1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/proc.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 #include <sys/buf2.h> 58 #include <sys/thread2.h> 59 #include <sys/spinlock2.h> 60 #include <vm/vm_page2.h> 61 62 #include "opt_ddb.h" 63 #ifdef DDB 64 #include <ddb/ddb.h> 65 #endif 66 67 /* 68 * Buffer queues. 69 */ 70 enum bufq_type { 71 BQUEUE_NONE, /* not on any queue */ 72 BQUEUE_LOCKED, /* locked buffers */ 73 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 74 BQUEUE_DIRTY, /* B_DELWRI buffers */ 75 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 76 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 77 BQUEUE_EMPTY, /* empty buffer headers */ 78 79 BUFFER_QUEUES /* number of buffer queues */ 80 }; 81 82 typedef enum bufq_type bufq_type_t; 83 84 #define BD_WAKE_SIZE 128 85 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 86 87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 88 struct spinlock bufspin = SPINLOCK_INITIALIZER(&bufspin); 89 90 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 91 92 struct buf *buf; /* buffer header pool */ 93 94 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 95 int pageno, vm_page_t m); 96 static void vfs_clean_pages(struct buf *bp); 97 static void vfs_setdirty(struct buf *bp); 98 static void vfs_vmio_release(struct buf *bp); 99 static int flushbufqueues(bufq_type_t q); 100 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 101 102 static void bd_signal(int totalspace); 103 static void buf_daemon(void); 104 static void buf_daemon_hw(void); 105 106 /* 107 * bogus page -- for I/O to/from partially complete buffers 108 * this is a temporary solution to the problem, but it is not 109 * really that bad. it would be better to split the buffer 110 * for input in the case of buffers partially already in memory, 111 * but the code is intricate enough already. 112 */ 113 vm_page_t bogus_page; 114 115 /* 116 * These are all static, but make the ones we export globals so we do 117 * not need to use compiler magic. 118 */ 119 int bufspace, maxbufspace, 120 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 121 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 122 static int lorunningspace, hirunningspace, runningbufreq; 123 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace; 124 int dirtybufcount, dirtybufcounthw; 125 int runningbufspace, runningbufcount; 126 static int getnewbufcalls; 127 static int getnewbufrestarts; 128 static int recoverbufcalls; 129 static int needsbuffer; /* locked by needsbuffer_spin */ 130 static int bd_request; /* locked by needsbuffer_spin */ 131 static int bd_request_hw; /* locked by needsbuffer_spin */ 132 static u_int bd_wake_ary[BD_WAKE_SIZE]; 133 static u_int bd_wake_index; 134 static struct spinlock needsbuffer_spin; 135 136 static struct thread *bufdaemon_td; 137 static struct thread *bufdaemonhw_td; 138 139 140 /* 141 * Sysctls for operational control of the buffer cache. 142 */ 143 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 144 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 145 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 146 "High watermark used to trigger explicit flushing of dirty buffers"); 147 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 148 "Minimum amount of buffer space required for active I/O"); 149 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 150 "Maximum amount of buffer space to usable for active I/O"); 151 /* 152 * Sysctls determining current state of the buffer cache. 153 */ 154 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 155 "Total number of buffers in buffer cache"); 156 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 157 "Pending bytes of dirty buffers (all)"); 158 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 159 "Pending bytes of dirty buffers (heavy weight)"); 160 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 161 "Pending number of dirty buffers"); 162 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 163 "Pending number of dirty buffers (heavy weight)"); 164 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 165 "I/O bytes currently in progress due to asynchronous writes"); 166 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 167 "I/O buffers currently in progress due to asynchronous writes"); 168 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 169 "Hard limit on maximum amount of memory usable for buffer space"); 170 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 171 "Soft limit on maximum amount of memory usable for buffer space"); 172 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 173 "Minimum amount of memory to reserve for system buffer space"); 174 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 175 "Amount of memory available for buffers"); 176 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 177 0, "Maximum amount of memory reserved for buffers using malloc"); 178 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 179 "Amount of memory left for buffers using malloc-scheme"); 180 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 181 "New buffer header acquisition requests"); 182 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 183 0, "New buffer header acquisition restarts"); 184 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 185 "Recover VM space in an emergency"); 186 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 187 "Buffer acquisition restarts due to fragmented buffer map"); 188 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 189 "Amount of time KVA space was deallocated in an arbitrary buffer"); 190 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 191 "Amount of time buffer re-use operations were successful"); 192 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 193 "sizeof(struct buf)"); 194 195 char *buf_wmesg = BUF_WMESG; 196 197 extern int vm_swap_size; 198 199 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 200 #define VFS_BIO_NEED_UNUSED02 0x02 201 #define VFS_BIO_NEED_UNUSED04 0x04 202 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 203 204 /* 205 * bufspacewakeup: 206 * 207 * Called when buffer space is potentially available for recovery. 208 * getnewbuf() will block on this flag when it is unable to free 209 * sufficient buffer space. Buffer space becomes recoverable when 210 * bp's get placed back in the queues. 211 */ 212 213 static __inline void 214 bufspacewakeup(void) 215 { 216 /* 217 * If someone is waiting for BUF space, wake them up. Even 218 * though we haven't freed the kva space yet, the waiting 219 * process will be able to now. 220 */ 221 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 222 spin_lock_wr(&needsbuffer_spin); 223 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 224 spin_unlock_wr(&needsbuffer_spin); 225 wakeup(&needsbuffer); 226 } 227 } 228 229 /* 230 * runningbufwakeup: 231 * 232 * Accounting for I/O in progress. 233 * 234 */ 235 static __inline void 236 runningbufwakeup(struct buf *bp) 237 { 238 int totalspace; 239 int limit; 240 241 if ((totalspace = bp->b_runningbufspace) != 0) { 242 atomic_subtract_int(&runningbufspace, totalspace); 243 atomic_subtract_int(&runningbufcount, 1); 244 bp->b_runningbufspace = 0; 245 246 /* 247 * see waitrunningbufspace() for limit test. 248 */ 249 limit = hirunningspace * 2 / 3; 250 if (runningbufreq && runningbufspace <= limit) { 251 runningbufreq = 0; 252 wakeup(&runningbufreq); 253 } 254 bd_signal(totalspace); 255 } 256 } 257 258 /* 259 * bufcountwakeup: 260 * 261 * Called when a buffer has been added to one of the free queues to 262 * account for the buffer and to wakeup anyone waiting for free buffers. 263 * This typically occurs when large amounts of metadata are being handled 264 * by the buffer cache ( else buffer space runs out first, usually ). 265 * 266 * MPSAFE 267 */ 268 static __inline void 269 bufcountwakeup(void) 270 { 271 if (needsbuffer) { 272 spin_lock_wr(&needsbuffer_spin); 273 needsbuffer &= ~VFS_BIO_NEED_ANY; 274 spin_unlock_wr(&needsbuffer_spin); 275 wakeup(&needsbuffer); 276 } 277 } 278 279 /* 280 * waitrunningbufspace() 281 * 282 * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3. 283 * This is the point where write bursting stops so we don't want to wait 284 * for the running amount to drop below it (at least if we still want bioq 285 * to burst writes). 286 * 287 * The caller may be using this function to block in a tight loop, we 288 * must block while runningbufspace is greater then or equal to 289 * hirunningspace * 2 / 3. 290 * 291 * And even with that it may not be enough, due to the presence of 292 * B_LOCKED dirty buffers, so also wait for at least one running buffer 293 * to complete. 294 */ 295 static __inline void 296 waitrunningbufspace(void) 297 { 298 int limit = hirunningspace * 2 / 3; 299 300 crit_enter(); 301 if (runningbufspace > limit) { 302 while (runningbufspace > limit) { 303 ++runningbufreq; 304 tsleep(&runningbufreq, 0, "wdrn1", 0); 305 } 306 } else if (runningbufspace) { 307 ++runningbufreq; 308 tsleep(&runningbufreq, 0, "wdrn2", 1); 309 } 310 crit_exit(); 311 } 312 313 /* 314 * buf_dirty_count_severe: 315 * 316 * Return true if we have too many dirty buffers. 317 */ 318 int 319 buf_dirty_count_severe(void) 320 { 321 return (runningbufspace + dirtybufspace >= hidirtybufspace || 322 dirtybufcount >= nbuf / 2); 323 } 324 325 /* 326 * Return true if the amount of running I/O is severe and BIOQ should 327 * start bursting. 328 */ 329 int 330 buf_runningbufspace_severe(void) 331 { 332 return (runningbufspace >= hirunningspace * 2 / 3); 333 } 334 335 /* 336 * vfs_buf_test_cache: 337 * 338 * Called when a buffer is extended. This function clears the B_CACHE 339 * bit if the newly extended portion of the buffer does not contain 340 * valid data. 341 */ 342 static __inline__ 343 void 344 vfs_buf_test_cache(struct buf *bp, 345 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 346 vm_page_t m) 347 { 348 if (bp->b_flags & B_CACHE) { 349 int base = (foff + off) & PAGE_MASK; 350 if (vm_page_is_valid(m, base, size) == 0) 351 bp->b_flags &= ~B_CACHE; 352 } 353 } 354 355 /* 356 * bd_speedup() 357 * 358 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 359 * low water mark. 360 * 361 * MPSAFE 362 */ 363 static __inline__ 364 void 365 bd_speedup(void) 366 { 367 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 368 return; 369 370 if (bd_request == 0 && 371 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 372 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 373 spin_lock_wr(&needsbuffer_spin); 374 bd_request = 1; 375 spin_unlock_wr(&needsbuffer_spin); 376 wakeup(&bd_request); 377 } 378 if (bd_request_hw == 0 && 379 (dirtybufspacehw > lodirtybufspace / 2 || 380 dirtybufcounthw >= nbuf / 2)) { 381 spin_lock_wr(&needsbuffer_spin); 382 bd_request_hw = 1; 383 spin_unlock_wr(&needsbuffer_spin); 384 wakeup(&bd_request_hw); 385 } 386 } 387 388 /* 389 * bd_heatup() 390 * 391 * Get the buf_daemon heated up when the number of running and dirty 392 * buffers exceeds the mid-point. 393 * 394 * MPSAFE 395 */ 396 int 397 bd_heatup(void) 398 { 399 int mid1; 400 int mid2; 401 int totalspace; 402 403 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 404 405 totalspace = runningbufspace + dirtybufspace; 406 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 407 bd_speedup(); 408 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 409 if (totalspace >= mid2) 410 return(totalspace - mid2); 411 } 412 return(0); 413 } 414 415 /* 416 * bd_wait() 417 * 418 * Wait for the buffer cache to flush (totalspace) bytes worth of 419 * buffers, then return. 420 * 421 * Regardless this function blocks while the number of dirty buffers 422 * exceeds hidirtybufspace. 423 * 424 * MPSAFE 425 */ 426 void 427 bd_wait(int totalspace) 428 { 429 u_int i; 430 int count; 431 432 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 433 return; 434 435 while (totalspace > 0) { 436 bd_heatup(); 437 if (totalspace > runningbufspace + dirtybufspace) 438 totalspace = runningbufspace + dirtybufspace; 439 count = totalspace / BKVASIZE; 440 if (count >= BD_WAKE_SIZE) 441 count = BD_WAKE_SIZE - 1; 442 443 spin_lock_wr(&needsbuffer_spin); 444 i = (bd_wake_index + count) & BD_WAKE_MASK; 445 ++bd_wake_ary[i]; 446 tsleep_interlock(&bd_wake_ary[i], 0); 447 spin_unlock_wr(&needsbuffer_spin); 448 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 449 450 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 451 } 452 } 453 454 /* 455 * bd_signal() 456 * 457 * This function is called whenever runningbufspace or dirtybufspace 458 * is reduced. Track threads waiting for run+dirty buffer I/O 459 * complete. 460 * 461 * MPSAFE 462 */ 463 static void 464 bd_signal(int totalspace) 465 { 466 u_int i; 467 468 if (totalspace > 0) { 469 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 470 totalspace = BKVASIZE * BD_WAKE_SIZE; 471 spin_lock_wr(&needsbuffer_spin); 472 while (totalspace > 0) { 473 i = bd_wake_index++; 474 i &= BD_WAKE_MASK; 475 if (bd_wake_ary[i]) { 476 bd_wake_ary[i] = 0; 477 spin_unlock_wr(&needsbuffer_spin); 478 wakeup(&bd_wake_ary[i]); 479 spin_lock_wr(&needsbuffer_spin); 480 } 481 totalspace -= BKVASIZE; 482 } 483 spin_unlock_wr(&needsbuffer_spin); 484 } 485 } 486 487 /* 488 * BIO tracking support routines. 489 * 490 * Release a ref on a bio_track. Wakeup requests are atomically released 491 * along with the last reference so bk_active will never wind up set to 492 * only 0x80000000. 493 * 494 * MPSAFE 495 */ 496 static 497 void 498 bio_track_rel(struct bio_track *track) 499 { 500 int active; 501 int desired; 502 503 /* 504 * Shortcut 505 */ 506 active = track->bk_active; 507 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 508 return; 509 510 /* 511 * Full-on. Note that the wait flag is only atomically released on 512 * the 1->0 count transition. 513 * 514 * We check for a negative count transition using bit 30 since bit 31 515 * has a different meaning. 516 */ 517 for (;;) { 518 desired = (active & 0x7FFFFFFF) - 1; 519 if (desired) 520 desired |= active & 0x80000000; 521 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 522 if (desired & 0x40000000) 523 panic("bio_track_rel: bad count: %p\n", track); 524 if (active & 0x80000000) 525 wakeup(track); 526 break; 527 } 528 active = track->bk_active; 529 } 530 } 531 532 /* 533 * Wait for the tracking count to reach 0. 534 * 535 * Use atomic ops such that the wait flag is only set atomically when 536 * bk_active is non-zero. 537 * 538 * MPSAFE 539 */ 540 int 541 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 542 { 543 int active; 544 int desired; 545 int error; 546 547 /* 548 * Shortcut 549 */ 550 if (track->bk_active == 0) 551 return(0); 552 553 /* 554 * Full-on. Note that the wait flag may only be atomically set if 555 * the active count is non-zero. 556 */ 557 error = 0; 558 while ((active = track->bk_active) != 0) { 559 desired = active | 0x80000000; 560 tsleep_interlock(track, slp_flags); 561 if (active == desired || 562 atomic_cmpset_int(&track->bk_active, active, desired)) { 563 error = tsleep(track, slp_flags | PINTERLOCKED, 564 "iowait", slp_timo); 565 if (error) 566 break; 567 } 568 } 569 return (error); 570 } 571 572 /* 573 * bufinit: 574 * 575 * Load time initialisation of the buffer cache, called from machine 576 * dependant initialization code. 577 */ 578 void 579 bufinit(void) 580 { 581 struct buf *bp; 582 vm_offset_t bogus_offset; 583 int i; 584 585 spin_init(&needsbuffer_spin); 586 587 /* next, make a null set of free lists */ 588 for (i = 0; i < BUFFER_QUEUES; i++) 589 TAILQ_INIT(&bufqueues[i]); 590 591 /* finally, initialize each buffer header and stick on empty q */ 592 for (i = 0; i < nbuf; i++) { 593 bp = &buf[i]; 594 bzero(bp, sizeof *bp); 595 bp->b_flags = B_INVAL; /* we're just an empty header */ 596 bp->b_cmd = BUF_CMD_DONE; 597 bp->b_qindex = BQUEUE_EMPTY; 598 initbufbio(bp); 599 xio_init(&bp->b_xio); 600 buf_dep_init(bp); 601 BUF_LOCKINIT(bp); 602 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 603 } 604 605 /* 606 * maxbufspace is the absolute maximum amount of buffer space we are 607 * allowed to reserve in KVM and in real terms. The absolute maximum 608 * is nominally used by buf_daemon. hibufspace is the nominal maximum 609 * used by most other processes. The differential is required to 610 * ensure that buf_daemon is able to run when other processes might 611 * be blocked waiting for buffer space. 612 * 613 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 614 * this may result in KVM fragmentation which is not handled optimally 615 * by the system. 616 */ 617 maxbufspace = nbuf * BKVASIZE; 618 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 619 lobufspace = hibufspace - MAXBSIZE; 620 621 lorunningspace = 512 * 1024; 622 /* hirunningspace -- see below */ 623 624 /* 625 * Limit the amount of malloc memory since it is wired permanently 626 * into the kernel space. Even though this is accounted for in 627 * the buffer allocation, we don't want the malloced region to grow 628 * uncontrolled. The malloc scheme improves memory utilization 629 * significantly on average (small) directories. 630 */ 631 maxbufmallocspace = hibufspace / 20; 632 633 /* 634 * Reduce the chance of a deadlock occuring by limiting the number 635 * of delayed-write dirty buffers we allow to stack up. 636 * 637 * We don't want too much actually queued to the device at once 638 * (XXX this needs to be per-mount!), because the buffers will 639 * wind up locked for a very long period of time while the I/O 640 * drains. 641 */ 642 hidirtybufspace = hibufspace / 2; /* dirty + running */ 643 hirunningspace = hibufspace / 16; /* locked & queued to device */ 644 if (hirunningspace < 1024 * 1024) 645 hirunningspace = 1024 * 1024; 646 647 dirtybufspace = 0; 648 dirtybufspacehw = 0; 649 650 lodirtybufspace = hidirtybufspace / 2; 651 652 /* 653 * Maximum number of async ops initiated per buf_daemon loop. This is 654 * somewhat of a hack at the moment, we really need to limit ourselves 655 * based on the number of bytes of I/O in-transit that were initiated 656 * from buf_daemon. 657 */ 658 659 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 660 bogus_page = vm_page_alloc(&kernel_object, 661 (bogus_offset >> PAGE_SHIFT), 662 VM_ALLOC_NORMAL); 663 vmstats.v_wire_count++; 664 665 } 666 667 /* 668 * Initialize the embedded bio structures 669 */ 670 void 671 initbufbio(struct buf *bp) 672 { 673 bp->b_bio1.bio_buf = bp; 674 bp->b_bio1.bio_prev = NULL; 675 bp->b_bio1.bio_offset = NOOFFSET; 676 bp->b_bio1.bio_next = &bp->b_bio2; 677 bp->b_bio1.bio_done = NULL; 678 bp->b_bio1.bio_flags = 0; 679 680 bp->b_bio2.bio_buf = bp; 681 bp->b_bio2.bio_prev = &bp->b_bio1; 682 bp->b_bio2.bio_offset = NOOFFSET; 683 bp->b_bio2.bio_next = NULL; 684 bp->b_bio2.bio_done = NULL; 685 bp->b_bio2.bio_flags = 0; 686 } 687 688 /* 689 * Reinitialize the embedded bio structures as well as any additional 690 * translation cache layers. 691 */ 692 void 693 reinitbufbio(struct buf *bp) 694 { 695 struct bio *bio; 696 697 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 698 bio->bio_done = NULL; 699 bio->bio_offset = NOOFFSET; 700 } 701 } 702 703 /* 704 * Push another BIO layer onto an existing BIO and return it. The new 705 * BIO layer may already exist, holding cached translation data. 706 */ 707 struct bio * 708 push_bio(struct bio *bio) 709 { 710 struct bio *nbio; 711 712 if ((nbio = bio->bio_next) == NULL) { 713 int index = bio - &bio->bio_buf->b_bio_array[0]; 714 if (index >= NBUF_BIO - 1) { 715 panic("push_bio: too many layers bp %p\n", 716 bio->bio_buf); 717 } 718 nbio = &bio->bio_buf->b_bio_array[index + 1]; 719 bio->bio_next = nbio; 720 nbio->bio_prev = bio; 721 nbio->bio_buf = bio->bio_buf; 722 nbio->bio_offset = NOOFFSET; 723 nbio->bio_done = NULL; 724 nbio->bio_next = NULL; 725 } 726 KKASSERT(nbio->bio_done == NULL); 727 return(nbio); 728 } 729 730 /* 731 * Pop a BIO translation layer, returning the previous layer. The 732 * must have been previously pushed. 733 */ 734 struct bio * 735 pop_bio(struct bio *bio) 736 { 737 return(bio->bio_prev); 738 } 739 740 void 741 clearbiocache(struct bio *bio) 742 { 743 while (bio) { 744 bio->bio_offset = NOOFFSET; 745 bio = bio->bio_next; 746 } 747 } 748 749 /* 750 * bfreekva: 751 * 752 * Free the KVA allocation for buffer 'bp'. 753 * 754 * Must be called from a critical section as this is the only locking for 755 * buffer_map. 756 * 757 * Since this call frees up buffer space, we call bufspacewakeup(). 758 * 759 * MPALMOSTSAFE 760 */ 761 static void 762 bfreekva(struct buf *bp) 763 { 764 int count; 765 766 if (bp->b_kvasize) { 767 get_mplock(); 768 ++buffreekvacnt; 769 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 770 vm_map_lock(&buffer_map); 771 bufspace -= bp->b_kvasize; 772 vm_map_delete(&buffer_map, 773 (vm_offset_t) bp->b_kvabase, 774 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 775 &count 776 ); 777 vm_map_unlock(&buffer_map); 778 vm_map_entry_release(count); 779 bp->b_kvasize = 0; 780 bufspacewakeup(); 781 rel_mplock(); 782 } 783 } 784 785 /* 786 * bremfree: 787 * 788 * Remove the buffer from the appropriate free list. 789 */ 790 static __inline void 791 _bremfree(struct buf *bp) 792 { 793 if (bp->b_qindex != BQUEUE_NONE) { 794 KASSERT(BUF_REFCNTNB(bp) == 1, 795 ("bremfree: bp %p not locked",bp)); 796 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 797 bp->b_qindex = BQUEUE_NONE; 798 } else { 799 if (BUF_REFCNTNB(bp) <= 1) 800 panic("bremfree: removing a buffer not on a queue"); 801 } 802 } 803 804 void 805 bremfree(struct buf *bp) 806 { 807 spin_lock_wr(&bufspin); 808 _bremfree(bp); 809 spin_unlock_wr(&bufspin); 810 } 811 812 static void 813 bremfree_locked(struct buf *bp) 814 { 815 _bremfree(bp); 816 } 817 818 /* 819 * bread: 820 * 821 * Get a buffer with the specified data. Look in the cache first. We 822 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 823 * is set, the buffer is valid and we do not have to do anything ( see 824 * getblk() ). 825 * 826 * MPALMOSTSAFE 827 */ 828 int 829 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 830 { 831 struct buf *bp; 832 833 bp = getblk(vp, loffset, size, 0, 0); 834 *bpp = bp; 835 836 /* if not found in cache, do some I/O */ 837 if ((bp->b_flags & B_CACHE) == 0) { 838 get_mplock(); 839 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 840 bp->b_cmd = BUF_CMD_READ; 841 bp->b_bio1.bio_done = biodone_sync; 842 bp->b_bio1.bio_flags |= BIO_SYNC; 843 vfs_busy_pages(vp, bp); 844 vn_strategy(vp, &bp->b_bio1); 845 rel_mplock(); 846 return (biowait(&bp->b_bio1, "biord")); 847 } 848 return (0); 849 } 850 851 /* 852 * breadn: 853 * 854 * Operates like bread, but also starts asynchronous I/O on 855 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 856 * to initiating I/O . If B_CACHE is set, the buffer is valid 857 * and we do not have to do anything. 858 * 859 * MPALMOSTSAFE 860 */ 861 int 862 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 863 int *rabsize, int cnt, struct buf **bpp) 864 { 865 struct buf *bp, *rabp; 866 int i; 867 int rv = 0, readwait = 0; 868 869 *bpp = bp = getblk(vp, loffset, size, 0, 0); 870 871 /* if not found in cache, do some I/O */ 872 if ((bp->b_flags & B_CACHE) == 0) { 873 get_mplock(); 874 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 875 bp->b_cmd = BUF_CMD_READ; 876 bp->b_bio1.bio_done = biodone_sync; 877 bp->b_bio1.bio_flags |= BIO_SYNC; 878 vfs_busy_pages(vp, bp); 879 vn_strategy(vp, &bp->b_bio1); 880 ++readwait; 881 rel_mplock(); 882 } 883 884 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 885 if (inmem(vp, *raoffset)) 886 continue; 887 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 888 889 if ((rabp->b_flags & B_CACHE) == 0) { 890 get_mplock(); 891 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 892 rabp->b_cmd = BUF_CMD_READ; 893 vfs_busy_pages(vp, rabp); 894 BUF_KERNPROC(rabp); 895 vn_strategy(vp, &rabp->b_bio1); 896 rel_mplock(); 897 } else { 898 brelse(rabp); 899 } 900 } 901 if (readwait) 902 rv = biowait(&bp->b_bio1, "biord"); 903 return (rv); 904 } 905 906 /* 907 * bwrite: 908 * 909 * Synchronous write, waits for completion. 910 * 911 * Write, release buffer on completion. (Done by iodone 912 * if async). Do not bother writing anything if the buffer 913 * is invalid. 914 * 915 * Note that we set B_CACHE here, indicating that buffer is 916 * fully valid and thus cacheable. This is true even of NFS 917 * now so we set it generally. This could be set either here 918 * or in biodone() since the I/O is synchronous. We put it 919 * here. 920 */ 921 int 922 bwrite(struct buf *bp) 923 { 924 int error; 925 926 if (bp->b_flags & B_INVAL) { 927 brelse(bp); 928 return (0); 929 } 930 if (BUF_REFCNTNB(bp) == 0) 931 panic("bwrite: buffer is not busy???"); 932 933 /* Mark the buffer clean */ 934 bundirty(bp); 935 936 bp->b_flags &= ~(B_ERROR | B_EINTR); 937 bp->b_flags |= B_CACHE; 938 bp->b_cmd = BUF_CMD_WRITE; 939 bp->b_bio1.bio_done = biodone_sync; 940 bp->b_bio1.bio_flags |= BIO_SYNC; 941 vfs_busy_pages(bp->b_vp, bp); 942 943 /* 944 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 945 * valid for vnode-backed buffers. 946 */ 947 bp->b_runningbufspace = bp->b_bufsize; 948 if (bp->b_runningbufspace) { 949 runningbufspace += bp->b_runningbufspace; 950 ++runningbufcount; 951 } 952 953 vn_strategy(bp->b_vp, &bp->b_bio1); 954 error = biowait(&bp->b_bio1, "biows"); 955 brelse(bp); 956 return (error); 957 } 958 959 /* 960 * bawrite: 961 * 962 * Asynchronous write. Start output on a buffer, but do not wait for 963 * it to complete. The buffer is released when the output completes. 964 * 965 * bwrite() ( or the VOP routine anyway ) is responsible for handling 966 * B_INVAL buffers. Not us. 967 */ 968 void 969 bawrite(struct buf *bp) 970 { 971 if (bp->b_flags & B_INVAL) { 972 brelse(bp); 973 return; 974 } 975 if (BUF_REFCNTNB(bp) == 0) 976 panic("bwrite: buffer is not busy???"); 977 978 /* Mark the buffer clean */ 979 bundirty(bp); 980 981 bp->b_flags &= ~(B_ERROR | B_EINTR); 982 bp->b_flags |= B_CACHE; 983 bp->b_cmd = BUF_CMD_WRITE; 984 KKASSERT(bp->b_bio1.bio_done == NULL); 985 vfs_busy_pages(bp->b_vp, bp); 986 987 /* 988 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 989 * valid for vnode-backed buffers. 990 */ 991 bp->b_runningbufspace = bp->b_bufsize; 992 if (bp->b_runningbufspace) { 993 runningbufspace += bp->b_runningbufspace; 994 ++runningbufcount; 995 } 996 997 BUF_KERNPROC(bp); 998 vn_strategy(bp->b_vp, &bp->b_bio1); 999 } 1000 1001 /* 1002 * bowrite: 1003 * 1004 * Ordered write. Start output on a buffer, and flag it so that the 1005 * device will write it in the order it was queued. The buffer is 1006 * released when the output completes. bwrite() ( or the VOP routine 1007 * anyway ) is responsible for handling B_INVAL buffers. 1008 */ 1009 int 1010 bowrite(struct buf *bp) 1011 { 1012 bp->b_flags |= B_ORDERED; 1013 bawrite(bp); 1014 return (0); 1015 } 1016 1017 /* 1018 * bdwrite: 1019 * 1020 * Delayed write. (Buffer is marked dirty). Do not bother writing 1021 * anything if the buffer is marked invalid. 1022 * 1023 * Note that since the buffer must be completely valid, we can safely 1024 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1025 * biodone() in order to prevent getblk from writing the buffer 1026 * out synchronously. 1027 */ 1028 void 1029 bdwrite(struct buf *bp) 1030 { 1031 if (BUF_REFCNTNB(bp) == 0) 1032 panic("bdwrite: buffer is not busy"); 1033 1034 if (bp->b_flags & B_INVAL) { 1035 brelse(bp); 1036 return; 1037 } 1038 bdirty(bp); 1039 1040 /* 1041 * Set B_CACHE, indicating that the buffer is fully valid. This is 1042 * true even of NFS now. 1043 */ 1044 bp->b_flags |= B_CACHE; 1045 1046 /* 1047 * This bmap keeps the system from needing to do the bmap later, 1048 * perhaps when the system is attempting to do a sync. Since it 1049 * is likely that the indirect block -- or whatever other datastructure 1050 * that the filesystem needs is still in memory now, it is a good 1051 * thing to do this. Note also, that if the pageout daemon is 1052 * requesting a sync -- there might not be enough memory to do 1053 * the bmap then... So, this is important to do. 1054 */ 1055 if (bp->b_bio2.bio_offset == NOOFFSET) { 1056 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1057 NULL, NULL, BUF_CMD_WRITE); 1058 } 1059 1060 /* 1061 * Set the *dirty* buffer range based upon the VM system dirty pages. 1062 */ 1063 vfs_setdirty(bp); 1064 1065 /* 1066 * We need to do this here to satisfy the vnode_pager and the 1067 * pageout daemon, so that it thinks that the pages have been 1068 * "cleaned". Note that since the pages are in a delayed write 1069 * buffer -- the VFS layer "will" see that the pages get written 1070 * out on the next sync, or perhaps the cluster will be completed. 1071 */ 1072 vfs_clean_pages(bp); 1073 bqrelse(bp); 1074 1075 /* 1076 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1077 * due to the softdep code. 1078 */ 1079 } 1080 1081 /* 1082 * bdirty: 1083 * 1084 * Turn buffer into delayed write request by marking it B_DELWRI. 1085 * B_RELBUF and B_NOCACHE must be cleared. 1086 * 1087 * We reassign the buffer to itself to properly update it in the 1088 * dirty/clean lists. 1089 * 1090 * Must be called from a critical section. 1091 * The buffer must be on BQUEUE_NONE. 1092 */ 1093 void 1094 bdirty(struct buf *bp) 1095 { 1096 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1097 if (bp->b_flags & B_NOCACHE) { 1098 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1099 bp->b_flags &= ~B_NOCACHE; 1100 } 1101 if (bp->b_flags & B_INVAL) { 1102 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1103 } 1104 bp->b_flags &= ~B_RELBUF; 1105 1106 if ((bp->b_flags & B_DELWRI) == 0) { 1107 bp->b_flags |= B_DELWRI; 1108 reassignbuf(bp); 1109 atomic_add_int(&dirtybufcount, 1); 1110 dirtybufspace += bp->b_bufsize; 1111 if (bp->b_flags & B_HEAVY) { 1112 atomic_add_int(&dirtybufcounthw, 1); 1113 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1114 } 1115 bd_heatup(); 1116 } 1117 } 1118 1119 /* 1120 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1121 * needs to be flushed with a different buf_daemon thread to avoid 1122 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1123 */ 1124 void 1125 bheavy(struct buf *bp) 1126 { 1127 if ((bp->b_flags & B_HEAVY) == 0) { 1128 bp->b_flags |= B_HEAVY; 1129 if (bp->b_flags & B_DELWRI) { 1130 atomic_add_int(&dirtybufcounthw, 1); 1131 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1132 } 1133 } 1134 } 1135 1136 /* 1137 * bundirty: 1138 * 1139 * Clear B_DELWRI for buffer. 1140 * 1141 * Must be called from a critical section. 1142 * 1143 * The buffer is typically on BQUEUE_NONE but there is one case in 1144 * brelse() that calls this function after placing the buffer on 1145 * a different queue. 1146 * 1147 * MPSAFE 1148 */ 1149 void 1150 bundirty(struct buf *bp) 1151 { 1152 if (bp->b_flags & B_DELWRI) { 1153 bp->b_flags &= ~B_DELWRI; 1154 reassignbuf(bp); 1155 atomic_subtract_int(&dirtybufcount, 1); 1156 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1157 if (bp->b_flags & B_HEAVY) { 1158 atomic_subtract_int(&dirtybufcounthw, 1); 1159 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1160 } 1161 bd_signal(bp->b_bufsize); 1162 } 1163 /* 1164 * Since it is now being written, we can clear its deferred write flag. 1165 */ 1166 bp->b_flags &= ~B_DEFERRED; 1167 } 1168 1169 /* 1170 * brelse: 1171 * 1172 * Release a busy buffer and, if requested, free its resources. The 1173 * buffer will be stashed in the appropriate bufqueue[] allowing it 1174 * to be accessed later as a cache entity or reused for other purposes. 1175 * 1176 * MPALMOSTSAFE 1177 */ 1178 void 1179 brelse(struct buf *bp) 1180 { 1181 #ifdef INVARIANTS 1182 int saved_flags = bp->b_flags; 1183 #endif 1184 1185 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1186 1187 /* 1188 * If B_NOCACHE is set we are being asked to destroy the buffer and 1189 * its backing store. Clear B_DELWRI. 1190 * 1191 * B_NOCACHE is set in two cases: (1) when the caller really wants 1192 * to destroy the buffer and backing store and (2) when the caller 1193 * wants to destroy the buffer and backing store after a write 1194 * completes. 1195 */ 1196 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1197 bundirty(bp); 1198 } 1199 1200 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1201 /* 1202 * A re-dirtied buffer is only subject to destruction 1203 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1204 */ 1205 /* leave buffer intact */ 1206 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1207 (bp->b_bufsize <= 0)) { 1208 /* 1209 * Either a failed read or we were asked to free or not 1210 * cache the buffer. This path is reached with B_DELWRI 1211 * set only if B_INVAL is already set. B_NOCACHE governs 1212 * backing store destruction. 1213 * 1214 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1215 * buffer cannot be immediately freed. 1216 */ 1217 bp->b_flags |= B_INVAL; 1218 if (LIST_FIRST(&bp->b_dep) != NULL) { 1219 get_mplock(); 1220 buf_deallocate(bp); 1221 rel_mplock(); 1222 } 1223 if (bp->b_flags & B_DELWRI) { 1224 atomic_subtract_int(&dirtybufcount, 1); 1225 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1226 if (bp->b_flags & B_HEAVY) { 1227 atomic_subtract_int(&dirtybufcounthw, 1); 1228 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1229 } 1230 bd_signal(bp->b_bufsize); 1231 } 1232 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1233 } 1234 1235 /* 1236 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1237 * If vfs_vmio_release() is called with either bit set, the 1238 * underlying pages may wind up getting freed causing a previous 1239 * write (bdwrite()) to get 'lost' because pages associated with 1240 * a B_DELWRI bp are marked clean. Pages associated with a 1241 * B_LOCKED buffer may be mapped by the filesystem. 1242 * 1243 * If we want to release the buffer ourselves (rather then the 1244 * originator asking us to release it), give the originator a 1245 * chance to countermand the release by setting B_LOCKED. 1246 * 1247 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1248 * if B_DELWRI is set. 1249 * 1250 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1251 * on pages to return pages to the VM page queues. 1252 */ 1253 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1254 bp->b_flags &= ~B_RELBUF; 1255 } else if (vm_page_count_severe()) { 1256 if (LIST_FIRST(&bp->b_dep) != NULL) { 1257 get_mplock(); 1258 buf_deallocate(bp); /* can set B_LOCKED */ 1259 rel_mplock(); 1260 } 1261 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1262 bp->b_flags &= ~B_RELBUF; 1263 else 1264 bp->b_flags |= B_RELBUF; 1265 } 1266 1267 /* 1268 * Make sure b_cmd is clear. It may have already been cleared by 1269 * biodone(). 1270 * 1271 * At this point destroying the buffer is governed by the B_INVAL 1272 * or B_RELBUF flags. 1273 */ 1274 bp->b_cmd = BUF_CMD_DONE; 1275 1276 /* 1277 * VMIO buffer rundown. Make sure the VM page array is restored 1278 * after an I/O may have replaces some of the pages with bogus pages 1279 * in order to not destroy dirty pages in a fill-in read. 1280 * 1281 * Note that due to the code above, if a buffer is marked B_DELWRI 1282 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1283 * B_INVAL may still be set, however. 1284 * 1285 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1286 * but not the backing store. B_NOCACHE will destroy the backing 1287 * store. 1288 * 1289 * Note that dirty NFS buffers contain byte-granular write ranges 1290 * and should not be destroyed w/ B_INVAL even if the backing store 1291 * is left intact. 1292 */ 1293 if (bp->b_flags & B_VMIO) { 1294 /* 1295 * Rundown for VMIO buffers which are not dirty NFS buffers. 1296 */ 1297 int i, j, resid; 1298 vm_page_t m; 1299 off_t foff; 1300 vm_pindex_t poff; 1301 vm_object_t obj; 1302 struct vnode *vp; 1303 1304 vp = bp->b_vp; 1305 1306 /* 1307 * Get the base offset and length of the buffer. Note that 1308 * in the VMIO case if the buffer block size is not 1309 * page-aligned then b_data pointer may not be page-aligned. 1310 * But our b_xio.xio_pages array *IS* page aligned. 1311 * 1312 * block sizes less then DEV_BSIZE (usually 512) are not 1313 * supported due to the page granularity bits (m->valid, 1314 * m->dirty, etc...). 1315 * 1316 * See man buf(9) for more information 1317 */ 1318 1319 resid = bp->b_bufsize; 1320 foff = bp->b_loffset; 1321 1322 get_mplock(); 1323 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1324 m = bp->b_xio.xio_pages[i]; 1325 vm_page_flag_clear(m, PG_ZERO); 1326 /* 1327 * If we hit a bogus page, fixup *all* of them 1328 * now. Note that we left these pages wired 1329 * when we removed them so they had better exist, 1330 * and they cannot be ripped out from under us so 1331 * no critical section protection is necessary. 1332 */ 1333 if (m == bogus_page) { 1334 obj = vp->v_object; 1335 poff = OFF_TO_IDX(bp->b_loffset); 1336 1337 for (j = i; j < bp->b_xio.xio_npages; j++) { 1338 vm_page_t mtmp; 1339 1340 mtmp = bp->b_xio.xio_pages[j]; 1341 if (mtmp == bogus_page) { 1342 mtmp = vm_page_lookup(obj, poff + j); 1343 if (!mtmp) { 1344 panic("brelse: page missing"); 1345 } 1346 bp->b_xio.xio_pages[j] = mtmp; 1347 } 1348 } 1349 1350 if ((bp->b_flags & B_INVAL) == 0) { 1351 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1352 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1353 } 1354 m = bp->b_xio.xio_pages[i]; 1355 } 1356 1357 /* 1358 * Invalidate the backing store if B_NOCACHE is set 1359 * (e.g. used with vinvalbuf()). If this is NFS 1360 * we impose a requirement that the block size be 1361 * a multiple of PAGE_SIZE and create a temporary 1362 * hack to basically invalidate the whole page. The 1363 * problem is that NFS uses really odd buffer sizes 1364 * especially when tracking piecemeal writes and 1365 * it also vinvalbuf()'s a lot, which would result 1366 * in only partial page validation and invalidation 1367 * here. If the file page is mmap()'d, however, 1368 * all the valid bits get set so after we invalidate 1369 * here we would end up with weird m->valid values 1370 * like 0xfc. nfs_getpages() can't handle this so 1371 * we clear all the valid bits for the NFS case 1372 * instead of just some of them. 1373 * 1374 * The real bug is the VM system having to set m->valid 1375 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1376 * itself is an artifact of the whole 512-byte 1377 * granular mess that exists to support odd block 1378 * sizes and UFS meta-data block sizes (e.g. 6144). 1379 * A complete rewrite is required. 1380 */ 1381 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1382 int poffset = foff & PAGE_MASK; 1383 int presid; 1384 1385 presid = PAGE_SIZE - poffset; 1386 if (bp->b_vp->v_tag == VT_NFS && 1387 bp->b_vp->v_type == VREG) { 1388 ; /* entire page */ 1389 } else if (presid > resid) { 1390 presid = resid; 1391 } 1392 KASSERT(presid >= 0, ("brelse: extra page")); 1393 vm_page_set_invalid(m, poffset, presid); 1394 } 1395 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1396 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1397 } 1398 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1399 vfs_vmio_release(bp); 1400 rel_mplock(); 1401 } else { 1402 /* 1403 * Rundown for non-VMIO buffers. 1404 */ 1405 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1406 get_mplock(); 1407 if (bp->b_bufsize) 1408 allocbuf(bp, 0); 1409 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1410 if (bp->b_vp) 1411 brelvp(bp); 1412 rel_mplock(); 1413 } 1414 } 1415 1416 if (bp->b_qindex != BQUEUE_NONE) 1417 panic("brelse: free buffer onto another queue???"); 1418 if (BUF_REFCNTNB(bp) > 1) { 1419 /* Temporary panic to verify exclusive locking */ 1420 /* This panic goes away when we allow shared refs */ 1421 panic("brelse: multiple refs"); 1422 /* NOT REACHED */ 1423 return; 1424 } 1425 1426 /* 1427 * Figure out the correct queue to place the cleaned up buffer on. 1428 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1429 * disassociated from their vnode. 1430 */ 1431 spin_lock_wr(&bufspin); 1432 if (bp->b_flags & B_LOCKED) { 1433 /* 1434 * Buffers that are locked are placed in the locked queue 1435 * immediately, regardless of their state. 1436 */ 1437 bp->b_qindex = BQUEUE_LOCKED; 1438 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1439 } else if (bp->b_bufsize == 0) { 1440 /* 1441 * Buffers with no memory. Due to conditionals near the top 1442 * of brelse() such buffers should probably already be 1443 * marked B_INVAL and disassociated from their vnode. 1444 */ 1445 bp->b_flags |= B_INVAL; 1446 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1447 KKASSERT((bp->b_flags & B_HASHED) == 0); 1448 if (bp->b_kvasize) { 1449 bp->b_qindex = BQUEUE_EMPTYKVA; 1450 } else { 1451 bp->b_qindex = BQUEUE_EMPTY; 1452 } 1453 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1454 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1455 /* 1456 * Buffers with junk contents. Again these buffers had better 1457 * already be disassociated from their vnode. 1458 */ 1459 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1460 KKASSERT((bp->b_flags & B_HASHED) == 0); 1461 bp->b_flags |= B_INVAL; 1462 bp->b_qindex = BQUEUE_CLEAN; 1463 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1464 } else { 1465 /* 1466 * Remaining buffers. These buffers are still associated with 1467 * their vnode. 1468 */ 1469 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1470 case B_DELWRI: 1471 bp->b_qindex = BQUEUE_DIRTY; 1472 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1473 break; 1474 case B_DELWRI | B_HEAVY: 1475 bp->b_qindex = BQUEUE_DIRTY_HW; 1476 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1477 b_freelist); 1478 break; 1479 default: 1480 /* 1481 * NOTE: Buffers are always placed at the end of the 1482 * queue. If B_AGE is not set the buffer will cycle 1483 * through the queue twice. 1484 */ 1485 bp->b_qindex = BQUEUE_CLEAN; 1486 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1487 break; 1488 } 1489 } 1490 spin_unlock_wr(&bufspin); 1491 1492 /* 1493 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1494 * on the correct queue. 1495 */ 1496 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1497 bundirty(bp); 1498 1499 /* 1500 * The bp is on an appropriate queue unless locked. If it is not 1501 * locked or dirty we can wakeup threads waiting for buffer space. 1502 * 1503 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1504 * if B_INVAL is set ). 1505 */ 1506 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1507 bufcountwakeup(); 1508 1509 /* 1510 * Something we can maybe free or reuse 1511 */ 1512 if (bp->b_bufsize || bp->b_kvasize) 1513 bufspacewakeup(); 1514 1515 /* 1516 * Clean up temporary flags and unlock the buffer. 1517 */ 1518 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1519 BUF_UNLOCK(bp); 1520 } 1521 1522 /* 1523 * bqrelse: 1524 * 1525 * Release a buffer back to the appropriate queue but do not try to free 1526 * it. The buffer is expected to be used again soon. 1527 * 1528 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1529 * biodone() to requeue an async I/O on completion. It is also used when 1530 * known good buffers need to be requeued but we think we may need the data 1531 * again soon. 1532 * 1533 * XXX we should be able to leave the B_RELBUF hint set on completion. 1534 * 1535 * MPSAFE 1536 */ 1537 void 1538 bqrelse(struct buf *bp) 1539 { 1540 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1541 1542 if (bp->b_qindex != BQUEUE_NONE) 1543 panic("bqrelse: free buffer onto another queue???"); 1544 if (BUF_REFCNTNB(bp) > 1) { 1545 /* do not release to free list */ 1546 panic("bqrelse: multiple refs"); 1547 return; 1548 } 1549 1550 spin_lock_wr(&bufspin); 1551 if (bp->b_flags & B_LOCKED) { 1552 /* 1553 * Locked buffers are released to the locked queue. However, 1554 * if the buffer is dirty it will first go into the dirty 1555 * queue and later on after the I/O completes successfully it 1556 * will be released to the locked queue. 1557 */ 1558 bp->b_qindex = BQUEUE_LOCKED; 1559 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1560 } else if (bp->b_flags & B_DELWRI) { 1561 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1562 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1563 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1564 } else if (vm_page_count_severe()) { 1565 /* 1566 * We are too low on memory, we have to try to free the 1567 * buffer (most importantly: the wired pages making up its 1568 * backing store) *now*. 1569 */ 1570 spin_unlock_wr(&bufspin); 1571 brelse(bp); 1572 return; 1573 } else { 1574 bp->b_qindex = BQUEUE_CLEAN; 1575 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1576 } 1577 spin_unlock_wr(&bufspin); 1578 1579 if ((bp->b_flags & B_LOCKED) == 0 && 1580 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1581 bufcountwakeup(); 1582 } 1583 1584 /* 1585 * Something we can maybe free or reuse. 1586 */ 1587 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1588 bufspacewakeup(); 1589 1590 /* 1591 * Final cleanup and unlock. Clear bits that are only used while a 1592 * buffer is actively locked. 1593 */ 1594 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1595 BUF_UNLOCK(bp); 1596 } 1597 1598 /* 1599 * vfs_vmio_release: 1600 * 1601 * Return backing pages held by the buffer 'bp' back to the VM system 1602 * if possible. The pages are freed if they are no longer valid or 1603 * attempt to free if it was used for direct I/O otherwise they are 1604 * sent to the page cache. 1605 * 1606 * Pages that were marked busy are left alone and skipped. 1607 * 1608 * The KVA mapping (b_data) for the underlying pages is removed by 1609 * this function. 1610 */ 1611 static void 1612 vfs_vmio_release(struct buf *bp) 1613 { 1614 int i; 1615 vm_page_t m; 1616 1617 crit_enter(); 1618 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1619 m = bp->b_xio.xio_pages[i]; 1620 bp->b_xio.xio_pages[i] = NULL; 1621 /* 1622 * In order to keep page LRU ordering consistent, put 1623 * everything on the inactive queue. 1624 */ 1625 vm_page_unwire(m, 0); 1626 /* 1627 * We don't mess with busy pages, it is 1628 * the responsibility of the process that 1629 * busied the pages to deal with them. 1630 */ 1631 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1632 continue; 1633 1634 if (m->wire_count == 0) { 1635 vm_page_flag_clear(m, PG_ZERO); 1636 /* 1637 * Might as well free the page if we can and it has 1638 * no valid data. We also free the page if the 1639 * buffer was used for direct I/O. 1640 */ 1641 #if 0 1642 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1643 m->hold_count == 0) { 1644 vm_page_busy(m); 1645 vm_page_protect(m, VM_PROT_NONE); 1646 vm_page_free(m); 1647 } else 1648 #endif 1649 if (bp->b_flags & B_DIRECT) { 1650 vm_page_try_to_free(m); 1651 } else if (vm_page_count_severe()) { 1652 vm_page_try_to_cache(m); 1653 } 1654 } 1655 } 1656 crit_exit(); 1657 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages); 1658 if (bp->b_bufsize) { 1659 bufspacewakeup(); 1660 bp->b_bufsize = 0; 1661 } 1662 bp->b_xio.xio_npages = 0; 1663 bp->b_flags &= ~B_VMIO; 1664 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1665 if (bp->b_vp) { 1666 get_mplock(); 1667 brelvp(bp); 1668 rel_mplock(); 1669 } 1670 } 1671 1672 /* 1673 * vfs_bio_awrite: 1674 * 1675 * Implement clustered async writes for clearing out B_DELWRI buffers. 1676 * This is much better then the old way of writing only one buffer at 1677 * a time. Note that we may not be presented with the buffers in the 1678 * correct order, so we search for the cluster in both directions. 1679 * 1680 * The buffer is locked on call. 1681 */ 1682 int 1683 vfs_bio_awrite(struct buf *bp) 1684 { 1685 int i; 1686 int j; 1687 off_t loffset = bp->b_loffset; 1688 struct vnode *vp = bp->b_vp; 1689 int nbytes; 1690 struct buf *bpa; 1691 int nwritten; 1692 int size; 1693 1694 /* 1695 * right now we support clustered writing only to regular files. If 1696 * we find a clusterable block we could be in the middle of a cluster 1697 * rather then at the beginning. 1698 * 1699 * NOTE: b_bio1 contains the logical loffset and is aliased 1700 * to b_loffset. b_bio2 contains the translated block number. 1701 */ 1702 if ((vp->v_type == VREG) && 1703 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1704 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1705 1706 size = vp->v_mount->mnt_stat.f_iosize; 1707 1708 for (i = size; i < MAXPHYS; i += size) { 1709 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1710 BUF_REFCNT(bpa) == 0 && 1711 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1712 (B_DELWRI | B_CLUSTEROK)) && 1713 (bpa->b_bufsize == size)) { 1714 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1715 (bpa->b_bio2.bio_offset != 1716 bp->b_bio2.bio_offset + i)) 1717 break; 1718 } else { 1719 break; 1720 } 1721 } 1722 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1723 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1724 BUF_REFCNT(bpa) == 0 && 1725 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1726 (B_DELWRI | B_CLUSTEROK)) && 1727 (bpa->b_bufsize == size)) { 1728 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1729 (bpa->b_bio2.bio_offset != 1730 bp->b_bio2.bio_offset - j)) 1731 break; 1732 } else { 1733 break; 1734 } 1735 } 1736 j -= size; 1737 nbytes = (i + j); 1738 1739 /* 1740 * this is a possible cluster write 1741 */ 1742 if (nbytes != size) { 1743 BUF_UNLOCK(bp); 1744 nwritten = cluster_wbuild(vp, size, 1745 loffset - j, nbytes); 1746 return nwritten; 1747 } 1748 } 1749 1750 /* 1751 * default (old) behavior, writing out only one block 1752 * 1753 * XXX returns b_bufsize instead of b_bcount for nwritten? 1754 */ 1755 nwritten = bp->b_bufsize; 1756 bremfree(bp); 1757 bawrite(bp); 1758 1759 return nwritten; 1760 } 1761 1762 /* 1763 * getnewbuf: 1764 * 1765 * Find and initialize a new buffer header, freeing up existing buffers 1766 * in the bufqueues as necessary. The new buffer is returned locked. 1767 * 1768 * Important: B_INVAL is not set. If the caller wishes to throw the 1769 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1770 * 1771 * We block if: 1772 * We have insufficient buffer headers 1773 * We have insufficient buffer space 1774 * buffer_map is too fragmented ( space reservation fails ) 1775 * If we have to flush dirty buffers ( but we try to avoid this ) 1776 * 1777 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1778 * Instead we ask the buf daemon to do it for us. We attempt to 1779 * avoid piecemeal wakeups of the pageout daemon. 1780 * 1781 * MPALMOSTSAFE 1782 */ 1783 static struct buf * 1784 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1785 { 1786 struct buf *bp; 1787 struct buf *nbp; 1788 int defrag = 0; 1789 int nqindex; 1790 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1791 static int flushingbufs; 1792 1793 /* 1794 * We can't afford to block since we might be holding a vnode lock, 1795 * which may prevent system daemons from running. We deal with 1796 * low-memory situations by proactively returning memory and running 1797 * async I/O rather then sync I/O. 1798 */ 1799 1800 ++getnewbufcalls; 1801 --getnewbufrestarts; 1802 restart: 1803 ++getnewbufrestarts; 1804 1805 /* 1806 * Setup for scan. If we do not have enough free buffers, 1807 * we setup a degenerate case that immediately fails. Note 1808 * that if we are specially marked process, we are allowed to 1809 * dip into our reserves. 1810 * 1811 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1812 * 1813 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1814 * However, there are a number of cases (defragging, reusing, ...) 1815 * where we cannot backup. 1816 */ 1817 nqindex = BQUEUE_EMPTYKVA; 1818 spin_lock_wr(&bufspin); 1819 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1820 1821 if (nbp == NULL) { 1822 /* 1823 * If no EMPTYKVA buffers and we are either 1824 * defragging or reusing, locate a CLEAN buffer 1825 * to free or reuse. If bufspace useage is low 1826 * skip this step so we can allocate a new buffer. 1827 */ 1828 if (defrag || bufspace >= lobufspace) { 1829 nqindex = BQUEUE_CLEAN; 1830 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1831 } 1832 1833 /* 1834 * If we could not find or were not allowed to reuse a 1835 * CLEAN buffer, check to see if it is ok to use an EMPTY 1836 * buffer. We can only use an EMPTY buffer if allocating 1837 * its KVA would not otherwise run us out of buffer space. 1838 */ 1839 if (nbp == NULL && defrag == 0 && 1840 bufspace + maxsize < hibufspace) { 1841 nqindex = BQUEUE_EMPTY; 1842 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1843 } 1844 } 1845 1846 /* 1847 * Run scan, possibly freeing data and/or kva mappings on the fly 1848 * depending. 1849 * 1850 * WARNING! bufspin is held! 1851 */ 1852 while ((bp = nbp) != NULL) { 1853 int qindex = nqindex; 1854 1855 nbp = TAILQ_NEXT(bp, b_freelist); 1856 1857 /* 1858 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1859 * cycles through the queue twice before being selected. 1860 */ 1861 if (qindex == BQUEUE_CLEAN && 1862 (bp->b_flags & B_AGE) == 0 && nbp) { 1863 bp->b_flags |= B_AGE; 1864 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 1865 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 1866 continue; 1867 } 1868 1869 /* 1870 * Calculate next bp ( we can only use it if we do not block 1871 * or do other fancy things ). 1872 */ 1873 if (nbp == NULL) { 1874 switch(qindex) { 1875 case BQUEUE_EMPTY: 1876 nqindex = BQUEUE_EMPTYKVA; 1877 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 1878 break; 1879 /* fall through */ 1880 case BQUEUE_EMPTYKVA: 1881 nqindex = BQUEUE_CLEAN; 1882 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 1883 break; 1884 /* fall through */ 1885 case BQUEUE_CLEAN: 1886 /* 1887 * nbp is NULL. 1888 */ 1889 break; 1890 } 1891 } 1892 1893 /* 1894 * Sanity Checks 1895 */ 1896 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 1897 1898 /* 1899 * Note: we no longer distinguish between VMIO and non-VMIO 1900 * buffers. 1901 */ 1902 1903 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1904 1905 /* 1906 * If we are defragging then we need a buffer with 1907 * b_kvasize != 0. XXX this situation should no longer 1908 * occur, if defrag is non-zero the buffer's b_kvasize 1909 * should also be non-zero at this point. XXX 1910 */ 1911 if (defrag && bp->b_kvasize == 0) { 1912 kprintf("Warning: defrag empty buffer %p\n", bp); 1913 continue; 1914 } 1915 1916 /* 1917 * Start freeing the bp. This is somewhat involved. nbp 1918 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 1919 * on the clean list must be disassociated from their 1920 * current vnode. Buffers on the empty[kva] lists have 1921 * already been disassociated. 1922 */ 1923 1924 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1925 spin_unlock_wr(&bufspin); 1926 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp); 1927 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 1928 goto restart; 1929 } 1930 if (bp->b_qindex != qindex) { 1931 spin_unlock_wr(&bufspin); 1932 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex); 1933 BUF_UNLOCK(bp); 1934 goto restart; 1935 } 1936 bremfree_locked(bp); 1937 spin_unlock_wr(&bufspin); 1938 1939 /* 1940 * Dependancies must be handled before we disassociate the 1941 * vnode. 1942 * 1943 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 1944 * be immediately disassociated. HAMMER then becomes 1945 * responsible for releasing the buffer. 1946 * 1947 * NOTE: bufspin is UNLOCKED now. 1948 */ 1949 if (LIST_FIRST(&bp->b_dep) != NULL) { 1950 get_mplock(); 1951 buf_deallocate(bp); 1952 rel_mplock(); 1953 if (bp->b_flags & B_LOCKED) { 1954 bqrelse(bp); 1955 goto restart; 1956 } 1957 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 1958 } 1959 1960 if (qindex == BQUEUE_CLEAN) { 1961 get_mplock(); 1962 if (bp->b_flags & B_VMIO) { 1963 get_mplock(); 1964 vfs_vmio_release(bp); 1965 rel_mplock(); 1966 } 1967 if (bp->b_vp) 1968 brelvp(bp); 1969 rel_mplock(); 1970 } 1971 1972 /* 1973 * NOTE: nbp is now entirely invalid. We can only restart 1974 * the scan from this point on. 1975 * 1976 * Get the rest of the buffer freed up. b_kva* is still 1977 * valid after this operation. 1978 */ 1979 1980 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 1981 KKASSERT((bp->b_flags & B_HASHED) == 0); 1982 1983 /* 1984 * critical section protection is not required when 1985 * scrapping a buffer's contents because it is already 1986 * wired. 1987 */ 1988 if (bp->b_bufsize) { 1989 get_mplock(); 1990 allocbuf(bp, 0); 1991 rel_mplock(); 1992 } 1993 1994 bp->b_flags = B_BNOCLIP; 1995 bp->b_cmd = BUF_CMD_DONE; 1996 bp->b_vp = NULL; 1997 bp->b_error = 0; 1998 bp->b_resid = 0; 1999 bp->b_bcount = 0; 2000 bp->b_xio.xio_npages = 0; 2001 bp->b_dirtyoff = bp->b_dirtyend = 0; 2002 reinitbufbio(bp); 2003 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2004 buf_dep_init(bp); 2005 if (blkflags & GETBLK_BHEAVY) 2006 bp->b_flags |= B_HEAVY; 2007 2008 /* 2009 * If we are defragging then free the buffer. 2010 */ 2011 if (defrag) { 2012 bp->b_flags |= B_INVAL; 2013 bfreekva(bp); 2014 brelse(bp); 2015 defrag = 0; 2016 goto restart; 2017 } 2018 2019 /* 2020 * If we are overcomitted then recover the buffer and its 2021 * KVM space. This occurs in rare situations when multiple 2022 * processes are blocked in getnewbuf() or allocbuf(). 2023 */ 2024 if (bufspace >= hibufspace) 2025 flushingbufs = 1; 2026 if (flushingbufs && bp->b_kvasize != 0) { 2027 bp->b_flags |= B_INVAL; 2028 bfreekva(bp); 2029 brelse(bp); 2030 goto restart; 2031 } 2032 if (bufspace < lobufspace) 2033 flushingbufs = 0; 2034 break; 2035 /* NOT REACHED, bufspin not held */ 2036 } 2037 2038 /* 2039 * If we exhausted our list, sleep as appropriate. We may have to 2040 * wakeup various daemons and write out some dirty buffers. 2041 * 2042 * Generally we are sleeping due to insufficient buffer space. 2043 * 2044 * NOTE: bufspin is held if bp is NULL, else it is not held. 2045 */ 2046 if (bp == NULL) { 2047 int flags; 2048 char *waitmsg; 2049 2050 spin_unlock_wr(&bufspin); 2051 if (defrag) { 2052 flags = VFS_BIO_NEED_BUFSPACE; 2053 waitmsg = "nbufkv"; 2054 } else if (bufspace >= hibufspace) { 2055 waitmsg = "nbufbs"; 2056 flags = VFS_BIO_NEED_BUFSPACE; 2057 } else { 2058 waitmsg = "newbuf"; 2059 flags = VFS_BIO_NEED_ANY; 2060 } 2061 2062 needsbuffer |= flags; 2063 bd_speedup(); /* heeeelp */ 2064 while (needsbuffer & flags) { 2065 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo)) 2066 return (NULL); 2067 } 2068 } else { 2069 /* 2070 * We finally have a valid bp. We aren't quite out of the 2071 * woods, we still have to reserve kva space. In order 2072 * to keep fragmentation sane we only allocate kva in 2073 * BKVASIZE chunks. 2074 * 2075 * (bufspin is not held) 2076 */ 2077 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2078 2079 if (maxsize != bp->b_kvasize) { 2080 vm_offset_t addr = 0; 2081 int count; 2082 2083 bfreekva(bp); 2084 2085 get_mplock(); 2086 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2087 vm_map_lock(&buffer_map); 2088 2089 if (vm_map_findspace(&buffer_map, 2090 vm_map_min(&buffer_map), maxsize, 2091 maxsize, 0, &addr)) { 2092 /* 2093 * Uh oh. Buffer map is too fragmented. We 2094 * must defragment the map. 2095 */ 2096 vm_map_unlock(&buffer_map); 2097 vm_map_entry_release(count); 2098 ++bufdefragcnt; 2099 defrag = 1; 2100 bp->b_flags |= B_INVAL; 2101 rel_mplock(); 2102 brelse(bp); 2103 goto restart; 2104 } 2105 if (addr) { 2106 vm_map_insert(&buffer_map, &count, 2107 NULL, 0, 2108 addr, addr + maxsize, 2109 VM_MAPTYPE_NORMAL, 2110 VM_PROT_ALL, VM_PROT_ALL, 2111 MAP_NOFAULT); 2112 2113 bp->b_kvabase = (caddr_t) addr; 2114 bp->b_kvasize = maxsize; 2115 bufspace += bp->b_kvasize; 2116 ++bufreusecnt; 2117 } 2118 vm_map_unlock(&buffer_map); 2119 vm_map_entry_release(count); 2120 rel_mplock(); 2121 } 2122 bp->b_data = bp->b_kvabase; 2123 } 2124 return(bp); 2125 } 2126 2127 /* 2128 * This routine is called in an emergency to recover VM pages from the 2129 * buffer cache by cashing in clean buffers. The idea is to recover 2130 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2131 */ 2132 static int 2133 recoverbufpages(void) 2134 { 2135 struct buf *bp; 2136 int bytes = 0; 2137 2138 ++recoverbufcalls; 2139 2140 spin_lock_wr(&bufspin); 2141 while (bytes < MAXBSIZE) { 2142 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2143 if (bp == NULL) 2144 break; 2145 2146 /* 2147 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2148 * cycles through the queue twice before being selected. 2149 */ 2150 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2151 bp->b_flags |= B_AGE; 2152 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2153 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2154 bp, b_freelist); 2155 continue; 2156 } 2157 2158 /* 2159 * Sanity Checks 2160 */ 2161 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2162 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2163 2164 /* 2165 * Start freeing the bp. This is somewhat involved. 2166 * 2167 * Buffers on the clean list must be disassociated from 2168 * their current vnode 2169 */ 2170 2171 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2172 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp); 2173 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2174 continue; 2175 } 2176 if (bp->b_qindex != BQUEUE_CLEAN) { 2177 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex); 2178 BUF_UNLOCK(bp); 2179 continue; 2180 } 2181 bremfree_locked(bp); 2182 spin_unlock_wr(&bufspin); 2183 2184 /* 2185 * Dependancies must be handled before we disassociate the 2186 * vnode. 2187 * 2188 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2189 * be immediately disassociated. HAMMER then becomes 2190 * responsible for releasing the buffer. 2191 */ 2192 if (LIST_FIRST(&bp->b_dep) != NULL) { 2193 buf_deallocate(bp); 2194 if (bp->b_flags & B_LOCKED) { 2195 bqrelse(bp); 2196 spin_lock_wr(&bufspin); 2197 continue; 2198 } 2199 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2200 } 2201 2202 bytes += bp->b_bufsize; 2203 2204 get_mplock(); 2205 if (bp->b_flags & B_VMIO) { 2206 bp->b_flags |= B_DIRECT; /* try to free pages */ 2207 vfs_vmio_release(bp); 2208 } 2209 if (bp->b_vp) 2210 brelvp(bp); 2211 2212 KKASSERT(bp->b_vp == NULL); 2213 KKASSERT((bp->b_flags & B_HASHED) == 0); 2214 2215 /* 2216 * critical section protection is not required when 2217 * scrapping a buffer's contents because it is already 2218 * wired. 2219 */ 2220 if (bp->b_bufsize) 2221 allocbuf(bp, 0); 2222 rel_mplock(); 2223 2224 bp->b_flags = B_BNOCLIP; 2225 bp->b_cmd = BUF_CMD_DONE; 2226 bp->b_vp = NULL; 2227 bp->b_error = 0; 2228 bp->b_resid = 0; 2229 bp->b_bcount = 0; 2230 bp->b_xio.xio_npages = 0; 2231 bp->b_dirtyoff = bp->b_dirtyend = 0; 2232 reinitbufbio(bp); 2233 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2234 buf_dep_init(bp); 2235 bp->b_flags |= B_INVAL; 2236 /* bfreekva(bp); */ 2237 brelse(bp); 2238 spin_lock_wr(&bufspin); 2239 } 2240 spin_unlock_wr(&bufspin); 2241 return(bytes); 2242 } 2243 2244 /* 2245 * buf_daemon: 2246 * 2247 * Buffer flushing daemon. Buffers are normally flushed by the 2248 * update daemon but if it cannot keep up this process starts to 2249 * take the load in an attempt to prevent getnewbuf() from blocking. 2250 * 2251 * Once a flush is initiated it does not stop until the number 2252 * of buffers falls below lodirtybuffers, but we will wake up anyone 2253 * waiting at the mid-point. 2254 */ 2255 2256 static struct kproc_desc buf_kp = { 2257 "bufdaemon", 2258 buf_daemon, 2259 &bufdaemon_td 2260 }; 2261 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2262 kproc_start, &buf_kp) 2263 2264 static struct kproc_desc bufhw_kp = { 2265 "bufdaemon_hw", 2266 buf_daemon_hw, 2267 &bufdaemonhw_td 2268 }; 2269 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2270 kproc_start, &bufhw_kp) 2271 2272 static void 2273 buf_daemon(void) 2274 { 2275 int limit; 2276 2277 /* 2278 * This process needs to be suspended prior to shutdown sync. 2279 */ 2280 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2281 bufdaemon_td, SHUTDOWN_PRI_LAST); 2282 curthread->td_flags |= TDF_SYSTHREAD; 2283 2284 /* 2285 * This process is allowed to take the buffer cache to the limit 2286 */ 2287 crit_enter(); 2288 2289 for (;;) { 2290 kproc_suspend_loop(); 2291 2292 /* 2293 * Do the flush as long as the number of dirty buffers 2294 * (including those running) exceeds lodirtybufspace. 2295 * 2296 * When flushing limit running I/O to hirunningspace 2297 * Do the flush. Limit the amount of in-transit I/O we 2298 * allow to build up, otherwise we would completely saturate 2299 * the I/O system. Wakeup any waiting processes before we 2300 * normally would so they can run in parallel with our drain. 2301 * 2302 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2303 * but because we split the operation into two threads we 2304 * have to cut it in half for each thread. 2305 */ 2306 waitrunningbufspace(); 2307 limit = lodirtybufspace / 2; 2308 while (runningbufspace + dirtybufspace > limit || 2309 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2310 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2311 break; 2312 if (runningbufspace < hirunningspace) 2313 continue; 2314 waitrunningbufspace(); 2315 } 2316 2317 /* 2318 * We reached our low water mark, reset the 2319 * request and sleep until we are needed again. 2320 * The sleep is just so the suspend code works. 2321 */ 2322 spin_lock_wr(&needsbuffer_spin); 2323 if (bd_request == 0) { 2324 ssleep(&bd_request, &needsbuffer_spin, 0, 2325 "psleep", hz); 2326 } 2327 bd_request = 0; 2328 spin_unlock_wr(&needsbuffer_spin); 2329 } 2330 } 2331 2332 static void 2333 buf_daemon_hw(void) 2334 { 2335 int limit; 2336 2337 /* 2338 * This process needs to be suspended prior to shutdown sync. 2339 */ 2340 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2341 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2342 curthread->td_flags |= TDF_SYSTHREAD; 2343 2344 /* 2345 * This process is allowed to take the buffer cache to the limit 2346 */ 2347 crit_enter(); 2348 2349 for (;;) { 2350 kproc_suspend_loop(); 2351 2352 /* 2353 * Do the flush. Limit the amount of in-transit I/O we 2354 * allow to build up, otherwise we would completely saturate 2355 * the I/O system. Wakeup any waiting processes before we 2356 * normally would so they can run in parallel with our drain. 2357 * 2358 * Once we decide to flush push the queued I/O up to 2359 * hirunningspace in order to trigger bursting by the bioq 2360 * subsystem. 2361 * 2362 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2363 * but because we split the operation into two threads we 2364 * have to cut it in half for each thread. 2365 */ 2366 waitrunningbufspace(); 2367 limit = lodirtybufspace / 2; 2368 while (runningbufspace + dirtybufspacehw > limit || 2369 dirtybufcounthw >= nbuf / 2) { 2370 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2371 break; 2372 if (runningbufspace < hirunningspace) 2373 continue; 2374 waitrunningbufspace(); 2375 } 2376 2377 /* 2378 * We reached our low water mark, reset the 2379 * request and sleep until we are needed again. 2380 * The sleep is just so the suspend code works. 2381 */ 2382 spin_lock_wr(&needsbuffer_spin); 2383 if (bd_request_hw == 0) { 2384 ssleep(&bd_request_hw, &needsbuffer_spin, 0, 2385 "psleep", hz); 2386 } 2387 bd_request_hw = 0; 2388 spin_unlock_wr(&needsbuffer_spin); 2389 } 2390 } 2391 2392 /* 2393 * flushbufqueues: 2394 * 2395 * Try to flush a buffer in the dirty queue. We must be careful to 2396 * free up B_INVAL buffers instead of write them, which NFS is 2397 * particularly sensitive to. 2398 * 2399 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2400 * that we really want to try to get the buffer out and reuse it 2401 * due to the write load on the machine. 2402 */ 2403 static int 2404 flushbufqueues(bufq_type_t q) 2405 { 2406 struct buf *bp; 2407 int r = 0; 2408 int spun; 2409 2410 spin_lock_wr(&bufspin); 2411 spun = 1; 2412 2413 bp = TAILQ_FIRST(&bufqueues[q]); 2414 while (bp) { 2415 KASSERT((bp->b_flags & B_DELWRI), 2416 ("unexpected clean buffer %p", bp)); 2417 2418 if (bp->b_flags & B_DELWRI) { 2419 if (bp->b_flags & B_INVAL) { 2420 spin_unlock_wr(&bufspin); 2421 spun = 0; 2422 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 2423 panic("flushbufqueues: locked buf"); 2424 bremfree(bp); 2425 brelse(bp); 2426 ++r; 2427 break; 2428 } 2429 if (LIST_FIRST(&bp->b_dep) != NULL && 2430 (bp->b_flags & B_DEFERRED) == 0 && 2431 buf_countdeps(bp, 0)) { 2432 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2433 TAILQ_INSERT_TAIL(&bufqueues[q], bp, 2434 b_freelist); 2435 bp->b_flags |= B_DEFERRED; 2436 bp = TAILQ_FIRST(&bufqueues[q]); 2437 continue; 2438 } 2439 2440 /* 2441 * Only write it out if we can successfully lock 2442 * it. If the buffer has a dependancy, 2443 * buf_checkwrite must also return 0 for us to 2444 * be able to initate the write. 2445 * 2446 * If the buffer is flagged B_ERROR it may be 2447 * requeued over and over again, we try to 2448 * avoid a live lock. 2449 */ 2450 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 2451 spin_unlock_wr(&bufspin); 2452 spun = 0; 2453 if (LIST_FIRST(&bp->b_dep) != NULL && 2454 buf_checkwrite(bp)) { 2455 bremfree(bp); 2456 brelse(bp); 2457 } else if (bp->b_flags & B_ERROR) { 2458 tsleep(bp, 0, "bioer", 1); 2459 bp->b_flags &= ~B_AGE; 2460 vfs_bio_awrite(bp); 2461 } else { 2462 bp->b_flags |= B_AGE; 2463 vfs_bio_awrite(bp); 2464 } 2465 ++r; 2466 break; 2467 } 2468 } 2469 bp = TAILQ_NEXT(bp, b_freelist); 2470 } 2471 if (spun) 2472 spin_unlock_wr(&bufspin); 2473 return (r); 2474 } 2475 2476 /* 2477 * inmem: 2478 * 2479 * Returns true if no I/O is needed to access the associated VM object. 2480 * This is like findblk except it also hunts around in the VM system for 2481 * the data. 2482 * 2483 * Note that we ignore vm_page_free() races from interrupts against our 2484 * lookup, since if the caller is not protected our return value will not 2485 * be any more valid then otherwise once we exit the critical section. 2486 */ 2487 int 2488 inmem(struct vnode *vp, off_t loffset) 2489 { 2490 vm_object_t obj; 2491 vm_offset_t toff, tinc, size; 2492 vm_page_t m; 2493 2494 if (findblk(vp, loffset, FINDBLK_TEST)) 2495 return 1; 2496 if (vp->v_mount == NULL) 2497 return 0; 2498 if ((obj = vp->v_object) == NULL) 2499 return 0; 2500 2501 size = PAGE_SIZE; 2502 if (size > vp->v_mount->mnt_stat.f_iosize) 2503 size = vp->v_mount->mnt_stat.f_iosize; 2504 2505 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2506 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2507 if (m == NULL) 2508 return 0; 2509 tinc = size; 2510 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2511 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2512 if (vm_page_is_valid(m, 2513 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2514 return 0; 2515 } 2516 return 1; 2517 } 2518 2519 /* 2520 * vfs_setdirty: 2521 * 2522 * Sets the dirty range for a buffer based on the status of the dirty 2523 * bits in the pages comprising the buffer. 2524 * 2525 * The range is limited to the size of the buffer. 2526 * 2527 * This routine is primarily used by NFS, but is generalized for the 2528 * B_VMIO case. 2529 */ 2530 static void 2531 vfs_setdirty(struct buf *bp) 2532 { 2533 int i; 2534 vm_object_t object; 2535 2536 /* 2537 * Degenerate case - empty buffer 2538 */ 2539 2540 if (bp->b_bufsize == 0) 2541 return; 2542 2543 /* 2544 * We qualify the scan for modified pages on whether the 2545 * object has been flushed yet. The OBJ_WRITEABLE flag 2546 * is not cleared simply by protecting pages off. 2547 */ 2548 2549 if ((bp->b_flags & B_VMIO) == 0) 2550 return; 2551 2552 object = bp->b_xio.xio_pages[0]->object; 2553 2554 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2555 kprintf("Warning: object %p writeable but not mightbedirty\n", object); 2556 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2557 kprintf("Warning: object %p mightbedirty but not writeable\n", object); 2558 2559 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2560 vm_offset_t boffset; 2561 vm_offset_t eoffset; 2562 2563 /* 2564 * test the pages to see if they have been modified directly 2565 * by users through the VM system. 2566 */ 2567 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2568 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 2569 vm_page_test_dirty(bp->b_xio.xio_pages[i]); 2570 } 2571 2572 /* 2573 * Calculate the encompassing dirty range, boffset and eoffset, 2574 * (eoffset - boffset) bytes. 2575 */ 2576 2577 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2578 if (bp->b_xio.xio_pages[i]->dirty) 2579 break; 2580 } 2581 boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK); 2582 2583 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) { 2584 if (bp->b_xio.xio_pages[i]->dirty) { 2585 break; 2586 } 2587 } 2588 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK); 2589 2590 /* 2591 * Fit it to the buffer. 2592 */ 2593 2594 if (eoffset > bp->b_bcount) 2595 eoffset = bp->b_bcount; 2596 2597 /* 2598 * If we have a good dirty range, merge with the existing 2599 * dirty range. 2600 */ 2601 2602 if (boffset < eoffset) { 2603 if (bp->b_dirtyoff > boffset) 2604 bp->b_dirtyoff = boffset; 2605 if (bp->b_dirtyend < eoffset) 2606 bp->b_dirtyend = eoffset; 2607 } 2608 } 2609 } 2610 2611 /* 2612 * findblk: 2613 * 2614 * Locate and return the specified buffer. Unless flagged otherwise, 2615 * a locked buffer will be returned if it exists or NULL if it does not. 2616 * 2617 * findblk()'d buffers are still on the bufqueues and if you intend 2618 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2619 * and possibly do other stuff to it. 2620 * 2621 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2622 * for locking the buffer and ensuring that it remains 2623 * the desired buffer after locking. 2624 * 2625 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2626 * to acquire the lock we return NULL, even if the 2627 * buffer exists. 2628 * 2629 * (0) - Lock the buffer blocking. 2630 * 2631 * MPSAFE 2632 */ 2633 struct buf * 2634 findblk(struct vnode *vp, off_t loffset, int flags) 2635 { 2636 lwkt_tokref vlock; 2637 struct buf *bp; 2638 int lkflags; 2639 2640 lkflags = LK_EXCLUSIVE; 2641 if (flags & FINDBLK_NBLOCK) 2642 lkflags |= LK_NOWAIT; 2643 2644 for (;;) { 2645 lwkt_gettoken(&vlock, &vp->v_token); 2646 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2647 lwkt_reltoken(&vlock); 2648 if (bp == NULL || (flags & FINDBLK_TEST)) 2649 break; 2650 if (BUF_LOCK(bp, lkflags)) { 2651 bp = NULL; 2652 break; 2653 } 2654 if (bp->b_vp == vp && bp->b_loffset == loffset) 2655 break; 2656 BUF_UNLOCK(bp); 2657 } 2658 return(bp); 2659 } 2660 2661 /* 2662 * getcacheblk: 2663 * 2664 * Similar to getblk() except only returns the buffer if it is 2665 * B_CACHE and requires no other manipulation. Otherwise NULL 2666 * is returned. 2667 * 2668 * If B_RAM is set the buffer might be just fine, but we return 2669 * NULL anyway because we want the code to fall through to the 2670 * cluster read. Otherwise read-ahead breaks. 2671 */ 2672 struct buf * 2673 getcacheblk(struct vnode *vp, off_t loffset) 2674 { 2675 struct buf *bp; 2676 2677 bp = findblk(vp, loffset, 0); 2678 if (bp) { 2679 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) { 2680 bp->b_flags &= ~B_AGE; 2681 bremfree(bp); 2682 } else { 2683 BUF_UNLOCK(bp); 2684 bp = NULL; 2685 } 2686 } 2687 return (bp); 2688 } 2689 2690 /* 2691 * getblk: 2692 * 2693 * Get a block given a specified block and offset into a file/device. 2694 * B_INVAL may or may not be set on return. The caller should clear 2695 * B_INVAL prior to initiating a READ. 2696 * 2697 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2698 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2699 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2700 * without doing any of those things the system will likely believe 2701 * the buffer to be valid (especially if it is not B_VMIO), and the 2702 * next getblk() will return the buffer with B_CACHE set. 2703 * 2704 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2705 * an existing buffer. 2706 * 2707 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2708 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2709 * and then cleared based on the backing VM. If the previous buffer is 2710 * non-0-sized but invalid, B_CACHE will be cleared. 2711 * 2712 * If getblk() must create a new buffer, the new buffer is returned with 2713 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2714 * case it is returned with B_INVAL clear and B_CACHE set based on the 2715 * backing VM. 2716 * 2717 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2718 * B_CACHE bit is clear. 2719 * 2720 * What this means, basically, is that the caller should use B_CACHE to 2721 * determine whether the buffer is fully valid or not and should clear 2722 * B_INVAL prior to issuing a read. If the caller intends to validate 2723 * the buffer by loading its data area with something, the caller needs 2724 * to clear B_INVAL. If the caller does this without issuing an I/O, 2725 * the caller should set B_CACHE ( as an optimization ), else the caller 2726 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2727 * a write attempt or if it was a successfull read. If the caller 2728 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2729 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2730 * 2731 * getblk flags: 2732 * 2733 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2734 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2735 * 2736 * MPALMOSTSAFE 2737 */ 2738 struct buf * 2739 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2740 { 2741 struct buf *bp; 2742 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2743 int error; 2744 int lkflags; 2745 2746 if (size > MAXBSIZE) 2747 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2748 if (vp->v_object == NULL) 2749 panic("getblk: vnode %p has no object!", vp); 2750 2751 loop: 2752 if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) { 2753 /* 2754 * The buffer was found in the cache, but we need to lock it. 2755 * Even with LK_NOWAIT the lockmgr may break our critical 2756 * section, so double-check the validity of the buffer 2757 * once the lock has been obtained. 2758 */ 2759 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2760 if (blkflags & GETBLK_NOWAIT) 2761 return(NULL); 2762 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2763 if (blkflags & GETBLK_PCATCH) 2764 lkflags |= LK_PCATCH; 2765 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2766 if (error) { 2767 if (error == ENOLCK) 2768 goto loop; 2769 return (NULL); 2770 } 2771 /* buffer may have changed on us */ 2772 } 2773 2774 /* 2775 * Once the buffer has been locked, make sure we didn't race 2776 * a buffer recyclement. Buffers that are no longer hashed 2777 * will have b_vp == NULL, so this takes care of that check 2778 * as well. 2779 */ 2780 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2781 kprintf("Warning buffer %p (vp %p loffset %lld) " 2782 "was recycled\n", 2783 bp, vp, (long long)loffset); 2784 BUF_UNLOCK(bp); 2785 goto loop; 2786 } 2787 2788 /* 2789 * If SZMATCH any pre-existing buffer must be of the requested 2790 * size or NULL is returned. The caller absolutely does not 2791 * want getblk() to bwrite() the buffer on a size mismatch. 2792 */ 2793 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2794 BUF_UNLOCK(bp); 2795 return(NULL); 2796 } 2797 2798 /* 2799 * All vnode-based buffers must be backed by a VM object. 2800 */ 2801 KKASSERT(bp->b_flags & B_VMIO); 2802 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2803 bp->b_flags &= ~B_AGE; 2804 2805 /* 2806 * Make sure that B_INVAL buffers do not have a cached 2807 * block number translation. 2808 */ 2809 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2810 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 2811 " did not have cleared bio_offset cache\n", 2812 bp, vp, (long long)loffset); 2813 clearbiocache(&bp->b_bio2); 2814 } 2815 2816 /* 2817 * The buffer is locked. B_CACHE is cleared if the buffer is 2818 * invalid. 2819 */ 2820 if (bp->b_flags & B_INVAL) 2821 bp->b_flags &= ~B_CACHE; 2822 bremfree(bp); 2823 2824 /* 2825 * Any size inconsistancy with a dirty buffer or a buffer 2826 * with a softupdates dependancy must be resolved. Resizing 2827 * the buffer in such circumstances can lead to problems. 2828 */ 2829 if (size != bp->b_bcount) { 2830 get_mplock(); 2831 if (bp->b_flags & B_DELWRI) { 2832 bp->b_flags |= B_NOCACHE; 2833 bwrite(bp); 2834 } else if (LIST_FIRST(&bp->b_dep)) { 2835 bp->b_flags |= B_NOCACHE; 2836 bwrite(bp); 2837 } else { 2838 bp->b_flags |= B_RELBUF; 2839 brelse(bp); 2840 } 2841 rel_mplock(); 2842 goto loop; 2843 } 2844 KKASSERT(size <= bp->b_kvasize); 2845 KASSERT(bp->b_loffset != NOOFFSET, 2846 ("getblk: no buffer offset")); 2847 2848 /* 2849 * A buffer with B_DELWRI set and B_CACHE clear must 2850 * be committed before we can return the buffer in 2851 * order to prevent the caller from issuing a read 2852 * ( due to B_CACHE not being set ) and overwriting 2853 * it. 2854 * 2855 * Most callers, including NFS and FFS, need this to 2856 * operate properly either because they assume they 2857 * can issue a read if B_CACHE is not set, or because 2858 * ( for example ) an uncached B_DELWRI might loop due 2859 * to softupdates re-dirtying the buffer. In the latter 2860 * case, B_CACHE is set after the first write completes, 2861 * preventing further loops. 2862 * 2863 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2864 * above while extending the buffer, we cannot allow the 2865 * buffer to remain with B_CACHE set after the write 2866 * completes or it will represent a corrupt state. To 2867 * deal with this we set B_NOCACHE to scrap the buffer 2868 * after the write. 2869 * 2870 * We might be able to do something fancy, like setting 2871 * B_CACHE in bwrite() except if B_DELWRI is already set, 2872 * so the below call doesn't set B_CACHE, but that gets real 2873 * confusing. This is much easier. 2874 */ 2875 2876 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2877 get_mplock(); 2878 bp->b_flags |= B_NOCACHE; 2879 bwrite(bp); 2880 rel_mplock(); 2881 goto loop; 2882 } 2883 } else { 2884 /* 2885 * Buffer is not in-core, create new buffer. The buffer 2886 * returned by getnewbuf() is locked. Note that the returned 2887 * buffer is also considered valid (not marked B_INVAL). 2888 * 2889 * Calculating the offset for the I/O requires figuring out 2890 * the block size. We use DEV_BSIZE for VBLK or VCHR and 2891 * the mount's f_iosize otherwise. If the vnode does not 2892 * have an associated mount we assume that the passed size is 2893 * the block size. 2894 * 2895 * Note that vn_isdisk() cannot be used here since it may 2896 * return a failure for numerous reasons. Note that the 2897 * buffer size may be larger then the block size (the caller 2898 * will use block numbers with the proper multiple). Beware 2899 * of using any v_* fields which are part of unions. In 2900 * particular, in DragonFly the mount point overloading 2901 * mechanism uses the namecache only and the underlying 2902 * directory vnode is not a special case. 2903 */ 2904 int bsize, maxsize; 2905 2906 if (vp->v_type == VBLK || vp->v_type == VCHR) 2907 bsize = DEV_BSIZE; 2908 else if (vp->v_mount) 2909 bsize = vp->v_mount->mnt_stat.f_iosize; 2910 else 2911 bsize = size; 2912 2913 maxsize = size + (loffset & PAGE_MASK); 2914 maxsize = imax(maxsize, bsize); 2915 2916 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 2917 if (bp == NULL) { 2918 if (slpflags || slptimeo) 2919 return NULL; 2920 goto loop; 2921 } 2922 2923 /* 2924 * Atomically insert the buffer into the hash, so that it can 2925 * be found by findblk(). 2926 * 2927 * If bgetvp() returns non-zero a collision occured, and the 2928 * bp will not be associated with the vnode. 2929 * 2930 * Make sure the translation layer has been cleared. 2931 */ 2932 bp->b_loffset = loffset; 2933 bp->b_bio2.bio_offset = NOOFFSET; 2934 /* bp->b_bio2.bio_next = NULL; */ 2935 2936 if (bgetvp(vp, bp)) { 2937 bp->b_flags |= B_INVAL; 2938 brelse(bp); 2939 goto loop; 2940 } 2941 2942 /* 2943 * All vnode-based buffers must be backed by a VM object. 2944 */ 2945 KKASSERT(vp->v_object != NULL); 2946 bp->b_flags |= B_VMIO; 2947 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2948 2949 get_mplock(); 2950 allocbuf(bp, size); 2951 rel_mplock(); 2952 } 2953 return (bp); 2954 } 2955 2956 /* 2957 * regetblk(bp) 2958 * 2959 * Reacquire a buffer that was previously released to the locked queue, 2960 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 2961 * set B_LOCKED (which handles the acquisition race). 2962 * 2963 * To this end, either B_LOCKED must be set or the dependancy list must be 2964 * non-empty. 2965 * 2966 * MPSAFE 2967 */ 2968 void 2969 regetblk(struct buf *bp) 2970 { 2971 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 2972 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 2973 bremfree(bp); 2974 } 2975 2976 /* 2977 * geteblk: 2978 * 2979 * Get an empty, disassociated buffer of given size. The buffer is 2980 * initially set to B_INVAL. 2981 * 2982 * critical section protection is not required for the allocbuf() 2983 * call because races are impossible here. 2984 * 2985 * MPALMOSTSAFE 2986 */ 2987 struct buf * 2988 geteblk(int size) 2989 { 2990 struct buf *bp; 2991 int maxsize; 2992 2993 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2994 2995 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2996 ; 2997 get_mplock(); 2998 allocbuf(bp, size); 2999 rel_mplock(); 3000 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3001 return (bp); 3002 } 3003 3004 3005 /* 3006 * allocbuf: 3007 * 3008 * This code constitutes the buffer memory from either anonymous system 3009 * memory (in the case of non-VMIO operations) or from an associated 3010 * VM object (in the case of VMIO operations). This code is able to 3011 * resize a buffer up or down. 3012 * 3013 * Note that this code is tricky, and has many complications to resolve 3014 * deadlock or inconsistant data situations. Tread lightly!!! 3015 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3016 * the caller. Calling this code willy nilly can result in the loss of data. 3017 * 3018 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3019 * B_CACHE for the non-VMIO case. 3020 * 3021 * This routine does not need to be called from a critical section but you 3022 * must own the buffer. 3023 * 3024 * NOTMPSAFE 3025 */ 3026 int 3027 allocbuf(struct buf *bp, int size) 3028 { 3029 int newbsize, mbsize; 3030 int i; 3031 3032 if (BUF_REFCNT(bp) == 0) 3033 panic("allocbuf: buffer not busy"); 3034 3035 if (bp->b_kvasize < size) 3036 panic("allocbuf: buffer too small"); 3037 3038 if ((bp->b_flags & B_VMIO) == 0) { 3039 caddr_t origbuf; 3040 int origbufsize; 3041 /* 3042 * Just get anonymous memory from the kernel. Don't 3043 * mess with B_CACHE. 3044 */ 3045 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3046 if (bp->b_flags & B_MALLOC) 3047 newbsize = mbsize; 3048 else 3049 newbsize = round_page(size); 3050 3051 if (newbsize < bp->b_bufsize) { 3052 /* 3053 * Malloced buffers are not shrunk 3054 */ 3055 if (bp->b_flags & B_MALLOC) { 3056 if (newbsize) { 3057 bp->b_bcount = size; 3058 } else { 3059 kfree(bp->b_data, M_BIOBUF); 3060 if (bp->b_bufsize) { 3061 bufmallocspace -= bp->b_bufsize; 3062 bufspacewakeup(); 3063 bp->b_bufsize = 0; 3064 } 3065 bp->b_data = bp->b_kvabase; 3066 bp->b_bcount = 0; 3067 bp->b_flags &= ~B_MALLOC; 3068 } 3069 return 1; 3070 } 3071 vm_hold_free_pages( 3072 bp, 3073 (vm_offset_t) bp->b_data + newbsize, 3074 (vm_offset_t) bp->b_data + bp->b_bufsize); 3075 } else if (newbsize > bp->b_bufsize) { 3076 /* 3077 * We only use malloced memory on the first allocation. 3078 * and revert to page-allocated memory when the buffer 3079 * grows. 3080 */ 3081 if ((bufmallocspace < maxbufmallocspace) && 3082 (bp->b_bufsize == 0) && 3083 (mbsize <= PAGE_SIZE/2)) { 3084 3085 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3086 bp->b_bufsize = mbsize; 3087 bp->b_bcount = size; 3088 bp->b_flags |= B_MALLOC; 3089 bufmallocspace += mbsize; 3090 return 1; 3091 } 3092 origbuf = NULL; 3093 origbufsize = 0; 3094 /* 3095 * If the buffer is growing on its other-than-first 3096 * allocation, then we revert to the page-allocation 3097 * scheme. 3098 */ 3099 if (bp->b_flags & B_MALLOC) { 3100 origbuf = bp->b_data; 3101 origbufsize = bp->b_bufsize; 3102 bp->b_data = bp->b_kvabase; 3103 if (bp->b_bufsize) { 3104 bufmallocspace -= bp->b_bufsize; 3105 bufspacewakeup(); 3106 bp->b_bufsize = 0; 3107 } 3108 bp->b_flags &= ~B_MALLOC; 3109 newbsize = round_page(newbsize); 3110 } 3111 vm_hold_load_pages( 3112 bp, 3113 (vm_offset_t) bp->b_data + bp->b_bufsize, 3114 (vm_offset_t) bp->b_data + newbsize); 3115 if (origbuf) { 3116 bcopy(origbuf, bp->b_data, origbufsize); 3117 kfree(origbuf, M_BIOBUF); 3118 } 3119 } 3120 } else { 3121 vm_page_t m; 3122 int desiredpages; 3123 3124 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3125 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3126 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3127 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3128 3129 if (bp->b_flags & B_MALLOC) 3130 panic("allocbuf: VMIO buffer can't be malloced"); 3131 /* 3132 * Set B_CACHE initially if buffer is 0 length or will become 3133 * 0-length. 3134 */ 3135 if (size == 0 || bp->b_bufsize == 0) 3136 bp->b_flags |= B_CACHE; 3137 3138 if (newbsize < bp->b_bufsize) { 3139 /* 3140 * DEV_BSIZE aligned new buffer size is less then the 3141 * DEV_BSIZE aligned existing buffer size. Figure out 3142 * if we have to remove any pages. 3143 */ 3144 if (desiredpages < bp->b_xio.xio_npages) { 3145 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3146 /* 3147 * the page is not freed here -- it 3148 * is the responsibility of 3149 * vnode_pager_setsize 3150 */ 3151 m = bp->b_xio.xio_pages[i]; 3152 KASSERT(m != bogus_page, 3153 ("allocbuf: bogus page found")); 3154 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3155 ; 3156 3157 bp->b_xio.xio_pages[i] = NULL; 3158 vm_page_unwire(m, 0); 3159 } 3160 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3161 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3162 bp->b_xio.xio_npages = desiredpages; 3163 } 3164 } else if (size > bp->b_bcount) { 3165 /* 3166 * We are growing the buffer, possibly in a 3167 * byte-granular fashion. 3168 */ 3169 struct vnode *vp; 3170 vm_object_t obj; 3171 vm_offset_t toff; 3172 vm_offset_t tinc; 3173 3174 /* 3175 * Step 1, bring in the VM pages from the object, 3176 * allocating them if necessary. We must clear 3177 * B_CACHE if these pages are not valid for the 3178 * range covered by the buffer. 3179 * 3180 * critical section protection is required to protect 3181 * against interrupts unbusying and freeing pages 3182 * between our vm_page_lookup() and our 3183 * busycheck/wiring call. 3184 */ 3185 vp = bp->b_vp; 3186 obj = vp->v_object; 3187 3188 crit_enter(); 3189 while (bp->b_xio.xio_npages < desiredpages) { 3190 vm_page_t m; 3191 vm_pindex_t pi; 3192 3193 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3194 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3195 /* 3196 * note: must allocate system pages 3197 * since blocking here could intefere 3198 * with paging I/O, no matter which 3199 * process we are. 3200 */ 3201 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3202 if (m) { 3203 vm_page_wire(m); 3204 vm_page_wakeup(m); 3205 bp->b_flags &= ~B_CACHE; 3206 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3207 ++bp->b_xio.xio_npages; 3208 } 3209 continue; 3210 } 3211 3212 /* 3213 * We found a page. If we have to sleep on it, 3214 * retry because it might have gotten freed out 3215 * from under us. 3216 * 3217 * We can only test PG_BUSY here. Blocking on 3218 * m->busy might lead to a deadlock: 3219 * 3220 * vm_fault->getpages->cluster_read->allocbuf 3221 * 3222 */ 3223 3224 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3225 continue; 3226 vm_page_flag_clear(m, PG_ZERO); 3227 vm_page_wire(m); 3228 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3229 ++bp->b_xio.xio_npages; 3230 } 3231 crit_exit(); 3232 3233 /* 3234 * Step 2. We've loaded the pages into the buffer, 3235 * we have to figure out if we can still have B_CACHE 3236 * set. Note that B_CACHE is set according to the 3237 * byte-granular range ( bcount and size ), not the 3238 * aligned range ( newbsize ). 3239 * 3240 * The VM test is against m->valid, which is DEV_BSIZE 3241 * aligned. Needless to say, the validity of the data 3242 * needs to also be DEV_BSIZE aligned. Note that this 3243 * fails with NFS if the server or some other client 3244 * extends the file's EOF. If our buffer is resized, 3245 * B_CACHE may remain set! XXX 3246 */ 3247 3248 toff = bp->b_bcount; 3249 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3250 3251 while ((bp->b_flags & B_CACHE) && toff < size) { 3252 vm_pindex_t pi; 3253 3254 if (tinc > (size - toff)) 3255 tinc = size - toff; 3256 3257 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3258 PAGE_SHIFT; 3259 3260 vfs_buf_test_cache( 3261 bp, 3262 bp->b_loffset, 3263 toff, 3264 tinc, 3265 bp->b_xio.xio_pages[pi] 3266 ); 3267 toff += tinc; 3268 tinc = PAGE_SIZE; 3269 } 3270 3271 /* 3272 * Step 3, fixup the KVM pmap. Remember that 3273 * bp->b_data is relative to bp->b_loffset, but 3274 * bp->b_loffset may be offset into the first page. 3275 */ 3276 3277 bp->b_data = (caddr_t) 3278 trunc_page((vm_offset_t)bp->b_data); 3279 pmap_qenter( 3280 (vm_offset_t)bp->b_data, 3281 bp->b_xio.xio_pages, 3282 bp->b_xio.xio_npages 3283 ); 3284 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3285 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3286 } 3287 } 3288 3289 /* adjust space use on already-dirty buffer */ 3290 if (bp->b_flags & B_DELWRI) { 3291 dirtybufspace += newbsize - bp->b_bufsize; 3292 if (bp->b_flags & B_HEAVY) 3293 dirtybufspacehw += newbsize - bp->b_bufsize; 3294 } 3295 if (newbsize < bp->b_bufsize) 3296 bufspacewakeup(); 3297 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3298 bp->b_bcount = size; /* requested buffer size */ 3299 return 1; 3300 } 3301 3302 /* 3303 * biowait: 3304 * 3305 * Wait for buffer I/O completion, returning error status. B_EINTR 3306 * is converted into an EINTR error but not cleared (since a chain 3307 * of biowait() calls may occur). 3308 * 3309 * On return bpdone() will have been called but the buffer will remain 3310 * locked and will not have been brelse()'d. 3311 * 3312 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3313 * likely still in progress on return. 3314 * 3315 * NOTE! This operation is on a BIO, not a BUF. 3316 * 3317 * NOTE! BIO_DONE is cleared by vn_strategy() 3318 * 3319 * MPSAFE 3320 */ 3321 static __inline int 3322 _biowait(struct bio *bio, const char *wmesg, int to) 3323 { 3324 struct buf *bp = bio->bio_buf; 3325 u_int32_t flags; 3326 u_int32_t nflags; 3327 int error; 3328 3329 KKASSERT(bio == &bp->b_bio1); 3330 for (;;) { 3331 flags = bio->bio_flags; 3332 if (flags & BIO_DONE) 3333 break; 3334 tsleep_interlock(bio, 0); 3335 nflags = flags | BIO_WANT; 3336 tsleep_interlock(bio, 0); 3337 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3338 if (wmesg) 3339 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3340 else if (bp->b_cmd == BUF_CMD_READ) 3341 error = tsleep(bio, PINTERLOCKED, "biord", to); 3342 else 3343 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3344 if (error) { 3345 kprintf("tsleep error biowait %d\n", error); 3346 return (error); 3347 } 3348 break; 3349 } 3350 } 3351 3352 /* 3353 * Finish up. 3354 */ 3355 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3356 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3357 if (bp->b_flags & B_EINTR) 3358 return (EINTR); 3359 if (bp->b_flags & B_ERROR) 3360 return (bp->b_error ? bp->b_error : EIO); 3361 return (0); 3362 } 3363 3364 int 3365 biowait(struct bio *bio, const char *wmesg) 3366 { 3367 return(_biowait(bio, wmesg, 0)); 3368 } 3369 3370 int 3371 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3372 { 3373 return(_biowait(bio, wmesg, to)); 3374 } 3375 3376 /* 3377 * This associates a tracking count with an I/O. vn_strategy() and 3378 * dev_dstrategy() do this automatically but there are a few cases 3379 * where a vnode or device layer is bypassed when a block translation 3380 * is cached. In such cases bio_start_transaction() may be called on 3381 * the bypassed layers so the system gets an I/O in progress indication 3382 * for those higher layers. 3383 */ 3384 void 3385 bio_start_transaction(struct bio *bio, struct bio_track *track) 3386 { 3387 bio->bio_track = track; 3388 bio_track_ref(track); 3389 } 3390 3391 /* 3392 * Initiate I/O on a vnode. 3393 */ 3394 void 3395 vn_strategy(struct vnode *vp, struct bio *bio) 3396 { 3397 struct bio_track *track; 3398 3399 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE); 3400 if (bio->bio_buf->b_cmd == BUF_CMD_READ) 3401 track = &vp->v_track_read; 3402 else 3403 track = &vp->v_track_write; 3404 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3405 bio->bio_track = track; 3406 bio_track_ref(track); 3407 vop_strategy(*vp->v_ops, vp, bio); 3408 } 3409 3410 /* 3411 * bpdone: 3412 * 3413 * Finish I/O on a buffer after all BIOs have been processed. 3414 * Called when the bio chain is exhausted or by biowait. If called 3415 * by biowait, elseit is typically 0. 3416 * 3417 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3418 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3419 * assuming B_INVAL is clear. 3420 * 3421 * For the VMIO case, we set B_CACHE if the op was a read and no 3422 * read error occured, or if the op was a write. B_CACHE is never 3423 * set if the buffer is invalid or otherwise uncacheable. 3424 * 3425 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3426 * initiator to leave B_INVAL set to brelse the buffer out of existance 3427 * in the biodone routine. 3428 */ 3429 void 3430 bpdone(struct buf *bp, int elseit) 3431 { 3432 buf_cmd_t cmd; 3433 3434 KASSERT(BUF_REFCNTNB(bp) > 0, 3435 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3436 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3437 ("biodone: bp %p already done!", bp)); 3438 3439 /* 3440 * No more BIOs are left. All completion functions have been dealt 3441 * with, now we clean up the buffer. 3442 */ 3443 cmd = bp->b_cmd; 3444 bp->b_cmd = BUF_CMD_DONE; 3445 3446 /* 3447 * Only reads and writes are processed past this point. 3448 */ 3449 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3450 if (cmd == BUF_CMD_FREEBLKS) 3451 bp->b_flags |= B_NOCACHE; 3452 if (elseit) 3453 brelse(bp); 3454 return; 3455 } 3456 3457 /* 3458 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3459 * a lot worse. XXX - move this above the clearing of b_cmd 3460 */ 3461 if (LIST_FIRST(&bp->b_dep) != NULL) 3462 buf_complete(bp); 3463 3464 /* 3465 * A failed write must re-dirty the buffer unless B_INVAL 3466 * was set. Only applicable to normal buffers (with VPs). 3467 * vinum buffers may not have a vp. 3468 */ 3469 if (cmd == BUF_CMD_WRITE && 3470 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3471 bp->b_flags &= ~B_NOCACHE; 3472 if (bp->b_vp) 3473 bdirty(bp); 3474 } 3475 3476 if (bp->b_flags & B_VMIO) { 3477 int i; 3478 vm_ooffset_t foff; 3479 vm_page_t m; 3480 vm_object_t obj; 3481 int iosize; 3482 struct vnode *vp = bp->b_vp; 3483 3484 obj = vp->v_object; 3485 3486 #if defined(VFS_BIO_DEBUG) 3487 if (vp->v_auxrefs == 0) 3488 panic("biodone: zero vnode hold count"); 3489 if ((vp->v_flag & VOBJBUF) == 0) 3490 panic("biodone: vnode is not setup for merged cache"); 3491 #endif 3492 3493 foff = bp->b_loffset; 3494 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3495 KASSERT(obj != NULL, ("biodone: missing VM object")); 3496 3497 #if defined(VFS_BIO_DEBUG) 3498 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3499 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3500 obj->paging_in_progress, bp->b_xio.xio_npages); 3501 } 3502 #endif 3503 3504 /* 3505 * Set B_CACHE if the op was a normal read and no error 3506 * occured. B_CACHE is set for writes in the b*write() 3507 * routines. 3508 */ 3509 iosize = bp->b_bcount - bp->b_resid; 3510 if (cmd == BUF_CMD_READ && 3511 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3512 bp->b_flags |= B_CACHE; 3513 } 3514 3515 crit_enter(); 3516 get_mplock(); 3517 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3518 int bogusflag = 0; 3519 int resid; 3520 3521 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3522 if (resid > iosize) 3523 resid = iosize; 3524 3525 /* 3526 * cleanup bogus pages, restoring the originals. Since 3527 * the originals should still be wired, we don't have 3528 * to worry about interrupt/freeing races destroying 3529 * the VM object association. 3530 */ 3531 m = bp->b_xio.xio_pages[i]; 3532 if (m == bogus_page) { 3533 bogusflag = 1; 3534 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3535 if (m == NULL) 3536 panic("biodone: page disappeared"); 3537 bp->b_xio.xio_pages[i] = m; 3538 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3539 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3540 } 3541 #if defined(VFS_BIO_DEBUG) 3542 if (OFF_TO_IDX(foff) != m->pindex) { 3543 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3544 "mismatch\n", 3545 (unsigned long)foff, (long)m->pindex); 3546 } 3547 #endif 3548 3549 /* 3550 * In the write case, the valid and clean bits are 3551 * already changed correctly ( see bdwrite() ), so we 3552 * only need to do this here in the read case. 3553 */ 3554 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3555 vfs_page_set_valid(bp, foff, i, m); 3556 } 3557 vm_page_flag_clear(m, PG_ZERO); 3558 3559 /* 3560 * when debugging new filesystems or buffer I/O methods, this 3561 * is the most common error that pops up. if you see this, you 3562 * have not set the page busy flag correctly!!! 3563 */ 3564 if (m->busy == 0) { 3565 kprintf("biodone: page busy < 0, " 3566 "pindex: %d, foff: 0x(%x,%x), " 3567 "resid: %d, index: %d\n", 3568 (int) m->pindex, (int)(foff >> 32), 3569 (int) foff & 0xffffffff, resid, i); 3570 if (!vn_isdisk(vp, NULL)) 3571 kprintf(" iosize: %ld, loffset: %lld, " 3572 "flags: 0x%08x, npages: %d\n", 3573 bp->b_vp->v_mount->mnt_stat.f_iosize, 3574 (long long)bp->b_loffset, 3575 bp->b_flags, bp->b_xio.xio_npages); 3576 else 3577 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3578 (long long)bp->b_loffset, 3579 bp->b_flags, bp->b_xio.xio_npages); 3580 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3581 m->valid, m->dirty, m->wire_count); 3582 panic("biodone: page busy < 0"); 3583 } 3584 vm_page_io_finish(m); 3585 vm_object_pip_subtract(obj, 1); 3586 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3587 iosize -= resid; 3588 } 3589 if (obj) 3590 vm_object_pip_wakeupn(obj, 0); 3591 rel_mplock(); 3592 crit_exit(); 3593 } 3594 3595 /* 3596 * Finish up by releasing the buffer. There are no more synchronous 3597 * or asynchronous completions, those were handled by bio_done 3598 * callbacks. 3599 */ 3600 if (elseit) { 3601 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3602 brelse(bp); 3603 else 3604 bqrelse(bp); 3605 } 3606 } 3607 3608 /* 3609 * Normal biodone. 3610 */ 3611 void 3612 biodone(struct bio *bio) 3613 { 3614 struct buf *bp = bio->bio_buf; 3615 3616 runningbufwakeup(bp); 3617 3618 /* 3619 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3620 */ 3621 while (bio) { 3622 biodone_t *done_func; 3623 struct bio_track *track; 3624 3625 /* 3626 * BIO tracking. Most but not all BIOs are tracked. 3627 */ 3628 if ((track = bio->bio_track) != NULL) { 3629 bio_track_rel(track); 3630 bio->bio_track = NULL; 3631 } 3632 3633 /* 3634 * A bio_done function terminates the loop. The function 3635 * will be responsible for any further chaining and/or 3636 * buffer management. 3637 * 3638 * WARNING! The done function can deallocate the buffer! 3639 */ 3640 if ((done_func = bio->bio_done) != NULL) { 3641 bio->bio_done = NULL; 3642 done_func(bio); 3643 return; 3644 } 3645 bio = bio->bio_prev; 3646 } 3647 3648 /* 3649 * If we've run out of bio's do normal [a]synchronous completion. 3650 */ 3651 bpdone(bp, 1); 3652 } 3653 3654 /* 3655 * Synchronous biodone - this terminates a synchronous BIO. 3656 * 3657 * bpdone() is called with elseit=FALSE, leaving the buffer completed 3658 * but still locked. The caller must brelse() the buffer after waiting 3659 * for completion. 3660 */ 3661 void 3662 biodone_sync(struct bio *bio) 3663 { 3664 struct buf *bp = bio->bio_buf; 3665 int flags; 3666 int nflags; 3667 3668 KKASSERT(bio == &bp->b_bio1); 3669 bpdone(bp, 0); 3670 3671 for (;;) { 3672 flags = bio->bio_flags; 3673 nflags = (flags | BIO_DONE) & ~BIO_WANT; 3674 3675 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3676 if (flags & BIO_WANT) 3677 wakeup(bio); 3678 break; 3679 } 3680 } 3681 } 3682 3683 /* 3684 * vfs_unbusy_pages: 3685 * 3686 * This routine is called in lieu of iodone in the case of 3687 * incomplete I/O. This keeps the busy status for pages 3688 * consistant. 3689 */ 3690 void 3691 vfs_unbusy_pages(struct buf *bp) 3692 { 3693 int i; 3694 3695 runningbufwakeup(bp); 3696 if (bp->b_flags & B_VMIO) { 3697 struct vnode *vp = bp->b_vp; 3698 vm_object_t obj; 3699 3700 obj = vp->v_object; 3701 3702 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3703 vm_page_t m = bp->b_xio.xio_pages[i]; 3704 3705 /* 3706 * When restoring bogus changes the original pages 3707 * should still be wired, so we are in no danger of 3708 * losing the object association and do not need 3709 * critical section protection particularly. 3710 */ 3711 if (m == bogus_page) { 3712 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3713 if (!m) { 3714 panic("vfs_unbusy_pages: page missing"); 3715 } 3716 bp->b_xio.xio_pages[i] = m; 3717 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3718 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3719 } 3720 vm_object_pip_subtract(obj, 1); 3721 vm_page_flag_clear(m, PG_ZERO); 3722 vm_page_io_finish(m); 3723 } 3724 vm_object_pip_wakeupn(obj, 0); 3725 } 3726 } 3727 3728 /* 3729 * vfs_page_set_valid: 3730 * 3731 * Set the valid bits in a page based on the supplied offset. The 3732 * range is restricted to the buffer's size. 3733 * 3734 * This routine is typically called after a read completes. 3735 */ 3736 static void 3737 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3738 { 3739 vm_ooffset_t soff, eoff; 3740 3741 /* 3742 * Start and end offsets in buffer. eoff - soff may not cross a 3743 * page boundry or cross the end of the buffer. The end of the 3744 * buffer, in this case, is our file EOF, not the allocation size 3745 * of the buffer. 3746 */ 3747 soff = off; 3748 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3749 if (eoff > bp->b_loffset + bp->b_bcount) 3750 eoff = bp->b_loffset + bp->b_bcount; 3751 3752 /* 3753 * Set valid range. This is typically the entire buffer and thus the 3754 * entire page. 3755 */ 3756 if (eoff > soff) { 3757 vm_page_set_validclean( 3758 m, 3759 (vm_offset_t) (soff & PAGE_MASK), 3760 (vm_offset_t) (eoff - soff) 3761 ); 3762 } 3763 } 3764 3765 /* 3766 * vfs_busy_pages: 3767 * 3768 * This routine is called before a device strategy routine. 3769 * It is used to tell the VM system that paging I/O is in 3770 * progress, and treat the pages associated with the buffer 3771 * almost as being PG_BUSY. Also the object 'paging_in_progress' 3772 * flag is handled to make sure that the object doesn't become 3773 * inconsistant. 3774 * 3775 * Since I/O has not been initiated yet, certain buffer flags 3776 * such as B_ERROR or B_INVAL may be in an inconsistant state 3777 * and should be ignored. 3778 */ 3779 void 3780 vfs_busy_pages(struct vnode *vp, struct buf *bp) 3781 { 3782 int i, bogus; 3783 struct lwp *lp = curthread->td_lwp; 3784 3785 /* 3786 * The buffer's I/O command must already be set. If reading, 3787 * B_CACHE must be 0 (double check against callers only doing 3788 * I/O when B_CACHE is 0). 3789 */ 3790 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3791 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 3792 3793 if (bp->b_flags & B_VMIO) { 3794 vm_object_t obj; 3795 vm_ooffset_t foff; 3796 3797 obj = vp->v_object; 3798 foff = bp->b_loffset; 3799 KASSERT(bp->b_loffset != NOOFFSET, 3800 ("vfs_busy_pages: no buffer offset")); 3801 vfs_setdirty(bp); 3802 3803 /* 3804 * Loop until none of the pages are busy. 3805 */ 3806 retry: 3807 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3808 vm_page_t m = bp->b_xio.xio_pages[i]; 3809 3810 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3811 goto retry; 3812 } 3813 3814 /* 3815 * Setup for I/O, soft-busy the page right now because 3816 * the next loop may block. 3817 */ 3818 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3819 vm_page_t m = bp->b_xio.xio_pages[i]; 3820 3821 vm_page_flag_clear(m, PG_ZERO); 3822 if ((bp->b_flags & B_CLUSTER) == 0) { 3823 vm_object_pip_add(obj, 1); 3824 vm_page_io_start(m); 3825 } 3826 } 3827 3828 /* 3829 * Adjust protections for I/O and do bogus-page mapping. 3830 * Assume that vm_page_protect() can block (it can block 3831 * if VM_PROT_NONE, don't take any chances regardless). 3832 */ 3833 bogus = 0; 3834 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3835 vm_page_t m = bp->b_xio.xio_pages[i]; 3836 3837 /* 3838 * When readying a vnode-backed buffer for a write 3839 * we must zero-fill any invalid portions of the 3840 * backing VM pages. 3841 * 3842 * When readying a vnode-backed buffer for a read 3843 * we must replace any dirty pages with a bogus 3844 * page so we do not destroy dirty data when 3845 * filling in gaps. Dirty pages might not 3846 * necessarily be marked dirty yet, so use m->valid 3847 * as a reasonable test. 3848 * 3849 * Bogus page replacement is, uh, bogus. We need 3850 * to find a better way. 3851 */ 3852 if (bp->b_cmd == BUF_CMD_WRITE) { 3853 vm_page_protect(m, VM_PROT_READ); 3854 vfs_page_set_valid(bp, foff, i, m); 3855 } else if (m->valid == VM_PAGE_BITS_ALL) { 3856 bp->b_xio.xio_pages[i] = bogus_page; 3857 bogus++; 3858 } else { 3859 vm_page_protect(m, VM_PROT_NONE); 3860 } 3861 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3862 } 3863 if (bogus) 3864 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3865 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3866 } 3867 3868 /* 3869 * This is the easiest place to put the process accounting for the I/O 3870 * for now. 3871 */ 3872 if (lp != NULL) { 3873 if (bp->b_cmd == BUF_CMD_READ) 3874 lp->lwp_ru.ru_inblock++; 3875 else 3876 lp->lwp_ru.ru_oublock++; 3877 } 3878 } 3879 3880 /* 3881 * vfs_clean_pages: 3882 * 3883 * Tell the VM system that the pages associated with this buffer 3884 * are clean. This is used for delayed writes where the data is 3885 * going to go to disk eventually without additional VM intevention. 3886 * 3887 * Note that while we only really need to clean through to b_bcount, we 3888 * just go ahead and clean through to b_bufsize. 3889 */ 3890 static void 3891 vfs_clean_pages(struct buf *bp) 3892 { 3893 int i; 3894 3895 if (bp->b_flags & B_VMIO) { 3896 vm_ooffset_t foff; 3897 3898 foff = bp->b_loffset; 3899 KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset")); 3900 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3901 vm_page_t m = bp->b_xio.xio_pages[i]; 3902 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3903 3904 vfs_page_set_valid(bp, foff, i, m); 3905 foff = noff; 3906 } 3907 } 3908 } 3909 3910 #if 0 3911 /* 3912 * vfs_bio_set_valid: 3913 * 3914 * Set the range within the buffer to valid. The range is relative 3915 * to the beginning of the buffer, b_loffset. Note that b_loffset 3916 * itself may be offset from the beginning of the first page. 3917 */ 3918 void 3919 vfs_bio_set_valid(struct buf *bp, int base, int size) 3920 { 3921 if (bp->b_flags & B_VMIO) { 3922 int i; 3923 int n; 3924 3925 /* 3926 * Fixup base to be relative to beginning of first page. 3927 * Set initial n to be the maximum number of bytes in the 3928 * first page that can be validated. 3929 */ 3930 3931 base += (bp->b_loffset & PAGE_MASK); 3932 n = PAGE_SIZE - (base & PAGE_MASK); 3933 3934 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) { 3935 vm_page_t m = bp->b_xio.xio_pages[i]; 3936 3937 if (n > size) 3938 n = size; 3939 3940 vm_page_set_valid(m, base & PAGE_MASK, n); 3941 base += n; 3942 size -= n; 3943 n = PAGE_SIZE; 3944 } 3945 } 3946 } 3947 #endif 3948 3949 /* 3950 * vfs_bio_clrbuf: 3951 * 3952 * Clear a buffer. This routine essentially fakes an I/O, so we need 3953 * to clear B_ERROR and B_INVAL. 3954 * 3955 * Note that while we only theoretically need to clear through b_bcount, 3956 * we go ahead and clear through b_bufsize. 3957 */ 3958 3959 void 3960 vfs_bio_clrbuf(struct buf *bp) 3961 { 3962 int i, mask = 0; 3963 caddr_t sa, ea; 3964 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3965 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 3966 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3967 (bp->b_loffset & PAGE_MASK) == 0) { 3968 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3969 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 3970 bp->b_resid = 0; 3971 return; 3972 } 3973 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 3974 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 3975 bzero(bp->b_data, bp->b_bufsize); 3976 bp->b_xio.xio_pages[0]->valid |= mask; 3977 bp->b_resid = 0; 3978 return; 3979 } 3980 } 3981 sa = bp->b_data; 3982 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 3983 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3984 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3985 ea = (caddr_t)(vm_offset_t)ulmin( 3986 (u_long)(vm_offset_t)ea, 3987 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3988 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3989 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 3990 continue; 3991 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 3992 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 3993 bzero(sa, ea - sa); 3994 } 3995 } else { 3996 for (; sa < ea; sa += DEV_BSIZE, j++) { 3997 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 3998 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 3999 bzero(sa, DEV_BSIZE); 4000 } 4001 } 4002 bp->b_xio.xio_pages[i]->valid |= mask; 4003 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 4004 } 4005 bp->b_resid = 0; 4006 } else { 4007 clrbuf(bp); 4008 } 4009 } 4010 4011 /* 4012 * vm_hold_load_pages: 4013 * 4014 * Load pages into the buffer's address space. The pages are 4015 * allocated from the kernel object in order to reduce interference 4016 * with the any VM paging I/O activity. The range of loaded 4017 * pages will be wired. 4018 * 4019 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4020 * retrieve the full range (to - from) of pages. 4021 * 4022 */ 4023 void 4024 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4025 { 4026 vm_offset_t pg; 4027 vm_page_t p; 4028 int index; 4029 4030 to = round_page(to); 4031 from = round_page(from); 4032 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4033 4034 pg = from; 4035 while (pg < to) { 4036 /* 4037 * Note: must allocate system pages since blocking here 4038 * could intefere with paging I/O, no matter which 4039 * process we are. 4040 */ 4041 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4042 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4043 if (p) { 4044 vm_page_wire(p); 4045 p->valid = VM_PAGE_BITS_ALL; 4046 vm_page_flag_clear(p, PG_ZERO); 4047 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4048 bp->b_xio.xio_pages[index] = p; 4049 vm_page_wakeup(p); 4050 4051 pg += PAGE_SIZE; 4052 ++index; 4053 } 4054 } 4055 bp->b_xio.xio_npages = index; 4056 } 4057 4058 /* 4059 * Allocate pages for a buffer cache buffer. 4060 * 4061 * Under extremely severe memory conditions even allocating out of the 4062 * system reserve can fail. If this occurs we must allocate out of the 4063 * interrupt reserve to avoid a deadlock with the pageout daemon. 4064 * 4065 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 4066 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 4067 * against the pageout daemon if pages are not freed from other sources. 4068 */ 4069 static 4070 vm_page_t 4071 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4072 { 4073 vm_page_t p; 4074 4075 /* 4076 * Try a normal allocation, allow use of system reserve. 4077 */ 4078 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 4079 if (p) 4080 return(p); 4081 4082 /* 4083 * The normal allocation failed and we clearly have a page 4084 * deficit. Try to reclaim some clean VM pages directly 4085 * from the buffer cache. 4086 */ 4087 vm_pageout_deficit += deficit; 4088 recoverbufpages(); 4089 4090 /* 4091 * We may have blocked, the caller will know what to do if the 4092 * page now exists. 4093 */ 4094 if (vm_page_lookup(obj, pg)) 4095 return(NULL); 4096 4097 /* 4098 * Allocate and allow use of the interrupt reserve. 4099 * 4100 * If after all that we still can't allocate a VM page we are 4101 * in real trouble, but we slog on anyway hoping that the system 4102 * won't deadlock. 4103 */ 4104 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 4105 VM_ALLOC_INTERRUPT); 4106 if (p) { 4107 if (vm_page_count_severe()) { 4108 kprintf("bio_page_alloc: WARNING emergency page " 4109 "allocation\n"); 4110 vm_wait(hz / 20); 4111 } 4112 } else { 4113 kprintf("bio_page_alloc: WARNING emergency page " 4114 "allocation failed\n"); 4115 vm_wait(hz * 5); 4116 } 4117 return(p); 4118 } 4119 4120 /* 4121 * vm_hold_free_pages: 4122 * 4123 * Return pages associated with the buffer back to the VM system. 4124 * 4125 * The range of pages underlying the buffer's address space will 4126 * be unmapped and un-wired. 4127 */ 4128 void 4129 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4130 { 4131 vm_offset_t pg; 4132 vm_page_t p; 4133 int index, newnpages; 4134 4135 from = round_page(from); 4136 to = round_page(to); 4137 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4138 4139 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4140 p = bp->b_xio.xio_pages[index]; 4141 if (p && (index < bp->b_xio.xio_npages)) { 4142 if (p->busy) { 4143 kprintf("vm_hold_free_pages: doffset: %lld, " 4144 "loffset: %lld\n", 4145 (long long)bp->b_bio2.bio_offset, 4146 (long long)bp->b_loffset); 4147 } 4148 bp->b_xio.xio_pages[index] = NULL; 4149 pmap_kremove(pg); 4150 vm_page_busy(p); 4151 vm_page_unwire(p, 0); 4152 vm_page_free(p); 4153 } 4154 } 4155 bp->b_xio.xio_npages = newnpages; 4156 } 4157 4158 /* 4159 * vmapbuf: 4160 * 4161 * Map a user buffer into KVM via a pbuf. On return the buffer's 4162 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4163 * initialized. 4164 */ 4165 int 4166 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4167 { 4168 caddr_t addr; 4169 vm_offset_t va; 4170 vm_page_t m; 4171 int vmprot; 4172 int error; 4173 int pidx; 4174 int i; 4175 4176 /* 4177 * bp had better have a command and it better be a pbuf. 4178 */ 4179 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4180 KKASSERT(bp->b_flags & B_PAGING); 4181 4182 if (bytes < 0) 4183 return (-1); 4184 4185 /* 4186 * Map the user data into KVM. Mappings have to be page-aligned. 4187 */ 4188 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4189 pidx = 0; 4190 4191 vmprot = VM_PROT_READ; 4192 if (bp->b_cmd == BUF_CMD_READ) 4193 vmprot |= VM_PROT_WRITE; 4194 4195 while (addr < udata + bytes) { 4196 /* 4197 * Do the vm_fault if needed; do the copy-on-write thing 4198 * when reading stuff off device into memory. 4199 * 4200 * vm_fault_page*() returns a held VM page. 4201 */ 4202 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4203 va = trunc_page(va); 4204 4205 m = vm_fault_page_quick(va, vmprot, &error); 4206 if (m == NULL) { 4207 for (i = 0; i < pidx; ++i) { 4208 vm_page_unhold(bp->b_xio.xio_pages[i]); 4209 bp->b_xio.xio_pages[i] = NULL; 4210 } 4211 return(-1); 4212 } 4213 bp->b_xio.xio_pages[pidx] = m; 4214 addr += PAGE_SIZE; 4215 ++pidx; 4216 } 4217 4218 /* 4219 * Map the page array and set the buffer fields to point to 4220 * the mapped data buffer. 4221 */ 4222 if (pidx > btoc(MAXPHYS)) 4223 panic("vmapbuf: mapped more than MAXPHYS"); 4224 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4225 4226 bp->b_xio.xio_npages = pidx; 4227 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4228 bp->b_bcount = bytes; 4229 bp->b_bufsize = bytes; 4230 return(0); 4231 } 4232 4233 /* 4234 * vunmapbuf: 4235 * 4236 * Free the io map PTEs associated with this IO operation. 4237 * We also invalidate the TLB entries and restore the original b_addr. 4238 */ 4239 void 4240 vunmapbuf(struct buf *bp) 4241 { 4242 int pidx; 4243 int npages; 4244 4245 KKASSERT(bp->b_flags & B_PAGING); 4246 4247 npages = bp->b_xio.xio_npages; 4248 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4249 for (pidx = 0; pidx < npages; ++pidx) { 4250 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4251 bp->b_xio.xio_pages[pidx] = NULL; 4252 } 4253 bp->b_xio.xio_npages = 0; 4254 bp->b_data = bp->b_kvabase; 4255 } 4256 4257 /* 4258 * Scan all buffers in the system and issue the callback. 4259 */ 4260 int 4261 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4262 { 4263 int count = 0; 4264 int error; 4265 int n; 4266 4267 for (n = 0; n < nbuf; ++n) { 4268 if ((error = callback(&buf[n], info)) < 0) { 4269 count = error; 4270 break; 4271 } 4272 count += error; 4273 } 4274 return (count); 4275 } 4276 4277 /* 4278 * print out statistics from the current status of the buffer pool 4279 * this can be toggeled by the system control option debug.syncprt 4280 */ 4281 #ifdef DEBUG 4282 void 4283 vfs_bufstats(void) 4284 { 4285 int i, j, count; 4286 struct buf *bp; 4287 struct bqueues *dp; 4288 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4289 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4290 4291 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4292 count = 0; 4293 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4294 counts[j] = 0; 4295 crit_enter(); 4296 TAILQ_FOREACH(bp, dp, b_freelist) { 4297 counts[bp->b_bufsize/PAGE_SIZE]++; 4298 count++; 4299 } 4300 crit_exit(); 4301 kprintf("%s: total-%d", bname[i], count); 4302 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4303 if (counts[j] != 0) 4304 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4305 kprintf("\n"); 4306 } 4307 } 4308 #endif 4309 4310 #ifdef DDB 4311 4312 DB_SHOW_COMMAND(buffer, db_show_buffer) 4313 { 4314 /* get args */ 4315 struct buf *bp = (struct buf *)addr; 4316 4317 if (!have_addr) { 4318 db_printf("usage: show buffer <addr>\n"); 4319 return; 4320 } 4321 4322 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4323 db_printf("b_cmd = %d\n", bp->b_cmd); 4324 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4325 "b_resid = %d\n, b_data = %p, " 4326 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4327 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4328 bp->b_data, 4329 (long long)bp->b_bio2.bio_offset, 4330 (long long)(bp->b_bio2.bio_next ? 4331 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4332 if (bp->b_xio.xio_npages) { 4333 int i; 4334 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4335 bp->b_xio.xio_npages); 4336 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4337 vm_page_t m; 4338 m = bp->b_xio.xio_pages[i]; 4339 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4340 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4341 if ((i + 1) < bp->b_xio.xio_npages) 4342 db_printf(","); 4343 } 4344 db_printf("\n"); 4345 } 4346 } 4347 #endif /* DDB */ 4348