1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/dsched.h> 48 #include <sys/proc.h> 49 #include <vm/vm.h> 50 #include <vm/vm_param.h> 51 #include <vm/vm_kern.h> 52 #include <vm/vm_pageout.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_map.h> 57 #include <vm/vm_pager.h> 58 #include <vm/swap_pager.h> 59 60 #include <sys/buf2.h> 61 #include <sys/thread2.h> 62 #include <sys/spinlock2.h> 63 #include <sys/mplock2.h> 64 #include <vm/vm_page2.h> 65 66 #include "opt_ddb.h" 67 #ifdef DDB 68 #include <ddb/ddb.h> 69 #endif 70 71 /* 72 * Buffer queues. 73 */ 74 enum bufq_type { 75 BQUEUE_NONE, /* not on any queue */ 76 BQUEUE_LOCKED, /* locked buffers */ 77 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 78 BQUEUE_DIRTY, /* B_DELWRI buffers */ 79 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 80 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 81 BQUEUE_EMPTY, /* empty buffer headers */ 82 83 BUFFER_QUEUES /* number of buffer queues */ 84 }; 85 86 typedef enum bufq_type bufq_type_t; 87 88 #define BD_WAKE_SIZE 16384 89 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 90 91 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 92 struct spinlock bufspin = SPINLOCK_INITIALIZER(&bufspin); 93 94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 95 96 struct buf *buf; /* buffer header pool */ 97 98 static void vfs_clean_pages(struct buf *bp); 99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 100 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m); 101 static void vfs_vmio_release(struct buf *bp); 102 static int flushbufqueues(bufq_type_t q); 103 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 104 105 static void bd_signal(int totalspace); 106 static void buf_daemon(void); 107 static void buf_daemon_hw(void); 108 109 /* 110 * bogus page -- for I/O to/from partially complete buffers 111 * this is a temporary solution to the problem, but it is not 112 * really that bad. it would be better to split the buffer 113 * for input in the case of buffers partially already in memory, 114 * but the code is intricate enough already. 115 */ 116 vm_page_t bogus_page; 117 118 /* 119 * These are all static, but make the ones we export globals so we do 120 * not need to use compiler magic. 121 */ 122 int bufspace, maxbufspace, 123 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 124 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 125 static int lorunningspace, hirunningspace, runningbufreq; 126 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace; 127 int dirtybufcount, dirtybufcounthw; 128 int runningbufspace, runningbufcount; 129 static int getnewbufcalls; 130 static int getnewbufrestarts; 131 static int recoverbufcalls; 132 static int needsbuffer; /* locked by needsbuffer_spin */ 133 static int bd_request; /* locked by needsbuffer_spin */ 134 static int bd_request_hw; /* locked by needsbuffer_spin */ 135 static u_int bd_wake_ary[BD_WAKE_SIZE]; 136 static u_int bd_wake_index; 137 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */ 138 static struct spinlock needsbuffer_spin; 139 static int debug_commit; 140 141 static struct thread *bufdaemon_td; 142 static struct thread *bufdaemonhw_td; 143 144 145 /* 146 * Sysctls for operational control of the buffer cache. 147 */ 148 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 149 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 150 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 151 "High watermark used to trigger explicit flushing of dirty buffers"); 152 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 153 "Minimum amount of buffer space required for active I/O"); 154 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 155 "Maximum amount of buffer space to usable for active I/O"); 156 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0, 157 "Recycle pages to active or inactive queue transition pt 0-64"); 158 /* 159 * Sysctls determining current state of the buffer cache. 160 */ 161 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 162 "Total number of buffers in buffer cache"); 163 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 164 "Pending bytes of dirty buffers (all)"); 165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 166 "Pending bytes of dirty buffers (heavy weight)"); 167 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 168 "Pending number of dirty buffers"); 169 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 170 "Pending number of dirty buffers (heavy weight)"); 171 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 172 "I/O bytes currently in progress due to asynchronous writes"); 173 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 174 "I/O buffers currently in progress due to asynchronous writes"); 175 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 176 "Hard limit on maximum amount of memory usable for buffer space"); 177 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 178 "Soft limit on maximum amount of memory usable for buffer space"); 179 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 180 "Minimum amount of memory to reserve for system buffer space"); 181 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 182 "Amount of memory available for buffers"); 183 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 184 0, "Maximum amount of memory reserved for buffers using malloc"); 185 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 186 "Amount of memory left for buffers using malloc-scheme"); 187 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 188 "New buffer header acquisition requests"); 189 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 190 0, "New buffer header acquisition restarts"); 191 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 192 "Recover VM space in an emergency"); 193 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 194 "Buffer acquisition restarts due to fragmented buffer map"); 195 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 196 "Amount of time KVA space was deallocated in an arbitrary buffer"); 197 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 198 "Amount of time buffer re-use operations were successful"); 199 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, ""); 200 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 201 "sizeof(struct buf)"); 202 203 char *buf_wmesg = BUF_WMESG; 204 205 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 206 #define VFS_BIO_NEED_UNUSED02 0x02 207 #define VFS_BIO_NEED_UNUSED04 0x04 208 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 209 210 /* 211 * bufspacewakeup: 212 * 213 * Called when buffer space is potentially available for recovery. 214 * getnewbuf() will block on this flag when it is unable to free 215 * sufficient buffer space. Buffer space becomes recoverable when 216 * bp's get placed back in the queues. 217 */ 218 219 static __inline void 220 bufspacewakeup(void) 221 { 222 /* 223 * If someone is waiting for BUF space, wake them up. Even 224 * though we haven't freed the kva space yet, the waiting 225 * process will be able to now. 226 */ 227 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 228 spin_lock_wr(&needsbuffer_spin); 229 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 230 spin_unlock_wr(&needsbuffer_spin); 231 wakeup(&needsbuffer); 232 } 233 } 234 235 /* 236 * runningbufwakeup: 237 * 238 * Accounting for I/O in progress. 239 * 240 */ 241 static __inline void 242 runningbufwakeup(struct buf *bp) 243 { 244 int totalspace; 245 int limit; 246 247 if ((totalspace = bp->b_runningbufspace) != 0) { 248 atomic_subtract_int(&runningbufspace, totalspace); 249 atomic_subtract_int(&runningbufcount, 1); 250 bp->b_runningbufspace = 0; 251 252 /* 253 * see waitrunningbufspace() for limit test. 254 */ 255 limit = hirunningspace * 2 / 3; 256 if (runningbufreq && runningbufspace <= limit) { 257 runningbufreq = 0; 258 wakeup(&runningbufreq); 259 } 260 bd_signal(totalspace); 261 } 262 } 263 264 /* 265 * bufcountwakeup: 266 * 267 * Called when a buffer has been added to one of the free queues to 268 * account for the buffer and to wakeup anyone waiting for free buffers. 269 * This typically occurs when large amounts of metadata are being handled 270 * by the buffer cache ( else buffer space runs out first, usually ). 271 * 272 * MPSAFE 273 */ 274 static __inline void 275 bufcountwakeup(void) 276 { 277 if (needsbuffer) { 278 spin_lock_wr(&needsbuffer_spin); 279 needsbuffer &= ~VFS_BIO_NEED_ANY; 280 spin_unlock_wr(&needsbuffer_spin); 281 wakeup(&needsbuffer); 282 } 283 } 284 285 /* 286 * waitrunningbufspace() 287 * 288 * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3. 289 * This is the point where write bursting stops so we don't want to wait 290 * for the running amount to drop below it (at least if we still want bioq 291 * to burst writes). 292 * 293 * The caller may be using this function to block in a tight loop, we 294 * must block while runningbufspace is greater then or equal to 295 * hirunningspace * 2 / 3. 296 * 297 * And even with that it may not be enough, due to the presence of 298 * B_LOCKED dirty buffers, so also wait for at least one running buffer 299 * to complete. 300 */ 301 static __inline void 302 waitrunningbufspace(void) 303 { 304 int limit = hirunningspace * 2 / 3; 305 306 crit_enter(); 307 if (runningbufspace > limit) { 308 while (runningbufspace > limit) { 309 ++runningbufreq; 310 tsleep(&runningbufreq, 0, "wdrn1", 0); 311 } 312 } else if (runningbufspace) { 313 ++runningbufreq; 314 tsleep(&runningbufreq, 0, "wdrn2", 1); 315 } 316 crit_exit(); 317 } 318 319 /* 320 * buf_dirty_count_severe: 321 * 322 * Return true if we have too many dirty buffers. 323 */ 324 int 325 buf_dirty_count_severe(void) 326 { 327 return (runningbufspace + dirtybufspace >= hidirtybufspace || 328 dirtybufcount >= nbuf / 2); 329 } 330 331 /* 332 * Return true if the amount of running I/O is severe and BIOQ should 333 * start bursting. 334 */ 335 int 336 buf_runningbufspace_severe(void) 337 { 338 return (runningbufspace >= hirunningspace * 2 / 3); 339 } 340 341 /* 342 * vfs_buf_test_cache: 343 * 344 * Called when a buffer is extended. This function clears the B_CACHE 345 * bit if the newly extended portion of the buffer does not contain 346 * valid data. 347 * 348 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 349 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 350 * them while a clean buffer was present. 351 */ 352 static __inline__ 353 void 354 vfs_buf_test_cache(struct buf *bp, 355 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 356 vm_page_t m) 357 { 358 if (bp->b_flags & B_CACHE) { 359 int base = (foff + off) & PAGE_MASK; 360 if (vm_page_is_valid(m, base, size) == 0) 361 bp->b_flags &= ~B_CACHE; 362 } 363 } 364 365 /* 366 * bd_speedup() 367 * 368 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 369 * low water mark. 370 * 371 * MPSAFE 372 */ 373 static __inline__ 374 void 375 bd_speedup(void) 376 { 377 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 378 return; 379 380 if (bd_request == 0 && 381 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 382 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 383 spin_lock_wr(&needsbuffer_spin); 384 bd_request = 1; 385 spin_unlock_wr(&needsbuffer_spin); 386 wakeup(&bd_request); 387 } 388 if (bd_request_hw == 0 && 389 (dirtybufspacehw > lodirtybufspace / 2 || 390 dirtybufcounthw >= nbuf / 2)) { 391 spin_lock_wr(&needsbuffer_spin); 392 bd_request_hw = 1; 393 spin_unlock_wr(&needsbuffer_spin); 394 wakeup(&bd_request_hw); 395 } 396 } 397 398 /* 399 * bd_heatup() 400 * 401 * Get the buf_daemon heated up when the number of running and dirty 402 * buffers exceeds the mid-point. 403 * 404 * Return the total number of dirty bytes past the second mid point 405 * as a measure of how much excess dirty data there is in the system. 406 * 407 * MPSAFE 408 */ 409 int 410 bd_heatup(void) 411 { 412 int mid1; 413 int mid2; 414 int totalspace; 415 416 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 417 418 totalspace = runningbufspace + dirtybufspace; 419 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 420 bd_speedup(); 421 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 422 if (totalspace >= mid2) 423 return(totalspace - mid2); 424 } 425 return(0); 426 } 427 428 /* 429 * bd_wait() 430 * 431 * Wait for the buffer cache to flush (totalspace) bytes worth of 432 * buffers, then return. 433 * 434 * Regardless this function blocks while the number of dirty buffers 435 * exceeds hidirtybufspace. 436 * 437 * MPSAFE 438 */ 439 void 440 bd_wait(int totalspace) 441 { 442 u_int i; 443 int count; 444 445 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 446 return; 447 448 while (totalspace > 0) { 449 bd_heatup(); 450 if (totalspace > runningbufspace + dirtybufspace) 451 totalspace = runningbufspace + dirtybufspace; 452 count = totalspace / BKVASIZE; 453 if (count >= BD_WAKE_SIZE) 454 count = BD_WAKE_SIZE - 1; 455 456 spin_lock_wr(&needsbuffer_spin); 457 i = (bd_wake_index + count) & BD_WAKE_MASK; 458 ++bd_wake_ary[i]; 459 tsleep_interlock(&bd_wake_ary[i], 0); 460 spin_unlock_wr(&needsbuffer_spin); 461 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 462 463 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 464 } 465 } 466 467 /* 468 * bd_signal() 469 * 470 * This function is called whenever runningbufspace or dirtybufspace 471 * is reduced. Track threads waiting for run+dirty buffer I/O 472 * complete. 473 * 474 * MPSAFE 475 */ 476 static void 477 bd_signal(int totalspace) 478 { 479 u_int i; 480 481 if (totalspace > 0) { 482 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 483 totalspace = BKVASIZE * BD_WAKE_SIZE; 484 spin_lock_wr(&needsbuffer_spin); 485 while (totalspace > 0) { 486 i = bd_wake_index++; 487 i &= BD_WAKE_MASK; 488 if (bd_wake_ary[i]) { 489 bd_wake_ary[i] = 0; 490 spin_unlock_wr(&needsbuffer_spin); 491 wakeup(&bd_wake_ary[i]); 492 spin_lock_wr(&needsbuffer_spin); 493 } 494 totalspace -= BKVASIZE; 495 } 496 spin_unlock_wr(&needsbuffer_spin); 497 } 498 } 499 500 /* 501 * BIO tracking support routines. 502 * 503 * Release a ref on a bio_track. Wakeup requests are atomically released 504 * along with the last reference so bk_active will never wind up set to 505 * only 0x80000000. 506 * 507 * MPSAFE 508 */ 509 static 510 void 511 bio_track_rel(struct bio_track *track) 512 { 513 int active; 514 int desired; 515 516 /* 517 * Shortcut 518 */ 519 active = track->bk_active; 520 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 521 return; 522 523 /* 524 * Full-on. Note that the wait flag is only atomically released on 525 * the 1->0 count transition. 526 * 527 * We check for a negative count transition using bit 30 since bit 31 528 * has a different meaning. 529 */ 530 for (;;) { 531 desired = (active & 0x7FFFFFFF) - 1; 532 if (desired) 533 desired |= active & 0x80000000; 534 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 535 if (desired & 0x40000000) 536 panic("bio_track_rel: bad count: %p\n", track); 537 if (active & 0x80000000) 538 wakeup(track); 539 break; 540 } 541 active = track->bk_active; 542 } 543 } 544 545 /* 546 * Wait for the tracking count to reach 0. 547 * 548 * Use atomic ops such that the wait flag is only set atomically when 549 * bk_active is non-zero. 550 * 551 * MPSAFE 552 */ 553 int 554 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 555 { 556 int active; 557 int desired; 558 int error; 559 560 /* 561 * Shortcut 562 */ 563 if (track->bk_active == 0) 564 return(0); 565 566 /* 567 * Full-on. Note that the wait flag may only be atomically set if 568 * the active count is non-zero. 569 */ 570 error = 0; 571 while ((active = track->bk_active) != 0) { 572 desired = active | 0x80000000; 573 tsleep_interlock(track, slp_flags); 574 if (active == desired || 575 atomic_cmpset_int(&track->bk_active, active, desired)) { 576 error = tsleep(track, slp_flags | PINTERLOCKED, 577 "iowait", slp_timo); 578 if (error) 579 break; 580 } 581 } 582 return (error); 583 } 584 585 /* 586 * bufinit: 587 * 588 * Load time initialisation of the buffer cache, called from machine 589 * dependant initialization code. 590 */ 591 void 592 bufinit(void) 593 { 594 struct buf *bp; 595 vm_offset_t bogus_offset; 596 int i; 597 598 spin_init(&needsbuffer_spin); 599 600 /* next, make a null set of free lists */ 601 for (i = 0; i < BUFFER_QUEUES; i++) 602 TAILQ_INIT(&bufqueues[i]); 603 604 /* finally, initialize each buffer header and stick on empty q */ 605 for (i = 0; i < nbuf; i++) { 606 bp = &buf[i]; 607 bzero(bp, sizeof *bp); 608 bp->b_flags = B_INVAL; /* we're just an empty header */ 609 bp->b_cmd = BUF_CMD_DONE; 610 bp->b_qindex = BQUEUE_EMPTY; 611 initbufbio(bp); 612 xio_init(&bp->b_xio); 613 buf_dep_init(bp); 614 BUF_LOCKINIT(bp); 615 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 616 } 617 618 /* 619 * maxbufspace is the absolute maximum amount of buffer space we are 620 * allowed to reserve in KVM and in real terms. The absolute maximum 621 * is nominally used by buf_daemon. hibufspace is the nominal maximum 622 * used by most other processes. The differential is required to 623 * ensure that buf_daemon is able to run when other processes might 624 * be blocked waiting for buffer space. 625 * 626 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 627 * this may result in KVM fragmentation which is not handled optimally 628 * by the system. 629 */ 630 maxbufspace = nbuf * BKVASIZE; 631 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 632 lobufspace = hibufspace - MAXBSIZE; 633 634 lorunningspace = 512 * 1024; 635 /* hirunningspace -- see below */ 636 637 /* 638 * Limit the amount of malloc memory since it is wired permanently 639 * into the kernel space. Even though this is accounted for in 640 * the buffer allocation, we don't want the malloced region to grow 641 * uncontrolled. The malloc scheme improves memory utilization 642 * significantly on average (small) directories. 643 */ 644 maxbufmallocspace = hibufspace / 20; 645 646 /* 647 * Reduce the chance of a deadlock occuring by limiting the number 648 * of delayed-write dirty buffers we allow to stack up. 649 * 650 * We don't want too much actually queued to the device at once 651 * (XXX this needs to be per-mount!), because the buffers will 652 * wind up locked for a very long period of time while the I/O 653 * drains. 654 */ 655 hidirtybufspace = hibufspace / 2; /* dirty + running */ 656 hirunningspace = hibufspace / 16; /* locked & queued to device */ 657 if (hirunningspace < 1024 * 1024) 658 hirunningspace = 1024 * 1024; 659 660 dirtybufspace = 0; 661 dirtybufspacehw = 0; 662 663 lodirtybufspace = hidirtybufspace / 2; 664 665 /* 666 * Maximum number of async ops initiated per buf_daemon loop. This is 667 * somewhat of a hack at the moment, we really need to limit ourselves 668 * based on the number of bytes of I/O in-transit that were initiated 669 * from buf_daemon. 670 */ 671 672 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 673 bogus_page = vm_page_alloc(&kernel_object, 674 (bogus_offset >> PAGE_SHIFT), 675 VM_ALLOC_NORMAL); 676 vmstats.v_wire_count++; 677 678 } 679 680 /* 681 * Initialize the embedded bio structures 682 */ 683 void 684 initbufbio(struct buf *bp) 685 { 686 bp->b_bio1.bio_buf = bp; 687 bp->b_bio1.bio_prev = NULL; 688 bp->b_bio1.bio_offset = NOOFFSET; 689 bp->b_bio1.bio_next = &bp->b_bio2; 690 bp->b_bio1.bio_done = NULL; 691 bp->b_bio1.bio_flags = 0; 692 693 bp->b_bio2.bio_buf = bp; 694 bp->b_bio2.bio_prev = &bp->b_bio1; 695 bp->b_bio2.bio_offset = NOOFFSET; 696 bp->b_bio2.bio_next = NULL; 697 bp->b_bio2.bio_done = NULL; 698 bp->b_bio2.bio_flags = 0; 699 } 700 701 /* 702 * Reinitialize the embedded bio structures as well as any additional 703 * translation cache layers. 704 */ 705 void 706 reinitbufbio(struct buf *bp) 707 { 708 struct bio *bio; 709 710 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 711 bio->bio_done = NULL; 712 bio->bio_offset = NOOFFSET; 713 } 714 } 715 716 /* 717 * Push another BIO layer onto an existing BIO and return it. The new 718 * BIO layer may already exist, holding cached translation data. 719 */ 720 struct bio * 721 push_bio(struct bio *bio) 722 { 723 struct bio *nbio; 724 725 if ((nbio = bio->bio_next) == NULL) { 726 int index = bio - &bio->bio_buf->b_bio_array[0]; 727 if (index >= NBUF_BIO - 1) { 728 panic("push_bio: too many layers bp %p\n", 729 bio->bio_buf); 730 } 731 nbio = &bio->bio_buf->b_bio_array[index + 1]; 732 bio->bio_next = nbio; 733 nbio->bio_prev = bio; 734 nbio->bio_buf = bio->bio_buf; 735 nbio->bio_offset = NOOFFSET; 736 nbio->bio_done = NULL; 737 nbio->bio_next = NULL; 738 } 739 KKASSERT(nbio->bio_done == NULL); 740 return(nbio); 741 } 742 743 /* 744 * Pop a BIO translation layer, returning the previous layer. The 745 * must have been previously pushed. 746 */ 747 struct bio * 748 pop_bio(struct bio *bio) 749 { 750 return(bio->bio_prev); 751 } 752 753 void 754 clearbiocache(struct bio *bio) 755 { 756 while (bio) { 757 bio->bio_offset = NOOFFSET; 758 bio = bio->bio_next; 759 } 760 } 761 762 /* 763 * bfreekva: 764 * 765 * Free the KVA allocation for buffer 'bp'. 766 * 767 * Must be called from a critical section as this is the only locking for 768 * buffer_map. 769 * 770 * Since this call frees up buffer space, we call bufspacewakeup(). 771 * 772 * MPALMOSTSAFE 773 */ 774 static void 775 bfreekva(struct buf *bp) 776 { 777 int count; 778 779 if (bp->b_kvasize) { 780 get_mplock(); 781 ++buffreekvacnt; 782 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 783 vm_map_lock(&buffer_map); 784 bufspace -= bp->b_kvasize; 785 vm_map_delete(&buffer_map, 786 (vm_offset_t) bp->b_kvabase, 787 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 788 &count 789 ); 790 vm_map_unlock(&buffer_map); 791 vm_map_entry_release(count); 792 bp->b_kvasize = 0; 793 bp->b_kvabase = NULL; 794 bufspacewakeup(); 795 rel_mplock(); 796 } 797 } 798 799 /* 800 * bremfree: 801 * 802 * Remove the buffer from the appropriate free list. 803 */ 804 static __inline void 805 _bremfree(struct buf *bp) 806 { 807 if (bp->b_qindex != BQUEUE_NONE) { 808 KASSERT(BUF_REFCNTNB(bp) == 1, 809 ("bremfree: bp %p not locked",bp)); 810 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 811 bp->b_qindex = BQUEUE_NONE; 812 } else { 813 if (BUF_REFCNTNB(bp) <= 1) 814 panic("bremfree: removing a buffer not on a queue"); 815 } 816 } 817 818 void 819 bremfree(struct buf *bp) 820 { 821 spin_lock_wr(&bufspin); 822 _bremfree(bp); 823 spin_unlock_wr(&bufspin); 824 } 825 826 static void 827 bremfree_locked(struct buf *bp) 828 { 829 _bremfree(bp); 830 } 831 832 /* 833 * bread: 834 * 835 * Get a buffer with the specified data. Look in the cache first. We 836 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 837 * is set, the buffer is valid and we do not have to do anything ( see 838 * getblk() ). 839 * 840 * MPALMOSTSAFE 841 */ 842 int 843 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 844 { 845 struct buf *bp; 846 847 bp = getblk(vp, loffset, size, 0, 0); 848 *bpp = bp; 849 850 /* if not found in cache, do some I/O */ 851 if ((bp->b_flags & B_CACHE) == 0) { 852 get_mplock(); 853 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 854 bp->b_cmd = BUF_CMD_READ; 855 bp->b_bio1.bio_done = biodone_sync; 856 bp->b_bio1.bio_flags |= BIO_SYNC; 857 vfs_busy_pages(vp, bp); 858 vn_strategy(vp, &bp->b_bio1); 859 rel_mplock(); 860 return (biowait(&bp->b_bio1, "biord")); 861 } 862 return (0); 863 } 864 865 /* 866 * breadn: 867 * 868 * Operates like bread, but also starts asynchronous I/O on 869 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 870 * to initiating I/O . If B_CACHE is set, the buffer is valid 871 * and we do not have to do anything. 872 * 873 * MPALMOSTSAFE 874 */ 875 int 876 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 877 int *rabsize, int cnt, struct buf **bpp) 878 { 879 struct buf *bp, *rabp; 880 int i; 881 int rv = 0, readwait = 0; 882 883 *bpp = bp = getblk(vp, loffset, size, 0, 0); 884 885 /* if not found in cache, do some I/O */ 886 if ((bp->b_flags & B_CACHE) == 0) { 887 get_mplock(); 888 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 889 bp->b_cmd = BUF_CMD_READ; 890 bp->b_bio1.bio_done = biodone_sync; 891 bp->b_bio1.bio_flags |= BIO_SYNC; 892 vfs_busy_pages(vp, bp); 893 vn_strategy(vp, &bp->b_bio1); 894 ++readwait; 895 rel_mplock(); 896 } 897 898 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 899 if (inmem(vp, *raoffset)) 900 continue; 901 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 902 903 if ((rabp->b_flags & B_CACHE) == 0) { 904 get_mplock(); 905 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 906 rabp->b_cmd = BUF_CMD_READ; 907 vfs_busy_pages(vp, rabp); 908 BUF_KERNPROC(rabp); 909 vn_strategy(vp, &rabp->b_bio1); 910 rel_mplock(); 911 } else { 912 brelse(rabp); 913 } 914 } 915 if (readwait) 916 rv = biowait(&bp->b_bio1, "biord"); 917 return (rv); 918 } 919 920 /* 921 * bwrite: 922 * 923 * Synchronous write, waits for completion. 924 * 925 * Write, release buffer on completion. (Done by iodone 926 * if async). Do not bother writing anything if the buffer 927 * is invalid. 928 * 929 * Note that we set B_CACHE here, indicating that buffer is 930 * fully valid and thus cacheable. This is true even of NFS 931 * now so we set it generally. This could be set either here 932 * or in biodone() since the I/O is synchronous. We put it 933 * here. 934 */ 935 int 936 bwrite(struct buf *bp) 937 { 938 int error; 939 940 if (bp->b_flags & B_INVAL) { 941 brelse(bp); 942 return (0); 943 } 944 if (BUF_REFCNTNB(bp) == 0) 945 panic("bwrite: buffer is not busy???"); 946 947 /* Mark the buffer clean */ 948 bundirty(bp); 949 950 bp->b_flags &= ~(B_ERROR | B_EINTR); 951 bp->b_flags |= B_CACHE; 952 bp->b_cmd = BUF_CMD_WRITE; 953 bp->b_bio1.bio_done = biodone_sync; 954 bp->b_bio1.bio_flags |= BIO_SYNC; 955 vfs_busy_pages(bp->b_vp, bp); 956 957 /* 958 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 959 * valid for vnode-backed buffers. 960 */ 961 bp->b_runningbufspace = bp->b_bufsize; 962 if (bp->b_runningbufspace) { 963 runningbufspace += bp->b_runningbufspace; 964 ++runningbufcount; 965 } 966 967 vn_strategy(bp->b_vp, &bp->b_bio1); 968 error = biowait(&bp->b_bio1, "biows"); 969 brelse(bp); 970 return (error); 971 } 972 973 /* 974 * bawrite: 975 * 976 * Asynchronous write. Start output on a buffer, but do not wait for 977 * it to complete. The buffer is released when the output completes. 978 * 979 * bwrite() ( or the VOP routine anyway ) is responsible for handling 980 * B_INVAL buffers. Not us. 981 */ 982 void 983 bawrite(struct buf *bp) 984 { 985 if (bp->b_flags & B_INVAL) { 986 brelse(bp); 987 return; 988 } 989 if (BUF_REFCNTNB(bp) == 0) 990 panic("bwrite: buffer is not busy???"); 991 992 /* Mark the buffer clean */ 993 bundirty(bp); 994 995 bp->b_flags &= ~(B_ERROR | B_EINTR); 996 bp->b_flags |= B_CACHE; 997 bp->b_cmd = BUF_CMD_WRITE; 998 KKASSERT(bp->b_bio1.bio_done == NULL); 999 vfs_busy_pages(bp->b_vp, bp); 1000 1001 /* 1002 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1003 * valid for vnode-backed buffers. 1004 */ 1005 bp->b_runningbufspace = bp->b_bufsize; 1006 if (bp->b_runningbufspace) { 1007 runningbufspace += bp->b_runningbufspace; 1008 ++runningbufcount; 1009 } 1010 1011 BUF_KERNPROC(bp); 1012 vn_strategy(bp->b_vp, &bp->b_bio1); 1013 } 1014 1015 /* 1016 * bowrite: 1017 * 1018 * Ordered write. Start output on a buffer, and flag it so that the 1019 * device will write it in the order it was queued. The buffer is 1020 * released when the output completes. bwrite() ( or the VOP routine 1021 * anyway ) is responsible for handling B_INVAL buffers. 1022 */ 1023 int 1024 bowrite(struct buf *bp) 1025 { 1026 bp->b_flags |= B_ORDERED; 1027 bawrite(bp); 1028 return (0); 1029 } 1030 1031 /* 1032 * bdwrite: 1033 * 1034 * Delayed write. (Buffer is marked dirty). Do not bother writing 1035 * anything if the buffer is marked invalid. 1036 * 1037 * Note that since the buffer must be completely valid, we can safely 1038 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1039 * biodone() in order to prevent getblk from writing the buffer 1040 * out synchronously. 1041 */ 1042 void 1043 bdwrite(struct buf *bp) 1044 { 1045 if (BUF_REFCNTNB(bp) == 0) 1046 panic("bdwrite: buffer is not busy"); 1047 1048 if (bp->b_flags & B_INVAL) { 1049 brelse(bp); 1050 return; 1051 } 1052 bdirty(bp); 1053 1054 if (dsched_is_clear_buf_priv(bp)) 1055 dsched_new_buf(bp); 1056 1057 /* 1058 * Set B_CACHE, indicating that the buffer is fully valid. This is 1059 * true even of NFS now. 1060 */ 1061 bp->b_flags |= B_CACHE; 1062 1063 /* 1064 * This bmap keeps the system from needing to do the bmap later, 1065 * perhaps when the system is attempting to do a sync. Since it 1066 * is likely that the indirect block -- or whatever other datastructure 1067 * that the filesystem needs is still in memory now, it is a good 1068 * thing to do this. Note also, that if the pageout daemon is 1069 * requesting a sync -- there might not be enough memory to do 1070 * the bmap then... So, this is important to do. 1071 */ 1072 if (bp->b_bio2.bio_offset == NOOFFSET) { 1073 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1074 NULL, NULL, BUF_CMD_WRITE); 1075 } 1076 1077 /* 1078 * Because the underlying pages may still be mapped and 1079 * writable trying to set the dirty buffer (b_dirtyoff/end) 1080 * range here will be inaccurate. 1081 * 1082 * However, we must still clean the pages to satisfy the 1083 * vnode_pager and pageout daemon, so theythink the pages 1084 * have been "cleaned". What has really occured is that 1085 * they've been earmarked for later writing by the buffer 1086 * cache. 1087 * 1088 * So we get the b_dirtyoff/end update but will not actually 1089 * depend on it (NFS that is) until the pages are busied for 1090 * writing later on. 1091 */ 1092 vfs_clean_pages(bp); 1093 bqrelse(bp); 1094 1095 /* 1096 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1097 * due to the softdep code. 1098 */ 1099 } 1100 1101 /* 1102 * Fake write - return pages to VM system as dirty, leave the buffer clean. 1103 * This is used by tmpfs. 1104 * 1105 * It is important for any VFS using this routine to NOT use it for 1106 * IO_SYNC or IO_ASYNC operations which occur when the system really 1107 * wants to flush VM pages to backing store. 1108 */ 1109 void 1110 buwrite(struct buf *bp) 1111 { 1112 vm_page_t m; 1113 int i; 1114 1115 /* 1116 * Only works for VMIO buffers. If the buffer is already 1117 * marked for delayed-write we can't avoid the bdwrite(). 1118 */ 1119 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) { 1120 bdwrite(bp); 1121 return; 1122 } 1123 1124 /* 1125 * Set valid & dirty. 1126 */ 1127 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1128 m = bp->b_xio.xio_pages[i]; 1129 vfs_dirty_one_page(bp, i, m); 1130 } 1131 bqrelse(bp); 1132 } 1133 1134 /* 1135 * bdirty: 1136 * 1137 * Turn buffer into delayed write request by marking it B_DELWRI. 1138 * B_RELBUF and B_NOCACHE must be cleared. 1139 * 1140 * We reassign the buffer to itself to properly update it in the 1141 * dirty/clean lists. 1142 * 1143 * Must be called from a critical section. 1144 * The buffer must be on BQUEUE_NONE. 1145 */ 1146 void 1147 bdirty(struct buf *bp) 1148 { 1149 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1150 if (bp->b_flags & B_NOCACHE) { 1151 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1152 bp->b_flags &= ~B_NOCACHE; 1153 } 1154 if (bp->b_flags & B_INVAL) { 1155 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1156 } 1157 bp->b_flags &= ~B_RELBUF; 1158 1159 if ((bp->b_flags & B_DELWRI) == 0) { 1160 bp->b_flags |= B_DELWRI; 1161 reassignbuf(bp); 1162 atomic_add_int(&dirtybufcount, 1); 1163 dirtybufspace += bp->b_bufsize; 1164 if (bp->b_flags & B_HEAVY) { 1165 atomic_add_int(&dirtybufcounthw, 1); 1166 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1167 } 1168 bd_heatup(); 1169 } 1170 } 1171 1172 /* 1173 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1174 * needs to be flushed with a different buf_daemon thread to avoid 1175 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1176 */ 1177 void 1178 bheavy(struct buf *bp) 1179 { 1180 if ((bp->b_flags & B_HEAVY) == 0) { 1181 bp->b_flags |= B_HEAVY; 1182 if (bp->b_flags & B_DELWRI) { 1183 atomic_add_int(&dirtybufcounthw, 1); 1184 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1185 } 1186 } 1187 } 1188 1189 /* 1190 * bundirty: 1191 * 1192 * Clear B_DELWRI for buffer. 1193 * 1194 * Must be called from a critical section. 1195 * 1196 * The buffer is typically on BQUEUE_NONE but there is one case in 1197 * brelse() that calls this function after placing the buffer on 1198 * a different queue. 1199 * 1200 * MPSAFE 1201 */ 1202 void 1203 bundirty(struct buf *bp) 1204 { 1205 if (bp->b_flags & B_DELWRI) { 1206 bp->b_flags &= ~B_DELWRI; 1207 reassignbuf(bp); 1208 atomic_subtract_int(&dirtybufcount, 1); 1209 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1210 if (bp->b_flags & B_HEAVY) { 1211 atomic_subtract_int(&dirtybufcounthw, 1); 1212 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1213 } 1214 bd_signal(bp->b_bufsize); 1215 } 1216 /* 1217 * Since it is now being written, we can clear its deferred write flag. 1218 */ 1219 bp->b_flags &= ~B_DEFERRED; 1220 } 1221 1222 /* 1223 * brelse: 1224 * 1225 * Release a busy buffer and, if requested, free its resources. The 1226 * buffer will be stashed in the appropriate bufqueue[] allowing it 1227 * to be accessed later as a cache entity or reused for other purposes. 1228 * 1229 * MPALMOSTSAFE 1230 */ 1231 void 1232 brelse(struct buf *bp) 1233 { 1234 #ifdef INVARIANTS 1235 int saved_flags = bp->b_flags; 1236 #endif 1237 1238 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1239 1240 /* 1241 * If B_NOCACHE is set we are being asked to destroy the buffer and 1242 * its backing store. Clear B_DELWRI. 1243 * 1244 * B_NOCACHE is set in two cases: (1) when the caller really wants 1245 * to destroy the buffer and backing store and (2) when the caller 1246 * wants to destroy the buffer and backing store after a write 1247 * completes. 1248 */ 1249 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1250 bundirty(bp); 1251 } 1252 1253 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1254 /* 1255 * A re-dirtied buffer is only subject to destruction 1256 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1257 */ 1258 /* leave buffer intact */ 1259 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1260 (bp->b_bufsize <= 0)) { 1261 /* 1262 * Either a failed read or we were asked to free or not 1263 * cache the buffer. This path is reached with B_DELWRI 1264 * set only if B_INVAL is already set. B_NOCACHE governs 1265 * backing store destruction. 1266 * 1267 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1268 * buffer cannot be immediately freed. 1269 */ 1270 bp->b_flags |= B_INVAL; 1271 if (LIST_FIRST(&bp->b_dep) != NULL) { 1272 get_mplock(); 1273 buf_deallocate(bp); 1274 rel_mplock(); 1275 } 1276 if (bp->b_flags & B_DELWRI) { 1277 atomic_subtract_int(&dirtybufcount, 1); 1278 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1279 if (bp->b_flags & B_HEAVY) { 1280 atomic_subtract_int(&dirtybufcounthw, 1); 1281 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1282 } 1283 bd_signal(bp->b_bufsize); 1284 } 1285 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1286 } 1287 1288 /* 1289 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1290 * If vfs_vmio_release() is called with either bit set, the 1291 * underlying pages may wind up getting freed causing a previous 1292 * write (bdwrite()) to get 'lost' because pages associated with 1293 * a B_DELWRI bp are marked clean. Pages associated with a 1294 * B_LOCKED buffer may be mapped by the filesystem. 1295 * 1296 * If we want to release the buffer ourselves (rather then the 1297 * originator asking us to release it), give the originator a 1298 * chance to countermand the release by setting B_LOCKED. 1299 * 1300 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1301 * if B_DELWRI is set. 1302 * 1303 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1304 * on pages to return pages to the VM page queues. 1305 */ 1306 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1307 bp->b_flags &= ~B_RELBUF; 1308 } else if (vm_page_count_severe()) { 1309 if (LIST_FIRST(&bp->b_dep) != NULL) { 1310 get_mplock(); 1311 buf_deallocate(bp); /* can set B_LOCKED */ 1312 rel_mplock(); 1313 } 1314 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1315 bp->b_flags &= ~B_RELBUF; 1316 else 1317 bp->b_flags |= B_RELBUF; 1318 } 1319 1320 /* 1321 * Make sure b_cmd is clear. It may have already been cleared by 1322 * biodone(). 1323 * 1324 * At this point destroying the buffer is governed by the B_INVAL 1325 * or B_RELBUF flags. 1326 */ 1327 bp->b_cmd = BUF_CMD_DONE; 1328 dsched_exit_buf(bp); 1329 1330 /* 1331 * VMIO buffer rundown. Make sure the VM page array is restored 1332 * after an I/O may have replaces some of the pages with bogus pages 1333 * in order to not destroy dirty pages in a fill-in read. 1334 * 1335 * Note that due to the code above, if a buffer is marked B_DELWRI 1336 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1337 * B_INVAL may still be set, however. 1338 * 1339 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1340 * but not the backing store. B_NOCACHE will destroy the backing 1341 * store. 1342 * 1343 * Note that dirty NFS buffers contain byte-granular write ranges 1344 * and should not be destroyed w/ B_INVAL even if the backing store 1345 * is left intact. 1346 */ 1347 if (bp->b_flags & B_VMIO) { 1348 /* 1349 * Rundown for VMIO buffers which are not dirty NFS buffers. 1350 */ 1351 int i, j, resid; 1352 vm_page_t m; 1353 off_t foff; 1354 vm_pindex_t poff; 1355 vm_object_t obj; 1356 struct vnode *vp; 1357 1358 vp = bp->b_vp; 1359 1360 /* 1361 * Get the base offset and length of the buffer. Note that 1362 * in the VMIO case if the buffer block size is not 1363 * page-aligned then b_data pointer may not be page-aligned. 1364 * But our b_xio.xio_pages array *IS* page aligned. 1365 * 1366 * block sizes less then DEV_BSIZE (usually 512) are not 1367 * supported due to the page granularity bits (m->valid, 1368 * m->dirty, etc...). 1369 * 1370 * See man buf(9) for more information 1371 */ 1372 1373 resid = bp->b_bufsize; 1374 foff = bp->b_loffset; 1375 1376 get_mplock(); 1377 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1378 m = bp->b_xio.xio_pages[i]; 1379 vm_page_flag_clear(m, PG_ZERO); 1380 /* 1381 * If we hit a bogus page, fixup *all* of them 1382 * now. Note that we left these pages wired 1383 * when we removed them so they had better exist, 1384 * and they cannot be ripped out from under us so 1385 * no critical section protection is necessary. 1386 */ 1387 if (m == bogus_page) { 1388 obj = vp->v_object; 1389 poff = OFF_TO_IDX(bp->b_loffset); 1390 1391 for (j = i; j < bp->b_xio.xio_npages; j++) { 1392 vm_page_t mtmp; 1393 1394 mtmp = bp->b_xio.xio_pages[j]; 1395 if (mtmp == bogus_page) { 1396 mtmp = vm_page_lookup(obj, poff + j); 1397 if (!mtmp) { 1398 panic("brelse: page missing"); 1399 } 1400 bp->b_xio.xio_pages[j] = mtmp; 1401 } 1402 } 1403 bp->b_flags &= ~B_HASBOGUS; 1404 1405 if ((bp->b_flags & B_INVAL) == 0) { 1406 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1407 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1408 } 1409 m = bp->b_xio.xio_pages[i]; 1410 } 1411 1412 /* 1413 * Invalidate the backing store if B_NOCACHE is set 1414 * (e.g. used with vinvalbuf()). If this is NFS 1415 * we impose a requirement that the block size be 1416 * a multiple of PAGE_SIZE and create a temporary 1417 * hack to basically invalidate the whole page. The 1418 * problem is that NFS uses really odd buffer sizes 1419 * especially when tracking piecemeal writes and 1420 * it also vinvalbuf()'s a lot, which would result 1421 * in only partial page validation and invalidation 1422 * here. If the file page is mmap()'d, however, 1423 * all the valid bits get set so after we invalidate 1424 * here we would end up with weird m->valid values 1425 * like 0xfc. nfs_getpages() can't handle this so 1426 * we clear all the valid bits for the NFS case 1427 * instead of just some of them. 1428 * 1429 * The real bug is the VM system having to set m->valid 1430 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1431 * itself is an artifact of the whole 512-byte 1432 * granular mess that exists to support odd block 1433 * sizes and UFS meta-data block sizes (e.g. 6144). 1434 * A complete rewrite is required. 1435 * 1436 * XXX 1437 */ 1438 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1439 int poffset = foff & PAGE_MASK; 1440 int presid; 1441 1442 presid = PAGE_SIZE - poffset; 1443 if (bp->b_vp->v_tag == VT_NFS && 1444 bp->b_vp->v_type == VREG) { 1445 ; /* entire page */ 1446 } else if (presid > resid) { 1447 presid = resid; 1448 } 1449 KASSERT(presid >= 0, ("brelse: extra page")); 1450 vm_page_set_invalid(m, poffset, presid); 1451 1452 /* 1453 * Also make sure any swap cache is removed 1454 * as it is now stale (HAMMER in particular 1455 * uses B_NOCACHE to deal with buffer 1456 * aliasing). 1457 */ 1458 swap_pager_unswapped(m); 1459 } 1460 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1461 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1462 } 1463 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1464 vfs_vmio_release(bp); 1465 rel_mplock(); 1466 } else { 1467 /* 1468 * Rundown for non-VMIO buffers. 1469 */ 1470 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1471 get_mplock(); 1472 if (bp->b_bufsize) 1473 allocbuf(bp, 0); 1474 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1475 if (bp->b_vp) 1476 brelvp(bp); 1477 rel_mplock(); 1478 } 1479 } 1480 1481 if (bp->b_qindex != BQUEUE_NONE) 1482 panic("brelse: free buffer onto another queue???"); 1483 if (BUF_REFCNTNB(bp) > 1) { 1484 /* Temporary panic to verify exclusive locking */ 1485 /* This panic goes away when we allow shared refs */ 1486 panic("brelse: multiple refs"); 1487 /* NOT REACHED */ 1488 return; 1489 } 1490 1491 /* 1492 * Figure out the correct queue to place the cleaned up buffer on. 1493 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1494 * disassociated from their vnode. 1495 */ 1496 spin_lock_wr(&bufspin); 1497 if (bp->b_flags & B_LOCKED) { 1498 /* 1499 * Buffers that are locked are placed in the locked queue 1500 * immediately, regardless of their state. 1501 */ 1502 bp->b_qindex = BQUEUE_LOCKED; 1503 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1504 } else if (bp->b_bufsize == 0) { 1505 /* 1506 * Buffers with no memory. Due to conditionals near the top 1507 * of brelse() such buffers should probably already be 1508 * marked B_INVAL and disassociated from their vnode. 1509 */ 1510 bp->b_flags |= B_INVAL; 1511 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1512 KKASSERT((bp->b_flags & B_HASHED) == 0); 1513 if (bp->b_kvasize) { 1514 bp->b_qindex = BQUEUE_EMPTYKVA; 1515 } else { 1516 bp->b_qindex = BQUEUE_EMPTY; 1517 } 1518 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1519 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1520 /* 1521 * Buffers with junk contents. Again these buffers had better 1522 * already be disassociated from their vnode. 1523 */ 1524 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1525 KKASSERT((bp->b_flags & B_HASHED) == 0); 1526 bp->b_flags |= B_INVAL; 1527 bp->b_qindex = BQUEUE_CLEAN; 1528 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1529 } else { 1530 /* 1531 * Remaining buffers. These buffers are still associated with 1532 * their vnode. 1533 */ 1534 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1535 case B_DELWRI: 1536 bp->b_qindex = BQUEUE_DIRTY; 1537 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1538 break; 1539 case B_DELWRI | B_HEAVY: 1540 bp->b_qindex = BQUEUE_DIRTY_HW; 1541 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1542 b_freelist); 1543 break; 1544 default: 1545 /* 1546 * NOTE: Buffers are always placed at the end of the 1547 * queue. If B_AGE is not set the buffer will cycle 1548 * through the queue twice. 1549 */ 1550 bp->b_qindex = BQUEUE_CLEAN; 1551 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1552 break; 1553 } 1554 } 1555 spin_unlock_wr(&bufspin); 1556 1557 /* 1558 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1559 * on the correct queue. 1560 */ 1561 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1562 bundirty(bp); 1563 1564 /* 1565 * The bp is on an appropriate queue unless locked. If it is not 1566 * locked or dirty we can wakeup threads waiting for buffer space. 1567 * 1568 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1569 * if B_INVAL is set ). 1570 */ 1571 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1572 bufcountwakeup(); 1573 1574 /* 1575 * Something we can maybe free or reuse 1576 */ 1577 if (bp->b_bufsize || bp->b_kvasize) 1578 bufspacewakeup(); 1579 1580 /* 1581 * Clean up temporary flags and unlock the buffer. 1582 */ 1583 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1584 BUF_UNLOCK(bp); 1585 } 1586 1587 /* 1588 * bqrelse: 1589 * 1590 * Release a buffer back to the appropriate queue but do not try to free 1591 * it. The buffer is expected to be used again soon. 1592 * 1593 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1594 * biodone() to requeue an async I/O on completion. It is also used when 1595 * known good buffers need to be requeued but we think we may need the data 1596 * again soon. 1597 * 1598 * XXX we should be able to leave the B_RELBUF hint set on completion. 1599 * 1600 * MPSAFE 1601 */ 1602 void 1603 bqrelse(struct buf *bp) 1604 { 1605 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1606 1607 if (bp->b_qindex != BQUEUE_NONE) 1608 panic("bqrelse: free buffer onto another queue???"); 1609 if (BUF_REFCNTNB(bp) > 1) { 1610 /* do not release to free list */ 1611 panic("bqrelse: multiple refs"); 1612 return; 1613 } 1614 1615 buf_act_advance(bp); 1616 1617 spin_lock_wr(&bufspin); 1618 if (bp->b_flags & B_LOCKED) { 1619 /* 1620 * Locked buffers are released to the locked queue. However, 1621 * if the buffer is dirty it will first go into the dirty 1622 * queue and later on after the I/O completes successfully it 1623 * will be released to the locked queue. 1624 */ 1625 bp->b_qindex = BQUEUE_LOCKED; 1626 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1627 } else if (bp->b_flags & B_DELWRI) { 1628 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1629 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1630 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1631 } else if (vm_page_count_severe()) { 1632 /* 1633 * We are too low on memory, we have to try to free the 1634 * buffer (most importantly: the wired pages making up its 1635 * backing store) *now*. 1636 */ 1637 spin_unlock_wr(&bufspin); 1638 brelse(bp); 1639 return; 1640 } else { 1641 bp->b_qindex = BQUEUE_CLEAN; 1642 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1643 } 1644 spin_unlock_wr(&bufspin); 1645 1646 if ((bp->b_flags & B_LOCKED) == 0 && 1647 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1648 bufcountwakeup(); 1649 } 1650 1651 /* 1652 * Something we can maybe free or reuse. 1653 */ 1654 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1655 bufspacewakeup(); 1656 1657 /* 1658 * Final cleanup and unlock. Clear bits that are only used while a 1659 * buffer is actively locked. 1660 */ 1661 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1662 dsched_exit_buf(bp); 1663 BUF_UNLOCK(bp); 1664 } 1665 1666 /* 1667 * vfs_vmio_release: 1668 * 1669 * Return backing pages held by the buffer 'bp' back to the VM system 1670 * if possible. The pages are freed if they are no longer valid or 1671 * attempt to free if it was used for direct I/O otherwise they are 1672 * sent to the page cache. 1673 * 1674 * Pages that were marked busy are left alone and skipped. 1675 * 1676 * The KVA mapping (b_data) for the underlying pages is removed by 1677 * this function. 1678 */ 1679 static void 1680 vfs_vmio_release(struct buf *bp) 1681 { 1682 int i; 1683 vm_page_t m; 1684 1685 lwkt_gettoken(&vm_token); 1686 crit_enter(); 1687 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1688 m = bp->b_xio.xio_pages[i]; 1689 bp->b_xio.xio_pages[i] = NULL; 1690 1691 /* 1692 * The VFS is telling us this is not a meta-data buffer 1693 * even if it is backed by a block device. 1694 */ 1695 if (bp->b_flags & B_NOTMETA) 1696 vm_page_flag_set(m, PG_NOTMETA); 1697 1698 /* 1699 * This is a very important bit of code. We try to track 1700 * VM page use whether the pages are wired into the buffer 1701 * cache or not. While wired into the buffer cache the 1702 * bp tracks the act_count. 1703 * 1704 * We can choose to place unwired pages on the inactive 1705 * queue (0) or active queue (1). If we place too many 1706 * on the active queue the queue will cycle the act_count 1707 * on pages we'd like to keep, just from single-use pages 1708 * (such as when doing a tar-up or file scan). 1709 */ 1710 if (bp->b_act_count < vm_cycle_point) 1711 vm_page_unwire(m, 0); 1712 else 1713 vm_page_unwire(m, 1); 1714 1715 /* 1716 * We don't mess with busy pages, it is 1717 * the responsibility of the process that 1718 * busied the pages to deal with them. 1719 */ 1720 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1721 continue; 1722 1723 if (m->wire_count == 0) { 1724 vm_page_flag_clear(m, PG_ZERO); 1725 /* 1726 * Might as well free the page if we can and it has 1727 * no valid data. We also free the page if the 1728 * buffer was used for direct I/O. 1729 */ 1730 #if 0 1731 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1732 m->hold_count == 0) { 1733 vm_page_busy(m); 1734 vm_page_protect(m, VM_PROT_NONE); 1735 vm_page_free(m); 1736 } else 1737 #endif 1738 if (bp->b_flags & B_DIRECT) { 1739 vm_page_try_to_free(m); 1740 } else if (vm_page_count_severe()) { 1741 m->act_count = bp->b_act_count; 1742 vm_page_try_to_cache(m); 1743 } else { 1744 m->act_count = bp->b_act_count; 1745 } 1746 } 1747 } 1748 crit_exit(); 1749 lwkt_reltoken(&vm_token); 1750 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages); 1751 if (bp->b_bufsize) { 1752 bufspacewakeup(); 1753 bp->b_bufsize = 0; 1754 } 1755 bp->b_xio.xio_npages = 0; 1756 bp->b_flags &= ~B_VMIO; 1757 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1758 if (bp->b_vp) { 1759 get_mplock(); 1760 brelvp(bp); 1761 rel_mplock(); 1762 } 1763 } 1764 1765 /* 1766 * vfs_bio_awrite: 1767 * 1768 * Implement clustered async writes for clearing out B_DELWRI buffers. 1769 * This is much better then the old way of writing only one buffer at 1770 * a time. Note that we may not be presented with the buffers in the 1771 * correct order, so we search for the cluster in both directions. 1772 * 1773 * The buffer is locked on call. 1774 */ 1775 int 1776 vfs_bio_awrite(struct buf *bp) 1777 { 1778 int i; 1779 int j; 1780 off_t loffset = bp->b_loffset; 1781 struct vnode *vp = bp->b_vp; 1782 int nbytes; 1783 struct buf *bpa; 1784 int nwritten; 1785 int size; 1786 1787 /* 1788 * right now we support clustered writing only to regular files. If 1789 * we find a clusterable block we could be in the middle of a cluster 1790 * rather then at the beginning. 1791 * 1792 * NOTE: b_bio1 contains the logical loffset and is aliased 1793 * to b_loffset. b_bio2 contains the translated block number. 1794 */ 1795 if ((vp->v_type == VREG) && 1796 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1797 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1798 1799 size = vp->v_mount->mnt_stat.f_iosize; 1800 1801 for (i = size; i < MAXPHYS; i += size) { 1802 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1803 BUF_REFCNT(bpa) == 0 && 1804 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1805 (B_DELWRI | B_CLUSTEROK)) && 1806 (bpa->b_bufsize == size)) { 1807 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1808 (bpa->b_bio2.bio_offset != 1809 bp->b_bio2.bio_offset + i)) 1810 break; 1811 } else { 1812 break; 1813 } 1814 } 1815 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1816 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1817 BUF_REFCNT(bpa) == 0 && 1818 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1819 (B_DELWRI | B_CLUSTEROK)) && 1820 (bpa->b_bufsize == size)) { 1821 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1822 (bpa->b_bio2.bio_offset != 1823 bp->b_bio2.bio_offset - j)) 1824 break; 1825 } else { 1826 break; 1827 } 1828 } 1829 j -= size; 1830 nbytes = (i + j); 1831 1832 /* 1833 * this is a possible cluster write 1834 */ 1835 if (nbytes != size) { 1836 BUF_UNLOCK(bp); 1837 nwritten = cluster_wbuild(vp, size, 1838 loffset - j, nbytes); 1839 return nwritten; 1840 } 1841 } 1842 1843 /* 1844 * default (old) behavior, writing out only one block 1845 * 1846 * XXX returns b_bufsize instead of b_bcount for nwritten? 1847 */ 1848 nwritten = bp->b_bufsize; 1849 bremfree(bp); 1850 bawrite(bp); 1851 1852 return nwritten; 1853 } 1854 1855 /* 1856 * getnewbuf: 1857 * 1858 * Find and initialize a new buffer header, freeing up existing buffers 1859 * in the bufqueues as necessary. The new buffer is returned locked. 1860 * 1861 * Important: B_INVAL is not set. If the caller wishes to throw the 1862 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1863 * 1864 * We block if: 1865 * We have insufficient buffer headers 1866 * We have insufficient buffer space 1867 * buffer_map is too fragmented ( space reservation fails ) 1868 * If we have to flush dirty buffers ( but we try to avoid this ) 1869 * 1870 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1871 * Instead we ask the buf daemon to do it for us. We attempt to 1872 * avoid piecemeal wakeups of the pageout daemon. 1873 * 1874 * MPALMOSTSAFE 1875 */ 1876 static struct buf * 1877 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1878 { 1879 struct buf *bp; 1880 struct buf *nbp; 1881 int defrag = 0; 1882 int nqindex; 1883 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1884 static int flushingbufs; 1885 1886 /* 1887 * We can't afford to block since we might be holding a vnode lock, 1888 * which may prevent system daemons from running. We deal with 1889 * low-memory situations by proactively returning memory and running 1890 * async I/O rather then sync I/O. 1891 */ 1892 1893 ++getnewbufcalls; 1894 --getnewbufrestarts; 1895 restart: 1896 ++getnewbufrestarts; 1897 1898 /* 1899 * Setup for scan. If we do not have enough free buffers, 1900 * we setup a degenerate case that immediately fails. Note 1901 * that if we are specially marked process, we are allowed to 1902 * dip into our reserves. 1903 * 1904 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1905 * 1906 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1907 * However, there are a number of cases (defragging, reusing, ...) 1908 * where we cannot backup. 1909 */ 1910 nqindex = BQUEUE_EMPTYKVA; 1911 spin_lock_wr(&bufspin); 1912 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1913 1914 if (nbp == NULL) { 1915 /* 1916 * If no EMPTYKVA buffers and we are either 1917 * defragging or reusing, locate a CLEAN buffer 1918 * to free or reuse. If bufspace useage is low 1919 * skip this step so we can allocate a new buffer. 1920 */ 1921 if (defrag || bufspace >= lobufspace) { 1922 nqindex = BQUEUE_CLEAN; 1923 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1924 } 1925 1926 /* 1927 * If we could not find or were not allowed to reuse a 1928 * CLEAN buffer, check to see if it is ok to use an EMPTY 1929 * buffer. We can only use an EMPTY buffer if allocating 1930 * its KVA would not otherwise run us out of buffer space. 1931 */ 1932 if (nbp == NULL && defrag == 0 && 1933 bufspace + maxsize < hibufspace) { 1934 nqindex = BQUEUE_EMPTY; 1935 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1936 } 1937 } 1938 1939 /* 1940 * Run scan, possibly freeing data and/or kva mappings on the fly 1941 * depending. 1942 * 1943 * WARNING! bufspin is held! 1944 */ 1945 while ((bp = nbp) != NULL) { 1946 int qindex = nqindex; 1947 1948 nbp = TAILQ_NEXT(bp, b_freelist); 1949 1950 /* 1951 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1952 * cycles through the queue twice before being selected. 1953 */ 1954 if (qindex == BQUEUE_CLEAN && 1955 (bp->b_flags & B_AGE) == 0 && nbp) { 1956 bp->b_flags |= B_AGE; 1957 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 1958 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 1959 continue; 1960 } 1961 1962 /* 1963 * Calculate next bp ( we can only use it if we do not block 1964 * or do other fancy things ). 1965 */ 1966 if (nbp == NULL) { 1967 switch(qindex) { 1968 case BQUEUE_EMPTY: 1969 nqindex = BQUEUE_EMPTYKVA; 1970 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 1971 break; 1972 /* fall through */ 1973 case BQUEUE_EMPTYKVA: 1974 nqindex = BQUEUE_CLEAN; 1975 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 1976 break; 1977 /* fall through */ 1978 case BQUEUE_CLEAN: 1979 /* 1980 * nbp is NULL. 1981 */ 1982 break; 1983 } 1984 } 1985 1986 /* 1987 * Sanity Checks 1988 */ 1989 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 1990 1991 /* 1992 * Note: we no longer distinguish between VMIO and non-VMIO 1993 * buffers. 1994 */ 1995 1996 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1997 1998 /* 1999 * If we are defragging then we need a buffer with 2000 * b_kvasize != 0. XXX this situation should no longer 2001 * occur, if defrag is non-zero the buffer's b_kvasize 2002 * should also be non-zero at this point. XXX 2003 */ 2004 if (defrag && bp->b_kvasize == 0) { 2005 kprintf("Warning: defrag empty buffer %p\n", bp); 2006 continue; 2007 } 2008 2009 /* 2010 * Start freeing the bp. This is somewhat involved. nbp 2011 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 2012 * on the clean list must be disassociated from their 2013 * current vnode. Buffers on the empty[kva] lists have 2014 * already been disassociated. 2015 */ 2016 2017 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2018 spin_unlock_wr(&bufspin); 2019 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2020 goto restart; 2021 } 2022 if (bp->b_qindex != qindex) { 2023 spin_unlock_wr(&bufspin); 2024 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex); 2025 BUF_UNLOCK(bp); 2026 goto restart; 2027 } 2028 bremfree_locked(bp); 2029 spin_unlock_wr(&bufspin); 2030 2031 /* 2032 * Dependancies must be handled before we disassociate the 2033 * vnode. 2034 * 2035 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2036 * be immediately disassociated. HAMMER then becomes 2037 * responsible for releasing the buffer. 2038 * 2039 * NOTE: bufspin is UNLOCKED now. 2040 */ 2041 if (LIST_FIRST(&bp->b_dep) != NULL) { 2042 get_mplock(); 2043 buf_deallocate(bp); 2044 rel_mplock(); 2045 if (bp->b_flags & B_LOCKED) { 2046 bqrelse(bp); 2047 goto restart; 2048 } 2049 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2050 } 2051 2052 if (qindex == BQUEUE_CLEAN) { 2053 get_mplock(); 2054 if (bp->b_flags & B_VMIO) { 2055 get_mplock(); 2056 vfs_vmio_release(bp); 2057 rel_mplock(); 2058 } 2059 if (bp->b_vp) 2060 brelvp(bp); 2061 rel_mplock(); 2062 } 2063 2064 /* 2065 * NOTE: nbp is now entirely invalid. We can only restart 2066 * the scan from this point on. 2067 * 2068 * Get the rest of the buffer freed up. b_kva* is still 2069 * valid after this operation. 2070 */ 2071 2072 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 2073 KKASSERT((bp->b_flags & B_HASHED) == 0); 2074 2075 /* 2076 * critical section protection is not required when 2077 * scrapping a buffer's contents because it is already 2078 * wired. 2079 */ 2080 if (bp->b_bufsize) { 2081 get_mplock(); 2082 allocbuf(bp, 0); 2083 rel_mplock(); 2084 } 2085 2086 bp->b_flags = B_BNOCLIP; 2087 bp->b_cmd = BUF_CMD_DONE; 2088 bp->b_vp = NULL; 2089 bp->b_error = 0; 2090 bp->b_resid = 0; 2091 bp->b_bcount = 0; 2092 bp->b_xio.xio_npages = 0; 2093 bp->b_dirtyoff = bp->b_dirtyend = 0; 2094 bp->b_act_count = ACT_INIT; 2095 reinitbufbio(bp); 2096 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2097 buf_dep_init(bp); 2098 if (blkflags & GETBLK_BHEAVY) 2099 bp->b_flags |= B_HEAVY; 2100 2101 /* 2102 * If we are defragging then free the buffer. 2103 */ 2104 if (defrag) { 2105 bp->b_flags |= B_INVAL; 2106 bfreekva(bp); 2107 brelse(bp); 2108 defrag = 0; 2109 goto restart; 2110 } 2111 2112 /* 2113 * If we are overcomitted then recover the buffer and its 2114 * KVM space. This occurs in rare situations when multiple 2115 * processes are blocked in getnewbuf() or allocbuf(). 2116 */ 2117 if (bufspace >= hibufspace) 2118 flushingbufs = 1; 2119 if (flushingbufs && bp->b_kvasize != 0) { 2120 bp->b_flags |= B_INVAL; 2121 bfreekva(bp); 2122 brelse(bp); 2123 goto restart; 2124 } 2125 if (bufspace < lobufspace) 2126 flushingbufs = 0; 2127 break; 2128 /* NOT REACHED, bufspin not held */ 2129 } 2130 2131 /* 2132 * If we exhausted our list, sleep as appropriate. We may have to 2133 * wakeup various daemons and write out some dirty buffers. 2134 * 2135 * Generally we are sleeping due to insufficient buffer space. 2136 * 2137 * NOTE: bufspin is held if bp is NULL, else it is not held. 2138 */ 2139 if (bp == NULL) { 2140 int flags; 2141 char *waitmsg; 2142 2143 spin_unlock_wr(&bufspin); 2144 if (defrag) { 2145 flags = VFS_BIO_NEED_BUFSPACE; 2146 waitmsg = "nbufkv"; 2147 } else if (bufspace >= hibufspace) { 2148 waitmsg = "nbufbs"; 2149 flags = VFS_BIO_NEED_BUFSPACE; 2150 } else { 2151 waitmsg = "newbuf"; 2152 flags = VFS_BIO_NEED_ANY; 2153 } 2154 2155 needsbuffer |= flags; 2156 bd_speedup(); /* heeeelp */ 2157 while (needsbuffer & flags) { 2158 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo)) 2159 return (NULL); 2160 } 2161 } else { 2162 /* 2163 * We finally have a valid bp. We aren't quite out of the 2164 * woods, we still have to reserve kva space. In order 2165 * to keep fragmentation sane we only allocate kva in 2166 * BKVASIZE chunks. 2167 * 2168 * (bufspin is not held) 2169 */ 2170 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2171 2172 if (maxsize != bp->b_kvasize) { 2173 vm_offset_t addr = 0; 2174 int count; 2175 2176 bfreekva(bp); 2177 2178 get_mplock(); 2179 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2180 vm_map_lock(&buffer_map); 2181 2182 if (vm_map_findspace(&buffer_map, 2183 vm_map_min(&buffer_map), maxsize, 2184 maxsize, 0, &addr)) { 2185 /* 2186 * Uh oh. Buffer map is too fragmented. We 2187 * must defragment the map. 2188 */ 2189 vm_map_unlock(&buffer_map); 2190 vm_map_entry_release(count); 2191 ++bufdefragcnt; 2192 defrag = 1; 2193 bp->b_flags |= B_INVAL; 2194 rel_mplock(); 2195 brelse(bp); 2196 goto restart; 2197 } 2198 if (addr) { 2199 vm_map_insert(&buffer_map, &count, 2200 NULL, 0, 2201 addr, addr + maxsize, 2202 VM_MAPTYPE_NORMAL, 2203 VM_PROT_ALL, VM_PROT_ALL, 2204 MAP_NOFAULT); 2205 2206 bp->b_kvabase = (caddr_t) addr; 2207 bp->b_kvasize = maxsize; 2208 bufspace += bp->b_kvasize; 2209 ++bufreusecnt; 2210 } 2211 vm_map_unlock(&buffer_map); 2212 vm_map_entry_release(count); 2213 rel_mplock(); 2214 } 2215 bp->b_data = bp->b_kvabase; 2216 } 2217 return(bp); 2218 } 2219 2220 /* 2221 * This routine is called in an emergency to recover VM pages from the 2222 * buffer cache by cashing in clean buffers. The idea is to recover 2223 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2224 */ 2225 static int 2226 recoverbufpages(void) 2227 { 2228 struct buf *bp; 2229 int bytes = 0; 2230 2231 ++recoverbufcalls; 2232 2233 spin_lock_wr(&bufspin); 2234 while (bytes < MAXBSIZE) { 2235 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2236 if (bp == NULL) 2237 break; 2238 2239 /* 2240 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2241 * cycles through the queue twice before being selected. 2242 */ 2243 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2244 bp->b_flags |= B_AGE; 2245 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2246 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2247 bp, b_freelist); 2248 continue; 2249 } 2250 2251 /* 2252 * Sanity Checks 2253 */ 2254 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2255 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2256 2257 /* 2258 * Start freeing the bp. This is somewhat involved. 2259 * 2260 * Buffers on the clean list must be disassociated from 2261 * their current vnode 2262 */ 2263 2264 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2265 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp); 2266 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2267 continue; 2268 } 2269 if (bp->b_qindex != BQUEUE_CLEAN) { 2270 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex); 2271 BUF_UNLOCK(bp); 2272 continue; 2273 } 2274 bremfree_locked(bp); 2275 spin_unlock_wr(&bufspin); 2276 2277 /* 2278 * Dependancies must be handled before we disassociate the 2279 * vnode. 2280 * 2281 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2282 * be immediately disassociated. HAMMER then becomes 2283 * responsible for releasing the buffer. 2284 */ 2285 if (LIST_FIRST(&bp->b_dep) != NULL) { 2286 buf_deallocate(bp); 2287 if (bp->b_flags & B_LOCKED) { 2288 bqrelse(bp); 2289 spin_lock_wr(&bufspin); 2290 continue; 2291 } 2292 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2293 } 2294 2295 bytes += bp->b_bufsize; 2296 2297 get_mplock(); 2298 if (bp->b_flags & B_VMIO) { 2299 bp->b_flags |= B_DIRECT; /* try to free pages */ 2300 vfs_vmio_release(bp); 2301 } 2302 if (bp->b_vp) 2303 brelvp(bp); 2304 2305 KKASSERT(bp->b_vp == NULL); 2306 KKASSERT((bp->b_flags & B_HASHED) == 0); 2307 2308 /* 2309 * critical section protection is not required when 2310 * scrapping a buffer's contents because it is already 2311 * wired. 2312 */ 2313 if (bp->b_bufsize) 2314 allocbuf(bp, 0); 2315 rel_mplock(); 2316 2317 bp->b_flags = B_BNOCLIP; 2318 bp->b_cmd = BUF_CMD_DONE; 2319 bp->b_vp = NULL; 2320 bp->b_error = 0; 2321 bp->b_resid = 0; 2322 bp->b_bcount = 0; 2323 bp->b_xio.xio_npages = 0; 2324 bp->b_dirtyoff = bp->b_dirtyend = 0; 2325 reinitbufbio(bp); 2326 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2327 buf_dep_init(bp); 2328 bp->b_flags |= B_INVAL; 2329 /* bfreekva(bp); */ 2330 brelse(bp); 2331 spin_lock_wr(&bufspin); 2332 } 2333 spin_unlock_wr(&bufspin); 2334 return(bytes); 2335 } 2336 2337 /* 2338 * buf_daemon: 2339 * 2340 * Buffer flushing daemon. Buffers are normally flushed by the 2341 * update daemon but if it cannot keep up this process starts to 2342 * take the load in an attempt to prevent getnewbuf() from blocking. 2343 * 2344 * Once a flush is initiated it does not stop until the number 2345 * of buffers falls below lodirtybuffers, but we will wake up anyone 2346 * waiting at the mid-point. 2347 */ 2348 2349 static struct kproc_desc buf_kp = { 2350 "bufdaemon", 2351 buf_daemon, 2352 &bufdaemon_td 2353 }; 2354 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2355 kproc_start, &buf_kp) 2356 2357 static struct kproc_desc bufhw_kp = { 2358 "bufdaemon_hw", 2359 buf_daemon_hw, 2360 &bufdaemonhw_td 2361 }; 2362 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2363 kproc_start, &bufhw_kp) 2364 2365 static void 2366 buf_daemon(void) 2367 { 2368 int limit; 2369 2370 /* 2371 * This process needs to be suspended prior to shutdown sync. 2372 */ 2373 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2374 bufdaemon_td, SHUTDOWN_PRI_LAST); 2375 curthread->td_flags |= TDF_SYSTHREAD; 2376 2377 /* 2378 * This process is allowed to take the buffer cache to the limit 2379 */ 2380 crit_enter(); 2381 2382 for (;;) { 2383 kproc_suspend_loop(); 2384 2385 /* 2386 * Do the flush as long as the number of dirty buffers 2387 * (including those running) exceeds lodirtybufspace. 2388 * 2389 * When flushing limit running I/O to hirunningspace 2390 * Do the flush. Limit the amount of in-transit I/O we 2391 * allow to build up, otherwise we would completely saturate 2392 * the I/O system. Wakeup any waiting processes before we 2393 * normally would so they can run in parallel with our drain. 2394 * 2395 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2396 * but because we split the operation into two threads we 2397 * have to cut it in half for each thread. 2398 */ 2399 waitrunningbufspace(); 2400 limit = lodirtybufspace / 2; 2401 while (runningbufspace + dirtybufspace > limit || 2402 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2403 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2404 break; 2405 if (runningbufspace < hirunningspace) 2406 continue; 2407 waitrunningbufspace(); 2408 } 2409 2410 /* 2411 * We reached our low water mark, reset the 2412 * request and sleep until we are needed again. 2413 * The sleep is just so the suspend code works. 2414 */ 2415 spin_lock_wr(&needsbuffer_spin); 2416 if (bd_request == 0) { 2417 ssleep(&bd_request, &needsbuffer_spin, 0, 2418 "psleep", hz); 2419 } 2420 bd_request = 0; 2421 spin_unlock_wr(&needsbuffer_spin); 2422 } 2423 } 2424 2425 static void 2426 buf_daemon_hw(void) 2427 { 2428 int limit; 2429 2430 /* 2431 * This process needs to be suspended prior to shutdown sync. 2432 */ 2433 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2434 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2435 curthread->td_flags |= TDF_SYSTHREAD; 2436 2437 /* 2438 * This process is allowed to take the buffer cache to the limit 2439 */ 2440 crit_enter(); 2441 2442 for (;;) { 2443 kproc_suspend_loop(); 2444 2445 /* 2446 * Do the flush. Limit the amount of in-transit I/O we 2447 * allow to build up, otherwise we would completely saturate 2448 * the I/O system. Wakeup any waiting processes before we 2449 * normally would so they can run in parallel with our drain. 2450 * 2451 * Once we decide to flush push the queued I/O up to 2452 * hirunningspace in order to trigger bursting by the bioq 2453 * subsystem. 2454 * 2455 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2456 * but because we split the operation into two threads we 2457 * have to cut it in half for each thread. 2458 */ 2459 waitrunningbufspace(); 2460 limit = lodirtybufspace / 2; 2461 while (runningbufspace + dirtybufspacehw > limit || 2462 dirtybufcounthw >= nbuf / 2) { 2463 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2464 break; 2465 if (runningbufspace < hirunningspace) 2466 continue; 2467 waitrunningbufspace(); 2468 } 2469 2470 /* 2471 * We reached our low water mark, reset the 2472 * request and sleep until we are needed again. 2473 * The sleep is just so the suspend code works. 2474 */ 2475 spin_lock_wr(&needsbuffer_spin); 2476 if (bd_request_hw == 0) { 2477 ssleep(&bd_request_hw, &needsbuffer_spin, 0, 2478 "psleep", hz); 2479 } 2480 bd_request_hw = 0; 2481 spin_unlock_wr(&needsbuffer_spin); 2482 } 2483 } 2484 2485 /* 2486 * flushbufqueues: 2487 * 2488 * Try to flush a buffer in the dirty queue. We must be careful to 2489 * free up B_INVAL buffers instead of write them, which NFS is 2490 * particularly sensitive to. 2491 * 2492 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2493 * that we really want to try to get the buffer out and reuse it 2494 * due to the write load on the machine. 2495 */ 2496 static int 2497 flushbufqueues(bufq_type_t q) 2498 { 2499 struct buf *bp; 2500 int r = 0; 2501 int spun; 2502 2503 spin_lock_wr(&bufspin); 2504 spun = 1; 2505 2506 bp = TAILQ_FIRST(&bufqueues[q]); 2507 while (bp) { 2508 KASSERT((bp->b_flags & B_DELWRI), 2509 ("unexpected clean buffer %p", bp)); 2510 2511 if (bp->b_flags & B_DELWRI) { 2512 if (bp->b_flags & B_INVAL) { 2513 spin_unlock_wr(&bufspin); 2514 spun = 0; 2515 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 2516 panic("flushbufqueues: locked buf"); 2517 bremfree(bp); 2518 brelse(bp); 2519 ++r; 2520 break; 2521 } 2522 if (LIST_FIRST(&bp->b_dep) != NULL && 2523 (bp->b_flags & B_DEFERRED) == 0 && 2524 buf_countdeps(bp, 0)) { 2525 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2526 TAILQ_INSERT_TAIL(&bufqueues[q], bp, 2527 b_freelist); 2528 bp->b_flags |= B_DEFERRED; 2529 bp = TAILQ_FIRST(&bufqueues[q]); 2530 continue; 2531 } 2532 2533 /* 2534 * Only write it out if we can successfully lock 2535 * it. If the buffer has a dependancy, 2536 * buf_checkwrite must also return 0 for us to 2537 * be able to initate the write. 2538 * 2539 * If the buffer is flagged B_ERROR it may be 2540 * requeued over and over again, we try to 2541 * avoid a live lock. 2542 */ 2543 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 2544 spin_unlock_wr(&bufspin); 2545 spun = 0; 2546 if (LIST_FIRST(&bp->b_dep) != NULL && 2547 buf_checkwrite(bp)) { 2548 bremfree(bp); 2549 brelse(bp); 2550 } else if (bp->b_flags & B_ERROR) { 2551 tsleep(bp, 0, "bioer", 1); 2552 bp->b_flags &= ~B_AGE; 2553 vfs_bio_awrite(bp); 2554 } else { 2555 bp->b_flags |= B_AGE; 2556 vfs_bio_awrite(bp); 2557 } 2558 ++r; 2559 break; 2560 } 2561 } 2562 bp = TAILQ_NEXT(bp, b_freelist); 2563 } 2564 if (spun) 2565 spin_unlock_wr(&bufspin); 2566 return (r); 2567 } 2568 2569 /* 2570 * inmem: 2571 * 2572 * Returns true if no I/O is needed to access the associated VM object. 2573 * This is like findblk except it also hunts around in the VM system for 2574 * the data. 2575 * 2576 * Note that we ignore vm_page_free() races from interrupts against our 2577 * lookup, since if the caller is not protected our return value will not 2578 * be any more valid then otherwise once we exit the critical section. 2579 */ 2580 int 2581 inmem(struct vnode *vp, off_t loffset) 2582 { 2583 vm_object_t obj; 2584 vm_offset_t toff, tinc, size; 2585 vm_page_t m; 2586 2587 if (findblk(vp, loffset, FINDBLK_TEST)) 2588 return 1; 2589 if (vp->v_mount == NULL) 2590 return 0; 2591 if ((obj = vp->v_object) == NULL) 2592 return 0; 2593 2594 size = PAGE_SIZE; 2595 if (size > vp->v_mount->mnt_stat.f_iosize) 2596 size = vp->v_mount->mnt_stat.f_iosize; 2597 2598 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2599 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2600 if (m == NULL) 2601 return 0; 2602 tinc = size; 2603 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2604 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2605 if (vm_page_is_valid(m, 2606 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2607 return 0; 2608 } 2609 return 1; 2610 } 2611 2612 /* 2613 * findblk: 2614 * 2615 * Locate and return the specified buffer. Unless flagged otherwise, 2616 * a locked buffer will be returned if it exists or NULL if it does not. 2617 * 2618 * findblk()'d buffers are still on the bufqueues and if you intend 2619 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2620 * and possibly do other stuff to it. 2621 * 2622 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2623 * for locking the buffer and ensuring that it remains 2624 * the desired buffer after locking. 2625 * 2626 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2627 * to acquire the lock we return NULL, even if the 2628 * buffer exists. 2629 * 2630 * (0) - Lock the buffer blocking. 2631 * 2632 * MPSAFE 2633 */ 2634 struct buf * 2635 findblk(struct vnode *vp, off_t loffset, int flags) 2636 { 2637 struct buf *bp; 2638 int lkflags; 2639 2640 lkflags = LK_EXCLUSIVE; 2641 if (flags & FINDBLK_NBLOCK) 2642 lkflags |= LK_NOWAIT; 2643 2644 for (;;) { 2645 lwkt_gettoken(&vp->v_token); 2646 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2647 lwkt_reltoken(&vp->v_token); 2648 if (bp == NULL || (flags & FINDBLK_TEST)) 2649 break; 2650 if (BUF_LOCK(bp, lkflags)) { 2651 bp = NULL; 2652 break; 2653 } 2654 if (bp->b_vp == vp && bp->b_loffset == loffset) 2655 break; 2656 BUF_UNLOCK(bp); 2657 } 2658 return(bp); 2659 } 2660 2661 /* 2662 * getcacheblk: 2663 * 2664 * Similar to getblk() except only returns the buffer if it is 2665 * B_CACHE and requires no other manipulation. Otherwise NULL 2666 * is returned. 2667 * 2668 * If B_RAM is set the buffer might be just fine, but we return 2669 * NULL anyway because we want the code to fall through to the 2670 * cluster read. Otherwise read-ahead breaks. 2671 */ 2672 struct buf * 2673 getcacheblk(struct vnode *vp, off_t loffset) 2674 { 2675 struct buf *bp; 2676 2677 bp = findblk(vp, loffset, 0); 2678 if (bp) { 2679 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) { 2680 bp->b_flags &= ~B_AGE; 2681 bremfree(bp); 2682 } else { 2683 BUF_UNLOCK(bp); 2684 bp = NULL; 2685 } 2686 } 2687 return (bp); 2688 } 2689 2690 /* 2691 * getblk: 2692 * 2693 * Get a block given a specified block and offset into a file/device. 2694 * B_INVAL may or may not be set on return. The caller should clear 2695 * B_INVAL prior to initiating a READ. 2696 * 2697 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2698 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2699 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2700 * without doing any of those things the system will likely believe 2701 * the buffer to be valid (especially if it is not B_VMIO), and the 2702 * next getblk() will return the buffer with B_CACHE set. 2703 * 2704 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2705 * an existing buffer. 2706 * 2707 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2708 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2709 * and then cleared based on the backing VM. If the previous buffer is 2710 * non-0-sized but invalid, B_CACHE will be cleared. 2711 * 2712 * If getblk() must create a new buffer, the new buffer is returned with 2713 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2714 * case it is returned with B_INVAL clear and B_CACHE set based on the 2715 * backing VM. 2716 * 2717 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2718 * B_CACHE bit is clear. 2719 * 2720 * What this means, basically, is that the caller should use B_CACHE to 2721 * determine whether the buffer is fully valid or not and should clear 2722 * B_INVAL prior to issuing a read. If the caller intends to validate 2723 * the buffer by loading its data area with something, the caller needs 2724 * to clear B_INVAL. If the caller does this without issuing an I/O, 2725 * the caller should set B_CACHE ( as an optimization ), else the caller 2726 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2727 * a write attempt or if it was a successfull read. If the caller 2728 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2729 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2730 * 2731 * getblk flags: 2732 * 2733 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2734 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2735 * 2736 * MPALMOSTSAFE 2737 */ 2738 struct buf * 2739 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2740 { 2741 struct buf *bp; 2742 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2743 int error; 2744 int lkflags; 2745 2746 if (size > MAXBSIZE) 2747 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2748 if (vp->v_object == NULL) 2749 panic("getblk: vnode %p has no object!", vp); 2750 2751 loop: 2752 if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) { 2753 /* 2754 * The buffer was found in the cache, but we need to lock it. 2755 * Even with LK_NOWAIT the lockmgr may break our critical 2756 * section, so double-check the validity of the buffer 2757 * once the lock has been obtained. 2758 */ 2759 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2760 if (blkflags & GETBLK_NOWAIT) 2761 return(NULL); 2762 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2763 if (blkflags & GETBLK_PCATCH) 2764 lkflags |= LK_PCATCH; 2765 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2766 if (error) { 2767 if (error == ENOLCK) 2768 goto loop; 2769 return (NULL); 2770 } 2771 /* buffer may have changed on us */ 2772 } 2773 2774 /* 2775 * Once the buffer has been locked, make sure we didn't race 2776 * a buffer recyclement. Buffers that are no longer hashed 2777 * will have b_vp == NULL, so this takes care of that check 2778 * as well. 2779 */ 2780 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2781 kprintf("Warning buffer %p (vp %p loffset %lld) " 2782 "was recycled\n", 2783 bp, vp, (long long)loffset); 2784 BUF_UNLOCK(bp); 2785 goto loop; 2786 } 2787 2788 /* 2789 * If SZMATCH any pre-existing buffer must be of the requested 2790 * size or NULL is returned. The caller absolutely does not 2791 * want getblk() to bwrite() the buffer on a size mismatch. 2792 */ 2793 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2794 BUF_UNLOCK(bp); 2795 return(NULL); 2796 } 2797 2798 /* 2799 * All vnode-based buffers must be backed by a VM object. 2800 */ 2801 KKASSERT(bp->b_flags & B_VMIO); 2802 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2803 bp->b_flags &= ~B_AGE; 2804 2805 /* 2806 * Make sure that B_INVAL buffers do not have a cached 2807 * block number translation. 2808 */ 2809 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2810 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 2811 " did not have cleared bio_offset cache\n", 2812 bp, vp, (long long)loffset); 2813 clearbiocache(&bp->b_bio2); 2814 } 2815 2816 /* 2817 * The buffer is locked. B_CACHE is cleared if the buffer is 2818 * invalid. 2819 */ 2820 if (bp->b_flags & B_INVAL) 2821 bp->b_flags &= ~B_CACHE; 2822 bremfree(bp); 2823 2824 /* 2825 * Any size inconsistancy with a dirty buffer or a buffer 2826 * with a softupdates dependancy must be resolved. Resizing 2827 * the buffer in such circumstances can lead to problems. 2828 * 2829 * Dirty or dependant buffers are written synchronously. 2830 * Other types of buffers are simply released and 2831 * reconstituted as they may be backed by valid, dirty VM 2832 * pages (but not marked B_DELWRI). 2833 * 2834 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 2835 * and may be left over from a prior truncation (and thus 2836 * no longer represent the actual EOF point), so we 2837 * definitely do not want to B_NOCACHE the backing store. 2838 */ 2839 if (size != bp->b_bcount) { 2840 get_mplock(); 2841 if (bp->b_flags & B_DELWRI) { 2842 bp->b_flags |= B_RELBUF; 2843 bwrite(bp); 2844 } else if (LIST_FIRST(&bp->b_dep)) { 2845 bp->b_flags |= B_RELBUF; 2846 bwrite(bp); 2847 } else { 2848 bp->b_flags |= B_RELBUF; 2849 brelse(bp); 2850 } 2851 rel_mplock(); 2852 goto loop; 2853 } 2854 KKASSERT(size <= bp->b_kvasize); 2855 KASSERT(bp->b_loffset != NOOFFSET, 2856 ("getblk: no buffer offset")); 2857 2858 /* 2859 * A buffer with B_DELWRI set and B_CACHE clear must 2860 * be committed before we can return the buffer in 2861 * order to prevent the caller from issuing a read 2862 * ( due to B_CACHE not being set ) and overwriting 2863 * it. 2864 * 2865 * Most callers, including NFS and FFS, need this to 2866 * operate properly either because they assume they 2867 * can issue a read if B_CACHE is not set, or because 2868 * ( for example ) an uncached B_DELWRI might loop due 2869 * to softupdates re-dirtying the buffer. In the latter 2870 * case, B_CACHE is set after the first write completes, 2871 * preventing further loops. 2872 * 2873 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2874 * above while extending the buffer, we cannot allow the 2875 * buffer to remain with B_CACHE set after the write 2876 * completes or it will represent a corrupt state. To 2877 * deal with this we set B_NOCACHE to scrap the buffer 2878 * after the write. 2879 * 2880 * XXX Should this be B_RELBUF instead of B_NOCACHE? 2881 * I'm not even sure this state is still possible 2882 * now that getblk() writes out any dirty buffers 2883 * on size changes. 2884 * 2885 * We might be able to do something fancy, like setting 2886 * B_CACHE in bwrite() except if B_DELWRI is already set, 2887 * so the below call doesn't set B_CACHE, but that gets real 2888 * confusing. This is much easier. 2889 */ 2890 2891 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2892 get_mplock(); 2893 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 2894 "and CACHE clear, b_flags %08x\n", 2895 bp, (intmax_t)bp->b_loffset, bp->b_flags); 2896 bp->b_flags |= B_NOCACHE; 2897 bwrite(bp); 2898 rel_mplock(); 2899 goto loop; 2900 } 2901 } else { 2902 /* 2903 * Buffer is not in-core, create new buffer. The buffer 2904 * returned by getnewbuf() is locked. Note that the returned 2905 * buffer is also considered valid (not marked B_INVAL). 2906 * 2907 * Calculating the offset for the I/O requires figuring out 2908 * the block size. We use DEV_BSIZE for VBLK or VCHR and 2909 * the mount's f_iosize otherwise. If the vnode does not 2910 * have an associated mount we assume that the passed size is 2911 * the block size. 2912 * 2913 * Note that vn_isdisk() cannot be used here since it may 2914 * return a failure for numerous reasons. Note that the 2915 * buffer size may be larger then the block size (the caller 2916 * will use block numbers with the proper multiple). Beware 2917 * of using any v_* fields which are part of unions. In 2918 * particular, in DragonFly the mount point overloading 2919 * mechanism uses the namecache only and the underlying 2920 * directory vnode is not a special case. 2921 */ 2922 int bsize, maxsize; 2923 2924 if (vp->v_type == VBLK || vp->v_type == VCHR) 2925 bsize = DEV_BSIZE; 2926 else if (vp->v_mount) 2927 bsize = vp->v_mount->mnt_stat.f_iosize; 2928 else 2929 bsize = size; 2930 2931 maxsize = size + (loffset & PAGE_MASK); 2932 maxsize = imax(maxsize, bsize); 2933 2934 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 2935 if (bp == NULL) { 2936 if (slpflags || slptimeo) 2937 return NULL; 2938 goto loop; 2939 } 2940 2941 /* 2942 * Atomically insert the buffer into the hash, so that it can 2943 * be found by findblk(). 2944 * 2945 * If bgetvp() returns non-zero a collision occured, and the 2946 * bp will not be associated with the vnode. 2947 * 2948 * Make sure the translation layer has been cleared. 2949 */ 2950 bp->b_loffset = loffset; 2951 bp->b_bio2.bio_offset = NOOFFSET; 2952 /* bp->b_bio2.bio_next = NULL; */ 2953 2954 if (bgetvp(vp, bp, size)) { 2955 bp->b_flags |= B_INVAL; 2956 brelse(bp); 2957 goto loop; 2958 } 2959 2960 /* 2961 * All vnode-based buffers must be backed by a VM object. 2962 */ 2963 KKASSERT(vp->v_object != NULL); 2964 bp->b_flags |= B_VMIO; 2965 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2966 2967 get_mplock(); 2968 allocbuf(bp, size); 2969 rel_mplock(); 2970 } 2971 KKASSERT(dsched_is_clear_buf_priv(bp)); 2972 return (bp); 2973 } 2974 2975 /* 2976 * regetblk(bp) 2977 * 2978 * Reacquire a buffer that was previously released to the locked queue, 2979 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 2980 * set B_LOCKED (which handles the acquisition race). 2981 * 2982 * To this end, either B_LOCKED must be set or the dependancy list must be 2983 * non-empty. 2984 * 2985 * MPSAFE 2986 */ 2987 void 2988 regetblk(struct buf *bp) 2989 { 2990 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 2991 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 2992 bremfree(bp); 2993 } 2994 2995 /* 2996 * geteblk: 2997 * 2998 * Get an empty, disassociated buffer of given size. The buffer is 2999 * initially set to B_INVAL. 3000 * 3001 * critical section protection is not required for the allocbuf() 3002 * call because races are impossible here. 3003 * 3004 * MPALMOSTSAFE 3005 */ 3006 struct buf * 3007 geteblk(int size) 3008 { 3009 struct buf *bp; 3010 int maxsize; 3011 3012 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3013 3014 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 3015 ; 3016 get_mplock(); 3017 allocbuf(bp, size); 3018 rel_mplock(); 3019 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3020 KKASSERT(dsched_is_clear_buf_priv(bp)); 3021 return (bp); 3022 } 3023 3024 3025 /* 3026 * allocbuf: 3027 * 3028 * This code constitutes the buffer memory from either anonymous system 3029 * memory (in the case of non-VMIO operations) or from an associated 3030 * VM object (in the case of VMIO operations). This code is able to 3031 * resize a buffer up or down. 3032 * 3033 * Note that this code is tricky, and has many complications to resolve 3034 * deadlock or inconsistant data situations. Tread lightly!!! 3035 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3036 * the caller. Calling this code willy nilly can result in the loss of data. 3037 * 3038 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3039 * B_CACHE for the non-VMIO case. 3040 * 3041 * This routine does not need to be called from a critical section but you 3042 * must own the buffer. 3043 * 3044 * NOTMPSAFE 3045 */ 3046 int 3047 allocbuf(struct buf *bp, int size) 3048 { 3049 int newbsize, mbsize; 3050 int i; 3051 3052 if (BUF_REFCNT(bp) == 0) 3053 panic("allocbuf: buffer not busy"); 3054 3055 if (bp->b_kvasize < size) 3056 panic("allocbuf: buffer too small"); 3057 3058 if ((bp->b_flags & B_VMIO) == 0) { 3059 caddr_t origbuf; 3060 int origbufsize; 3061 /* 3062 * Just get anonymous memory from the kernel. Don't 3063 * mess with B_CACHE. 3064 */ 3065 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3066 if (bp->b_flags & B_MALLOC) 3067 newbsize = mbsize; 3068 else 3069 newbsize = round_page(size); 3070 3071 if (newbsize < bp->b_bufsize) { 3072 /* 3073 * Malloced buffers are not shrunk 3074 */ 3075 if (bp->b_flags & B_MALLOC) { 3076 if (newbsize) { 3077 bp->b_bcount = size; 3078 } else { 3079 kfree(bp->b_data, M_BIOBUF); 3080 if (bp->b_bufsize) { 3081 bufmallocspace -= bp->b_bufsize; 3082 bufspacewakeup(); 3083 bp->b_bufsize = 0; 3084 } 3085 bp->b_data = bp->b_kvabase; 3086 bp->b_bcount = 0; 3087 bp->b_flags &= ~B_MALLOC; 3088 } 3089 return 1; 3090 } 3091 vm_hold_free_pages( 3092 bp, 3093 (vm_offset_t) bp->b_data + newbsize, 3094 (vm_offset_t) bp->b_data + bp->b_bufsize); 3095 } else if (newbsize > bp->b_bufsize) { 3096 /* 3097 * We only use malloced memory on the first allocation. 3098 * and revert to page-allocated memory when the buffer 3099 * grows. 3100 */ 3101 if ((bufmallocspace < maxbufmallocspace) && 3102 (bp->b_bufsize == 0) && 3103 (mbsize <= PAGE_SIZE/2)) { 3104 3105 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3106 bp->b_bufsize = mbsize; 3107 bp->b_bcount = size; 3108 bp->b_flags |= B_MALLOC; 3109 bufmallocspace += mbsize; 3110 return 1; 3111 } 3112 origbuf = NULL; 3113 origbufsize = 0; 3114 /* 3115 * If the buffer is growing on its other-than-first 3116 * allocation, then we revert to the page-allocation 3117 * scheme. 3118 */ 3119 if (bp->b_flags & B_MALLOC) { 3120 origbuf = bp->b_data; 3121 origbufsize = bp->b_bufsize; 3122 bp->b_data = bp->b_kvabase; 3123 if (bp->b_bufsize) { 3124 bufmallocspace -= bp->b_bufsize; 3125 bufspacewakeup(); 3126 bp->b_bufsize = 0; 3127 } 3128 bp->b_flags &= ~B_MALLOC; 3129 newbsize = round_page(newbsize); 3130 } 3131 vm_hold_load_pages( 3132 bp, 3133 (vm_offset_t) bp->b_data + bp->b_bufsize, 3134 (vm_offset_t) bp->b_data + newbsize); 3135 if (origbuf) { 3136 bcopy(origbuf, bp->b_data, origbufsize); 3137 kfree(origbuf, M_BIOBUF); 3138 } 3139 } 3140 } else { 3141 vm_page_t m; 3142 int desiredpages; 3143 3144 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3145 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3146 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3147 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3148 3149 if (bp->b_flags & B_MALLOC) 3150 panic("allocbuf: VMIO buffer can't be malloced"); 3151 /* 3152 * Set B_CACHE initially if buffer is 0 length or will become 3153 * 0-length. 3154 */ 3155 if (size == 0 || bp->b_bufsize == 0) 3156 bp->b_flags |= B_CACHE; 3157 3158 if (newbsize < bp->b_bufsize) { 3159 /* 3160 * DEV_BSIZE aligned new buffer size is less then the 3161 * DEV_BSIZE aligned existing buffer size. Figure out 3162 * if we have to remove any pages. 3163 */ 3164 if (desiredpages < bp->b_xio.xio_npages) { 3165 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3166 /* 3167 * the page is not freed here -- it 3168 * is the responsibility of 3169 * vnode_pager_setsize 3170 */ 3171 m = bp->b_xio.xio_pages[i]; 3172 KASSERT(m != bogus_page, 3173 ("allocbuf: bogus page found")); 3174 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3175 ; 3176 3177 bp->b_xio.xio_pages[i] = NULL; 3178 vm_page_unwire(m, 0); 3179 } 3180 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3181 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3182 bp->b_xio.xio_npages = desiredpages; 3183 } 3184 } else if (size > bp->b_bcount) { 3185 /* 3186 * We are growing the buffer, possibly in a 3187 * byte-granular fashion. 3188 */ 3189 struct vnode *vp; 3190 vm_object_t obj; 3191 vm_offset_t toff; 3192 vm_offset_t tinc; 3193 3194 /* 3195 * Step 1, bring in the VM pages from the object, 3196 * allocating them if necessary. We must clear 3197 * B_CACHE if these pages are not valid for the 3198 * range covered by the buffer. 3199 * 3200 * critical section protection is required to protect 3201 * against interrupts unbusying and freeing pages 3202 * between our vm_page_lookup() and our 3203 * busycheck/wiring call. 3204 */ 3205 vp = bp->b_vp; 3206 obj = vp->v_object; 3207 3208 crit_enter(); 3209 while (bp->b_xio.xio_npages < desiredpages) { 3210 vm_page_t m; 3211 vm_pindex_t pi; 3212 3213 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3214 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3215 /* 3216 * note: must allocate system pages 3217 * since blocking here could intefere 3218 * with paging I/O, no matter which 3219 * process we are. 3220 */ 3221 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3222 if (m) { 3223 vm_page_wire(m); 3224 vm_page_wakeup(m); 3225 vm_page_flag_clear(m, PG_ZERO); 3226 bp->b_flags &= ~B_CACHE; 3227 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3228 ++bp->b_xio.xio_npages; 3229 } 3230 continue; 3231 } 3232 3233 /* 3234 * We found a page. If we have to sleep on it, 3235 * retry because it might have gotten freed out 3236 * from under us. 3237 * 3238 * We can only test PG_BUSY here. Blocking on 3239 * m->busy might lead to a deadlock: 3240 * 3241 * vm_fault->getpages->cluster_read->allocbuf 3242 * 3243 */ 3244 3245 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3246 continue; 3247 vm_page_flag_clear(m, PG_ZERO); 3248 vm_page_wire(m); 3249 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3250 ++bp->b_xio.xio_npages; 3251 if (bp->b_act_count < m->act_count) 3252 bp->b_act_count = m->act_count; 3253 } 3254 crit_exit(); 3255 3256 /* 3257 * Step 2. We've loaded the pages into the buffer, 3258 * we have to figure out if we can still have B_CACHE 3259 * set. Note that B_CACHE is set according to the 3260 * byte-granular range ( bcount and size ), not the 3261 * aligned range ( newbsize ). 3262 * 3263 * The VM test is against m->valid, which is DEV_BSIZE 3264 * aligned. Needless to say, the validity of the data 3265 * needs to also be DEV_BSIZE aligned. Note that this 3266 * fails with NFS if the server or some other client 3267 * extends the file's EOF. If our buffer is resized, 3268 * B_CACHE may remain set! XXX 3269 */ 3270 3271 toff = bp->b_bcount; 3272 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3273 3274 while ((bp->b_flags & B_CACHE) && toff < size) { 3275 vm_pindex_t pi; 3276 3277 if (tinc > (size - toff)) 3278 tinc = size - toff; 3279 3280 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3281 PAGE_SHIFT; 3282 3283 vfs_buf_test_cache( 3284 bp, 3285 bp->b_loffset, 3286 toff, 3287 tinc, 3288 bp->b_xio.xio_pages[pi] 3289 ); 3290 toff += tinc; 3291 tinc = PAGE_SIZE; 3292 } 3293 3294 /* 3295 * Step 3, fixup the KVM pmap. Remember that 3296 * bp->b_data is relative to bp->b_loffset, but 3297 * bp->b_loffset may be offset into the first page. 3298 */ 3299 3300 bp->b_data = (caddr_t) 3301 trunc_page((vm_offset_t)bp->b_data); 3302 pmap_qenter( 3303 (vm_offset_t)bp->b_data, 3304 bp->b_xio.xio_pages, 3305 bp->b_xio.xio_npages 3306 ); 3307 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3308 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3309 } 3310 } 3311 3312 /* adjust space use on already-dirty buffer */ 3313 if (bp->b_flags & B_DELWRI) { 3314 dirtybufspace += newbsize - bp->b_bufsize; 3315 if (bp->b_flags & B_HEAVY) 3316 dirtybufspacehw += newbsize - bp->b_bufsize; 3317 } 3318 if (newbsize < bp->b_bufsize) 3319 bufspacewakeup(); 3320 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3321 bp->b_bcount = size; /* requested buffer size */ 3322 return 1; 3323 } 3324 3325 /* 3326 * biowait: 3327 * 3328 * Wait for buffer I/O completion, returning error status. B_EINTR 3329 * is converted into an EINTR error but not cleared (since a chain 3330 * of biowait() calls may occur). 3331 * 3332 * On return bpdone() will have been called but the buffer will remain 3333 * locked and will not have been brelse()'d. 3334 * 3335 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3336 * likely still in progress on return. 3337 * 3338 * NOTE! This operation is on a BIO, not a BUF. 3339 * 3340 * NOTE! BIO_DONE is cleared by vn_strategy() 3341 * 3342 * MPSAFE 3343 */ 3344 static __inline int 3345 _biowait(struct bio *bio, const char *wmesg, int to) 3346 { 3347 struct buf *bp = bio->bio_buf; 3348 u_int32_t flags; 3349 u_int32_t nflags; 3350 int error; 3351 3352 KKASSERT(bio == &bp->b_bio1); 3353 for (;;) { 3354 flags = bio->bio_flags; 3355 if (flags & BIO_DONE) 3356 break; 3357 tsleep_interlock(bio, 0); 3358 nflags = flags | BIO_WANT; 3359 tsleep_interlock(bio, 0); 3360 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3361 if (wmesg) 3362 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3363 else if (bp->b_cmd == BUF_CMD_READ) 3364 error = tsleep(bio, PINTERLOCKED, "biord", to); 3365 else 3366 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3367 if (error) { 3368 kprintf("tsleep error biowait %d\n", error); 3369 return (error); 3370 } 3371 } 3372 } 3373 3374 /* 3375 * Finish up. 3376 */ 3377 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3378 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3379 if (bp->b_flags & B_EINTR) 3380 return (EINTR); 3381 if (bp->b_flags & B_ERROR) 3382 return (bp->b_error ? bp->b_error : EIO); 3383 return (0); 3384 } 3385 3386 int 3387 biowait(struct bio *bio, const char *wmesg) 3388 { 3389 return(_biowait(bio, wmesg, 0)); 3390 } 3391 3392 int 3393 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3394 { 3395 return(_biowait(bio, wmesg, to)); 3396 } 3397 3398 /* 3399 * This associates a tracking count with an I/O. vn_strategy() and 3400 * dev_dstrategy() do this automatically but there are a few cases 3401 * where a vnode or device layer is bypassed when a block translation 3402 * is cached. In such cases bio_start_transaction() may be called on 3403 * the bypassed layers so the system gets an I/O in progress indication 3404 * for those higher layers. 3405 */ 3406 void 3407 bio_start_transaction(struct bio *bio, struct bio_track *track) 3408 { 3409 bio->bio_track = track; 3410 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3411 dsched_new_buf(bio->bio_buf); 3412 bio_track_ref(track); 3413 } 3414 3415 /* 3416 * Initiate I/O on a vnode. 3417 * 3418 * SWAPCACHE OPERATION: 3419 * 3420 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately 3421 * devfs also uses b_vp for fake buffers so we also have to check 3422 * that B_PAGING is 0. In this case the passed 'vp' is probably the 3423 * underlying block device. The swap assignments are related to the 3424 * buffer cache buffer's b_vp, not the passed vp. 3425 * 3426 * The passed vp == bp->b_vp only in the case where the strategy call 3427 * is made on the vp itself for its own buffers (a regular file or 3428 * block device vp). The filesystem usually then re-calls vn_strategy() 3429 * after translating the request to an underlying device. 3430 * 3431 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the 3432 * underlying buffer cache buffers. 3433 * 3434 * We can only deal with page-aligned buffers at the moment, because 3435 * we can't tell what the real dirty state for pages straddling a buffer 3436 * are. 3437 * 3438 * In order to call swap_pager_strategy() we must provide the VM object 3439 * and base offset for the underlying buffer cache pages so it can find 3440 * the swap blocks. 3441 */ 3442 void 3443 vn_strategy(struct vnode *vp, struct bio *bio) 3444 { 3445 struct bio_track *track; 3446 struct buf *bp = bio->bio_buf; 3447 3448 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3449 3450 /* 3451 * Handle the swap cache intercept. 3452 */ 3453 if (vn_cache_strategy(vp, bio)) 3454 return; 3455 3456 /* 3457 * Otherwise do the operation through the filesystem 3458 */ 3459 if (bp->b_cmd == BUF_CMD_READ) 3460 track = &vp->v_track_read; 3461 else 3462 track = &vp->v_track_write; 3463 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3464 bio->bio_track = track; 3465 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3466 dsched_new_buf(bio->bio_buf); 3467 bio_track_ref(track); 3468 vop_strategy(*vp->v_ops, vp, bio); 3469 } 3470 3471 int 3472 vn_cache_strategy(struct vnode *vp, struct bio *bio) 3473 { 3474 struct buf *bp = bio->bio_buf; 3475 struct bio *nbio; 3476 vm_object_t object; 3477 vm_page_t m; 3478 int i; 3479 3480 /* 3481 * Is this buffer cache buffer suitable for reading from 3482 * the swap cache? 3483 */ 3484 if (vm_swapcache_read_enable == 0 || 3485 bp->b_cmd != BUF_CMD_READ || 3486 ((bp->b_flags & B_CLUSTER) == 0 && 3487 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) || 3488 ((int)bp->b_loffset & PAGE_MASK) != 0 || 3489 (bp->b_bcount & PAGE_MASK) != 0) { 3490 return(0); 3491 } 3492 3493 /* 3494 * Figure out the original VM object (it will match the underlying 3495 * VM pages). Note that swap cached data uses page indices relative 3496 * to that object, not relative to bio->bio_offset. 3497 */ 3498 if (bp->b_flags & B_CLUSTER) 3499 object = vp->v_object; 3500 else 3501 object = bp->b_vp->v_object; 3502 3503 /* 3504 * In order to be able to use the swap cache all underlying VM 3505 * pages must be marked as such, and we can't have any bogus pages. 3506 */ 3507 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 3508 m = bp->b_xio.xio_pages[i]; 3509 if ((m->flags & PG_SWAPPED) == 0) 3510 break; 3511 if (m == bogus_page) 3512 break; 3513 } 3514 3515 /* 3516 * If we are good then issue the I/O using swap_pager_strategy() 3517 */ 3518 if (i == bp->b_xio.xio_npages) { 3519 m = bp->b_xio.xio_pages[0]; 3520 nbio = push_bio(bio); 3521 nbio->bio_offset = ptoa(m->pindex); 3522 KKASSERT(m->object == object); 3523 swap_pager_strategy(object, nbio); 3524 return(1); 3525 } 3526 return(0); 3527 } 3528 3529 /* 3530 * bpdone: 3531 * 3532 * Finish I/O on a buffer after all BIOs have been processed. 3533 * Called when the bio chain is exhausted or by biowait. If called 3534 * by biowait, elseit is typically 0. 3535 * 3536 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3537 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3538 * assuming B_INVAL is clear. 3539 * 3540 * For the VMIO case, we set B_CACHE if the op was a read and no 3541 * read error occured, or if the op was a write. B_CACHE is never 3542 * set if the buffer is invalid or otherwise uncacheable. 3543 * 3544 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3545 * initiator to leave B_INVAL set to brelse the buffer out of existance 3546 * in the biodone routine. 3547 */ 3548 void 3549 bpdone(struct buf *bp, int elseit) 3550 { 3551 buf_cmd_t cmd; 3552 3553 KASSERT(BUF_REFCNTNB(bp) > 0, 3554 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3555 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3556 ("biodone: bp %p already done!", bp)); 3557 3558 /* 3559 * No more BIOs are left. All completion functions have been dealt 3560 * with, now we clean up the buffer. 3561 */ 3562 cmd = bp->b_cmd; 3563 bp->b_cmd = BUF_CMD_DONE; 3564 3565 /* 3566 * Only reads and writes are processed past this point. 3567 */ 3568 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3569 if (cmd == BUF_CMD_FREEBLKS) 3570 bp->b_flags |= B_NOCACHE; 3571 if (elseit) 3572 brelse(bp); 3573 return; 3574 } 3575 3576 /* 3577 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3578 * a lot worse. XXX - move this above the clearing of b_cmd 3579 */ 3580 if (LIST_FIRST(&bp->b_dep) != NULL) 3581 buf_complete(bp); 3582 3583 /* 3584 * A failed write must re-dirty the buffer unless B_INVAL 3585 * was set. Only applicable to normal buffers (with VPs). 3586 * vinum buffers may not have a vp. 3587 */ 3588 if (cmd == BUF_CMD_WRITE && 3589 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3590 bp->b_flags &= ~B_NOCACHE; 3591 if (bp->b_vp) 3592 bdirty(bp); 3593 } 3594 3595 if (bp->b_flags & B_VMIO) { 3596 int i; 3597 vm_ooffset_t foff; 3598 vm_page_t m; 3599 vm_object_t obj; 3600 int iosize; 3601 struct vnode *vp = bp->b_vp; 3602 3603 obj = vp->v_object; 3604 3605 #if defined(VFS_BIO_DEBUG) 3606 if (vp->v_auxrefs == 0) 3607 panic("biodone: zero vnode hold count"); 3608 if ((vp->v_flag & VOBJBUF) == 0) 3609 panic("biodone: vnode is not setup for merged cache"); 3610 #endif 3611 3612 foff = bp->b_loffset; 3613 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3614 KASSERT(obj != NULL, ("biodone: missing VM object")); 3615 3616 #if defined(VFS_BIO_DEBUG) 3617 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3618 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3619 obj->paging_in_progress, bp->b_xio.xio_npages); 3620 } 3621 #endif 3622 3623 /* 3624 * Set B_CACHE if the op was a normal read and no error 3625 * occured. B_CACHE is set for writes in the b*write() 3626 * routines. 3627 */ 3628 iosize = bp->b_bcount - bp->b_resid; 3629 if (cmd == BUF_CMD_READ && 3630 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3631 bp->b_flags |= B_CACHE; 3632 } 3633 3634 crit_enter(); 3635 get_mplock(); 3636 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3637 int bogusflag = 0; 3638 int resid; 3639 3640 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3641 if (resid > iosize) 3642 resid = iosize; 3643 3644 /* 3645 * cleanup bogus pages, restoring the originals. Since 3646 * the originals should still be wired, we don't have 3647 * to worry about interrupt/freeing races destroying 3648 * the VM object association. 3649 */ 3650 m = bp->b_xio.xio_pages[i]; 3651 if (m == bogus_page) { 3652 bogusflag = 1; 3653 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3654 if (m == NULL) 3655 panic("biodone: page disappeared"); 3656 bp->b_xio.xio_pages[i] = m; 3657 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3658 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3659 } 3660 #if defined(VFS_BIO_DEBUG) 3661 if (OFF_TO_IDX(foff) != m->pindex) { 3662 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3663 "mismatch\n", 3664 (unsigned long)foff, (long)m->pindex); 3665 } 3666 #endif 3667 3668 /* 3669 * In the write case, the valid and clean bits are 3670 * already changed correctly (see bdwrite()), so we 3671 * only need to do this here in the read case. 3672 */ 3673 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3674 vfs_clean_one_page(bp, i, m); 3675 } 3676 vm_page_flag_clear(m, PG_ZERO); 3677 3678 /* 3679 * when debugging new filesystems or buffer I/O 3680 * methods, this is the most common error that pops 3681 * up. if you see this, you have not set the page 3682 * busy flag correctly!!! 3683 */ 3684 if (m->busy == 0) { 3685 kprintf("biodone: page busy < 0, " 3686 "pindex: %d, foff: 0x(%x,%x), " 3687 "resid: %d, index: %d\n", 3688 (int) m->pindex, (int)(foff >> 32), 3689 (int) foff & 0xffffffff, resid, i); 3690 if (!vn_isdisk(vp, NULL)) 3691 kprintf(" iosize: %ld, loffset: %lld, " 3692 "flags: 0x%08x, npages: %d\n", 3693 bp->b_vp->v_mount->mnt_stat.f_iosize, 3694 (long long)bp->b_loffset, 3695 bp->b_flags, bp->b_xio.xio_npages); 3696 else 3697 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3698 (long long)bp->b_loffset, 3699 bp->b_flags, bp->b_xio.xio_npages); 3700 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3701 m->valid, m->dirty, m->wire_count); 3702 panic("biodone: page busy < 0"); 3703 } 3704 vm_page_io_finish(m); 3705 vm_object_pip_subtract(obj, 1); 3706 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3707 iosize -= resid; 3708 } 3709 bp->b_flags &= ~B_HASBOGUS; 3710 if (obj) 3711 vm_object_pip_wakeupn(obj, 0); 3712 rel_mplock(); 3713 crit_exit(); 3714 } 3715 3716 /* 3717 * Finish up by releasing the buffer. There are no more synchronous 3718 * or asynchronous completions, those were handled by bio_done 3719 * callbacks. 3720 */ 3721 if (elseit) { 3722 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3723 brelse(bp); 3724 else 3725 bqrelse(bp); 3726 } 3727 } 3728 3729 /* 3730 * Normal biodone. 3731 */ 3732 void 3733 biodone(struct bio *bio) 3734 { 3735 struct buf *bp = bio->bio_buf; 3736 3737 runningbufwakeup(bp); 3738 3739 /* 3740 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3741 */ 3742 while (bio) { 3743 biodone_t *done_func; 3744 struct bio_track *track; 3745 3746 /* 3747 * BIO tracking. Most but not all BIOs are tracked. 3748 */ 3749 if ((track = bio->bio_track) != NULL) { 3750 bio_track_rel(track); 3751 bio->bio_track = NULL; 3752 } 3753 3754 /* 3755 * A bio_done function terminates the loop. The function 3756 * will be responsible for any further chaining and/or 3757 * buffer management. 3758 * 3759 * WARNING! The done function can deallocate the buffer! 3760 */ 3761 if ((done_func = bio->bio_done) != NULL) { 3762 bio->bio_done = NULL; 3763 done_func(bio); 3764 return; 3765 } 3766 bio = bio->bio_prev; 3767 } 3768 3769 /* 3770 * If we've run out of bio's do normal [a]synchronous completion. 3771 */ 3772 bpdone(bp, 1); 3773 } 3774 3775 /* 3776 * Synchronous biodone - this terminates a synchronous BIO. 3777 * 3778 * bpdone() is called with elseit=FALSE, leaving the buffer completed 3779 * but still locked. The caller must brelse() the buffer after waiting 3780 * for completion. 3781 */ 3782 void 3783 biodone_sync(struct bio *bio) 3784 { 3785 struct buf *bp = bio->bio_buf; 3786 int flags; 3787 int nflags; 3788 3789 KKASSERT(bio == &bp->b_bio1); 3790 bpdone(bp, 0); 3791 3792 for (;;) { 3793 flags = bio->bio_flags; 3794 nflags = (flags | BIO_DONE) & ~BIO_WANT; 3795 3796 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3797 if (flags & BIO_WANT) 3798 wakeup(bio); 3799 break; 3800 } 3801 } 3802 } 3803 3804 /* 3805 * vfs_unbusy_pages: 3806 * 3807 * This routine is called in lieu of iodone in the case of 3808 * incomplete I/O. This keeps the busy status for pages 3809 * consistant. 3810 */ 3811 void 3812 vfs_unbusy_pages(struct buf *bp) 3813 { 3814 int i; 3815 3816 runningbufwakeup(bp); 3817 if (bp->b_flags & B_VMIO) { 3818 struct vnode *vp = bp->b_vp; 3819 vm_object_t obj; 3820 3821 obj = vp->v_object; 3822 3823 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3824 vm_page_t m = bp->b_xio.xio_pages[i]; 3825 3826 /* 3827 * When restoring bogus changes the original pages 3828 * should still be wired, so we are in no danger of 3829 * losing the object association and do not need 3830 * critical section protection particularly. 3831 */ 3832 if (m == bogus_page) { 3833 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3834 if (!m) { 3835 panic("vfs_unbusy_pages: page missing"); 3836 } 3837 bp->b_xio.xio_pages[i] = m; 3838 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3839 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3840 } 3841 vm_object_pip_subtract(obj, 1); 3842 vm_page_flag_clear(m, PG_ZERO); 3843 vm_page_io_finish(m); 3844 } 3845 bp->b_flags &= ~B_HASBOGUS; 3846 vm_object_pip_wakeupn(obj, 0); 3847 } 3848 } 3849 3850 /* 3851 * vfs_busy_pages: 3852 * 3853 * This routine is called before a device strategy routine. 3854 * It is used to tell the VM system that paging I/O is in 3855 * progress, and treat the pages associated with the buffer 3856 * almost as being PG_BUSY. Also the object 'paging_in_progress' 3857 * flag is handled to make sure that the object doesn't become 3858 * inconsistant. 3859 * 3860 * Since I/O has not been initiated yet, certain buffer flags 3861 * such as B_ERROR or B_INVAL may be in an inconsistant state 3862 * and should be ignored. 3863 */ 3864 void 3865 vfs_busy_pages(struct vnode *vp, struct buf *bp) 3866 { 3867 int i, bogus; 3868 struct lwp *lp = curthread->td_lwp; 3869 3870 /* 3871 * The buffer's I/O command must already be set. If reading, 3872 * B_CACHE must be 0 (double check against callers only doing 3873 * I/O when B_CACHE is 0). 3874 */ 3875 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3876 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 3877 3878 if (bp->b_flags & B_VMIO) { 3879 vm_object_t obj; 3880 3881 obj = vp->v_object; 3882 KASSERT(bp->b_loffset != NOOFFSET, 3883 ("vfs_busy_pages: no buffer offset")); 3884 3885 /* 3886 * Loop until none of the pages are busy. 3887 */ 3888 retry: 3889 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3890 vm_page_t m = bp->b_xio.xio_pages[i]; 3891 3892 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3893 goto retry; 3894 } 3895 3896 /* 3897 * Setup for I/O, soft-busy the page right now because 3898 * the next loop may block. 3899 */ 3900 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3901 vm_page_t m = bp->b_xio.xio_pages[i]; 3902 3903 vm_page_flag_clear(m, PG_ZERO); 3904 if ((bp->b_flags & B_CLUSTER) == 0) { 3905 vm_object_pip_add(obj, 1); 3906 vm_page_io_start(m); 3907 } 3908 } 3909 3910 /* 3911 * Adjust protections for I/O and do bogus-page mapping. 3912 * Assume that vm_page_protect() can block (it can block 3913 * if VM_PROT_NONE, don't take any chances regardless). 3914 * 3915 * In particular note that for writes we must incorporate 3916 * page dirtyness from the VM system into the buffer's 3917 * dirty range. 3918 * 3919 * For reads we theoretically must incorporate page dirtyness 3920 * from the VM system to determine if the page needs bogus 3921 * replacement, but we shortcut the test by simply checking 3922 * that all m->valid bits are set, indicating that the page 3923 * is fully valid and does not need to be re-read. For any 3924 * VM system dirtyness the page will also be fully valid 3925 * since it was mapped at one point. 3926 */ 3927 bogus = 0; 3928 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3929 vm_page_t m = bp->b_xio.xio_pages[i]; 3930 3931 vm_page_flag_clear(m, PG_ZERO); /* XXX */ 3932 if (bp->b_cmd == BUF_CMD_WRITE) { 3933 /* 3934 * When readying a vnode-backed buffer for 3935 * a write we must zero-fill any invalid 3936 * portions of the backing VM pages, mark 3937 * it valid and clear related dirty bits. 3938 * 3939 * vfs_clean_one_page() incorporates any 3940 * VM dirtyness and updates the b_dirtyoff 3941 * range (after we've made the page RO). 3942 * 3943 * It is also expected that the pmap modified 3944 * bit has already been cleared by the 3945 * vm_page_protect(). We may not be able 3946 * to clear all dirty bits for a page if it 3947 * was also memory mapped (NFS). 3948 * 3949 * Finally be sure to unassign any swap-cache 3950 * backing store as it is now stale. 3951 */ 3952 vm_page_protect(m, VM_PROT_READ); 3953 vfs_clean_one_page(bp, i, m); 3954 swap_pager_unswapped(m); 3955 } else if (m->valid == VM_PAGE_BITS_ALL) { 3956 /* 3957 * When readying a vnode-backed buffer for 3958 * read we must replace any dirty pages with 3959 * a bogus page so dirty data is not destroyed 3960 * when filling gaps. 3961 * 3962 * To avoid testing whether the page is 3963 * dirty we instead test that the page was 3964 * at some point mapped (m->valid fully 3965 * valid) with the understanding that 3966 * this also covers the dirty case. 3967 */ 3968 bp->b_xio.xio_pages[i] = bogus_page; 3969 bp->b_flags |= B_HASBOGUS; 3970 bogus++; 3971 } else if (m->valid & m->dirty) { 3972 /* 3973 * This case should not occur as partial 3974 * dirtyment can only happen if the buffer 3975 * is B_CACHE, and this code is not entered 3976 * if the buffer is B_CACHE. 3977 */ 3978 kprintf("Warning: vfs_busy_pages - page not " 3979 "fully valid! loff=%jx bpf=%08x " 3980 "idx=%d val=%02x dir=%02x\n", 3981 (intmax_t)bp->b_loffset, bp->b_flags, 3982 i, m->valid, m->dirty); 3983 vm_page_protect(m, VM_PROT_NONE); 3984 } else { 3985 /* 3986 * The page is not valid and can be made 3987 * part of the read. 3988 */ 3989 vm_page_protect(m, VM_PROT_NONE); 3990 } 3991 } 3992 if (bogus) { 3993 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3994 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3995 } 3996 } 3997 3998 /* 3999 * This is the easiest place to put the process accounting for the I/O 4000 * for now. 4001 */ 4002 if (lp != NULL) { 4003 if (bp->b_cmd == BUF_CMD_READ) 4004 lp->lwp_ru.ru_inblock++; 4005 else 4006 lp->lwp_ru.ru_oublock++; 4007 } 4008 } 4009 4010 /* 4011 * vfs_clean_pages: 4012 * 4013 * Tell the VM system that the pages associated with this buffer 4014 * are clean. This is used for delayed writes where the data is 4015 * going to go to disk eventually without additional VM intevention. 4016 * 4017 * Note that while we only really need to clean through to b_bcount, we 4018 * just go ahead and clean through to b_bufsize. 4019 */ 4020 static void 4021 vfs_clean_pages(struct buf *bp) 4022 { 4023 vm_page_t m; 4024 int i; 4025 4026 if ((bp->b_flags & B_VMIO) == 0) 4027 return; 4028 4029 KASSERT(bp->b_loffset != NOOFFSET, 4030 ("vfs_clean_pages: no buffer offset")); 4031 4032 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4033 m = bp->b_xio.xio_pages[i]; 4034 vfs_clean_one_page(bp, i, m); 4035 } 4036 } 4037 4038 /* 4039 * vfs_clean_one_page: 4040 * 4041 * Set the valid bits and clear the dirty bits in a page within a 4042 * buffer. The range is restricted to the buffer's size and the 4043 * buffer's logical offset might index into the first page. 4044 * 4045 * The caller has busied or soft-busied the page and it is not mapped, 4046 * test and incorporate the dirty bits into b_dirtyoff/end before 4047 * clearing them. Note that we need to clear the pmap modified bits 4048 * after determining the the page was dirty, vm_page_set_validclean() 4049 * does not do it for us. 4050 * 4051 * This routine is typically called after a read completes (dirty should 4052 * be zero in that case as we are not called on bogus-replace pages), 4053 * or before a write is initiated. 4054 */ 4055 static void 4056 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 4057 { 4058 int bcount; 4059 int xoff; 4060 int soff; 4061 int eoff; 4062 4063 /* 4064 * Calculate offset range within the page but relative to buffer's 4065 * loffset. loffset might be offset into the first page. 4066 */ 4067 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4068 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4069 4070 if (pageno == 0) { 4071 soff = xoff; 4072 eoff = PAGE_SIZE; 4073 } else { 4074 soff = (pageno << PAGE_SHIFT); 4075 eoff = soff + PAGE_SIZE; 4076 } 4077 if (eoff > bcount) 4078 eoff = bcount; 4079 if (soff >= eoff) 4080 return; 4081 4082 /* 4083 * Test dirty bits and adjust b_dirtyoff/end. 4084 * 4085 * If dirty pages are incorporated into the bp any prior 4086 * B_NEEDCOMMIT state (NFS) must be cleared because the 4087 * caller has not taken into account the new dirty data. 4088 * 4089 * If the page was memory mapped the dirty bits might go beyond the 4090 * end of the buffer, but we can't really make the assumption that 4091 * a file EOF straddles the buffer (even though this is the case for 4092 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 4093 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 4094 * This also saves some console spam. 4095 * 4096 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK, 4097 * NFS can handle huge commits but not huge writes. 4098 */ 4099 vm_page_test_dirty(m); 4100 if (m->dirty) { 4101 if ((bp->b_flags & B_NEEDCOMMIT) && 4102 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 4103 if (debug_commit) 4104 kprintf("Warning: vfs_clean_one_page: bp %p " 4105 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT" 4106 " cmd %d vd %02x/%02x x/s/e %d %d %d " 4107 "doff/end %d %d\n", 4108 bp, (intmax_t)bp->b_loffset, bp->b_bcount, 4109 bp->b_flags, bp->b_cmd, 4110 m->valid, m->dirty, xoff, soff, eoff, 4111 bp->b_dirtyoff, bp->b_dirtyend); 4112 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 4113 if (debug_commit) 4114 print_backtrace(-1); 4115 } 4116 /* 4117 * Only clear the pmap modified bits if ALL the dirty bits 4118 * are set, otherwise the system might mis-clear portions 4119 * of a page. 4120 */ 4121 if (m->dirty == VM_PAGE_BITS_ALL && 4122 (bp->b_flags & B_NEEDCOMMIT) == 0) { 4123 pmap_clear_modify(m); 4124 } 4125 if (bp->b_dirtyoff > soff - xoff) 4126 bp->b_dirtyoff = soff - xoff; 4127 if (bp->b_dirtyend < eoff - xoff) 4128 bp->b_dirtyend = eoff - xoff; 4129 } 4130 4131 /* 4132 * Set related valid bits, clear related dirty bits. 4133 * Does not mess with the pmap modified bit. 4134 * 4135 * WARNING! We cannot just clear all of m->dirty here as the 4136 * buffer cache buffers may use a DEV_BSIZE'd aligned 4137 * block size, or have an odd size (e.g. NFS at file EOF). 4138 * The putpages code can clear m->dirty to 0. 4139 * 4140 * If a VOP_WRITE generates a buffer cache buffer which 4141 * covers the same space as mapped writable pages the 4142 * buffer flush might not be able to clear all the dirty 4143 * bits and still require a putpages from the VM system 4144 * to finish it off. 4145 */ 4146 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 4147 } 4148 4149 /* 4150 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty. 4151 * The page data is assumed to be valid (there is no zeroing here). 4152 */ 4153 static void 4154 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m) 4155 { 4156 int bcount; 4157 int xoff; 4158 int soff; 4159 int eoff; 4160 4161 /* 4162 * Calculate offset range within the page but relative to buffer's 4163 * loffset. loffset might be offset into the first page. 4164 */ 4165 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4166 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4167 4168 if (pageno == 0) { 4169 soff = xoff; 4170 eoff = PAGE_SIZE; 4171 } else { 4172 soff = (pageno << PAGE_SHIFT); 4173 eoff = soff + PAGE_SIZE; 4174 } 4175 if (eoff > bcount) 4176 eoff = bcount; 4177 if (soff >= eoff) 4178 return; 4179 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff); 4180 } 4181 4182 /* 4183 * vfs_bio_clrbuf: 4184 * 4185 * Clear a buffer. This routine essentially fakes an I/O, so we need 4186 * to clear B_ERROR and B_INVAL. 4187 * 4188 * Note that while we only theoretically need to clear through b_bcount, 4189 * we go ahead and clear through b_bufsize. 4190 */ 4191 4192 void 4193 vfs_bio_clrbuf(struct buf *bp) 4194 { 4195 int i, mask = 0; 4196 caddr_t sa, ea; 4197 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 4198 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 4199 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4200 (bp->b_loffset & PAGE_MASK) == 0) { 4201 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4202 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 4203 bp->b_resid = 0; 4204 return; 4205 } 4206 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 4207 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 4208 bzero(bp->b_data, bp->b_bufsize); 4209 bp->b_xio.xio_pages[0]->valid |= mask; 4210 bp->b_resid = 0; 4211 return; 4212 } 4213 } 4214 sa = bp->b_data; 4215 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 4216 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 4217 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 4218 ea = (caddr_t)(vm_offset_t)ulmin( 4219 (u_long)(vm_offset_t)ea, 4220 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 4221 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4222 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 4223 continue; 4224 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 4225 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 4226 bzero(sa, ea - sa); 4227 } 4228 } else { 4229 for (; sa < ea; sa += DEV_BSIZE, j++) { 4230 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 4231 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 4232 bzero(sa, DEV_BSIZE); 4233 } 4234 } 4235 bp->b_xio.xio_pages[i]->valid |= mask; 4236 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 4237 } 4238 bp->b_resid = 0; 4239 } else { 4240 clrbuf(bp); 4241 } 4242 } 4243 4244 /* 4245 * vm_hold_load_pages: 4246 * 4247 * Load pages into the buffer's address space. The pages are 4248 * allocated from the kernel object in order to reduce interference 4249 * with the any VM paging I/O activity. The range of loaded 4250 * pages will be wired. 4251 * 4252 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4253 * retrieve the full range (to - from) of pages. 4254 * 4255 */ 4256 void 4257 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4258 { 4259 vm_offset_t pg; 4260 vm_page_t p; 4261 int index; 4262 4263 to = round_page(to); 4264 from = round_page(from); 4265 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4266 4267 pg = from; 4268 while (pg < to) { 4269 /* 4270 * Note: must allocate system pages since blocking here 4271 * could intefere with paging I/O, no matter which 4272 * process we are. 4273 */ 4274 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4275 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4276 if (p) { 4277 vm_page_wire(p); 4278 p->valid = VM_PAGE_BITS_ALL; 4279 vm_page_flag_clear(p, PG_ZERO); 4280 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4281 bp->b_xio.xio_pages[index] = p; 4282 vm_page_wakeup(p); 4283 4284 pg += PAGE_SIZE; 4285 ++index; 4286 } 4287 } 4288 bp->b_xio.xio_npages = index; 4289 } 4290 4291 /* 4292 * Allocate pages for a buffer cache buffer. 4293 * 4294 * Under extremely severe memory conditions even allocating out of the 4295 * system reserve can fail. If this occurs we must allocate out of the 4296 * interrupt reserve to avoid a deadlock with the pageout daemon. 4297 * 4298 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 4299 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 4300 * against the pageout daemon if pages are not freed from other sources. 4301 */ 4302 static 4303 vm_page_t 4304 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4305 { 4306 vm_page_t p; 4307 4308 /* 4309 * Try a normal allocation, allow use of system reserve. 4310 */ 4311 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 4312 if (p) 4313 return(p); 4314 4315 /* 4316 * The normal allocation failed and we clearly have a page 4317 * deficit. Try to reclaim some clean VM pages directly 4318 * from the buffer cache. 4319 */ 4320 vm_pageout_deficit += deficit; 4321 recoverbufpages(); 4322 4323 /* 4324 * We may have blocked, the caller will know what to do if the 4325 * page now exists. 4326 */ 4327 if (vm_page_lookup(obj, pg)) 4328 return(NULL); 4329 4330 /* 4331 * Allocate and allow use of the interrupt reserve. 4332 * 4333 * If after all that we still can't allocate a VM page we are 4334 * in real trouble, but we slog on anyway hoping that the system 4335 * won't deadlock. 4336 */ 4337 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 4338 VM_ALLOC_INTERRUPT); 4339 if (p) { 4340 if (vm_page_count_severe()) { 4341 kprintf("bio_page_alloc: WARNING emergency page " 4342 "allocation\n"); 4343 vm_wait(hz / 20); 4344 } 4345 } else { 4346 kprintf("bio_page_alloc: WARNING emergency page " 4347 "allocation failed\n"); 4348 vm_wait(hz * 5); 4349 } 4350 return(p); 4351 } 4352 4353 /* 4354 * vm_hold_free_pages: 4355 * 4356 * Return pages associated with the buffer back to the VM system. 4357 * 4358 * The range of pages underlying the buffer's address space will 4359 * be unmapped and un-wired. 4360 */ 4361 void 4362 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4363 { 4364 vm_offset_t pg; 4365 vm_page_t p; 4366 int index, newnpages; 4367 4368 from = round_page(from); 4369 to = round_page(to); 4370 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4371 newnpages = index; 4372 4373 lwkt_gettoken(&vm_token); 4374 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4375 p = bp->b_xio.xio_pages[index]; 4376 if (p && (index < bp->b_xio.xio_npages)) { 4377 if (p->busy) { 4378 kprintf("vm_hold_free_pages: doffset: %lld, " 4379 "loffset: %lld\n", 4380 (long long)bp->b_bio2.bio_offset, 4381 (long long)bp->b_loffset); 4382 } 4383 bp->b_xio.xio_pages[index] = NULL; 4384 pmap_kremove(pg); 4385 vm_page_busy(p); 4386 vm_page_unwire(p, 0); 4387 vm_page_free(p); 4388 } 4389 } 4390 bp->b_xio.xio_npages = newnpages; 4391 lwkt_reltoken(&vm_token); 4392 } 4393 4394 /* 4395 * vmapbuf: 4396 * 4397 * Map a user buffer into KVM via a pbuf. On return the buffer's 4398 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4399 * initialized. 4400 */ 4401 int 4402 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4403 { 4404 caddr_t addr; 4405 vm_offset_t va; 4406 vm_page_t m; 4407 int vmprot; 4408 int error; 4409 int pidx; 4410 int i; 4411 4412 /* 4413 * bp had better have a command and it better be a pbuf. 4414 */ 4415 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4416 KKASSERT(bp->b_flags & B_PAGING); 4417 KKASSERT(bp->b_kvabase); 4418 4419 if (bytes < 0) 4420 return (-1); 4421 4422 /* 4423 * Map the user data into KVM. Mappings have to be page-aligned. 4424 */ 4425 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4426 pidx = 0; 4427 4428 vmprot = VM_PROT_READ; 4429 if (bp->b_cmd == BUF_CMD_READ) 4430 vmprot |= VM_PROT_WRITE; 4431 4432 while (addr < udata + bytes) { 4433 /* 4434 * Do the vm_fault if needed; do the copy-on-write thing 4435 * when reading stuff off device into memory. 4436 * 4437 * vm_fault_page*() returns a held VM page. 4438 */ 4439 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4440 va = trunc_page(va); 4441 4442 m = vm_fault_page_quick(va, vmprot, &error); 4443 if (m == NULL) { 4444 for (i = 0; i < pidx; ++i) { 4445 vm_page_unhold(bp->b_xio.xio_pages[i]); 4446 bp->b_xio.xio_pages[i] = NULL; 4447 } 4448 return(-1); 4449 } 4450 bp->b_xio.xio_pages[pidx] = m; 4451 addr += PAGE_SIZE; 4452 ++pidx; 4453 } 4454 4455 /* 4456 * Map the page array and set the buffer fields to point to 4457 * the mapped data buffer. 4458 */ 4459 if (pidx > btoc(MAXPHYS)) 4460 panic("vmapbuf: mapped more than MAXPHYS"); 4461 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4462 4463 bp->b_xio.xio_npages = pidx; 4464 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4465 bp->b_bcount = bytes; 4466 bp->b_bufsize = bytes; 4467 return(0); 4468 } 4469 4470 /* 4471 * vunmapbuf: 4472 * 4473 * Free the io map PTEs associated with this IO operation. 4474 * We also invalidate the TLB entries and restore the original b_addr. 4475 */ 4476 void 4477 vunmapbuf(struct buf *bp) 4478 { 4479 int pidx; 4480 int npages; 4481 4482 KKASSERT(bp->b_flags & B_PAGING); 4483 4484 npages = bp->b_xio.xio_npages; 4485 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4486 for (pidx = 0; pidx < npages; ++pidx) { 4487 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4488 bp->b_xio.xio_pages[pidx] = NULL; 4489 } 4490 bp->b_xio.xio_npages = 0; 4491 bp->b_data = bp->b_kvabase; 4492 } 4493 4494 /* 4495 * Scan all buffers in the system and issue the callback. 4496 */ 4497 int 4498 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4499 { 4500 int count = 0; 4501 int error; 4502 int n; 4503 4504 for (n = 0; n < nbuf; ++n) { 4505 if ((error = callback(&buf[n], info)) < 0) { 4506 count = error; 4507 break; 4508 } 4509 count += error; 4510 } 4511 return (count); 4512 } 4513 4514 /* 4515 * nestiobuf_iodone: biodone callback for nested buffers and propagate 4516 * completion to the master buffer. 4517 */ 4518 static void 4519 nestiobuf_iodone(struct bio *bio) 4520 { 4521 struct bio *mbio; 4522 struct buf *mbp, *bp; 4523 int error; 4524 int donebytes; 4525 4526 bp = bio->bio_buf; 4527 mbio = bio->bio_caller_info1.ptr; 4528 mbp = mbio->bio_buf; 4529 4530 KKASSERT(bp->b_bcount <= bp->b_bufsize); 4531 KKASSERT(mbp != bp); 4532 4533 error = bp->b_error; 4534 if (bp->b_error == 0 && 4535 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 4536 /* 4537 * Not all got transfered, raise an error. We have no way to 4538 * propagate these conditions to mbp. 4539 */ 4540 error = EIO; 4541 } 4542 4543 donebytes = bp->b_bufsize; 4544 4545 relpbuf(bp, NULL); 4546 nestiobuf_done(mbio, donebytes, error); 4547 } 4548 4549 void 4550 nestiobuf_done(struct bio *mbio, int donebytes, int error) 4551 { 4552 struct buf *mbp; 4553 4554 mbp = mbio->bio_buf; 4555 4556 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0); 4557 4558 /* 4559 * If an error occured, propagate it to the master buffer. 4560 * 4561 * Several biodone()s may wind up running concurrently so 4562 * use an atomic op to adjust b_flags. 4563 */ 4564 if (error) { 4565 mbp->b_error = error; 4566 atomic_set_int(&mbp->b_flags, B_ERROR); 4567 } 4568 4569 /* 4570 * Decrement the master buf b_resid according to our donebytes, and 4571 * also check if this is the last missing bit for the whole nestio 4572 * mess to complete. If so, call biodone() on the master buf mbp. 4573 */ 4574 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4575 mbp->b_resid = 0; 4576 biodone(mbio); 4577 } 4578 } 4579 4580 /* 4581 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent 4582 * the mbio from being biodone()'d while we are still adding sub-bios to 4583 * it. 4584 */ 4585 void 4586 nestiobuf_init(struct bio *bio) 4587 { 4588 bio->bio_driver_info = (void *)1; 4589 } 4590 4591 /* 4592 * The BIOs added to the nestedio have already been started, remove the 4593 * count that placeheld our mbio and biodone() it if the count would 4594 * transition to 0. 4595 */ 4596 void 4597 nestiobuf_start(struct bio *mbio) 4598 { 4599 struct buf *mbp = mbio->bio_buf; 4600 4601 /* 4602 * Decrement the master buf b_resid according to our donebytes, and 4603 * also check if this is the last missing bit for the whole nestio 4604 * mess to complete. If so, call biodone() on the master buf mbp. 4605 */ 4606 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4607 if (mbp->b_flags & B_ERROR) 4608 mbp->b_resid = mbp->b_bcount; 4609 else 4610 mbp->b_resid = 0; 4611 biodone(mbio); 4612 } 4613 } 4614 4615 /* 4616 * Set an intermediate error prior to calling nestiobuf_start() 4617 */ 4618 void 4619 nestiobuf_error(struct bio *mbio, int error) 4620 { 4621 struct buf *mbp = mbio->bio_buf; 4622 4623 if (error) { 4624 mbp->b_error = error; 4625 atomic_set_int(&mbp->b_flags, B_ERROR); 4626 } 4627 } 4628 4629 /* 4630 * nestiobuf_add: setup a "nested" buffer. 4631 * 4632 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 4633 * => 'bp' should be a buffer allocated by getiobuf. 4634 * => 'offset' is a byte offset in the master buffer. 4635 * => 'size' is a size in bytes of this nested buffer. 4636 */ 4637 void 4638 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size) 4639 { 4640 struct buf *mbp = mbio->bio_buf; 4641 struct vnode *vp = mbp->b_vp; 4642 4643 KKASSERT(mbp->b_bcount >= offset + size); 4644 4645 atomic_add_int((int *)&mbio->bio_driver_info, 1); 4646 4647 /* kernel needs to own the lock for it to be released in biodone */ 4648 BUF_KERNPROC(bp); 4649 bp->b_vp = vp; 4650 bp->b_cmd = mbp->b_cmd; 4651 bp->b_bio1.bio_done = nestiobuf_iodone; 4652 bp->b_data = (char *)mbp->b_data + offset; 4653 bp->b_resid = bp->b_bcount = size; 4654 bp->b_bufsize = bp->b_bcount; 4655 4656 bp->b_bio1.bio_track = NULL; 4657 bp->b_bio1.bio_caller_info1.ptr = mbio; 4658 } 4659 4660 /* 4661 * print out statistics from the current status of the buffer pool 4662 * this can be toggeled by the system control option debug.syncprt 4663 */ 4664 #ifdef DEBUG 4665 void 4666 vfs_bufstats(void) 4667 { 4668 int i, j, count; 4669 struct buf *bp; 4670 struct bqueues *dp; 4671 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4672 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4673 4674 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4675 count = 0; 4676 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4677 counts[j] = 0; 4678 crit_enter(); 4679 TAILQ_FOREACH(bp, dp, b_freelist) { 4680 counts[bp->b_bufsize/PAGE_SIZE]++; 4681 count++; 4682 } 4683 crit_exit(); 4684 kprintf("%s: total-%d", bname[i], count); 4685 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4686 if (counts[j] != 0) 4687 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4688 kprintf("\n"); 4689 } 4690 } 4691 #endif 4692 4693 #ifdef DDB 4694 4695 DB_SHOW_COMMAND(buffer, db_show_buffer) 4696 { 4697 /* get args */ 4698 struct buf *bp = (struct buf *)addr; 4699 4700 if (!have_addr) { 4701 db_printf("usage: show buffer <addr>\n"); 4702 return; 4703 } 4704 4705 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4706 db_printf("b_cmd = %d\n", bp->b_cmd); 4707 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4708 "b_resid = %d\n, b_data = %p, " 4709 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4710 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4711 bp->b_data, 4712 (long long)bp->b_bio2.bio_offset, 4713 (long long)(bp->b_bio2.bio_next ? 4714 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4715 if (bp->b_xio.xio_npages) { 4716 int i; 4717 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4718 bp->b_xio.xio_npages); 4719 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4720 vm_page_t m; 4721 m = bp->b_xio.xio_pages[i]; 4722 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4723 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4724 if ((i + 1) < bp->b_xio.xio_npages) 4725 db_printf(","); 4726 } 4727 db_printf("\n"); 4728 } 4729 } 4730 #endif /* DDB */ 4731