1161 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1162 } 1163 bp->b_flags &= ~B_RELBUF; 1164 1165 if ((bp->b_flags & B_DELWRI) == 0) { 1166 lwkt_gettoken(&bp->b_vp->v_token); 1167 bp->b_flags |= B_DELWRI; 1168 reassignbuf(bp); 1169 lwkt_reltoken(&bp->b_vp->v_token); 1170 1171 spin_lock(&bufcspin); 1172 ++dirtybufcount; 1173 dirtybufspace += bp->b_bufsize; 1174 if (bp->b_flags & B_HEAVY) { 1175 ++dirtybufcounthw; 1176 dirtybufspacehw += bp->b_bufsize; 1177 } 1178 spin_unlock(&bufcspin); 1179 1180 bd_heatup(); 1181 } 1182 } 1183 1184 /* 1185 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1186 * needs to be flushed with a different buf_daemon thread to avoid 1187 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1188 */ 1189 void 1190 bheavy(struct buf *bp) 1191 { 1192 if ((bp->b_flags & B_HEAVY) == 0) { 1193 bp->b_flags |= B_HEAVY; 1194 if (bp->b_flags & B_DELWRI) { 1195 spin_lock(&bufcspin); 1196 ++dirtybufcounthw; 1197 dirtybufspacehw += bp->b_bufsize; 1198 spin_unlock(&bufcspin); 1199 } 1200 } 1201 } 1202 1203 /* 1204 * bundirty: 1205 * 1206 * Clear B_DELWRI for buffer. 1207 * 1208 * Must be called from a critical section. 1209 * 1210 * The buffer is typically on BQUEUE_NONE but there is one case in 1211 * brelse() that calls this function after placing the buffer on 1212 * a different queue. 1213 * 1214 * MPSAFE 1215 */ 1216 void 1217 bundirty(struct buf *bp) 1218 { 1219 if (bp->b_flags & B_DELWRI) { 1220 lwkt_gettoken(&bp->b_vp->v_token); 1221 bp->b_flags &= ~B_DELWRI; 1222 reassignbuf(bp); 1223 lwkt_reltoken(&bp->b_vp->v_token); 1224 1225 spin_lock(&bufcspin); 1226 --dirtybufcount; 1227 dirtybufspace -= bp->b_bufsize; 1228 if (bp->b_flags & B_HEAVY) { 1229 --dirtybufcounthw; 1230 dirtybufspacehw -= bp->b_bufsize; 1231 } 1232 spin_unlock(&bufcspin); 1233 1234 bd_signal(bp->b_bufsize); 1235 } 1236 /* 1237 * Since it is now being written, we can clear its deferred write flag. 1238 */ 1239 bp->b_flags &= ~B_DEFERRED; 1240 } 1241 1242 /* 1243 * Set the b_runningbufspace field, used to track how much I/O is 1244 * in progress at any given moment. 1245 */ 1246 void 1247 bsetrunningbufspace(struct buf *bp, int bytes) 1248 { 1249 bp->b_runningbufspace = bytes; 1250 if (bytes) { 1251 spin_lock(&bufcspin); 1252 runningbufspace += bytes; 1253 ++runningbufcount; 1254 spin_unlock(&bufcspin); 1255 } 1256 } 1257 1258 /* 1259 * brelse: 1260 * 1261 * Release a busy buffer and, if requested, free its resources. The 1262 * buffer will be stashed in the appropriate bufqueue[] allowing it 1263 * to be accessed later as a cache entity or reused for other purposes. 1264 * 1265 * MPALMOSTSAFE 1266 */ 1267 void 1268 brelse(struct buf *bp) 1269 { 1270 #ifdef INVARIANTS 1271 int saved_flags = bp->b_flags; 1272 #endif 1273 1274 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1275 1276 /* 1277 * If B_NOCACHE is set we are being asked to destroy the buffer and 1278 * its backing store. Clear B_DELWRI. 1279 * 1280 * B_NOCACHE is set in two cases: (1) when the caller really wants 1281 * to destroy the buffer and backing store and (2) when the caller 1282 * wants to destroy the buffer and backing store after a write 1283 * completes. 1284 */ 1285 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1286 bundirty(bp); 1287 } 1288 1289 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1290 /* 1291 * A re-dirtied buffer is only subject to destruction 1292 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1293 */ 1294 /* leave buffer intact */ 1295 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1296 (bp->b_bufsize <= 0)) { 1297 /* 1298 * Either a failed read or we were asked to free or not 1299 * cache the buffer. This path is reached with B_DELWRI 1300 * set only if B_INVAL is already set. B_NOCACHE governs 1301 * backing store destruction. 1302 * 1303 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1304 * buffer cannot be immediately freed. 1305 */ 1306 bp->b_flags |= B_INVAL; 1307 if (LIST_FIRST(&bp->b_dep) != NULL) 1308 buf_deallocate(bp); 1309 if (bp->b_flags & B_DELWRI) { 1310 spin_lock(&bufcspin); 1311 --dirtybufcount; 1312 dirtybufspace -= bp->b_bufsize; 1313 if (bp->b_flags & B_HEAVY) { 1314 --dirtybufcounthw; 1315 dirtybufspacehw -= bp->b_bufsize; 1316 } 1317 spin_unlock(&bufcspin); 1318 1319 bd_signal(bp->b_bufsize); 1320 } 1321 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1322 } 1323 1324 /* 1325 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1326 * If vfs_vmio_release() is called with either bit set, the 1327 * underlying pages may wind up getting freed causing a previous 1328 * write (bdwrite()) to get 'lost' because pages associated with 1329 * a B_DELWRI bp are marked clean. Pages associated with a 1330 * B_LOCKED buffer may be mapped by the filesystem. 1331 * 1332 * If we want to release the buffer ourselves (rather then the 1333 * originator asking us to release it), give the originator a 1334 * chance to countermand the release by setting B_LOCKED. 1335 * 1336 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1337 * if B_DELWRI is set. 1338 * 1339 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1340 * on pages to return pages to the VM page queues. 1341 */ 1342 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1343 bp->b_flags &= ~B_RELBUF; 1344 } else if (vm_page_count_severe()) { 1345 if (LIST_FIRST(&bp->b_dep) != NULL) 1346 buf_deallocate(bp); /* can set B_LOCKED */ 1347 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1348 bp->b_flags &= ~B_RELBUF; 1349 else 1350 bp->b_flags |= B_RELBUF; 1351 } 1352 1353 /* 1354 * Make sure b_cmd is clear. It may have already been cleared by 1355 * biodone(). 1356 * 1357 * At this point destroying the buffer is governed by the B_INVAL 1358 * or B_RELBUF flags. 1359 */ 1360 bp->b_cmd = BUF_CMD_DONE; 1361 dsched_exit_buf(bp); 1362 1363 /* 1364 * VMIO buffer rundown. Make sure the VM page array is restored 1365 * after an I/O may have replaces some of the pages with bogus pages 1366 * in order to not destroy dirty pages in a fill-in read. 1367 * 1368 * Note that due to the code above, if a buffer is marked B_DELWRI 1369 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1370 * B_INVAL may still be set, however. 1371 * 1372 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1373 * but not the backing store. B_NOCACHE will destroy the backing 1374 * store. 1375 * 1376 * Note that dirty NFS buffers contain byte-granular write ranges 1377 * and should not be destroyed w/ B_INVAL even if the backing store 1378 * is left intact. 1379 */ 1380 if (bp->b_flags & B_VMIO) { 1381 /* 1382 * Rundown for VMIO buffers which are not dirty NFS buffers. 1383 */ 1384 int i, j, resid; 1385 vm_page_t m; 1386 off_t foff; 1387 vm_pindex_t poff; 1388 vm_object_t obj; 1389 struct vnode *vp; 1390 1391 vp = bp->b_vp; 1392 1393 /* 1394 * Get the base offset and length of the buffer. Note that 1395 * in the VMIO case if the buffer block size is not 1396 * page-aligned then b_data pointer may not be page-aligned. 1397 * But our b_xio.xio_pages array *IS* page aligned. 1398 * 1399 * block sizes less then DEV_BSIZE (usually 512) are not 1400 * supported due to the page granularity bits (m->valid, 1401 * m->dirty, etc...). 1402 * 1403 * See man buf(9) for more information 1404 */ 1405 1406 resid = bp->b_bufsize; 1407 foff = bp->b_loffset; 1408 1409 lwkt_gettoken(&vm_token); 1410 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1411 m = bp->b_xio.xio_pages[i]; 1412 vm_page_flag_clear(m, PG_ZERO); 1413 /* 1414 * If we hit a bogus page, fixup *all* of them 1415 * now. Note that we left these pages wired 1416 * when we removed them so they had better exist, 1417 * and they cannot be ripped out from under us so 1418 * no critical section protection is necessary. 1419 */ 1420 if (m == bogus_page) { 1421 obj = vp->v_object; 1422 poff = OFF_TO_IDX(bp->b_loffset); 1423 1424 for (j = i; j < bp->b_xio.xio_npages; j++) { 1425 vm_page_t mtmp; 1426 1427 mtmp = bp->b_xio.xio_pages[j]; 1428 if (mtmp == bogus_page) { 1429 mtmp = vm_page_lookup(obj, poff + j); 1430 if (!mtmp) { 1431 panic("brelse: page missing"); 1432 } 1433 bp->b_xio.xio_pages[j] = mtmp; 1434 } 1435 } 1436 bp->b_flags &= ~B_HASBOGUS; 1437 1438 if ((bp->b_flags & B_INVAL) == 0) { 1439 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1440 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1441 } 1442 m = bp->b_xio.xio_pages[i]; 1443 } 1444 1445 /* 1446 * Invalidate the backing store if B_NOCACHE is set 1447 * (e.g. used with vinvalbuf()). If this is NFS 1448 * we impose a requirement that the block size be 1449 * a multiple of PAGE_SIZE and create a temporary 1450 * hack to basically invalidate the whole page. The 1451 * problem is that NFS uses really odd buffer sizes 1452 * especially when tracking piecemeal writes and 1453 * it also vinvalbuf()'s a lot, which would result 1454 * in only partial page validation and invalidation 1455 * here. If the file page is mmap()'d, however, 1456 * all the valid bits get set so after we invalidate 1457 * here we would end up with weird m->valid values 1458 * like 0xfc. nfs_getpages() can't handle this so 1459 * we clear all the valid bits for the NFS case 1460 * instead of just some of them. 1461 * 1462 * The real bug is the VM system having to set m->valid 1463 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1464 * itself is an artifact of the whole 512-byte 1465 * granular mess that exists to support odd block 1466 * sizes and UFS meta-data block sizes (e.g. 6144). 1467 * A complete rewrite is required. 1468 * 1469 * XXX 1470 */ 1471 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1472 int poffset = foff & PAGE_MASK; 1473 int presid; 1474 1475 presid = PAGE_SIZE - poffset; 1476 if (bp->b_vp->v_tag == VT_NFS && 1477 bp->b_vp->v_type == VREG) { 1478 ; /* entire page */ 1479 } else if (presid > resid) { 1480 presid = resid; 1481 } 1482 KASSERT(presid >= 0, ("brelse: extra page")); 1483 vm_page_set_invalid(m, poffset, presid); 1484 1485 /* 1486 * Also make sure any swap cache is removed 1487 * as it is now stale (HAMMER in particular 1488 * uses B_NOCACHE to deal with buffer 1489 * aliasing). 1490 */ 1491 swap_pager_unswapped(m); 1492 } 1493 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1494 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1495 } 1496 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1497 vfs_vmio_release(bp); 1498 lwkt_reltoken(&vm_token); 1499 } else { 1500 /* 1501 * Rundown for non-VMIO buffers. 1502 */ 1503 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1504 if (bp->b_bufsize) 1505 allocbuf(bp, 0); 1506 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1507 if (bp->b_vp) 1508 brelvp(bp); 1509 } 1510 } 1511 1512 if (bp->b_qindex != BQUEUE_NONE) 1513 panic("brelse: free buffer onto another queue???"); 1514 if (BUF_REFCNTNB(bp) > 1) { 1515 /* Temporary panic to verify exclusive locking */ 1516 /* This panic goes away when we allow shared refs */ 1517 panic("brelse: multiple refs"); 1518 /* NOT REACHED */ 1519 return; 1520 } 1521 1522 /* 1523 * Figure out the correct queue to place the cleaned up buffer on. 1524 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1525 * disassociated from their vnode. 1526 */ 1527 spin_lock(&bufqspin); 1528 if (bp->b_flags & B_LOCKED) { 1529 /* 1530 * Buffers that are locked are placed in the locked queue 1531 * immediately, regardless of their state. 1532 */ 1533 bp->b_qindex = BQUEUE_LOCKED; 1534 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1535 } else if (bp->b_bufsize == 0) { 1536 /* 1537 * Buffers with no memory. Due to conditionals near the top 1538 * of brelse() such buffers should probably already be 1539 * marked B_INVAL and disassociated from their vnode. 1540 */ 1541 bp->b_flags |= B_INVAL; 1542 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1543 KKASSERT((bp->b_flags & B_HASHED) == 0); 1544 if (bp->b_kvasize) { 1545 bp->b_qindex = BQUEUE_EMPTYKVA; 1546 } else { 1547 bp->b_qindex = BQUEUE_EMPTY; 1548 } 1549 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1550 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1551 /* 1552 * Buffers with junk contents. Again these buffers had better 1553 * already be disassociated from their vnode. 1554 */ 1555 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1556 KKASSERT((bp->b_flags & B_HASHED) == 0); 1557 bp->b_flags |= B_INVAL; 1558 bp->b_qindex = BQUEUE_CLEAN; 1559 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1560 } else { 1561 /* 1562 * Remaining buffers. These buffers are still associated with 1563 * their vnode. 1564 */ 1565 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1566 case B_DELWRI: 1567 bp->b_qindex = BQUEUE_DIRTY; 1568 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1569 break; 1570 case B_DELWRI | B_HEAVY: 1571 bp->b_qindex = BQUEUE_DIRTY_HW; 1572 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1573 b_freelist); 1574 break; 1575 default: 1576 /* 1577 * NOTE: Buffers are always placed at the end of the 1578 * queue. If B_AGE is not set the buffer will cycle 1579 * through the queue twice. 1580 */ 1581 bp->b_qindex = BQUEUE_CLEAN; 1582 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1583 break; 1584 } 1585 } 1586 spin_unlock(&bufqspin); 1587 1588 /* 1589 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1590 * on the correct queue. 1591 */ 1592 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1593 bundirty(bp); 1594 1595 /* 1596 * The bp is on an appropriate queue unless locked. If it is not 1597 * locked or dirty we can wakeup threads waiting for buffer space. 1598 * 1599 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1600 * if B_INVAL is set ). 1601 */ 1602 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1603 bufcountwakeup(); 1604 1605 /* 1606 * Something we can maybe free or reuse 1607 */ 1608 if (bp->b_bufsize || bp->b_kvasize) 1609 bufspacewakeup(); 1610 1611 /* 1612 * Clean up temporary flags and unlock the buffer. 1613 */ 1614 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1615 BUF_UNLOCK(bp); 1616 } 1617 1618 /* 1619 * bqrelse: 1620 * 1621 * Release a buffer back to the appropriate queue but do not try to free 1622 * it. The buffer is expected to be used again soon. 1623 * 1624 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1625 * biodone() to requeue an async I/O on completion. It is also used when 1626 * known good buffers need to be requeued but we think we may need the data 1627 * again soon. 1628 * 1629 * XXX we should be able to leave the B_RELBUF hint set on completion. 1630 * 1631 * MPSAFE 1632 */ 1633 void 1634 bqrelse(struct buf *bp) 1635 { 1636 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1637 1638 if (bp->b_qindex != BQUEUE_NONE) 1639 panic("bqrelse: free buffer onto another queue???"); 1640 if (BUF_REFCNTNB(bp) > 1) { 1641 /* do not release to free list */ 1642 panic("bqrelse: multiple refs"); 1643 return; 1644 } 1645 1646 buf_act_advance(bp); 1647 1648 spin_lock(&bufqspin); 1649 if (bp->b_flags & B_LOCKED) { 1650 /* 1651 * Locked buffers are released to the locked queue. However, 1652 * if the buffer is dirty it will first go into the dirty 1653 * queue and later on after the I/O completes successfully it 1654 * will be released to the locked queue. 1655 */ 1656 bp->b_qindex = BQUEUE_LOCKED; 1657 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1658 } else if (bp->b_flags & B_DELWRI) { 1659 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1660 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1661 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1662 } else if (vm_page_count_severe()) { 1663 /* 1664 * We are too low on memory, we have to try to free the 1665 * buffer (most importantly: the wired pages making up its 1666 * backing store) *now*. 1667 */ 1668 spin_unlock(&bufqspin); 1669 brelse(bp); 1670 return; 1671 } else { 1672 bp->b_qindex = BQUEUE_CLEAN; 1673 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1674 } 1675 spin_unlock(&bufqspin); 1676 1677 if ((bp->b_flags & B_LOCKED) == 0 && 1678 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1679 bufcountwakeup(); 1680 } 1681 1682 /* 1683 * Something we can maybe free or reuse. 1684 */ 1685 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1686 bufspacewakeup(); 1687 1688 /* 1689 * Final cleanup and unlock. Clear bits that are only used while a 1690 * buffer is actively locked. 1691 */ 1692 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1693 dsched_exit_buf(bp); 1694 BUF_UNLOCK(bp); 1695 } 1696 1697 /* 1698 * vfs_vmio_release: 1699 * 1700 * Return backing pages held by the buffer 'bp' back to the VM system 1701 * if possible. The pages are freed if they are no longer valid or 1702 * attempt to free if it was used for direct I/O otherwise they are 1703 * sent to the page cache. 1704 * 1705 * Pages that were marked busy are left alone and skipped. 1706 * 1707 * The KVA mapping (b_data) for the underlying pages is removed by 1708 * this function. 1709 */ 1710 static void 1711 vfs_vmio_release(struct buf *bp) 1712 { 1713 int i; 1714 vm_page_t m; 1715 1716 lwkt_gettoken(&vm_token); 1717 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1718 m = bp->b_xio.xio_pages[i]; 1719 bp->b_xio.xio_pages[i] = NULL; 1720 1721 /* 1722 * The VFS is telling us this is not a meta-data buffer 1723 * even if it is backed by a block device. 1724 */ 1725 if (bp->b_flags & B_NOTMETA) 1726 vm_page_flag_set(m, PG_NOTMETA); 1727 1728 /* 1729 * This is a very important bit of code. We try to track 1730 * VM page use whether the pages are wired into the buffer 1731 * cache or not. While wired into the buffer cache the 1732 * bp tracks the act_count. 1733 * 1734 * We can choose to place unwired pages on the inactive 1735 * queue (0) or active queue (1). If we place too many 1736 * on the active queue the queue will cycle the act_count 1737 * on pages we'd like to keep, just from single-use pages 1738 * (such as when doing a tar-up or file scan). 1739 */ 1740 if (bp->b_act_count < vm_cycle_point) 1741 vm_page_unwire(m, 0); 1742 else 1743 vm_page_unwire(m, 1); 1744 1745 /* 1746 * We don't mess with busy pages, it is 1747 * the responsibility of the process that 1748 * busied the pages to deal with them. 1749 */ 1750 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1751 continue; 1752 1753 if (m->wire_count == 0) { 1754 vm_page_flag_clear(m, PG_ZERO); 1755 /* 1756 * Might as well free the page if we can and it has 1757 * no valid data. We also free the page if the 1758 * buffer was used for direct I/O. 1759 */ 1760 #if 0 1761 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1762 m->hold_count == 0) { 1763 vm_page_busy(m); 1764 vm_page_protect(m, VM_PROT_NONE); 1765 vm_page_free(m); 1766 } else 1767 #endif 1768 if (bp->b_flags & B_DIRECT) { 1769 vm_page_try_to_free(m); 1770 } else if (vm_page_count_severe()) { 1771 m->act_count = bp->b_act_count; 1772 vm_page_try_to_cache(m); 1773 } else { 1774 m->act_count = bp->b_act_count; 1775 } 1776 } 1777 } 1778 lwkt_reltoken(&vm_token); 1779 1780 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), 1781 bp->b_xio.xio_npages); 1782 if (bp->b_bufsize) { 1783 bufspacewakeup(); 1784 bp->b_bufsize = 0; 1785 } 1786 bp->b_xio.xio_npages = 0; 1787 bp->b_flags &= ~B_VMIO; 1788 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1789 if (bp->b_vp) 1790 brelvp(bp); 1791 } 1792 1793 /* 1794 * vfs_bio_awrite: 1795 * 1796 * Implement clustered async writes for clearing out B_DELWRI buffers. 1797 * This is much better then the old way of writing only one buffer at 1798 * a time. Note that we may not be presented with the buffers in the 1799 * correct order, so we search for the cluster in both directions. 1800 * 1801 * The buffer is locked on call. 1802 */ 1803 int 1804 vfs_bio_awrite(struct buf *bp) 1805 { 1806 int i; 1807 int j; 1808 off_t loffset = bp->b_loffset; 1809 struct vnode *vp = bp->b_vp; 1810 int nbytes; 1811 struct buf *bpa; 1812 int nwritten; 1813 int size; 1814 1815 /* 1816 * right now we support clustered writing only to regular files. If 1817 * we find a clusterable block we could be in the middle of a cluster 1818 * rather then at the beginning. 1819 * 1820 * NOTE: b_bio1 contains the logical loffset and is aliased 1821 * to b_loffset. b_bio2 contains the translated block number. 1822 */ 1823 if ((vp->v_type == VREG) && 1824 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1825 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1826 1827 size = vp->v_mount->mnt_stat.f_iosize; 1828 1829 for (i = size; i < MAXPHYS; i += size) { 1830 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1831 BUF_REFCNT(bpa) == 0 && 1832 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1833 (B_DELWRI | B_CLUSTEROK)) && 1834 (bpa->b_bufsize == size)) { 1835 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1836 (bpa->b_bio2.bio_offset != 1837 bp->b_bio2.bio_offset + i)) 1838 break; 1839 } else { 1840 break; 1841 } 1842 } 1843 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1844 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1845 BUF_REFCNT(bpa) == 0 && 1846 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1847 (B_DELWRI | B_CLUSTEROK)) && 1848 (bpa->b_bufsize == size)) { 1849 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1850 (bpa->b_bio2.bio_offset != 1851 bp->b_bio2.bio_offset - j)) 1852 break; 1853 } else { 1854 break; 1855 } 1856 } 1857 j -= size; 1858 nbytes = (i + j); 1859 1860 /* 1861 * this is a possible cluster write 1862 */ 1863 if (nbytes != size) { 1864 BUF_UNLOCK(bp); 1865 nwritten = cluster_wbuild(vp, size, 1866 loffset - j, nbytes); 1867 return nwritten; 1868 } 1869 } 1870 1871 /* 1872 * default (old) behavior, writing out only one block 1873 * 1874 * XXX returns b_bufsize instead of b_bcount for nwritten? 1875 */ 1876 nwritten = bp->b_bufsize; 1877 bremfree(bp); 1878 bawrite(bp); 1879 1880 return nwritten; 1881 } 1882 1883 /* 1884 * getnewbuf: 1885 * 1886 * Find and initialize a new buffer header, freeing up existing buffers 1887 * in the bufqueues as necessary. The new buffer is returned locked. 1888 * 1889 * Important: B_INVAL is not set. If the caller wishes to throw the 1890 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1891 * 1892 * We block if: 1893 * We have insufficient buffer headers 1894 * We have insufficient buffer space 1895 * buffer_map is too fragmented ( space reservation fails ) 1896 * If we have to flush dirty buffers ( but we try to avoid this ) 1897 * 1898 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1899 * Instead we ask the buf daemon to do it for us. We attempt to 1900 * avoid piecemeal wakeups of the pageout daemon. 1901 * 1902 * MPALMOSTSAFE 1903 */ 1904 static struct buf * 1905 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1906 { 1907 struct buf *bp; 1908 struct buf *nbp; 1909 int defrag = 0; 1910 int nqindex; 1911 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1912 static int flushingbufs; 1913 1914 /* 1915 * We can't afford to block since we might be holding a vnode lock, 1916 * which may prevent system daemons from running. We deal with 1917 * low-memory situations by proactively returning memory and running 1918 * async I/O rather then sync I/O. 1919 */ 1920 1921 ++getnewbufcalls; 1922 --getnewbufrestarts; 1923 restart: 1924 ++getnewbufrestarts; 1925 1926 /* 1927 * Setup for scan. If we do not have enough free buffers, 1928 * we setup a degenerate case that immediately fails. Note 1929 * that if we are specially marked process, we are allowed to 1930 * dip into our reserves. 1931 * 1932 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1933 * 1934 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1935 * However, there are a number of cases (defragging, reusing, ...) 1936 * where we cannot backup. 1937 */ 1938 nqindex = BQUEUE_EMPTYKVA; 1939 spin_lock(&bufqspin); 1940 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1941 1942 if (nbp == NULL) { 1943 /* 1944 * If no EMPTYKVA buffers and we are either 1945 * defragging or reusing, locate a CLEAN buffer 1946 * to free or reuse. If bufspace useage is low 1947 * skip this step so we can allocate a new buffer. 1948 */ 1949 if (defrag || bufspace >= lobufspace) { 1950 nqindex = BQUEUE_CLEAN; 1951 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1952 } 1953 1954 /* 1955 * If we could not find or were not allowed to reuse a 1956 * CLEAN buffer, check to see if it is ok to use an EMPTY 1957 * buffer. We can only use an EMPTY buffer if allocating 1958 * its KVA would not otherwise run us out of buffer space. 1959 */ 1960 if (nbp == NULL && defrag == 0 && 1961 bufspace + maxsize < hibufspace) { 1962 nqindex = BQUEUE_EMPTY; 1963 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1964 } 1965 } 1966 1967 /* 1968 * Run scan, possibly freeing data and/or kva mappings on the fly 1969 * depending. 1970 * 1971 * WARNING! bufqspin is held! 1972 */ 1973 while ((bp = nbp) != NULL) { 1974 int qindex = nqindex; 1975 1976 nbp = TAILQ_NEXT(bp, b_freelist); 1977 1978 /* 1979 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1980 * cycles through the queue twice before being selected. 1981 */ 1982 if (qindex == BQUEUE_CLEAN && 1983 (bp->b_flags & B_AGE) == 0 && nbp) { 1984 bp->b_flags |= B_AGE; 1985 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 1986 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 1987 continue; 1988 } 1989 1990 /* 1991 * Calculate next bp ( we can only use it if we do not block 1992 * or do other fancy things ). 1993 */ 1994 if (nbp == NULL) { 1995 switch(qindex) { 1996 case BQUEUE_EMPTY: 1997 nqindex = BQUEUE_EMPTYKVA; 1998 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 1999 break; 2000 /* fall through */ 2001 case BQUEUE_EMPTYKVA: 2002 nqindex = BQUEUE_CLEAN; 2003 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 2004 break; 2005 /* fall through */ 2006 case BQUEUE_CLEAN: 2007 /* 2008 * nbp is NULL. 2009 */ 2010 break; 2011 } 2012 } 2013 2014 /* 2015 * Sanity Checks 2016 */ 2017 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 2018 2019 /* 2020 * Note: we no longer distinguish between VMIO and non-VMIO 2021 * buffers. 2022 */ 2023 KASSERT((bp->b_flags & B_DELWRI) == 0, 2024 ("delwri buffer %p found in queue %d", bp, qindex)); 2025 2026 /* 2027 * Do not try to reuse a buffer with a non-zero b_refs. 2028 * This is an unsynchronized test. A synchronized test 2029 * is also performed after we lock the buffer. 2030 */ 2031 if (bp->b_refs) 2032 continue; 2033 2034 /* 2035 * If we are defragging then we need a buffer with 2036 * b_kvasize != 0. XXX this situation should no longer 2037 * occur, if defrag is non-zero the buffer's b_kvasize 2038 * should also be non-zero at this point. XXX 2039 */ 2040 if (defrag && bp->b_kvasize == 0) { 2041 kprintf("Warning: defrag empty buffer %p\n", bp); 2042 continue; 2043 } 2044 2045 /* 2046 * Start freeing the bp. This is somewhat involved. nbp 2047 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 2048 * on the clean list must be disassociated from their 2049 * current vnode. Buffers on the empty[kva] lists have 2050 * already been disassociated. 2051 */ 2052 2053 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2054 spin_unlock(&bufqspin); 2055 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2056 goto restart; 2057 } 2058 if (bp->b_qindex != qindex) { 2059 spin_unlock(&bufqspin); 2060 kprintf("getnewbuf: warning, BUF_LOCK blocked " 2061 "unexpectedly on buf %p index %d->%d, " 2062 "race corrected\n", 2063 bp, qindex, bp->b_qindex); 2064 BUF_UNLOCK(bp); 2065 goto restart; 2066 } 2067 bremfree_locked(bp); 2068 spin_unlock(&bufqspin); 2069 2070 /* 2071 * Dependancies must be handled before we disassociate the 2072 * vnode. 2073 * 2074 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2075 * be immediately disassociated. HAMMER then becomes 2076 * responsible for releasing the buffer. 2077 * 2078 * NOTE: bufqspin is UNLOCKED now. 2079 */ 2080 if (LIST_FIRST(&bp->b_dep) != NULL) { 2081 buf_deallocate(bp); 2082 if (bp->b_flags & B_LOCKED) { 2083 bqrelse(bp); 2084 goto restart; 2085 } 2086 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2087 } 2088 2089 if (qindex == BQUEUE_CLEAN) { 2090 if (bp->b_flags & B_VMIO) 2091 vfs_vmio_release(bp); 2092 if (bp->b_vp) 2093 brelvp(bp); 2094 } 2095 2096 /* 2097 * NOTE: nbp is now entirely invalid. We can only restart 2098 * the scan from this point on. 2099 * 2100 * Get the rest of the buffer freed up. b_kva* is still 2101 * valid after this operation. 2102 */ 2103 2104 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 2105 KKASSERT((bp->b_flags & B_HASHED) == 0); 2106 2107 /* 2108 * critical section protection is not required when 2109 * scrapping a buffer's contents because it is already 2110 * wired. 2111 */ 2112 if (bp->b_bufsize) 2113 allocbuf(bp, 0); 2114 2115 bp->b_flags = B_BNOCLIP; 2116 bp->b_cmd = BUF_CMD_DONE; 2117 bp->b_vp = NULL; 2118 bp->b_error = 0; 2119 bp->b_resid = 0; 2120 bp->b_bcount = 0; 2121 bp->b_xio.xio_npages = 0; 2122 bp->b_dirtyoff = bp->b_dirtyend = 0; 2123 bp->b_act_count = ACT_INIT; 2124 reinitbufbio(bp); 2125 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2126 buf_dep_init(bp); 2127 if (blkflags & GETBLK_BHEAVY) 2128 bp->b_flags |= B_HEAVY; 2129 2130 /* 2131 * If we are defragging then free the buffer. 2132 */ 2133 if (defrag) { 2134 bp->b_flags |= B_INVAL; 2135 bfreekva(bp); 2136 brelse(bp); 2137 defrag = 0; 2138 goto restart; 2139 } 2140 2141 /* 2142 * If we are overcomitted then recover the buffer and its 2143 * KVM space. This occurs in rare situations when multiple 2144 * processes are blocked in getnewbuf() or allocbuf(). 2145 */ 2146 if (bufspace >= hibufspace) 2147 flushingbufs = 1; 2148 if (flushingbufs && bp->b_kvasize != 0) { 2149 bp->b_flags |= B_INVAL; 2150 bfreekva(bp); 2151 brelse(bp); 2152 goto restart; 2153 } 2154 if (bufspace < lobufspace) 2155 flushingbufs = 0; 2156 2157 /* 2158 * The brelvp() above interlocked the buffer, test b_refs 2159 * to determine if the buffer can be reused. b_refs 2160 * interlocks lookup/blocking-lock operations and allowing 2161 * buffer reuse can create deadlocks depending on what 2162 * (vp,loffset) is assigned to the reused buffer (see getblk). 2163 */ 2164 if (bp->b_refs) { 2165 bp->b_flags |= B_INVAL; 2166 bfreekva(bp); 2167 brelse(bp); 2168 goto restart; 2169 } 2170 2171 break; 2172 /* NOT REACHED, bufqspin not held */ 2173 } 2174 2175 /* 2176 * If we exhausted our list, sleep as appropriate. We may have to 2177 * wakeup various daemons and write out some dirty buffers. 2178 * 2179 * Generally we are sleeping due to insufficient buffer space. 2180 * 2181 * NOTE: bufqspin is held if bp is NULL, else it is not held. 2182 */ 2183 if (bp == NULL) { 2184 int flags; 2185 char *waitmsg; 2186 2187 spin_unlock(&bufqspin); 2188 if (defrag) { 2189 flags = VFS_BIO_NEED_BUFSPACE; 2190 waitmsg = "nbufkv"; 2191 } else if (bufspace >= hibufspace) { 2192 waitmsg = "nbufbs"; 2193 flags = VFS_BIO_NEED_BUFSPACE; 2194 } else { 2195 waitmsg = "newbuf"; 2196 flags = VFS_BIO_NEED_ANY; 2197 } 2198 2199 bd_speedup(); /* heeeelp */ 2200 spin_lock(&bufcspin); 2201 needsbuffer |= flags; 2202 while (needsbuffer & flags) { 2203 if (ssleep(&needsbuffer, &bufcspin, 2204 slpflags, waitmsg, slptimeo)) { 2205 spin_unlock(&bufcspin); 2206 return (NULL); 2207 } 2208 } 2209 spin_unlock(&bufcspin); 2210 } else { 2211 /* 2212 * We finally have a valid bp. We aren't quite out of the 2213 * woods, we still have to reserve kva space. In order 2214 * to keep fragmentation sane we only allocate kva in 2215 * BKVASIZE chunks. 2216 * 2217 * (bufqspin is not held) 2218 */ 2219 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2220 2221 if (maxsize != bp->b_kvasize) { 2222 vm_offset_t addr = 0; 2223 int count; 2224 2225 bfreekva(bp); 2226 2227 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2228 vm_map_lock(&buffer_map); 2229 2230 if (vm_map_findspace(&buffer_map, 2231 vm_map_min(&buffer_map), maxsize, 2232 maxsize, 0, &addr)) { 2233 /* 2234 * Uh oh. Buffer map is too fragmented. We 2235 * must defragment the map. 2236 */ 2237 vm_map_unlock(&buffer_map); 2238 vm_map_entry_release(count); 2239 ++bufdefragcnt; 2240 defrag = 1; 2241 bp->b_flags |= B_INVAL; 2242 brelse(bp); 2243 goto restart; 2244 } 2245 if (addr) { 2246 vm_map_insert(&buffer_map, &count, 2247 NULL, 0, 2248 addr, addr + maxsize, 2249 VM_MAPTYPE_NORMAL, 2250 VM_PROT_ALL, VM_PROT_ALL, 2251 MAP_NOFAULT); 2252 2253 bp->b_kvabase = (caddr_t) addr; 2254 bp->b_kvasize = maxsize; 2255 bufspace += bp->b_kvasize; 2256 ++bufreusecnt; 2257 } 2258 vm_map_unlock(&buffer_map); 2259 vm_map_entry_release(count); 2260 } 2261 bp->b_data = bp->b_kvabase; 2262 } 2263 return(bp); 2264 } 2265 2266 /* 2267 * This routine is called in an emergency to recover VM pages from the 2268 * buffer cache by cashing in clean buffers. The idea is to recover 2269 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2270 * 2271 * MPSAFE 2272 */ 2273 static int 2274 recoverbufpages(void) 2275 { 2276 struct buf *bp; 2277 int bytes = 0; 2278 2279 ++recoverbufcalls; 2280 2281 spin_lock(&bufqspin); 2282 while (bytes < MAXBSIZE) { 2283 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2284 if (bp == NULL) 2285 break; 2286 2287 /* 2288 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2289 * cycles through the queue twice before being selected. 2290 */ 2291 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2292 bp->b_flags |= B_AGE; 2293 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2294 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2295 bp, b_freelist); 2296 continue; 2297 } 2298 2299 /* 2300 * Sanity Checks 2301 */ 2302 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2303 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2304 2305 /* 2306 * Start freeing the bp. This is somewhat involved. 2307 * 2308 * Buffers on the clean list must be disassociated from 2309 * their current vnode 2310 */ 2311 2312 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2313 kprintf("recoverbufpages: warning, locked buf %p, " 2314 "race corrected\n", 2315 bp); 2316 ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100); 2317 continue; 2318 } 2319 if (bp->b_qindex != BQUEUE_CLEAN) { 2320 kprintf("recoverbufpages: warning, BUF_LOCK blocked " 2321 "unexpectedly on buf %p index %d, race " 2322 "corrected\n", 2323 bp, bp->b_qindex); 2324 BUF_UNLOCK(bp); 2325 continue; 2326 } 2327 bremfree_locked(bp); 2328 spin_unlock(&bufqspin); 2329 2330 /* 2331 * Dependancies must be handled before we disassociate the 2332 * vnode. 2333 * 2334 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2335 * be immediately disassociated. HAMMER then becomes 2336 * responsible for releasing the buffer. 2337 */ 2338 if (LIST_FIRST(&bp->b_dep) != NULL) { 2339 buf_deallocate(bp); 2340 if (bp->b_flags & B_LOCKED) { 2341 bqrelse(bp); 2342 spin_lock(&bufqspin); 2343 continue; 2344 } 2345 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2346 } 2347 2348 bytes += bp->b_bufsize; 2349 2350 if (bp->b_flags & B_VMIO) { 2351 bp->b_flags |= B_DIRECT; /* try to free pages */ 2352 vfs_vmio_release(bp); 2353 } 2354 if (bp->b_vp) 2355 brelvp(bp); 2356 2357 KKASSERT(bp->b_vp == NULL); 2358 KKASSERT((bp->b_flags & B_HASHED) == 0); 2359 2360 /* 2361 * critical section protection is not required when 2362 * scrapping a buffer's contents because it is already 2363 * wired. 2364 */ 2365 if (bp->b_bufsize) 2366 allocbuf(bp, 0); 2367 2368 bp->b_flags = B_BNOCLIP; 2369 bp->b_cmd = BUF_CMD_DONE; 2370 bp->b_vp = NULL; 2371 bp->b_error = 0; 2372 bp->b_resid = 0; 2373 bp->b_bcount = 0; 2374 bp->b_xio.xio_npages = 0; 2375 bp->b_dirtyoff = bp->b_dirtyend = 0; 2376 reinitbufbio(bp); 2377 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2378 buf_dep_init(bp); 2379 bp->b_flags |= B_INVAL; 2380 /* bfreekva(bp); */ 2381 brelse(bp); 2382 spin_lock(&bufqspin); 2383 } 2384 spin_unlock(&bufqspin); 2385 return(bytes); 2386 } 2387 2388 /* 2389 * buf_daemon: 2390 * 2391 * Buffer flushing daemon. Buffers are normally flushed by the 2392 * update daemon but if it cannot keep up this process starts to 2393 * take the load in an attempt to prevent getnewbuf() from blocking. 2394 * 2395 * Once a flush is initiated it does not stop until the number 2396 * of buffers falls below lodirtybuffers, but we will wake up anyone 2397 * waiting at the mid-point. 2398 */ 2399 2400 static struct kproc_desc buf_kp = { 2401 "bufdaemon", 2402 buf_daemon, 2403 &bufdaemon_td 2404 }; 2405 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2406 kproc_start, &buf_kp) 2407 2408 static struct kproc_desc bufhw_kp = { 2409 "bufdaemon_hw", 2410 buf_daemon_hw, 2411 &bufdaemonhw_td 2412 }; 2413 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2414 kproc_start, &bufhw_kp) 2415 2416 /* 2417 * MPSAFE thread 2418 */ 2419 static void 2420 buf_daemon(void) 2421 { 2422 int limit; 2423 2424 /* 2425 * This process needs to be suspended prior to shutdown sync. 2426 */ 2427 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2428 bufdaemon_td, SHUTDOWN_PRI_LAST); 2429 curthread->td_flags |= TDF_SYSTHREAD; 2430 2431 /* 2432 * This process is allowed to take the buffer cache to the limit 2433 */ 2434 for (;;) { 2435 kproc_suspend_loop(); 2436 2437 /* 2438 * Do the flush as long as the number of dirty buffers 2439 * (including those running) exceeds lodirtybufspace. 2440 * 2441 * When flushing limit running I/O to hirunningspace 2442 * Do the flush. Limit the amount of in-transit I/O we 2443 * allow to build up, otherwise we would completely saturate 2444 * the I/O system. Wakeup any waiting processes before we 2445 * normally would so they can run in parallel with our drain. 2446 * 2447 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2448 * but because we split the operation into two threads we 2449 * have to cut it in half for each thread. 2450 */ 2451 waitrunningbufspace(); 2452 limit = lodirtybufspace / 2; 2453 while (runningbufspace + dirtybufspace > limit || 2454 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2455 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2456 break; 2457 if (runningbufspace < hirunningspace) 2458 continue; 2459 waitrunningbufspace(); 2460 } 2461 2462 /* 2463 * We reached our low water mark, reset the 2464 * request and sleep until we are needed again. 2465 * The sleep is just so the suspend code works. 2466 */ 2467 spin_lock(&bufcspin); 2468 if (bd_request == 0) 2469 ssleep(&bd_request, &bufcspin, 0, "psleep", hz); 2470 bd_request = 0; 2471 spin_unlock(&bufcspin); 2472 } 2473 } 2474 2475 /* 2476 * MPSAFE thread 2477 */ 2478 static void 2479 buf_daemon_hw(void) 2480 { 2481 int limit; 2482 2483 /* 2484 * This process needs to be suspended prior to shutdown sync. 2485 */ 2486 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2487 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2488 curthread->td_flags |= TDF_SYSTHREAD; 2489 2490 /* 2491 * This process is allowed to take the buffer cache to the limit 2492 */ 2493 for (;;) { 2494 kproc_suspend_loop(); 2495 2496 /* 2497 * Do the flush. Limit the amount of in-transit I/O we 2498 * allow to build up, otherwise we would completely saturate 2499 * the I/O system. Wakeup any waiting processes before we 2500 * normally would so they can run in parallel with our drain. 2501 * 2502 * Once we decide to flush push the queued I/O up to 2503 * hirunningspace in order to trigger bursting by the bioq 2504 * subsystem. 2505 * 2506 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2507 * but because we split the operation into two threads we 2508 * have to cut it in half for each thread. 2509 */ 2510 waitrunningbufspace(); 2511 limit = lodirtybufspace / 2; 2512 while (runningbufspace + dirtybufspacehw > limit || 2513 dirtybufcounthw >= nbuf / 2) { 2514 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2515 break; 2516 if (runningbufspace < hirunningspace) 2517 continue; 2518 waitrunningbufspace(); 2519 } 2520 2521 /* 2522 * We reached our low water mark, reset the 2523 * request and sleep until we are needed again. 2524 * The sleep is just so the suspend code works. 2525 */ 2526 spin_lock(&bufcspin); 2527 if (bd_request_hw == 0) 2528 ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz); 2529 bd_request_hw = 0; 2530 spin_unlock(&bufcspin); 2531 } 2532 } 2533 2534 /* 2535 * flushbufqueues: 2536 * 2537 * Try to flush a buffer in the dirty queue. We must be careful to 2538 * free up B_INVAL buffers instead of write them, which NFS is 2539 * particularly sensitive to. 2540 * 2541 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2542 * that we really want to try to get the buffer out and reuse it 2543 * due to the write load on the machine. 2544 * 2545 * We must lock the buffer in order to check its validity before we 2546 * can mess with its contents. bufqspin isn't enough. 2547 */ 2548 static int 2549 flushbufqueues(bufq_type_t q) 2550 { 2551 struct buf *bp; 2552 int r = 0; 2553 int spun; 2554 2555 spin_lock(&bufqspin); 2556 spun = 1; 2557 2558 bp = TAILQ_FIRST(&bufqueues[q]); 2559 while (bp) { 2560 if ((bp->b_flags & B_DELWRI) == 0) { 2561 kprintf("Unexpected clean buffer %p\n", bp); 2562 bp = TAILQ_NEXT(bp, b_freelist); 2563 continue; 2564 } 2565 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2566 bp = TAILQ_NEXT(bp, b_freelist); 2567 continue; 2568 } 2569 KKASSERT(bp->b_qindex == q); 2570 2571 /* 2572 * Must recheck B_DELWRI after successfully locking 2573 * the buffer. 2574 */ 2575 if ((bp->b_flags & B_DELWRI) == 0) { 2576 BUF_UNLOCK(bp); 2577 bp = TAILQ_NEXT(bp, b_freelist); 2578 continue; 2579 } 2580 2581 if (bp->b_flags & B_INVAL) { 2582 _bremfree(bp); 2583 spin_unlock(&bufqspin); 2584 spun = 0; 2585 brelse(bp); 2586 ++r; 2587 break; 2588 } 2589 2590 if (LIST_FIRST(&bp->b_dep) != NULL && 2591 (bp->b_flags & B_DEFERRED) == 0 && 2592 buf_countdeps(bp, 0)) { 2593 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2594 TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist); 2595 bp->b_flags |= B_DEFERRED; 2596 BUF_UNLOCK(bp); 2597 bp = TAILQ_FIRST(&bufqueues[q]); 2598 continue; 2599 } 2600 2601 /* 2602 * If the buffer has a dependancy, buf_checkwrite() must 2603 * also return 0 for us to be able to initate the write. 2604 * 2605 * If the buffer is flagged B_ERROR it may be requeued 2606 * over and over again, we try to avoid a live lock. 2607 * 2608 * NOTE: buf_checkwrite is MPSAFE. 2609 */ 2610 spin_unlock(&bufqspin); 2611 spun = 0; 2612 2613 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) { 2614 bremfree(bp); 2615 brelse(bp); 2616 } else if (bp->b_flags & B_ERROR) { 2617 tsleep(bp, 0, "bioer", 1); 2618 bp->b_flags &= ~B_AGE; 2619 vfs_bio_awrite(bp); 2620 } else { 2621 bp->b_flags |= B_AGE; 2622 vfs_bio_awrite(bp); 2623 } 2624 ++r; 2625 break; 2626 } 2627 if (spun) 2628 spin_unlock(&bufqspin); 2629 return (r); 2630 } 2631 2632 /* 2633 * inmem: 2634 * 2635 * Returns true if no I/O is needed to access the associated VM object. 2636 * This is like findblk except it also hunts around in the VM system for 2637 * the data. 2638 * 2639 * Note that we ignore vm_page_free() races from interrupts against our 2640 * lookup, since if the caller is not protected our return value will not 2641 * be any more valid then otherwise once we exit the critical section. 2642 */ 2643 int 2644 inmem(struct vnode *vp, off_t loffset) 2645 { 2646 vm_object_t obj; 2647 vm_offset_t toff, tinc, size; 2648 vm_page_t m; 2649 2650 if (findblk(vp, loffset, FINDBLK_TEST)) 2651 return 1; 2652 if (vp->v_mount == NULL) 2653 return 0; 2654 if ((obj = vp->v_object) == NULL) 2655 return 0; 2656 2657 size = PAGE_SIZE; 2658 if (size > vp->v_mount->mnt_stat.f_iosize) 2659 size = vp->v_mount->mnt_stat.f_iosize; 2660 2661 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2662 lwkt_gettoken(&vm_token); 2663 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2664 lwkt_reltoken(&vm_token); 2665 if (m == NULL) 2666 return 0; 2667 tinc = size; 2668 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2669 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2670 if (vm_page_is_valid(m, 2671 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2672 return 0; 2673 } 2674 return 1; 2675 } 2676 2677 /* 2678 * findblk: 2679 * 2680 * Locate and return the specified buffer. Unless flagged otherwise, 2681 * a locked buffer will be returned if it exists or NULL if it does not. 2682 * 2683 * findblk()'d buffers are still on the bufqueues and if you intend 2684 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2685 * and possibly do other stuff to it. 2686 * 2687 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2688 * for locking the buffer and ensuring that it remains 2689 * the desired buffer after locking. 2690 * 2691 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2692 * to acquire the lock we return NULL, even if the 2693 * buffer exists. 2694 * 2695 * FINDBLK_REF - Returns the buffer ref'd, which prevents reuse 2696 * by getnewbuf() but does not prevent disassociation 2697 * while we are locked. Used to avoid deadlocks 2698 * against random (vp,loffset)s due to reassignment. 2699 * 2700 * (0) - Lock the buffer blocking. 2701 * 2702 * MPSAFE 2703 */ 2704 struct buf * 2705 findblk(struct vnode *vp, off_t loffset, int flags) 2706 { 2707 struct buf *bp; 2708 int lkflags; 2709 2710 lkflags = LK_EXCLUSIVE; 2711 if (flags & FINDBLK_NBLOCK) 2712 lkflags |= LK_NOWAIT; 2713 2714 for (;;) { 2715 /* 2716 * Lookup. Ref the buf while holding v_token to prevent 2717 * reuse (but does not prevent diassociation). 2718 */ 2719 lwkt_gettoken(&vp->v_token); 2720 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2721 if (bp == NULL) { 2722 lwkt_reltoken(&vp->v_token); 2723 return(NULL); 2724 } 2725 atomic_add_int(&bp->b_refs, 1); 2726 lwkt_reltoken(&vp->v_token); 2727 2728 /* 2729 * If testing only break and return bp, do not lock. 2730 */ 2731 if (flags & FINDBLK_TEST) 2732 break; 2733 2734 /* 2735 * Lock the buffer, return an error if the lock fails. 2736 * (only FINDBLK_NBLOCK can cause the lock to fail). 2737 */ 2738 if (BUF_LOCK(bp, lkflags)) { 2739 atomic_subtract_int(&bp->b_refs, 1); 2740 /* bp = NULL; not needed */ 2741 return(NULL); 2742 } 2743 2744 /* 2745 * Revalidate the locked buf before allowing it to be 2746 * returned. 2747 */ 2748 if (bp->b_vp == vp && bp->b_loffset == loffset) 2749 break; 2750 atomic_subtract_int(&bp->b_refs, 1); 2751 BUF_UNLOCK(bp); 2752 } 2753 2754 /* 2755 * Success 2756 */ 2757 if ((flags & FINDBLK_REF) == 0) 2758 atomic_subtract_int(&bp->b_refs, 1); 2759 return(bp); 2760 } 2761 2762 void 2763 unrefblk(struct buf *bp) 2764 { 2765 atomic_subtract_int(&bp->b_refs, 1); 2766 } 2767 2768 /* 2769 * getcacheblk: 2770 * 2771 * Similar to getblk() except only returns the buffer if it is 2772 * B_CACHE and requires no other manipulation. Otherwise NULL 2773 * is returned. 2774 * 2775 * If B_RAM is set the buffer might be just fine, but we return 2776 * NULL anyway because we want the code to fall through to the 2777 * cluster read. Otherwise read-ahead breaks. 2778 */ 2779 struct buf * 2780 getcacheblk(struct vnode *vp, off_t loffset) 2781 { 2782 struct buf *bp; 2783 2784 bp = findblk(vp, loffset, 0); 2785 if (bp) { 2786 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) { 2787 bp->b_flags &= ~B_AGE; 2788 bremfree(bp); 2789 } else { 2790 BUF_UNLOCK(bp); 2791 bp = NULL; 2792 } 2793 } 2794 return (bp); 2795 } 2796 2797 /* 2798 * getblk: 2799 * 2800 * Get a block given a specified block and offset into a file/device. 2801 * B_INVAL may or may not be set on return. The caller should clear 2802 * B_INVAL prior to initiating a READ. 2803 * 2804 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2805 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2806 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2807 * without doing any of those things the system will likely believe 2808 * the buffer to be valid (especially if it is not B_VMIO), and the 2809 * next getblk() will return the buffer with B_CACHE set. 2810 * 2811 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2812 * an existing buffer. 2813 * 2814 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2815 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2816 * and then cleared based on the backing VM. If the previous buffer is 2817 * non-0-sized but invalid, B_CACHE will be cleared. 2818 * 2819 * If getblk() must create a new buffer, the new buffer is returned with 2820 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2821 * case it is returned with B_INVAL clear and B_CACHE set based on the 2822 * backing VM. 2823 * 2824 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2825 * B_CACHE bit is clear. 2826 * 2827 * What this means, basically, is that the caller should use B_CACHE to 2828 * determine whether the buffer is fully valid or not and should clear 2829 * B_INVAL prior to issuing a read. If the caller intends to validate 2830 * the buffer by loading its data area with something, the caller needs 2831 * to clear B_INVAL. If the caller does this without issuing an I/O, 2832 * the caller should set B_CACHE ( as an optimization ), else the caller 2833 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2834 * a write attempt or if it was a successfull read. If the caller 2835 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2836 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2837 * 2838 * getblk flags: 2839 * 2840 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2841 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2842 * 2843 * MPALMOSTSAFE 2844 */ 2845 struct buf * 2846 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2847 { 2848 struct buf *bp; 2849 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2850 int error; 2851 int lkflags; 2852 2853 if (size > MAXBSIZE) 2854 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2855 if (vp->v_object == NULL) 2856 panic("getblk: vnode %p has no object!", vp); 2857 2858 loop: 2859 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) { 2860 /* 2861 * The buffer was found in the cache, but we need to lock it. 2862 * We must acquire a ref on the bp to prevent reuse, but 2863 * this will not prevent disassociation (brelvp()) so we 2864 * must recheck (vp,loffset) after acquiring the lock. 2865 * 2866 * Without the ref the buffer could potentially be reused 2867 * before we acquire the lock and create a deadlock 2868 * situation between the thread trying to reuse the buffer 2869 * and us due to the fact that we would wind up blocking 2870 * on a random (vp,loffset). 2871 */ 2872 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2873 if (blkflags & GETBLK_NOWAIT) { 2874 unrefblk(bp); 2875 return(NULL); 2876 } 2877 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2878 if (blkflags & GETBLK_PCATCH) 2879 lkflags |= LK_PCATCH; 2880 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2881 if (error) { 2882 unrefblk(bp); 2883 if (error == ENOLCK) 2884 goto loop; 2885 return (NULL); 2886 } 2887 /* buffer may have changed on us */ 2888 } 2889 unrefblk(bp); 2890 2891 /* 2892 * Once the buffer has been locked, make sure we didn't race 2893 * a buffer recyclement. Buffers that are no longer hashed 2894 * will have b_vp == NULL, so this takes care of that check 2895 * as well. 2896 */ 2897 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2898 kprintf("Warning buffer %p (vp %p loffset %lld) " 2899 "was recycled\n", 2900 bp, vp, (long long)loffset); 2901 BUF_UNLOCK(bp); 2902 goto loop; 2903 } 2904 2905 /* 2906 * If SZMATCH any pre-existing buffer must be of the requested 2907 * size or NULL is returned. The caller absolutely does not 2908 * want getblk() to bwrite() the buffer on a size mismatch. 2909 */ 2910 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2911 BUF_UNLOCK(bp); 2912 return(NULL); 2913 } 2914 2915 /* 2916 * All vnode-based buffers must be backed by a VM object. 2917 */ 2918 KKASSERT(bp->b_flags & B_VMIO); 2919 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2920 bp->b_flags &= ~B_AGE; 2921 2922 /* 2923 * Make sure that B_INVAL buffers do not have a cached 2924 * block number translation. 2925 */ 2926 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2927 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 2928 " did not have cleared bio_offset cache\n", 2929 bp, vp, (long long)loffset); 2930 clearbiocache(&bp->b_bio2); 2931 } 2932 2933 /* 2934 * The buffer is locked. B_CACHE is cleared if the buffer is 2935 * invalid. 2936 */ 2937 if (bp->b_flags & B_INVAL) 2938 bp->b_flags &= ~B_CACHE; 2939 bremfree(bp); 2940 2941 /* 2942 * Any size inconsistancy with a dirty buffer or a buffer 2943 * with a softupdates dependancy must be resolved. Resizing 2944 * the buffer in such circumstances can lead to problems. 2945 * 2946 * Dirty or dependant buffers are written synchronously. 2947 * Other types of buffers are simply released and 2948 * reconstituted as they may be backed by valid, dirty VM 2949 * pages (but not marked B_DELWRI). 2950 * 2951 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 2952 * and may be left over from a prior truncation (and thus 2953 * no longer represent the actual EOF point), so we 2954 * definitely do not want to B_NOCACHE the backing store. 2955 */ 2956 if (size != bp->b_bcount) { 2957 if (bp->b_flags & B_DELWRI) { 2958 bp->b_flags |= B_RELBUF; 2959 bwrite(bp); 2960 } else if (LIST_FIRST(&bp->b_dep)) { 2961 bp->b_flags |= B_RELBUF; 2962 bwrite(bp); 2963 } else { 2964 bp->b_flags |= B_RELBUF; 2965 brelse(bp); 2966 } 2967 goto loop; 2968 } 2969 KKASSERT(size <= bp->b_kvasize); 2970 KASSERT(bp->b_loffset != NOOFFSET, 2971 ("getblk: no buffer offset")); 2972 2973 /* 2974 * A buffer with B_DELWRI set and B_CACHE clear must 2975 * be committed before we can return the buffer in 2976 * order to prevent the caller from issuing a read 2977 * ( due to B_CACHE not being set ) and overwriting 2978 * it. 2979 * 2980 * Most callers, including NFS and FFS, need this to 2981 * operate properly either because they assume they 2982 * can issue a read if B_CACHE is not set, or because 2983 * ( for example ) an uncached B_DELWRI might loop due 2984 * to softupdates re-dirtying the buffer. In the latter 2985 * case, B_CACHE is set after the first write completes, 2986 * preventing further loops. 2987 * 2988 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2989 * above while extending the buffer, we cannot allow the 2990 * buffer to remain with B_CACHE set after the write 2991 * completes or it will represent a corrupt state. To 2992 * deal with this we set B_NOCACHE to scrap the buffer 2993 * after the write. 2994 * 2995 * XXX Should this be B_RELBUF instead of B_NOCACHE? 2996 * I'm not even sure this state is still possible 2997 * now that getblk() writes out any dirty buffers 2998 * on size changes. 2999 * 3000 * We might be able to do something fancy, like setting 3001 * B_CACHE in bwrite() except if B_DELWRI is already set, 3002 * so the below call doesn't set B_CACHE, but that gets real 3003 * confusing. This is much easier. 3004 */ 3005 3006 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 3007 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 3008 "and CACHE clear, b_flags %08x\n", 3009 bp, (intmax_t)bp->b_loffset, bp->b_flags); 3010 bp->b_flags |= B_NOCACHE; 3011 bwrite(bp); 3012 goto loop; 3013 } 3014 } else { 3015 /* 3016 * Buffer is not in-core, create new buffer. The buffer 3017 * returned by getnewbuf() is locked. Note that the returned 3018 * buffer is also considered valid (not marked B_INVAL). 3019 * 3020 * Calculating the offset for the I/O requires figuring out 3021 * the block size. We use DEV_BSIZE for VBLK or VCHR and 3022 * the mount's f_iosize otherwise. If the vnode does not 3023 * have an associated mount we assume that the passed size is 3024 * the block size. 3025 * 3026 * Note that vn_isdisk() cannot be used here since it may 3027 * return a failure for numerous reasons. Note that the 3028 * buffer size may be larger then the block size (the caller 3029 * will use block numbers with the proper multiple). Beware 3030 * of using any v_* fields which are part of unions. In 3031 * particular, in DragonFly the mount point overloading 3032 * mechanism uses the namecache only and the underlying 3033 * directory vnode is not a special case. 3034 */ 3035 int bsize, maxsize; 3036 3037 if (vp->v_type == VBLK || vp->v_type == VCHR) 3038 bsize = DEV_BSIZE; 3039 else if (vp->v_mount) 3040 bsize = vp->v_mount->mnt_stat.f_iosize; 3041 else 3042 bsize = size; 3043 3044 maxsize = size + (loffset & PAGE_MASK); 3045 maxsize = imax(maxsize, bsize); 3046 3047 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 3048 if (bp == NULL) { 3049 if (slpflags || slptimeo) 3050 return NULL; 3051 goto loop; 3052 } 3053 3054 /* 3055 * Atomically insert the buffer into the hash, so that it can 3056 * be found by findblk(). 3057 * 3058 * If bgetvp() returns non-zero a collision occured, and the 3059 * bp will not be associated with the vnode. 3060 * 3061 * Make sure the translation layer has been cleared. 3062 */ 3063 bp->b_loffset = loffset; 3064 bp->b_bio2.bio_offset = NOOFFSET; 3065 /* bp->b_bio2.bio_next = NULL; */ 3066 3067 if (bgetvp(vp, bp, size)) { 3068 bp->b_flags |= B_INVAL; 3069 brelse(bp); 3070 goto loop; 3071 } 3072 3073 /* 3074 * All vnode-based buffers must be backed by a VM object. 3075 */ 3076 KKASSERT(vp->v_object != NULL); 3077 bp->b_flags |= B_VMIO; 3078 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3079 3080 allocbuf(bp, size); 3081 } 3082 KKASSERT(dsched_is_clear_buf_priv(bp)); 3083 return (bp); 3084 } 3085 3086 /* 3087 * regetblk(bp) 3088 * 3089 * Reacquire a buffer that was previously released to the locked queue, 3090 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 3091 * set B_LOCKED (which handles the acquisition race). 3092 * 3093 * To this end, either B_LOCKED must be set or the dependancy list must be 3094 * non-empty. 3095 * 3096 * MPSAFE 3097 */ 3098 void 3099 regetblk(struct buf *bp) 3100 { 3101 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 3102 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 3103 bremfree(bp); 3104 } 3105 3106 /* 3107 * geteblk: 3108 * 3109 * Get an empty, disassociated buffer of given size. The buffer is 3110 * initially set to B_INVAL. 3111 * 3112 * critical section protection is not required for the allocbuf() 3113 * call because races are impossible here. 3114 * 3115 * MPALMOSTSAFE 3116 */ 3117 struct buf * 3118 geteblk(int size) 3119 { 3120 struct buf *bp; 3121 int maxsize; 3122 3123 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3124 3125 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 3126 ; 3127 allocbuf(bp, size); 3128 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3129 KKASSERT(dsched_is_clear_buf_priv(bp)); 3130 return (bp); 3131 } 3132 3133 3134 /* 3135 * allocbuf: 3136 * 3137 * This code constitutes the buffer memory from either anonymous system 3138 * memory (in the case of non-VMIO operations) or from an associated 3139 * VM object (in the case of VMIO operations). This code is able to 3140 * resize a buffer up or down. 3141 * 3142 * Note that this code is tricky, and has many complications to resolve 3143 * deadlock or inconsistant data situations. Tread lightly!!! 3144 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3145 * the caller. Calling this code willy nilly can result in the loss of 3146 * data. 3147 * 3148 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3149 * B_CACHE for the non-VMIO case. 3150 * 3151 * This routine does not need to be called from a critical section but you 3152 * must own the buffer. 3153 * 3154 * MPSAFE 3155 */ 3156 int 3157 allocbuf(struct buf *bp, int size) 3158 { 3159 int newbsize, mbsize; 3160 int i; 3161 3162 if (BUF_REFCNT(bp) == 0) 3163 panic("allocbuf: buffer not busy"); 3164 3165 if (bp->b_kvasize < size) 3166 panic("allocbuf: buffer too small"); 3167 3168 if ((bp->b_flags & B_VMIO) == 0) { 3169 caddr_t origbuf; 3170 int origbufsize; 3171 /* 3172 * Just get anonymous memory from the kernel. Don't 3173 * mess with B_CACHE. 3174 */ 3175 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3176 if (bp->b_flags & B_MALLOC) 3177 newbsize = mbsize; 3178 else 3179 newbsize = round_page(size); 3180 3181 if (newbsize < bp->b_bufsize) { 3182 /* 3183 * Malloced buffers are not shrunk 3184 */ 3185 if (bp->b_flags & B_MALLOC) { 3186 if (newbsize) { 3187 bp->b_bcount = size; 3188 } else { 3189 kfree(bp->b_data, M_BIOBUF); 3190 if (bp->b_bufsize) { 3191 atomic_subtract_int(&bufmallocspace, bp->b_bufsize); 3192 bufspacewakeup(); 3193 bp->b_bufsize = 0; 3194 } 3195 bp->b_data = bp->b_kvabase; 3196 bp->b_bcount = 0; 3197 bp->b_flags &= ~B_MALLOC; 3198 } 3199 return 1; 3200 } 3201 vm_hold_free_pages( 3202 bp, 3203 (vm_offset_t) bp->b_data + newbsize, 3204 (vm_offset_t) bp->b_data + bp->b_bufsize); 3205 } else if (newbsize > bp->b_bufsize) { 3206 /* 3207 * We only use malloced memory on the first allocation. 3208 * and revert to page-allocated memory when the buffer 3209 * grows. 3210 */ 3211 if ((bufmallocspace < maxbufmallocspace) && 3212 (bp->b_bufsize == 0) && 3213 (mbsize <= PAGE_SIZE/2)) { 3214 3215 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3216 bp->b_bufsize = mbsize; 3217 bp->b_bcount = size; 3218 bp->b_flags |= B_MALLOC; 3219 atomic_add_int(&bufmallocspace, mbsize); 3220 return 1; 3221 } 3222 origbuf = NULL; 3223 origbufsize = 0; 3224 /* 3225 * If the buffer is growing on its other-than-first 3226 * allocation, then we revert to the page-allocation 3227 * scheme. 3228 */ 3229 if (bp->b_flags & B_MALLOC) { 3230 origbuf = bp->b_data; 3231 origbufsize = bp->b_bufsize; 3232 bp->b_data = bp->b_kvabase; 3233 if (bp->b_bufsize) { 3234 atomic_subtract_int(&bufmallocspace, 3235 bp->b_bufsize); 3236 bufspacewakeup(); 3237 bp->b_bufsize = 0; 3238 } 3239 bp->b_flags &= ~B_MALLOC; 3240 newbsize = round_page(newbsize); 3241 } 3242 vm_hold_load_pages( 3243 bp, 3244 (vm_offset_t) bp->b_data + bp->b_bufsize, 3245 (vm_offset_t) bp->b_data + newbsize); 3246 if (origbuf) { 3247 bcopy(origbuf, bp->b_data, origbufsize); 3248 kfree(origbuf, M_BIOBUF); 3249 } 3250 } 3251 } else { 3252 vm_page_t m; 3253 int desiredpages; 3254 3255 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3256 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3257 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3258 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3259 3260 if (bp->b_flags & B_MALLOC) 3261 panic("allocbuf: VMIO buffer can't be malloced"); 3262 /* 3263 * Set B_CACHE initially if buffer is 0 length or will become 3264 * 0-length. 3265 */ 3266 if (size == 0 || bp->b_bufsize == 0) 3267 bp->b_flags |= B_CACHE; 3268 3269 if (newbsize < bp->b_bufsize) { 3270 /* 3271 * DEV_BSIZE aligned new buffer size is less then the 3272 * DEV_BSIZE aligned existing buffer size. Figure out 3273 * if we have to remove any pages. 3274 */ 3275 if (desiredpages < bp->b_xio.xio_npages) { 3276 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3277 /* 3278 * the page is not freed here -- it 3279 * is the responsibility of 3280 * vnode_pager_setsize 3281 */ 3282 m = bp->b_xio.xio_pages[i]; 3283 KASSERT(m != bogus_page, 3284 ("allocbuf: bogus page found")); 3285 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3286 ; 3287 3288 bp->b_xio.xio_pages[i] = NULL; 3289 vm_page_unwire(m, 0); 3290 } 3291 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3292 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3293 bp->b_xio.xio_npages = desiredpages; 3294 } 3295 } else if (size > bp->b_bcount) { 3296 /* 3297 * We are growing the buffer, possibly in a 3298 * byte-granular fashion. 3299 */ 3300 struct vnode *vp; 3301 vm_object_t obj; 3302 vm_offset_t toff; 3303 vm_offset_t tinc; 3304 3305 /* 3306 * Step 1, bring in the VM pages from the object, 3307 * allocating them if necessary. We must clear 3308 * B_CACHE if these pages are not valid for the 3309 * range covered by the buffer. 3310 * 3311 * critical section protection is required to protect 3312 * against interrupts unbusying and freeing pages 3313 * between our vm_page_lookup() and our 3314 * busycheck/wiring call. 3315 */ 3316 vp = bp->b_vp; 3317 obj = vp->v_object; 3318 3319 lwkt_gettoken(&vm_token); 3320 while (bp->b_xio.xio_npages < desiredpages) { 3321 vm_page_t m; 3322 vm_pindex_t pi; 3323 3324 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3325 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3326 /* 3327 * note: must allocate system pages 3328 * since blocking here could intefere 3329 * with paging I/O, no matter which 3330 * process we are. 3331 */ 3332 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3333 if (m) { 3334 vm_page_wire(m); 3335 vm_page_wakeup(m); 3336 vm_page_flag_clear(m, PG_ZERO); 3337 bp->b_flags &= ~B_CACHE; 3338 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3339 ++bp->b_xio.xio_npages; 3340 } 3341 continue; 3342 } 3343 3344 /* 3345 * We found a page. If we have to sleep on it, 3346 * retry because it might have gotten freed out 3347 * from under us. 3348 * 3349 * We can only test PG_BUSY here. Blocking on 3350 * m->busy might lead to a deadlock: 3351 * 3352 * vm_fault->getpages->cluster_read->allocbuf 3353 * 3354 */ 3355 3356 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3357 continue; 3358 vm_page_flag_clear(m, PG_ZERO); 3359 vm_page_wire(m); 3360 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3361 ++bp->b_xio.xio_npages; 3362 if (bp->b_act_count < m->act_count) 3363 bp->b_act_count = m->act_count; 3364 } 3365 lwkt_reltoken(&vm_token); 3366 3367 /* 3368 * Step 2. We've loaded the pages into the buffer, 3369 * we have to figure out if we can still have B_CACHE 3370 * set. Note that B_CACHE is set according to the 3371 * byte-granular range ( bcount and size ), not the 3372 * aligned range ( newbsize ). 3373 * 3374 * The VM test is against m->valid, which is DEV_BSIZE 3375 * aligned. Needless to say, the validity of the data 3376 * needs to also be DEV_BSIZE aligned. Note that this 3377 * fails with NFS if the server or some other client 3378 * extends the file's EOF. If our buffer is resized, 3379 * B_CACHE may remain set! XXX 3380 */ 3381 3382 toff = bp->b_bcount; 3383 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3384 3385 while ((bp->b_flags & B_CACHE) && toff < size) { 3386 vm_pindex_t pi; 3387 3388 if (tinc > (size - toff)) 3389 tinc = size - toff; 3390 3391 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3392 PAGE_SHIFT; 3393 3394 vfs_buf_test_cache( 3395 bp, 3396 bp->b_loffset, 3397 toff, 3398 tinc, 3399 bp->b_xio.xio_pages[pi] 3400 ); 3401 toff += tinc; 3402 tinc = PAGE_SIZE; 3403 } 3404 3405 /* 3406 * Step 3, fixup the KVM pmap. Remember that 3407 * bp->b_data is relative to bp->b_loffset, but 3408 * bp->b_loffset may be offset into the first page. 3409 */ 3410 3411 bp->b_data = (caddr_t) 3412 trunc_page((vm_offset_t)bp->b_data); 3413 pmap_qenter( 3414 (vm_offset_t)bp->b_data, 3415 bp->b_xio.xio_pages, 3416 bp->b_xio.xio_npages 3417 ); 3418 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3419 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3420 } 3421 } 3422 3423 /* adjust space use on already-dirty buffer */ 3424 if (bp->b_flags & B_DELWRI) { 3425 spin_lock(&bufcspin); 3426 dirtybufspace += newbsize - bp->b_bufsize; 3427 if (bp->b_flags & B_HEAVY) 3428 dirtybufspacehw += newbsize - bp->b_bufsize; 3429 spin_unlock(&bufcspin); 3430 } 3431 if (newbsize < bp->b_bufsize) 3432 bufspacewakeup(); 3433 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3434 bp->b_bcount = size; /* requested buffer size */ 3435 return 1; 3436 } 3437 3438 /* 3439 * biowait: 3440 * 3441 * Wait for buffer I/O completion, returning error status. B_EINTR 3442 * is converted into an EINTR error but not cleared (since a chain 3443 * of biowait() calls may occur). 3444 * 3445 * On return bpdone() will have been called but the buffer will remain 3446 * locked and will not have been brelse()'d. 3447 * 3448 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3449 * likely still in progress on return. 3450 * 3451 * NOTE! This operation is on a BIO, not a BUF. 3452 * 3453 * NOTE! BIO_DONE is cleared by vn_strategy() 3454 * 3455 * MPSAFE 3456 */ 3457 static __inline int 3458 _biowait(struct bio *bio, const char *wmesg, int to) 3459 { 3460 struct buf *bp = bio->bio_buf; 3461 u_int32_t flags; 3462 u_int32_t nflags; 3463 int error; 3464 3465 KKASSERT(bio == &bp->b_bio1); 3466 for (;;) { 3467 flags = bio->bio_flags; 3468 if (flags & BIO_DONE) 3469 break; 3470 tsleep_interlock(bio, 0); 3471 nflags = flags | BIO_WANT; 3472 tsleep_interlock(bio, 0); 3473 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3474 if (wmesg) 3475 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3476 else if (bp->b_cmd == BUF_CMD_READ) 3477 error = tsleep(bio, PINTERLOCKED, "biord", to); 3478 else 3479 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3480 if (error) { 3481 kprintf("tsleep error biowait %d\n", error); 3482 return (error); 3483 } 3484 } 3485 } 3486 3487 /* 3488 * Finish up. 3489 */ 3490 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3491 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3492 if (bp->b_flags & B_EINTR) 3493 return (EINTR); 3494 if (bp->b_flags & B_ERROR) 3495 return (bp->b_error ? bp->b_error : EIO); 3496 return (0); 3497 } 3498 3499 int 3500 biowait(struct bio *bio, const char *wmesg) 3501 { 3502 return(_biowait(bio, wmesg, 0)); 3503 } 3504 3505 int 3506 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3507 { 3508 return(_biowait(bio, wmesg, to)); 3509 } 3510 3511 /* 3512 * This associates a tracking count with an I/O. vn_strategy() and 3513 * dev_dstrategy() do this automatically but there are a few cases 3514 * where a vnode or device layer is bypassed when a block translation 3515 * is cached. In such cases bio_start_transaction() may be called on 3516 * the bypassed layers so the system gets an I/O in progress indication 3517 * for those higher layers. 3518 */ 3519 void 3520 bio_start_transaction(struct bio *bio, struct bio_track *track) 3521 { 3522 bio->bio_track = track; 3523 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3524 dsched_new_buf(bio->bio_buf); 3525 bio_track_ref(track); 3526 } 3527 3528 /* 3529 * Initiate I/O on a vnode. 3530 * 3531 * SWAPCACHE OPERATION: 3532 * 3533 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately 3534 * devfs also uses b_vp for fake buffers so we also have to check 3535 * that B_PAGING is 0. In this case the passed 'vp' is probably the 3536 * underlying block device. The swap assignments are related to the 3537 * buffer cache buffer's b_vp, not the passed vp. 3538 * 3539 * The passed vp == bp->b_vp only in the case where the strategy call 3540 * is made on the vp itself for its own buffers (a regular file or 3541 * block device vp). The filesystem usually then re-calls vn_strategy() 3542 * after translating the request to an underlying device. 3543 * 3544 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the 3545 * underlying buffer cache buffers. 3546 * 3547 * We can only deal with page-aligned buffers at the moment, because 3548 * we can't tell what the real dirty state for pages straddling a buffer 3549 * are. 3550 * 3551 * In order to call swap_pager_strategy() we must provide the VM object 3552 * and base offset for the underlying buffer cache pages so it can find 3553 * the swap blocks. 3554 */ 3555 void 3556 vn_strategy(struct vnode *vp, struct bio *bio) 3557 { 3558 struct bio_track *track; 3559 struct buf *bp = bio->bio_buf; 3560 3561 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3562 3563 /* 3564 * Set when an I/O is issued on the bp. Cleared by consumers 3565 * (aka HAMMER), allowing the consumer to determine if I/O had 3566 * actually occurred. 3567 */ 3568 bp->b_flags |= B_IODEBUG; 3569 3570 /* 3571 * Handle the swap cache intercept. 3572 */ 3573 if (vn_cache_strategy(vp, bio)) 3574 return; 3575 3576 /* 3577 * Otherwise do the operation through the filesystem 3578 */ 3579 if (bp->b_cmd == BUF_CMD_READ) 3580 track = &vp->v_track_read; 3581 else 3582 track = &vp->v_track_write; 3583 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3584 bio->bio_track = track; 3585 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3586 dsched_new_buf(bio->bio_buf); 3587 bio_track_ref(track); 3588 vop_strategy(*vp->v_ops, vp, bio); 3589 } 3590 3591 int 3592 vn_cache_strategy(struct vnode *vp, struct bio *bio) 3593 { 3594 struct buf *bp = bio->bio_buf; 3595 struct bio *nbio; 3596 vm_object_t object; 3597 vm_page_t m; 3598 int i; 3599 3600 /* 3601 * Is this buffer cache buffer suitable for reading from 3602 * the swap cache? 3603 */ 3604 if (vm_swapcache_read_enable == 0 || 3605 bp->b_cmd != BUF_CMD_READ || 3606 ((bp->b_flags & B_CLUSTER) == 0 && 3607 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) || 3608 ((int)bp->b_loffset & PAGE_MASK) != 0 || 3609 (bp->b_bcount & PAGE_MASK) != 0) { 3610 return(0); 3611 } 3612 3613 /* 3614 * Figure out the original VM object (it will match the underlying 3615 * VM pages). Note that swap cached data uses page indices relative 3616 * to that object, not relative to bio->bio_offset. 3617 */ 3618 if (bp->b_flags & B_CLUSTER) 3619 object = vp->v_object; 3620 else 3621 object = bp->b_vp->v_object; 3622 3623 /* 3624 * In order to be able to use the swap cache all underlying VM 3625 * pages must be marked as such, and we can't have any bogus pages. 3626 */ 3627 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 3628 m = bp->b_xio.xio_pages[i]; 3629 if ((m->flags & PG_SWAPPED) == 0) 3630 break; 3631 if (m == bogus_page) 3632 break; 3633 } 3634 3635 /* 3636 * If we are good then issue the I/O using swap_pager_strategy() 3637 */ 3638 if (i == bp->b_xio.xio_npages) { 3639 m = bp->b_xio.xio_pages[0]; 3640 nbio = push_bio(bio); 3641 nbio->bio_offset = ptoa(m->pindex); 3642 KKASSERT(m->object == object); 3643 swap_pager_strategy(object, nbio); 3644 return(1); 3645 } 3646 return(0); 3647 } 3648 3649 /* 3650 * bpdone: 3651 * 3652 * Finish I/O on a buffer after all BIOs have been processed. 3653 * Called when the bio chain is exhausted or by biowait. If called 3654 * by biowait, elseit is typically 0. 3655 * 3656 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3657 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3658 * assuming B_INVAL is clear. 3659 * 3660 * For the VMIO case, we set B_CACHE if the op was a read and no 3661 * read error occured, or if the op was a write. B_CACHE is never 3662 * set if the buffer is invalid or otherwise uncacheable. 3663 * 3664 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3665 * initiator to leave B_INVAL set to brelse the buffer out of existance 3666 * in the biodone routine. 3667 */ 3668 void 3669 bpdone(struct buf *bp, int elseit) 3670 { 3671 buf_cmd_t cmd; 3672 3673 KASSERT(BUF_REFCNTNB(bp) > 0, 3674 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3675 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3676 ("biodone: bp %p already done!", bp)); 3677 3678 /* 3679 * No more BIOs are left. All completion functions have been dealt 3680 * with, now we clean up the buffer. 3681 */ 3682 cmd = bp->b_cmd; 3683 bp->b_cmd = BUF_CMD_DONE; 3684 3685 /* 3686 * Only reads and writes are processed past this point. 3687 */ 3688 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3689 if (cmd == BUF_CMD_FREEBLKS) 3690 bp->b_flags |= B_NOCACHE; 3691 if (elseit) 3692 brelse(bp); 3693 return; 3694 } 3695 3696 /* 3697 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3698 * a lot worse. XXX - move this above the clearing of b_cmd 3699 */ 3700 if (LIST_FIRST(&bp->b_dep) != NULL) 3701 buf_complete(bp); /* MPSAFE */ 3702 3703 /* 3704 * A failed write must re-dirty the buffer unless B_INVAL 3705 * was set. Only applicable to normal buffers (with VPs). 3706 * vinum buffers may not have a vp. 3707 */ 3708 if (cmd == BUF_CMD_WRITE && 3709 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3710 bp->b_flags &= ~B_NOCACHE; 3711 if (bp->b_vp) 3712 bdirty(bp); 3713 } 3714 3715 if (bp->b_flags & B_VMIO) { 3716 int i; 3717 vm_ooffset_t foff; 3718 vm_page_t m; 3719 vm_object_t obj; 3720 int iosize; 3721 struct vnode *vp = bp->b_vp; 3722 3723 obj = vp->v_object; 3724 3725 #if defined(VFS_BIO_DEBUG) 3726 if (vp->v_auxrefs == 0) 3727 panic("biodone: zero vnode hold count"); 3728 if ((vp->v_flag & VOBJBUF) == 0) 3729 panic("biodone: vnode is not setup for merged cache"); 3730 #endif 3731 3732 foff = bp->b_loffset; 3733 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3734 KASSERT(obj != NULL, ("biodone: missing VM object")); 3735 3736 #if defined(VFS_BIO_DEBUG) 3737 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3738 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3739 obj->paging_in_progress, bp->b_xio.xio_npages); 3740 } 3741 #endif 3742 3743 /* 3744 * Set B_CACHE if the op was a normal read and no error 3745 * occured. B_CACHE is set for writes in the b*write() 3746 * routines. 3747 */ 3748 iosize = bp->b_bcount - bp->b_resid; 3749 if (cmd == BUF_CMD_READ && 3750 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3751 bp->b_flags |= B_CACHE; 3752 } 3753 3754 lwkt_gettoken(&vm_token); 3755 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3756 int bogusflag = 0; 3757 int resid; 3758 3759 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3760 if (resid > iosize) 3761 resid = iosize; 3762 3763 /* 3764 * cleanup bogus pages, restoring the originals. Since 3765 * the originals should still be wired, we don't have 3766 * to worry about interrupt/freeing races destroying 3767 * the VM object association. 3768 */ 3769 m = bp->b_xio.xio_pages[i]; 3770 if (m == bogus_page) { 3771 bogusflag = 1; 3772 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3773 if (m == NULL) 3774 panic("biodone: page disappeared"); 3775 bp->b_xio.xio_pages[i] = m; 3776 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3777 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3778 } 3779 #if defined(VFS_BIO_DEBUG) 3780 if (OFF_TO_IDX(foff) != m->pindex) { 3781 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3782 "mismatch\n", 3783 (unsigned long)foff, (long)m->pindex); 3784 } 3785 #endif 3786 3787 /* 3788 * In the write case, the valid and clean bits are 3789 * already changed correctly (see bdwrite()), so we 3790 * only need to do this here in the read case. 3791 */ 3792 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3793 vfs_clean_one_page(bp, i, m); 3794 } 3795 vm_page_flag_clear(m, PG_ZERO); 3796 3797 /* 3798 * when debugging new filesystems or buffer I/O 3799 * methods, this is the most common error that pops 3800 * up. if you see this, you have not set the page 3801 * busy flag correctly!!! 3802 */ 3803 if (m->busy == 0) { 3804 kprintf("biodone: page busy < 0, " 3805 "pindex: %d, foff: 0x(%x,%x), " 3806 "resid: %d, index: %d\n", 3807 (int) m->pindex, (int)(foff >> 32), 3808 (int) foff & 0xffffffff, resid, i); 3809 if (!vn_isdisk(vp, NULL)) 3810 kprintf(" iosize: %ld, loffset: %lld, " 3811 "flags: 0x%08x, npages: %d\n", 3812 bp->b_vp->v_mount->mnt_stat.f_iosize, 3813 (long long)bp->b_loffset, 3814 bp->b_flags, bp->b_xio.xio_npages); 3815 else 3816 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3817 (long long)bp->b_loffset, 3818 bp->b_flags, bp->b_xio.xio_npages); 3819 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3820 m->valid, m->dirty, m->wire_count); 3821 panic("biodone: page busy < 0"); 3822 } 3823 vm_page_io_finish(m); 3824 vm_object_pip_subtract(obj, 1); 3825 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3826 iosize -= resid; 3827 } 3828 bp->b_flags &= ~B_HASBOGUS; 3829 if (obj) 3830 vm_object_pip_wakeupn(obj, 0); 3831 lwkt_reltoken(&vm_token); 3832 } 3833 3834 /* 3835 * Finish up by releasing the buffer. There are no more synchronous 3836 * or asynchronous completions, those were handled by bio_done 3837 * callbacks. 3838 */ 3839 if (elseit) { 3840 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3841 brelse(bp); 3842 else 3843 bqrelse(bp); 3844 } 3845 } 3846 3847 /* 3848 * Normal biodone. 3849 */ 3850 void 3851 biodone(struct bio *bio) 3852 { 3853 struct buf *bp = bio->bio_buf; 3854 3855 runningbufwakeup(bp); 3856 3857 /* 3858 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3859 */ 3860 while (bio) { 3861 biodone_t *done_func; 3862 struct bio_track *track; 3863 3864 /* 3865 * BIO tracking. Most but not all BIOs are tracked. 3866 */ 3867 if ((track = bio->bio_track) != NULL) { 3868 bio_track_rel(track); 3869 bio->bio_track = NULL; 3870 } 3871 3872 /* 3873 * A bio_done function terminates the loop. The function 3874 * will be responsible for any further chaining and/or 3875 * buffer management. 3876 * 3877 * WARNING! The done function can deallocate the buffer! 3878 */ 3879 if ((done_func = bio->bio_done) != NULL) { 3880 bio->bio_done = NULL; 3881 done_func(bio); 3882 return; 3883 } 3884 bio = bio->bio_prev; 3885 } 3886 3887 /* 3888 * If we've run out of bio's do normal [a]synchronous completion. 3889 */ 3890 bpdone(bp, 1); 3891 } 3892 3893 /* 3894 * Synchronous biodone - this terminates a synchronous BIO. 3895 * 3896 * bpdone() is called with elseit=FALSE, leaving the buffer completed 3897 * but still locked. The caller must brelse() the buffer after waiting 3898 * for completion. 3899 */ 3900 void 3901 biodone_sync(struct bio *bio) 3902 { 3903 struct buf *bp = bio->bio_buf; 3904 int flags; 3905 int nflags; 3906 3907 KKASSERT(bio == &bp->b_bio1); 3908 bpdone(bp, 0); 3909 3910 for (;;) { 3911 flags = bio->bio_flags; 3912 nflags = (flags | BIO_DONE) & ~BIO_WANT; 3913 3914 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3915 if (flags & BIO_WANT) 3916 wakeup(bio); 3917 break; 3918 } 3919 } 3920 } 3921 3922 /* 3923 * vfs_unbusy_pages: 3924 * 3925 * This routine is called in lieu of iodone in the case of 3926 * incomplete I/O. This keeps the busy status for pages 3927 * consistant. 3928 */ 3929 void 3930 vfs_unbusy_pages(struct buf *bp) 3931 { 3932 int i; 3933 3934 runningbufwakeup(bp); 3935 3936 lwkt_gettoken(&vm_token); 3937 if (bp->b_flags & B_VMIO) { 3938 struct vnode *vp = bp->b_vp; 3939 vm_object_t obj; 3940 3941 obj = vp->v_object; 3942 3943 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3944 vm_page_t m = bp->b_xio.xio_pages[i]; 3945 3946 /* 3947 * When restoring bogus changes the original pages 3948 * should still be wired, so we are in no danger of 3949 * losing the object association and do not need 3950 * critical section protection particularly. 3951 */ 3952 if (m == bogus_page) { 3953 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3954 if (!m) { 3955 panic("vfs_unbusy_pages: page missing"); 3956 } 3957 bp->b_xio.xio_pages[i] = m; 3958 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3959 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3960 } 3961 vm_object_pip_subtract(obj, 1); 3962 vm_page_flag_clear(m, PG_ZERO); 3963 vm_page_io_finish(m); 3964 } 3965 bp->b_flags &= ~B_HASBOGUS; 3966 vm_object_pip_wakeupn(obj, 0); 3967 } 3968 lwkt_reltoken(&vm_token); 3969 } 3970 3971 /* 3972 * vfs_busy_pages: 3973 * 3974 * This routine is called before a device strategy routine. 3975 * It is used to tell the VM system that paging I/O is in 3976 * progress, and treat the pages associated with the buffer 3977 * almost as being PG_BUSY. Also the object 'paging_in_progress' 3978 * flag is handled to make sure that the object doesn't become 3979 * inconsistant. 3980 * 3981 * Since I/O has not been initiated yet, certain buffer flags 3982 * such as B_ERROR or B_INVAL may be in an inconsistant state 3983 * and should be ignored. 3984 * 3985 * MPSAFE 3986 */ 3987 void 3988 vfs_busy_pages(struct vnode *vp, struct buf *bp) 3989 { 3990 int i, bogus; 3991 struct lwp *lp = curthread->td_lwp; 3992 3993 /* 3994 * The buffer's I/O command must already be set. If reading, 3995 * B_CACHE must be 0 (double check against callers only doing 3996 * I/O when B_CACHE is 0). 3997 */ 3998 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3999 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 4000 4001 if (bp->b_flags & B_VMIO) { 4002 vm_object_t obj; 4003 4004 lwkt_gettoken(&vm_token); 4005 4006 obj = vp->v_object; 4007 KASSERT(bp->b_loffset != NOOFFSET, 4008 ("vfs_busy_pages: no buffer offset")); 4009 4010 /* 4011 * Loop until none of the pages are busy. 4012 */ 4013 retry: 4014 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4015 vm_page_t m = bp->b_xio.xio_pages[i]; 4016 4017 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 4018 goto retry; 4019 } 4020 4021 /* 4022 * Setup for I/O, soft-busy the page right now because 4023 * the next loop may block. 4024 */ 4025 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4026 vm_page_t m = bp->b_xio.xio_pages[i]; 4027 4028 vm_page_flag_clear(m, PG_ZERO); 4029 if ((bp->b_flags & B_CLUSTER) == 0) { 4030 vm_object_pip_add(obj, 1); 4031 vm_page_io_start(m); 4032 } 4033 } 4034 4035 /* 4036 * Adjust protections for I/O and do bogus-page mapping. 4037 * Assume that vm_page_protect() can block (it can block 4038 * if VM_PROT_NONE, don't take any chances regardless). 4039 * 4040 * In particular note that for writes we must incorporate 4041 * page dirtyness from the VM system into the buffer's 4042 * dirty range. 4043 * 4044 * For reads we theoretically must incorporate page dirtyness 4045 * from the VM system to determine if the page needs bogus 4046 * replacement, but we shortcut the test by simply checking 4047 * that all m->valid bits are set, indicating that the page 4048 * is fully valid and does not need to be re-read. For any 4049 * VM system dirtyness the page will also be fully valid 4050 * since it was mapped at one point. 4051 */ 4052 bogus = 0; 4053 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4054 vm_page_t m = bp->b_xio.xio_pages[i]; 4055 4056 vm_page_flag_clear(m, PG_ZERO); /* XXX */ 4057 if (bp->b_cmd == BUF_CMD_WRITE) { 4058 /* 4059 * When readying a vnode-backed buffer for 4060 * a write we must zero-fill any invalid 4061 * portions of the backing VM pages, mark 4062 * it valid and clear related dirty bits. 4063 * 4064 * vfs_clean_one_page() incorporates any 4065 * VM dirtyness and updates the b_dirtyoff 4066 * range (after we've made the page RO). 4067 * 4068 * It is also expected that the pmap modified 4069 * bit has already been cleared by the 4070 * vm_page_protect(). We may not be able 4071 * to clear all dirty bits for a page if it 4072 * was also memory mapped (NFS). 4073 * 4074 * Finally be sure to unassign any swap-cache 4075 * backing store as it is now stale. 4076 */ 4077 vm_page_protect(m, VM_PROT_READ); 4078 vfs_clean_one_page(bp, i, m); 4079 swap_pager_unswapped(m); 4080 } else if (m->valid == VM_PAGE_BITS_ALL) { 4081 /* 4082 * When readying a vnode-backed buffer for 4083 * read we must replace any dirty pages with 4084 * a bogus page so dirty data is not destroyed 4085 * when filling gaps. 4086 * 4087 * To avoid testing whether the page is 4088 * dirty we instead test that the page was 4089 * at some point mapped (m->valid fully 4090 * valid) with the understanding that 4091 * this also covers the dirty case. 4092 */ 4093 bp->b_xio.xio_pages[i] = bogus_page; 4094 bp->b_flags |= B_HASBOGUS; 4095 bogus++; 4096 } else if (m->valid & m->dirty) { 4097 /* 4098 * This case should not occur as partial 4099 * dirtyment can only happen if the buffer 4100 * is B_CACHE, and this code is not entered 4101 * if the buffer is B_CACHE. 4102 */ 4103 kprintf("Warning: vfs_busy_pages - page not " 4104 "fully valid! loff=%jx bpf=%08x " 4105 "idx=%d val=%02x dir=%02x\n", 4106 (intmax_t)bp->b_loffset, bp->b_flags, 4107 i, m->valid, m->dirty); 4108 vm_page_protect(m, VM_PROT_NONE); 4109 } else { 4110 /* 4111 * The page is not valid and can be made 4112 * part of the read. 4113 */ 4114 vm_page_protect(m, VM_PROT_NONE); 4115 } 4116 } 4117 if (bogus) { 4118 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4119 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 4120 } 4121 lwkt_reltoken(&vm_token); 4122 } 4123 4124 /* 4125 * This is the easiest place to put the process accounting for the I/O 4126 * for now. 4127 */ 4128 if (lp != NULL) { 4129 if (bp->b_cmd == BUF_CMD_READ) 4130 lp->lwp_ru.ru_inblock++; 4131 else 4132 lp->lwp_ru.ru_oublock++; 4133 } 4134 } 4135 4136 /* 4137 * vfs_clean_pages: 4138 * 4139 * Tell the VM system that the pages associated with this buffer 4140 * are clean. This is used for delayed writes where the data is 4141 * going to go to disk eventually without additional VM intevention. 4142 * 4143 * Note that while we only really need to clean through to b_bcount, we 4144 * just go ahead and clean through to b_bufsize. 4145 */ 4146 static void 4147 vfs_clean_pages(struct buf *bp) 4148 { 4149 vm_page_t m; 4150 int i; 4151 4152 if ((bp->b_flags & B_VMIO) == 0) 4153 return; 4154 4155 KASSERT(bp->b_loffset != NOOFFSET, 4156 ("vfs_clean_pages: no buffer offset")); 4157 4158 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4159 m = bp->b_xio.xio_pages[i]; 4160 vfs_clean_one_page(bp, i, m); 4161 } 4162 } 4163 4164 /* 4165 * vfs_clean_one_page: 4166 * 4167 * Set the valid bits and clear the dirty bits in a page within a 4168 * buffer. The range is restricted to the buffer's size and the 4169 * buffer's logical offset might index into the first page. 4170 * 4171 * The caller has busied or soft-busied the page and it is not mapped, 4172 * test and incorporate the dirty bits into b_dirtyoff/end before 4173 * clearing them. Note that we need to clear the pmap modified bits 4174 * after determining the the page was dirty, vm_page_set_validclean() 4175 * does not do it for us. 4176 * 4177 * This routine is typically called after a read completes (dirty should 4178 * be zero in that case as we are not called on bogus-replace pages), 4179 * or before a write is initiated. 4180 */ 4181 static void 4182 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 4183 { 4184 int bcount; 4185 int xoff; 4186 int soff; 4187 int eoff; 4188 4189 /* 4190 * Calculate offset range within the page but relative to buffer's 4191 * loffset. loffset might be offset into the first page. 4192 */ 4193 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4194 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4195 4196 if (pageno == 0) { 4197 soff = xoff; 4198 eoff = PAGE_SIZE; 4199 } else { 4200 soff = (pageno << PAGE_SHIFT); 4201 eoff = soff + PAGE_SIZE; 4202 } 4203 if (eoff > bcount) 4204 eoff = bcount; 4205 if (soff >= eoff) 4206 return; 4207 4208 /* 4209 * Test dirty bits and adjust b_dirtyoff/end. 4210 * 4211 * If dirty pages are incorporated into the bp any prior 4212 * B_NEEDCOMMIT state (NFS) must be cleared because the 4213 * caller has not taken into account the new dirty data. 4214 * 4215 * If the page was memory mapped the dirty bits might go beyond the 4216 * end of the buffer, but we can't really make the assumption that 4217 * a file EOF straddles the buffer (even though this is the case for 4218 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 4219 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 4220 * This also saves some console spam. 4221 * 4222 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK, 4223 * NFS can handle huge commits but not huge writes. 4224 */ 4225 vm_page_test_dirty(m); 4226 if (m->dirty) { 4227 if ((bp->b_flags & B_NEEDCOMMIT) && 4228 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 4229 if (debug_commit) 4230 kprintf("Warning: vfs_clean_one_page: bp %p " 4231 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT" 4232 " cmd %d vd %02x/%02x x/s/e %d %d %d " 4233 "doff/end %d %d\n", 4234 bp, (intmax_t)bp->b_loffset, bp->b_bcount, 4235 bp->b_flags, bp->b_cmd, 4236 m->valid, m->dirty, xoff, soff, eoff, 4237 bp->b_dirtyoff, bp->b_dirtyend); 4238 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 4239 if (debug_commit) 4240 print_backtrace(-1); 4241 } 4242 /* 4243 * Only clear the pmap modified bits if ALL the dirty bits 4244 * are set, otherwise the system might mis-clear portions 4245 * of a page. 4246 */ 4247 if (m->dirty == VM_PAGE_BITS_ALL && 4248 (bp->b_flags & B_NEEDCOMMIT) == 0) { 4249 pmap_clear_modify(m); 4250 } 4251 if (bp->b_dirtyoff > soff - xoff) 4252 bp->b_dirtyoff = soff - xoff; 4253 if (bp->b_dirtyend < eoff - xoff) 4254 bp->b_dirtyend = eoff - xoff; 4255 } 4256 4257 /* 4258 * Set related valid bits, clear related dirty bits. 4259 * Does not mess with the pmap modified bit. 4260 * 4261 * WARNING! We cannot just clear all of m->dirty here as the 4262 * buffer cache buffers may use a DEV_BSIZE'd aligned 4263 * block size, or have an odd size (e.g. NFS at file EOF). 4264 * The putpages code can clear m->dirty to 0. 4265 * 4266 * If a VOP_WRITE generates a buffer cache buffer which 4267 * covers the same space as mapped writable pages the 4268 * buffer flush might not be able to clear all the dirty 4269 * bits and still require a putpages from the VM system 4270 * to finish it off. 4271 */ 4272 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 4273 } 4274 4275 /* 4276 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty. 4277 * The page data is assumed to be valid (there is no zeroing here). 4278 */ 4279 static void 4280 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m) 4281 { 4282 int bcount; 4283 int xoff; 4284 int soff; 4285 int eoff; 4286 4287 /* 4288 * Calculate offset range within the page but relative to buffer's 4289 * loffset. loffset might be offset into the first page. 4290 */ 4291 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4292 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4293 4294 if (pageno == 0) { 4295 soff = xoff; 4296 eoff = PAGE_SIZE; 4297 } else { 4298 soff = (pageno << PAGE_SHIFT); 4299 eoff = soff + PAGE_SIZE; 4300 } 4301 if (eoff > bcount) 4302 eoff = bcount; 4303 if (soff >= eoff) 4304 return; 4305 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff); 4306 } 4307 4308 /* 4309 * vfs_bio_clrbuf: 4310 * 4311 * Clear a buffer. This routine essentially fakes an I/O, so we need 4312 * to clear B_ERROR and B_INVAL. 4313 * 4314 * Note that while we only theoretically need to clear through b_bcount, 4315 * we go ahead and clear through b_bufsize. 4316 */ 4317 4318 void 4319 vfs_bio_clrbuf(struct buf *bp) 4320 { 4321 int i, mask = 0; 4322 caddr_t sa, ea; 4323 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 4324 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 4325 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4326 (bp->b_loffset & PAGE_MASK) == 0) { 4327 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4328 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 4329 bp->b_resid = 0; 4330 return; 4331 } 4332 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 4333 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 4334 bzero(bp->b_data, bp->b_bufsize); 4335 bp->b_xio.xio_pages[0]->valid |= mask; 4336 bp->b_resid = 0; 4337 return; 4338 } 4339 } 4340 sa = bp->b_data; 4341 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 4342 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 4343 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 4344 ea = (caddr_t)(vm_offset_t)ulmin( 4345 (u_long)(vm_offset_t)ea, 4346 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 4347 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4348 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 4349 continue; 4350 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 4351 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 4352 bzero(sa, ea - sa); 4353 } 4354 } else { 4355 for (; sa < ea; sa += DEV_BSIZE, j++) { 4356 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 4357 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 4358 bzero(sa, DEV_BSIZE); 4359 } 4360 } 4361 bp->b_xio.xio_pages[i]->valid |= mask; 4362 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 4363 } 4364 bp->b_resid = 0; 4365 } else { 4366 clrbuf(bp); 4367 } 4368 } 4369 4370 /* 4371 * vm_hold_load_pages: 4372 * 4373 * Load pages into the buffer's address space. The pages are 4374 * allocated from the kernel object in order to reduce interference 4375 * with the any VM paging I/O activity. The range of loaded 4376 * pages will be wired. 4377 * 4378 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4379 * retrieve the full range (to - from) of pages. 4380 * 4381 * MPSAFE 4382 */ 4383 void 4384 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4385 { 4386 vm_offset_t pg; 4387 vm_page_t p; 4388 int index; 4389 4390 to = round_page(to); 4391 from = round_page(from); 4392 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4393 4394 pg = from; 4395 while (pg < to) { 4396 /* 4397 * Note: must allocate system pages since blocking here 4398 * could intefere with paging I/O, no matter which 4399 * process we are. 4400 */ 4401 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4402 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4403 if (p) { 4404 vm_page_wire(p); 4405 p->valid = VM_PAGE_BITS_ALL; 4406 vm_page_flag_clear(p, PG_ZERO); 4407 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4408 bp->b_xio.xio_pages[index] = p; 4409 vm_page_wakeup(p); 4410 4411 pg += PAGE_SIZE; 4412 ++index; 4413 } 4414 } 4415 bp->b_xio.xio_npages = index; 4416 } 4417 4418 /* 4419 * Allocate pages for a buffer cache buffer. 4420 * 4421 * Under extremely severe memory conditions even allocating out of the 4422 * system reserve can fail. If this occurs we must allocate out of the 4423 * interrupt reserve to avoid a deadlock with the pageout daemon. 4424 * 4425 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 4426 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 4427 * against the pageout daemon if pages are not freed from other sources. 4428 * 4429 * MPSAFE 4430 */ 4431 static 4432 vm_page_t 4433 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4434 { 4435 vm_page_t p; 4436 4437 /* 4438 * Try a normal allocation, allow use of system reserve. 4439 */ 4440 lwkt_gettoken(&vm_token); 4441 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 4442 if (p) { 4443 lwkt_reltoken(&vm_token); 4444 return(p); 4445 } 4446 4447 /* 4448 * The normal allocation failed and we clearly have a page 4449 * deficit. Try to reclaim some clean VM pages directly 4450 * from the buffer cache. 4451 */ 4452 vm_pageout_deficit += deficit; 4453 recoverbufpages(); 4454 4455 /* 4456 * We may have blocked, the caller will know what to do if the 4457 * page now exists. 4458 */ 4459 if (vm_page_lookup(obj, pg)) { 4460 lwkt_reltoken(&vm_token); 4461 return(NULL); 4462 } 4463 4464 /* 4465 * Allocate and allow use of the interrupt reserve. 4466 * 4467 * If after all that we still can't allocate a VM page we are 4468 * in real trouble, but we slog on anyway hoping that the system 4469 * won't deadlock. 4470 */ 4471 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 4472 VM_ALLOC_INTERRUPT); 4473 if (p) { 4474 if (vm_page_count_severe()) { 4475 kprintf("bio_page_alloc: WARNING emergency page " 4476 "allocation\n"); 4477 vm_wait(hz / 20); 4478 } 4479 } else { 4480 kprintf("bio_page_alloc: WARNING emergency page " 4481 "allocation failed\n"); 4482 vm_wait(hz * 5); 4483 } 4484 lwkt_reltoken(&vm_token); 4485 return(p); 4486 } 4487 4488 /* 4489 * vm_hold_free_pages: 4490 * 4491 * Return pages associated with the buffer back to the VM system. 4492 * 4493 * The range of pages underlying the buffer's address space will 4494 * be unmapped and un-wired. 4495 * 4496 * MPSAFE 4497 */ 4498 void 4499 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4500 { 4501 vm_offset_t pg; 4502 vm_page_t p; 4503 int index, newnpages; 4504 4505 from = round_page(from); 4506 to = round_page(to); 4507 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4508 newnpages = index; 4509 4510 lwkt_gettoken(&vm_token); 4511 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4512 p = bp->b_xio.xio_pages[index]; 4513 if (p && (index < bp->b_xio.xio_npages)) { 4514 if (p->busy) { 4515 kprintf("vm_hold_free_pages: doffset: %lld, " 4516 "loffset: %lld\n", 4517 (long long)bp->b_bio2.bio_offset, 4518 (long long)bp->b_loffset); 4519 } 4520 bp->b_xio.xio_pages[index] = NULL; 4521 pmap_kremove(pg); 4522 vm_page_busy(p); 4523 vm_page_unwire(p, 0); 4524 vm_page_free(p); 4525 } 4526 } 4527 bp->b_xio.xio_npages = newnpages; 4528 lwkt_reltoken(&vm_token); 4529 } 4530 4531 /* 4532 * vmapbuf: 4533 * 4534 * Map a user buffer into KVM via a pbuf. On return the buffer's 4535 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4536 * initialized. 4537 */ 4538 int 4539 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4540 { 4541 caddr_t addr; 4542 vm_offset_t va; 4543 vm_page_t m; 4544 int vmprot; 4545 int error; 4546 int pidx; 4547 int i; 4548 4549 /* 4550 * bp had better have a command and it better be a pbuf. 4551 */ 4552 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4553 KKASSERT(bp->b_flags & B_PAGING); 4554 KKASSERT(bp->b_kvabase); 4555 4556 if (bytes < 0) 4557 return (-1); 4558 4559 /* 4560 * Map the user data into KVM. Mappings have to be page-aligned. 4561 */ 4562 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4563 pidx = 0; 4564 4565 vmprot = VM_PROT_READ; 4566 if (bp->b_cmd == BUF_CMD_READ) 4567 vmprot |= VM_PROT_WRITE; 4568 4569 while (addr < udata + bytes) { 4570 /* 4571 * Do the vm_fault if needed; do the copy-on-write thing 4572 * when reading stuff off device into memory. 4573 * 4574 * vm_fault_page*() returns a held VM page. 4575 */ 4576 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4577 va = trunc_page(va); 4578 4579 m = vm_fault_page_quick(va, vmprot, &error); 4580 if (m == NULL) { 4581 for (i = 0; i < pidx; ++i) { 4582 vm_page_unhold(bp->b_xio.xio_pages[i]); 4583 bp->b_xio.xio_pages[i] = NULL; 4584 } 4585 return(-1); 4586 } 4587 bp->b_xio.xio_pages[pidx] = m; 4588 addr += PAGE_SIZE; 4589 ++pidx; 4590 } 4591 4592 /* 4593 * Map the page array and set the buffer fields to point to 4594 * the mapped data buffer. 4595 */ 4596 if (pidx > btoc(MAXPHYS)) 4597 panic("vmapbuf: mapped more than MAXPHYS"); 4598 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4599 4600 bp->b_xio.xio_npages = pidx; 4601 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4602 bp->b_bcount = bytes; 4603 bp->b_bufsize = bytes; 4604 return(0); 4605 } 4606 4607 /* 4608 * vunmapbuf: 4609 * 4610 * Free the io map PTEs associated with this IO operation. 4611 * We also invalidate the TLB entries and restore the original b_addr. 4612 */ 4613 void 4614 vunmapbuf(struct buf *bp) 4615 { 4616 int pidx; 4617 int npages; 4618 4619 KKASSERT(bp->b_flags & B_PAGING); 4620 4621 npages = bp->b_xio.xio_npages; 4622 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4623 for (pidx = 0; pidx < npages; ++pidx) { 4624 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4625 bp->b_xio.xio_pages[pidx] = NULL; 4626 } 4627 bp->b_xio.xio_npages = 0; 4628 bp->b_data = bp->b_kvabase; 4629 } 4630 4631 /* 4632 * Scan all buffers in the system and issue the callback. 4633 */ 4634 int 4635 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4636 { 4637 int count = 0; 4638 int error; 4639 int n; 4640 4641 for (n = 0; n < nbuf; ++n) { 4642 if ((error = callback(&buf[n], info)) < 0) { 4643 count = error; 4644 break; 4645 } 4646 count += error; 4647 } 4648 return (count); 4649 } 4650 4651 /* 4652 * nestiobuf_iodone: biodone callback for nested buffers and propagate 4653 * completion to the master buffer. 4654 */ 4655 static void 4656 nestiobuf_iodone(struct bio *bio) 4657 { 4658 struct bio *mbio; 4659 struct buf *mbp, *bp; 4660 int error; 4661 int donebytes; 4662 4663 bp = bio->bio_buf; 4664 mbio = bio->bio_caller_info1.ptr; 4665 mbp = mbio->bio_buf; 4666 4667 KKASSERT(bp->b_bcount <= bp->b_bufsize); 4668 KKASSERT(mbp != bp); 4669 4670 error = bp->b_error; 4671 if (bp->b_error == 0 && 4672 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 4673 /* 4674 * Not all got transfered, raise an error. We have no way to 4675 * propagate these conditions to mbp. 4676 */ 4677 error = EIO; 4678 } 4679 4680 donebytes = bp->b_bufsize; 4681 4682 relpbuf(bp, NULL); 4683 nestiobuf_done(mbio, donebytes, error); 4684 } 4685 4686 void 4687 nestiobuf_done(struct bio *mbio, int donebytes, int error) 4688 { 4689 struct buf *mbp; 4690 4691 mbp = mbio->bio_buf; 4692 4693 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0); 4694 4695 /* 4696 * If an error occured, propagate it to the master buffer. 4697 * 4698 * Several biodone()s may wind up running concurrently so 4699 * use an atomic op to adjust b_flags. 4700 */ 4701 if (error) { 4702 mbp->b_error = error; 4703 atomic_set_int(&mbp->b_flags, B_ERROR); 4704 } 4705 4706 /* 4707 * Decrement the operations in progress counter and terminate the 4708 * I/O if this was the last bit. 4709 */ 4710 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4711 mbp->b_resid = 0; 4712 biodone(mbio); 4713 } 4714 } 4715 4716 /* 4717 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent 4718 * the mbio from being biodone()'d while we are still adding sub-bios to 4719 * it. 4720 */ 4721 void 4722 nestiobuf_init(struct bio *bio) 4723 { 4724 bio->bio_driver_info = (void *)1; 4725 } 4726 4727 /* 4728 * The BIOs added to the nestedio have already been started, remove the 4729 * count that placeheld our mbio and biodone() it if the count would 4730 * transition to 0. 4731 */ 4732 void 4733 nestiobuf_start(struct bio *mbio) 4734 { 4735 struct buf *mbp = mbio->bio_buf; 4736 4737 /* 4738 * Decrement the operations in progress counter and terminate the 4739 * I/O if this was the last bit. 4740 */ 4741 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4742 if (mbp->b_flags & B_ERROR) 4743 mbp->b_resid = mbp->b_bcount; 4744 else 4745 mbp->b_resid = 0; 4746 biodone(mbio); 4747 } 4748 } 4749 4750 /* 4751 * Set an intermediate error prior to calling nestiobuf_start() 4752 */ 4753 void 4754 nestiobuf_error(struct bio *mbio, int error) 4755 { 4756 struct buf *mbp = mbio->bio_buf; 4757 4758 if (error) { 4759 mbp->b_error = error; 4760 atomic_set_int(&mbp->b_flags, B_ERROR); 4761 } 4762 } 4763 4764 /* 4765 * nestiobuf_add: setup a "nested" buffer. 4766 * 4767 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 4768 * => 'bp' should be a buffer allocated by getiobuf. 4769 * => 'offset' is a byte offset in the master buffer. 4770 * => 'size' is a size in bytes of this nested buffer. 4771 */ 4772 void 4773 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size) 4774 { 4775 struct buf *mbp = mbio->bio_buf; 4776 struct vnode *vp = mbp->b_vp; 4777 4778 KKASSERT(mbp->b_bcount >= offset + size); 4779 4780 atomic_add_int((int *)&mbio->bio_driver_info, 1); 4781 4782 /* kernel needs to own the lock for it to be released in biodone */ 4783 BUF_KERNPROC(bp); 4784 bp->b_vp = vp; 4785 bp->b_cmd = mbp->b_cmd; 4786 bp->b_bio1.bio_done = nestiobuf_iodone; 4787 bp->b_data = (char *)mbp->b_data + offset; 4788 bp->b_resid = bp->b_bcount = size; 4789 bp->b_bufsize = bp->b_bcount; 4790 4791 bp->b_bio1.bio_track = NULL; 4792 bp->b_bio1.bio_caller_info1.ptr = mbio; 4793 } 4794 4795 /* 4796 * print out statistics from the current status of the buffer pool 4797 * this can be toggeled by the system control option debug.syncprt 4798 */ 4799 #ifdef DEBUG 4800 void 4801 vfs_bufstats(void) 4802 { 4803 int i, j, count; 4804 struct buf *bp; 4805 struct bqueues *dp; 4806 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4807 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4808 4809 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4810 count = 0; 4811 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4812 counts[j] = 0; 4813 4814 spin_lock(&bufqspin); 4815 TAILQ_FOREACH(bp, dp, b_freelist) { 4816 counts[bp->b_bufsize/PAGE_SIZE]++; 4817 count++; 4818 } 4819 spin_unlock(&bufqspin); 4820 4821 kprintf("%s: total-%d", bname[i], count); 4822 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4823 if (counts[j] != 0) 4824 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4825 kprintf("\n"); 4826 } 4827 } 4828 #endif 4829 4830 #ifdef DDB 4831 4832 DB_SHOW_COMMAND(buffer, db_show_buffer) 4833 { 4834 /* get args */ 4835 struct buf *bp = (struct buf *)addr; 4836 4837 if (!have_addr) { 4838 db_printf("usage: show buffer <addr>\n"); 4839 return; 4840 } 4841 4842 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4843 db_printf("b_cmd = %d\n", bp->b_cmd); 4844 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4845 "b_resid = %d\n, b_data = %p, " 4846 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4847 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4848 bp->b_data, 4849 (long long)bp->b_bio2.bio_offset, 4850 (long long)(bp->b_bio2.bio_next ? 4851 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4852 if (bp->b_xio.xio_npages) { 4853 int i; 4854 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4855 bp->b_xio.xio_npages); 4856 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4857 vm_page_t m; 4858 m = bp->b_xio.xio_pages[i]; 4859 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4860 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4861 if ((i + 1) < bp->b_xio.xio_npages) 4862 db_printf(","); 4863 } 4864 db_printf("\n"); 4865 } 4866 } 4867 #endif /* DDB */ 4868