xref: /dflybsd-src/sys/kern/vfs_bio.c (revision ae788f37fe53d5d1ca1e12a184a662192caad3c5)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
61 
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Buffer queues.
69  */
70 enum bufq_type {
71 	BQUEUE_NONE,    	/* not on any queue */
72 	BQUEUE_LOCKED,  	/* locked buffers */
73 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
74 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
75 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
76 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
77 	BQUEUE_EMPTY,    	/* empty buffer headers */
78 
79 	BUFFER_QUEUES		/* number of buffer queues */
80 };
81 
82 typedef enum bufq_type bufq_type_t;
83 
84 #define BD_WAKE_SIZE	16384
85 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
86 
87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
88 struct spinlock	bufspin = SPINLOCK_INITIALIZER(&bufspin);
89 
90 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
91 
92 struct buf *buf;		/* buffer header pool */
93 
94 static void vfs_clean_pages(struct buf *bp);
95 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
96 static void vfs_vmio_release(struct buf *bp);
97 static int flushbufqueues(bufq_type_t q);
98 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
99 
100 static void bd_signal(int totalspace);
101 static void buf_daemon(void);
102 static void buf_daemon_hw(void);
103 
104 /*
105  * bogus page -- for I/O to/from partially complete buffers
106  * this is a temporary solution to the problem, but it is not
107  * really that bad.  it would be better to split the buffer
108  * for input in the case of buffers partially already in memory,
109  * but the code is intricate enough already.
110  */
111 vm_page_t bogus_page;
112 
113 /*
114  * These are all static, but make the ones we export globals so we do
115  * not need to use compiler magic.
116  */
117 int bufspace, maxbufspace,
118 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
119 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
120 static int lorunningspace, hirunningspace, runningbufreq;
121 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
122 int dirtybufcount, dirtybufcounthw;
123 int runningbufspace, runningbufcount;
124 static int getnewbufcalls;
125 static int getnewbufrestarts;
126 static int recoverbufcalls;
127 static int needsbuffer;		/* locked by needsbuffer_spin */
128 static int bd_request;		/* locked by needsbuffer_spin */
129 static int bd_request_hw;	/* locked by needsbuffer_spin */
130 static u_int bd_wake_ary[BD_WAKE_SIZE];
131 static u_int bd_wake_index;
132 static u_int vm_cycle_point = ACT_INIT + ACT_ADVANCE * 6;
133 static struct spinlock needsbuffer_spin;
134 
135 static struct thread *bufdaemon_td;
136 static struct thread *bufdaemonhw_td;
137 
138 
139 /*
140  * Sysctls for operational control of the buffer cache.
141  */
142 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
143 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
144 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
145 	"High watermark used to trigger explicit flushing of dirty buffers");
146 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
147 	"Minimum amount of buffer space required for active I/O");
148 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
149 	"Maximum amount of buffer space to usable for active I/O");
150 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
151 	"Recycle pages to active or inactive queue transition pt 0-64");
152 /*
153  * Sysctls determining current state of the buffer cache.
154  */
155 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
156 	"Total number of buffers in buffer cache");
157 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
158 	"Pending bytes of dirty buffers (all)");
159 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
160 	"Pending bytes of dirty buffers (heavy weight)");
161 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
162 	"Pending number of dirty buffers");
163 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
164 	"Pending number of dirty buffers (heavy weight)");
165 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
166 	"I/O bytes currently in progress due to asynchronous writes");
167 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
168 	"I/O buffers currently in progress due to asynchronous writes");
169 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
170 	"Hard limit on maximum amount of memory usable for buffer space");
171 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
172 	"Soft limit on maximum amount of memory usable for buffer space");
173 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
174 	"Minimum amount of memory to reserve for system buffer space");
175 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
176 	"Amount of memory available for buffers");
177 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
178 	0, "Maximum amount of memory reserved for buffers using malloc");
179 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
180 	"Amount of memory left for buffers using malloc-scheme");
181 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
182 	"New buffer header acquisition requests");
183 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
184 	0, "New buffer header acquisition restarts");
185 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
186 	"Recover VM space in an emergency");
187 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
188 	"Buffer acquisition restarts due to fragmented buffer map");
189 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
190 	"Amount of time KVA space was deallocated in an arbitrary buffer");
191 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
192 	"Amount of time buffer re-use operations were successful");
193 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
194 	"sizeof(struct buf)");
195 
196 char *buf_wmesg = BUF_WMESG;
197 
198 extern int vm_swap_size;
199 
200 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
201 #define VFS_BIO_NEED_UNUSED02	0x02
202 #define VFS_BIO_NEED_UNUSED04	0x04
203 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
204 
205 /*
206  * bufspacewakeup:
207  *
208  *	Called when buffer space is potentially available for recovery.
209  *	getnewbuf() will block on this flag when it is unable to free
210  *	sufficient buffer space.  Buffer space becomes recoverable when
211  *	bp's get placed back in the queues.
212  */
213 
214 static __inline void
215 bufspacewakeup(void)
216 {
217 	/*
218 	 * If someone is waiting for BUF space, wake them up.  Even
219 	 * though we haven't freed the kva space yet, the waiting
220 	 * process will be able to now.
221 	 */
222 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
223 		spin_lock_wr(&needsbuffer_spin);
224 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
225 		spin_unlock_wr(&needsbuffer_spin);
226 		wakeup(&needsbuffer);
227 	}
228 }
229 
230 /*
231  * runningbufwakeup:
232  *
233  *	Accounting for I/O in progress.
234  *
235  */
236 static __inline void
237 runningbufwakeup(struct buf *bp)
238 {
239 	int totalspace;
240 	int limit;
241 
242 	if ((totalspace = bp->b_runningbufspace) != 0) {
243 		atomic_subtract_int(&runningbufspace, totalspace);
244 		atomic_subtract_int(&runningbufcount, 1);
245 		bp->b_runningbufspace = 0;
246 
247 		/*
248 		 * see waitrunningbufspace() for limit test.
249 		 */
250 		limit = hirunningspace * 2 / 3;
251 		if (runningbufreq && runningbufspace <= limit) {
252 			runningbufreq = 0;
253 			wakeup(&runningbufreq);
254 		}
255 		bd_signal(totalspace);
256 	}
257 }
258 
259 /*
260  * bufcountwakeup:
261  *
262  *	Called when a buffer has been added to one of the free queues to
263  *	account for the buffer and to wakeup anyone waiting for free buffers.
264  *	This typically occurs when large amounts of metadata are being handled
265  *	by the buffer cache ( else buffer space runs out first, usually ).
266  *
267  * MPSAFE
268  */
269 static __inline void
270 bufcountwakeup(void)
271 {
272 	if (needsbuffer) {
273 		spin_lock_wr(&needsbuffer_spin);
274 		needsbuffer &= ~VFS_BIO_NEED_ANY;
275 		spin_unlock_wr(&needsbuffer_spin);
276 		wakeup(&needsbuffer);
277 	}
278 }
279 
280 /*
281  * waitrunningbufspace()
282  *
283  * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3.
284  * This is the point where write bursting stops so we don't want to wait
285  * for the running amount to drop below it (at least if we still want bioq
286  * to burst writes).
287  *
288  * The caller may be using this function to block in a tight loop, we
289  * must block while runningbufspace is greater then or equal to
290  * hirunningspace * 2 / 3.
291  *
292  * And even with that it may not be enough, due to the presence of
293  * B_LOCKED dirty buffers, so also wait for at least one running buffer
294  * to complete.
295  */
296 static __inline void
297 waitrunningbufspace(void)
298 {
299 	int limit = hirunningspace * 2 / 3;
300 
301 	crit_enter();
302 	if (runningbufspace > limit) {
303 		while (runningbufspace > limit) {
304 			++runningbufreq;
305 			tsleep(&runningbufreq, 0, "wdrn1", 0);
306 		}
307 	} else if (runningbufspace) {
308 		++runningbufreq;
309 		tsleep(&runningbufreq, 0, "wdrn2", 1);
310 	}
311 	crit_exit();
312 }
313 
314 /*
315  * buf_dirty_count_severe:
316  *
317  *	Return true if we have too many dirty buffers.
318  */
319 int
320 buf_dirty_count_severe(void)
321 {
322 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
323 	        dirtybufcount >= nbuf / 2);
324 }
325 
326 /*
327  * Return true if the amount of running I/O is severe and BIOQ should
328  * start bursting.
329  */
330 int
331 buf_runningbufspace_severe(void)
332 {
333 	return (runningbufspace >= hirunningspace * 2 / 3);
334 }
335 
336 /*
337  * vfs_buf_test_cache:
338  *
339  * Called when a buffer is extended.  This function clears the B_CACHE
340  * bit if the newly extended portion of the buffer does not contain
341  * valid data.
342  *
343  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
344  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
345  * them while a clean buffer was present.
346  */
347 static __inline__
348 void
349 vfs_buf_test_cache(struct buf *bp,
350 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
351 		  vm_page_t m)
352 {
353 	if (bp->b_flags & B_CACHE) {
354 		int base = (foff + off) & PAGE_MASK;
355 		if (vm_page_is_valid(m, base, size) == 0)
356 			bp->b_flags &= ~B_CACHE;
357 	}
358 }
359 
360 /*
361  * bd_speedup()
362  *
363  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
364  * low water mark.
365  *
366  * MPSAFE
367  */
368 static __inline__
369 void
370 bd_speedup(void)
371 {
372 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
373 		return;
374 
375 	if (bd_request == 0 &&
376 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
377 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
378 		spin_lock_wr(&needsbuffer_spin);
379 		bd_request = 1;
380 		spin_unlock_wr(&needsbuffer_spin);
381 		wakeup(&bd_request);
382 	}
383 	if (bd_request_hw == 0 &&
384 	    (dirtybufspacehw > lodirtybufspace / 2 ||
385 	     dirtybufcounthw >= nbuf / 2)) {
386 		spin_lock_wr(&needsbuffer_spin);
387 		bd_request_hw = 1;
388 		spin_unlock_wr(&needsbuffer_spin);
389 		wakeup(&bd_request_hw);
390 	}
391 }
392 
393 /*
394  * bd_heatup()
395  *
396  *	Get the buf_daemon heated up when the number of running and dirty
397  *	buffers exceeds the mid-point.
398  *
399  *	Return the total number of dirty bytes past the second mid point
400  *	as a measure of how much excess dirty data there is in the system.
401  *
402  * MPSAFE
403  */
404 int
405 bd_heatup(void)
406 {
407 	int mid1;
408 	int mid2;
409 	int totalspace;
410 
411 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
412 
413 	totalspace = runningbufspace + dirtybufspace;
414 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
415 		bd_speedup();
416 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
417 		if (totalspace >= mid2)
418 			return(totalspace - mid2);
419 	}
420 	return(0);
421 }
422 
423 /*
424  * bd_wait()
425  *
426  *	Wait for the buffer cache to flush (totalspace) bytes worth of
427  *	buffers, then return.
428  *
429  *	Regardless this function blocks while the number of dirty buffers
430  *	exceeds hidirtybufspace.
431  *
432  * MPSAFE
433  */
434 void
435 bd_wait(int totalspace)
436 {
437 	u_int i;
438 	int count;
439 
440 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
441 		return;
442 
443 	while (totalspace > 0) {
444 		bd_heatup();
445 		if (totalspace > runningbufspace + dirtybufspace)
446 			totalspace = runningbufspace + dirtybufspace;
447 		count = totalspace / BKVASIZE;
448 		if (count >= BD_WAKE_SIZE)
449 			count = BD_WAKE_SIZE - 1;
450 
451 		spin_lock_wr(&needsbuffer_spin);
452 		i = (bd_wake_index + count) & BD_WAKE_MASK;
453 		++bd_wake_ary[i];
454 		tsleep_interlock(&bd_wake_ary[i], 0);
455 		spin_unlock_wr(&needsbuffer_spin);
456 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
457 
458 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
459 	}
460 }
461 
462 /*
463  * bd_signal()
464  *
465  *	This function is called whenever runningbufspace or dirtybufspace
466  *	is reduced.  Track threads waiting for run+dirty buffer I/O
467  *	complete.
468  *
469  * MPSAFE
470  */
471 static void
472 bd_signal(int totalspace)
473 {
474 	u_int i;
475 
476 	if (totalspace > 0) {
477 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
478 			totalspace = BKVASIZE * BD_WAKE_SIZE;
479 		spin_lock_wr(&needsbuffer_spin);
480 		while (totalspace > 0) {
481 			i = bd_wake_index++;
482 			i &= BD_WAKE_MASK;
483 			if (bd_wake_ary[i]) {
484 				bd_wake_ary[i] = 0;
485 				spin_unlock_wr(&needsbuffer_spin);
486 				wakeup(&bd_wake_ary[i]);
487 				spin_lock_wr(&needsbuffer_spin);
488 			}
489 			totalspace -= BKVASIZE;
490 		}
491 		spin_unlock_wr(&needsbuffer_spin);
492 	}
493 }
494 
495 /*
496  * BIO tracking support routines.
497  *
498  * Release a ref on a bio_track.  Wakeup requests are atomically released
499  * along with the last reference so bk_active will never wind up set to
500  * only 0x80000000.
501  *
502  * MPSAFE
503  */
504 static
505 void
506 bio_track_rel(struct bio_track *track)
507 {
508 	int	active;
509 	int	desired;
510 
511 	/*
512 	 * Shortcut
513 	 */
514 	active = track->bk_active;
515 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
516 		return;
517 
518 	/*
519 	 * Full-on.  Note that the wait flag is only atomically released on
520 	 * the 1->0 count transition.
521 	 *
522 	 * We check for a negative count transition using bit 30 since bit 31
523 	 * has a different meaning.
524 	 */
525 	for (;;) {
526 		desired = (active & 0x7FFFFFFF) - 1;
527 		if (desired)
528 			desired |= active & 0x80000000;
529 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
530 			if (desired & 0x40000000)
531 				panic("bio_track_rel: bad count: %p\n", track);
532 			if (active & 0x80000000)
533 				wakeup(track);
534 			break;
535 		}
536 		active = track->bk_active;
537 	}
538 }
539 
540 /*
541  * Wait for the tracking count to reach 0.
542  *
543  * Use atomic ops such that the wait flag is only set atomically when
544  * bk_active is non-zero.
545  *
546  * MPSAFE
547  */
548 int
549 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
550 {
551 	int	active;
552 	int	desired;
553 	int	error;
554 
555 	/*
556 	 * Shortcut
557 	 */
558 	if (track->bk_active == 0)
559 		return(0);
560 
561 	/*
562 	 * Full-on.  Note that the wait flag may only be atomically set if
563 	 * the active count is non-zero.
564 	 */
565 	error = 0;
566 	while ((active = track->bk_active) != 0) {
567 		desired = active | 0x80000000;
568 		tsleep_interlock(track, slp_flags);
569 		if (active == desired ||
570 		    atomic_cmpset_int(&track->bk_active, active, desired)) {
571 			error = tsleep(track, slp_flags | PINTERLOCKED,
572 				       "iowait", slp_timo);
573 			if (error)
574 				break;
575 		}
576 	}
577 	return (error);
578 }
579 
580 /*
581  * bufinit:
582  *
583  *	Load time initialisation of the buffer cache, called from machine
584  *	dependant initialization code.
585  */
586 void
587 bufinit(void)
588 {
589 	struct buf *bp;
590 	vm_offset_t bogus_offset;
591 	int i;
592 
593 	spin_init(&needsbuffer_spin);
594 
595 	/* next, make a null set of free lists */
596 	for (i = 0; i < BUFFER_QUEUES; i++)
597 		TAILQ_INIT(&bufqueues[i]);
598 
599 	/* finally, initialize each buffer header and stick on empty q */
600 	for (i = 0; i < nbuf; i++) {
601 		bp = &buf[i];
602 		bzero(bp, sizeof *bp);
603 		bp->b_flags = B_INVAL;	/* we're just an empty header */
604 		bp->b_cmd = BUF_CMD_DONE;
605 		bp->b_qindex = BQUEUE_EMPTY;
606 		initbufbio(bp);
607 		xio_init(&bp->b_xio);
608 		buf_dep_init(bp);
609 		BUF_LOCKINIT(bp);
610 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
611 	}
612 
613 	/*
614 	 * maxbufspace is the absolute maximum amount of buffer space we are
615 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
616 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
617 	 * used by most other processes.  The differential is required to
618 	 * ensure that buf_daemon is able to run when other processes might
619 	 * be blocked waiting for buffer space.
620 	 *
621 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
622 	 * this may result in KVM fragmentation which is not handled optimally
623 	 * by the system.
624 	 */
625 	maxbufspace = nbuf * BKVASIZE;
626 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
627 	lobufspace = hibufspace - MAXBSIZE;
628 
629 	lorunningspace = 512 * 1024;
630 	/* hirunningspace -- see below */
631 
632 	/*
633 	 * Limit the amount of malloc memory since it is wired permanently
634 	 * into the kernel space.  Even though this is accounted for in
635 	 * the buffer allocation, we don't want the malloced region to grow
636 	 * uncontrolled.  The malloc scheme improves memory utilization
637 	 * significantly on average (small) directories.
638 	 */
639 	maxbufmallocspace = hibufspace / 20;
640 
641 	/*
642 	 * Reduce the chance of a deadlock occuring by limiting the number
643 	 * of delayed-write dirty buffers we allow to stack up.
644 	 *
645 	 * We don't want too much actually queued to the device at once
646 	 * (XXX this needs to be per-mount!), because the buffers will
647 	 * wind up locked for a very long period of time while the I/O
648 	 * drains.
649 	 */
650 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
651 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
652 	if (hirunningspace < 1024 * 1024)
653 		hirunningspace = 1024 * 1024;
654 
655 	dirtybufspace = 0;
656 	dirtybufspacehw = 0;
657 
658 	lodirtybufspace = hidirtybufspace / 2;
659 
660 	/*
661 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
662 	 * somewhat of a hack at the moment, we really need to limit ourselves
663 	 * based on the number of bytes of I/O in-transit that were initiated
664 	 * from buf_daemon.
665 	 */
666 
667 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
668 	bogus_page = vm_page_alloc(&kernel_object,
669 				   (bogus_offset >> PAGE_SHIFT),
670 				   VM_ALLOC_NORMAL);
671 	vmstats.v_wire_count++;
672 
673 }
674 
675 /*
676  * Initialize the embedded bio structures
677  */
678 void
679 initbufbio(struct buf *bp)
680 {
681 	bp->b_bio1.bio_buf = bp;
682 	bp->b_bio1.bio_prev = NULL;
683 	bp->b_bio1.bio_offset = NOOFFSET;
684 	bp->b_bio1.bio_next = &bp->b_bio2;
685 	bp->b_bio1.bio_done = NULL;
686 	bp->b_bio1.bio_flags = 0;
687 
688 	bp->b_bio2.bio_buf = bp;
689 	bp->b_bio2.bio_prev = &bp->b_bio1;
690 	bp->b_bio2.bio_offset = NOOFFSET;
691 	bp->b_bio2.bio_next = NULL;
692 	bp->b_bio2.bio_done = NULL;
693 	bp->b_bio2.bio_flags = 0;
694 }
695 
696 /*
697  * Reinitialize the embedded bio structures as well as any additional
698  * translation cache layers.
699  */
700 void
701 reinitbufbio(struct buf *bp)
702 {
703 	struct bio *bio;
704 
705 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
706 		bio->bio_done = NULL;
707 		bio->bio_offset = NOOFFSET;
708 	}
709 }
710 
711 /*
712  * Push another BIO layer onto an existing BIO and return it.  The new
713  * BIO layer may already exist, holding cached translation data.
714  */
715 struct bio *
716 push_bio(struct bio *bio)
717 {
718 	struct bio *nbio;
719 
720 	if ((nbio = bio->bio_next) == NULL) {
721 		int index = bio - &bio->bio_buf->b_bio_array[0];
722 		if (index >= NBUF_BIO - 1) {
723 			panic("push_bio: too many layers bp %p\n",
724 				bio->bio_buf);
725 		}
726 		nbio = &bio->bio_buf->b_bio_array[index + 1];
727 		bio->bio_next = nbio;
728 		nbio->bio_prev = bio;
729 		nbio->bio_buf = bio->bio_buf;
730 		nbio->bio_offset = NOOFFSET;
731 		nbio->bio_done = NULL;
732 		nbio->bio_next = NULL;
733 	}
734 	KKASSERT(nbio->bio_done == NULL);
735 	return(nbio);
736 }
737 
738 /*
739  * Pop a BIO translation layer, returning the previous layer.  The
740  * must have been previously pushed.
741  */
742 struct bio *
743 pop_bio(struct bio *bio)
744 {
745 	return(bio->bio_prev);
746 }
747 
748 void
749 clearbiocache(struct bio *bio)
750 {
751 	while (bio) {
752 		bio->bio_offset = NOOFFSET;
753 		bio = bio->bio_next;
754 	}
755 }
756 
757 /*
758  * bfreekva:
759  *
760  *	Free the KVA allocation for buffer 'bp'.
761  *
762  *	Must be called from a critical section as this is the only locking for
763  *	buffer_map.
764  *
765  *	Since this call frees up buffer space, we call bufspacewakeup().
766  *
767  * MPALMOSTSAFE
768  */
769 static void
770 bfreekva(struct buf *bp)
771 {
772 	int count;
773 
774 	if (bp->b_kvasize) {
775 		get_mplock();
776 		++buffreekvacnt;
777 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
778 		vm_map_lock(&buffer_map);
779 		bufspace -= bp->b_kvasize;
780 		vm_map_delete(&buffer_map,
781 		    (vm_offset_t) bp->b_kvabase,
782 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
783 		    &count
784 		);
785 		vm_map_unlock(&buffer_map);
786 		vm_map_entry_release(count);
787 		bp->b_kvasize = 0;
788 		bufspacewakeup();
789 		rel_mplock();
790 	}
791 }
792 
793 /*
794  * bremfree:
795  *
796  *	Remove the buffer from the appropriate free list.
797  */
798 static __inline void
799 _bremfree(struct buf *bp)
800 {
801 	if (bp->b_qindex != BQUEUE_NONE) {
802 		KASSERT(BUF_REFCNTNB(bp) == 1,
803 				("bremfree: bp %p not locked",bp));
804 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
805 		bp->b_qindex = BQUEUE_NONE;
806 	} else {
807 		if (BUF_REFCNTNB(bp) <= 1)
808 			panic("bremfree: removing a buffer not on a queue");
809 	}
810 }
811 
812 void
813 bremfree(struct buf *bp)
814 {
815 	spin_lock_wr(&bufspin);
816 	_bremfree(bp);
817 	spin_unlock_wr(&bufspin);
818 }
819 
820 static void
821 bremfree_locked(struct buf *bp)
822 {
823 	_bremfree(bp);
824 }
825 
826 /*
827  * bread:
828  *
829  *	Get a buffer with the specified data.  Look in the cache first.  We
830  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
831  *	is set, the buffer is valid and we do not have to do anything ( see
832  *	getblk() ).
833  *
834  * MPALMOSTSAFE
835  */
836 int
837 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
838 {
839 	struct buf *bp;
840 
841 	bp = getblk(vp, loffset, size, 0, 0);
842 	*bpp = bp;
843 
844 	/* if not found in cache, do some I/O */
845 	if ((bp->b_flags & B_CACHE) == 0) {
846 		get_mplock();
847 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
848 		bp->b_cmd = BUF_CMD_READ;
849 		bp->b_bio1.bio_done = biodone_sync;
850 		bp->b_bio1.bio_flags |= BIO_SYNC;
851 		vfs_busy_pages(vp, bp);
852 		vn_strategy(vp, &bp->b_bio1);
853 		rel_mplock();
854 		return (biowait(&bp->b_bio1, "biord"));
855 	}
856 	return (0);
857 }
858 
859 /*
860  * breadn:
861  *
862  *	Operates like bread, but also starts asynchronous I/O on
863  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
864  *	to initiating I/O . If B_CACHE is set, the buffer is valid
865  *	and we do not have to do anything.
866  *
867  * MPALMOSTSAFE
868  */
869 int
870 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
871 	int *rabsize, int cnt, struct buf **bpp)
872 {
873 	struct buf *bp, *rabp;
874 	int i;
875 	int rv = 0, readwait = 0;
876 
877 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
878 
879 	/* if not found in cache, do some I/O */
880 	if ((bp->b_flags & B_CACHE) == 0) {
881 		get_mplock();
882 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
883 		bp->b_cmd = BUF_CMD_READ;
884 		bp->b_bio1.bio_done = biodone_sync;
885 		bp->b_bio1.bio_flags |= BIO_SYNC;
886 		vfs_busy_pages(vp, bp);
887 		vn_strategy(vp, &bp->b_bio1);
888 		++readwait;
889 		rel_mplock();
890 	}
891 
892 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
893 		if (inmem(vp, *raoffset))
894 			continue;
895 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
896 
897 		if ((rabp->b_flags & B_CACHE) == 0) {
898 			get_mplock();
899 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
900 			rabp->b_cmd = BUF_CMD_READ;
901 			vfs_busy_pages(vp, rabp);
902 			BUF_KERNPROC(rabp);
903 			vn_strategy(vp, &rabp->b_bio1);
904 			rel_mplock();
905 		} else {
906 			brelse(rabp);
907 		}
908 	}
909 	if (readwait)
910 		rv = biowait(&bp->b_bio1, "biord");
911 	return (rv);
912 }
913 
914 /*
915  * bwrite:
916  *
917  *	Synchronous write, waits for completion.
918  *
919  *	Write, release buffer on completion.  (Done by iodone
920  *	if async).  Do not bother writing anything if the buffer
921  *	is invalid.
922  *
923  *	Note that we set B_CACHE here, indicating that buffer is
924  *	fully valid and thus cacheable.  This is true even of NFS
925  *	now so we set it generally.  This could be set either here
926  *	or in biodone() since the I/O is synchronous.  We put it
927  *	here.
928  */
929 int
930 bwrite(struct buf *bp)
931 {
932 	int error;
933 
934 	if (bp->b_flags & B_INVAL) {
935 		brelse(bp);
936 		return (0);
937 	}
938 	if (BUF_REFCNTNB(bp) == 0)
939 		panic("bwrite: buffer is not busy???");
940 
941 	/* Mark the buffer clean */
942 	bundirty(bp);
943 
944 	bp->b_flags &= ~(B_ERROR | B_EINTR);
945 	bp->b_flags |= B_CACHE;
946 	bp->b_cmd = BUF_CMD_WRITE;
947 	bp->b_bio1.bio_done = biodone_sync;
948 	bp->b_bio1.bio_flags |= BIO_SYNC;
949 	vfs_busy_pages(bp->b_vp, bp);
950 
951 	/*
952 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
953 	 * valid for vnode-backed buffers.
954 	 */
955 	bp->b_runningbufspace = bp->b_bufsize;
956 	if (bp->b_runningbufspace) {
957 		runningbufspace += bp->b_runningbufspace;
958 		++runningbufcount;
959 	}
960 
961 	vn_strategy(bp->b_vp, &bp->b_bio1);
962 	error = biowait(&bp->b_bio1, "biows");
963 	brelse(bp);
964 	return (error);
965 }
966 
967 /*
968  * bawrite:
969  *
970  *	Asynchronous write.  Start output on a buffer, but do not wait for
971  *	it to complete.  The buffer is released when the output completes.
972  *
973  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
974  *	B_INVAL buffers.  Not us.
975  */
976 void
977 bawrite(struct buf *bp)
978 {
979 	if (bp->b_flags & B_INVAL) {
980 		brelse(bp);
981 		return;
982 	}
983 	if (BUF_REFCNTNB(bp) == 0)
984 		panic("bwrite: buffer is not busy???");
985 
986 	/* Mark the buffer clean */
987 	bundirty(bp);
988 
989 	bp->b_flags &= ~(B_ERROR | B_EINTR);
990 	bp->b_flags |= B_CACHE;
991 	bp->b_cmd = BUF_CMD_WRITE;
992 	KKASSERT(bp->b_bio1.bio_done == NULL);
993 	vfs_busy_pages(bp->b_vp, bp);
994 
995 	/*
996 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
997 	 * valid for vnode-backed buffers.
998 	 */
999 	bp->b_runningbufspace = bp->b_bufsize;
1000 	if (bp->b_runningbufspace) {
1001 		runningbufspace += bp->b_runningbufspace;
1002 		++runningbufcount;
1003 	}
1004 
1005 	BUF_KERNPROC(bp);
1006 	vn_strategy(bp->b_vp, &bp->b_bio1);
1007 }
1008 
1009 /*
1010  * bowrite:
1011  *
1012  *	Ordered write.  Start output on a buffer, and flag it so that the
1013  *	device will write it in the order it was queued.  The buffer is
1014  *	released when the output completes.  bwrite() ( or the VOP routine
1015  *	anyway ) is responsible for handling B_INVAL buffers.
1016  */
1017 int
1018 bowrite(struct buf *bp)
1019 {
1020 	bp->b_flags |= B_ORDERED;
1021 	bawrite(bp);
1022 	return (0);
1023 }
1024 
1025 /*
1026  * bdwrite:
1027  *
1028  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1029  *	anything if the buffer is marked invalid.
1030  *
1031  *	Note that since the buffer must be completely valid, we can safely
1032  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1033  *	biodone() in order to prevent getblk from writing the buffer
1034  *	out synchronously.
1035  */
1036 void
1037 bdwrite(struct buf *bp)
1038 {
1039 	if (BUF_REFCNTNB(bp) == 0)
1040 		panic("bdwrite: buffer is not busy");
1041 
1042 	if (bp->b_flags & B_INVAL) {
1043 		brelse(bp);
1044 		return;
1045 	}
1046 	bdirty(bp);
1047 
1048 	/*
1049 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1050 	 * true even of NFS now.
1051 	 */
1052 	bp->b_flags |= B_CACHE;
1053 
1054 	/*
1055 	 * This bmap keeps the system from needing to do the bmap later,
1056 	 * perhaps when the system is attempting to do a sync.  Since it
1057 	 * is likely that the indirect block -- or whatever other datastructure
1058 	 * that the filesystem needs is still in memory now, it is a good
1059 	 * thing to do this.  Note also, that if the pageout daemon is
1060 	 * requesting a sync -- there might not be enough memory to do
1061 	 * the bmap then...  So, this is important to do.
1062 	 */
1063 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1064 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1065 			 NULL, NULL, BUF_CMD_WRITE);
1066 	}
1067 
1068 	/*
1069 	 * Because the underlying pages may still be mapped and
1070 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1071 	 * range here will be inaccurate.
1072 	 *
1073 	 * However, we must still clean the pages to satisfy the
1074 	 * vnode_pager and pageout daemon, so theythink the pages
1075 	 * have been "cleaned".  What has really occured is that
1076 	 * they've been earmarked for later writing by the buffer
1077 	 * cache.
1078 	 *
1079 	 * So we get the b_dirtyoff/end update but will not actually
1080 	 * depend on it (NFS that is) until the pages are busied for
1081 	 * writing later on.
1082 	 */
1083 	vfs_clean_pages(bp);
1084 	bqrelse(bp);
1085 
1086 	/*
1087 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1088 	 * due to the softdep code.
1089 	 */
1090 }
1091 
1092 /*
1093  * bdirty:
1094  *
1095  *	Turn buffer into delayed write request by marking it B_DELWRI.
1096  *	B_RELBUF and B_NOCACHE must be cleared.
1097  *
1098  *	We reassign the buffer to itself to properly update it in the
1099  *	dirty/clean lists.
1100  *
1101  *	Must be called from a critical section.
1102  *	The buffer must be on BQUEUE_NONE.
1103  */
1104 void
1105 bdirty(struct buf *bp)
1106 {
1107 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1108 	if (bp->b_flags & B_NOCACHE) {
1109 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1110 		bp->b_flags &= ~B_NOCACHE;
1111 	}
1112 	if (bp->b_flags & B_INVAL) {
1113 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1114 	}
1115 	bp->b_flags &= ~B_RELBUF;
1116 
1117 	if ((bp->b_flags & B_DELWRI) == 0) {
1118 		bp->b_flags |= B_DELWRI;
1119 		reassignbuf(bp);
1120 		atomic_add_int(&dirtybufcount, 1);
1121 		dirtybufspace += bp->b_bufsize;
1122 		if (bp->b_flags & B_HEAVY) {
1123 			atomic_add_int(&dirtybufcounthw, 1);
1124 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1125 		}
1126 		bd_heatup();
1127 	}
1128 }
1129 
1130 /*
1131  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1132  * needs to be flushed with a different buf_daemon thread to avoid
1133  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1134  */
1135 void
1136 bheavy(struct buf *bp)
1137 {
1138 	if ((bp->b_flags & B_HEAVY) == 0) {
1139 		bp->b_flags |= B_HEAVY;
1140 		if (bp->b_flags & B_DELWRI) {
1141 			atomic_add_int(&dirtybufcounthw, 1);
1142 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1143 		}
1144 	}
1145 }
1146 
1147 /*
1148  * bundirty:
1149  *
1150  *	Clear B_DELWRI for buffer.
1151  *
1152  *	Must be called from a critical section.
1153  *
1154  *	The buffer is typically on BQUEUE_NONE but there is one case in
1155  *	brelse() that calls this function after placing the buffer on
1156  *	a different queue.
1157  *
1158  * MPSAFE
1159  */
1160 void
1161 bundirty(struct buf *bp)
1162 {
1163 	if (bp->b_flags & B_DELWRI) {
1164 		bp->b_flags &= ~B_DELWRI;
1165 		reassignbuf(bp);
1166 		atomic_subtract_int(&dirtybufcount, 1);
1167 		atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1168 		if (bp->b_flags & B_HEAVY) {
1169 			atomic_subtract_int(&dirtybufcounthw, 1);
1170 			atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1171 		}
1172 		bd_signal(bp->b_bufsize);
1173 	}
1174 	/*
1175 	 * Since it is now being written, we can clear its deferred write flag.
1176 	 */
1177 	bp->b_flags &= ~B_DEFERRED;
1178 }
1179 
1180 /*
1181  * brelse:
1182  *
1183  *	Release a busy buffer and, if requested, free its resources.  The
1184  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1185  *	to be accessed later as a cache entity or reused for other purposes.
1186  *
1187  * MPALMOSTSAFE
1188  */
1189 void
1190 brelse(struct buf *bp)
1191 {
1192 #ifdef INVARIANTS
1193 	int saved_flags = bp->b_flags;
1194 #endif
1195 
1196 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1197 
1198 	/*
1199 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1200 	 * its backing store.  Clear B_DELWRI.
1201 	 *
1202 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1203 	 * to destroy the buffer and backing store and (2) when the caller
1204 	 * wants to destroy the buffer and backing store after a write
1205 	 * completes.
1206 	 */
1207 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1208 		bundirty(bp);
1209 	}
1210 
1211 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1212 		/*
1213 		 * A re-dirtied buffer is only subject to destruction
1214 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1215 		 */
1216 		/* leave buffer intact */
1217 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1218 		   (bp->b_bufsize <= 0)) {
1219 		/*
1220 		 * Either a failed read or we were asked to free or not
1221 		 * cache the buffer.  This path is reached with B_DELWRI
1222 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1223 		 * backing store destruction.
1224 		 *
1225 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1226 		 * buffer cannot be immediately freed.
1227 		 */
1228 		bp->b_flags |= B_INVAL;
1229 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1230 			get_mplock();
1231 			buf_deallocate(bp);
1232 			rel_mplock();
1233 		}
1234 		if (bp->b_flags & B_DELWRI) {
1235 			atomic_subtract_int(&dirtybufcount, 1);
1236 			atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1237 			if (bp->b_flags & B_HEAVY) {
1238 				atomic_subtract_int(&dirtybufcounthw, 1);
1239 				atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1240 			}
1241 			bd_signal(bp->b_bufsize);
1242 		}
1243 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1244 	}
1245 
1246 	/*
1247 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1248 	 * If vfs_vmio_release() is called with either bit set, the
1249 	 * underlying pages may wind up getting freed causing a previous
1250 	 * write (bdwrite()) to get 'lost' because pages associated with
1251 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1252 	 * B_LOCKED buffer may be mapped by the filesystem.
1253 	 *
1254 	 * If we want to release the buffer ourselves (rather then the
1255 	 * originator asking us to release it), give the originator a
1256 	 * chance to countermand the release by setting B_LOCKED.
1257 	 *
1258 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1259 	 * if B_DELWRI is set.
1260 	 *
1261 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1262 	 * on pages to return pages to the VM page queues.
1263 	 */
1264 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1265 		bp->b_flags &= ~B_RELBUF;
1266 	} else if (vm_page_count_severe()) {
1267 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1268 			get_mplock();
1269 			buf_deallocate(bp);		/* can set B_LOCKED */
1270 			rel_mplock();
1271 		}
1272 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1273 			bp->b_flags &= ~B_RELBUF;
1274 		else
1275 			bp->b_flags |= B_RELBUF;
1276 	}
1277 
1278 	/*
1279 	 * Make sure b_cmd is clear.  It may have already been cleared by
1280 	 * biodone().
1281 	 *
1282 	 * At this point destroying the buffer is governed by the B_INVAL
1283 	 * or B_RELBUF flags.
1284 	 */
1285 	bp->b_cmd = BUF_CMD_DONE;
1286 
1287 	/*
1288 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1289 	 * after an I/O may have replaces some of the pages with bogus pages
1290 	 * in order to not destroy dirty pages in a fill-in read.
1291 	 *
1292 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1293 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1294 	 * B_INVAL may still be set, however.
1295 	 *
1296 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1297 	 * but not the backing store.   B_NOCACHE will destroy the backing
1298 	 * store.
1299 	 *
1300 	 * Note that dirty NFS buffers contain byte-granular write ranges
1301 	 * and should not be destroyed w/ B_INVAL even if the backing store
1302 	 * is left intact.
1303 	 */
1304 	if (bp->b_flags & B_VMIO) {
1305 		/*
1306 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1307 		 */
1308 		int i, j, resid;
1309 		vm_page_t m;
1310 		off_t foff;
1311 		vm_pindex_t poff;
1312 		vm_object_t obj;
1313 		struct vnode *vp;
1314 
1315 		vp = bp->b_vp;
1316 
1317 		/*
1318 		 * Get the base offset and length of the buffer.  Note that
1319 		 * in the VMIO case if the buffer block size is not
1320 		 * page-aligned then b_data pointer may not be page-aligned.
1321 		 * But our b_xio.xio_pages array *IS* page aligned.
1322 		 *
1323 		 * block sizes less then DEV_BSIZE (usually 512) are not
1324 		 * supported due to the page granularity bits (m->valid,
1325 		 * m->dirty, etc...).
1326 		 *
1327 		 * See man buf(9) for more information
1328 		 */
1329 
1330 		resid = bp->b_bufsize;
1331 		foff = bp->b_loffset;
1332 
1333 		get_mplock();
1334 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1335 			m = bp->b_xio.xio_pages[i];
1336 			vm_page_flag_clear(m, PG_ZERO);
1337 			/*
1338 			 * If we hit a bogus page, fixup *all* of them
1339 			 * now.  Note that we left these pages wired
1340 			 * when we removed them so they had better exist,
1341 			 * and they cannot be ripped out from under us so
1342 			 * no critical section protection is necessary.
1343 			 */
1344 			if (m == bogus_page) {
1345 				obj = vp->v_object;
1346 				poff = OFF_TO_IDX(bp->b_loffset);
1347 
1348 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1349 					vm_page_t mtmp;
1350 
1351 					mtmp = bp->b_xio.xio_pages[j];
1352 					if (mtmp == bogus_page) {
1353 						mtmp = vm_page_lookup(obj, poff + j);
1354 						if (!mtmp) {
1355 							panic("brelse: page missing");
1356 						}
1357 						bp->b_xio.xio_pages[j] = mtmp;
1358 					}
1359 				}
1360 
1361 				if ((bp->b_flags & B_INVAL) == 0) {
1362 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1363 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1364 				}
1365 				m = bp->b_xio.xio_pages[i];
1366 			}
1367 
1368 			/*
1369 			 * Invalidate the backing store if B_NOCACHE is set
1370 			 * (e.g. used with vinvalbuf()).  If this is NFS
1371 			 * we impose a requirement that the block size be
1372 			 * a multiple of PAGE_SIZE and create a temporary
1373 			 * hack to basically invalidate the whole page.  The
1374 			 * problem is that NFS uses really odd buffer sizes
1375 			 * especially when tracking piecemeal writes and
1376 			 * it also vinvalbuf()'s a lot, which would result
1377 			 * in only partial page validation and invalidation
1378 			 * here.  If the file page is mmap()'d, however,
1379 			 * all the valid bits get set so after we invalidate
1380 			 * here we would end up with weird m->valid values
1381 			 * like 0xfc.  nfs_getpages() can't handle this so
1382 			 * we clear all the valid bits for the NFS case
1383 			 * instead of just some of them.
1384 			 *
1385 			 * The real bug is the VM system having to set m->valid
1386 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1387 			 * itself is an artifact of the whole 512-byte
1388 			 * granular mess that exists to support odd block
1389 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1390 			 * A complete rewrite is required.
1391 			 *
1392 			 * XXX
1393 			 */
1394 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1395 				int poffset = foff & PAGE_MASK;
1396 				int presid;
1397 
1398 				presid = PAGE_SIZE - poffset;
1399 				if (bp->b_vp->v_tag == VT_NFS &&
1400 				    bp->b_vp->v_type == VREG) {
1401 					; /* entire page */
1402 				} else if (presid > resid) {
1403 					presid = resid;
1404 				}
1405 				KASSERT(presid >= 0, ("brelse: extra page"));
1406 				vm_page_set_invalid(m, poffset, presid);
1407 			}
1408 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1409 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1410 		}
1411 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1412 			vfs_vmio_release(bp);
1413 		rel_mplock();
1414 	} else {
1415 		/*
1416 		 * Rundown for non-VMIO buffers.
1417 		 */
1418 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1419 			get_mplock();
1420 			if (bp->b_bufsize)
1421 				allocbuf(bp, 0);
1422 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1423 			if (bp->b_vp)
1424 				brelvp(bp);
1425 			rel_mplock();
1426 		}
1427 	}
1428 
1429 	if (bp->b_qindex != BQUEUE_NONE)
1430 		panic("brelse: free buffer onto another queue???");
1431 	if (BUF_REFCNTNB(bp) > 1) {
1432 		/* Temporary panic to verify exclusive locking */
1433 		/* This panic goes away when we allow shared refs */
1434 		panic("brelse: multiple refs");
1435 		/* NOT REACHED */
1436 		return;
1437 	}
1438 
1439 	/*
1440 	 * Figure out the correct queue to place the cleaned up buffer on.
1441 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1442 	 * disassociated from their vnode.
1443 	 */
1444 	spin_lock_wr(&bufspin);
1445 	if (bp->b_flags & B_LOCKED) {
1446 		/*
1447 		 * Buffers that are locked are placed in the locked queue
1448 		 * immediately, regardless of their state.
1449 		 */
1450 		bp->b_qindex = BQUEUE_LOCKED;
1451 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1452 	} else if (bp->b_bufsize == 0) {
1453 		/*
1454 		 * Buffers with no memory.  Due to conditionals near the top
1455 		 * of brelse() such buffers should probably already be
1456 		 * marked B_INVAL and disassociated from their vnode.
1457 		 */
1458 		bp->b_flags |= B_INVAL;
1459 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1460 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1461 		if (bp->b_kvasize) {
1462 			bp->b_qindex = BQUEUE_EMPTYKVA;
1463 		} else {
1464 			bp->b_qindex = BQUEUE_EMPTY;
1465 		}
1466 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1467 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1468 		/*
1469 		 * Buffers with junk contents.   Again these buffers had better
1470 		 * already be disassociated from their vnode.
1471 		 */
1472 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1473 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1474 		bp->b_flags |= B_INVAL;
1475 		bp->b_qindex = BQUEUE_CLEAN;
1476 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1477 	} else {
1478 		/*
1479 		 * Remaining buffers.  These buffers are still associated with
1480 		 * their vnode.
1481 		 */
1482 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1483 		case B_DELWRI:
1484 		    bp->b_qindex = BQUEUE_DIRTY;
1485 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1486 		    break;
1487 		case B_DELWRI | B_HEAVY:
1488 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1489 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1490 				      b_freelist);
1491 		    break;
1492 		default:
1493 		    /*
1494 		     * NOTE: Buffers are always placed at the end of the
1495 		     * queue.  If B_AGE is not set the buffer will cycle
1496 		     * through the queue twice.
1497 		     */
1498 		    bp->b_qindex = BQUEUE_CLEAN;
1499 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1500 		    break;
1501 		}
1502 	}
1503 	spin_unlock_wr(&bufspin);
1504 
1505 	/*
1506 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1507 	 * on the correct queue.
1508 	 */
1509 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1510 		bundirty(bp);
1511 
1512 	/*
1513 	 * The bp is on an appropriate queue unless locked.  If it is not
1514 	 * locked or dirty we can wakeup threads waiting for buffer space.
1515 	 *
1516 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1517 	 * if B_INVAL is set ).
1518 	 */
1519 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1520 		bufcountwakeup();
1521 
1522 	/*
1523 	 * Something we can maybe free or reuse
1524 	 */
1525 	if (bp->b_bufsize || bp->b_kvasize)
1526 		bufspacewakeup();
1527 
1528 	/*
1529 	 * Clean up temporary flags and unlock the buffer.
1530 	 */
1531 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1532 	BUF_UNLOCK(bp);
1533 }
1534 
1535 /*
1536  * bqrelse:
1537  *
1538  *	Release a buffer back to the appropriate queue but do not try to free
1539  *	it.  The buffer is expected to be used again soon.
1540  *
1541  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1542  *	biodone() to requeue an async I/O on completion.  It is also used when
1543  *	known good buffers need to be requeued but we think we may need the data
1544  *	again soon.
1545  *
1546  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1547  *
1548  * MPSAFE
1549  */
1550 void
1551 bqrelse(struct buf *bp)
1552 {
1553 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1554 
1555 	if (bp->b_qindex != BQUEUE_NONE)
1556 		panic("bqrelse: free buffer onto another queue???");
1557 	if (BUF_REFCNTNB(bp) > 1) {
1558 		/* do not release to free list */
1559 		panic("bqrelse: multiple refs");
1560 		return;
1561 	}
1562 
1563 	buf_act_advance(bp);
1564 
1565 	spin_lock_wr(&bufspin);
1566 	if (bp->b_flags & B_LOCKED) {
1567 		/*
1568 		 * Locked buffers are released to the locked queue.  However,
1569 		 * if the buffer is dirty it will first go into the dirty
1570 		 * queue and later on after the I/O completes successfully it
1571 		 * will be released to the locked queue.
1572 		 */
1573 		bp->b_qindex = BQUEUE_LOCKED;
1574 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1575 	} else if (bp->b_flags & B_DELWRI) {
1576 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1577 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1578 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1579 	} else if (vm_page_count_severe()) {
1580 		/*
1581 		 * We are too low on memory, we have to try to free the
1582 		 * buffer (most importantly: the wired pages making up its
1583 		 * backing store) *now*.
1584 		 */
1585 		spin_unlock_wr(&bufspin);
1586 		brelse(bp);
1587 		return;
1588 	} else {
1589 		bp->b_qindex = BQUEUE_CLEAN;
1590 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1591 	}
1592 	spin_unlock_wr(&bufspin);
1593 
1594 	if ((bp->b_flags & B_LOCKED) == 0 &&
1595 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1596 		bufcountwakeup();
1597 	}
1598 
1599 	/*
1600 	 * Something we can maybe free or reuse.
1601 	 */
1602 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1603 		bufspacewakeup();
1604 
1605 	/*
1606 	 * Final cleanup and unlock.  Clear bits that are only used while a
1607 	 * buffer is actively locked.
1608 	 */
1609 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1610 	BUF_UNLOCK(bp);
1611 }
1612 
1613 /*
1614  * vfs_vmio_release:
1615  *
1616  *	Return backing pages held by the buffer 'bp' back to the VM system
1617  *	if possible.  The pages are freed if they are no longer valid or
1618  *	attempt to free if it was used for direct I/O otherwise they are
1619  *	sent to the page cache.
1620  *
1621  *	Pages that were marked busy are left alone and skipped.
1622  *
1623  *	The KVA mapping (b_data) for the underlying pages is removed by
1624  *	this function.
1625  */
1626 static void
1627 vfs_vmio_release(struct buf *bp)
1628 {
1629 	int i;
1630 	vm_page_t m;
1631 
1632 	crit_enter();
1633 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1634 		m = bp->b_xio.xio_pages[i];
1635 		bp->b_xio.xio_pages[i] = NULL;
1636 
1637 		/*
1638 		 * This is a very important bit of code.  We try to track
1639 		 * VM page use whether the pages are wired into the buffer
1640 		 * cache or not.  While wired into the buffer cache the
1641 		 * bp tracks the act_count.
1642 		 *
1643 		 * We can choose to place unwired pages on the inactive
1644 		 * queue (0) or active queue (1).  If we place too many
1645 		 * on the active queue the queue will cycle the act_count
1646 		 * on pages we'd like to keep, just from single-use pages
1647 		 * (such as when doing a tar-up or file scan).
1648 		 */
1649 		if (bp->b_act_count < vm_cycle_point)
1650 			vm_page_unwire(m, 0);
1651 		else
1652 			vm_page_unwire(m, 1);
1653 
1654 		/*
1655 		 * We don't mess with busy pages, it is
1656 		 * the responsibility of the process that
1657 		 * busied the pages to deal with them.
1658 		 */
1659 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1660 			continue;
1661 
1662 		if (m->wire_count == 0) {
1663 			vm_page_flag_clear(m, PG_ZERO);
1664 			/*
1665 			 * Might as well free the page if we can and it has
1666 			 * no valid data.  We also free the page if the
1667 			 * buffer was used for direct I/O.
1668 			 */
1669 #if 0
1670 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1671 					m->hold_count == 0) {
1672 				vm_page_busy(m);
1673 				vm_page_protect(m, VM_PROT_NONE);
1674 				vm_page_free(m);
1675 			} else
1676 #endif
1677 			if (bp->b_flags & B_DIRECT) {
1678 				vm_page_try_to_free(m);
1679 			} else if (vm_page_count_severe()) {
1680 				m->act_count = bp->b_act_count;
1681 				vm_page_try_to_cache(m);
1682 			} else {
1683 				m->act_count = bp->b_act_count;
1684 			}
1685 		}
1686 	}
1687 	crit_exit();
1688 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1689 	if (bp->b_bufsize) {
1690 		bufspacewakeup();
1691 		bp->b_bufsize = 0;
1692 	}
1693 	bp->b_xio.xio_npages = 0;
1694 	bp->b_flags &= ~B_VMIO;
1695 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1696 	if (bp->b_vp) {
1697 		get_mplock();
1698 		brelvp(bp);
1699 		rel_mplock();
1700 	}
1701 }
1702 
1703 /*
1704  * vfs_bio_awrite:
1705  *
1706  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1707  *	This is much better then the old way of writing only one buffer at
1708  *	a time.  Note that we may not be presented with the buffers in the
1709  *	correct order, so we search for the cluster in both directions.
1710  *
1711  *	The buffer is locked on call.
1712  */
1713 int
1714 vfs_bio_awrite(struct buf *bp)
1715 {
1716 	int i;
1717 	int j;
1718 	off_t loffset = bp->b_loffset;
1719 	struct vnode *vp = bp->b_vp;
1720 	int nbytes;
1721 	struct buf *bpa;
1722 	int nwritten;
1723 	int size;
1724 
1725 	/*
1726 	 * right now we support clustered writing only to regular files.  If
1727 	 * we find a clusterable block we could be in the middle of a cluster
1728 	 * rather then at the beginning.
1729 	 *
1730 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1731 	 * to b_loffset.  b_bio2 contains the translated block number.
1732 	 */
1733 	if ((vp->v_type == VREG) &&
1734 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1735 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1736 
1737 		size = vp->v_mount->mnt_stat.f_iosize;
1738 
1739 		for (i = size; i < MAXPHYS; i += size) {
1740 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1741 			    BUF_REFCNT(bpa) == 0 &&
1742 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1743 			    (B_DELWRI | B_CLUSTEROK)) &&
1744 			    (bpa->b_bufsize == size)) {
1745 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1746 				    (bpa->b_bio2.bio_offset !=
1747 				     bp->b_bio2.bio_offset + i))
1748 					break;
1749 			} else {
1750 				break;
1751 			}
1752 		}
1753 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1754 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1755 			    BUF_REFCNT(bpa) == 0 &&
1756 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1757 			    (B_DELWRI | B_CLUSTEROK)) &&
1758 			    (bpa->b_bufsize == size)) {
1759 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1760 				    (bpa->b_bio2.bio_offset !=
1761 				     bp->b_bio2.bio_offset - j))
1762 					break;
1763 			} else {
1764 				break;
1765 			}
1766 		}
1767 		j -= size;
1768 		nbytes = (i + j);
1769 
1770 		/*
1771 		 * this is a possible cluster write
1772 		 */
1773 		if (nbytes != size) {
1774 			BUF_UNLOCK(bp);
1775 			nwritten = cluster_wbuild(vp, size,
1776 						  loffset - j, nbytes);
1777 			return nwritten;
1778 		}
1779 	}
1780 
1781 	/*
1782 	 * default (old) behavior, writing out only one block
1783 	 *
1784 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1785 	 */
1786 	nwritten = bp->b_bufsize;
1787 	bremfree(bp);
1788 	bawrite(bp);
1789 
1790 	return nwritten;
1791 }
1792 
1793 /*
1794  * getnewbuf:
1795  *
1796  *	Find and initialize a new buffer header, freeing up existing buffers
1797  *	in the bufqueues as necessary.  The new buffer is returned locked.
1798  *
1799  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1800  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1801  *
1802  *	We block if:
1803  *		We have insufficient buffer headers
1804  *		We have insufficient buffer space
1805  *		buffer_map is too fragmented ( space reservation fails )
1806  *		If we have to flush dirty buffers ( but we try to avoid this )
1807  *
1808  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1809  *	Instead we ask the buf daemon to do it for us.  We attempt to
1810  *	avoid piecemeal wakeups of the pageout daemon.
1811  *
1812  * MPALMOSTSAFE
1813  */
1814 static struct buf *
1815 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1816 {
1817 	struct buf *bp;
1818 	struct buf *nbp;
1819 	int defrag = 0;
1820 	int nqindex;
1821 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1822 	static int flushingbufs;
1823 
1824 	/*
1825 	 * We can't afford to block since we might be holding a vnode lock,
1826 	 * which may prevent system daemons from running.  We deal with
1827 	 * low-memory situations by proactively returning memory and running
1828 	 * async I/O rather then sync I/O.
1829 	 */
1830 
1831 	++getnewbufcalls;
1832 	--getnewbufrestarts;
1833 restart:
1834 	++getnewbufrestarts;
1835 
1836 	/*
1837 	 * Setup for scan.  If we do not have enough free buffers,
1838 	 * we setup a degenerate case that immediately fails.  Note
1839 	 * that if we are specially marked process, we are allowed to
1840 	 * dip into our reserves.
1841 	 *
1842 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1843 	 *
1844 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1845 	 * However, there are a number of cases (defragging, reusing, ...)
1846 	 * where we cannot backup.
1847 	 */
1848 	nqindex = BQUEUE_EMPTYKVA;
1849 	spin_lock_wr(&bufspin);
1850 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1851 
1852 	if (nbp == NULL) {
1853 		/*
1854 		 * If no EMPTYKVA buffers and we are either
1855 		 * defragging or reusing, locate a CLEAN buffer
1856 		 * to free or reuse.  If bufspace useage is low
1857 		 * skip this step so we can allocate a new buffer.
1858 		 */
1859 		if (defrag || bufspace >= lobufspace) {
1860 			nqindex = BQUEUE_CLEAN;
1861 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1862 		}
1863 
1864 		/*
1865 		 * If we could not find or were not allowed to reuse a
1866 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1867 		 * buffer.  We can only use an EMPTY buffer if allocating
1868 		 * its KVA would not otherwise run us out of buffer space.
1869 		 */
1870 		if (nbp == NULL && defrag == 0 &&
1871 		    bufspace + maxsize < hibufspace) {
1872 			nqindex = BQUEUE_EMPTY;
1873 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1874 		}
1875 	}
1876 
1877 	/*
1878 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1879 	 * depending.
1880 	 *
1881 	 * WARNING!  bufspin is held!
1882 	 */
1883 	while ((bp = nbp) != NULL) {
1884 		int qindex = nqindex;
1885 
1886 		nbp = TAILQ_NEXT(bp, b_freelist);
1887 
1888 		/*
1889 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1890 		 * cycles through the queue twice before being selected.
1891 		 */
1892 		if (qindex == BQUEUE_CLEAN &&
1893 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1894 			bp->b_flags |= B_AGE;
1895 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1896 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1897 			continue;
1898 		}
1899 
1900 		/*
1901 		 * Calculate next bp ( we can only use it if we do not block
1902 		 * or do other fancy things ).
1903 		 */
1904 		if (nbp == NULL) {
1905 			switch(qindex) {
1906 			case BQUEUE_EMPTY:
1907 				nqindex = BQUEUE_EMPTYKVA;
1908 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1909 					break;
1910 				/* fall through */
1911 			case BQUEUE_EMPTYKVA:
1912 				nqindex = BQUEUE_CLEAN;
1913 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1914 					break;
1915 				/* fall through */
1916 			case BQUEUE_CLEAN:
1917 				/*
1918 				 * nbp is NULL.
1919 				 */
1920 				break;
1921 			}
1922 		}
1923 
1924 		/*
1925 		 * Sanity Checks
1926 		 */
1927 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1928 
1929 		/*
1930 		 * Note: we no longer distinguish between VMIO and non-VMIO
1931 		 * buffers.
1932 		 */
1933 
1934 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1935 
1936 		/*
1937 		 * If we are defragging then we need a buffer with
1938 		 * b_kvasize != 0.  XXX this situation should no longer
1939 		 * occur, if defrag is non-zero the buffer's b_kvasize
1940 		 * should also be non-zero at this point.  XXX
1941 		 */
1942 		if (defrag && bp->b_kvasize == 0) {
1943 			kprintf("Warning: defrag empty buffer %p\n", bp);
1944 			continue;
1945 		}
1946 
1947 		/*
1948 		 * Start freeing the bp.  This is somewhat involved.  nbp
1949 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1950 		 * on the clean list must be disassociated from their
1951 		 * current vnode.  Buffers on the empty[kva] lists have
1952 		 * already been disassociated.
1953 		 */
1954 
1955 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1956 			spin_unlock_wr(&bufspin);
1957 			kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1958 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1959 			goto restart;
1960 		}
1961 		if (bp->b_qindex != qindex) {
1962 			spin_unlock_wr(&bufspin);
1963 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1964 			BUF_UNLOCK(bp);
1965 			goto restart;
1966 		}
1967 		bremfree_locked(bp);
1968 		spin_unlock_wr(&bufspin);
1969 
1970 		/*
1971 		 * Dependancies must be handled before we disassociate the
1972 		 * vnode.
1973 		 *
1974 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1975 		 * be immediately disassociated.  HAMMER then becomes
1976 		 * responsible for releasing the buffer.
1977 		 *
1978 		 * NOTE: bufspin is UNLOCKED now.
1979 		 */
1980 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1981 			get_mplock();
1982 			buf_deallocate(bp);
1983 			rel_mplock();
1984 			if (bp->b_flags & B_LOCKED) {
1985 				bqrelse(bp);
1986 				goto restart;
1987 			}
1988 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1989 		}
1990 
1991 		if (qindex == BQUEUE_CLEAN) {
1992 			get_mplock();
1993 			if (bp->b_flags & B_VMIO) {
1994 				get_mplock();
1995 				vfs_vmio_release(bp);
1996 				rel_mplock();
1997 			}
1998 			if (bp->b_vp)
1999 				brelvp(bp);
2000 			rel_mplock();
2001 		}
2002 
2003 		/*
2004 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2005 		 * the scan from this point on.
2006 		 *
2007 		 * Get the rest of the buffer freed up.  b_kva* is still
2008 		 * valid after this operation.
2009 		 */
2010 
2011 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
2012 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2013 
2014 		/*
2015 		 * critical section protection is not required when
2016 		 * scrapping a buffer's contents because it is already
2017 		 * wired.
2018 		 */
2019 		if (bp->b_bufsize) {
2020 			get_mplock();
2021 			allocbuf(bp, 0);
2022 			rel_mplock();
2023 		}
2024 
2025 		bp->b_flags = B_BNOCLIP;
2026 		bp->b_cmd = BUF_CMD_DONE;
2027 		bp->b_vp = NULL;
2028 		bp->b_error = 0;
2029 		bp->b_resid = 0;
2030 		bp->b_bcount = 0;
2031 		bp->b_xio.xio_npages = 0;
2032 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2033 		bp->b_act_count = ACT_INIT;
2034 		reinitbufbio(bp);
2035 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2036 		buf_dep_init(bp);
2037 		if (blkflags & GETBLK_BHEAVY)
2038 			bp->b_flags |= B_HEAVY;
2039 
2040 		/*
2041 		 * If we are defragging then free the buffer.
2042 		 */
2043 		if (defrag) {
2044 			bp->b_flags |= B_INVAL;
2045 			bfreekva(bp);
2046 			brelse(bp);
2047 			defrag = 0;
2048 			goto restart;
2049 		}
2050 
2051 		/*
2052 		 * If we are overcomitted then recover the buffer and its
2053 		 * KVM space.  This occurs in rare situations when multiple
2054 		 * processes are blocked in getnewbuf() or allocbuf().
2055 		 */
2056 		if (bufspace >= hibufspace)
2057 			flushingbufs = 1;
2058 		if (flushingbufs && bp->b_kvasize != 0) {
2059 			bp->b_flags |= B_INVAL;
2060 			bfreekva(bp);
2061 			brelse(bp);
2062 			goto restart;
2063 		}
2064 		if (bufspace < lobufspace)
2065 			flushingbufs = 0;
2066 		break;
2067 		/* NOT REACHED, bufspin not held */
2068 	}
2069 
2070 	/*
2071 	 * If we exhausted our list, sleep as appropriate.  We may have to
2072 	 * wakeup various daemons and write out some dirty buffers.
2073 	 *
2074 	 * Generally we are sleeping due to insufficient buffer space.
2075 	 *
2076 	 * NOTE: bufspin is held if bp is NULL, else it is not held.
2077 	 */
2078 	if (bp == NULL) {
2079 		int flags;
2080 		char *waitmsg;
2081 
2082 		spin_unlock_wr(&bufspin);
2083 		if (defrag) {
2084 			flags = VFS_BIO_NEED_BUFSPACE;
2085 			waitmsg = "nbufkv";
2086 		} else if (bufspace >= hibufspace) {
2087 			waitmsg = "nbufbs";
2088 			flags = VFS_BIO_NEED_BUFSPACE;
2089 		} else {
2090 			waitmsg = "newbuf";
2091 			flags = VFS_BIO_NEED_ANY;
2092 		}
2093 
2094 		needsbuffer |= flags;
2095 		bd_speedup();	/* heeeelp */
2096 		while (needsbuffer & flags) {
2097 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2098 				return (NULL);
2099 		}
2100 	} else {
2101 		/*
2102 		 * We finally have a valid bp.  We aren't quite out of the
2103 		 * woods, we still have to reserve kva space.  In order
2104 		 * to keep fragmentation sane we only allocate kva in
2105 		 * BKVASIZE chunks.
2106 		 *
2107 		 * (bufspin is not held)
2108 		 */
2109 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2110 
2111 		if (maxsize != bp->b_kvasize) {
2112 			vm_offset_t addr = 0;
2113 			int count;
2114 
2115 			bfreekva(bp);
2116 
2117 			get_mplock();
2118 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2119 			vm_map_lock(&buffer_map);
2120 
2121 			if (vm_map_findspace(&buffer_map,
2122 				    vm_map_min(&buffer_map), maxsize,
2123 				    maxsize, 0, &addr)) {
2124 				/*
2125 				 * Uh oh.  Buffer map is too fragmented.  We
2126 				 * must defragment the map.
2127 				 */
2128 				vm_map_unlock(&buffer_map);
2129 				vm_map_entry_release(count);
2130 				++bufdefragcnt;
2131 				defrag = 1;
2132 				bp->b_flags |= B_INVAL;
2133 				rel_mplock();
2134 				brelse(bp);
2135 				goto restart;
2136 			}
2137 			if (addr) {
2138 				vm_map_insert(&buffer_map, &count,
2139 					NULL, 0,
2140 					addr, addr + maxsize,
2141 					VM_MAPTYPE_NORMAL,
2142 					VM_PROT_ALL, VM_PROT_ALL,
2143 					MAP_NOFAULT);
2144 
2145 				bp->b_kvabase = (caddr_t) addr;
2146 				bp->b_kvasize = maxsize;
2147 				bufspace += bp->b_kvasize;
2148 				++bufreusecnt;
2149 			}
2150 			vm_map_unlock(&buffer_map);
2151 			vm_map_entry_release(count);
2152 			rel_mplock();
2153 		}
2154 		bp->b_data = bp->b_kvabase;
2155 	}
2156 	return(bp);
2157 }
2158 
2159 /*
2160  * This routine is called in an emergency to recover VM pages from the
2161  * buffer cache by cashing in clean buffers.  The idea is to recover
2162  * enough pages to be able to satisfy a stuck bio_page_alloc().
2163  */
2164 static int
2165 recoverbufpages(void)
2166 {
2167 	struct buf *bp;
2168 	int bytes = 0;
2169 
2170 	++recoverbufcalls;
2171 
2172 	spin_lock_wr(&bufspin);
2173 	while (bytes < MAXBSIZE) {
2174 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2175 		if (bp == NULL)
2176 			break;
2177 
2178 		/*
2179 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2180 		 * cycles through the queue twice before being selected.
2181 		 */
2182 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2183 			bp->b_flags |= B_AGE;
2184 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2185 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2186 					  bp, b_freelist);
2187 			continue;
2188 		}
2189 
2190 		/*
2191 		 * Sanity Checks
2192 		 */
2193 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2194 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2195 
2196 		/*
2197 		 * Start freeing the bp.  This is somewhat involved.
2198 		 *
2199 		 * Buffers on the clean list must be disassociated from
2200 		 * their current vnode
2201 		 */
2202 
2203 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2204 			kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2205 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2206 			continue;
2207 		}
2208 		if (bp->b_qindex != BQUEUE_CLEAN) {
2209 			kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2210 			BUF_UNLOCK(bp);
2211 			continue;
2212 		}
2213 		bremfree_locked(bp);
2214 		spin_unlock_wr(&bufspin);
2215 
2216 		/*
2217 		 * Dependancies must be handled before we disassociate the
2218 		 * vnode.
2219 		 *
2220 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2221 		 * be immediately disassociated.  HAMMER then becomes
2222 		 * responsible for releasing the buffer.
2223 		 */
2224 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2225 			buf_deallocate(bp);
2226 			if (bp->b_flags & B_LOCKED) {
2227 				bqrelse(bp);
2228 				spin_lock_wr(&bufspin);
2229 				continue;
2230 			}
2231 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2232 		}
2233 
2234 		bytes += bp->b_bufsize;
2235 
2236 		get_mplock();
2237 		if (bp->b_flags & B_VMIO) {
2238 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2239 			vfs_vmio_release(bp);
2240 		}
2241 		if (bp->b_vp)
2242 			brelvp(bp);
2243 
2244 		KKASSERT(bp->b_vp == NULL);
2245 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2246 
2247 		/*
2248 		 * critical section protection is not required when
2249 		 * scrapping a buffer's contents because it is already
2250 		 * wired.
2251 		 */
2252 		if (bp->b_bufsize)
2253 			allocbuf(bp, 0);
2254 		rel_mplock();
2255 
2256 		bp->b_flags = B_BNOCLIP;
2257 		bp->b_cmd = BUF_CMD_DONE;
2258 		bp->b_vp = NULL;
2259 		bp->b_error = 0;
2260 		bp->b_resid = 0;
2261 		bp->b_bcount = 0;
2262 		bp->b_xio.xio_npages = 0;
2263 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2264 		reinitbufbio(bp);
2265 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2266 		buf_dep_init(bp);
2267 		bp->b_flags |= B_INVAL;
2268 		/* bfreekva(bp); */
2269 		brelse(bp);
2270 		spin_lock_wr(&bufspin);
2271 	}
2272 	spin_unlock_wr(&bufspin);
2273 	return(bytes);
2274 }
2275 
2276 /*
2277  * buf_daemon:
2278  *
2279  *	Buffer flushing daemon.  Buffers are normally flushed by the
2280  *	update daemon but if it cannot keep up this process starts to
2281  *	take the load in an attempt to prevent getnewbuf() from blocking.
2282  *
2283  *	Once a flush is initiated it does not stop until the number
2284  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2285  *	waiting at the mid-point.
2286  */
2287 
2288 static struct kproc_desc buf_kp = {
2289 	"bufdaemon",
2290 	buf_daemon,
2291 	&bufdaemon_td
2292 };
2293 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2294 	kproc_start, &buf_kp)
2295 
2296 static struct kproc_desc bufhw_kp = {
2297 	"bufdaemon_hw",
2298 	buf_daemon_hw,
2299 	&bufdaemonhw_td
2300 };
2301 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2302 	kproc_start, &bufhw_kp)
2303 
2304 static void
2305 buf_daemon(void)
2306 {
2307 	int limit;
2308 
2309 	/*
2310 	 * This process needs to be suspended prior to shutdown sync.
2311 	 */
2312 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2313 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2314 	curthread->td_flags |= TDF_SYSTHREAD;
2315 
2316 	/*
2317 	 * This process is allowed to take the buffer cache to the limit
2318 	 */
2319 	crit_enter();
2320 
2321 	for (;;) {
2322 		kproc_suspend_loop();
2323 
2324 		/*
2325 		 * Do the flush as long as the number of dirty buffers
2326 		 * (including those running) exceeds lodirtybufspace.
2327 		 *
2328 		 * When flushing limit running I/O to hirunningspace
2329 		 * Do the flush.  Limit the amount of in-transit I/O we
2330 		 * allow to build up, otherwise we would completely saturate
2331 		 * the I/O system.  Wakeup any waiting processes before we
2332 		 * normally would so they can run in parallel with our drain.
2333 		 *
2334 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2335 		 * but because we split the operation into two threads we
2336 		 * have to cut it in half for each thread.
2337 		 */
2338 		waitrunningbufspace();
2339 		limit = lodirtybufspace / 2;
2340 		while (runningbufspace + dirtybufspace > limit ||
2341 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2342 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2343 				break;
2344 			if (runningbufspace < hirunningspace)
2345 				continue;
2346 			waitrunningbufspace();
2347 		}
2348 
2349 		/*
2350 		 * We reached our low water mark, reset the
2351 		 * request and sleep until we are needed again.
2352 		 * The sleep is just so the suspend code works.
2353 		 */
2354 		spin_lock_wr(&needsbuffer_spin);
2355 		if (bd_request == 0) {
2356 			ssleep(&bd_request, &needsbuffer_spin, 0,
2357 			       "psleep", hz);
2358 		}
2359 		bd_request = 0;
2360 		spin_unlock_wr(&needsbuffer_spin);
2361 	}
2362 }
2363 
2364 static void
2365 buf_daemon_hw(void)
2366 {
2367 	int limit;
2368 
2369 	/*
2370 	 * This process needs to be suspended prior to shutdown sync.
2371 	 */
2372 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2373 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2374 	curthread->td_flags |= TDF_SYSTHREAD;
2375 
2376 	/*
2377 	 * This process is allowed to take the buffer cache to the limit
2378 	 */
2379 	crit_enter();
2380 
2381 	for (;;) {
2382 		kproc_suspend_loop();
2383 
2384 		/*
2385 		 * Do the flush.  Limit the amount of in-transit I/O we
2386 		 * allow to build up, otherwise we would completely saturate
2387 		 * the I/O system.  Wakeup any waiting processes before we
2388 		 * normally would so they can run in parallel with our drain.
2389 		 *
2390 		 * Once we decide to flush push the queued I/O up to
2391 		 * hirunningspace in order to trigger bursting by the bioq
2392 		 * subsystem.
2393 		 *
2394 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2395 		 * but because we split the operation into two threads we
2396 		 * have to cut it in half for each thread.
2397 		 */
2398 		waitrunningbufspace();
2399 		limit = lodirtybufspace / 2;
2400 		while (runningbufspace + dirtybufspacehw > limit ||
2401 		       dirtybufcounthw >= nbuf / 2) {
2402 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2403 				break;
2404 			if (runningbufspace < hirunningspace)
2405 				continue;
2406 			waitrunningbufspace();
2407 		}
2408 
2409 		/*
2410 		 * We reached our low water mark, reset the
2411 		 * request and sleep until we are needed again.
2412 		 * The sleep is just so the suspend code works.
2413 		 */
2414 		spin_lock_wr(&needsbuffer_spin);
2415 		if (bd_request_hw == 0) {
2416 			ssleep(&bd_request_hw, &needsbuffer_spin, 0,
2417 			       "psleep", hz);
2418 		}
2419 		bd_request_hw = 0;
2420 		spin_unlock_wr(&needsbuffer_spin);
2421 	}
2422 }
2423 
2424 /*
2425  * flushbufqueues:
2426  *
2427  *	Try to flush a buffer in the dirty queue.  We must be careful to
2428  *	free up B_INVAL buffers instead of write them, which NFS is
2429  *	particularly sensitive to.
2430  *
2431  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2432  *	that we really want to try to get the buffer out and reuse it
2433  *	due to the write load on the machine.
2434  */
2435 static int
2436 flushbufqueues(bufq_type_t q)
2437 {
2438 	struct buf *bp;
2439 	int r = 0;
2440 	int spun;
2441 
2442 	spin_lock_wr(&bufspin);
2443 	spun = 1;
2444 
2445 	bp = TAILQ_FIRST(&bufqueues[q]);
2446 	while (bp) {
2447 		KASSERT((bp->b_flags & B_DELWRI),
2448 			("unexpected clean buffer %p", bp));
2449 
2450 		if (bp->b_flags & B_DELWRI) {
2451 			if (bp->b_flags & B_INVAL) {
2452 				spin_unlock_wr(&bufspin);
2453 				spun = 0;
2454 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2455 					panic("flushbufqueues: locked buf");
2456 				bremfree(bp);
2457 				brelse(bp);
2458 				++r;
2459 				break;
2460 			}
2461 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2462 			    (bp->b_flags & B_DEFERRED) == 0 &&
2463 			    buf_countdeps(bp, 0)) {
2464 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2465 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2466 						  b_freelist);
2467 				bp->b_flags |= B_DEFERRED;
2468 				bp = TAILQ_FIRST(&bufqueues[q]);
2469 				continue;
2470 			}
2471 
2472 			/*
2473 			 * Only write it out if we can successfully lock
2474 			 * it.  If the buffer has a dependancy,
2475 			 * buf_checkwrite must also return 0 for us to
2476 			 * be able to initate the write.
2477 			 *
2478 			 * If the buffer is flagged B_ERROR it may be
2479 			 * requeued over and over again, we try to
2480 			 * avoid a live lock.
2481 			 */
2482 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2483 				spin_unlock_wr(&bufspin);
2484 				spun = 0;
2485 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2486 				    buf_checkwrite(bp)) {
2487 					bremfree(bp);
2488 					brelse(bp);
2489 				} else if (bp->b_flags & B_ERROR) {
2490 					tsleep(bp, 0, "bioer", 1);
2491 					bp->b_flags &= ~B_AGE;
2492 					vfs_bio_awrite(bp);
2493 				} else {
2494 					bp->b_flags |= B_AGE;
2495 					vfs_bio_awrite(bp);
2496 				}
2497 				++r;
2498 				break;
2499 			}
2500 		}
2501 		bp = TAILQ_NEXT(bp, b_freelist);
2502 	}
2503 	if (spun)
2504 		spin_unlock_wr(&bufspin);
2505 	return (r);
2506 }
2507 
2508 /*
2509  * inmem:
2510  *
2511  *	Returns true if no I/O is needed to access the associated VM object.
2512  *	This is like findblk except it also hunts around in the VM system for
2513  *	the data.
2514  *
2515  *	Note that we ignore vm_page_free() races from interrupts against our
2516  *	lookup, since if the caller is not protected our return value will not
2517  *	be any more valid then otherwise once we exit the critical section.
2518  */
2519 int
2520 inmem(struct vnode *vp, off_t loffset)
2521 {
2522 	vm_object_t obj;
2523 	vm_offset_t toff, tinc, size;
2524 	vm_page_t m;
2525 
2526 	if (findblk(vp, loffset, FINDBLK_TEST))
2527 		return 1;
2528 	if (vp->v_mount == NULL)
2529 		return 0;
2530 	if ((obj = vp->v_object) == NULL)
2531 		return 0;
2532 
2533 	size = PAGE_SIZE;
2534 	if (size > vp->v_mount->mnt_stat.f_iosize)
2535 		size = vp->v_mount->mnt_stat.f_iosize;
2536 
2537 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2538 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2539 		if (m == NULL)
2540 			return 0;
2541 		tinc = size;
2542 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2543 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2544 		if (vm_page_is_valid(m,
2545 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2546 			return 0;
2547 	}
2548 	return 1;
2549 }
2550 
2551 /*
2552  * findblk:
2553  *
2554  *	Locate and return the specified buffer.  Unless flagged otherwise,
2555  *	a locked buffer will be returned if it exists or NULL if it does not.
2556  *
2557  *	findblk()'d buffers are still on the bufqueues and if you intend
2558  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2559  *	and possibly do other stuff to it.
2560  *
2561  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2562  *			  for locking the buffer and ensuring that it remains
2563  *			  the desired buffer after locking.
2564  *
2565  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2566  *			  to acquire the lock we return NULL, even if the
2567  *			  buffer exists.
2568  *
2569  *	(0)		- Lock the buffer blocking.
2570  *
2571  * MPSAFE
2572  */
2573 struct buf *
2574 findblk(struct vnode *vp, off_t loffset, int flags)
2575 {
2576 	lwkt_tokref vlock;
2577 	struct buf *bp;
2578 	int lkflags;
2579 
2580 	lkflags = LK_EXCLUSIVE;
2581 	if (flags & FINDBLK_NBLOCK)
2582 		lkflags |= LK_NOWAIT;
2583 
2584 	for (;;) {
2585 		lwkt_gettoken(&vlock, &vp->v_token);
2586 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2587 		lwkt_reltoken(&vlock);
2588 		if (bp == NULL || (flags & FINDBLK_TEST))
2589 			break;
2590 		if (BUF_LOCK(bp, lkflags)) {
2591 			bp = NULL;
2592 			break;
2593 		}
2594 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2595 			break;
2596 		BUF_UNLOCK(bp);
2597 	}
2598 	return(bp);
2599 }
2600 
2601 /*
2602  * getcacheblk:
2603  *
2604  *	Similar to getblk() except only returns the buffer if it is
2605  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2606  *	is returned.
2607  *
2608  *	If B_RAM is set the buffer might be just fine, but we return
2609  *	NULL anyway because we want the code to fall through to the
2610  *	cluster read.  Otherwise read-ahead breaks.
2611  */
2612 struct buf *
2613 getcacheblk(struct vnode *vp, off_t loffset)
2614 {
2615 	struct buf *bp;
2616 
2617 	bp = findblk(vp, loffset, 0);
2618 	if (bp) {
2619 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2620 			bp->b_flags &= ~B_AGE;
2621 			bremfree(bp);
2622 		} else {
2623 			BUF_UNLOCK(bp);
2624 			bp = NULL;
2625 		}
2626 	}
2627 	return (bp);
2628 }
2629 
2630 /*
2631  * getblk:
2632  *
2633  *	Get a block given a specified block and offset into a file/device.
2634  * 	B_INVAL may or may not be set on return.  The caller should clear
2635  *	B_INVAL prior to initiating a READ.
2636  *
2637  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2638  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2639  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2640  *	without doing any of those things the system will likely believe
2641  *	the buffer to be valid (especially if it is not B_VMIO), and the
2642  *	next getblk() will return the buffer with B_CACHE set.
2643  *
2644  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2645  *	an existing buffer.
2646  *
2647  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2648  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2649  *	and then cleared based on the backing VM.  If the previous buffer is
2650  *	non-0-sized but invalid, B_CACHE will be cleared.
2651  *
2652  *	If getblk() must create a new buffer, the new buffer is returned with
2653  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2654  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2655  *	backing VM.
2656  *
2657  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2658  *	B_CACHE bit is clear.
2659  *
2660  *	What this means, basically, is that the caller should use B_CACHE to
2661  *	determine whether the buffer is fully valid or not and should clear
2662  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2663  *	the buffer by loading its data area with something, the caller needs
2664  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2665  *	the caller should set B_CACHE ( as an optimization ), else the caller
2666  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2667  *	a write attempt or if it was a successfull read.  If the caller
2668  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2669  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2670  *
2671  *	getblk flags:
2672  *
2673  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2674  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2675  *
2676  * MPALMOSTSAFE
2677  */
2678 struct buf *
2679 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2680 {
2681 	struct buf *bp;
2682 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2683 	int error;
2684 	int lkflags;
2685 
2686 	if (size > MAXBSIZE)
2687 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2688 	if (vp->v_object == NULL)
2689 		panic("getblk: vnode %p has no object!", vp);
2690 
2691 loop:
2692 	if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2693 		/*
2694 		 * The buffer was found in the cache, but we need to lock it.
2695 		 * Even with LK_NOWAIT the lockmgr may break our critical
2696 		 * section, so double-check the validity of the buffer
2697 		 * once the lock has been obtained.
2698 		 */
2699 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2700 			if (blkflags & GETBLK_NOWAIT)
2701 				return(NULL);
2702 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2703 			if (blkflags & GETBLK_PCATCH)
2704 				lkflags |= LK_PCATCH;
2705 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2706 			if (error) {
2707 				if (error == ENOLCK)
2708 					goto loop;
2709 				return (NULL);
2710 			}
2711 			/* buffer may have changed on us */
2712 		}
2713 
2714 		/*
2715 		 * Once the buffer has been locked, make sure we didn't race
2716 		 * a buffer recyclement.  Buffers that are no longer hashed
2717 		 * will have b_vp == NULL, so this takes care of that check
2718 		 * as well.
2719 		 */
2720 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2721 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2722 				"was recycled\n",
2723 				bp, vp, (long long)loffset);
2724 			BUF_UNLOCK(bp);
2725 			goto loop;
2726 		}
2727 
2728 		/*
2729 		 * If SZMATCH any pre-existing buffer must be of the requested
2730 		 * size or NULL is returned.  The caller absolutely does not
2731 		 * want getblk() to bwrite() the buffer on a size mismatch.
2732 		 */
2733 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2734 			BUF_UNLOCK(bp);
2735 			return(NULL);
2736 		}
2737 
2738 		/*
2739 		 * All vnode-based buffers must be backed by a VM object.
2740 		 */
2741 		KKASSERT(bp->b_flags & B_VMIO);
2742 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2743 		bp->b_flags &= ~B_AGE;
2744 
2745 		/*
2746 		 * Make sure that B_INVAL buffers do not have a cached
2747 		 * block number translation.
2748 		 */
2749 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2750 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2751 				" did not have cleared bio_offset cache\n",
2752 				bp, vp, (long long)loffset);
2753 			clearbiocache(&bp->b_bio2);
2754 		}
2755 
2756 		/*
2757 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2758 		 * invalid.
2759 		 */
2760 		if (bp->b_flags & B_INVAL)
2761 			bp->b_flags &= ~B_CACHE;
2762 		bremfree(bp);
2763 
2764 		/*
2765 		 * Any size inconsistancy with a dirty buffer or a buffer
2766 		 * with a softupdates dependancy must be resolved.  Resizing
2767 		 * the buffer in such circumstances can lead to problems.
2768 		 *
2769 		 * Dirty or dependant buffers are written synchronously.
2770 		 * Other types of buffers are simply released and
2771 		 * reconstituted as they may be backed by valid, dirty VM
2772 		 * pages (but not marked B_DELWRI).
2773 		 *
2774 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2775 		 * and may be left over from a prior truncation (and thus
2776 		 * no longer represent the actual EOF point), so we
2777 		 * definitely do not want to B_NOCACHE the backing store.
2778 		 */
2779 		if (size != bp->b_bcount) {
2780 			get_mplock();
2781 			if (bp->b_flags & B_DELWRI) {
2782 				bp->b_flags |= B_RELBUF;
2783 				bwrite(bp);
2784 			} else if (LIST_FIRST(&bp->b_dep)) {
2785 				bp->b_flags |= B_RELBUF;
2786 				bwrite(bp);
2787 			} else {
2788 				bp->b_flags |= B_RELBUF;
2789 				brelse(bp);
2790 			}
2791 			rel_mplock();
2792 			goto loop;
2793 		}
2794 		KKASSERT(size <= bp->b_kvasize);
2795 		KASSERT(bp->b_loffset != NOOFFSET,
2796 			("getblk: no buffer offset"));
2797 
2798 		/*
2799 		 * A buffer with B_DELWRI set and B_CACHE clear must
2800 		 * be committed before we can return the buffer in
2801 		 * order to prevent the caller from issuing a read
2802 		 * ( due to B_CACHE not being set ) and overwriting
2803 		 * it.
2804 		 *
2805 		 * Most callers, including NFS and FFS, need this to
2806 		 * operate properly either because they assume they
2807 		 * can issue a read if B_CACHE is not set, or because
2808 		 * ( for example ) an uncached B_DELWRI might loop due
2809 		 * to softupdates re-dirtying the buffer.  In the latter
2810 		 * case, B_CACHE is set after the first write completes,
2811 		 * preventing further loops.
2812 		 *
2813 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2814 		 * above while extending the buffer, we cannot allow the
2815 		 * buffer to remain with B_CACHE set after the write
2816 		 * completes or it will represent a corrupt state.  To
2817 		 * deal with this we set B_NOCACHE to scrap the buffer
2818 		 * after the write.
2819 		 *
2820 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2821 		 *     I'm not even sure this state is still possible
2822 		 *     now that getblk() writes out any dirty buffers
2823 		 *     on size changes.
2824 		 *
2825 		 * We might be able to do something fancy, like setting
2826 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2827 		 * so the below call doesn't set B_CACHE, but that gets real
2828 		 * confusing.  This is much easier.
2829 		 */
2830 
2831 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2832 			get_mplock();
2833 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2834 				"and CACHE clear, b_flags %08x\n",
2835 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
2836 			bp->b_flags |= B_NOCACHE;
2837 			bwrite(bp);
2838 			rel_mplock();
2839 			goto loop;
2840 		}
2841 	} else {
2842 		/*
2843 		 * Buffer is not in-core, create new buffer.  The buffer
2844 		 * returned by getnewbuf() is locked.  Note that the returned
2845 		 * buffer is also considered valid (not marked B_INVAL).
2846 		 *
2847 		 * Calculating the offset for the I/O requires figuring out
2848 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2849 		 * the mount's f_iosize otherwise.  If the vnode does not
2850 		 * have an associated mount we assume that the passed size is
2851 		 * the block size.
2852 		 *
2853 		 * Note that vn_isdisk() cannot be used here since it may
2854 		 * return a failure for numerous reasons.   Note that the
2855 		 * buffer size may be larger then the block size (the caller
2856 		 * will use block numbers with the proper multiple).  Beware
2857 		 * of using any v_* fields which are part of unions.  In
2858 		 * particular, in DragonFly the mount point overloading
2859 		 * mechanism uses the namecache only and the underlying
2860 		 * directory vnode is not a special case.
2861 		 */
2862 		int bsize, maxsize;
2863 
2864 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2865 			bsize = DEV_BSIZE;
2866 		else if (vp->v_mount)
2867 			bsize = vp->v_mount->mnt_stat.f_iosize;
2868 		else
2869 			bsize = size;
2870 
2871 		maxsize = size + (loffset & PAGE_MASK);
2872 		maxsize = imax(maxsize, bsize);
2873 
2874 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2875 		if (bp == NULL) {
2876 			if (slpflags || slptimeo)
2877 				return NULL;
2878 			goto loop;
2879 		}
2880 
2881 		/*
2882 		 * Atomically insert the buffer into the hash, so that it can
2883 		 * be found by findblk().
2884 		 *
2885 		 * If bgetvp() returns non-zero a collision occured, and the
2886 		 * bp will not be associated with the vnode.
2887 		 *
2888 		 * Make sure the translation layer has been cleared.
2889 		 */
2890 		bp->b_loffset = loffset;
2891 		bp->b_bio2.bio_offset = NOOFFSET;
2892 		/* bp->b_bio2.bio_next = NULL; */
2893 
2894 		if (bgetvp(vp, bp)) {
2895 			bp->b_flags |= B_INVAL;
2896 			brelse(bp);
2897 			goto loop;
2898 		}
2899 
2900 		/*
2901 		 * All vnode-based buffers must be backed by a VM object.
2902 		 */
2903 		KKASSERT(vp->v_object != NULL);
2904 		bp->b_flags |= B_VMIO;
2905 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2906 
2907 		get_mplock();
2908 		allocbuf(bp, size);
2909 		rel_mplock();
2910 	}
2911 	return (bp);
2912 }
2913 
2914 /*
2915  * regetblk(bp)
2916  *
2917  * Reacquire a buffer that was previously released to the locked queue,
2918  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2919  * set B_LOCKED (which handles the acquisition race).
2920  *
2921  * To this end, either B_LOCKED must be set or the dependancy list must be
2922  * non-empty.
2923  *
2924  * MPSAFE
2925  */
2926 void
2927 regetblk(struct buf *bp)
2928 {
2929 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2930 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2931 	bremfree(bp);
2932 }
2933 
2934 /*
2935  * geteblk:
2936  *
2937  *	Get an empty, disassociated buffer of given size.  The buffer is
2938  *	initially set to B_INVAL.
2939  *
2940  *	critical section protection is not required for the allocbuf()
2941  *	call because races are impossible here.
2942  *
2943  * MPALMOSTSAFE
2944  */
2945 struct buf *
2946 geteblk(int size)
2947 {
2948 	struct buf *bp;
2949 	int maxsize;
2950 
2951 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2952 
2953 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2954 		;
2955 	get_mplock();
2956 	allocbuf(bp, size);
2957 	rel_mplock();
2958 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2959 	return (bp);
2960 }
2961 
2962 
2963 /*
2964  * allocbuf:
2965  *
2966  *	This code constitutes the buffer memory from either anonymous system
2967  *	memory (in the case of non-VMIO operations) or from an associated
2968  *	VM object (in the case of VMIO operations).  This code is able to
2969  *	resize a buffer up or down.
2970  *
2971  *	Note that this code is tricky, and has many complications to resolve
2972  *	deadlock or inconsistant data situations.  Tread lightly!!!
2973  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2974  *	the caller.  Calling this code willy nilly can result in the loss of data.
2975  *
2976  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2977  *	B_CACHE for the non-VMIO case.
2978  *
2979  *	This routine does not need to be called from a critical section but you
2980  *	must own the buffer.
2981  *
2982  * NOTMPSAFE
2983  */
2984 int
2985 allocbuf(struct buf *bp, int size)
2986 {
2987 	int newbsize, mbsize;
2988 	int i;
2989 
2990 	if (BUF_REFCNT(bp) == 0)
2991 		panic("allocbuf: buffer not busy");
2992 
2993 	if (bp->b_kvasize < size)
2994 		panic("allocbuf: buffer too small");
2995 
2996 	if ((bp->b_flags & B_VMIO) == 0) {
2997 		caddr_t origbuf;
2998 		int origbufsize;
2999 		/*
3000 		 * Just get anonymous memory from the kernel.  Don't
3001 		 * mess with B_CACHE.
3002 		 */
3003 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3004 		if (bp->b_flags & B_MALLOC)
3005 			newbsize = mbsize;
3006 		else
3007 			newbsize = round_page(size);
3008 
3009 		if (newbsize < bp->b_bufsize) {
3010 			/*
3011 			 * Malloced buffers are not shrunk
3012 			 */
3013 			if (bp->b_flags & B_MALLOC) {
3014 				if (newbsize) {
3015 					bp->b_bcount = size;
3016 				} else {
3017 					kfree(bp->b_data, M_BIOBUF);
3018 					if (bp->b_bufsize) {
3019 						bufmallocspace -= bp->b_bufsize;
3020 						bufspacewakeup();
3021 						bp->b_bufsize = 0;
3022 					}
3023 					bp->b_data = bp->b_kvabase;
3024 					bp->b_bcount = 0;
3025 					bp->b_flags &= ~B_MALLOC;
3026 				}
3027 				return 1;
3028 			}
3029 			vm_hold_free_pages(
3030 			    bp,
3031 			    (vm_offset_t) bp->b_data + newbsize,
3032 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3033 		} else if (newbsize > bp->b_bufsize) {
3034 			/*
3035 			 * We only use malloced memory on the first allocation.
3036 			 * and revert to page-allocated memory when the buffer
3037 			 * grows.
3038 			 */
3039 			if ((bufmallocspace < maxbufmallocspace) &&
3040 				(bp->b_bufsize == 0) &&
3041 				(mbsize <= PAGE_SIZE/2)) {
3042 
3043 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3044 				bp->b_bufsize = mbsize;
3045 				bp->b_bcount = size;
3046 				bp->b_flags |= B_MALLOC;
3047 				bufmallocspace += mbsize;
3048 				return 1;
3049 			}
3050 			origbuf = NULL;
3051 			origbufsize = 0;
3052 			/*
3053 			 * If the buffer is growing on its other-than-first
3054 			 * allocation, then we revert to the page-allocation
3055 			 * scheme.
3056 			 */
3057 			if (bp->b_flags & B_MALLOC) {
3058 				origbuf = bp->b_data;
3059 				origbufsize = bp->b_bufsize;
3060 				bp->b_data = bp->b_kvabase;
3061 				if (bp->b_bufsize) {
3062 					bufmallocspace -= bp->b_bufsize;
3063 					bufspacewakeup();
3064 					bp->b_bufsize = 0;
3065 				}
3066 				bp->b_flags &= ~B_MALLOC;
3067 				newbsize = round_page(newbsize);
3068 			}
3069 			vm_hold_load_pages(
3070 			    bp,
3071 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3072 			    (vm_offset_t) bp->b_data + newbsize);
3073 			if (origbuf) {
3074 				bcopy(origbuf, bp->b_data, origbufsize);
3075 				kfree(origbuf, M_BIOBUF);
3076 			}
3077 		}
3078 	} else {
3079 		vm_page_t m;
3080 		int desiredpages;
3081 
3082 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3083 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3084 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3085 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3086 
3087 		if (bp->b_flags & B_MALLOC)
3088 			panic("allocbuf: VMIO buffer can't be malloced");
3089 		/*
3090 		 * Set B_CACHE initially if buffer is 0 length or will become
3091 		 * 0-length.
3092 		 */
3093 		if (size == 0 || bp->b_bufsize == 0)
3094 			bp->b_flags |= B_CACHE;
3095 
3096 		if (newbsize < bp->b_bufsize) {
3097 			/*
3098 			 * DEV_BSIZE aligned new buffer size is less then the
3099 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3100 			 * if we have to remove any pages.
3101 			 */
3102 			if (desiredpages < bp->b_xio.xio_npages) {
3103 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3104 					/*
3105 					 * the page is not freed here -- it
3106 					 * is the responsibility of
3107 					 * vnode_pager_setsize
3108 					 */
3109 					m = bp->b_xio.xio_pages[i];
3110 					KASSERT(m != bogus_page,
3111 					    ("allocbuf: bogus page found"));
3112 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3113 						;
3114 
3115 					bp->b_xio.xio_pages[i] = NULL;
3116 					vm_page_unwire(m, 0);
3117 				}
3118 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3119 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3120 				bp->b_xio.xio_npages = desiredpages;
3121 			}
3122 		} else if (size > bp->b_bcount) {
3123 			/*
3124 			 * We are growing the buffer, possibly in a
3125 			 * byte-granular fashion.
3126 			 */
3127 			struct vnode *vp;
3128 			vm_object_t obj;
3129 			vm_offset_t toff;
3130 			vm_offset_t tinc;
3131 
3132 			/*
3133 			 * Step 1, bring in the VM pages from the object,
3134 			 * allocating them if necessary.  We must clear
3135 			 * B_CACHE if these pages are not valid for the
3136 			 * range covered by the buffer.
3137 			 *
3138 			 * critical section protection is required to protect
3139 			 * against interrupts unbusying and freeing pages
3140 			 * between our vm_page_lookup() and our
3141 			 * busycheck/wiring call.
3142 			 */
3143 			vp = bp->b_vp;
3144 			obj = vp->v_object;
3145 
3146 			crit_enter();
3147 			while (bp->b_xio.xio_npages < desiredpages) {
3148 				vm_page_t m;
3149 				vm_pindex_t pi;
3150 
3151 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3152 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3153 					/*
3154 					 * note: must allocate system pages
3155 					 * since blocking here could intefere
3156 					 * with paging I/O, no matter which
3157 					 * process we are.
3158 					 */
3159 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3160 					if (m) {
3161 						vm_page_wire(m);
3162 						vm_page_wakeup(m);
3163 						bp->b_flags &= ~B_CACHE;
3164 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3165 						++bp->b_xio.xio_npages;
3166 					}
3167 					continue;
3168 				}
3169 
3170 				/*
3171 				 * We found a page.  If we have to sleep on it,
3172 				 * retry because it might have gotten freed out
3173 				 * from under us.
3174 				 *
3175 				 * We can only test PG_BUSY here.  Blocking on
3176 				 * m->busy might lead to a deadlock:
3177 				 *
3178 				 *  vm_fault->getpages->cluster_read->allocbuf
3179 				 *
3180 				 */
3181 
3182 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3183 					continue;
3184 				vm_page_flag_clear(m, PG_ZERO);
3185 				vm_page_wire(m);
3186 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3187 				++bp->b_xio.xio_npages;
3188 				if (bp->b_act_count < m->act_count)
3189 					bp->b_act_count = m->act_count;
3190 			}
3191 			crit_exit();
3192 
3193 			/*
3194 			 * Step 2.  We've loaded the pages into the buffer,
3195 			 * we have to figure out if we can still have B_CACHE
3196 			 * set.  Note that B_CACHE is set according to the
3197 			 * byte-granular range ( bcount and size ), not the
3198 			 * aligned range ( newbsize ).
3199 			 *
3200 			 * The VM test is against m->valid, which is DEV_BSIZE
3201 			 * aligned.  Needless to say, the validity of the data
3202 			 * needs to also be DEV_BSIZE aligned.  Note that this
3203 			 * fails with NFS if the server or some other client
3204 			 * extends the file's EOF.  If our buffer is resized,
3205 			 * B_CACHE may remain set! XXX
3206 			 */
3207 
3208 			toff = bp->b_bcount;
3209 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3210 
3211 			while ((bp->b_flags & B_CACHE) && toff < size) {
3212 				vm_pindex_t pi;
3213 
3214 				if (tinc > (size - toff))
3215 					tinc = size - toff;
3216 
3217 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3218 				    PAGE_SHIFT;
3219 
3220 				vfs_buf_test_cache(
3221 				    bp,
3222 				    bp->b_loffset,
3223 				    toff,
3224 				    tinc,
3225 				    bp->b_xio.xio_pages[pi]
3226 				);
3227 				toff += tinc;
3228 				tinc = PAGE_SIZE;
3229 			}
3230 
3231 			/*
3232 			 * Step 3, fixup the KVM pmap.  Remember that
3233 			 * bp->b_data is relative to bp->b_loffset, but
3234 			 * bp->b_loffset may be offset into the first page.
3235 			 */
3236 
3237 			bp->b_data = (caddr_t)
3238 			    trunc_page((vm_offset_t)bp->b_data);
3239 			pmap_qenter(
3240 			    (vm_offset_t)bp->b_data,
3241 			    bp->b_xio.xio_pages,
3242 			    bp->b_xio.xio_npages
3243 			);
3244 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3245 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3246 		}
3247 	}
3248 
3249 	/* adjust space use on already-dirty buffer */
3250 	if (bp->b_flags & B_DELWRI) {
3251 		dirtybufspace += newbsize - bp->b_bufsize;
3252 		if (bp->b_flags & B_HEAVY)
3253 			dirtybufspacehw += newbsize - bp->b_bufsize;
3254 	}
3255 	if (newbsize < bp->b_bufsize)
3256 		bufspacewakeup();
3257 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3258 	bp->b_bcount = size;		/* requested buffer size	*/
3259 	return 1;
3260 }
3261 
3262 /*
3263  * biowait:
3264  *
3265  *	Wait for buffer I/O completion, returning error status. B_EINTR
3266  *	is converted into an EINTR error but not cleared (since a chain
3267  *	of biowait() calls may occur).
3268  *
3269  *	On return bpdone() will have been called but the buffer will remain
3270  *	locked and will not have been brelse()'d.
3271  *
3272  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3273  *	likely still in progress on return.
3274  *
3275  *	NOTE!  This operation is on a BIO, not a BUF.
3276  *
3277  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3278  *
3279  * MPSAFE
3280  */
3281 static __inline int
3282 _biowait(struct bio *bio, const char *wmesg, int to)
3283 {
3284 	struct buf *bp = bio->bio_buf;
3285 	u_int32_t flags;
3286 	u_int32_t nflags;
3287 	int error;
3288 
3289 	KKASSERT(bio == &bp->b_bio1);
3290 	for (;;) {
3291 		flags = bio->bio_flags;
3292 		if (flags & BIO_DONE)
3293 			break;
3294 		tsleep_interlock(bio, 0);
3295 		nflags = flags | BIO_WANT;
3296 		tsleep_interlock(bio, 0);
3297 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3298 			if (wmesg)
3299 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3300 			else if (bp->b_cmd == BUF_CMD_READ)
3301 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3302 			else
3303 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3304 			if (error) {
3305 				kprintf("tsleep error biowait %d\n", error);
3306 				return (error);
3307 			}
3308 			break;
3309 		}
3310 	}
3311 
3312 	/*
3313 	 * Finish up.
3314 	 */
3315 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3316 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3317 	if (bp->b_flags & B_EINTR)
3318 		return (EINTR);
3319 	if (bp->b_flags & B_ERROR)
3320 		return (bp->b_error ? bp->b_error : EIO);
3321 	return (0);
3322 }
3323 
3324 int
3325 biowait(struct bio *bio, const char *wmesg)
3326 {
3327 	return(_biowait(bio, wmesg, 0));
3328 }
3329 
3330 int
3331 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3332 {
3333 	return(_biowait(bio, wmesg, to));
3334 }
3335 
3336 /*
3337  * This associates a tracking count with an I/O.  vn_strategy() and
3338  * dev_dstrategy() do this automatically but there are a few cases
3339  * where a vnode or device layer is bypassed when a block translation
3340  * is cached.  In such cases bio_start_transaction() may be called on
3341  * the bypassed layers so the system gets an I/O in progress indication
3342  * for those higher layers.
3343  */
3344 void
3345 bio_start_transaction(struct bio *bio, struct bio_track *track)
3346 {
3347 	bio->bio_track = track;
3348 	bio_track_ref(track);
3349 }
3350 
3351 /*
3352  * Initiate I/O on a vnode.
3353  */
3354 void
3355 vn_strategy(struct vnode *vp, struct bio *bio)
3356 {
3357 	struct bio_track *track;
3358 
3359 	KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
3360         if (bio->bio_buf->b_cmd == BUF_CMD_READ)
3361                 track = &vp->v_track_read;
3362         else
3363                 track = &vp->v_track_write;
3364 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3365 	bio->bio_track = track;
3366 	bio_track_ref(track);
3367         vop_strategy(*vp->v_ops, vp, bio);
3368 }
3369 
3370 /*
3371  * bpdone:
3372  *
3373  *	Finish I/O on a buffer after all BIOs have been processed.
3374  *	Called when the bio chain is exhausted or by biowait.  If called
3375  *	by biowait, elseit is typically 0.
3376  *
3377  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3378  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3379  *	assuming B_INVAL is clear.
3380  *
3381  *	For the VMIO case, we set B_CACHE if the op was a read and no
3382  *	read error occured, or if the op was a write.  B_CACHE is never
3383  *	set if the buffer is invalid or otherwise uncacheable.
3384  *
3385  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3386  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3387  *	in the biodone routine.
3388  */
3389 void
3390 bpdone(struct buf *bp, int elseit)
3391 {
3392 	buf_cmd_t cmd;
3393 
3394 	KASSERT(BUF_REFCNTNB(bp) > 0,
3395 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3396 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3397 		("biodone: bp %p already done!", bp));
3398 
3399 	/*
3400 	 * No more BIOs are left.  All completion functions have been dealt
3401 	 * with, now we clean up the buffer.
3402 	 */
3403 	cmd = bp->b_cmd;
3404 	bp->b_cmd = BUF_CMD_DONE;
3405 
3406 	/*
3407 	 * Only reads and writes are processed past this point.
3408 	 */
3409 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3410 		if (cmd == BUF_CMD_FREEBLKS)
3411 			bp->b_flags |= B_NOCACHE;
3412 		if (elseit)
3413 			brelse(bp);
3414 		return;
3415 	}
3416 
3417 	/*
3418 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3419 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3420 	 */
3421 	if (LIST_FIRST(&bp->b_dep) != NULL)
3422 		buf_complete(bp);
3423 
3424 	/*
3425 	 * A failed write must re-dirty the buffer unless B_INVAL
3426 	 * was set.  Only applicable to normal buffers (with VPs).
3427 	 * vinum buffers may not have a vp.
3428 	 */
3429 	if (cmd == BUF_CMD_WRITE &&
3430 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3431 		bp->b_flags &= ~B_NOCACHE;
3432 		if (bp->b_vp)
3433 			bdirty(bp);
3434 	}
3435 
3436 	if (bp->b_flags & B_VMIO) {
3437 		int i;
3438 		vm_ooffset_t foff;
3439 		vm_page_t m;
3440 		vm_object_t obj;
3441 		int iosize;
3442 		struct vnode *vp = bp->b_vp;
3443 
3444 		obj = vp->v_object;
3445 
3446 #if defined(VFS_BIO_DEBUG)
3447 		if (vp->v_auxrefs == 0)
3448 			panic("biodone: zero vnode hold count");
3449 		if ((vp->v_flag & VOBJBUF) == 0)
3450 			panic("biodone: vnode is not setup for merged cache");
3451 #endif
3452 
3453 		foff = bp->b_loffset;
3454 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3455 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3456 
3457 #if defined(VFS_BIO_DEBUG)
3458 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3459 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3460 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3461 		}
3462 #endif
3463 
3464 		/*
3465 		 * Set B_CACHE if the op was a normal read and no error
3466 		 * occured.  B_CACHE is set for writes in the b*write()
3467 		 * routines.
3468 		 */
3469 		iosize = bp->b_bcount - bp->b_resid;
3470 		if (cmd == BUF_CMD_READ &&
3471 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3472 			bp->b_flags |= B_CACHE;
3473 		}
3474 
3475 		crit_enter();
3476 		get_mplock();
3477 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3478 			int bogusflag = 0;
3479 			int resid;
3480 
3481 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3482 			if (resid > iosize)
3483 				resid = iosize;
3484 
3485 			/*
3486 			 * cleanup bogus pages, restoring the originals.  Since
3487 			 * the originals should still be wired, we don't have
3488 			 * to worry about interrupt/freeing races destroying
3489 			 * the VM object association.
3490 			 */
3491 			m = bp->b_xio.xio_pages[i];
3492 			if (m == bogus_page) {
3493 				bogusflag = 1;
3494 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3495 				if (m == NULL)
3496 					panic("biodone: page disappeared");
3497 				bp->b_xio.xio_pages[i] = m;
3498 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3499 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3500 			}
3501 #if defined(VFS_BIO_DEBUG)
3502 			if (OFF_TO_IDX(foff) != m->pindex) {
3503 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3504 					"mismatch\n",
3505 					(unsigned long)foff, (long)m->pindex);
3506 			}
3507 #endif
3508 
3509 			/*
3510 			 * In the write case, the valid and clean bits are
3511 			 * already changed correctly (see bdwrite()), so we
3512 			 * only need to do this here in the read case.
3513 			 */
3514 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3515 				vfs_clean_one_page(bp, i, m);
3516 			}
3517 			vm_page_flag_clear(m, PG_ZERO);
3518 
3519 			/*
3520 			 * when debugging new filesystems or buffer I/O
3521 			 * methods, this is the most common error that pops
3522 			 * up.  if you see this, you have not set the page
3523 			 * busy flag correctly!!!
3524 			 */
3525 			if (m->busy == 0) {
3526 				kprintf("biodone: page busy < 0, "
3527 				    "pindex: %d, foff: 0x(%x,%x), "
3528 				    "resid: %d, index: %d\n",
3529 				    (int) m->pindex, (int)(foff >> 32),
3530 						(int) foff & 0xffffffff, resid, i);
3531 				if (!vn_isdisk(vp, NULL))
3532 					kprintf(" iosize: %ld, loffset: %lld, "
3533 						"flags: 0x%08x, npages: %d\n",
3534 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3535 					    (long long)bp->b_loffset,
3536 					    bp->b_flags, bp->b_xio.xio_npages);
3537 				else
3538 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3539 					    (long long)bp->b_loffset,
3540 					    bp->b_flags, bp->b_xio.xio_npages);
3541 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3542 				    m->valid, m->dirty, m->wire_count);
3543 				panic("biodone: page busy < 0");
3544 			}
3545 			vm_page_io_finish(m);
3546 			vm_object_pip_subtract(obj, 1);
3547 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3548 			iosize -= resid;
3549 		}
3550 		if (obj)
3551 			vm_object_pip_wakeupn(obj, 0);
3552 		rel_mplock();
3553 		crit_exit();
3554 	}
3555 
3556 	/*
3557 	 * Finish up by releasing the buffer.  There are no more synchronous
3558 	 * or asynchronous completions, those were handled by bio_done
3559 	 * callbacks.
3560 	 */
3561 	if (elseit) {
3562 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3563 			brelse(bp);
3564 		else
3565 			bqrelse(bp);
3566 	}
3567 }
3568 
3569 /*
3570  * Normal biodone.
3571  */
3572 void
3573 biodone(struct bio *bio)
3574 {
3575 	struct buf *bp = bio->bio_buf;
3576 
3577 	runningbufwakeup(bp);
3578 
3579 	/*
3580 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3581 	 */
3582 	while (bio) {
3583 		biodone_t *done_func;
3584 		struct bio_track *track;
3585 
3586 		/*
3587 		 * BIO tracking.  Most but not all BIOs are tracked.
3588 		 */
3589 		if ((track = bio->bio_track) != NULL) {
3590 			bio_track_rel(track);
3591 			bio->bio_track = NULL;
3592 		}
3593 
3594 		/*
3595 		 * A bio_done function terminates the loop.  The function
3596 		 * will be responsible for any further chaining and/or
3597 		 * buffer management.
3598 		 *
3599 		 * WARNING!  The done function can deallocate the buffer!
3600 		 */
3601 		if ((done_func = bio->bio_done) != NULL) {
3602 			bio->bio_done = NULL;
3603 			done_func(bio);
3604 			return;
3605 		}
3606 		bio = bio->bio_prev;
3607 	}
3608 
3609 	/*
3610 	 * If we've run out of bio's do normal [a]synchronous completion.
3611 	 */
3612 	bpdone(bp, 1);
3613 }
3614 
3615 /*
3616  * Synchronous biodone - this terminates a synchronous BIO.
3617  *
3618  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3619  * but still locked.  The caller must brelse() the buffer after waiting
3620  * for completion.
3621  */
3622 void
3623 biodone_sync(struct bio *bio)
3624 {
3625 	struct buf *bp = bio->bio_buf;
3626 	int flags;
3627 	int nflags;
3628 
3629 	KKASSERT(bio == &bp->b_bio1);
3630 	bpdone(bp, 0);
3631 
3632 	for (;;) {
3633 		flags = bio->bio_flags;
3634 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3635 
3636 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3637 			if (flags & BIO_WANT)
3638 				wakeup(bio);
3639 			break;
3640 		}
3641 	}
3642 }
3643 
3644 /*
3645  * vfs_unbusy_pages:
3646  *
3647  *	This routine is called in lieu of iodone in the case of
3648  *	incomplete I/O.  This keeps the busy status for pages
3649  *	consistant.
3650  */
3651 void
3652 vfs_unbusy_pages(struct buf *bp)
3653 {
3654 	int i;
3655 
3656 	runningbufwakeup(bp);
3657 	if (bp->b_flags & B_VMIO) {
3658 		struct vnode *vp = bp->b_vp;
3659 		vm_object_t obj;
3660 
3661 		obj = vp->v_object;
3662 
3663 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3664 			vm_page_t m = bp->b_xio.xio_pages[i];
3665 
3666 			/*
3667 			 * When restoring bogus changes the original pages
3668 			 * should still be wired, so we are in no danger of
3669 			 * losing the object association and do not need
3670 			 * critical section protection particularly.
3671 			 */
3672 			if (m == bogus_page) {
3673 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3674 				if (!m) {
3675 					panic("vfs_unbusy_pages: page missing");
3676 				}
3677 				bp->b_xio.xio_pages[i] = m;
3678 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3679 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3680 			}
3681 			vm_object_pip_subtract(obj, 1);
3682 			vm_page_flag_clear(m, PG_ZERO);
3683 			vm_page_io_finish(m);
3684 		}
3685 		vm_object_pip_wakeupn(obj, 0);
3686 	}
3687 }
3688 
3689 /*
3690  * vfs_busy_pages:
3691  *
3692  *	This routine is called before a device strategy routine.
3693  *	It is used to tell the VM system that paging I/O is in
3694  *	progress, and treat the pages associated with the buffer
3695  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3696  *	flag is handled to make sure that the object doesn't become
3697  *	inconsistant.
3698  *
3699  *	Since I/O has not been initiated yet, certain buffer flags
3700  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3701  *	and should be ignored.
3702  */
3703 void
3704 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3705 {
3706 	int i, bogus;
3707 	struct lwp *lp = curthread->td_lwp;
3708 
3709 	/*
3710 	 * The buffer's I/O command must already be set.  If reading,
3711 	 * B_CACHE must be 0 (double check against callers only doing
3712 	 * I/O when B_CACHE is 0).
3713 	 */
3714 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3715 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3716 
3717 	if (bp->b_flags & B_VMIO) {
3718 		vm_object_t obj;
3719 
3720 		obj = vp->v_object;
3721 		KASSERT(bp->b_loffset != NOOFFSET,
3722 			("vfs_busy_pages: no buffer offset"));
3723 
3724 		/*
3725 		 * Loop until none of the pages are busy.
3726 		 */
3727 retry:
3728 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3729 			vm_page_t m = bp->b_xio.xio_pages[i];
3730 
3731 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3732 				goto retry;
3733 		}
3734 
3735 		/*
3736 		 * Setup for I/O, soft-busy the page right now because
3737 		 * the next loop may block.
3738 		 */
3739 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3740 			vm_page_t m = bp->b_xio.xio_pages[i];
3741 
3742 			vm_page_flag_clear(m, PG_ZERO);
3743 			if ((bp->b_flags & B_CLUSTER) == 0) {
3744 				vm_object_pip_add(obj, 1);
3745 				vm_page_io_start(m);
3746 			}
3747 		}
3748 
3749 		/*
3750 		 * Adjust protections for I/O and do bogus-page mapping.
3751 		 * Assume that vm_page_protect() can block (it can block
3752 		 * if VM_PROT_NONE, don't take any chances regardless).
3753 		 *
3754 		 * In particularly note that for writes we must incorporate
3755 		 * page dirtyness from the VM system into the buffer's
3756 		 * dirty range.
3757 		 *
3758 		 * For reads we theoretically must incorporate page dirtyness
3759 		 * from the VM system to determine if the page needs bogus
3760 		 * replacement, but we shortcut the test by simply checking
3761 		 * that all m->valid bits are set, indicating that the page
3762 		 * is fully valid and does not need to be re-read.  For any
3763 		 * VM system dirtyness the page will also be fully valid
3764 		 * since it was mapped at one point.
3765 		 */
3766 		bogus = 0;
3767 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3768 			vm_page_t m = bp->b_xio.xio_pages[i];
3769 
3770 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
3771 			if (bp->b_cmd == BUF_CMD_WRITE) {
3772 				/*
3773 				 * When readying a vnode-backed buffer for
3774 				 * a write we must zero-fill any invalid
3775 				 * portions of the backing VM pages, mark
3776 				 * it valid and clear related dirty bits.
3777 				 *
3778 				 * vfs_clean_one_page() incorporates any
3779 				 * VM dirtyness and updates the b_dirtyoff
3780 				 * range (after we've made the page RO).
3781 				 *
3782 				 * It is also expected that the pmap modified
3783 				 * bit has already been cleared by the
3784 				 * vm_page_protect().  We may not be able
3785 				 * to clear all dirty bits for a page if it
3786 				 * was also memory mapped (NFS).
3787 				 */
3788 				vm_page_protect(m, VM_PROT_READ);
3789 				vfs_clean_one_page(bp, i, m);
3790 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3791 				/*
3792 				 * When readying a vnode-backed buffer for
3793 				 * read we must replace any dirty pages with
3794 				 * a bogus page so dirty data is not destroyed
3795 				 * when filling gaps.
3796 				 *
3797 				 * To avoid testing whether the page is
3798 				 * dirty we instead test that the page was
3799 				 * at some point mapped (m->valid fully
3800 				 * valid) with the understanding that
3801 				 * this also covers the dirty case.
3802 				 */
3803 				bp->b_xio.xio_pages[i] = bogus_page;
3804 				bogus++;
3805 			} else if (m->valid & m->dirty) {
3806 				/*
3807 				 * This case should not occur as partial
3808 				 * dirtyment can only happen if the buffer
3809 				 * is B_CACHE, and this code is not entered
3810 				 * if the buffer is B_CACHE.
3811 				 */
3812 				kprintf("Warning: vfs_busy_pages - page not "
3813 					"fully valid! loff=%jx bpf=%08x "
3814 					"idx=%d val=%02x dir=%02x\n",
3815 					(intmax_t)bp->b_loffset, bp->b_flags,
3816 					i, m->valid, m->dirty);
3817 				vm_page_protect(m, VM_PROT_NONE);
3818 			} else {
3819 				/*
3820 				 * The page is not valid and can be made
3821 				 * part of the read.
3822 				 */
3823 				vm_page_protect(m, VM_PROT_NONE);
3824 			}
3825 		}
3826 		if (bogus) {
3827 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3828 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3829 		}
3830 	}
3831 
3832 	/*
3833 	 * This is the easiest place to put the process accounting for the I/O
3834 	 * for now.
3835 	 */
3836 	if (lp != NULL) {
3837 		if (bp->b_cmd == BUF_CMD_READ)
3838 			lp->lwp_ru.ru_inblock++;
3839 		else
3840 			lp->lwp_ru.ru_oublock++;
3841 	}
3842 }
3843 
3844 /*
3845  * vfs_clean_pages:
3846  *
3847  *	Tell the VM system that the pages associated with this buffer
3848  *	are clean.  This is used for delayed writes where the data is
3849  *	going to go to disk eventually without additional VM intevention.
3850  *
3851  *	Note that while we only really need to clean through to b_bcount, we
3852  *	just go ahead and clean through to b_bufsize.
3853  */
3854 static void
3855 vfs_clean_pages(struct buf *bp)
3856 {
3857 	vm_page_t m;
3858 	int i;
3859 
3860 	if ((bp->b_flags & B_VMIO) == 0)
3861 		return;
3862 
3863 	KASSERT(bp->b_loffset != NOOFFSET,
3864 		("vfs_clean_pages: no buffer offset"));
3865 
3866 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
3867 		m = bp->b_xio.xio_pages[i];
3868 		vfs_clean_one_page(bp, i, m);
3869 	}
3870 }
3871 
3872 /*
3873  * vfs_clean_one_page:
3874  *
3875  *	Set the valid bits and clear the dirty bits in a page within a
3876  *	buffer.  The range is restricted to the buffer's size and the
3877  *	buffer's logical offset might index into the first page.
3878  *
3879  *	The caller has busied or soft-busied the page and it is not mapped,
3880  *	test and incorporate the dirty bits into b_dirtyoff/end before
3881  *	clearing them.  Note that we need to clear the pmap modified bits
3882  *	after determining the the page was dirty, vm_page_set_validclean()
3883  *	does not do it for us.
3884  *
3885  *	This routine is typically called after a read completes (dirty should
3886  *	be zero in that case as we are not called on bogus-replace pages),
3887  *	or before a write is initiated.
3888  */
3889 static void
3890 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
3891 {
3892 	int bcount;
3893 	int xoff;
3894 	int soff;
3895 	int eoff;
3896 
3897 	/*
3898 	 * Calculate offset range within the page but relative to buffer's
3899 	 * loffset.  loffset might be offset into the first page.
3900 	 */
3901 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
3902 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
3903 
3904 	if (pageno == 0) {
3905 		soff = xoff;
3906 		eoff = PAGE_SIZE;
3907 	} else {
3908 		soff = (pageno << PAGE_SHIFT);
3909 		eoff = soff + PAGE_SIZE;
3910 	}
3911 	if (eoff > bcount)
3912 		eoff = bcount;
3913 	if (soff >= eoff)
3914 		return;
3915 
3916 	/*
3917 	 * Test dirty bits and adjust b_dirtyoff/end.
3918 	 *
3919 	 * If dirty pages are incorporated into the bp any prior
3920 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
3921 	 * caller has not taken into account the new dirty data.
3922 	 *
3923 	 * If the page was memory mapped the dirty bits might go beyond the
3924 	 * end of the buffer, but we can't really make the assumption that
3925 	 * a file EOF straddles the buffer (even though this is the case for
3926 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
3927 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
3928 	 * This also saves some console spam.
3929 	 */
3930 	vm_page_test_dirty(m);
3931 	if (m->dirty) {
3932 		pmap_clear_modify(m);
3933 		if ((bp->b_flags & B_NEEDCOMMIT) &&
3934 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
3935 			kprintf("Warning: vfs_clean_one_page: bp %p "
3936 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT\n",
3937 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
3938 				bp->b_flags);
3939 			bp->b_flags &= ~B_NEEDCOMMIT;
3940 		}
3941 		if (bp->b_dirtyoff > soff - xoff)
3942 			bp->b_dirtyoff = soff - xoff;
3943 		if (bp->b_dirtyend < eoff - xoff)
3944 			bp->b_dirtyend = eoff - xoff;
3945 	}
3946 
3947 	/*
3948 	 * Set related valid bits, clear related dirty bits.
3949 	 * Does not mess with the pmap modified bit.
3950 	 *
3951 	 * WARNING!  We cannot just clear all of m->dirty here as the
3952 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
3953 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
3954 	 *	     The putpages code can clear m->dirty to 0.
3955 	 *
3956 	 *	     If a VOP_WRITE generates a buffer cache buffer which
3957 	 *	     covers the same space as mapped writable pages the
3958 	 *	     buffer flush might not be able to clear all the dirty
3959 	 *	     bits and still require a putpages from the VM system
3960 	 *	     to finish it off.
3961 	 */
3962 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
3963 }
3964 
3965 /*
3966  * vfs_bio_clrbuf:
3967  *
3968  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3969  *	to clear B_ERROR and B_INVAL.
3970  *
3971  *	Note that while we only theoretically need to clear through b_bcount,
3972  *	we go ahead and clear through b_bufsize.
3973  */
3974 
3975 void
3976 vfs_bio_clrbuf(struct buf *bp)
3977 {
3978 	int i, mask = 0;
3979 	caddr_t sa, ea;
3980 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3981 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
3982 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3983 		    (bp->b_loffset & PAGE_MASK) == 0) {
3984 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3985 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3986 				bp->b_resid = 0;
3987 				return;
3988 			}
3989 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3990 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3991 				bzero(bp->b_data, bp->b_bufsize);
3992 				bp->b_xio.xio_pages[0]->valid |= mask;
3993 				bp->b_resid = 0;
3994 				return;
3995 			}
3996 		}
3997 		sa = bp->b_data;
3998 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3999 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4000 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4001 			ea = (caddr_t)(vm_offset_t)ulmin(
4002 			    (u_long)(vm_offset_t)ea,
4003 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4004 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4005 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4006 				continue;
4007 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4008 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4009 					bzero(sa, ea - sa);
4010 				}
4011 			} else {
4012 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4013 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4014 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4015 						bzero(sa, DEV_BSIZE);
4016 				}
4017 			}
4018 			bp->b_xio.xio_pages[i]->valid |= mask;
4019 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4020 		}
4021 		bp->b_resid = 0;
4022 	} else {
4023 		clrbuf(bp);
4024 	}
4025 }
4026 
4027 /*
4028  * vm_hold_load_pages:
4029  *
4030  *	Load pages into the buffer's address space.  The pages are
4031  *	allocated from the kernel object in order to reduce interference
4032  *	with the any VM paging I/O activity.  The range of loaded
4033  *	pages will be wired.
4034  *
4035  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4036  *	retrieve the full range (to - from) of pages.
4037  *
4038  */
4039 void
4040 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4041 {
4042 	vm_offset_t pg;
4043 	vm_page_t p;
4044 	int index;
4045 
4046 	to = round_page(to);
4047 	from = round_page(from);
4048 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4049 
4050 	pg = from;
4051 	while (pg < to) {
4052 		/*
4053 		 * Note: must allocate system pages since blocking here
4054 		 * could intefere with paging I/O, no matter which
4055 		 * process we are.
4056 		 */
4057 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4058 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4059 		if (p) {
4060 			vm_page_wire(p);
4061 			p->valid = VM_PAGE_BITS_ALL;
4062 			vm_page_flag_clear(p, PG_ZERO);
4063 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4064 			bp->b_xio.xio_pages[index] = p;
4065 			vm_page_wakeup(p);
4066 
4067 			pg += PAGE_SIZE;
4068 			++index;
4069 		}
4070 	}
4071 	bp->b_xio.xio_npages = index;
4072 }
4073 
4074 /*
4075  * Allocate pages for a buffer cache buffer.
4076  *
4077  * Under extremely severe memory conditions even allocating out of the
4078  * system reserve can fail.  If this occurs we must allocate out of the
4079  * interrupt reserve to avoid a deadlock with the pageout daemon.
4080  *
4081  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4082  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4083  * against the pageout daemon if pages are not freed from other sources.
4084  */
4085 static
4086 vm_page_t
4087 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4088 {
4089 	vm_page_t p;
4090 
4091 	/*
4092 	 * Try a normal allocation, allow use of system reserve.
4093 	 */
4094 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4095 	if (p)
4096 		return(p);
4097 
4098 	/*
4099 	 * The normal allocation failed and we clearly have a page
4100 	 * deficit.  Try to reclaim some clean VM pages directly
4101 	 * from the buffer cache.
4102 	 */
4103 	vm_pageout_deficit += deficit;
4104 	recoverbufpages();
4105 
4106 	/*
4107 	 * We may have blocked, the caller will know what to do if the
4108 	 * page now exists.
4109 	 */
4110 	if (vm_page_lookup(obj, pg))
4111 		return(NULL);
4112 
4113 	/*
4114 	 * Allocate and allow use of the interrupt reserve.
4115 	 *
4116 	 * If after all that we still can't allocate a VM page we are
4117 	 * in real trouble, but we slog on anyway hoping that the system
4118 	 * won't deadlock.
4119 	 */
4120 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4121 				   VM_ALLOC_INTERRUPT);
4122 	if (p) {
4123 		if (vm_page_count_severe()) {
4124 			kprintf("bio_page_alloc: WARNING emergency page "
4125 				"allocation\n");
4126 			vm_wait(hz / 20);
4127 		}
4128 	} else {
4129 		kprintf("bio_page_alloc: WARNING emergency page "
4130 			"allocation failed\n");
4131 		vm_wait(hz * 5);
4132 	}
4133 	return(p);
4134 }
4135 
4136 /*
4137  * vm_hold_free_pages:
4138  *
4139  *	Return pages associated with the buffer back to the VM system.
4140  *
4141  *	The range of pages underlying the buffer's address space will
4142  *	be unmapped and un-wired.
4143  */
4144 void
4145 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4146 {
4147 	vm_offset_t pg;
4148 	vm_page_t p;
4149 	int index, newnpages;
4150 
4151 	from = round_page(from);
4152 	to = round_page(to);
4153 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4154 
4155 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4156 		p = bp->b_xio.xio_pages[index];
4157 		if (p && (index < bp->b_xio.xio_npages)) {
4158 			if (p->busy) {
4159 				kprintf("vm_hold_free_pages: doffset: %lld, "
4160 					"loffset: %lld\n",
4161 					(long long)bp->b_bio2.bio_offset,
4162 					(long long)bp->b_loffset);
4163 			}
4164 			bp->b_xio.xio_pages[index] = NULL;
4165 			pmap_kremove(pg);
4166 			vm_page_busy(p);
4167 			vm_page_unwire(p, 0);
4168 			vm_page_free(p);
4169 		}
4170 	}
4171 	bp->b_xio.xio_npages = newnpages;
4172 }
4173 
4174 /*
4175  * vmapbuf:
4176  *
4177  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4178  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4179  *	initialized.
4180  */
4181 int
4182 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4183 {
4184 	caddr_t addr;
4185 	vm_offset_t va;
4186 	vm_page_t m;
4187 	int vmprot;
4188 	int error;
4189 	int pidx;
4190 	int i;
4191 
4192 	/*
4193 	 * bp had better have a command and it better be a pbuf.
4194 	 */
4195 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4196 	KKASSERT(bp->b_flags & B_PAGING);
4197 
4198 	if (bytes < 0)
4199 		return (-1);
4200 
4201 	/*
4202 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4203 	 */
4204 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4205 	pidx = 0;
4206 
4207 	vmprot = VM_PROT_READ;
4208 	if (bp->b_cmd == BUF_CMD_READ)
4209 		vmprot |= VM_PROT_WRITE;
4210 
4211 	while (addr < udata + bytes) {
4212 		/*
4213 		 * Do the vm_fault if needed; do the copy-on-write thing
4214 		 * when reading stuff off device into memory.
4215 		 *
4216 		 * vm_fault_page*() returns a held VM page.
4217 		 */
4218 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4219 		va = trunc_page(va);
4220 
4221 		m = vm_fault_page_quick(va, vmprot, &error);
4222 		if (m == NULL) {
4223 			for (i = 0; i < pidx; ++i) {
4224 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4225 			    bp->b_xio.xio_pages[i] = NULL;
4226 			}
4227 			return(-1);
4228 		}
4229 		bp->b_xio.xio_pages[pidx] = m;
4230 		addr += PAGE_SIZE;
4231 		++pidx;
4232 	}
4233 
4234 	/*
4235 	 * Map the page array and set the buffer fields to point to
4236 	 * the mapped data buffer.
4237 	 */
4238 	if (pidx > btoc(MAXPHYS))
4239 		panic("vmapbuf: mapped more than MAXPHYS");
4240 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4241 
4242 	bp->b_xio.xio_npages = pidx;
4243 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4244 	bp->b_bcount = bytes;
4245 	bp->b_bufsize = bytes;
4246 	return(0);
4247 }
4248 
4249 /*
4250  * vunmapbuf:
4251  *
4252  *	Free the io map PTEs associated with this IO operation.
4253  *	We also invalidate the TLB entries and restore the original b_addr.
4254  */
4255 void
4256 vunmapbuf(struct buf *bp)
4257 {
4258 	int pidx;
4259 	int npages;
4260 
4261 	KKASSERT(bp->b_flags & B_PAGING);
4262 
4263 	npages = bp->b_xio.xio_npages;
4264 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4265 	for (pidx = 0; pidx < npages; ++pidx) {
4266 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4267 		bp->b_xio.xio_pages[pidx] = NULL;
4268 	}
4269 	bp->b_xio.xio_npages = 0;
4270 	bp->b_data = bp->b_kvabase;
4271 }
4272 
4273 /*
4274  * Scan all buffers in the system and issue the callback.
4275  */
4276 int
4277 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4278 {
4279 	int count = 0;
4280 	int error;
4281 	int n;
4282 
4283 	for (n = 0; n < nbuf; ++n) {
4284 		if ((error = callback(&buf[n], info)) < 0) {
4285 			count = error;
4286 			break;
4287 		}
4288 		count += error;
4289 	}
4290 	return (count);
4291 }
4292 
4293 /*
4294  * print out statistics from the current status of the buffer pool
4295  * this can be toggeled by the system control option debug.syncprt
4296  */
4297 #ifdef DEBUG
4298 void
4299 vfs_bufstats(void)
4300 {
4301         int i, j, count;
4302         struct buf *bp;
4303         struct bqueues *dp;
4304         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4305         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4306 
4307         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4308                 count = 0;
4309                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4310                         counts[j] = 0;
4311 		crit_enter();
4312                 TAILQ_FOREACH(bp, dp, b_freelist) {
4313                         counts[bp->b_bufsize/PAGE_SIZE]++;
4314                         count++;
4315                 }
4316 		crit_exit();
4317                 kprintf("%s: total-%d", bname[i], count);
4318                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4319                         if (counts[j] != 0)
4320                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4321                 kprintf("\n");
4322         }
4323 }
4324 #endif
4325 
4326 #ifdef DDB
4327 
4328 DB_SHOW_COMMAND(buffer, db_show_buffer)
4329 {
4330 	/* get args */
4331 	struct buf *bp = (struct buf *)addr;
4332 
4333 	if (!have_addr) {
4334 		db_printf("usage: show buffer <addr>\n");
4335 		return;
4336 	}
4337 
4338 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4339 	db_printf("b_cmd = %d\n", bp->b_cmd);
4340 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4341 		  "b_resid = %d\n, b_data = %p, "
4342 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4343 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4344 		  bp->b_data,
4345 		  (long long)bp->b_bio2.bio_offset,
4346 		  (long long)(bp->b_bio2.bio_next ?
4347 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4348 	if (bp->b_xio.xio_npages) {
4349 		int i;
4350 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4351 			bp->b_xio.xio_npages);
4352 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4353 			vm_page_t m;
4354 			m = bp->b_xio.xio_pages[i];
4355 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4356 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4357 			if ((i + 1) < bp->b_xio.xio_npages)
4358 				db_printf(",");
4359 		}
4360 		db_printf("\n");
4361 	}
4362 }
4363 #endif /* DDB */
4364