xref: /dflybsd-src/sys/kern/vfs_bio.c (revision bfc09ba0a4d805c1860f88e64d6ae9a407d3567d)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
61 
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Buffer queues.
69  */
70 enum bufq_type {
71 	BQUEUE_NONE,    	/* not on any queue */
72 	BQUEUE_LOCKED,  	/* locked buffers */
73 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
74 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
75 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
76 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
77 	BQUEUE_EMPTY,    	/* empty buffer headers */
78 
79 	BUFFER_QUEUES		/* number of buffer queues */
80 };
81 
82 typedef enum bufq_type bufq_type_t;
83 
84 #define BD_WAKE_SIZE	128
85 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
86 
87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
88 struct spinlock	bufspin = SPINLOCK_INITIALIZER(&bufspin);
89 
90 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
91 
92 struct buf *buf;		/* buffer header pool */
93 
94 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
95 			       int pageno, vm_page_t m);
96 static void vfs_clean_pages(struct buf *bp);
97 static void vfs_setdirty(struct buf *bp);
98 static void vfs_vmio_release(struct buf *bp);
99 static int flushbufqueues(bufq_type_t q);
100 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
101 
102 static void bd_signal(int totalspace);
103 static void buf_daemon(void);
104 static void buf_daemon_hw(void);
105 
106 /*
107  * bogus page -- for I/O to/from partially complete buffers
108  * this is a temporary solution to the problem, but it is not
109  * really that bad.  it would be better to split the buffer
110  * for input in the case of buffers partially already in memory,
111  * but the code is intricate enough already.
112  */
113 vm_page_t bogus_page;
114 
115 /*
116  * These are all static, but make the ones we export globals so we do
117  * not need to use compiler magic.
118  */
119 int bufspace, maxbufspace,
120 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
121 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
122 static int lorunningspace, hirunningspace, runningbufreq;
123 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
124 int dirtybufcount, dirtybufcounthw;
125 int runningbufspace, runningbufcount;
126 static int getnewbufcalls;
127 static int getnewbufrestarts;
128 static int recoverbufcalls;
129 static int needsbuffer;		/* locked by needsbuffer_spin */
130 static int bd_request;		/* locked by needsbuffer_spin */
131 static int bd_request_hw;	/* locked by needsbuffer_spin */
132 static u_int bd_wake_ary[BD_WAKE_SIZE];
133 static u_int bd_wake_index;
134 static struct spinlock needsbuffer_spin;
135 
136 static struct thread *bufdaemon_td;
137 static struct thread *bufdaemonhw_td;
138 
139 
140 /*
141  * Sysctls for operational control of the buffer cache.
142  */
143 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
144 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
145 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
146 	"High watermark used to trigger explicit flushing of dirty buffers");
147 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
148 	"Minimum amount of buffer space required for active I/O");
149 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
150 	"Maximum amount of buffer space to usable for active I/O");
151 /*
152  * Sysctls determining current state of the buffer cache.
153  */
154 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
155 	"Total number of buffers in buffer cache");
156 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
157 	"Pending bytes of dirty buffers (all)");
158 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
159 	"Pending bytes of dirty buffers (heavy weight)");
160 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
161 	"Pending number of dirty buffers");
162 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
163 	"Pending number of dirty buffers (heavy weight)");
164 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
165 	"I/O bytes currently in progress due to asynchronous writes");
166 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
167 	"I/O buffers currently in progress due to asynchronous writes");
168 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
169 	"Hard limit on maximum amount of memory usable for buffer space");
170 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
171 	"Soft limit on maximum amount of memory usable for buffer space");
172 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
173 	"Minimum amount of memory to reserve for system buffer space");
174 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
175 	"Amount of memory available for buffers");
176 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
177 	0, "Maximum amount of memory reserved for buffers using malloc");
178 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
179 	"Amount of memory left for buffers using malloc-scheme");
180 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
181 	"New buffer header acquisition requests");
182 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
183 	0, "New buffer header acquisition restarts");
184 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
185 	"Recover VM space in an emergency");
186 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
187 	"Buffer acquisition restarts due to fragmented buffer map");
188 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
189 	"Amount of time KVA space was deallocated in an arbitrary buffer");
190 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
191 	"Amount of time buffer re-use operations were successful");
192 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
193 	"sizeof(struct buf)");
194 
195 char *buf_wmesg = BUF_WMESG;
196 
197 extern int vm_swap_size;
198 
199 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
200 #define VFS_BIO_NEED_UNUSED02	0x02
201 #define VFS_BIO_NEED_UNUSED04	0x04
202 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
203 
204 /*
205  * bufspacewakeup:
206  *
207  *	Called when buffer space is potentially available for recovery.
208  *	getnewbuf() will block on this flag when it is unable to free
209  *	sufficient buffer space.  Buffer space becomes recoverable when
210  *	bp's get placed back in the queues.
211  */
212 
213 static __inline void
214 bufspacewakeup(void)
215 {
216 	/*
217 	 * If someone is waiting for BUF space, wake them up.  Even
218 	 * though we haven't freed the kva space yet, the waiting
219 	 * process will be able to now.
220 	 */
221 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
222 		spin_lock_wr(&needsbuffer_spin);
223 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
224 		spin_unlock_wr(&needsbuffer_spin);
225 		wakeup(&needsbuffer);
226 	}
227 }
228 
229 /*
230  * runningbufwakeup:
231  *
232  *	Accounting for I/O in progress.
233  *
234  */
235 static __inline void
236 runningbufwakeup(struct buf *bp)
237 {
238 	int totalspace;
239 	int limit;
240 
241 	if ((totalspace = bp->b_runningbufspace) != 0) {
242 		atomic_subtract_int(&runningbufspace, totalspace);
243 		atomic_subtract_int(&runningbufcount, 1);
244 		bp->b_runningbufspace = 0;
245 
246 		/*
247 		 * see waitrunningbufspace() for limit test.
248 		 */
249 		limit = hirunningspace * 2 / 3;
250 		if (runningbufreq && runningbufspace <= limit) {
251 			runningbufreq = 0;
252 			wakeup(&runningbufreq);
253 		}
254 		bd_signal(totalspace);
255 	}
256 }
257 
258 /*
259  * bufcountwakeup:
260  *
261  *	Called when a buffer has been added to one of the free queues to
262  *	account for the buffer and to wakeup anyone waiting for free buffers.
263  *	This typically occurs when large amounts of metadata are being handled
264  *	by the buffer cache ( else buffer space runs out first, usually ).
265  *
266  * MPSAFE
267  */
268 static __inline void
269 bufcountwakeup(void)
270 {
271 	if (needsbuffer) {
272 		spin_lock_wr(&needsbuffer_spin);
273 		needsbuffer &= ~VFS_BIO_NEED_ANY;
274 		spin_unlock_wr(&needsbuffer_spin);
275 		wakeup(&needsbuffer);
276 	}
277 }
278 
279 /*
280  * waitrunningbufspace()
281  *
282  * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3.
283  * This is the point where write bursting stops so we don't want to wait
284  * for the running amount to drop below it (at least if we still want bioq
285  * to burst writes).
286  *
287  * The caller may be using this function to block in a tight loop, we
288  * must block while runningbufspace is greater then or equal to
289  * hirunningspace * 2 / 3.
290  *
291  * And even with that it may not be enough, due to the presence of
292  * B_LOCKED dirty buffers, so also wait for at least one running buffer
293  * to complete.
294  */
295 static __inline void
296 waitrunningbufspace(void)
297 {
298 	int limit = hirunningspace * 2 / 3;
299 
300 	crit_enter();
301 	if (runningbufspace > limit) {
302 		while (runningbufspace > limit) {
303 			++runningbufreq;
304 			tsleep(&runningbufreq, 0, "wdrn1", 0);
305 		}
306 	} else if (runningbufspace) {
307 		++runningbufreq;
308 		tsleep(&runningbufreq, 0, "wdrn2", 1);
309 	}
310 	crit_exit();
311 }
312 
313 /*
314  * buf_dirty_count_severe:
315  *
316  *	Return true if we have too many dirty buffers.
317  */
318 int
319 buf_dirty_count_severe(void)
320 {
321 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
322 	        dirtybufcount >= nbuf / 2);
323 }
324 
325 /*
326  * Return true if the amount of running I/O is severe and BIOQ should
327  * start bursting.
328  */
329 int
330 buf_runningbufspace_severe(void)
331 {
332 	return (runningbufspace >= hirunningspace * 2 / 3);
333 }
334 
335 /*
336  * vfs_buf_test_cache:
337  *
338  *	Called when a buffer is extended.  This function clears the B_CACHE
339  *	bit if the newly extended portion of the buffer does not contain
340  *	valid data.
341  */
342 static __inline__
343 void
344 vfs_buf_test_cache(struct buf *bp,
345 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
346 		  vm_page_t m)
347 {
348 	if (bp->b_flags & B_CACHE) {
349 		int base = (foff + off) & PAGE_MASK;
350 		if (vm_page_is_valid(m, base, size) == 0)
351 			bp->b_flags &= ~B_CACHE;
352 	}
353 }
354 
355 /*
356  * bd_speedup()
357  *
358  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
359  * low water mark.
360  *
361  * MPSAFE
362  */
363 static __inline__
364 void
365 bd_speedup(void)
366 {
367 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
368 		return;
369 
370 	if (bd_request == 0 &&
371 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
372 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
373 		spin_lock_wr(&needsbuffer_spin);
374 		bd_request = 1;
375 		spin_unlock_wr(&needsbuffer_spin);
376 		wakeup(&bd_request);
377 	}
378 	if (bd_request_hw == 0 &&
379 	    (dirtybufspacehw > lodirtybufspace / 2 ||
380 	     dirtybufcounthw >= nbuf / 2)) {
381 		spin_lock_wr(&needsbuffer_spin);
382 		bd_request_hw = 1;
383 		spin_unlock_wr(&needsbuffer_spin);
384 		wakeup(&bd_request_hw);
385 	}
386 }
387 
388 /*
389  * bd_heatup()
390  *
391  *	Get the buf_daemon heated up when the number of running and dirty
392  *	buffers exceeds the mid-point.
393  *
394  * MPSAFE
395  */
396 int
397 bd_heatup(void)
398 {
399 	int mid1;
400 	int mid2;
401 	int totalspace;
402 
403 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
404 
405 	totalspace = runningbufspace + dirtybufspace;
406 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
407 		bd_speedup();
408 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
409 		if (totalspace >= mid2)
410 			return(totalspace - mid2);
411 	}
412 	return(0);
413 }
414 
415 /*
416  * bd_wait()
417  *
418  *	Wait for the buffer cache to flush (totalspace) bytes worth of
419  *	buffers, then return.
420  *
421  *	Regardless this function blocks while the number of dirty buffers
422  *	exceeds hidirtybufspace.
423  *
424  * MPSAFE
425  */
426 void
427 bd_wait(int totalspace)
428 {
429 	u_int i;
430 	int count;
431 
432 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
433 		return;
434 
435 	while (totalspace > 0) {
436 		bd_heatup();
437 		if (totalspace > runningbufspace + dirtybufspace)
438 			totalspace = runningbufspace + dirtybufspace;
439 		count = totalspace / BKVASIZE;
440 		if (count >= BD_WAKE_SIZE)
441 			count = BD_WAKE_SIZE - 1;
442 
443 		spin_lock_wr(&needsbuffer_spin);
444 		i = (bd_wake_index + count) & BD_WAKE_MASK;
445 		++bd_wake_ary[i];
446 		tsleep_interlock(&bd_wake_ary[i], 0);
447 		spin_unlock_wr(&needsbuffer_spin);
448 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
449 
450 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
451 	}
452 }
453 
454 /*
455  * bd_signal()
456  *
457  *	This function is called whenever runningbufspace or dirtybufspace
458  *	is reduced.  Track threads waiting for run+dirty buffer I/O
459  *	complete.
460  *
461  * MPSAFE
462  */
463 static void
464 bd_signal(int totalspace)
465 {
466 	u_int i;
467 
468 	if (totalspace > 0) {
469 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
470 			totalspace = BKVASIZE * BD_WAKE_SIZE;
471 		spin_lock_wr(&needsbuffer_spin);
472 		while (totalspace > 0) {
473 			i = bd_wake_index++;
474 			i &= BD_WAKE_MASK;
475 			if (bd_wake_ary[i]) {
476 				bd_wake_ary[i] = 0;
477 				spin_unlock_wr(&needsbuffer_spin);
478 				wakeup(&bd_wake_ary[i]);
479 				spin_lock_wr(&needsbuffer_spin);
480 			}
481 			totalspace -= BKVASIZE;
482 		}
483 		spin_unlock_wr(&needsbuffer_spin);
484 	}
485 }
486 
487 /*
488  * BIO tracking support routines.
489  *
490  * Release a ref on a bio_track.  Wakeup requests are atomically released
491  * along with the last reference so bk_active will never wind up set to
492  * only 0x80000000.
493  *
494  * MPSAFE
495  */
496 static
497 void
498 bio_track_rel(struct bio_track *track)
499 {
500 	int	active;
501 	int	desired;
502 
503 	/*
504 	 * Shortcut
505 	 */
506 	active = track->bk_active;
507 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
508 		return;
509 
510 	/*
511 	 * Full-on.  Note that the wait flag is only atomically released on
512 	 * the 1->0 count transition.
513 	 *
514 	 * We check for a negative count transition using bit 30 since bit 31
515 	 * has a different meaning.
516 	 */
517 	for (;;) {
518 		desired = (active & 0x7FFFFFFF) - 1;
519 		if (desired)
520 			desired |= active & 0x80000000;
521 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
522 			if (desired & 0x40000000)
523 				panic("bio_track_rel: bad count: %p\n", track);
524 			if (active & 0x80000000)
525 				wakeup(track);
526 			break;
527 		}
528 		active = track->bk_active;
529 	}
530 }
531 
532 /*
533  * Wait for the tracking count to reach 0.
534  *
535  * Use atomic ops such that the wait flag is only set atomically when
536  * bk_active is non-zero.
537  *
538  * MPSAFE
539  */
540 int
541 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
542 {
543 	int	active;
544 	int	desired;
545 	int	error;
546 
547 	/*
548 	 * Shortcut
549 	 */
550 	if (track->bk_active == 0)
551 		return(0);
552 
553 	/*
554 	 * Full-on.  Note that the wait flag may only be atomically set if
555 	 * the active count is non-zero.
556 	 */
557 	error = 0;
558 	while ((active = track->bk_active) != 0) {
559 		desired = active | 0x80000000;
560 		tsleep_interlock(track, slp_flags);
561 		if (active == desired ||
562 		    atomic_cmpset_int(&track->bk_active, active, desired)) {
563 			error = tsleep(track, slp_flags | PINTERLOCKED,
564 				       "iowait", slp_timo);
565 			if (error)
566 				break;
567 		}
568 	}
569 	return (error);
570 }
571 
572 /*
573  * bufinit:
574  *
575  *	Load time initialisation of the buffer cache, called from machine
576  *	dependant initialization code.
577  */
578 void
579 bufinit(void)
580 {
581 	struct buf *bp;
582 	vm_offset_t bogus_offset;
583 	int i;
584 
585 	spin_init(&needsbuffer_spin);
586 
587 	/* next, make a null set of free lists */
588 	for (i = 0; i < BUFFER_QUEUES; i++)
589 		TAILQ_INIT(&bufqueues[i]);
590 
591 	/* finally, initialize each buffer header and stick on empty q */
592 	for (i = 0; i < nbuf; i++) {
593 		bp = &buf[i];
594 		bzero(bp, sizeof *bp);
595 		bp->b_flags = B_INVAL;	/* we're just an empty header */
596 		bp->b_cmd = BUF_CMD_DONE;
597 		bp->b_qindex = BQUEUE_EMPTY;
598 		initbufbio(bp);
599 		xio_init(&bp->b_xio);
600 		buf_dep_init(bp);
601 		BUF_LOCKINIT(bp);
602 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
603 	}
604 
605 	/*
606 	 * maxbufspace is the absolute maximum amount of buffer space we are
607 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
608 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
609 	 * used by most other processes.  The differential is required to
610 	 * ensure that buf_daemon is able to run when other processes might
611 	 * be blocked waiting for buffer space.
612 	 *
613 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
614 	 * this may result in KVM fragmentation which is not handled optimally
615 	 * by the system.
616 	 */
617 	maxbufspace = nbuf * BKVASIZE;
618 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
619 	lobufspace = hibufspace - MAXBSIZE;
620 
621 	lorunningspace = 512 * 1024;
622 	/* hirunningspace -- see below */
623 
624 	/*
625 	 * Limit the amount of malloc memory since it is wired permanently
626 	 * into the kernel space.  Even though this is accounted for in
627 	 * the buffer allocation, we don't want the malloced region to grow
628 	 * uncontrolled.  The malloc scheme improves memory utilization
629 	 * significantly on average (small) directories.
630 	 */
631 	maxbufmallocspace = hibufspace / 20;
632 
633 	/*
634 	 * Reduce the chance of a deadlock occuring by limiting the number
635 	 * of delayed-write dirty buffers we allow to stack up.
636 	 *
637 	 * We don't want too much actually queued to the device at once
638 	 * (XXX this needs to be per-mount!), because the buffers will
639 	 * wind up locked for a very long period of time while the I/O
640 	 * drains.
641 	 */
642 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
643 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
644 	if (hirunningspace < 1024 * 1024)
645 		hirunningspace = 1024 * 1024;
646 
647 	dirtybufspace = 0;
648 	dirtybufspacehw = 0;
649 
650 	lodirtybufspace = hidirtybufspace / 2;
651 
652 	/*
653 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
654 	 * somewhat of a hack at the moment, we really need to limit ourselves
655 	 * based on the number of bytes of I/O in-transit that were initiated
656 	 * from buf_daemon.
657 	 */
658 
659 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
660 	bogus_page = vm_page_alloc(&kernel_object,
661 				   (bogus_offset >> PAGE_SHIFT),
662 				   VM_ALLOC_NORMAL);
663 	vmstats.v_wire_count++;
664 
665 }
666 
667 /*
668  * Initialize the embedded bio structures
669  */
670 void
671 initbufbio(struct buf *bp)
672 {
673 	bp->b_bio1.bio_buf = bp;
674 	bp->b_bio1.bio_prev = NULL;
675 	bp->b_bio1.bio_offset = NOOFFSET;
676 	bp->b_bio1.bio_next = &bp->b_bio2;
677 	bp->b_bio1.bio_done = NULL;
678 	bp->b_bio1.bio_flags = 0;
679 
680 	bp->b_bio2.bio_buf = bp;
681 	bp->b_bio2.bio_prev = &bp->b_bio1;
682 	bp->b_bio2.bio_offset = NOOFFSET;
683 	bp->b_bio2.bio_next = NULL;
684 	bp->b_bio2.bio_done = NULL;
685 	bp->b_bio2.bio_flags = 0;
686 }
687 
688 /*
689  * Reinitialize the embedded bio structures as well as any additional
690  * translation cache layers.
691  */
692 void
693 reinitbufbio(struct buf *bp)
694 {
695 	struct bio *bio;
696 
697 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
698 		bio->bio_done = NULL;
699 		bio->bio_offset = NOOFFSET;
700 	}
701 }
702 
703 /*
704  * Push another BIO layer onto an existing BIO and return it.  The new
705  * BIO layer may already exist, holding cached translation data.
706  */
707 struct bio *
708 push_bio(struct bio *bio)
709 {
710 	struct bio *nbio;
711 
712 	if ((nbio = bio->bio_next) == NULL) {
713 		int index = bio - &bio->bio_buf->b_bio_array[0];
714 		if (index >= NBUF_BIO - 1) {
715 			panic("push_bio: too many layers bp %p\n",
716 				bio->bio_buf);
717 		}
718 		nbio = &bio->bio_buf->b_bio_array[index + 1];
719 		bio->bio_next = nbio;
720 		nbio->bio_prev = bio;
721 		nbio->bio_buf = bio->bio_buf;
722 		nbio->bio_offset = NOOFFSET;
723 		nbio->bio_done = NULL;
724 		nbio->bio_next = NULL;
725 	}
726 	KKASSERT(nbio->bio_done == NULL);
727 	return(nbio);
728 }
729 
730 /*
731  * Pop a BIO translation layer, returning the previous layer.  The
732  * must have been previously pushed.
733  */
734 struct bio *
735 pop_bio(struct bio *bio)
736 {
737 	return(bio->bio_prev);
738 }
739 
740 void
741 clearbiocache(struct bio *bio)
742 {
743 	while (bio) {
744 		bio->bio_offset = NOOFFSET;
745 		bio = bio->bio_next;
746 	}
747 }
748 
749 /*
750  * bfreekva:
751  *
752  *	Free the KVA allocation for buffer 'bp'.
753  *
754  *	Must be called from a critical section as this is the only locking for
755  *	buffer_map.
756  *
757  *	Since this call frees up buffer space, we call bufspacewakeup().
758  *
759  * MPALMOSTSAFE
760  */
761 static void
762 bfreekva(struct buf *bp)
763 {
764 	int count;
765 
766 	if (bp->b_kvasize) {
767 		get_mplock();
768 		++buffreekvacnt;
769 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
770 		vm_map_lock(&buffer_map);
771 		bufspace -= bp->b_kvasize;
772 		vm_map_delete(&buffer_map,
773 		    (vm_offset_t) bp->b_kvabase,
774 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
775 		    &count
776 		);
777 		vm_map_unlock(&buffer_map);
778 		vm_map_entry_release(count);
779 		bp->b_kvasize = 0;
780 		bufspacewakeup();
781 		rel_mplock();
782 	}
783 }
784 
785 /*
786  * bremfree:
787  *
788  *	Remove the buffer from the appropriate free list.
789  */
790 static __inline void
791 _bremfree(struct buf *bp)
792 {
793 	if (bp->b_qindex != BQUEUE_NONE) {
794 		KASSERT(BUF_REFCNTNB(bp) == 1,
795 				("bremfree: bp %p not locked",bp));
796 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
797 		bp->b_qindex = BQUEUE_NONE;
798 	} else {
799 		if (BUF_REFCNTNB(bp) <= 1)
800 			panic("bremfree: removing a buffer not on a queue");
801 	}
802 }
803 
804 void
805 bremfree(struct buf *bp)
806 {
807 	spin_lock_wr(&bufspin);
808 	_bremfree(bp);
809 	spin_unlock_wr(&bufspin);
810 }
811 
812 static void
813 bremfree_locked(struct buf *bp)
814 {
815 	_bremfree(bp);
816 }
817 
818 /*
819  * bread:
820  *
821  *	Get a buffer with the specified data.  Look in the cache first.  We
822  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
823  *	is set, the buffer is valid and we do not have to do anything ( see
824  *	getblk() ).
825  *
826  * MPALMOSTSAFE
827  */
828 int
829 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
830 {
831 	struct buf *bp;
832 
833 	bp = getblk(vp, loffset, size, 0, 0);
834 	*bpp = bp;
835 
836 	/* if not found in cache, do some I/O */
837 	if ((bp->b_flags & B_CACHE) == 0) {
838 		get_mplock();
839 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
840 		bp->b_cmd = BUF_CMD_READ;
841 		bp->b_bio1.bio_done = biodone_sync;
842 		bp->b_bio1.bio_flags |= BIO_SYNC;
843 		vfs_busy_pages(vp, bp);
844 		vn_strategy(vp, &bp->b_bio1);
845 		rel_mplock();
846 		return (biowait(&bp->b_bio1, "biord"));
847 	}
848 	return (0);
849 }
850 
851 /*
852  * breadn:
853  *
854  *	Operates like bread, but also starts asynchronous I/O on
855  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
856  *	to initiating I/O . If B_CACHE is set, the buffer is valid
857  *	and we do not have to do anything.
858  *
859  * MPALMOSTSAFE
860  */
861 int
862 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
863 	int *rabsize, int cnt, struct buf **bpp)
864 {
865 	struct buf *bp, *rabp;
866 	int i;
867 	int rv = 0, readwait = 0;
868 
869 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
870 
871 	/* if not found in cache, do some I/O */
872 	if ((bp->b_flags & B_CACHE) == 0) {
873 		get_mplock();
874 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
875 		bp->b_cmd = BUF_CMD_READ;
876 		bp->b_bio1.bio_done = biodone_sync;
877 		bp->b_bio1.bio_flags |= BIO_SYNC;
878 		vfs_busy_pages(vp, bp);
879 		vn_strategy(vp, &bp->b_bio1);
880 		++readwait;
881 		rel_mplock();
882 	}
883 
884 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
885 		if (inmem(vp, *raoffset))
886 			continue;
887 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
888 
889 		if ((rabp->b_flags & B_CACHE) == 0) {
890 			get_mplock();
891 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
892 			rabp->b_cmd = BUF_CMD_READ;
893 			vfs_busy_pages(vp, rabp);
894 			BUF_KERNPROC(rabp);
895 			vn_strategy(vp, &rabp->b_bio1);
896 			rel_mplock();
897 		} else {
898 			brelse(rabp);
899 		}
900 	}
901 	if (readwait)
902 		rv = biowait(&bp->b_bio1, "biord");
903 	return (rv);
904 }
905 
906 /*
907  * bwrite:
908  *
909  *	Synchronous write, waits for completion.
910  *
911  *	Write, release buffer on completion.  (Done by iodone
912  *	if async).  Do not bother writing anything if the buffer
913  *	is invalid.
914  *
915  *	Note that we set B_CACHE here, indicating that buffer is
916  *	fully valid and thus cacheable.  This is true even of NFS
917  *	now so we set it generally.  This could be set either here
918  *	or in biodone() since the I/O is synchronous.  We put it
919  *	here.
920  */
921 int
922 bwrite(struct buf *bp)
923 {
924 	int error;
925 
926 	if (bp->b_flags & B_INVAL) {
927 		brelse(bp);
928 		return (0);
929 	}
930 	if (BUF_REFCNTNB(bp) == 0)
931 		panic("bwrite: buffer is not busy???");
932 
933 	/* Mark the buffer clean */
934 	bundirty(bp);
935 
936 	bp->b_flags &= ~(B_ERROR | B_EINTR);
937 	bp->b_flags |= B_CACHE;
938 	bp->b_cmd = BUF_CMD_WRITE;
939 	bp->b_bio1.bio_done = biodone_sync;
940 	bp->b_bio1.bio_flags |= BIO_SYNC;
941 	vfs_busy_pages(bp->b_vp, bp);
942 
943 	/*
944 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
945 	 * valid for vnode-backed buffers.
946 	 */
947 	bp->b_runningbufspace = bp->b_bufsize;
948 	if (bp->b_runningbufspace) {
949 		runningbufspace += bp->b_runningbufspace;
950 		++runningbufcount;
951 	}
952 
953 	vn_strategy(bp->b_vp, &bp->b_bio1);
954 	error = biowait(&bp->b_bio1, "biows");
955 	brelse(bp);
956 	return (error);
957 }
958 
959 /*
960  * bawrite:
961  *
962  *	Asynchronous write.  Start output on a buffer, but do not wait for
963  *	it to complete.  The buffer is released when the output completes.
964  *
965  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
966  *	B_INVAL buffers.  Not us.
967  */
968 void
969 bawrite(struct buf *bp)
970 {
971 	if (bp->b_flags & B_INVAL) {
972 		brelse(bp);
973 		return;
974 	}
975 	if (BUF_REFCNTNB(bp) == 0)
976 		panic("bwrite: buffer is not busy???");
977 
978 	/* Mark the buffer clean */
979 	bundirty(bp);
980 
981 	bp->b_flags &= ~(B_ERROR | B_EINTR);
982 	bp->b_flags |= B_CACHE;
983 	bp->b_cmd = BUF_CMD_WRITE;
984 	KKASSERT(bp->b_bio1.bio_done == NULL);
985 	vfs_busy_pages(bp->b_vp, bp);
986 
987 	/*
988 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
989 	 * valid for vnode-backed buffers.
990 	 */
991 	bp->b_runningbufspace = bp->b_bufsize;
992 	if (bp->b_runningbufspace) {
993 		runningbufspace += bp->b_runningbufspace;
994 		++runningbufcount;
995 	}
996 
997 	BUF_KERNPROC(bp);
998 	vn_strategy(bp->b_vp, &bp->b_bio1);
999 }
1000 
1001 /*
1002  * bowrite:
1003  *
1004  *	Ordered write.  Start output on a buffer, and flag it so that the
1005  *	device will write it in the order it was queued.  The buffer is
1006  *	released when the output completes.  bwrite() ( or the VOP routine
1007  *	anyway ) is responsible for handling B_INVAL buffers.
1008  */
1009 int
1010 bowrite(struct buf *bp)
1011 {
1012 	bp->b_flags |= B_ORDERED;
1013 	bawrite(bp);
1014 	return (0);
1015 }
1016 
1017 /*
1018  * bdwrite:
1019  *
1020  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1021  *	anything if the buffer is marked invalid.
1022  *
1023  *	Note that since the buffer must be completely valid, we can safely
1024  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1025  *	biodone() in order to prevent getblk from writing the buffer
1026  *	out synchronously.
1027  */
1028 void
1029 bdwrite(struct buf *bp)
1030 {
1031 	if (BUF_REFCNTNB(bp) == 0)
1032 		panic("bdwrite: buffer is not busy");
1033 
1034 	if (bp->b_flags & B_INVAL) {
1035 		brelse(bp);
1036 		return;
1037 	}
1038 	bdirty(bp);
1039 
1040 	/*
1041 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1042 	 * true even of NFS now.
1043 	 */
1044 	bp->b_flags |= B_CACHE;
1045 
1046 	/*
1047 	 * This bmap keeps the system from needing to do the bmap later,
1048 	 * perhaps when the system is attempting to do a sync.  Since it
1049 	 * is likely that the indirect block -- or whatever other datastructure
1050 	 * that the filesystem needs is still in memory now, it is a good
1051 	 * thing to do this.  Note also, that if the pageout daemon is
1052 	 * requesting a sync -- there might not be enough memory to do
1053 	 * the bmap then...  So, this is important to do.
1054 	 */
1055 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1056 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1057 			 NULL, NULL, BUF_CMD_WRITE);
1058 	}
1059 
1060 	/*
1061 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1062 	 */
1063 	vfs_setdirty(bp);
1064 
1065 	/*
1066 	 * We need to do this here to satisfy the vnode_pager and the
1067 	 * pageout daemon, so that it thinks that the pages have been
1068 	 * "cleaned".  Note that since the pages are in a delayed write
1069 	 * buffer -- the VFS layer "will" see that the pages get written
1070 	 * out on the next sync, or perhaps the cluster will be completed.
1071 	 */
1072 	vfs_clean_pages(bp);
1073 	bqrelse(bp);
1074 
1075 	/*
1076 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1077 	 * due to the softdep code.
1078 	 */
1079 }
1080 
1081 /*
1082  * bdirty:
1083  *
1084  *	Turn buffer into delayed write request by marking it B_DELWRI.
1085  *	B_RELBUF and B_NOCACHE must be cleared.
1086  *
1087  *	We reassign the buffer to itself to properly update it in the
1088  *	dirty/clean lists.
1089  *
1090  *	Must be called from a critical section.
1091  *	The buffer must be on BQUEUE_NONE.
1092  */
1093 void
1094 bdirty(struct buf *bp)
1095 {
1096 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1097 	if (bp->b_flags & B_NOCACHE) {
1098 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1099 		bp->b_flags &= ~B_NOCACHE;
1100 	}
1101 	if (bp->b_flags & B_INVAL) {
1102 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1103 	}
1104 	bp->b_flags &= ~B_RELBUF;
1105 
1106 	if ((bp->b_flags & B_DELWRI) == 0) {
1107 		bp->b_flags |= B_DELWRI;
1108 		reassignbuf(bp);
1109 		atomic_add_int(&dirtybufcount, 1);
1110 		dirtybufspace += bp->b_bufsize;
1111 		if (bp->b_flags & B_HEAVY) {
1112 			atomic_add_int(&dirtybufcounthw, 1);
1113 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1114 		}
1115 		bd_heatup();
1116 	}
1117 }
1118 
1119 /*
1120  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1121  * needs to be flushed with a different buf_daemon thread to avoid
1122  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1123  */
1124 void
1125 bheavy(struct buf *bp)
1126 {
1127 	if ((bp->b_flags & B_HEAVY) == 0) {
1128 		bp->b_flags |= B_HEAVY;
1129 		if (bp->b_flags & B_DELWRI) {
1130 			atomic_add_int(&dirtybufcounthw, 1);
1131 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1132 		}
1133 	}
1134 }
1135 
1136 /*
1137  * bundirty:
1138  *
1139  *	Clear B_DELWRI for buffer.
1140  *
1141  *	Must be called from a critical section.
1142  *
1143  *	The buffer is typically on BQUEUE_NONE but there is one case in
1144  *	brelse() that calls this function after placing the buffer on
1145  *	a different queue.
1146  *
1147  * MPSAFE
1148  */
1149 void
1150 bundirty(struct buf *bp)
1151 {
1152 	if (bp->b_flags & B_DELWRI) {
1153 		bp->b_flags &= ~B_DELWRI;
1154 		reassignbuf(bp);
1155 		atomic_subtract_int(&dirtybufcount, 1);
1156 		atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1157 		if (bp->b_flags & B_HEAVY) {
1158 			atomic_subtract_int(&dirtybufcounthw, 1);
1159 			atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1160 		}
1161 		bd_signal(bp->b_bufsize);
1162 	}
1163 	/*
1164 	 * Since it is now being written, we can clear its deferred write flag.
1165 	 */
1166 	bp->b_flags &= ~B_DEFERRED;
1167 }
1168 
1169 /*
1170  * brelse:
1171  *
1172  *	Release a busy buffer and, if requested, free its resources.  The
1173  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1174  *	to be accessed later as a cache entity or reused for other purposes.
1175  *
1176  * MPALMOSTSAFE
1177  */
1178 void
1179 brelse(struct buf *bp)
1180 {
1181 #ifdef INVARIANTS
1182 	int saved_flags = bp->b_flags;
1183 #endif
1184 
1185 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1186 
1187 	/*
1188 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1189 	 * its backing store.  Clear B_DELWRI.
1190 	 *
1191 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1192 	 * to destroy the buffer and backing store and (2) when the caller
1193 	 * wants to destroy the buffer and backing store after a write
1194 	 * completes.
1195 	 */
1196 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1197 		bundirty(bp);
1198 	}
1199 
1200 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1201 		/*
1202 		 * A re-dirtied buffer is only subject to destruction
1203 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1204 		 */
1205 		/* leave buffer intact */
1206 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1207 		   (bp->b_bufsize <= 0)) {
1208 		/*
1209 		 * Either a failed read or we were asked to free or not
1210 		 * cache the buffer.  This path is reached with B_DELWRI
1211 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1212 		 * backing store destruction.
1213 		 *
1214 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1215 		 * buffer cannot be immediately freed.
1216 		 */
1217 		bp->b_flags |= B_INVAL;
1218 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1219 			get_mplock();
1220 			buf_deallocate(bp);
1221 			rel_mplock();
1222 		}
1223 		if (bp->b_flags & B_DELWRI) {
1224 			atomic_subtract_int(&dirtybufcount, 1);
1225 			atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1226 			if (bp->b_flags & B_HEAVY) {
1227 				atomic_subtract_int(&dirtybufcounthw, 1);
1228 				atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1229 			}
1230 			bd_signal(bp->b_bufsize);
1231 		}
1232 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1233 	}
1234 
1235 	/*
1236 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1237 	 * If vfs_vmio_release() is called with either bit set, the
1238 	 * underlying pages may wind up getting freed causing a previous
1239 	 * write (bdwrite()) to get 'lost' because pages associated with
1240 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1241 	 * B_LOCKED buffer may be mapped by the filesystem.
1242 	 *
1243 	 * If we want to release the buffer ourselves (rather then the
1244 	 * originator asking us to release it), give the originator a
1245 	 * chance to countermand the release by setting B_LOCKED.
1246 	 *
1247 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1248 	 * if B_DELWRI is set.
1249 	 *
1250 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1251 	 * on pages to return pages to the VM page queues.
1252 	 */
1253 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1254 		bp->b_flags &= ~B_RELBUF;
1255 	} else if (vm_page_count_severe()) {
1256 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1257 			get_mplock();
1258 			buf_deallocate(bp);		/* can set B_LOCKED */
1259 			rel_mplock();
1260 		}
1261 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1262 			bp->b_flags &= ~B_RELBUF;
1263 		else
1264 			bp->b_flags |= B_RELBUF;
1265 	}
1266 
1267 	/*
1268 	 * Make sure b_cmd is clear.  It may have already been cleared by
1269 	 * biodone().
1270 	 *
1271 	 * At this point destroying the buffer is governed by the B_INVAL
1272 	 * or B_RELBUF flags.
1273 	 */
1274 	bp->b_cmd = BUF_CMD_DONE;
1275 
1276 	/*
1277 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1278 	 * after an I/O may have replaces some of the pages with bogus pages
1279 	 * in order to not destroy dirty pages in a fill-in read.
1280 	 *
1281 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1282 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1283 	 * B_INVAL may still be set, however.
1284 	 *
1285 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1286 	 * but not the backing store.   B_NOCACHE will destroy the backing
1287 	 * store.
1288 	 *
1289 	 * Note that dirty NFS buffers contain byte-granular write ranges
1290 	 * and should not be destroyed w/ B_INVAL even if the backing store
1291 	 * is left intact.
1292 	 */
1293 	if (bp->b_flags & B_VMIO) {
1294 		/*
1295 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1296 		 */
1297 		int i, j, resid;
1298 		vm_page_t m;
1299 		off_t foff;
1300 		vm_pindex_t poff;
1301 		vm_object_t obj;
1302 		struct vnode *vp;
1303 
1304 		vp = bp->b_vp;
1305 
1306 		/*
1307 		 * Get the base offset and length of the buffer.  Note that
1308 		 * in the VMIO case if the buffer block size is not
1309 		 * page-aligned then b_data pointer may not be page-aligned.
1310 		 * But our b_xio.xio_pages array *IS* page aligned.
1311 		 *
1312 		 * block sizes less then DEV_BSIZE (usually 512) are not
1313 		 * supported due to the page granularity bits (m->valid,
1314 		 * m->dirty, etc...).
1315 		 *
1316 		 * See man buf(9) for more information
1317 		 */
1318 
1319 		resid = bp->b_bufsize;
1320 		foff = bp->b_loffset;
1321 
1322 		get_mplock();
1323 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1324 			m = bp->b_xio.xio_pages[i];
1325 			vm_page_flag_clear(m, PG_ZERO);
1326 			/*
1327 			 * If we hit a bogus page, fixup *all* of them
1328 			 * now.  Note that we left these pages wired
1329 			 * when we removed them so they had better exist,
1330 			 * and they cannot be ripped out from under us so
1331 			 * no critical section protection is necessary.
1332 			 */
1333 			if (m == bogus_page) {
1334 				obj = vp->v_object;
1335 				poff = OFF_TO_IDX(bp->b_loffset);
1336 
1337 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1338 					vm_page_t mtmp;
1339 
1340 					mtmp = bp->b_xio.xio_pages[j];
1341 					if (mtmp == bogus_page) {
1342 						mtmp = vm_page_lookup(obj, poff + j);
1343 						if (!mtmp) {
1344 							panic("brelse: page missing");
1345 						}
1346 						bp->b_xio.xio_pages[j] = mtmp;
1347 					}
1348 				}
1349 
1350 				if ((bp->b_flags & B_INVAL) == 0) {
1351 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1352 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1353 				}
1354 				m = bp->b_xio.xio_pages[i];
1355 			}
1356 
1357 			/*
1358 			 * Invalidate the backing store if B_NOCACHE is set
1359 			 * (e.g. used with vinvalbuf()).  If this is NFS
1360 			 * we impose a requirement that the block size be
1361 			 * a multiple of PAGE_SIZE and create a temporary
1362 			 * hack to basically invalidate the whole page.  The
1363 			 * problem is that NFS uses really odd buffer sizes
1364 			 * especially when tracking piecemeal writes and
1365 			 * it also vinvalbuf()'s a lot, which would result
1366 			 * in only partial page validation and invalidation
1367 			 * here.  If the file page is mmap()'d, however,
1368 			 * all the valid bits get set so after we invalidate
1369 			 * here we would end up with weird m->valid values
1370 			 * like 0xfc.  nfs_getpages() can't handle this so
1371 			 * we clear all the valid bits for the NFS case
1372 			 * instead of just some of them.
1373 			 *
1374 			 * The real bug is the VM system having to set m->valid
1375 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1376 			 * itself is an artifact of the whole 512-byte
1377 			 * granular mess that exists to support odd block
1378 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1379 			 * A complete rewrite is required.
1380 			 */
1381 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1382 				int poffset = foff & PAGE_MASK;
1383 				int presid;
1384 
1385 				presid = PAGE_SIZE - poffset;
1386 				if (bp->b_vp->v_tag == VT_NFS &&
1387 				    bp->b_vp->v_type == VREG) {
1388 					; /* entire page */
1389 				} else if (presid > resid) {
1390 					presid = resid;
1391 				}
1392 				KASSERT(presid >= 0, ("brelse: extra page"));
1393 				vm_page_set_invalid(m, poffset, presid);
1394 			}
1395 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1396 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1397 		}
1398 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1399 			vfs_vmio_release(bp);
1400 		rel_mplock();
1401 	} else {
1402 		/*
1403 		 * Rundown for non-VMIO buffers.
1404 		 */
1405 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1406 			get_mplock();
1407 			if (bp->b_bufsize)
1408 				allocbuf(bp, 0);
1409 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1410 			if (bp->b_vp)
1411 				brelvp(bp);
1412 			rel_mplock();
1413 		}
1414 	}
1415 
1416 	if (bp->b_qindex != BQUEUE_NONE)
1417 		panic("brelse: free buffer onto another queue???");
1418 	if (BUF_REFCNTNB(bp) > 1) {
1419 		/* Temporary panic to verify exclusive locking */
1420 		/* This panic goes away when we allow shared refs */
1421 		panic("brelse: multiple refs");
1422 		/* NOT REACHED */
1423 		return;
1424 	}
1425 
1426 	/*
1427 	 * Figure out the correct queue to place the cleaned up buffer on.
1428 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1429 	 * disassociated from their vnode.
1430 	 */
1431 	spin_lock_wr(&bufspin);
1432 	if (bp->b_flags & B_LOCKED) {
1433 		/*
1434 		 * Buffers that are locked are placed in the locked queue
1435 		 * immediately, regardless of their state.
1436 		 */
1437 		bp->b_qindex = BQUEUE_LOCKED;
1438 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1439 	} else if (bp->b_bufsize == 0) {
1440 		/*
1441 		 * Buffers with no memory.  Due to conditionals near the top
1442 		 * of brelse() such buffers should probably already be
1443 		 * marked B_INVAL and disassociated from their vnode.
1444 		 */
1445 		bp->b_flags |= B_INVAL;
1446 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1447 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1448 		if (bp->b_kvasize) {
1449 			bp->b_qindex = BQUEUE_EMPTYKVA;
1450 		} else {
1451 			bp->b_qindex = BQUEUE_EMPTY;
1452 		}
1453 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1454 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1455 		/*
1456 		 * Buffers with junk contents.   Again these buffers had better
1457 		 * already be disassociated from their vnode.
1458 		 */
1459 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1460 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1461 		bp->b_flags |= B_INVAL;
1462 		bp->b_qindex = BQUEUE_CLEAN;
1463 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1464 	} else {
1465 		/*
1466 		 * Remaining buffers.  These buffers are still associated with
1467 		 * their vnode.
1468 		 */
1469 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1470 		case B_DELWRI:
1471 		    bp->b_qindex = BQUEUE_DIRTY;
1472 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1473 		    break;
1474 		case B_DELWRI | B_HEAVY:
1475 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1476 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1477 				      b_freelist);
1478 		    break;
1479 		default:
1480 		    /*
1481 		     * NOTE: Buffers are always placed at the end of the
1482 		     * queue.  If B_AGE is not set the buffer will cycle
1483 		     * through the queue twice.
1484 		     */
1485 		    bp->b_qindex = BQUEUE_CLEAN;
1486 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1487 		    break;
1488 		}
1489 	}
1490 	spin_unlock_wr(&bufspin);
1491 
1492 	/*
1493 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1494 	 * on the correct queue.
1495 	 */
1496 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1497 		bundirty(bp);
1498 
1499 	/*
1500 	 * The bp is on an appropriate queue unless locked.  If it is not
1501 	 * locked or dirty we can wakeup threads waiting for buffer space.
1502 	 *
1503 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1504 	 * if B_INVAL is set ).
1505 	 */
1506 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1507 		bufcountwakeup();
1508 
1509 	/*
1510 	 * Something we can maybe free or reuse
1511 	 */
1512 	if (bp->b_bufsize || bp->b_kvasize)
1513 		bufspacewakeup();
1514 
1515 	/*
1516 	 * Clean up temporary flags and unlock the buffer.
1517 	 */
1518 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1519 	BUF_UNLOCK(bp);
1520 }
1521 
1522 /*
1523  * bqrelse:
1524  *
1525  *	Release a buffer back to the appropriate queue but do not try to free
1526  *	it.  The buffer is expected to be used again soon.
1527  *
1528  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1529  *	biodone() to requeue an async I/O on completion.  It is also used when
1530  *	known good buffers need to be requeued but we think we may need the data
1531  *	again soon.
1532  *
1533  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1534  *
1535  * MPSAFE
1536  */
1537 void
1538 bqrelse(struct buf *bp)
1539 {
1540 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1541 
1542 	if (bp->b_qindex != BQUEUE_NONE)
1543 		panic("bqrelse: free buffer onto another queue???");
1544 	if (BUF_REFCNTNB(bp) > 1) {
1545 		/* do not release to free list */
1546 		panic("bqrelse: multiple refs");
1547 		return;
1548 	}
1549 
1550 	spin_lock_wr(&bufspin);
1551 	if (bp->b_flags & B_LOCKED) {
1552 		/*
1553 		 * Locked buffers are released to the locked queue.  However,
1554 		 * if the buffer is dirty it will first go into the dirty
1555 		 * queue and later on after the I/O completes successfully it
1556 		 * will be released to the locked queue.
1557 		 */
1558 		bp->b_qindex = BQUEUE_LOCKED;
1559 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1560 	} else if (bp->b_flags & B_DELWRI) {
1561 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1562 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1563 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1564 	} else if (vm_page_count_severe()) {
1565 		/*
1566 		 * We are too low on memory, we have to try to free the
1567 		 * buffer (most importantly: the wired pages making up its
1568 		 * backing store) *now*.
1569 		 */
1570 		spin_unlock_wr(&bufspin);
1571 		brelse(bp);
1572 		return;
1573 	} else {
1574 		bp->b_qindex = BQUEUE_CLEAN;
1575 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1576 	}
1577 	spin_unlock_wr(&bufspin);
1578 
1579 	if ((bp->b_flags & B_LOCKED) == 0 &&
1580 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1581 		bufcountwakeup();
1582 	}
1583 
1584 	/*
1585 	 * Something we can maybe free or reuse.
1586 	 */
1587 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1588 		bufspacewakeup();
1589 
1590 	/*
1591 	 * Final cleanup and unlock.  Clear bits that are only used while a
1592 	 * buffer is actively locked.
1593 	 */
1594 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1595 	BUF_UNLOCK(bp);
1596 }
1597 
1598 /*
1599  * vfs_vmio_release:
1600  *
1601  *	Return backing pages held by the buffer 'bp' back to the VM system
1602  *	if possible.  The pages are freed if they are no longer valid or
1603  *	attempt to free if it was used for direct I/O otherwise they are
1604  *	sent to the page cache.
1605  *
1606  *	Pages that were marked busy are left alone and skipped.
1607  *
1608  *	The KVA mapping (b_data) for the underlying pages is removed by
1609  *	this function.
1610  */
1611 static void
1612 vfs_vmio_release(struct buf *bp)
1613 {
1614 	int i;
1615 	vm_page_t m;
1616 
1617 	crit_enter();
1618 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1619 		m = bp->b_xio.xio_pages[i];
1620 		bp->b_xio.xio_pages[i] = NULL;
1621 		/*
1622 		 * In order to keep page LRU ordering consistent, put
1623 		 * everything on the inactive queue.
1624 		 */
1625 		vm_page_unwire(m, 0);
1626 		/*
1627 		 * We don't mess with busy pages, it is
1628 		 * the responsibility of the process that
1629 		 * busied the pages to deal with them.
1630 		 */
1631 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1632 			continue;
1633 
1634 		if (m->wire_count == 0) {
1635 			vm_page_flag_clear(m, PG_ZERO);
1636 			/*
1637 			 * Might as well free the page if we can and it has
1638 			 * no valid data.  We also free the page if the
1639 			 * buffer was used for direct I/O.
1640 			 */
1641 #if 0
1642 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1643 					m->hold_count == 0) {
1644 				vm_page_busy(m);
1645 				vm_page_protect(m, VM_PROT_NONE);
1646 				vm_page_free(m);
1647 			} else
1648 #endif
1649 			if (bp->b_flags & B_DIRECT) {
1650 				vm_page_try_to_free(m);
1651 			} else if (vm_page_count_severe()) {
1652 				vm_page_try_to_cache(m);
1653 			}
1654 		}
1655 	}
1656 	crit_exit();
1657 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1658 	if (bp->b_bufsize) {
1659 		bufspacewakeup();
1660 		bp->b_bufsize = 0;
1661 	}
1662 	bp->b_xio.xio_npages = 0;
1663 	bp->b_flags &= ~B_VMIO;
1664 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1665 	if (bp->b_vp) {
1666 		get_mplock();
1667 		brelvp(bp);
1668 		rel_mplock();
1669 	}
1670 }
1671 
1672 /*
1673  * vfs_bio_awrite:
1674  *
1675  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1676  *	This is much better then the old way of writing only one buffer at
1677  *	a time.  Note that we may not be presented with the buffers in the
1678  *	correct order, so we search for the cluster in both directions.
1679  *
1680  *	The buffer is locked on call.
1681  */
1682 int
1683 vfs_bio_awrite(struct buf *bp)
1684 {
1685 	int i;
1686 	int j;
1687 	off_t loffset = bp->b_loffset;
1688 	struct vnode *vp = bp->b_vp;
1689 	int nbytes;
1690 	struct buf *bpa;
1691 	int nwritten;
1692 	int size;
1693 
1694 	/*
1695 	 * right now we support clustered writing only to regular files.  If
1696 	 * we find a clusterable block we could be in the middle of a cluster
1697 	 * rather then at the beginning.
1698 	 *
1699 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1700 	 * to b_loffset.  b_bio2 contains the translated block number.
1701 	 */
1702 	if ((vp->v_type == VREG) &&
1703 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1704 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1705 
1706 		size = vp->v_mount->mnt_stat.f_iosize;
1707 
1708 		for (i = size; i < MAXPHYS; i += size) {
1709 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1710 			    BUF_REFCNT(bpa) == 0 &&
1711 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1712 			    (B_DELWRI | B_CLUSTEROK)) &&
1713 			    (bpa->b_bufsize == size)) {
1714 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1715 				    (bpa->b_bio2.bio_offset !=
1716 				     bp->b_bio2.bio_offset + i))
1717 					break;
1718 			} else {
1719 				break;
1720 			}
1721 		}
1722 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1723 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1724 			    BUF_REFCNT(bpa) == 0 &&
1725 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1726 			    (B_DELWRI | B_CLUSTEROK)) &&
1727 			    (bpa->b_bufsize == size)) {
1728 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1729 				    (bpa->b_bio2.bio_offset !=
1730 				     bp->b_bio2.bio_offset - j))
1731 					break;
1732 			} else {
1733 				break;
1734 			}
1735 		}
1736 		j -= size;
1737 		nbytes = (i + j);
1738 
1739 		/*
1740 		 * this is a possible cluster write
1741 		 */
1742 		if (nbytes != size) {
1743 			BUF_UNLOCK(bp);
1744 			nwritten = cluster_wbuild(vp, size,
1745 						  loffset - j, nbytes);
1746 			return nwritten;
1747 		}
1748 	}
1749 
1750 	/*
1751 	 * default (old) behavior, writing out only one block
1752 	 *
1753 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1754 	 */
1755 	nwritten = bp->b_bufsize;
1756 	bremfree(bp);
1757 	bawrite(bp);
1758 
1759 	return nwritten;
1760 }
1761 
1762 /*
1763  * getnewbuf:
1764  *
1765  *	Find and initialize a new buffer header, freeing up existing buffers
1766  *	in the bufqueues as necessary.  The new buffer is returned locked.
1767  *
1768  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1769  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1770  *
1771  *	We block if:
1772  *		We have insufficient buffer headers
1773  *		We have insufficient buffer space
1774  *		buffer_map is too fragmented ( space reservation fails )
1775  *		If we have to flush dirty buffers ( but we try to avoid this )
1776  *
1777  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1778  *	Instead we ask the buf daemon to do it for us.  We attempt to
1779  *	avoid piecemeal wakeups of the pageout daemon.
1780  *
1781  * MPALMOSTSAFE
1782  */
1783 static struct buf *
1784 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1785 {
1786 	struct buf *bp;
1787 	struct buf *nbp;
1788 	int defrag = 0;
1789 	int nqindex;
1790 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1791 	static int flushingbufs;
1792 
1793 	/*
1794 	 * We can't afford to block since we might be holding a vnode lock,
1795 	 * which may prevent system daemons from running.  We deal with
1796 	 * low-memory situations by proactively returning memory and running
1797 	 * async I/O rather then sync I/O.
1798 	 */
1799 
1800 	++getnewbufcalls;
1801 	--getnewbufrestarts;
1802 restart:
1803 	++getnewbufrestarts;
1804 
1805 	/*
1806 	 * Setup for scan.  If we do not have enough free buffers,
1807 	 * we setup a degenerate case that immediately fails.  Note
1808 	 * that if we are specially marked process, we are allowed to
1809 	 * dip into our reserves.
1810 	 *
1811 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1812 	 *
1813 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1814 	 * However, there are a number of cases (defragging, reusing, ...)
1815 	 * where we cannot backup.
1816 	 */
1817 	nqindex = BQUEUE_EMPTYKVA;
1818 	spin_lock_wr(&bufspin);
1819 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1820 
1821 	if (nbp == NULL) {
1822 		/*
1823 		 * If no EMPTYKVA buffers and we are either
1824 		 * defragging or reusing, locate a CLEAN buffer
1825 		 * to free or reuse.  If bufspace useage is low
1826 		 * skip this step so we can allocate a new buffer.
1827 		 */
1828 		if (defrag || bufspace >= lobufspace) {
1829 			nqindex = BQUEUE_CLEAN;
1830 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1831 		}
1832 
1833 		/*
1834 		 * If we could not find or were not allowed to reuse a
1835 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1836 		 * buffer.  We can only use an EMPTY buffer if allocating
1837 		 * its KVA would not otherwise run us out of buffer space.
1838 		 */
1839 		if (nbp == NULL && defrag == 0 &&
1840 		    bufspace + maxsize < hibufspace) {
1841 			nqindex = BQUEUE_EMPTY;
1842 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1843 		}
1844 	}
1845 
1846 	/*
1847 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1848 	 * depending.
1849 	 *
1850 	 * WARNING!  bufspin is held!
1851 	 */
1852 	while ((bp = nbp) != NULL) {
1853 		int qindex = nqindex;
1854 
1855 		nbp = TAILQ_NEXT(bp, b_freelist);
1856 
1857 		/*
1858 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1859 		 * cycles through the queue twice before being selected.
1860 		 */
1861 		if (qindex == BQUEUE_CLEAN &&
1862 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1863 			bp->b_flags |= B_AGE;
1864 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1865 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1866 			continue;
1867 		}
1868 
1869 		/*
1870 		 * Calculate next bp ( we can only use it if we do not block
1871 		 * or do other fancy things ).
1872 		 */
1873 		if (nbp == NULL) {
1874 			switch(qindex) {
1875 			case BQUEUE_EMPTY:
1876 				nqindex = BQUEUE_EMPTYKVA;
1877 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1878 					break;
1879 				/* fall through */
1880 			case BQUEUE_EMPTYKVA:
1881 				nqindex = BQUEUE_CLEAN;
1882 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1883 					break;
1884 				/* fall through */
1885 			case BQUEUE_CLEAN:
1886 				/*
1887 				 * nbp is NULL.
1888 				 */
1889 				break;
1890 			}
1891 		}
1892 
1893 		/*
1894 		 * Sanity Checks
1895 		 */
1896 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1897 
1898 		/*
1899 		 * Note: we no longer distinguish between VMIO and non-VMIO
1900 		 * buffers.
1901 		 */
1902 
1903 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1904 
1905 		/*
1906 		 * If we are defragging then we need a buffer with
1907 		 * b_kvasize != 0.  XXX this situation should no longer
1908 		 * occur, if defrag is non-zero the buffer's b_kvasize
1909 		 * should also be non-zero at this point.  XXX
1910 		 */
1911 		if (defrag && bp->b_kvasize == 0) {
1912 			kprintf("Warning: defrag empty buffer %p\n", bp);
1913 			continue;
1914 		}
1915 
1916 		/*
1917 		 * Start freeing the bp.  This is somewhat involved.  nbp
1918 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1919 		 * on the clean list must be disassociated from their
1920 		 * current vnode.  Buffers on the empty[kva] lists have
1921 		 * already been disassociated.
1922 		 */
1923 
1924 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1925 			spin_unlock_wr(&bufspin);
1926 			kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1927 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1928 			goto restart;
1929 		}
1930 		if (bp->b_qindex != qindex) {
1931 			spin_unlock_wr(&bufspin);
1932 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1933 			BUF_UNLOCK(bp);
1934 			goto restart;
1935 		}
1936 		bremfree_locked(bp);
1937 		spin_unlock_wr(&bufspin);
1938 
1939 		/*
1940 		 * Dependancies must be handled before we disassociate the
1941 		 * vnode.
1942 		 *
1943 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1944 		 * be immediately disassociated.  HAMMER then becomes
1945 		 * responsible for releasing the buffer.
1946 		 *
1947 		 * NOTE: bufspin is UNLOCKED now.
1948 		 */
1949 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1950 			get_mplock();
1951 			buf_deallocate(bp);
1952 			rel_mplock();
1953 			if (bp->b_flags & B_LOCKED) {
1954 				bqrelse(bp);
1955 				goto restart;
1956 			}
1957 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1958 		}
1959 
1960 		if (qindex == BQUEUE_CLEAN) {
1961 			get_mplock();
1962 			if (bp->b_flags & B_VMIO) {
1963 				get_mplock();
1964 				vfs_vmio_release(bp);
1965 				rel_mplock();
1966 			}
1967 			if (bp->b_vp)
1968 				brelvp(bp);
1969 			rel_mplock();
1970 		}
1971 
1972 		/*
1973 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1974 		 * the scan from this point on.
1975 		 *
1976 		 * Get the rest of the buffer freed up.  b_kva* is still
1977 		 * valid after this operation.
1978 		 */
1979 
1980 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1981 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1982 
1983 		/*
1984 		 * critical section protection is not required when
1985 		 * scrapping a buffer's contents because it is already
1986 		 * wired.
1987 		 */
1988 		if (bp->b_bufsize) {
1989 			get_mplock();
1990 			allocbuf(bp, 0);
1991 			rel_mplock();
1992 		}
1993 
1994 		bp->b_flags = B_BNOCLIP;
1995 		bp->b_cmd = BUF_CMD_DONE;
1996 		bp->b_vp = NULL;
1997 		bp->b_error = 0;
1998 		bp->b_resid = 0;
1999 		bp->b_bcount = 0;
2000 		bp->b_xio.xio_npages = 0;
2001 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2002 		reinitbufbio(bp);
2003 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2004 		buf_dep_init(bp);
2005 		if (blkflags & GETBLK_BHEAVY)
2006 			bp->b_flags |= B_HEAVY;
2007 
2008 		/*
2009 		 * If we are defragging then free the buffer.
2010 		 */
2011 		if (defrag) {
2012 			bp->b_flags |= B_INVAL;
2013 			bfreekva(bp);
2014 			brelse(bp);
2015 			defrag = 0;
2016 			goto restart;
2017 		}
2018 
2019 		/*
2020 		 * If we are overcomitted then recover the buffer and its
2021 		 * KVM space.  This occurs in rare situations when multiple
2022 		 * processes are blocked in getnewbuf() or allocbuf().
2023 		 */
2024 		if (bufspace >= hibufspace)
2025 			flushingbufs = 1;
2026 		if (flushingbufs && bp->b_kvasize != 0) {
2027 			bp->b_flags |= B_INVAL;
2028 			bfreekva(bp);
2029 			brelse(bp);
2030 			goto restart;
2031 		}
2032 		if (bufspace < lobufspace)
2033 			flushingbufs = 0;
2034 		break;
2035 		/* NOT REACHED, bufspin not held */
2036 	}
2037 
2038 	/*
2039 	 * If we exhausted our list, sleep as appropriate.  We may have to
2040 	 * wakeup various daemons and write out some dirty buffers.
2041 	 *
2042 	 * Generally we are sleeping due to insufficient buffer space.
2043 	 *
2044 	 * NOTE: bufspin is held if bp is NULL, else it is not held.
2045 	 */
2046 	if (bp == NULL) {
2047 		int flags;
2048 		char *waitmsg;
2049 
2050 		spin_unlock_wr(&bufspin);
2051 		if (defrag) {
2052 			flags = VFS_BIO_NEED_BUFSPACE;
2053 			waitmsg = "nbufkv";
2054 		} else if (bufspace >= hibufspace) {
2055 			waitmsg = "nbufbs";
2056 			flags = VFS_BIO_NEED_BUFSPACE;
2057 		} else {
2058 			waitmsg = "newbuf";
2059 			flags = VFS_BIO_NEED_ANY;
2060 		}
2061 
2062 		needsbuffer |= flags;
2063 		bd_speedup();	/* heeeelp */
2064 		while (needsbuffer & flags) {
2065 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2066 				return (NULL);
2067 		}
2068 	} else {
2069 		/*
2070 		 * We finally have a valid bp.  We aren't quite out of the
2071 		 * woods, we still have to reserve kva space.  In order
2072 		 * to keep fragmentation sane we only allocate kva in
2073 		 * BKVASIZE chunks.
2074 		 *
2075 		 * (bufspin is not held)
2076 		 */
2077 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2078 
2079 		if (maxsize != bp->b_kvasize) {
2080 			vm_offset_t addr = 0;
2081 			int count;
2082 
2083 			bfreekva(bp);
2084 
2085 			get_mplock();
2086 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2087 			vm_map_lock(&buffer_map);
2088 
2089 			if (vm_map_findspace(&buffer_map,
2090 				    vm_map_min(&buffer_map), maxsize,
2091 				    maxsize, 0, &addr)) {
2092 				/*
2093 				 * Uh oh.  Buffer map is too fragmented.  We
2094 				 * must defragment the map.
2095 				 */
2096 				vm_map_unlock(&buffer_map);
2097 				vm_map_entry_release(count);
2098 				++bufdefragcnt;
2099 				defrag = 1;
2100 				bp->b_flags |= B_INVAL;
2101 				rel_mplock();
2102 				brelse(bp);
2103 				goto restart;
2104 			}
2105 			if (addr) {
2106 				vm_map_insert(&buffer_map, &count,
2107 					NULL, 0,
2108 					addr, addr + maxsize,
2109 					VM_MAPTYPE_NORMAL,
2110 					VM_PROT_ALL, VM_PROT_ALL,
2111 					MAP_NOFAULT);
2112 
2113 				bp->b_kvabase = (caddr_t) addr;
2114 				bp->b_kvasize = maxsize;
2115 				bufspace += bp->b_kvasize;
2116 				++bufreusecnt;
2117 			}
2118 			vm_map_unlock(&buffer_map);
2119 			vm_map_entry_release(count);
2120 			rel_mplock();
2121 		}
2122 		bp->b_data = bp->b_kvabase;
2123 	}
2124 	return(bp);
2125 }
2126 
2127 /*
2128  * This routine is called in an emergency to recover VM pages from the
2129  * buffer cache by cashing in clean buffers.  The idea is to recover
2130  * enough pages to be able to satisfy a stuck bio_page_alloc().
2131  */
2132 static int
2133 recoverbufpages(void)
2134 {
2135 	struct buf *bp;
2136 	int bytes = 0;
2137 
2138 	++recoverbufcalls;
2139 
2140 	spin_lock_wr(&bufspin);
2141 	while (bytes < MAXBSIZE) {
2142 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2143 		if (bp == NULL)
2144 			break;
2145 
2146 		/*
2147 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2148 		 * cycles through the queue twice before being selected.
2149 		 */
2150 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2151 			bp->b_flags |= B_AGE;
2152 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2153 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2154 					  bp, b_freelist);
2155 			continue;
2156 		}
2157 
2158 		/*
2159 		 * Sanity Checks
2160 		 */
2161 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2162 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2163 
2164 		/*
2165 		 * Start freeing the bp.  This is somewhat involved.
2166 		 *
2167 		 * Buffers on the clean list must be disassociated from
2168 		 * their current vnode
2169 		 */
2170 
2171 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2172 			kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2173 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2174 			continue;
2175 		}
2176 		if (bp->b_qindex != BQUEUE_CLEAN) {
2177 			kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2178 			BUF_UNLOCK(bp);
2179 			continue;
2180 		}
2181 		bremfree_locked(bp);
2182 		spin_unlock_wr(&bufspin);
2183 
2184 		/*
2185 		 * Dependancies must be handled before we disassociate the
2186 		 * vnode.
2187 		 *
2188 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2189 		 * be immediately disassociated.  HAMMER then becomes
2190 		 * responsible for releasing the buffer.
2191 		 */
2192 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2193 			buf_deallocate(bp);
2194 			if (bp->b_flags & B_LOCKED) {
2195 				bqrelse(bp);
2196 				spin_lock_wr(&bufspin);
2197 				continue;
2198 			}
2199 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2200 		}
2201 
2202 		bytes += bp->b_bufsize;
2203 
2204 		get_mplock();
2205 		if (bp->b_flags & B_VMIO) {
2206 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2207 			vfs_vmio_release(bp);
2208 		}
2209 		if (bp->b_vp)
2210 			brelvp(bp);
2211 
2212 		KKASSERT(bp->b_vp == NULL);
2213 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2214 
2215 		/*
2216 		 * critical section protection is not required when
2217 		 * scrapping a buffer's contents because it is already
2218 		 * wired.
2219 		 */
2220 		if (bp->b_bufsize)
2221 			allocbuf(bp, 0);
2222 		rel_mplock();
2223 
2224 		bp->b_flags = B_BNOCLIP;
2225 		bp->b_cmd = BUF_CMD_DONE;
2226 		bp->b_vp = NULL;
2227 		bp->b_error = 0;
2228 		bp->b_resid = 0;
2229 		bp->b_bcount = 0;
2230 		bp->b_xio.xio_npages = 0;
2231 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2232 		reinitbufbio(bp);
2233 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2234 		buf_dep_init(bp);
2235 		bp->b_flags |= B_INVAL;
2236 		/* bfreekva(bp); */
2237 		brelse(bp);
2238 		spin_lock_wr(&bufspin);
2239 	}
2240 	spin_unlock_wr(&bufspin);
2241 	return(bytes);
2242 }
2243 
2244 /*
2245  * buf_daemon:
2246  *
2247  *	Buffer flushing daemon.  Buffers are normally flushed by the
2248  *	update daemon but if it cannot keep up this process starts to
2249  *	take the load in an attempt to prevent getnewbuf() from blocking.
2250  *
2251  *	Once a flush is initiated it does not stop until the number
2252  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2253  *	waiting at the mid-point.
2254  */
2255 
2256 static struct kproc_desc buf_kp = {
2257 	"bufdaemon",
2258 	buf_daemon,
2259 	&bufdaemon_td
2260 };
2261 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2262 	kproc_start, &buf_kp)
2263 
2264 static struct kproc_desc bufhw_kp = {
2265 	"bufdaemon_hw",
2266 	buf_daemon_hw,
2267 	&bufdaemonhw_td
2268 };
2269 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2270 	kproc_start, &bufhw_kp)
2271 
2272 static void
2273 buf_daemon(void)
2274 {
2275 	int limit;
2276 
2277 	/*
2278 	 * This process needs to be suspended prior to shutdown sync.
2279 	 */
2280 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2281 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2282 	curthread->td_flags |= TDF_SYSTHREAD;
2283 
2284 	/*
2285 	 * This process is allowed to take the buffer cache to the limit
2286 	 */
2287 	crit_enter();
2288 
2289 	for (;;) {
2290 		kproc_suspend_loop();
2291 
2292 		/*
2293 		 * Do the flush as long as the number of dirty buffers
2294 		 * (including those running) exceeds lodirtybufspace.
2295 		 *
2296 		 * When flushing limit running I/O to hirunningspace
2297 		 * Do the flush.  Limit the amount of in-transit I/O we
2298 		 * allow to build up, otherwise we would completely saturate
2299 		 * the I/O system.  Wakeup any waiting processes before we
2300 		 * normally would so they can run in parallel with our drain.
2301 		 *
2302 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2303 		 * but because we split the operation into two threads we
2304 		 * have to cut it in half for each thread.
2305 		 */
2306 		waitrunningbufspace();
2307 		limit = lodirtybufspace / 2;
2308 		while (runningbufspace + dirtybufspace > limit ||
2309 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2310 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2311 				break;
2312 			if (runningbufspace < hirunningspace)
2313 				continue;
2314 			waitrunningbufspace();
2315 		}
2316 
2317 		/*
2318 		 * We reached our low water mark, reset the
2319 		 * request and sleep until we are needed again.
2320 		 * The sleep is just so the suspend code works.
2321 		 */
2322 		spin_lock_wr(&needsbuffer_spin);
2323 		if (bd_request == 0) {
2324 			ssleep(&bd_request, &needsbuffer_spin, 0,
2325 			       "psleep", hz);
2326 		}
2327 		bd_request = 0;
2328 		spin_unlock_wr(&needsbuffer_spin);
2329 	}
2330 }
2331 
2332 static void
2333 buf_daemon_hw(void)
2334 {
2335 	int limit;
2336 
2337 	/*
2338 	 * This process needs to be suspended prior to shutdown sync.
2339 	 */
2340 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2341 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2342 	curthread->td_flags |= TDF_SYSTHREAD;
2343 
2344 	/*
2345 	 * This process is allowed to take the buffer cache to the limit
2346 	 */
2347 	crit_enter();
2348 
2349 	for (;;) {
2350 		kproc_suspend_loop();
2351 
2352 		/*
2353 		 * Do the flush.  Limit the amount of in-transit I/O we
2354 		 * allow to build up, otherwise we would completely saturate
2355 		 * the I/O system.  Wakeup any waiting processes before we
2356 		 * normally would so they can run in parallel with our drain.
2357 		 *
2358 		 * Once we decide to flush push the queued I/O up to
2359 		 * hirunningspace in order to trigger bursting by the bioq
2360 		 * subsystem.
2361 		 *
2362 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2363 		 * but because we split the operation into two threads we
2364 		 * have to cut it in half for each thread.
2365 		 */
2366 		waitrunningbufspace();
2367 		limit = lodirtybufspace / 2;
2368 		while (runningbufspace + dirtybufspacehw > limit ||
2369 		       dirtybufcounthw >= nbuf / 2) {
2370 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2371 				break;
2372 			if (runningbufspace < hirunningspace)
2373 				continue;
2374 			waitrunningbufspace();
2375 		}
2376 
2377 		/*
2378 		 * We reached our low water mark, reset the
2379 		 * request and sleep until we are needed again.
2380 		 * The sleep is just so the suspend code works.
2381 		 */
2382 		spin_lock_wr(&needsbuffer_spin);
2383 		if (bd_request_hw == 0) {
2384 			ssleep(&bd_request_hw, &needsbuffer_spin, 0,
2385 			       "psleep", hz);
2386 		}
2387 		bd_request_hw = 0;
2388 		spin_unlock_wr(&needsbuffer_spin);
2389 	}
2390 }
2391 
2392 /*
2393  * flushbufqueues:
2394  *
2395  *	Try to flush a buffer in the dirty queue.  We must be careful to
2396  *	free up B_INVAL buffers instead of write them, which NFS is
2397  *	particularly sensitive to.
2398  *
2399  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2400  *	that we really want to try to get the buffer out and reuse it
2401  *	due to the write load on the machine.
2402  */
2403 static int
2404 flushbufqueues(bufq_type_t q)
2405 {
2406 	struct buf *bp;
2407 	int r = 0;
2408 	int spun;
2409 
2410 	spin_lock_wr(&bufspin);
2411 	spun = 1;
2412 
2413 	bp = TAILQ_FIRST(&bufqueues[q]);
2414 	while (bp) {
2415 		KASSERT((bp->b_flags & B_DELWRI),
2416 			("unexpected clean buffer %p", bp));
2417 
2418 		if (bp->b_flags & B_DELWRI) {
2419 			if (bp->b_flags & B_INVAL) {
2420 				spin_unlock_wr(&bufspin);
2421 				spun = 0;
2422 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2423 					panic("flushbufqueues: locked buf");
2424 				bremfree(bp);
2425 				brelse(bp);
2426 				++r;
2427 				break;
2428 			}
2429 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2430 			    (bp->b_flags & B_DEFERRED) == 0 &&
2431 			    buf_countdeps(bp, 0)) {
2432 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2433 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2434 						  b_freelist);
2435 				bp->b_flags |= B_DEFERRED;
2436 				bp = TAILQ_FIRST(&bufqueues[q]);
2437 				continue;
2438 			}
2439 
2440 			/*
2441 			 * Only write it out if we can successfully lock
2442 			 * it.  If the buffer has a dependancy,
2443 			 * buf_checkwrite must also return 0 for us to
2444 			 * be able to initate the write.
2445 			 *
2446 			 * If the buffer is flagged B_ERROR it may be
2447 			 * requeued over and over again, we try to
2448 			 * avoid a live lock.
2449 			 */
2450 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2451 				spin_unlock_wr(&bufspin);
2452 				spun = 0;
2453 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2454 				    buf_checkwrite(bp)) {
2455 					bremfree(bp);
2456 					brelse(bp);
2457 				} else if (bp->b_flags & B_ERROR) {
2458 					tsleep(bp, 0, "bioer", 1);
2459 					bp->b_flags &= ~B_AGE;
2460 					vfs_bio_awrite(bp);
2461 				} else {
2462 					bp->b_flags |= B_AGE;
2463 					vfs_bio_awrite(bp);
2464 				}
2465 				++r;
2466 				break;
2467 			}
2468 		}
2469 		bp = TAILQ_NEXT(bp, b_freelist);
2470 	}
2471 	if (spun)
2472 		spin_unlock_wr(&bufspin);
2473 	return (r);
2474 }
2475 
2476 /*
2477  * inmem:
2478  *
2479  *	Returns true if no I/O is needed to access the associated VM object.
2480  *	This is like findblk except it also hunts around in the VM system for
2481  *	the data.
2482  *
2483  *	Note that we ignore vm_page_free() races from interrupts against our
2484  *	lookup, since if the caller is not protected our return value will not
2485  *	be any more valid then otherwise once we exit the critical section.
2486  */
2487 int
2488 inmem(struct vnode *vp, off_t loffset)
2489 {
2490 	vm_object_t obj;
2491 	vm_offset_t toff, tinc, size;
2492 	vm_page_t m;
2493 
2494 	if (findblk(vp, loffset, FINDBLK_TEST))
2495 		return 1;
2496 	if (vp->v_mount == NULL)
2497 		return 0;
2498 	if ((obj = vp->v_object) == NULL)
2499 		return 0;
2500 
2501 	size = PAGE_SIZE;
2502 	if (size > vp->v_mount->mnt_stat.f_iosize)
2503 		size = vp->v_mount->mnt_stat.f_iosize;
2504 
2505 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2506 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2507 		if (m == NULL)
2508 			return 0;
2509 		tinc = size;
2510 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2511 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2512 		if (vm_page_is_valid(m,
2513 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2514 			return 0;
2515 	}
2516 	return 1;
2517 }
2518 
2519 /*
2520  * vfs_setdirty:
2521  *
2522  *	Sets the dirty range for a buffer based on the status of the dirty
2523  *	bits in the pages comprising the buffer.
2524  *
2525  *	The range is limited to the size of the buffer.
2526  *
2527  *	This routine is primarily used by NFS, but is generalized for the
2528  *	B_VMIO case.
2529  */
2530 static void
2531 vfs_setdirty(struct buf *bp)
2532 {
2533 	int i;
2534 	vm_object_t object;
2535 
2536 	/*
2537 	 * Degenerate case - empty buffer
2538 	 */
2539 
2540 	if (bp->b_bufsize == 0)
2541 		return;
2542 
2543 	/*
2544 	 * We qualify the scan for modified pages on whether the
2545 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2546 	 * is not cleared simply by protecting pages off.
2547 	 */
2548 
2549 	if ((bp->b_flags & B_VMIO) == 0)
2550 		return;
2551 
2552 	object = bp->b_xio.xio_pages[0]->object;
2553 
2554 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2555 		kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2556 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2557 		kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2558 
2559 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2560 		vm_offset_t boffset;
2561 		vm_offset_t eoffset;
2562 
2563 		/*
2564 		 * test the pages to see if they have been modified directly
2565 		 * by users through the VM system.
2566 		 */
2567 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2568 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2569 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2570 		}
2571 
2572 		/*
2573 		 * Calculate the encompassing dirty range, boffset and eoffset,
2574 		 * (eoffset - boffset) bytes.
2575 		 */
2576 
2577 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2578 			if (bp->b_xio.xio_pages[i]->dirty)
2579 				break;
2580 		}
2581 		boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2582 
2583 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2584 			if (bp->b_xio.xio_pages[i]->dirty) {
2585 				break;
2586 			}
2587 		}
2588 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2589 
2590 		/*
2591 		 * Fit it to the buffer.
2592 		 */
2593 
2594 		if (eoffset > bp->b_bcount)
2595 			eoffset = bp->b_bcount;
2596 
2597 		/*
2598 		 * If we have a good dirty range, merge with the existing
2599 		 * dirty range.
2600 		 */
2601 
2602 		if (boffset < eoffset) {
2603 			if (bp->b_dirtyoff > boffset)
2604 				bp->b_dirtyoff = boffset;
2605 			if (bp->b_dirtyend < eoffset)
2606 				bp->b_dirtyend = eoffset;
2607 		}
2608 	}
2609 }
2610 
2611 /*
2612  * findblk:
2613  *
2614  *	Locate and return the specified buffer.  Unless flagged otherwise,
2615  *	a locked buffer will be returned if it exists or NULL if it does not.
2616  *
2617  *	findblk()'d buffers are still on the bufqueues and if you intend
2618  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2619  *	and possibly do other stuff to it.
2620  *
2621  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2622  *			  for locking the buffer and ensuring that it remains
2623  *			  the desired buffer after locking.
2624  *
2625  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2626  *			  to acquire the lock we return NULL, even if the
2627  *			  buffer exists.
2628  *
2629  *	(0)		- Lock the buffer blocking.
2630  *
2631  * MPSAFE
2632  */
2633 struct buf *
2634 findblk(struct vnode *vp, off_t loffset, int flags)
2635 {
2636 	lwkt_tokref vlock;
2637 	struct buf *bp;
2638 	int lkflags;
2639 
2640 	lkflags = LK_EXCLUSIVE;
2641 	if (flags & FINDBLK_NBLOCK)
2642 		lkflags |= LK_NOWAIT;
2643 
2644 	for (;;) {
2645 		lwkt_gettoken(&vlock, &vp->v_token);
2646 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2647 		lwkt_reltoken(&vlock);
2648 		if (bp == NULL || (flags & FINDBLK_TEST))
2649 			break;
2650 		if (BUF_LOCK(bp, lkflags)) {
2651 			bp = NULL;
2652 			break;
2653 		}
2654 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2655 			break;
2656 		BUF_UNLOCK(bp);
2657 	}
2658 	return(bp);
2659 }
2660 
2661 /*
2662  * getcacheblk:
2663  *
2664  *	Similar to getblk() except only returns the buffer if it is
2665  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2666  *	is returned.
2667  *
2668  *	If B_RAM is set the buffer might be just fine, but we return
2669  *	NULL anyway because we want the code to fall through to the
2670  *	cluster read.  Otherwise read-ahead breaks.
2671  */
2672 struct buf *
2673 getcacheblk(struct vnode *vp, off_t loffset)
2674 {
2675 	struct buf *bp;
2676 
2677 	bp = findblk(vp, loffset, 0);
2678 	if (bp) {
2679 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2680 			bp->b_flags &= ~B_AGE;
2681 			bremfree(bp);
2682 		} else {
2683 			BUF_UNLOCK(bp);
2684 			bp = NULL;
2685 		}
2686 	}
2687 	return (bp);
2688 }
2689 
2690 /*
2691  * getblk:
2692  *
2693  *	Get a block given a specified block and offset into a file/device.
2694  * 	B_INVAL may or may not be set on return.  The caller should clear
2695  *	B_INVAL prior to initiating a READ.
2696  *
2697  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2698  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2699  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2700  *	without doing any of those things the system will likely believe
2701  *	the buffer to be valid (especially if it is not B_VMIO), and the
2702  *	next getblk() will return the buffer with B_CACHE set.
2703  *
2704  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2705  *	an existing buffer.
2706  *
2707  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2708  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2709  *	and then cleared based on the backing VM.  If the previous buffer is
2710  *	non-0-sized but invalid, B_CACHE will be cleared.
2711  *
2712  *	If getblk() must create a new buffer, the new buffer is returned with
2713  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2714  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2715  *	backing VM.
2716  *
2717  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2718  *	B_CACHE bit is clear.
2719  *
2720  *	What this means, basically, is that the caller should use B_CACHE to
2721  *	determine whether the buffer is fully valid or not and should clear
2722  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2723  *	the buffer by loading its data area with something, the caller needs
2724  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2725  *	the caller should set B_CACHE ( as an optimization ), else the caller
2726  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2727  *	a write attempt or if it was a successfull read.  If the caller
2728  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2729  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2730  *
2731  *	getblk flags:
2732  *
2733  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2734  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2735  *
2736  * MPALMOSTSAFE
2737  */
2738 struct buf *
2739 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2740 {
2741 	struct buf *bp;
2742 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2743 	int error;
2744 	int lkflags;
2745 
2746 	if (size > MAXBSIZE)
2747 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2748 	if (vp->v_object == NULL)
2749 		panic("getblk: vnode %p has no object!", vp);
2750 
2751 loop:
2752 	if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2753 		/*
2754 		 * The buffer was found in the cache, but we need to lock it.
2755 		 * Even with LK_NOWAIT the lockmgr may break our critical
2756 		 * section, so double-check the validity of the buffer
2757 		 * once the lock has been obtained.
2758 		 */
2759 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2760 			if (blkflags & GETBLK_NOWAIT)
2761 				return(NULL);
2762 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2763 			if (blkflags & GETBLK_PCATCH)
2764 				lkflags |= LK_PCATCH;
2765 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2766 			if (error) {
2767 				if (error == ENOLCK)
2768 					goto loop;
2769 				return (NULL);
2770 			}
2771 			/* buffer may have changed on us */
2772 		}
2773 
2774 		/*
2775 		 * Once the buffer has been locked, make sure we didn't race
2776 		 * a buffer recyclement.  Buffers that are no longer hashed
2777 		 * will have b_vp == NULL, so this takes care of that check
2778 		 * as well.
2779 		 */
2780 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2781 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2782 				"was recycled\n",
2783 				bp, vp, (long long)loffset);
2784 			BUF_UNLOCK(bp);
2785 			goto loop;
2786 		}
2787 
2788 		/*
2789 		 * If SZMATCH any pre-existing buffer must be of the requested
2790 		 * size or NULL is returned.  The caller absolutely does not
2791 		 * want getblk() to bwrite() the buffer on a size mismatch.
2792 		 */
2793 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2794 			BUF_UNLOCK(bp);
2795 			return(NULL);
2796 		}
2797 
2798 		/*
2799 		 * All vnode-based buffers must be backed by a VM object.
2800 		 */
2801 		KKASSERT(bp->b_flags & B_VMIO);
2802 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2803 		bp->b_flags &= ~B_AGE;
2804 
2805 		/*
2806 		 * Make sure that B_INVAL buffers do not have a cached
2807 		 * block number translation.
2808 		 */
2809 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2810 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2811 				" did not have cleared bio_offset cache\n",
2812 				bp, vp, (long long)loffset);
2813 			clearbiocache(&bp->b_bio2);
2814 		}
2815 
2816 		/*
2817 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2818 		 * invalid.
2819 		 */
2820 		if (bp->b_flags & B_INVAL)
2821 			bp->b_flags &= ~B_CACHE;
2822 		bremfree(bp);
2823 
2824 		/*
2825 		 * Any size inconsistancy with a dirty buffer or a buffer
2826 		 * with a softupdates dependancy must be resolved.  Resizing
2827 		 * the buffer in such circumstances can lead to problems.
2828 		 */
2829 		if (size != bp->b_bcount) {
2830 			get_mplock();
2831 			if (bp->b_flags & B_DELWRI) {
2832 				bp->b_flags |= B_NOCACHE;
2833 				bwrite(bp);
2834 			} else if (LIST_FIRST(&bp->b_dep)) {
2835 				bp->b_flags |= B_NOCACHE;
2836 				bwrite(bp);
2837 			} else {
2838 				bp->b_flags |= B_RELBUF;
2839 				brelse(bp);
2840 			}
2841 			rel_mplock();
2842 			goto loop;
2843 		}
2844 		KKASSERT(size <= bp->b_kvasize);
2845 		KASSERT(bp->b_loffset != NOOFFSET,
2846 			("getblk: no buffer offset"));
2847 
2848 		/*
2849 		 * A buffer with B_DELWRI set and B_CACHE clear must
2850 		 * be committed before we can return the buffer in
2851 		 * order to prevent the caller from issuing a read
2852 		 * ( due to B_CACHE not being set ) and overwriting
2853 		 * it.
2854 		 *
2855 		 * Most callers, including NFS and FFS, need this to
2856 		 * operate properly either because they assume they
2857 		 * can issue a read if B_CACHE is not set, or because
2858 		 * ( for example ) an uncached B_DELWRI might loop due
2859 		 * to softupdates re-dirtying the buffer.  In the latter
2860 		 * case, B_CACHE is set after the first write completes,
2861 		 * preventing further loops.
2862 		 *
2863 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2864 		 * above while extending the buffer, we cannot allow the
2865 		 * buffer to remain with B_CACHE set after the write
2866 		 * completes or it will represent a corrupt state.  To
2867 		 * deal with this we set B_NOCACHE to scrap the buffer
2868 		 * after the write.
2869 		 *
2870 		 * We might be able to do something fancy, like setting
2871 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2872 		 * so the below call doesn't set B_CACHE, but that gets real
2873 		 * confusing.  This is much easier.
2874 		 */
2875 
2876 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2877 			get_mplock();
2878 			bp->b_flags |= B_NOCACHE;
2879 			bwrite(bp);
2880 			rel_mplock();
2881 			goto loop;
2882 		}
2883 	} else {
2884 		/*
2885 		 * Buffer is not in-core, create new buffer.  The buffer
2886 		 * returned by getnewbuf() is locked.  Note that the returned
2887 		 * buffer is also considered valid (not marked B_INVAL).
2888 		 *
2889 		 * Calculating the offset for the I/O requires figuring out
2890 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2891 		 * the mount's f_iosize otherwise.  If the vnode does not
2892 		 * have an associated mount we assume that the passed size is
2893 		 * the block size.
2894 		 *
2895 		 * Note that vn_isdisk() cannot be used here since it may
2896 		 * return a failure for numerous reasons.   Note that the
2897 		 * buffer size may be larger then the block size (the caller
2898 		 * will use block numbers with the proper multiple).  Beware
2899 		 * of using any v_* fields which are part of unions.  In
2900 		 * particular, in DragonFly the mount point overloading
2901 		 * mechanism uses the namecache only and the underlying
2902 		 * directory vnode is not a special case.
2903 		 */
2904 		int bsize, maxsize;
2905 
2906 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2907 			bsize = DEV_BSIZE;
2908 		else if (vp->v_mount)
2909 			bsize = vp->v_mount->mnt_stat.f_iosize;
2910 		else
2911 			bsize = size;
2912 
2913 		maxsize = size + (loffset & PAGE_MASK);
2914 		maxsize = imax(maxsize, bsize);
2915 
2916 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2917 		if (bp == NULL) {
2918 			if (slpflags || slptimeo)
2919 				return NULL;
2920 			goto loop;
2921 		}
2922 
2923 		/*
2924 		 * Atomically insert the buffer into the hash, so that it can
2925 		 * be found by findblk().
2926 		 *
2927 		 * If bgetvp() returns non-zero a collision occured, and the
2928 		 * bp will not be associated with the vnode.
2929 		 *
2930 		 * Make sure the translation layer has been cleared.
2931 		 */
2932 		bp->b_loffset = loffset;
2933 		bp->b_bio2.bio_offset = NOOFFSET;
2934 		/* bp->b_bio2.bio_next = NULL; */
2935 
2936 		if (bgetvp(vp, bp)) {
2937 			bp->b_flags |= B_INVAL;
2938 			brelse(bp);
2939 			goto loop;
2940 		}
2941 
2942 		/*
2943 		 * All vnode-based buffers must be backed by a VM object.
2944 		 */
2945 		KKASSERT(vp->v_object != NULL);
2946 		bp->b_flags |= B_VMIO;
2947 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2948 
2949 		get_mplock();
2950 		allocbuf(bp, size);
2951 		rel_mplock();
2952 	}
2953 	return (bp);
2954 }
2955 
2956 /*
2957  * regetblk(bp)
2958  *
2959  * Reacquire a buffer that was previously released to the locked queue,
2960  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2961  * set B_LOCKED (which handles the acquisition race).
2962  *
2963  * To this end, either B_LOCKED must be set or the dependancy list must be
2964  * non-empty.
2965  *
2966  * MPSAFE
2967  */
2968 void
2969 regetblk(struct buf *bp)
2970 {
2971 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2972 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2973 	bremfree(bp);
2974 }
2975 
2976 /*
2977  * geteblk:
2978  *
2979  *	Get an empty, disassociated buffer of given size.  The buffer is
2980  *	initially set to B_INVAL.
2981  *
2982  *	critical section protection is not required for the allocbuf()
2983  *	call because races are impossible here.
2984  *
2985  * MPALMOSTSAFE
2986  */
2987 struct buf *
2988 geteblk(int size)
2989 {
2990 	struct buf *bp;
2991 	int maxsize;
2992 
2993 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2994 
2995 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2996 		;
2997 	get_mplock();
2998 	allocbuf(bp, size);
2999 	rel_mplock();
3000 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3001 	return (bp);
3002 }
3003 
3004 
3005 /*
3006  * allocbuf:
3007  *
3008  *	This code constitutes the buffer memory from either anonymous system
3009  *	memory (in the case of non-VMIO operations) or from an associated
3010  *	VM object (in the case of VMIO operations).  This code is able to
3011  *	resize a buffer up or down.
3012  *
3013  *	Note that this code is tricky, and has many complications to resolve
3014  *	deadlock or inconsistant data situations.  Tread lightly!!!
3015  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3016  *	the caller.  Calling this code willy nilly can result in the loss of data.
3017  *
3018  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3019  *	B_CACHE for the non-VMIO case.
3020  *
3021  *	This routine does not need to be called from a critical section but you
3022  *	must own the buffer.
3023  *
3024  * NOTMPSAFE
3025  */
3026 int
3027 allocbuf(struct buf *bp, int size)
3028 {
3029 	int newbsize, mbsize;
3030 	int i;
3031 
3032 	if (BUF_REFCNT(bp) == 0)
3033 		panic("allocbuf: buffer not busy");
3034 
3035 	if (bp->b_kvasize < size)
3036 		panic("allocbuf: buffer too small");
3037 
3038 	if ((bp->b_flags & B_VMIO) == 0) {
3039 		caddr_t origbuf;
3040 		int origbufsize;
3041 		/*
3042 		 * Just get anonymous memory from the kernel.  Don't
3043 		 * mess with B_CACHE.
3044 		 */
3045 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3046 		if (bp->b_flags & B_MALLOC)
3047 			newbsize = mbsize;
3048 		else
3049 			newbsize = round_page(size);
3050 
3051 		if (newbsize < bp->b_bufsize) {
3052 			/*
3053 			 * Malloced buffers are not shrunk
3054 			 */
3055 			if (bp->b_flags & B_MALLOC) {
3056 				if (newbsize) {
3057 					bp->b_bcount = size;
3058 				} else {
3059 					kfree(bp->b_data, M_BIOBUF);
3060 					if (bp->b_bufsize) {
3061 						bufmallocspace -= bp->b_bufsize;
3062 						bufspacewakeup();
3063 						bp->b_bufsize = 0;
3064 					}
3065 					bp->b_data = bp->b_kvabase;
3066 					bp->b_bcount = 0;
3067 					bp->b_flags &= ~B_MALLOC;
3068 				}
3069 				return 1;
3070 			}
3071 			vm_hold_free_pages(
3072 			    bp,
3073 			    (vm_offset_t) bp->b_data + newbsize,
3074 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3075 		} else if (newbsize > bp->b_bufsize) {
3076 			/*
3077 			 * We only use malloced memory on the first allocation.
3078 			 * and revert to page-allocated memory when the buffer
3079 			 * grows.
3080 			 */
3081 			if ((bufmallocspace < maxbufmallocspace) &&
3082 				(bp->b_bufsize == 0) &&
3083 				(mbsize <= PAGE_SIZE/2)) {
3084 
3085 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3086 				bp->b_bufsize = mbsize;
3087 				bp->b_bcount = size;
3088 				bp->b_flags |= B_MALLOC;
3089 				bufmallocspace += mbsize;
3090 				return 1;
3091 			}
3092 			origbuf = NULL;
3093 			origbufsize = 0;
3094 			/*
3095 			 * If the buffer is growing on its other-than-first
3096 			 * allocation, then we revert to the page-allocation
3097 			 * scheme.
3098 			 */
3099 			if (bp->b_flags & B_MALLOC) {
3100 				origbuf = bp->b_data;
3101 				origbufsize = bp->b_bufsize;
3102 				bp->b_data = bp->b_kvabase;
3103 				if (bp->b_bufsize) {
3104 					bufmallocspace -= bp->b_bufsize;
3105 					bufspacewakeup();
3106 					bp->b_bufsize = 0;
3107 				}
3108 				bp->b_flags &= ~B_MALLOC;
3109 				newbsize = round_page(newbsize);
3110 			}
3111 			vm_hold_load_pages(
3112 			    bp,
3113 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3114 			    (vm_offset_t) bp->b_data + newbsize);
3115 			if (origbuf) {
3116 				bcopy(origbuf, bp->b_data, origbufsize);
3117 				kfree(origbuf, M_BIOBUF);
3118 			}
3119 		}
3120 	} else {
3121 		vm_page_t m;
3122 		int desiredpages;
3123 
3124 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3125 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3126 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3127 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3128 
3129 		if (bp->b_flags & B_MALLOC)
3130 			panic("allocbuf: VMIO buffer can't be malloced");
3131 		/*
3132 		 * Set B_CACHE initially if buffer is 0 length or will become
3133 		 * 0-length.
3134 		 */
3135 		if (size == 0 || bp->b_bufsize == 0)
3136 			bp->b_flags |= B_CACHE;
3137 
3138 		if (newbsize < bp->b_bufsize) {
3139 			/*
3140 			 * DEV_BSIZE aligned new buffer size is less then the
3141 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3142 			 * if we have to remove any pages.
3143 			 */
3144 			if (desiredpages < bp->b_xio.xio_npages) {
3145 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3146 					/*
3147 					 * the page is not freed here -- it
3148 					 * is the responsibility of
3149 					 * vnode_pager_setsize
3150 					 */
3151 					m = bp->b_xio.xio_pages[i];
3152 					KASSERT(m != bogus_page,
3153 					    ("allocbuf: bogus page found"));
3154 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3155 						;
3156 
3157 					bp->b_xio.xio_pages[i] = NULL;
3158 					vm_page_unwire(m, 0);
3159 				}
3160 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3161 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3162 				bp->b_xio.xio_npages = desiredpages;
3163 			}
3164 		} else if (size > bp->b_bcount) {
3165 			/*
3166 			 * We are growing the buffer, possibly in a
3167 			 * byte-granular fashion.
3168 			 */
3169 			struct vnode *vp;
3170 			vm_object_t obj;
3171 			vm_offset_t toff;
3172 			vm_offset_t tinc;
3173 
3174 			/*
3175 			 * Step 1, bring in the VM pages from the object,
3176 			 * allocating them if necessary.  We must clear
3177 			 * B_CACHE if these pages are not valid for the
3178 			 * range covered by the buffer.
3179 			 *
3180 			 * critical section protection is required to protect
3181 			 * against interrupts unbusying and freeing pages
3182 			 * between our vm_page_lookup() and our
3183 			 * busycheck/wiring call.
3184 			 */
3185 			vp = bp->b_vp;
3186 			obj = vp->v_object;
3187 
3188 			crit_enter();
3189 			while (bp->b_xio.xio_npages < desiredpages) {
3190 				vm_page_t m;
3191 				vm_pindex_t pi;
3192 
3193 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3194 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3195 					/*
3196 					 * note: must allocate system pages
3197 					 * since blocking here could intefere
3198 					 * with paging I/O, no matter which
3199 					 * process we are.
3200 					 */
3201 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3202 					if (m) {
3203 						vm_page_wire(m);
3204 						vm_page_wakeup(m);
3205 						bp->b_flags &= ~B_CACHE;
3206 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3207 						++bp->b_xio.xio_npages;
3208 					}
3209 					continue;
3210 				}
3211 
3212 				/*
3213 				 * We found a page.  If we have to sleep on it,
3214 				 * retry because it might have gotten freed out
3215 				 * from under us.
3216 				 *
3217 				 * We can only test PG_BUSY here.  Blocking on
3218 				 * m->busy might lead to a deadlock:
3219 				 *
3220 				 *  vm_fault->getpages->cluster_read->allocbuf
3221 				 *
3222 				 */
3223 
3224 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3225 					continue;
3226 				vm_page_flag_clear(m, PG_ZERO);
3227 				vm_page_wire(m);
3228 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3229 				++bp->b_xio.xio_npages;
3230 			}
3231 			crit_exit();
3232 
3233 			/*
3234 			 * Step 2.  We've loaded the pages into the buffer,
3235 			 * we have to figure out if we can still have B_CACHE
3236 			 * set.  Note that B_CACHE is set according to the
3237 			 * byte-granular range ( bcount and size ), not the
3238 			 * aligned range ( newbsize ).
3239 			 *
3240 			 * The VM test is against m->valid, which is DEV_BSIZE
3241 			 * aligned.  Needless to say, the validity of the data
3242 			 * needs to also be DEV_BSIZE aligned.  Note that this
3243 			 * fails with NFS if the server or some other client
3244 			 * extends the file's EOF.  If our buffer is resized,
3245 			 * B_CACHE may remain set! XXX
3246 			 */
3247 
3248 			toff = bp->b_bcount;
3249 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3250 
3251 			while ((bp->b_flags & B_CACHE) && toff < size) {
3252 				vm_pindex_t pi;
3253 
3254 				if (tinc > (size - toff))
3255 					tinc = size - toff;
3256 
3257 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3258 				    PAGE_SHIFT;
3259 
3260 				vfs_buf_test_cache(
3261 				    bp,
3262 				    bp->b_loffset,
3263 				    toff,
3264 				    tinc,
3265 				    bp->b_xio.xio_pages[pi]
3266 				);
3267 				toff += tinc;
3268 				tinc = PAGE_SIZE;
3269 			}
3270 
3271 			/*
3272 			 * Step 3, fixup the KVM pmap.  Remember that
3273 			 * bp->b_data is relative to bp->b_loffset, but
3274 			 * bp->b_loffset may be offset into the first page.
3275 			 */
3276 
3277 			bp->b_data = (caddr_t)
3278 			    trunc_page((vm_offset_t)bp->b_data);
3279 			pmap_qenter(
3280 			    (vm_offset_t)bp->b_data,
3281 			    bp->b_xio.xio_pages,
3282 			    bp->b_xio.xio_npages
3283 			);
3284 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3285 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3286 		}
3287 	}
3288 
3289 	/* adjust space use on already-dirty buffer */
3290 	if (bp->b_flags & B_DELWRI) {
3291 		dirtybufspace += newbsize - bp->b_bufsize;
3292 		if (bp->b_flags & B_HEAVY)
3293 			dirtybufspacehw += newbsize - bp->b_bufsize;
3294 	}
3295 	if (newbsize < bp->b_bufsize)
3296 		bufspacewakeup();
3297 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3298 	bp->b_bcount = size;		/* requested buffer size	*/
3299 	return 1;
3300 }
3301 
3302 /*
3303  * biowait:
3304  *
3305  *	Wait for buffer I/O completion, returning error status. B_EINTR
3306  *	is converted into an EINTR error but not cleared (since a chain
3307  *	of biowait() calls may occur).
3308  *
3309  *	On return bpdone() will have been called but the buffer will remain
3310  *	locked and will not have been brelse()'d.
3311  *
3312  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3313  *	likely still in progress on return.
3314  *
3315  *	NOTE!  This operation is on a BIO, not a BUF.
3316  *
3317  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3318  *
3319  * MPSAFE
3320  */
3321 static __inline int
3322 _biowait(struct bio *bio, const char *wmesg, int to)
3323 {
3324 	struct buf *bp = bio->bio_buf;
3325 	u_int32_t flags;
3326 	u_int32_t nflags;
3327 	int error;
3328 
3329 	KKASSERT(bio == &bp->b_bio1);
3330 	for (;;) {
3331 		flags = bio->bio_flags;
3332 		if (flags & BIO_DONE)
3333 			break;
3334 		tsleep_interlock(bio, 0);
3335 		nflags = flags | BIO_WANT;
3336 		tsleep_interlock(bio, 0);
3337 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3338 			if (wmesg)
3339 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3340 			else if (bp->b_cmd == BUF_CMD_READ)
3341 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3342 			else
3343 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3344 			if (error) {
3345 				kprintf("tsleep error biowait %d\n", error);
3346 				return (error);
3347 			}
3348 			break;
3349 		}
3350 	}
3351 
3352 	/*
3353 	 * Finish up.
3354 	 */
3355 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3356 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3357 	if (bp->b_flags & B_EINTR)
3358 		return (EINTR);
3359 	if (bp->b_flags & B_ERROR)
3360 		return (bp->b_error ? bp->b_error : EIO);
3361 	return (0);
3362 }
3363 
3364 int
3365 biowait(struct bio *bio, const char *wmesg)
3366 {
3367 	return(_biowait(bio, wmesg, 0));
3368 }
3369 
3370 int
3371 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3372 {
3373 	return(_biowait(bio, wmesg, to));
3374 }
3375 
3376 /*
3377  * This associates a tracking count with an I/O.  vn_strategy() and
3378  * dev_dstrategy() do this automatically but there are a few cases
3379  * where a vnode or device layer is bypassed when a block translation
3380  * is cached.  In such cases bio_start_transaction() may be called on
3381  * the bypassed layers so the system gets an I/O in progress indication
3382  * for those higher layers.
3383  */
3384 void
3385 bio_start_transaction(struct bio *bio, struct bio_track *track)
3386 {
3387 	bio->bio_track = track;
3388 	bio_track_ref(track);
3389 }
3390 
3391 /*
3392  * Initiate I/O on a vnode.
3393  */
3394 void
3395 vn_strategy(struct vnode *vp, struct bio *bio)
3396 {
3397 	struct bio_track *track;
3398 
3399 	KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
3400         if (bio->bio_buf->b_cmd == BUF_CMD_READ)
3401                 track = &vp->v_track_read;
3402         else
3403                 track = &vp->v_track_write;
3404 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3405 	bio->bio_track = track;
3406 	bio_track_ref(track);
3407         vop_strategy(*vp->v_ops, vp, bio);
3408 }
3409 
3410 /*
3411  * bpdone:
3412  *
3413  *	Finish I/O on a buffer after all BIOs have been processed.
3414  *	Called when the bio chain is exhausted or by biowait.  If called
3415  *	by biowait, elseit is typically 0.
3416  *
3417  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3418  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3419  *	assuming B_INVAL is clear.
3420  *
3421  *	For the VMIO case, we set B_CACHE if the op was a read and no
3422  *	read error occured, or if the op was a write.  B_CACHE is never
3423  *	set if the buffer is invalid or otherwise uncacheable.
3424  *
3425  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3426  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3427  *	in the biodone routine.
3428  */
3429 void
3430 bpdone(struct buf *bp, int elseit)
3431 {
3432 	buf_cmd_t cmd;
3433 
3434 	KASSERT(BUF_REFCNTNB(bp) > 0,
3435 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3436 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3437 		("biodone: bp %p already done!", bp));
3438 
3439 	/*
3440 	 * No more BIOs are left.  All completion functions have been dealt
3441 	 * with, now we clean up the buffer.
3442 	 */
3443 	cmd = bp->b_cmd;
3444 	bp->b_cmd = BUF_CMD_DONE;
3445 
3446 	/*
3447 	 * Only reads and writes are processed past this point.
3448 	 */
3449 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3450 		if (cmd == BUF_CMD_FREEBLKS)
3451 			bp->b_flags |= B_NOCACHE;
3452 		if (elseit)
3453 			brelse(bp);
3454 		return;
3455 	}
3456 
3457 	/*
3458 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3459 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3460 	 */
3461 	if (LIST_FIRST(&bp->b_dep) != NULL)
3462 		buf_complete(bp);
3463 
3464 	/*
3465 	 * A failed write must re-dirty the buffer unless B_INVAL
3466 	 * was set.  Only applicable to normal buffers (with VPs).
3467 	 * vinum buffers may not have a vp.
3468 	 */
3469 	if (cmd == BUF_CMD_WRITE &&
3470 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3471 		bp->b_flags &= ~B_NOCACHE;
3472 		if (bp->b_vp)
3473 			bdirty(bp);
3474 	}
3475 
3476 	if (bp->b_flags & B_VMIO) {
3477 		int i;
3478 		vm_ooffset_t foff;
3479 		vm_page_t m;
3480 		vm_object_t obj;
3481 		int iosize;
3482 		struct vnode *vp = bp->b_vp;
3483 
3484 		obj = vp->v_object;
3485 
3486 #if defined(VFS_BIO_DEBUG)
3487 		if (vp->v_auxrefs == 0)
3488 			panic("biodone: zero vnode hold count");
3489 		if ((vp->v_flag & VOBJBUF) == 0)
3490 			panic("biodone: vnode is not setup for merged cache");
3491 #endif
3492 
3493 		foff = bp->b_loffset;
3494 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3495 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3496 
3497 #if defined(VFS_BIO_DEBUG)
3498 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3499 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3500 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3501 		}
3502 #endif
3503 
3504 		/*
3505 		 * Set B_CACHE if the op was a normal read and no error
3506 		 * occured.  B_CACHE is set for writes in the b*write()
3507 		 * routines.
3508 		 */
3509 		iosize = bp->b_bcount - bp->b_resid;
3510 		if (cmd == BUF_CMD_READ &&
3511 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3512 			bp->b_flags |= B_CACHE;
3513 		}
3514 
3515 		crit_enter();
3516 		get_mplock();
3517 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3518 			int bogusflag = 0;
3519 			int resid;
3520 
3521 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3522 			if (resid > iosize)
3523 				resid = iosize;
3524 
3525 			/*
3526 			 * cleanup bogus pages, restoring the originals.  Since
3527 			 * the originals should still be wired, we don't have
3528 			 * to worry about interrupt/freeing races destroying
3529 			 * the VM object association.
3530 			 */
3531 			m = bp->b_xio.xio_pages[i];
3532 			if (m == bogus_page) {
3533 				bogusflag = 1;
3534 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3535 				if (m == NULL)
3536 					panic("biodone: page disappeared");
3537 				bp->b_xio.xio_pages[i] = m;
3538 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3539 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3540 			}
3541 #if defined(VFS_BIO_DEBUG)
3542 			if (OFF_TO_IDX(foff) != m->pindex) {
3543 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3544 					"mismatch\n",
3545 					(unsigned long)foff, (long)m->pindex);
3546 			}
3547 #endif
3548 
3549 			/*
3550 			 * In the write case, the valid and clean bits are
3551 			 * already changed correctly ( see bdwrite() ), so we
3552 			 * only need to do this here in the read case.
3553 			 */
3554 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3555 				vfs_page_set_valid(bp, foff, i, m);
3556 			}
3557 			vm_page_flag_clear(m, PG_ZERO);
3558 
3559 			/*
3560 			 * when debugging new filesystems or buffer I/O methods, this
3561 			 * is the most common error that pops up.  if you see this, you
3562 			 * have not set the page busy flag correctly!!!
3563 			 */
3564 			if (m->busy == 0) {
3565 				kprintf("biodone: page busy < 0, "
3566 				    "pindex: %d, foff: 0x(%x,%x), "
3567 				    "resid: %d, index: %d\n",
3568 				    (int) m->pindex, (int)(foff >> 32),
3569 						(int) foff & 0xffffffff, resid, i);
3570 				if (!vn_isdisk(vp, NULL))
3571 					kprintf(" iosize: %ld, loffset: %lld, "
3572 						"flags: 0x%08x, npages: %d\n",
3573 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3574 					    (long long)bp->b_loffset,
3575 					    bp->b_flags, bp->b_xio.xio_npages);
3576 				else
3577 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3578 					    (long long)bp->b_loffset,
3579 					    bp->b_flags, bp->b_xio.xio_npages);
3580 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3581 				    m->valid, m->dirty, m->wire_count);
3582 				panic("biodone: page busy < 0");
3583 			}
3584 			vm_page_io_finish(m);
3585 			vm_object_pip_subtract(obj, 1);
3586 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3587 			iosize -= resid;
3588 		}
3589 		if (obj)
3590 			vm_object_pip_wakeupn(obj, 0);
3591 		rel_mplock();
3592 		crit_exit();
3593 	}
3594 
3595 	/*
3596 	 * Finish up by releasing the buffer.  There are no more synchronous
3597 	 * or asynchronous completions, those were handled by bio_done
3598 	 * callbacks.
3599 	 */
3600 	if (elseit) {
3601 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3602 			brelse(bp);
3603 		else
3604 			bqrelse(bp);
3605 	}
3606 }
3607 
3608 /*
3609  * Normal biodone.
3610  */
3611 void
3612 biodone(struct bio *bio)
3613 {
3614 	struct buf *bp = bio->bio_buf;
3615 
3616 	runningbufwakeup(bp);
3617 
3618 	/*
3619 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3620 	 */
3621 	while (bio) {
3622 		biodone_t *done_func;
3623 		struct bio_track *track;
3624 
3625 		/*
3626 		 * BIO tracking.  Most but not all BIOs are tracked.
3627 		 */
3628 		if ((track = bio->bio_track) != NULL) {
3629 			bio_track_rel(track);
3630 			bio->bio_track = NULL;
3631 		}
3632 
3633 		/*
3634 		 * A bio_done function terminates the loop.  The function
3635 		 * will be responsible for any further chaining and/or
3636 		 * buffer management.
3637 		 *
3638 		 * WARNING!  The done function can deallocate the buffer!
3639 		 */
3640 		if ((done_func = bio->bio_done) != NULL) {
3641 			bio->bio_done = NULL;
3642 			done_func(bio);
3643 			return;
3644 		}
3645 		bio = bio->bio_prev;
3646 	}
3647 
3648 	/*
3649 	 * If we've run out of bio's do normal [a]synchronous completion.
3650 	 */
3651 	bpdone(bp, 1);
3652 }
3653 
3654 /*
3655  * Synchronous biodone - this terminates a synchronous BIO.
3656  *
3657  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3658  * but still locked.  The caller must brelse() the buffer after waiting
3659  * for completion.
3660  */
3661 void
3662 biodone_sync(struct bio *bio)
3663 {
3664 	struct buf *bp = bio->bio_buf;
3665 	int flags;
3666 	int nflags;
3667 
3668 	KKASSERT(bio == &bp->b_bio1);
3669 	bpdone(bp, 0);
3670 
3671 	for (;;) {
3672 		flags = bio->bio_flags;
3673 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3674 
3675 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3676 			if (flags & BIO_WANT)
3677 				wakeup(bio);
3678 			break;
3679 		}
3680 	}
3681 }
3682 
3683 /*
3684  * vfs_unbusy_pages:
3685  *
3686  *	This routine is called in lieu of iodone in the case of
3687  *	incomplete I/O.  This keeps the busy status for pages
3688  *	consistant.
3689  */
3690 void
3691 vfs_unbusy_pages(struct buf *bp)
3692 {
3693 	int i;
3694 
3695 	runningbufwakeup(bp);
3696 	if (bp->b_flags & B_VMIO) {
3697 		struct vnode *vp = bp->b_vp;
3698 		vm_object_t obj;
3699 
3700 		obj = vp->v_object;
3701 
3702 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3703 			vm_page_t m = bp->b_xio.xio_pages[i];
3704 
3705 			/*
3706 			 * When restoring bogus changes the original pages
3707 			 * should still be wired, so we are in no danger of
3708 			 * losing the object association and do not need
3709 			 * critical section protection particularly.
3710 			 */
3711 			if (m == bogus_page) {
3712 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3713 				if (!m) {
3714 					panic("vfs_unbusy_pages: page missing");
3715 				}
3716 				bp->b_xio.xio_pages[i] = m;
3717 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3718 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3719 			}
3720 			vm_object_pip_subtract(obj, 1);
3721 			vm_page_flag_clear(m, PG_ZERO);
3722 			vm_page_io_finish(m);
3723 		}
3724 		vm_object_pip_wakeupn(obj, 0);
3725 	}
3726 }
3727 
3728 /*
3729  * vfs_page_set_valid:
3730  *
3731  *	Set the valid bits in a page based on the supplied offset.   The
3732  *	range is restricted to the buffer's size.
3733  *
3734  *	This routine is typically called after a read completes.
3735  */
3736 static void
3737 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3738 {
3739 	vm_ooffset_t soff, eoff;
3740 
3741 	/*
3742 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3743 	 * page boundry or cross the end of the buffer.  The end of the
3744 	 * buffer, in this case, is our file EOF, not the allocation size
3745 	 * of the buffer.
3746 	 */
3747 	soff = off;
3748 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3749 	if (eoff > bp->b_loffset + bp->b_bcount)
3750 		eoff = bp->b_loffset + bp->b_bcount;
3751 
3752 	/*
3753 	 * Set valid range.  This is typically the entire buffer and thus the
3754 	 * entire page.
3755 	 */
3756 	if (eoff > soff) {
3757 		vm_page_set_validclean(
3758 		    m,
3759 		   (vm_offset_t) (soff & PAGE_MASK),
3760 		   (vm_offset_t) (eoff - soff)
3761 		);
3762 	}
3763 }
3764 
3765 /*
3766  * vfs_busy_pages:
3767  *
3768  *	This routine is called before a device strategy routine.
3769  *	It is used to tell the VM system that paging I/O is in
3770  *	progress, and treat the pages associated with the buffer
3771  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3772  *	flag is handled to make sure that the object doesn't become
3773  *	inconsistant.
3774  *
3775  *	Since I/O has not been initiated yet, certain buffer flags
3776  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3777  *	and should be ignored.
3778  */
3779 void
3780 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3781 {
3782 	int i, bogus;
3783 	struct lwp *lp = curthread->td_lwp;
3784 
3785 	/*
3786 	 * The buffer's I/O command must already be set.  If reading,
3787 	 * B_CACHE must be 0 (double check against callers only doing
3788 	 * I/O when B_CACHE is 0).
3789 	 */
3790 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3791 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3792 
3793 	if (bp->b_flags & B_VMIO) {
3794 		vm_object_t obj;
3795 		vm_ooffset_t foff;
3796 
3797 		obj = vp->v_object;
3798 		foff = bp->b_loffset;
3799 		KASSERT(bp->b_loffset != NOOFFSET,
3800 			("vfs_busy_pages: no buffer offset"));
3801 		vfs_setdirty(bp);
3802 
3803 		/*
3804 		 * Loop until none of the pages are busy.
3805 		 */
3806 retry:
3807 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3808 			vm_page_t m = bp->b_xio.xio_pages[i];
3809 
3810 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3811 				goto retry;
3812 		}
3813 
3814 		/*
3815 		 * Setup for I/O, soft-busy the page right now because
3816 		 * the next loop may block.
3817 		 */
3818 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3819 			vm_page_t m = bp->b_xio.xio_pages[i];
3820 
3821 			vm_page_flag_clear(m, PG_ZERO);
3822 			if ((bp->b_flags & B_CLUSTER) == 0) {
3823 				vm_object_pip_add(obj, 1);
3824 				vm_page_io_start(m);
3825 			}
3826 		}
3827 
3828 		/*
3829 		 * Adjust protections for I/O and do bogus-page mapping.
3830 		 * Assume that vm_page_protect() can block (it can block
3831 		 * if VM_PROT_NONE, don't take any chances regardless).
3832 		 */
3833 		bogus = 0;
3834 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3835 			vm_page_t m = bp->b_xio.xio_pages[i];
3836 
3837 			/*
3838 			 * When readying a vnode-backed buffer for a write
3839 			 * we must zero-fill any invalid portions of the
3840 			 * backing VM pages.
3841 			 *
3842 			 * When readying a vnode-backed buffer for a read
3843 			 * we must replace any dirty pages with a bogus
3844 			 * page so we do not destroy dirty data when
3845 			 * filling in gaps.  Dirty pages might not
3846 			 * necessarily be marked dirty yet, so use m->valid
3847 			 * as a reasonable test.
3848 			 *
3849 			 * Bogus page replacement is, uh, bogus.  We need
3850 			 * to find a better way.
3851 			 */
3852 			if (bp->b_cmd == BUF_CMD_WRITE) {
3853 				vm_page_protect(m, VM_PROT_READ);
3854 				vfs_page_set_valid(bp, foff, i, m);
3855 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3856 				bp->b_xio.xio_pages[i] = bogus_page;
3857 				bogus++;
3858 			} else {
3859 				vm_page_protect(m, VM_PROT_NONE);
3860 			}
3861 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3862 		}
3863 		if (bogus)
3864 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3865 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3866 	}
3867 
3868 	/*
3869 	 * This is the easiest place to put the process accounting for the I/O
3870 	 * for now.
3871 	 */
3872 	if (lp != NULL) {
3873 		if (bp->b_cmd == BUF_CMD_READ)
3874 			lp->lwp_ru.ru_inblock++;
3875 		else
3876 			lp->lwp_ru.ru_oublock++;
3877 	}
3878 }
3879 
3880 /*
3881  * vfs_clean_pages:
3882  *
3883  *	Tell the VM system that the pages associated with this buffer
3884  *	are clean.  This is used for delayed writes where the data is
3885  *	going to go to disk eventually without additional VM intevention.
3886  *
3887  *	Note that while we only really need to clean through to b_bcount, we
3888  *	just go ahead and clean through to b_bufsize.
3889  */
3890 static void
3891 vfs_clean_pages(struct buf *bp)
3892 {
3893 	int i;
3894 
3895 	if (bp->b_flags & B_VMIO) {
3896 		vm_ooffset_t foff;
3897 
3898 		foff = bp->b_loffset;
3899 		KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3900 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3901 			vm_page_t m = bp->b_xio.xio_pages[i];
3902 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3903 
3904 			vfs_page_set_valid(bp, foff, i, m);
3905 			foff = noff;
3906 		}
3907 	}
3908 }
3909 
3910 #if 0
3911 /*
3912  * vfs_bio_set_valid:
3913  *
3914  * Set the range within the buffer to valid.  The range is relative
3915  * to the beginning of the buffer, b_loffset.  Note that b_loffset
3916  * itself may be offset from the beginning of the first page.
3917  */
3918 void
3919 vfs_bio_set_valid(struct buf *bp, int base, int size)
3920 {
3921 	if (bp->b_flags & B_VMIO) {
3922 		int i;
3923 		int n;
3924 
3925 		/*
3926 		 * Fixup base to be relative to beginning of first page.
3927 		 * Set initial n to be the maximum number of bytes in the
3928 		 * first page that can be validated.
3929 		 */
3930 
3931 		base += (bp->b_loffset & PAGE_MASK);
3932 		n = PAGE_SIZE - (base & PAGE_MASK);
3933 
3934 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3935 			vm_page_t m = bp->b_xio.xio_pages[i];
3936 
3937 			if (n > size)
3938 				n = size;
3939 
3940 			vm_page_set_valid(m, base & PAGE_MASK, n);
3941 			base += n;
3942 			size -= n;
3943 			n = PAGE_SIZE;
3944 		}
3945 	}
3946 }
3947 #endif
3948 
3949 /*
3950  * vfs_bio_clrbuf:
3951  *
3952  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3953  *	to clear B_ERROR and B_INVAL.
3954  *
3955  *	Note that while we only theoretically need to clear through b_bcount,
3956  *	we go ahead and clear through b_bufsize.
3957  */
3958 
3959 void
3960 vfs_bio_clrbuf(struct buf *bp)
3961 {
3962 	int i, mask = 0;
3963 	caddr_t sa, ea;
3964 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3965 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
3966 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3967 		    (bp->b_loffset & PAGE_MASK) == 0) {
3968 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3969 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3970 				bp->b_resid = 0;
3971 				return;
3972 			}
3973 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3974 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3975 				bzero(bp->b_data, bp->b_bufsize);
3976 				bp->b_xio.xio_pages[0]->valid |= mask;
3977 				bp->b_resid = 0;
3978 				return;
3979 			}
3980 		}
3981 		sa = bp->b_data;
3982 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3983 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3984 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3985 			ea = (caddr_t)(vm_offset_t)ulmin(
3986 			    (u_long)(vm_offset_t)ea,
3987 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3988 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3989 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3990 				continue;
3991 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3992 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3993 					bzero(sa, ea - sa);
3994 				}
3995 			} else {
3996 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3997 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3998 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3999 						bzero(sa, DEV_BSIZE);
4000 				}
4001 			}
4002 			bp->b_xio.xio_pages[i]->valid |= mask;
4003 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4004 		}
4005 		bp->b_resid = 0;
4006 	} else {
4007 		clrbuf(bp);
4008 	}
4009 }
4010 
4011 /*
4012  * vm_hold_load_pages:
4013  *
4014  *	Load pages into the buffer's address space.  The pages are
4015  *	allocated from the kernel object in order to reduce interference
4016  *	with the any VM paging I/O activity.  The range of loaded
4017  *	pages will be wired.
4018  *
4019  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4020  *	retrieve the full range (to - from) of pages.
4021  *
4022  */
4023 void
4024 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4025 {
4026 	vm_offset_t pg;
4027 	vm_page_t p;
4028 	int index;
4029 
4030 	to = round_page(to);
4031 	from = round_page(from);
4032 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4033 
4034 	pg = from;
4035 	while (pg < to) {
4036 		/*
4037 		 * Note: must allocate system pages since blocking here
4038 		 * could intefere with paging I/O, no matter which
4039 		 * process we are.
4040 		 */
4041 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4042 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4043 		if (p) {
4044 			vm_page_wire(p);
4045 			p->valid = VM_PAGE_BITS_ALL;
4046 			vm_page_flag_clear(p, PG_ZERO);
4047 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4048 			bp->b_xio.xio_pages[index] = p;
4049 			vm_page_wakeup(p);
4050 
4051 			pg += PAGE_SIZE;
4052 			++index;
4053 		}
4054 	}
4055 	bp->b_xio.xio_npages = index;
4056 }
4057 
4058 /*
4059  * Allocate pages for a buffer cache buffer.
4060  *
4061  * Under extremely severe memory conditions even allocating out of the
4062  * system reserve can fail.  If this occurs we must allocate out of the
4063  * interrupt reserve to avoid a deadlock with the pageout daemon.
4064  *
4065  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4066  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4067  * against the pageout daemon if pages are not freed from other sources.
4068  */
4069 static
4070 vm_page_t
4071 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4072 {
4073 	vm_page_t p;
4074 
4075 	/*
4076 	 * Try a normal allocation, allow use of system reserve.
4077 	 */
4078 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4079 	if (p)
4080 		return(p);
4081 
4082 	/*
4083 	 * The normal allocation failed and we clearly have a page
4084 	 * deficit.  Try to reclaim some clean VM pages directly
4085 	 * from the buffer cache.
4086 	 */
4087 	vm_pageout_deficit += deficit;
4088 	recoverbufpages();
4089 
4090 	/*
4091 	 * We may have blocked, the caller will know what to do if the
4092 	 * page now exists.
4093 	 */
4094 	if (vm_page_lookup(obj, pg))
4095 		return(NULL);
4096 
4097 	/*
4098 	 * Allocate and allow use of the interrupt reserve.
4099 	 *
4100 	 * If after all that we still can't allocate a VM page we are
4101 	 * in real trouble, but we slog on anyway hoping that the system
4102 	 * won't deadlock.
4103 	 */
4104 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4105 				   VM_ALLOC_INTERRUPT);
4106 	if (p) {
4107 		if (vm_page_count_severe()) {
4108 			kprintf("bio_page_alloc: WARNING emergency page "
4109 				"allocation\n");
4110 			vm_wait(hz / 20);
4111 		}
4112 	} else {
4113 		kprintf("bio_page_alloc: WARNING emergency page "
4114 			"allocation failed\n");
4115 		vm_wait(hz * 5);
4116 	}
4117 	return(p);
4118 }
4119 
4120 /*
4121  * vm_hold_free_pages:
4122  *
4123  *	Return pages associated with the buffer back to the VM system.
4124  *
4125  *	The range of pages underlying the buffer's address space will
4126  *	be unmapped and un-wired.
4127  */
4128 void
4129 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4130 {
4131 	vm_offset_t pg;
4132 	vm_page_t p;
4133 	int index, newnpages;
4134 
4135 	from = round_page(from);
4136 	to = round_page(to);
4137 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4138 
4139 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4140 		p = bp->b_xio.xio_pages[index];
4141 		if (p && (index < bp->b_xio.xio_npages)) {
4142 			if (p->busy) {
4143 				kprintf("vm_hold_free_pages: doffset: %lld, "
4144 					"loffset: %lld\n",
4145 					(long long)bp->b_bio2.bio_offset,
4146 					(long long)bp->b_loffset);
4147 			}
4148 			bp->b_xio.xio_pages[index] = NULL;
4149 			pmap_kremove(pg);
4150 			vm_page_busy(p);
4151 			vm_page_unwire(p, 0);
4152 			vm_page_free(p);
4153 		}
4154 	}
4155 	bp->b_xio.xio_npages = newnpages;
4156 }
4157 
4158 /*
4159  * vmapbuf:
4160  *
4161  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4162  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4163  *	initialized.
4164  */
4165 int
4166 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4167 {
4168 	caddr_t addr;
4169 	vm_offset_t va;
4170 	vm_page_t m;
4171 	int vmprot;
4172 	int error;
4173 	int pidx;
4174 	int i;
4175 
4176 	/*
4177 	 * bp had better have a command and it better be a pbuf.
4178 	 */
4179 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4180 	KKASSERT(bp->b_flags & B_PAGING);
4181 
4182 	if (bytes < 0)
4183 		return (-1);
4184 
4185 	/*
4186 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4187 	 */
4188 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4189 	pidx = 0;
4190 
4191 	vmprot = VM_PROT_READ;
4192 	if (bp->b_cmd == BUF_CMD_READ)
4193 		vmprot |= VM_PROT_WRITE;
4194 
4195 	while (addr < udata + bytes) {
4196 		/*
4197 		 * Do the vm_fault if needed; do the copy-on-write thing
4198 		 * when reading stuff off device into memory.
4199 		 *
4200 		 * vm_fault_page*() returns a held VM page.
4201 		 */
4202 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4203 		va = trunc_page(va);
4204 
4205 		m = vm_fault_page_quick(va, vmprot, &error);
4206 		if (m == NULL) {
4207 			for (i = 0; i < pidx; ++i) {
4208 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4209 			    bp->b_xio.xio_pages[i] = NULL;
4210 			}
4211 			return(-1);
4212 		}
4213 		bp->b_xio.xio_pages[pidx] = m;
4214 		addr += PAGE_SIZE;
4215 		++pidx;
4216 	}
4217 
4218 	/*
4219 	 * Map the page array and set the buffer fields to point to
4220 	 * the mapped data buffer.
4221 	 */
4222 	if (pidx > btoc(MAXPHYS))
4223 		panic("vmapbuf: mapped more than MAXPHYS");
4224 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4225 
4226 	bp->b_xio.xio_npages = pidx;
4227 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4228 	bp->b_bcount = bytes;
4229 	bp->b_bufsize = bytes;
4230 	return(0);
4231 }
4232 
4233 /*
4234  * vunmapbuf:
4235  *
4236  *	Free the io map PTEs associated with this IO operation.
4237  *	We also invalidate the TLB entries and restore the original b_addr.
4238  */
4239 void
4240 vunmapbuf(struct buf *bp)
4241 {
4242 	int pidx;
4243 	int npages;
4244 
4245 	KKASSERT(bp->b_flags & B_PAGING);
4246 
4247 	npages = bp->b_xio.xio_npages;
4248 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4249 	for (pidx = 0; pidx < npages; ++pidx) {
4250 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4251 		bp->b_xio.xio_pages[pidx] = NULL;
4252 	}
4253 	bp->b_xio.xio_npages = 0;
4254 	bp->b_data = bp->b_kvabase;
4255 }
4256 
4257 /*
4258  * Scan all buffers in the system and issue the callback.
4259  */
4260 int
4261 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4262 {
4263 	int count = 0;
4264 	int error;
4265 	int n;
4266 
4267 	for (n = 0; n < nbuf; ++n) {
4268 		if ((error = callback(&buf[n], info)) < 0) {
4269 			count = error;
4270 			break;
4271 		}
4272 		count += error;
4273 	}
4274 	return (count);
4275 }
4276 
4277 /*
4278  * print out statistics from the current status of the buffer pool
4279  * this can be toggeled by the system control option debug.syncprt
4280  */
4281 #ifdef DEBUG
4282 void
4283 vfs_bufstats(void)
4284 {
4285         int i, j, count;
4286         struct buf *bp;
4287         struct bqueues *dp;
4288         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4289         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4290 
4291         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4292                 count = 0;
4293                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4294                         counts[j] = 0;
4295 		crit_enter();
4296                 TAILQ_FOREACH(bp, dp, b_freelist) {
4297                         counts[bp->b_bufsize/PAGE_SIZE]++;
4298                         count++;
4299                 }
4300 		crit_exit();
4301                 kprintf("%s: total-%d", bname[i], count);
4302                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4303                         if (counts[j] != 0)
4304                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4305                 kprintf("\n");
4306         }
4307 }
4308 #endif
4309 
4310 #ifdef DDB
4311 
4312 DB_SHOW_COMMAND(buffer, db_show_buffer)
4313 {
4314 	/* get args */
4315 	struct buf *bp = (struct buf *)addr;
4316 
4317 	if (!have_addr) {
4318 		db_printf("usage: show buffer <addr>\n");
4319 		return;
4320 	}
4321 
4322 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4323 	db_printf("b_cmd = %d\n", bp->b_cmd);
4324 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4325 		  "b_resid = %d\n, b_data = %p, "
4326 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4327 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4328 		  bp->b_data,
4329 		  (long long)bp->b_bio2.bio_offset,
4330 		  (long long)(bp->b_bio2.bio_next ?
4331 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4332 	if (bp->b_xio.xio_npages) {
4333 		int i;
4334 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4335 			bp->b_xio.xio_npages);
4336 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4337 			vm_page_t m;
4338 			m = bp->b_xio.xio_pages[i];
4339 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4340 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4341 			if ((i + 1) < bp->b_xio.xio_npages)
4342 				db_printf(",");
4343 		}
4344 		db_printf("\n");
4345 	}
4346 }
4347 #endif /* DDB */
4348