xref: /dflybsd-src/sys/kern/vfs_bio.c (revision a9656fbcd49c376aba5e04370d8b0f1fa96e063c)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <sys/proc.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
59 
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <sys/mplock2.h>
64 #include <vm/vm_page2.h>
65 
66 #include "opt_ddb.h"
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70 
71 /*
72  * Buffer queues.
73  */
74 enum bufq_type {
75 	BQUEUE_NONE,    	/* not on any queue */
76 	BQUEUE_LOCKED,  	/* locked buffers */
77 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
78 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
79 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
80 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
81 	BQUEUE_EMPTY,    	/* empty buffer headers */
82 
83 	BUFFER_QUEUES		/* number of buffer queues */
84 };
85 
86 typedef enum bufq_type bufq_type_t;
87 
88 #define BD_WAKE_SIZE	16384
89 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
90 
91 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
92 struct spinlock	bufspin = SPINLOCK_INITIALIZER(&bufspin);
93 
94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
95 
96 struct buf *buf;		/* buffer header pool */
97 
98 static void vfs_clean_pages(struct buf *bp);
99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
100 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
101 static void vfs_vmio_release(struct buf *bp);
102 static int flushbufqueues(bufq_type_t q);
103 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
104 
105 static void bd_signal(int totalspace);
106 static void buf_daemon(void);
107 static void buf_daemon_hw(void);
108 
109 /*
110  * bogus page -- for I/O to/from partially complete buffers
111  * this is a temporary solution to the problem, but it is not
112  * really that bad.  it would be better to split the buffer
113  * for input in the case of buffers partially already in memory,
114  * but the code is intricate enough already.
115  */
116 vm_page_t bogus_page;
117 
118 /*
119  * These are all static, but make the ones we export globals so we do
120  * not need to use compiler magic.
121  */
122 int bufspace, maxbufspace,
123 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
124 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
125 static int lorunningspace, hirunningspace, runningbufreq;
126 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
127 int dirtybufcount, dirtybufcounthw;
128 int runningbufspace, runningbufcount;
129 static int getnewbufcalls;
130 static int getnewbufrestarts;
131 static int recoverbufcalls;
132 static int needsbuffer;		/* locked by needsbuffer_spin */
133 static int bd_request;		/* locked by needsbuffer_spin */
134 static int bd_request_hw;	/* locked by needsbuffer_spin */
135 static u_int bd_wake_ary[BD_WAKE_SIZE];
136 static u_int bd_wake_index;
137 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
138 static struct spinlock needsbuffer_spin;
139 static int debug_commit;
140 
141 static struct thread *bufdaemon_td;
142 static struct thread *bufdaemonhw_td;
143 
144 
145 /*
146  * Sysctls for operational control of the buffer cache.
147  */
148 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
149 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
150 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
151 	"High watermark used to trigger explicit flushing of dirty buffers");
152 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
153 	"Minimum amount of buffer space required for active I/O");
154 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
155 	"Maximum amount of buffer space to usable for active I/O");
156 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
157 	"Recycle pages to active or inactive queue transition pt 0-64");
158 /*
159  * Sysctls determining current state of the buffer cache.
160  */
161 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
162 	"Total number of buffers in buffer cache");
163 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
164 	"Pending bytes of dirty buffers (all)");
165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
166 	"Pending bytes of dirty buffers (heavy weight)");
167 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
168 	"Pending number of dirty buffers");
169 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
170 	"Pending number of dirty buffers (heavy weight)");
171 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
172 	"I/O bytes currently in progress due to asynchronous writes");
173 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
174 	"I/O buffers currently in progress due to asynchronous writes");
175 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
176 	"Hard limit on maximum amount of memory usable for buffer space");
177 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
178 	"Soft limit on maximum amount of memory usable for buffer space");
179 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
180 	"Minimum amount of memory to reserve for system buffer space");
181 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
182 	"Amount of memory available for buffers");
183 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
184 	0, "Maximum amount of memory reserved for buffers using malloc");
185 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
186 	"Amount of memory left for buffers using malloc-scheme");
187 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
188 	"New buffer header acquisition requests");
189 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
190 	0, "New buffer header acquisition restarts");
191 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
192 	"Recover VM space in an emergency");
193 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
194 	"Buffer acquisition restarts due to fragmented buffer map");
195 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
196 	"Amount of time KVA space was deallocated in an arbitrary buffer");
197 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
198 	"Amount of time buffer re-use operations were successful");
199 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
200 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
201 	"sizeof(struct buf)");
202 
203 char *buf_wmesg = BUF_WMESG;
204 
205 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
206 #define VFS_BIO_NEED_UNUSED02	0x02
207 #define VFS_BIO_NEED_UNUSED04	0x04
208 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
209 
210 /*
211  * bufspacewakeup:
212  *
213  *	Called when buffer space is potentially available for recovery.
214  *	getnewbuf() will block on this flag when it is unable to free
215  *	sufficient buffer space.  Buffer space becomes recoverable when
216  *	bp's get placed back in the queues.
217  */
218 
219 static __inline void
220 bufspacewakeup(void)
221 {
222 	/*
223 	 * If someone is waiting for BUF space, wake them up.  Even
224 	 * though we haven't freed the kva space yet, the waiting
225 	 * process will be able to now.
226 	 */
227 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
228 		spin_lock_wr(&needsbuffer_spin);
229 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
230 		spin_unlock_wr(&needsbuffer_spin);
231 		wakeup(&needsbuffer);
232 	}
233 }
234 
235 /*
236  * runningbufwakeup:
237  *
238  *	Accounting for I/O in progress.
239  *
240  */
241 static __inline void
242 runningbufwakeup(struct buf *bp)
243 {
244 	int totalspace;
245 	int limit;
246 
247 	if ((totalspace = bp->b_runningbufspace) != 0) {
248 		atomic_subtract_int(&runningbufspace, totalspace);
249 		atomic_subtract_int(&runningbufcount, 1);
250 		bp->b_runningbufspace = 0;
251 
252 		/*
253 		 * see waitrunningbufspace() for limit test.
254 		 */
255 		limit = hirunningspace * 2 / 3;
256 		if (runningbufreq && runningbufspace <= limit) {
257 			runningbufreq = 0;
258 			wakeup(&runningbufreq);
259 		}
260 		bd_signal(totalspace);
261 	}
262 }
263 
264 /*
265  * bufcountwakeup:
266  *
267  *	Called when a buffer has been added to one of the free queues to
268  *	account for the buffer and to wakeup anyone waiting for free buffers.
269  *	This typically occurs when large amounts of metadata are being handled
270  *	by the buffer cache ( else buffer space runs out first, usually ).
271  *
272  * MPSAFE
273  */
274 static __inline void
275 bufcountwakeup(void)
276 {
277 	if (needsbuffer) {
278 		spin_lock_wr(&needsbuffer_spin);
279 		needsbuffer &= ~VFS_BIO_NEED_ANY;
280 		spin_unlock_wr(&needsbuffer_spin);
281 		wakeup(&needsbuffer);
282 	}
283 }
284 
285 /*
286  * waitrunningbufspace()
287  *
288  * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3.
289  * This is the point where write bursting stops so we don't want to wait
290  * for the running amount to drop below it (at least if we still want bioq
291  * to burst writes).
292  *
293  * The caller may be using this function to block in a tight loop, we
294  * must block while runningbufspace is greater then or equal to
295  * hirunningspace * 2 / 3.
296  *
297  * And even with that it may not be enough, due to the presence of
298  * B_LOCKED dirty buffers, so also wait for at least one running buffer
299  * to complete.
300  */
301 static __inline void
302 waitrunningbufspace(void)
303 {
304 	int limit = hirunningspace * 2 / 3;
305 
306 	crit_enter();
307 	if (runningbufspace > limit) {
308 		while (runningbufspace > limit) {
309 			++runningbufreq;
310 			tsleep(&runningbufreq, 0, "wdrn1", 0);
311 		}
312 	} else if (runningbufspace) {
313 		++runningbufreq;
314 		tsleep(&runningbufreq, 0, "wdrn2", 1);
315 	}
316 	crit_exit();
317 }
318 
319 /*
320  * buf_dirty_count_severe:
321  *
322  *	Return true if we have too many dirty buffers.
323  */
324 int
325 buf_dirty_count_severe(void)
326 {
327 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
328 	        dirtybufcount >= nbuf / 2);
329 }
330 
331 /*
332  * Return true if the amount of running I/O is severe and BIOQ should
333  * start bursting.
334  */
335 int
336 buf_runningbufspace_severe(void)
337 {
338 	return (runningbufspace >= hirunningspace * 2 / 3);
339 }
340 
341 /*
342  * vfs_buf_test_cache:
343  *
344  * Called when a buffer is extended.  This function clears the B_CACHE
345  * bit if the newly extended portion of the buffer does not contain
346  * valid data.
347  *
348  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
349  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
350  * them while a clean buffer was present.
351  */
352 static __inline__
353 void
354 vfs_buf_test_cache(struct buf *bp,
355 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
356 		  vm_page_t m)
357 {
358 	if (bp->b_flags & B_CACHE) {
359 		int base = (foff + off) & PAGE_MASK;
360 		if (vm_page_is_valid(m, base, size) == 0)
361 			bp->b_flags &= ~B_CACHE;
362 	}
363 }
364 
365 /*
366  * bd_speedup()
367  *
368  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
369  * low water mark.
370  *
371  * MPSAFE
372  */
373 static __inline__
374 void
375 bd_speedup(void)
376 {
377 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
378 		return;
379 
380 	if (bd_request == 0 &&
381 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
382 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
383 		spin_lock_wr(&needsbuffer_spin);
384 		bd_request = 1;
385 		spin_unlock_wr(&needsbuffer_spin);
386 		wakeup(&bd_request);
387 	}
388 	if (bd_request_hw == 0 &&
389 	    (dirtybufspacehw > lodirtybufspace / 2 ||
390 	     dirtybufcounthw >= nbuf / 2)) {
391 		spin_lock_wr(&needsbuffer_spin);
392 		bd_request_hw = 1;
393 		spin_unlock_wr(&needsbuffer_spin);
394 		wakeup(&bd_request_hw);
395 	}
396 }
397 
398 /*
399  * bd_heatup()
400  *
401  *	Get the buf_daemon heated up when the number of running and dirty
402  *	buffers exceeds the mid-point.
403  *
404  *	Return the total number of dirty bytes past the second mid point
405  *	as a measure of how much excess dirty data there is in the system.
406  *
407  * MPSAFE
408  */
409 int
410 bd_heatup(void)
411 {
412 	int mid1;
413 	int mid2;
414 	int totalspace;
415 
416 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
417 
418 	totalspace = runningbufspace + dirtybufspace;
419 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
420 		bd_speedup();
421 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
422 		if (totalspace >= mid2)
423 			return(totalspace - mid2);
424 	}
425 	return(0);
426 }
427 
428 /*
429  * bd_wait()
430  *
431  *	Wait for the buffer cache to flush (totalspace) bytes worth of
432  *	buffers, then return.
433  *
434  *	Regardless this function blocks while the number of dirty buffers
435  *	exceeds hidirtybufspace.
436  *
437  * MPSAFE
438  */
439 void
440 bd_wait(int totalspace)
441 {
442 	u_int i;
443 	int count;
444 
445 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
446 		return;
447 
448 	while (totalspace > 0) {
449 		bd_heatup();
450 		if (totalspace > runningbufspace + dirtybufspace)
451 			totalspace = runningbufspace + dirtybufspace;
452 		count = totalspace / BKVASIZE;
453 		if (count >= BD_WAKE_SIZE)
454 			count = BD_WAKE_SIZE - 1;
455 
456 		spin_lock_wr(&needsbuffer_spin);
457 		i = (bd_wake_index + count) & BD_WAKE_MASK;
458 		++bd_wake_ary[i];
459 		tsleep_interlock(&bd_wake_ary[i], 0);
460 		spin_unlock_wr(&needsbuffer_spin);
461 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
462 
463 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
464 	}
465 }
466 
467 /*
468  * bd_signal()
469  *
470  *	This function is called whenever runningbufspace or dirtybufspace
471  *	is reduced.  Track threads waiting for run+dirty buffer I/O
472  *	complete.
473  *
474  * MPSAFE
475  */
476 static void
477 bd_signal(int totalspace)
478 {
479 	u_int i;
480 
481 	if (totalspace > 0) {
482 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
483 			totalspace = BKVASIZE * BD_WAKE_SIZE;
484 		spin_lock_wr(&needsbuffer_spin);
485 		while (totalspace > 0) {
486 			i = bd_wake_index++;
487 			i &= BD_WAKE_MASK;
488 			if (bd_wake_ary[i]) {
489 				bd_wake_ary[i] = 0;
490 				spin_unlock_wr(&needsbuffer_spin);
491 				wakeup(&bd_wake_ary[i]);
492 				spin_lock_wr(&needsbuffer_spin);
493 			}
494 			totalspace -= BKVASIZE;
495 		}
496 		spin_unlock_wr(&needsbuffer_spin);
497 	}
498 }
499 
500 /*
501  * BIO tracking support routines.
502  *
503  * Release a ref on a bio_track.  Wakeup requests are atomically released
504  * along with the last reference so bk_active will never wind up set to
505  * only 0x80000000.
506  *
507  * MPSAFE
508  */
509 static
510 void
511 bio_track_rel(struct bio_track *track)
512 {
513 	int	active;
514 	int	desired;
515 
516 	/*
517 	 * Shortcut
518 	 */
519 	active = track->bk_active;
520 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
521 		return;
522 
523 	/*
524 	 * Full-on.  Note that the wait flag is only atomically released on
525 	 * the 1->0 count transition.
526 	 *
527 	 * We check for a negative count transition using bit 30 since bit 31
528 	 * has a different meaning.
529 	 */
530 	for (;;) {
531 		desired = (active & 0x7FFFFFFF) - 1;
532 		if (desired)
533 			desired |= active & 0x80000000;
534 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
535 			if (desired & 0x40000000)
536 				panic("bio_track_rel: bad count: %p\n", track);
537 			if (active & 0x80000000)
538 				wakeup(track);
539 			break;
540 		}
541 		active = track->bk_active;
542 	}
543 }
544 
545 /*
546  * Wait for the tracking count to reach 0.
547  *
548  * Use atomic ops such that the wait flag is only set atomically when
549  * bk_active is non-zero.
550  *
551  * MPSAFE
552  */
553 int
554 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
555 {
556 	int	active;
557 	int	desired;
558 	int	error;
559 
560 	/*
561 	 * Shortcut
562 	 */
563 	if (track->bk_active == 0)
564 		return(0);
565 
566 	/*
567 	 * Full-on.  Note that the wait flag may only be atomically set if
568 	 * the active count is non-zero.
569 	 */
570 	error = 0;
571 	while ((active = track->bk_active) != 0) {
572 		desired = active | 0x80000000;
573 		tsleep_interlock(track, slp_flags);
574 		if (active == desired ||
575 		    atomic_cmpset_int(&track->bk_active, active, desired)) {
576 			error = tsleep(track, slp_flags | PINTERLOCKED,
577 				       "iowait", slp_timo);
578 			if (error)
579 				break;
580 		}
581 	}
582 	return (error);
583 }
584 
585 /*
586  * bufinit:
587  *
588  *	Load time initialisation of the buffer cache, called from machine
589  *	dependant initialization code.
590  */
591 void
592 bufinit(void)
593 {
594 	struct buf *bp;
595 	vm_offset_t bogus_offset;
596 	int i;
597 
598 	spin_init(&needsbuffer_spin);
599 
600 	/* next, make a null set of free lists */
601 	for (i = 0; i < BUFFER_QUEUES; i++)
602 		TAILQ_INIT(&bufqueues[i]);
603 
604 	/* finally, initialize each buffer header and stick on empty q */
605 	for (i = 0; i < nbuf; i++) {
606 		bp = &buf[i];
607 		bzero(bp, sizeof *bp);
608 		bp->b_flags = B_INVAL;	/* we're just an empty header */
609 		bp->b_cmd = BUF_CMD_DONE;
610 		bp->b_qindex = BQUEUE_EMPTY;
611 		initbufbio(bp);
612 		xio_init(&bp->b_xio);
613 		buf_dep_init(bp);
614 		BUF_LOCKINIT(bp);
615 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
616 	}
617 
618 	/*
619 	 * maxbufspace is the absolute maximum amount of buffer space we are
620 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
621 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
622 	 * used by most other processes.  The differential is required to
623 	 * ensure that buf_daemon is able to run when other processes might
624 	 * be blocked waiting for buffer space.
625 	 *
626 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
627 	 * this may result in KVM fragmentation which is not handled optimally
628 	 * by the system.
629 	 */
630 	maxbufspace = nbuf * BKVASIZE;
631 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
632 	lobufspace = hibufspace - MAXBSIZE;
633 
634 	lorunningspace = 512 * 1024;
635 	/* hirunningspace -- see below */
636 
637 	/*
638 	 * Limit the amount of malloc memory since it is wired permanently
639 	 * into the kernel space.  Even though this is accounted for in
640 	 * the buffer allocation, we don't want the malloced region to grow
641 	 * uncontrolled.  The malloc scheme improves memory utilization
642 	 * significantly on average (small) directories.
643 	 */
644 	maxbufmallocspace = hibufspace / 20;
645 
646 	/*
647 	 * Reduce the chance of a deadlock occuring by limiting the number
648 	 * of delayed-write dirty buffers we allow to stack up.
649 	 *
650 	 * We don't want too much actually queued to the device at once
651 	 * (XXX this needs to be per-mount!), because the buffers will
652 	 * wind up locked for a very long period of time while the I/O
653 	 * drains.
654 	 */
655 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
656 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
657 	if (hirunningspace < 1024 * 1024)
658 		hirunningspace = 1024 * 1024;
659 
660 	dirtybufspace = 0;
661 	dirtybufspacehw = 0;
662 
663 	lodirtybufspace = hidirtybufspace / 2;
664 
665 	/*
666 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
667 	 * somewhat of a hack at the moment, we really need to limit ourselves
668 	 * based on the number of bytes of I/O in-transit that were initiated
669 	 * from buf_daemon.
670 	 */
671 
672 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
673 	bogus_page = vm_page_alloc(&kernel_object,
674 				   (bogus_offset >> PAGE_SHIFT),
675 				   VM_ALLOC_NORMAL);
676 	vmstats.v_wire_count++;
677 
678 }
679 
680 /*
681  * Initialize the embedded bio structures
682  */
683 void
684 initbufbio(struct buf *bp)
685 {
686 	bp->b_bio1.bio_buf = bp;
687 	bp->b_bio1.bio_prev = NULL;
688 	bp->b_bio1.bio_offset = NOOFFSET;
689 	bp->b_bio1.bio_next = &bp->b_bio2;
690 	bp->b_bio1.bio_done = NULL;
691 	bp->b_bio1.bio_flags = 0;
692 
693 	bp->b_bio2.bio_buf = bp;
694 	bp->b_bio2.bio_prev = &bp->b_bio1;
695 	bp->b_bio2.bio_offset = NOOFFSET;
696 	bp->b_bio2.bio_next = NULL;
697 	bp->b_bio2.bio_done = NULL;
698 	bp->b_bio2.bio_flags = 0;
699 }
700 
701 /*
702  * Reinitialize the embedded bio structures as well as any additional
703  * translation cache layers.
704  */
705 void
706 reinitbufbio(struct buf *bp)
707 {
708 	struct bio *bio;
709 
710 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
711 		bio->bio_done = NULL;
712 		bio->bio_offset = NOOFFSET;
713 	}
714 }
715 
716 /*
717  * Push another BIO layer onto an existing BIO and return it.  The new
718  * BIO layer may already exist, holding cached translation data.
719  */
720 struct bio *
721 push_bio(struct bio *bio)
722 {
723 	struct bio *nbio;
724 
725 	if ((nbio = bio->bio_next) == NULL) {
726 		int index = bio - &bio->bio_buf->b_bio_array[0];
727 		if (index >= NBUF_BIO - 1) {
728 			panic("push_bio: too many layers bp %p\n",
729 				bio->bio_buf);
730 		}
731 		nbio = &bio->bio_buf->b_bio_array[index + 1];
732 		bio->bio_next = nbio;
733 		nbio->bio_prev = bio;
734 		nbio->bio_buf = bio->bio_buf;
735 		nbio->bio_offset = NOOFFSET;
736 		nbio->bio_done = NULL;
737 		nbio->bio_next = NULL;
738 	}
739 	KKASSERT(nbio->bio_done == NULL);
740 	return(nbio);
741 }
742 
743 /*
744  * Pop a BIO translation layer, returning the previous layer.  The
745  * must have been previously pushed.
746  */
747 struct bio *
748 pop_bio(struct bio *bio)
749 {
750 	return(bio->bio_prev);
751 }
752 
753 void
754 clearbiocache(struct bio *bio)
755 {
756 	while (bio) {
757 		bio->bio_offset = NOOFFSET;
758 		bio = bio->bio_next;
759 	}
760 }
761 
762 /*
763  * bfreekva:
764  *
765  *	Free the KVA allocation for buffer 'bp'.
766  *
767  *	Must be called from a critical section as this is the only locking for
768  *	buffer_map.
769  *
770  *	Since this call frees up buffer space, we call bufspacewakeup().
771  *
772  * MPALMOSTSAFE
773  */
774 static void
775 bfreekva(struct buf *bp)
776 {
777 	int count;
778 
779 	if (bp->b_kvasize) {
780 		get_mplock();
781 		++buffreekvacnt;
782 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
783 		vm_map_lock(&buffer_map);
784 		bufspace -= bp->b_kvasize;
785 		vm_map_delete(&buffer_map,
786 		    (vm_offset_t) bp->b_kvabase,
787 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
788 		    &count
789 		);
790 		vm_map_unlock(&buffer_map);
791 		vm_map_entry_release(count);
792 		bp->b_kvasize = 0;
793 		bp->b_kvabase = NULL;
794 		bufspacewakeup();
795 		rel_mplock();
796 	}
797 }
798 
799 /*
800  * bremfree:
801  *
802  *	Remove the buffer from the appropriate free list.
803  */
804 static __inline void
805 _bremfree(struct buf *bp)
806 {
807 	if (bp->b_qindex != BQUEUE_NONE) {
808 		KASSERT(BUF_REFCNTNB(bp) == 1,
809 				("bremfree: bp %p not locked",bp));
810 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
811 		bp->b_qindex = BQUEUE_NONE;
812 	} else {
813 		if (BUF_REFCNTNB(bp) <= 1)
814 			panic("bremfree: removing a buffer not on a queue");
815 	}
816 }
817 
818 void
819 bremfree(struct buf *bp)
820 {
821 	spin_lock_wr(&bufspin);
822 	_bremfree(bp);
823 	spin_unlock_wr(&bufspin);
824 }
825 
826 static void
827 bremfree_locked(struct buf *bp)
828 {
829 	_bremfree(bp);
830 }
831 
832 /*
833  * bread:
834  *
835  *	Get a buffer with the specified data.  Look in the cache first.  We
836  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
837  *	is set, the buffer is valid and we do not have to do anything ( see
838  *	getblk() ).
839  *
840  * MPALMOSTSAFE
841  */
842 int
843 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
844 {
845 	struct buf *bp;
846 
847 	bp = getblk(vp, loffset, size, 0, 0);
848 	*bpp = bp;
849 
850 	/* if not found in cache, do some I/O */
851 	if ((bp->b_flags & B_CACHE) == 0) {
852 		get_mplock();
853 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
854 		bp->b_cmd = BUF_CMD_READ;
855 		bp->b_bio1.bio_done = biodone_sync;
856 		bp->b_bio1.bio_flags |= BIO_SYNC;
857 		vfs_busy_pages(vp, bp);
858 		vn_strategy(vp, &bp->b_bio1);
859 		rel_mplock();
860 		return (biowait(&bp->b_bio1, "biord"));
861 	}
862 	return (0);
863 }
864 
865 /*
866  * breadn:
867  *
868  *	Operates like bread, but also starts asynchronous I/O on
869  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
870  *	to initiating I/O . If B_CACHE is set, the buffer is valid
871  *	and we do not have to do anything.
872  *
873  * MPALMOSTSAFE
874  */
875 int
876 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
877 	int *rabsize, int cnt, struct buf **bpp)
878 {
879 	struct buf *bp, *rabp;
880 	int i;
881 	int rv = 0, readwait = 0;
882 
883 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
884 
885 	/* if not found in cache, do some I/O */
886 	if ((bp->b_flags & B_CACHE) == 0) {
887 		get_mplock();
888 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
889 		bp->b_cmd = BUF_CMD_READ;
890 		bp->b_bio1.bio_done = biodone_sync;
891 		bp->b_bio1.bio_flags |= BIO_SYNC;
892 		vfs_busy_pages(vp, bp);
893 		vn_strategy(vp, &bp->b_bio1);
894 		++readwait;
895 		rel_mplock();
896 	}
897 
898 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
899 		if (inmem(vp, *raoffset))
900 			continue;
901 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
902 
903 		if ((rabp->b_flags & B_CACHE) == 0) {
904 			get_mplock();
905 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
906 			rabp->b_cmd = BUF_CMD_READ;
907 			vfs_busy_pages(vp, rabp);
908 			BUF_KERNPROC(rabp);
909 			vn_strategy(vp, &rabp->b_bio1);
910 			rel_mplock();
911 		} else {
912 			brelse(rabp);
913 		}
914 	}
915 	if (readwait)
916 		rv = biowait(&bp->b_bio1, "biord");
917 	return (rv);
918 }
919 
920 /*
921  * bwrite:
922  *
923  *	Synchronous write, waits for completion.
924  *
925  *	Write, release buffer on completion.  (Done by iodone
926  *	if async).  Do not bother writing anything if the buffer
927  *	is invalid.
928  *
929  *	Note that we set B_CACHE here, indicating that buffer is
930  *	fully valid and thus cacheable.  This is true even of NFS
931  *	now so we set it generally.  This could be set either here
932  *	or in biodone() since the I/O is synchronous.  We put it
933  *	here.
934  */
935 int
936 bwrite(struct buf *bp)
937 {
938 	int error;
939 
940 	if (bp->b_flags & B_INVAL) {
941 		brelse(bp);
942 		return (0);
943 	}
944 	if (BUF_REFCNTNB(bp) == 0)
945 		panic("bwrite: buffer is not busy???");
946 
947 	/* Mark the buffer clean */
948 	bundirty(bp);
949 
950 	bp->b_flags &= ~(B_ERROR | B_EINTR);
951 	bp->b_flags |= B_CACHE;
952 	bp->b_cmd = BUF_CMD_WRITE;
953 	bp->b_bio1.bio_done = biodone_sync;
954 	bp->b_bio1.bio_flags |= BIO_SYNC;
955 	vfs_busy_pages(bp->b_vp, bp);
956 
957 	/*
958 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
959 	 * valid for vnode-backed buffers.
960 	 */
961 	bp->b_runningbufspace = bp->b_bufsize;
962 	if (bp->b_runningbufspace) {
963 		runningbufspace += bp->b_runningbufspace;
964 		++runningbufcount;
965 	}
966 
967 	vn_strategy(bp->b_vp, &bp->b_bio1);
968 	error = biowait(&bp->b_bio1, "biows");
969 	brelse(bp);
970 	return (error);
971 }
972 
973 /*
974  * bawrite:
975  *
976  *	Asynchronous write.  Start output on a buffer, but do not wait for
977  *	it to complete.  The buffer is released when the output completes.
978  *
979  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
980  *	B_INVAL buffers.  Not us.
981  */
982 void
983 bawrite(struct buf *bp)
984 {
985 	if (bp->b_flags & B_INVAL) {
986 		brelse(bp);
987 		return;
988 	}
989 	if (BUF_REFCNTNB(bp) == 0)
990 		panic("bwrite: buffer is not busy???");
991 
992 	/* Mark the buffer clean */
993 	bundirty(bp);
994 
995 	bp->b_flags &= ~(B_ERROR | B_EINTR);
996 	bp->b_flags |= B_CACHE;
997 	bp->b_cmd = BUF_CMD_WRITE;
998 	KKASSERT(bp->b_bio1.bio_done == NULL);
999 	vfs_busy_pages(bp->b_vp, bp);
1000 
1001 	/*
1002 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1003 	 * valid for vnode-backed buffers.
1004 	 */
1005 	bp->b_runningbufspace = bp->b_bufsize;
1006 	if (bp->b_runningbufspace) {
1007 		runningbufspace += bp->b_runningbufspace;
1008 		++runningbufcount;
1009 	}
1010 
1011 	BUF_KERNPROC(bp);
1012 	vn_strategy(bp->b_vp, &bp->b_bio1);
1013 }
1014 
1015 /*
1016  * bowrite:
1017  *
1018  *	Ordered write.  Start output on a buffer, and flag it so that the
1019  *	device will write it in the order it was queued.  The buffer is
1020  *	released when the output completes.  bwrite() ( or the VOP routine
1021  *	anyway ) is responsible for handling B_INVAL buffers.
1022  */
1023 int
1024 bowrite(struct buf *bp)
1025 {
1026 	bp->b_flags |= B_ORDERED;
1027 	bawrite(bp);
1028 	return (0);
1029 }
1030 
1031 /*
1032  * bdwrite:
1033  *
1034  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1035  *	anything if the buffer is marked invalid.
1036  *
1037  *	Note that since the buffer must be completely valid, we can safely
1038  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1039  *	biodone() in order to prevent getblk from writing the buffer
1040  *	out synchronously.
1041  */
1042 void
1043 bdwrite(struct buf *bp)
1044 {
1045 	if (BUF_REFCNTNB(bp) == 0)
1046 		panic("bdwrite: buffer is not busy");
1047 
1048 	if (bp->b_flags & B_INVAL) {
1049 		brelse(bp);
1050 		return;
1051 	}
1052 	bdirty(bp);
1053 
1054 	if (dsched_is_clear_buf_priv(bp))
1055 		dsched_new_buf(bp);
1056 
1057 	/*
1058 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1059 	 * true even of NFS now.
1060 	 */
1061 	bp->b_flags |= B_CACHE;
1062 
1063 	/*
1064 	 * This bmap keeps the system from needing to do the bmap later,
1065 	 * perhaps when the system is attempting to do a sync.  Since it
1066 	 * is likely that the indirect block -- or whatever other datastructure
1067 	 * that the filesystem needs is still in memory now, it is a good
1068 	 * thing to do this.  Note also, that if the pageout daemon is
1069 	 * requesting a sync -- there might not be enough memory to do
1070 	 * the bmap then...  So, this is important to do.
1071 	 */
1072 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1073 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1074 			 NULL, NULL, BUF_CMD_WRITE);
1075 	}
1076 
1077 	/*
1078 	 * Because the underlying pages may still be mapped and
1079 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1080 	 * range here will be inaccurate.
1081 	 *
1082 	 * However, we must still clean the pages to satisfy the
1083 	 * vnode_pager and pageout daemon, so theythink the pages
1084 	 * have been "cleaned".  What has really occured is that
1085 	 * they've been earmarked for later writing by the buffer
1086 	 * cache.
1087 	 *
1088 	 * So we get the b_dirtyoff/end update but will not actually
1089 	 * depend on it (NFS that is) until the pages are busied for
1090 	 * writing later on.
1091 	 */
1092 	vfs_clean_pages(bp);
1093 	bqrelse(bp);
1094 
1095 	/*
1096 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1097 	 * due to the softdep code.
1098 	 */
1099 }
1100 
1101 /*
1102  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1103  * This is used by tmpfs.
1104  *
1105  * It is important for any VFS using this routine to NOT use it for
1106  * IO_SYNC or IO_ASYNC operations which occur when the system really
1107  * wants to flush VM pages to backing store.
1108  */
1109 void
1110 buwrite(struct buf *bp)
1111 {
1112 	vm_page_t m;
1113 	int i;
1114 
1115 	/*
1116 	 * Only works for VMIO buffers.  If the buffer is already
1117 	 * marked for delayed-write we can't avoid the bdwrite().
1118 	 */
1119 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1120 		bdwrite(bp);
1121 		return;
1122 	}
1123 
1124 	/*
1125 	 * Set valid & dirty.
1126 	 */
1127 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1128 		m = bp->b_xio.xio_pages[i];
1129 		vfs_dirty_one_page(bp, i, m);
1130 	}
1131 	bqrelse(bp);
1132 }
1133 
1134 /*
1135  * bdirty:
1136  *
1137  *	Turn buffer into delayed write request by marking it B_DELWRI.
1138  *	B_RELBUF and B_NOCACHE must be cleared.
1139  *
1140  *	We reassign the buffer to itself to properly update it in the
1141  *	dirty/clean lists.
1142  *
1143  *	Must be called from a critical section.
1144  *	The buffer must be on BQUEUE_NONE.
1145  */
1146 void
1147 bdirty(struct buf *bp)
1148 {
1149 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1150 	if (bp->b_flags & B_NOCACHE) {
1151 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1152 		bp->b_flags &= ~B_NOCACHE;
1153 	}
1154 	if (bp->b_flags & B_INVAL) {
1155 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1156 	}
1157 	bp->b_flags &= ~B_RELBUF;
1158 
1159 	if ((bp->b_flags & B_DELWRI) == 0) {
1160 		bp->b_flags |= B_DELWRI;
1161 		reassignbuf(bp);
1162 		atomic_add_int(&dirtybufcount, 1);
1163 		dirtybufspace += bp->b_bufsize;
1164 		if (bp->b_flags & B_HEAVY) {
1165 			atomic_add_int(&dirtybufcounthw, 1);
1166 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1167 		}
1168 		bd_heatup();
1169 	}
1170 }
1171 
1172 /*
1173  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1174  * needs to be flushed with a different buf_daemon thread to avoid
1175  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1176  */
1177 void
1178 bheavy(struct buf *bp)
1179 {
1180 	if ((bp->b_flags & B_HEAVY) == 0) {
1181 		bp->b_flags |= B_HEAVY;
1182 		if (bp->b_flags & B_DELWRI) {
1183 			atomic_add_int(&dirtybufcounthw, 1);
1184 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1185 		}
1186 	}
1187 }
1188 
1189 /*
1190  * bundirty:
1191  *
1192  *	Clear B_DELWRI for buffer.
1193  *
1194  *	Must be called from a critical section.
1195  *
1196  *	The buffer is typically on BQUEUE_NONE but there is one case in
1197  *	brelse() that calls this function after placing the buffer on
1198  *	a different queue.
1199  *
1200  * MPSAFE
1201  */
1202 void
1203 bundirty(struct buf *bp)
1204 {
1205 	if (bp->b_flags & B_DELWRI) {
1206 		bp->b_flags &= ~B_DELWRI;
1207 		reassignbuf(bp);
1208 		atomic_subtract_int(&dirtybufcount, 1);
1209 		atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1210 		if (bp->b_flags & B_HEAVY) {
1211 			atomic_subtract_int(&dirtybufcounthw, 1);
1212 			atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1213 		}
1214 		bd_signal(bp->b_bufsize);
1215 	}
1216 	/*
1217 	 * Since it is now being written, we can clear its deferred write flag.
1218 	 */
1219 	bp->b_flags &= ~B_DEFERRED;
1220 }
1221 
1222 /*
1223  * brelse:
1224  *
1225  *	Release a busy buffer and, if requested, free its resources.  The
1226  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1227  *	to be accessed later as a cache entity or reused for other purposes.
1228  *
1229  * MPALMOSTSAFE
1230  */
1231 void
1232 brelse(struct buf *bp)
1233 {
1234 #ifdef INVARIANTS
1235 	int saved_flags = bp->b_flags;
1236 #endif
1237 
1238 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1239 
1240 	/*
1241 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1242 	 * its backing store.  Clear B_DELWRI.
1243 	 *
1244 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1245 	 * to destroy the buffer and backing store and (2) when the caller
1246 	 * wants to destroy the buffer and backing store after a write
1247 	 * completes.
1248 	 */
1249 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1250 		bundirty(bp);
1251 	}
1252 
1253 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1254 		/*
1255 		 * A re-dirtied buffer is only subject to destruction
1256 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1257 		 */
1258 		/* leave buffer intact */
1259 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1260 		   (bp->b_bufsize <= 0)) {
1261 		/*
1262 		 * Either a failed read or we were asked to free or not
1263 		 * cache the buffer.  This path is reached with B_DELWRI
1264 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1265 		 * backing store destruction.
1266 		 *
1267 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1268 		 * buffer cannot be immediately freed.
1269 		 */
1270 		bp->b_flags |= B_INVAL;
1271 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1272 			get_mplock();
1273 			buf_deallocate(bp);
1274 			rel_mplock();
1275 		}
1276 		if (bp->b_flags & B_DELWRI) {
1277 			atomic_subtract_int(&dirtybufcount, 1);
1278 			atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1279 			if (bp->b_flags & B_HEAVY) {
1280 				atomic_subtract_int(&dirtybufcounthw, 1);
1281 				atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1282 			}
1283 			bd_signal(bp->b_bufsize);
1284 		}
1285 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1286 	}
1287 
1288 	/*
1289 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1290 	 * If vfs_vmio_release() is called with either bit set, the
1291 	 * underlying pages may wind up getting freed causing a previous
1292 	 * write (bdwrite()) to get 'lost' because pages associated with
1293 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1294 	 * B_LOCKED buffer may be mapped by the filesystem.
1295 	 *
1296 	 * If we want to release the buffer ourselves (rather then the
1297 	 * originator asking us to release it), give the originator a
1298 	 * chance to countermand the release by setting B_LOCKED.
1299 	 *
1300 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1301 	 * if B_DELWRI is set.
1302 	 *
1303 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1304 	 * on pages to return pages to the VM page queues.
1305 	 */
1306 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1307 		bp->b_flags &= ~B_RELBUF;
1308 	} else if (vm_page_count_severe()) {
1309 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1310 			get_mplock();
1311 			buf_deallocate(bp);		/* can set B_LOCKED */
1312 			rel_mplock();
1313 		}
1314 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1315 			bp->b_flags &= ~B_RELBUF;
1316 		else
1317 			bp->b_flags |= B_RELBUF;
1318 	}
1319 
1320 	/*
1321 	 * Make sure b_cmd is clear.  It may have already been cleared by
1322 	 * biodone().
1323 	 *
1324 	 * At this point destroying the buffer is governed by the B_INVAL
1325 	 * or B_RELBUF flags.
1326 	 */
1327 	bp->b_cmd = BUF_CMD_DONE;
1328 	dsched_exit_buf(bp);
1329 
1330 	/*
1331 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1332 	 * after an I/O may have replaces some of the pages with bogus pages
1333 	 * in order to not destroy dirty pages in a fill-in read.
1334 	 *
1335 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1336 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1337 	 * B_INVAL may still be set, however.
1338 	 *
1339 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1340 	 * but not the backing store.   B_NOCACHE will destroy the backing
1341 	 * store.
1342 	 *
1343 	 * Note that dirty NFS buffers contain byte-granular write ranges
1344 	 * and should not be destroyed w/ B_INVAL even if the backing store
1345 	 * is left intact.
1346 	 */
1347 	if (bp->b_flags & B_VMIO) {
1348 		/*
1349 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1350 		 */
1351 		int i, j, resid;
1352 		vm_page_t m;
1353 		off_t foff;
1354 		vm_pindex_t poff;
1355 		vm_object_t obj;
1356 		struct vnode *vp;
1357 
1358 		vp = bp->b_vp;
1359 
1360 		/*
1361 		 * Get the base offset and length of the buffer.  Note that
1362 		 * in the VMIO case if the buffer block size is not
1363 		 * page-aligned then b_data pointer may not be page-aligned.
1364 		 * But our b_xio.xio_pages array *IS* page aligned.
1365 		 *
1366 		 * block sizes less then DEV_BSIZE (usually 512) are not
1367 		 * supported due to the page granularity bits (m->valid,
1368 		 * m->dirty, etc...).
1369 		 *
1370 		 * See man buf(9) for more information
1371 		 */
1372 
1373 		resid = bp->b_bufsize;
1374 		foff = bp->b_loffset;
1375 
1376 		get_mplock();
1377 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1378 			m = bp->b_xio.xio_pages[i];
1379 			vm_page_flag_clear(m, PG_ZERO);
1380 			/*
1381 			 * If we hit a bogus page, fixup *all* of them
1382 			 * now.  Note that we left these pages wired
1383 			 * when we removed them so they had better exist,
1384 			 * and they cannot be ripped out from under us so
1385 			 * no critical section protection is necessary.
1386 			 */
1387 			if (m == bogus_page) {
1388 				obj = vp->v_object;
1389 				poff = OFF_TO_IDX(bp->b_loffset);
1390 
1391 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1392 					vm_page_t mtmp;
1393 
1394 					mtmp = bp->b_xio.xio_pages[j];
1395 					if (mtmp == bogus_page) {
1396 						mtmp = vm_page_lookup(obj, poff + j);
1397 						if (!mtmp) {
1398 							panic("brelse: page missing");
1399 						}
1400 						bp->b_xio.xio_pages[j] = mtmp;
1401 					}
1402 				}
1403 				bp->b_flags &= ~B_HASBOGUS;
1404 
1405 				if ((bp->b_flags & B_INVAL) == 0) {
1406 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1407 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1408 				}
1409 				m = bp->b_xio.xio_pages[i];
1410 			}
1411 
1412 			/*
1413 			 * Invalidate the backing store if B_NOCACHE is set
1414 			 * (e.g. used with vinvalbuf()).  If this is NFS
1415 			 * we impose a requirement that the block size be
1416 			 * a multiple of PAGE_SIZE and create a temporary
1417 			 * hack to basically invalidate the whole page.  The
1418 			 * problem is that NFS uses really odd buffer sizes
1419 			 * especially when tracking piecemeal writes and
1420 			 * it also vinvalbuf()'s a lot, which would result
1421 			 * in only partial page validation and invalidation
1422 			 * here.  If the file page is mmap()'d, however,
1423 			 * all the valid bits get set so after we invalidate
1424 			 * here we would end up with weird m->valid values
1425 			 * like 0xfc.  nfs_getpages() can't handle this so
1426 			 * we clear all the valid bits for the NFS case
1427 			 * instead of just some of them.
1428 			 *
1429 			 * The real bug is the VM system having to set m->valid
1430 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1431 			 * itself is an artifact of the whole 512-byte
1432 			 * granular mess that exists to support odd block
1433 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1434 			 * A complete rewrite is required.
1435 			 *
1436 			 * XXX
1437 			 */
1438 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1439 				int poffset = foff & PAGE_MASK;
1440 				int presid;
1441 
1442 				presid = PAGE_SIZE - poffset;
1443 				if (bp->b_vp->v_tag == VT_NFS &&
1444 				    bp->b_vp->v_type == VREG) {
1445 					; /* entire page */
1446 				} else if (presid > resid) {
1447 					presid = resid;
1448 				}
1449 				KASSERT(presid >= 0, ("brelse: extra page"));
1450 				vm_page_set_invalid(m, poffset, presid);
1451 
1452 				/*
1453 				 * Also make sure any swap cache is removed
1454 				 * as it is now stale (HAMMER in particular
1455 				 * uses B_NOCACHE to deal with buffer
1456 				 * aliasing).
1457 				 */
1458 				swap_pager_unswapped(m);
1459 			}
1460 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1461 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1462 		}
1463 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1464 			vfs_vmio_release(bp);
1465 		rel_mplock();
1466 	} else {
1467 		/*
1468 		 * Rundown for non-VMIO buffers.
1469 		 */
1470 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1471 			get_mplock();
1472 			if (bp->b_bufsize)
1473 				allocbuf(bp, 0);
1474 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1475 			if (bp->b_vp)
1476 				brelvp(bp);
1477 			rel_mplock();
1478 		}
1479 	}
1480 
1481 	if (bp->b_qindex != BQUEUE_NONE)
1482 		panic("brelse: free buffer onto another queue???");
1483 	if (BUF_REFCNTNB(bp) > 1) {
1484 		/* Temporary panic to verify exclusive locking */
1485 		/* This panic goes away when we allow shared refs */
1486 		panic("brelse: multiple refs");
1487 		/* NOT REACHED */
1488 		return;
1489 	}
1490 
1491 	/*
1492 	 * Figure out the correct queue to place the cleaned up buffer on.
1493 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1494 	 * disassociated from their vnode.
1495 	 */
1496 	spin_lock_wr(&bufspin);
1497 	if (bp->b_flags & B_LOCKED) {
1498 		/*
1499 		 * Buffers that are locked are placed in the locked queue
1500 		 * immediately, regardless of their state.
1501 		 */
1502 		bp->b_qindex = BQUEUE_LOCKED;
1503 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1504 	} else if (bp->b_bufsize == 0) {
1505 		/*
1506 		 * Buffers with no memory.  Due to conditionals near the top
1507 		 * of brelse() such buffers should probably already be
1508 		 * marked B_INVAL and disassociated from their vnode.
1509 		 */
1510 		bp->b_flags |= B_INVAL;
1511 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1512 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1513 		if (bp->b_kvasize) {
1514 			bp->b_qindex = BQUEUE_EMPTYKVA;
1515 		} else {
1516 			bp->b_qindex = BQUEUE_EMPTY;
1517 		}
1518 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1519 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1520 		/*
1521 		 * Buffers with junk contents.   Again these buffers had better
1522 		 * already be disassociated from their vnode.
1523 		 */
1524 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1525 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1526 		bp->b_flags |= B_INVAL;
1527 		bp->b_qindex = BQUEUE_CLEAN;
1528 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1529 	} else {
1530 		/*
1531 		 * Remaining buffers.  These buffers are still associated with
1532 		 * their vnode.
1533 		 */
1534 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1535 		case B_DELWRI:
1536 		    bp->b_qindex = BQUEUE_DIRTY;
1537 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1538 		    break;
1539 		case B_DELWRI | B_HEAVY:
1540 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1541 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1542 				      b_freelist);
1543 		    break;
1544 		default:
1545 		    /*
1546 		     * NOTE: Buffers are always placed at the end of the
1547 		     * queue.  If B_AGE is not set the buffer will cycle
1548 		     * through the queue twice.
1549 		     */
1550 		    bp->b_qindex = BQUEUE_CLEAN;
1551 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1552 		    break;
1553 		}
1554 	}
1555 	spin_unlock_wr(&bufspin);
1556 
1557 	/*
1558 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1559 	 * on the correct queue.
1560 	 */
1561 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1562 		bundirty(bp);
1563 
1564 	/*
1565 	 * The bp is on an appropriate queue unless locked.  If it is not
1566 	 * locked or dirty we can wakeup threads waiting for buffer space.
1567 	 *
1568 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1569 	 * if B_INVAL is set ).
1570 	 */
1571 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1572 		bufcountwakeup();
1573 
1574 	/*
1575 	 * Something we can maybe free or reuse
1576 	 */
1577 	if (bp->b_bufsize || bp->b_kvasize)
1578 		bufspacewakeup();
1579 
1580 	/*
1581 	 * Clean up temporary flags and unlock the buffer.
1582 	 */
1583 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1584 	BUF_UNLOCK(bp);
1585 }
1586 
1587 /*
1588  * bqrelse:
1589  *
1590  *	Release a buffer back to the appropriate queue but do not try to free
1591  *	it.  The buffer is expected to be used again soon.
1592  *
1593  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1594  *	biodone() to requeue an async I/O on completion.  It is also used when
1595  *	known good buffers need to be requeued but we think we may need the data
1596  *	again soon.
1597  *
1598  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1599  *
1600  * MPSAFE
1601  */
1602 void
1603 bqrelse(struct buf *bp)
1604 {
1605 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1606 
1607 	if (bp->b_qindex != BQUEUE_NONE)
1608 		panic("bqrelse: free buffer onto another queue???");
1609 	if (BUF_REFCNTNB(bp) > 1) {
1610 		/* do not release to free list */
1611 		panic("bqrelse: multiple refs");
1612 		return;
1613 	}
1614 
1615 	buf_act_advance(bp);
1616 
1617 	spin_lock_wr(&bufspin);
1618 	if (bp->b_flags & B_LOCKED) {
1619 		/*
1620 		 * Locked buffers are released to the locked queue.  However,
1621 		 * if the buffer is dirty it will first go into the dirty
1622 		 * queue and later on after the I/O completes successfully it
1623 		 * will be released to the locked queue.
1624 		 */
1625 		bp->b_qindex = BQUEUE_LOCKED;
1626 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1627 	} else if (bp->b_flags & B_DELWRI) {
1628 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1629 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1630 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1631 	} else if (vm_page_count_severe()) {
1632 		/*
1633 		 * We are too low on memory, we have to try to free the
1634 		 * buffer (most importantly: the wired pages making up its
1635 		 * backing store) *now*.
1636 		 */
1637 		spin_unlock_wr(&bufspin);
1638 		brelse(bp);
1639 		return;
1640 	} else {
1641 		bp->b_qindex = BQUEUE_CLEAN;
1642 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1643 	}
1644 	spin_unlock_wr(&bufspin);
1645 
1646 	if ((bp->b_flags & B_LOCKED) == 0 &&
1647 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1648 		bufcountwakeup();
1649 	}
1650 
1651 	/*
1652 	 * Something we can maybe free or reuse.
1653 	 */
1654 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1655 		bufspacewakeup();
1656 
1657 	/*
1658 	 * Final cleanup and unlock.  Clear bits that are only used while a
1659 	 * buffer is actively locked.
1660 	 */
1661 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1662 	dsched_exit_buf(bp);
1663 	BUF_UNLOCK(bp);
1664 }
1665 
1666 /*
1667  * vfs_vmio_release:
1668  *
1669  *	Return backing pages held by the buffer 'bp' back to the VM system
1670  *	if possible.  The pages are freed if they are no longer valid or
1671  *	attempt to free if it was used for direct I/O otherwise they are
1672  *	sent to the page cache.
1673  *
1674  *	Pages that were marked busy are left alone and skipped.
1675  *
1676  *	The KVA mapping (b_data) for the underlying pages is removed by
1677  *	this function.
1678  */
1679 static void
1680 vfs_vmio_release(struct buf *bp)
1681 {
1682 	int i;
1683 	vm_page_t m;
1684 
1685 	lwkt_gettoken(&vm_token);
1686 	crit_enter();
1687 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1688 		m = bp->b_xio.xio_pages[i];
1689 		bp->b_xio.xio_pages[i] = NULL;
1690 
1691 		/*
1692 		 * The VFS is telling us this is not a meta-data buffer
1693 		 * even if it is backed by a block device.
1694 		 */
1695 		if (bp->b_flags & B_NOTMETA)
1696 			vm_page_flag_set(m, PG_NOTMETA);
1697 
1698 		/*
1699 		 * This is a very important bit of code.  We try to track
1700 		 * VM page use whether the pages are wired into the buffer
1701 		 * cache or not.  While wired into the buffer cache the
1702 		 * bp tracks the act_count.
1703 		 *
1704 		 * We can choose to place unwired pages on the inactive
1705 		 * queue (0) or active queue (1).  If we place too many
1706 		 * on the active queue the queue will cycle the act_count
1707 		 * on pages we'd like to keep, just from single-use pages
1708 		 * (such as when doing a tar-up or file scan).
1709 		 */
1710 		if (bp->b_act_count < vm_cycle_point)
1711 			vm_page_unwire(m, 0);
1712 		else
1713 			vm_page_unwire(m, 1);
1714 
1715 		/*
1716 		 * We don't mess with busy pages, it is
1717 		 * the responsibility of the process that
1718 		 * busied the pages to deal with them.
1719 		 */
1720 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1721 			continue;
1722 
1723 		if (m->wire_count == 0) {
1724 			vm_page_flag_clear(m, PG_ZERO);
1725 			/*
1726 			 * Might as well free the page if we can and it has
1727 			 * no valid data.  We also free the page if the
1728 			 * buffer was used for direct I/O.
1729 			 */
1730 #if 0
1731 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1732 					m->hold_count == 0) {
1733 				vm_page_busy(m);
1734 				vm_page_protect(m, VM_PROT_NONE);
1735 				vm_page_free(m);
1736 			} else
1737 #endif
1738 			if (bp->b_flags & B_DIRECT) {
1739 				vm_page_try_to_free(m);
1740 			} else if (vm_page_count_severe()) {
1741 				m->act_count = bp->b_act_count;
1742 				vm_page_try_to_cache(m);
1743 			} else {
1744 				m->act_count = bp->b_act_count;
1745 			}
1746 		}
1747 	}
1748 	crit_exit();
1749 	lwkt_reltoken(&vm_token);
1750 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1751 	if (bp->b_bufsize) {
1752 		bufspacewakeup();
1753 		bp->b_bufsize = 0;
1754 	}
1755 	bp->b_xio.xio_npages = 0;
1756 	bp->b_flags &= ~B_VMIO;
1757 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1758 	if (bp->b_vp) {
1759 		get_mplock();
1760 		brelvp(bp);
1761 		rel_mplock();
1762 	}
1763 }
1764 
1765 /*
1766  * vfs_bio_awrite:
1767  *
1768  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1769  *	This is much better then the old way of writing only one buffer at
1770  *	a time.  Note that we may not be presented with the buffers in the
1771  *	correct order, so we search for the cluster in both directions.
1772  *
1773  *	The buffer is locked on call.
1774  */
1775 int
1776 vfs_bio_awrite(struct buf *bp)
1777 {
1778 	int i;
1779 	int j;
1780 	off_t loffset = bp->b_loffset;
1781 	struct vnode *vp = bp->b_vp;
1782 	int nbytes;
1783 	struct buf *bpa;
1784 	int nwritten;
1785 	int size;
1786 
1787 	/*
1788 	 * right now we support clustered writing only to regular files.  If
1789 	 * we find a clusterable block we could be in the middle of a cluster
1790 	 * rather then at the beginning.
1791 	 *
1792 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1793 	 * to b_loffset.  b_bio2 contains the translated block number.
1794 	 */
1795 	if ((vp->v_type == VREG) &&
1796 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1797 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1798 
1799 		size = vp->v_mount->mnt_stat.f_iosize;
1800 
1801 		for (i = size; i < MAXPHYS; i += size) {
1802 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1803 			    BUF_REFCNT(bpa) == 0 &&
1804 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1805 			    (B_DELWRI | B_CLUSTEROK)) &&
1806 			    (bpa->b_bufsize == size)) {
1807 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1808 				    (bpa->b_bio2.bio_offset !=
1809 				     bp->b_bio2.bio_offset + i))
1810 					break;
1811 			} else {
1812 				break;
1813 			}
1814 		}
1815 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1816 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1817 			    BUF_REFCNT(bpa) == 0 &&
1818 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1819 			    (B_DELWRI | B_CLUSTEROK)) &&
1820 			    (bpa->b_bufsize == size)) {
1821 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1822 				    (bpa->b_bio2.bio_offset !=
1823 				     bp->b_bio2.bio_offset - j))
1824 					break;
1825 			} else {
1826 				break;
1827 			}
1828 		}
1829 		j -= size;
1830 		nbytes = (i + j);
1831 
1832 		/*
1833 		 * this is a possible cluster write
1834 		 */
1835 		if (nbytes != size) {
1836 			BUF_UNLOCK(bp);
1837 			nwritten = cluster_wbuild(vp, size,
1838 						  loffset - j, nbytes);
1839 			return nwritten;
1840 		}
1841 	}
1842 
1843 	/*
1844 	 * default (old) behavior, writing out only one block
1845 	 *
1846 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1847 	 */
1848 	nwritten = bp->b_bufsize;
1849 	bremfree(bp);
1850 	bawrite(bp);
1851 
1852 	return nwritten;
1853 }
1854 
1855 /*
1856  * getnewbuf:
1857  *
1858  *	Find and initialize a new buffer header, freeing up existing buffers
1859  *	in the bufqueues as necessary.  The new buffer is returned locked.
1860  *
1861  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1862  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1863  *
1864  *	We block if:
1865  *		We have insufficient buffer headers
1866  *		We have insufficient buffer space
1867  *		buffer_map is too fragmented ( space reservation fails )
1868  *		If we have to flush dirty buffers ( but we try to avoid this )
1869  *
1870  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1871  *	Instead we ask the buf daemon to do it for us.  We attempt to
1872  *	avoid piecemeal wakeups of the pageout daemon.
1873  *
1874  * MPALMOSTSAFE
1875  */
1876 static struct buf *
1877 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1878 {
1879 	struct buf *bp;
1880 	struct buf *nbp;
1881 	int defrag = 0;
1882 	int nqindex;
1883 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1884 	static int flushingbufs;
1885 
1886 	/*
1887 	 * We can't afford to block since we might be holding a vnode lock,
1888 	 * which may prevent system daemons from running.  We deal with
1889 	 * low-memory situations by proactively returning memory and running
1890 	 * async I/O rather then sync I/O.
1891 	 */
1892 
1893 	++getnewbufcalls;
1894 	--getnewbufrestarts;
1895 restart:
1896 	++getnewbufrestarts;
1897 
1898 	/*
1899 	 * Setup for scan.  If we do not have enough free buffers,
1900 	 * we setup a degenerate case that immediately fails.  Note
1901 	 * that if we are specially marked process, we are allowed to
1902 	 * dip into our reserves.
1903 	 *
1904 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1905 	 *
1906 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1907 	 * However, there are a number of cases (defragging, reusing, ...)
1908 	 * where we cannot backup.
1909 	 */
1910 	nqindex = BQUEUE_EMPTYKVA;
1911 	spin_lock_wr(&bufspin);
1912 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1913 
1914 	if (nbp == NULL) {
1915 		/*
1916 		 * If no EMPTYKVA buffers and we are either
1917 		 * defragging or reusing, locate a CLEAN buffer
1918 		 * to free or reuse.  If bufspace useage is low
1919 		 * skip this step so we can allocate a new buffer.
1920 		 */
1921 		if (defrag || bufspace >= lobufspace) {
1922 			nqindex = BQUEUE_CLEAN;
1923 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1924 		}
1925 
1926 		/*
1927 		 * If we could not find or were not allowed to reuse a
1928 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1929 		 * buffer.  We can only use an EMPTY buffer if allocating
1930 		 * its KVA would not otherwise run us out of buffer space.
1931 		 */
1932 		if (nbp == NULL && defrag == 0 &&
1933 		    bufspace + maxsize < hibufspace) {
1934 			nqindex = BQUEUE_EMPTY;
1935 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1936 		}
1937 	}
1938 
1939 	/*
1940 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1941 	 * depending.
1942 	 *
1943 	 * WARNING!  bufspin is held!
1944 	 */
1945 	while ((bp = nbp) != NULL) {
1946 		int qindex = nqindex;
1947 
1948 		nbp = TAILQ_NEXT(bp, b_freelist);
1949 
1950 		/*
1951 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1952 		 * cycles through the queue twice before being selected.
1953 		 */
1954 		if (qindex == BQUEUE_CLEAN &&
1955 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1956 			bp->b_flags |= B_AGE;
1957 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1958 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1959 			continue;
1960 		}
1961 
1962 		/*
1963 		 * Calculate next bp ( we can only use it if we do not block
1964 		 * or do other fancy things ).
1965 		 */
1966 		if (nbp == NULL) {
1967 			switch(qindex) {
1968 			case BQUEUE_EMPTY:
1969 				nqindex = BQUEUE_EMPTYKVA;
1970 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1971 					break;
1972 				/* fall through */
1973 			case BQUEUE_EMPTYKVA:
1974 				nqindex = BQUEUE_CLEAN;
1975 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1976 					break;
1977 				/* fall through */
1978 			case BQUEUE_CLEAN:
1979 				/*
1980 				 * nbp is NULL.
1981 				 */
1982 				break;
1983 			}
1984 		}
1985 
1986 		/*
1987 		 * Sanity Checks
1988 		 */
1989 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1990 
1991 		/*
1992 		 * Note: we no longer distinguish between VMIO and non-VMIO
1993 		 * buffers.
1994 		 */
1995 
1996 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1997 
1998 		/*
1999 		 * If we are defragging then we need a buffer with
2000 		 * b_kvasize != 0.  XXX this situation should no longer
2001 		 * occur, if defrag is non-zero the buffer's b_kvasize
2002 		 * should also be non-zero at this point.  XXX
2003 		 */
2004 		if (defrag && bp->b_kvasize == 0) {
2005 			kprintf("Warning: defrag empty buffer %p\n", bp);
2006 			continue;
2007 		}
2008 
2009 		/*
2010 		 * Start freeing the bp.  This is somewhat involved.  nbp
2011 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2012 		 * on the clean list must be disassociated from their
2013 		 * current vnode.  Buffers on the empty[kva] lists have
2014 		 * already been disassociated.
2015 		 */
2016 
2017 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2018 			spin_unlock_wr(&bufspin);
2019 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2020 			goto restart;
2021 		}
2022 		if (bp->b_qindex != qindex) {
2023 			spin_unlock_wr(&bufspin);
2024 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
2025 			BUF_UNLOCK(bp);
2026 			goto restart;
2027 		}
2028 		bremfree_locked(bp);
2029 		spin_unlock_wr(&bufspin);
2030 
2031 		/*
2032 		 * Dependancies must be handled before we disassociate the
2033 		 * vnode.
2034 		 *
2035 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2036 		 * be immediately disassociated.  HAMMER then becomes
2037 		 * responsible for releasing the buffer.
2038 		 *
2039 		 * NOTE: bufspin is UNLOCKED now.
2040 		 */
2041 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2042 			get_mplock();
2043 			buf_deallocate(bp);
2044 			rel_mplock();
2045 			if (bp->b_flags & B_LOCKED) {
2046 				bqrelse(bp);
2047 				goto restart;
2048 			}
2049 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2050 		}
2051 
2052 		if (qindex == BQUEUE_CLEAN) {
2053 			get_mplock();
2054 			if (bp->b_flags & B_VMIO) {
2055 				get_mplock();
2056 				vfs_vmio_release(bp);
2057 				rel_mplock();
2058 			}
2059 			if (bp->b_vp)
2060 				brelvp(bp);
2061 			rel_mplock();
2062 		}
2063 
2064 		/*
2065 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2066 		 * the scan from this point on.
2067 		 *
2068 		 * Get the rest of the buffer freed up.  b_kva* is still
2069 		 * valid after this operation.
2070 		 */
2071 
2072 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
2073 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2074 
2075 		/*
2076 		 * critical section protection is not required when
2077 		 * scrapping a buffer's contents because it is already
2078 		 * wired.
2079 		 */
2080 		if (bp->b_bufsize) {
2081 			get_mplock();
2082 			allocbuf(bp, 0);
2083 			rel_mplock();
2084 		}
2085 
2086 		bp->b_flags = B_BNOCLIP;
2087 		bp->b_cmd = BUF_CMD_DONE;
2088 		bp->b_vp = NULL;
2089 		bp->b_error = 0;
2090 		bp->b_resid = 0;
2091 		bp->b_bcount = 0;
2092 		bp->b_xio.xio_npages = 0;
2093 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2094 		bp->b_act_count = ACT_INIT;
2095 		reinitbufbio(bp);
2096 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2097 		buf_dep_init(bp);
2098 		if (blkflags & GETBLK_BHEAVY)
2099 			bp->b_flags |= B_HEAVY;
2100 
2101 		/*
2102 		 * If we are defragging then free the buffer.
2103 		 */
2104 		if (defrag) {
2105 			bp->b_flags |= B_INVAL;
2106 			bfreekva(bp);
2107 			brelse(bp);
2108 			defrag = 0;
2109 			goto restart;
2110 		}
2111 
2112 		/*
2113 		 * If we are overcomitted then recover the buffer and its
2114 		 * KVM space.  This occurs in rare situations when multiple
2115 		 * processes are blocked in getnewbuf() or allocbuf().
2116 		 */
2117 		if (bufspace >= hibufspace)
2118 			flushingbufs = 1;
2119 		if (flushingbufs && bp->b_kvasize != 0) {
2120 			bp->b_flags |= B_INVAL;
2121 			bfreekva(bp);
2122 			brelse(bp);
2123 			goto restart;
2124 		}
2125 		if (bufspace < lobufspace)
2126 			flushingbufs = 0;
2127 		break;
2128 		/* NOT REACHED, bufspin not held */
2129 	}
2130 
2131 	/*
2132 	 * If we exhausted our list, sleep as appropriate.  We may have to
2133 	 * wakeup various daemons and write out some dirty buffers.
2134 	 *
2135 	 * Generally we are sleeping due to insufficient buffer space.
2136 	 *
2137 	 * NOTE: bufspin is held if bp is NULL, else it is not held.
2138 	 */
2139 	if (bp == NULL) {
2140 		int flags;
2141 		char *waitmsg;
2142 
2143 		spin_unlock_wr(&bufspin);
2144 		if (defrag) {
2145 			flags = VFS_BIO_NEED_BUFSPACE;
2146 			waitmsg = "nbufkv";
2147 		} else if (bufspace >= hibufspace) {
2148 			waitmsg = "nbufbs";
2149 			flags = VFS_BIO_NEED_BUFSPACE;
2150 		} else {
2151 			waitmsg = "newbuf";
2152 			flags = VFS_BIO_NEED_ANY;
2153 		}
2154 
2155 		needsbuffer |= flags;
2156 		bd_speedup();	/* heeeelp */
2157 		while (needsbuffer & flags) {
2158 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2159 				return (NULL);
2160 		}
2161 	} else {
2162 		/*
2163 		 * We finally have a valid bp.  We aren't quite out of the
2164 		 * woods, we still have to reserve kva space.  In order
2165 		 * to keep fragmentation sane we only allocate kva in
2166 		 * BKVASIZE chunks.
2167 		 *
2168 		 * (bufspin is not held)
2169 		 */
2170 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2171 
2172 		if (maxsize != bp->b_kvasize) {
2173 			vm_offset_t addr = 0;
2174 			int count;
2175 
2176 			bfreekva(bp);
2177 
2178 			get_mplock();
2179 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2180 			vm_map_lock(&buffer_map);
2181 
2182 			if (vm_map_findspace(&buffer_map,
2183 				    vm_map_min(&buffer_map), maxsize,
2184 				    maxsize, 0, &addr)) {
2185 				/*
2186 				 * Uh oh.  Buffer map is too fragmented.  We
2187 				 * must defragment the map.
2188 				 */
2189 				vm_map_unlock(&buffer_map);
2190 				vm_map_entry_release(count);
2191 				++bufdefragcnt;
2192 				defrag = 1;
2193 				bp->b_flags |= B_INVAL;
2194 				rel_mplock();
2195 				brelse(bp);
2196 				goto restart;
2197 			}
2198 			if (addr) {
2199 				vm_map_insert(&buffer_map, &count,
2200 					NULL, 0,
2201 					addr, addr + maxsize,
2202 					VM_MAPTYPE_NORMAL,
2203 					VM_PROT_ALL, VM_PROT_ALL,
2204 					MAP_NOFAULT);
2205 
2206 				bp->b_kvabase = (caddr_t) addr;
2207 				bp->b_kvasize = maxsize;
2208 				bufspace += bp->b_kvasize;
2209 				++bufreusecnt;
2210 			}
2211 			vm_map_unlock(&buffer_map);
2212 			vm_map_entry_release(count);
2213 			rel_mplock();
2214 		}
2215 		bp->b_data = bp->b_kvabase;
2216 	}
2217 	return(bp);
2218 }
2219 
2220 /*
2221  * This routine is called in an emergency to recover VM pages from the
2222  * buffer cache by cashing in clean buffers.  The idea is to recover
2223  * enough pages to be able to satisfy a stuck bio_page_alloc().
2224  */
2225 static int
2226 recoverbufpages(void)
2227 {
2228 	struct buf *bp;
2229 	int bytes = 0;
2230 
2231 	++recoverbufcalls;
2232 
2233 	spin_lock_wr(&bufspin);
2234 	while (bytes < MAXBSIZE) {
2235 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2236 		if (bp == NULL)
2237 			break;
2238 
2239 		/*
2240 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2241 		 * cycles through the queue twice before being selected.
2242 		 */
2243 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2244 			bp->b_flags |= B_AGE;
2245 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2246 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2247 					  bp, b_freelist);
2248 			continue;
2249 		}
2250 
2251 		/*
2252 		 * Sanity Checks
2253 		 */
2254 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2255 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2256 
2257 		/*
2258 		 * Start freeing the bp.  This is somewhat involved.
2259 		 *
2260 		 * Buffers on the clean list must be disassociated from
2261 		 * their current vnode
2262 		 */
2263 
2264 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2265 			kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2266 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2267 			continue;
2268 		}
2269 		if (bp->b_qindex != BQUEUE_CLEAN) {
2270 			kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2271 			BUF_UNLOCK(bp);
2272 			continue;
2273 		}
2274 		bremfree_locked(bp);
2275 		spin_unlock_wr(&bufspin);
2276 
2277 		/*
2278 		 * Dependancies must be handled before we disassociate the
2279 		 * vnode.
2280 		 *
2281 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2282 		 * be immediately disassociated.  HAMMER then becomes
2283 		 * responsible for releasing the buffer.
2284 		 */
2285 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2286 			buf_deallocate(bp);
2287 			if (bp->b_flags & B_LOCKED) {
2288 				bqrelse(bp);
2289 				spin_lock_wr(&bufspin);
2290 				continue;
2291 			}
2292 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2293 		}
2294 
2295 		bytes += bp->b_bufsize;
2296 
2297 		get_mplock();
2298 		if (bp->b_flags & B_VMIO) {
2299 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2300 			vfs_vmio_release(bp);
2301 		}
2302 		if (bp->b_vp)
2303 			brelvp(bp);
2304 
2305 		KKASSERT(bp->b_vp == NULL);
2306 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2307 
2308 		/*
2309 		 * critical section protection is not required when
2310 		 * scrapping a buffer's contents because it is already
2311 		 * wired.
2312 		 */
2313 		if (bp->b_bufsize)
2314 			allocbuf(bp, 0);
2315 		rel_mplock();
2316 
2317 		bp->b_flags = B_BNOCLIP;
2318 		bp->b_cmd = BUF_CMD_DONE;
2319 		bp->b_vp = NULL;
2320 		bp->b_error = 0;
2321 		bp->b_resid = 0;
2322 		bp->b_bcount = 0;
2323 		bp->b_xio.xio_npages = 0;
2324 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2325 		reinitbufbio(bp);
2326 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2327 		buf_dep_init(bp);
2328 		bp->b_flags |= B_INVAL;
2329 		/* bfreekva(bp); */
2330 		brelse(bp);
2331 		spin_lock_wr(&bufspin);
2332 	}
2333 	spin_unlock_wr(&bufspin);
2334 	return(bytes);
2335 }
2336 
2337 /*
2338  * buf_daemon:
2339  *
2340  *	Buffer flushing daemon.  Buffers are normally flushed by the
2341  *	update daemon but if it cannot keep up this process starts to
2342  *	take the load in an attempt to prevent getnewbuf() from blocking.
2343  *
2344  *	Once a flush is initiated it does not stop until the number
2345  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2346  *	waiting at the mid-point.
2347  */
2348 
2349 static struct kproc_desc buf_kp = {
2350 	"bufdaemon",
2351 	buf_daemon,
2352 	&bufdaemon_td
2353 };
2354 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2355 	kproc_start, &buf_kp)
2356 
2357 static struct kproc_desc bufhw_kp = {
2358 	"bufdaemon_hw",
2359 	buf_daemon_hw,
2360 	&bufdaemonhw_td
2361 };
2362 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2363 	kproc_start, &bufhw_kp)
2364 
2365 static void
2366 buf_daemon(void)
2367 {
2368 	int limit;
2369 
2370 	/*
2371 	 * This process needs to be suspended prior to shutdown sync.
2372 	 */
2373 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2374 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2375 	curthread->td_flags |= TDF_SYSTHREAD;
2376 
2377 	/*
2378 	 * This process is allowed to take the buffer cache to the limit
2379 	 */
2380 	crit_enter();
2381 
2382 	for (;;) {
2383 		kproc_suspend_loop();
2384 
2385 		/*
2386 		 * Do the flush as long as the number of dirty buffers
2387 		 * (including those running) exceeds lodirtybufspace.
2388 		 *
2389 		 * When flushing limit running I/O to hirunningspace
2390 		 * Do the flush.  Limit the amount of in-transit I/O we
2391 		 * allow to build up, otherwise we would completely saturate
2392 		 * the I/O system.  Wakeup any waiting processes before we
2393 		 * normally would so they can run in parallel with our drain.
2394 		 *
2395 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2396 		 * but because we split the operation into two threads we
2397 		 * have to cut it in half for each thread.
2398 		 */
2399 		waitrunningbufspace();
2400 		limit = lodirtybufspace / 2;
2401 		while (runningbufspace + dirtybufspace > limit ||
2402 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2403 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2404 				break;
2405 			if (runningbufspace < hirunningspace)
2406 				continue;
2407 			waitrunningbufspace();
2408 		}
2409 
2410 		/*
2411 		 * We reached our low water mark, reset the
2412 		 * request and sleep until we are needed again.
2413 		 * The sleep is just so the suspend code works.
2414 		 */
2415 		spin_lock_wr(&needsbuffer_spin);
2416 		if (bd_request == 0) {
2417 			ssleep(&bd_request, &needsbuffer_spin, 0,
2418 			       "psleep", hz);
2419 		}
2420 		bd_request = 0;
2421 		spin_unlock_wr(&needsbuffer_spin);
2422 	}
2423 }
2424 
2425 static void
2426 buf_daemon_hw(void)
2427 {
2428 	int limit;
2429 
2430 	/*
2431 	 * This process needs to be suspended prior to shutdown sync.
2432 	 */
2433 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2434 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2435 	curthread->td_flags |= TDF_SYSTHREAD;
2436 
2437 	/*
2438 	 * This process is allowed to take the buffer cache to the limit
2439 	 */
2440 	crit_enter();
2441 
2442 	for (;;) {
2443 		kproc_suspend_loop();
2444 
2445 		/*
2446 		 * Do the flush.  Limit the amount of in-transit I/O we
2447 		 * allow to build up, otherwise we would completely saturate
2448 		 * the I/O system.  Wakeup any waiting processes before we
2449 		 * normally would so they can run in parallel with our drain.
2450 		 *
2451 		 * Once we decide to flush push the queued I/O up to
2452 		 * hirunningspace in order to trigger bursting by the bioq
2453 		 * subsystem.
2454 		 *
2455 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2456 		 * but because we split the operation into two threads we
2457 		 * have to cut it in half for each thread.
2458 		 */
2459 		waitrunningbufspace();
2460 		limit = lodirtybufspace / 2;
2461 		while (runningbufspace + dirtybufspacehw > limit ||
2462 		       dirtybufcounthw >= nbuf / 2) {
2463 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2464 				break;
2465 			if (runningbufspace < hirunningspace)
2466 				continue;
2467 			waitrunningbufspace();
2468 		}
2469 
2470 		/*
2471 		 * We reached our low water mark, reset the
2472 		 * request and sleep until we are needed again.
2473 		 * The sleep is just so the suspend code works.
2474 		 */
2475 		spin_lock_wr(&needsbuffer_spin);
2476 		if (bd_request_hw == 0) {
2477 			ssleep(&bd_request_hw, &needsbuffer_spin, 0,
2478 			       "psleep", hz);
2479 		}
2480 		bd_request_hw = 0;
2481 		spin_unlock_wr(&needsbuffer_spin);
2482 	}
2483 }
2484 
2485 /*
2486  * flushbufqueues:
2487  *
2488  *	Try to flush a buffer in the dirty queue.  We must be careful to
2489  *	free up B_INVAL buffers instead of write them, which NFS is
2490  *	particularly sensitive to.
2491  *
2492  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2493  *	that we really want to try to get the buffer out and reuse it
2494  *	due to the write load on the machine.
2495  */
2496 static int
2497 flushbufqueues(bufq_type_t q)
2498 {
2499 	struct buf *bp;
2500 	int r = 0;
2501 	int spun;
2502 
2503 	spin_lock_wr(&bufspin);
2504 	spun = 1;
2505 
2506 	bp = TAILQ_FIRST(&bufqueues[q]);
2507 	while (bp) {
2508 		KASSERT((bp->b_flags & B_DELWRI),
2509 			("unexpected clean buffer %p", bp));
2510 
2511 		if (bp->b_flags & B_DELWRI) {
2512 			if (bp->b_flags & B_INVAL) {
2513 				spin_unlock_wr(&bufspin);
2514 				spun = 0;
2515 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2516 					panic("flushbufqueues: locked buf");
2517 				bremfree(bp);
2518 				brelse(bp);
2519 				++r;
2520 				break;
2521 			}
2522 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2523 			    (bp->b_flags & B_DEFERRED) == 0 &&
2524 			    buf_countdeps(bp, 0)) {
2525 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2526 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2527 						  b_freelist);
2528 				bp->b_flags |= B_DEFERRED;
2529 				bp = TAILQ_FIRST(&bufqueues[q]);
2530 				continue;
2531 			}
2532 
2533 			/*
2534 			 * Only write it out if we can successfully lock
2535 			 * it.  If the buffer has a dependancy,
2536 			 * buf_checkwrite must also return 0 for us to
2537 			 * be able to initate the write.
2538 			 *
2539 			 * If the buffer is flagged B_ERROR it may be
2540 			 * requeued over and over again, we try to
2541 			 * avoid a live lock.
2542 			 */
2543 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2544 				spin_unlock_wr(&bufspin);
2545 				spun = 0;
2546 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2547 				    buf_checkwrite(bp)) {
2548 					bremfree(bp);
2549 					brelse(bp);
2550 				} else if (bp->b_flags & B_ERROR) {
2551 					tsleep(bp, 0, "bioer", 1);
2552 					bp->b_flags &= ~B_AGE;
2553 					vfs_bio_awrite(bp);
2554 				} else {
2555 					bp->b_flags |= B_AGE;
2556 					vfs_bio_awrite(bp);
2557 				}
2558 				++r;
2559 				break;
2560 			}
2561 		}
2562 		bp = TAILQ_NEXT(bp, b_freelist);
2563 	}
2564 	if (spun)
2565 		spin_unlock_wr(&bufspin);
2566 	return (r);
2567 }
2568 
2569 /*
2570  * inmem:
2571  *
2572  *	Returns true if no I/O is needed to access the associated VM object.
2573  *	This is like findblk except it also hunts around in the VM system for
2574  *	the data.
2575  *
2576  *	Note that we ignore vm_page_free() races from interrupts against our
2577  *	lookup, since if the caller is not protected our return value will not
2578  *	be any more valid then otherwise once we exit the critical section.
2579  */
2580 int
2581 inmem(struct vnode *vp, off_t loffset)
2582 {
2583 	vm_object_t obj;
2584 	vm_offset_t toff, tinc, size;
2585 	vm_page_t m;
2586 
2587 	if (findblk(vp, loffset, FINDBLK_TEST))
2588 		return 1;
2589 	if (vp->v_mount == NULL)
2590 		return 0;
2591 	if ((obj = vp->v_object) == NULL)
2592 		return 0;
2593 
2594 	size = PAGE_SIZE;
2595 	if (size > vp->v_mount->mnt_stat.f_iosize)
2596 		size = vp->v_mount->mnt_stat.f_iosize;
2597 
2598 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2599 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2600 		if (m == NULL)
2601 			return 0;
2602 		tinc = size;
2603 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2604 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2605 		if (vm_page_is_valid(m,
2606 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2607 			return 0;
2608 	}
2609 	return 1;
2610 }
2611 
2612 /*
2613  * findblk:
2614  *
2615  *	Locate and return the specified buffer.  Unless flagged otherwise,
2616  *	a locked buffer will be returned if it exists or NULL if it does not.
2617  *
2618  *	findblk()'d buffers are still on the bufqueues and if you intend
2619  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2620  *	and possibly do other stuff to it.
2621  *
2622  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2623  *			  for locking the buffer and ensuring that it remains
2624  *			  the desired buffer after locking.
2625  *
2626  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2627  *			  to acquire the lock we return NULL, even if the
2628  *			  buffer exists.
2629  *
2630  *	(0)		- Lock the buffer blocking.
2631  *
2632  * MPSAFE
2633  */
2634 struct buf *
2635 findblk(struct vnode *vp, off_t loffset, int flags)
2636 {
2637 	struct buf *bp;
2638 	int lkflags;
2639 
2640 	lkflags = LK_EXCLUSIVE;
2641 	if (flags & FINDBLK_NBLOCK)
2642 		lkflags |= LK_NOWAIT;
2643 
2644 	for (;;) {
2645 		lwkt_gettoken(&vp->v_token);
2646 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2647 		lwkt_reltoken(&vp->v_token);
2648 		if (bp == NULL || (flags & FINDBLK_TEST))
2649 			break;
2650 		if (BUF_LOCK(bp, lkflags)) {
2651 			bp = NULL;
2652 			break;
2653 		}
2654 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2655 			break;
2656 		BUF_UNLOCK(bp);
2657 	}
2658 	return(bp);
2659 }
2660 
2661 /*
2662  * getcacheblk:
2663  *
2664  *	Similar to getblk() except only returns the buffer if it is
2665  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2666  *	is returned.
2667  *
2668  *	If B_RAM is set the buffer might be just fine, but we return
2669  *	NULL anyway because we want the code to fall through to the
2670  *	cluster read.  Otherwise read-ahead breaks.
2671  */
2672 struct buf *
2673 getcacheblk(struct vnode *vp, off_t loffset)
2674 {
2675 	struct buf *bp;
2676 
2677 	bp = findblk(vp, loffset, 0);
2678 	if (bp) {
2679 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2680 			bp->b_flags &= ~B_AGE;
2681 			bremfree(bp);
2682 		} else {
2683 			BUF_UNLOCK(bp);
2684 			bp = NULL;
2685 		}
2686 	}
2687 	return (bp);
2688 }
2689 
2690 /*
2691  * getblk:
2692  *
2693  *	Get a block given a specified block and offset into a file/device.
2694  * 	B_INVAL may or may not be set on return.  The caller should clear
2695  *	B_INVAL prior to initiating a READ.
2696  *
2697  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2698  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2699  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2700  *	without doing any of those things the system will likely believe
2701  *	the buffer to be valid (especially if it is not B_VMIO), and the
2702  *	next getblk() will return the buffer with B_CACHE set.
2703  *
2704  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2705  *	an existing buffer.
2706  *
2707  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2708  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2709  *	and then cleared based on the backing VM.  If the previous buffer is
2710  *	non-0-sized but invalid, B_CACHE will be cleared.
2711  *
2712  *	If getblk() must create a new buffer, the new buffer is returned with
2713  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2714  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2715  *	backing VM.
2716  *
2717  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2718  *	B_CACHE bit is clear.
2719  *
2720  *	What this means, basically, is that the caller should use B_CACHE to
2721  *	determine whether the buffer is fully valid or not and should clear
2722  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2723  *	the buffer by loading its data area with something, the caller needs
2724  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2725  *	the caller should set B_CACHE ( as an optimization ), else the caller
2726  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2727  *	a write attempt or if it was a successfull read.  If the caller
2728  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2729  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2730  *
2731  *	getblk flags:
2732  *
2733  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2734  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2735  *
2736  * MPALMOSTSAFE
2737  */
2738 struct buf *
2739 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2740 {
2741 	struct buf *bp;
2742 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2743 	int error;
2744 	int lkflags;
2745 
2746 	if (size > MAXBSIZE)
2747 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2748 	if (vp->v_object == NULL)
2749 		panic("getblk: vnode %p has no object!", vp);
2750 
2751 loop:
2752 	if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2753 		/*
2754 		 * The buffer was found in the cache, but we need to lock it.
2755 		 * Even with LK_NOWAIT the lockmgr may break our critical
2756 		 * section, so double-check the validity of the buffer
2757 		 * once the lock has been obtained.
2758 		 */
2759 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2760 			if (blkflags & GETBLK_NOWAIT)
2761 				return(NULL);
2762 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2763 			if (blkflags & GETBLK_PCATCH)
2764 				lkflags |= LK_PCATCH;
2765 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2766 			if (error) {
2767 				if (error == ENOLCK)
2768 					goto loop;
2769 				return (NULL);
2770 			}
2771 			/* buffer may have changed on us */
2772 		}
2773 
2774 		/*
2775 		 * Once the buffer has been locked, make sure we didn't race
2776 		 * a buffer recyclement.  Buffers that are no longer hashed
2777 		 * will have b_vp == NULL, so this takes care of that check
2778 		 * as well.
2779 		 */
2780 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2781 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2782 				"was recycled\n",
2783 				bp, vp, (long long)loffset);
2784 			BUF_UNLOCK(bp);
2785 			goto loop;
2786 		}
2787 
2788 		/*
2789 		 * If SZMATCH any pre-existing buffer must be of the requested
2790 		 * size or NULL is returned.  The caller absolutely does not
2791 		 * want getblk() to bwrite() the buffer on a size mismatch.
2792 		 */
2793 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2794 			BUF_UNLOCK(bp);
2795 			return(NULL);
2796 		}
2797 
2798 		/*
2799 		 * All vnode-based buffers must be backed by a VM object.
2800 		 */
2801 		KKASSERT(bp->b_flags & B_VMIO);
2802 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2803 		bp->b_flags &= ~B_AGE;
2804 
2805 		/*
2806 		 * Make sure that B_INVAL buffers do not have a cached
2807 		 * block number translation.
2808 		 */
2809 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2810 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2811 				" did not have cleared bio_offset cache\n",
2812 				bp, vp, (long long)loffset);
2813 			clearbiocache(&bp->b_bio2);
2814 		}
2815 
2816 		/*
2817 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2818 		 * invalid.
2819 		 */
2820 		if (bp->b_flags & B_INVAL)
2821 			bp->b_flags &= ~B_CACHE;
2822 		bremfree(bp);
2823 
2824 		/*
2825 		 * Any size inconsistancy with a dirty buffer or a buffer
2826 		 * with a softupdates dependancy must be resolved.  Resizing
2827 		 * the buffer in such circumstances can lead to problems.
2828 		 *
2829 		 * Dirty or dependant buffers are written synchronously.
2830 		 * Other types of buffers are simply released and
2831 		 * reconstituted as they may be backed by valid, dirty VM
2832 		 * pages (but not marked B_DELWRI).
2833 		 *
2834 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2835 		 * and may be left over from a prior truncation (and thus
2836 		 * no longer represent the actual EOF point), so we
2837 		 * definitely do not want to B_NOCACHE the backing store.
2838 		 */
2839 		if (size != bp->b_bcount) {
2840 			get_mplock();
2841 			if (bp->b_flags & B_DELWRI) {
2842 				bp->b_flags |= B_RELBUF;
2843 				bwrite(bp);
2844 			} else if (LIST_FIRST(&bp->b_dep)) {
2845 				bp->b_flags |= B_RELBUF;
2846 				bwrite(bp);
2847 			} else {
2848 				bp->b_flags |= B_RELBUF;
2849 				brelse(bp);
2850 			}
2851 			rel_mplock();
2852 			goto loop;
2853 		}
2854 		KKASSERT(size <= bp->b_kvasize);
2855 		KASSERT(bp->b_loffset != NOOFFSET,
2856 			("getblk: no buffer offset"));
2857 
2858 		/*
2859 		 * A buffer with B_DELWRI set and B_CACHE clear must
2860 		 * be committed before we can return the buffer in
2861 		 * order to prevent the caller from issuing a read
2862 		 * ( due to B_CACHE not being set ) and overwriting
2863 		 * it.
2864 		 *
2865 		 * Most callers, including NFS and FFS, need this to
2866 		 * operate properly either because they assume they
2867 		 * can issue a read if B_CACHE is not set, or because
2868 		 * ( for example ) an uncached B_DELWRI might loop due
2869 		 * to softupdates re-dirtying the buffer.  In the latter
2870 		 * case, B_CACHE is set after the first write completes,
2871 		 * preventing further loops.
2872 		 *
2873 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2874 		 * above while extending the buffer, we cannot allow the
2875 		 * buffer to remain with B_CACHE set after the write
2876 		 * completes or it will represent a corrupt state.  To
2877 		 * deal with this we set B_NOCACHE to scrap the buffer
2878 		 * after the write.
2879 		 *
2880 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2881 		 *     I'm not even sure this state is still possible
2882 		 *     now that getblk() writes out any dirty buffers
2883 		 *     on size changes.
2884 		 *
2885 		 * We might be able to do something fancy, like setting
2886 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2887 		 * so the below call doesn't set B_CACHE, but that gets real
2888 		 * confusing.  This is much easier.
2889 		 */
2890 
2891 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2892 			get_mplock();
2893 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2894 				"and CACHE clear, b_flags %08x\n",
2895 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
2896 			bp->b_flags |= B_NOCACHE;
2897 			bwrite(bp);
2898 			rel_mplock();
2899 			goto loop;
2900 		}
2901 	} else {
2902 		/*
2903 		 * Buffer is not in-core, create new buffer.  The buffer
2904 		 * returned by getnewbuf() is locked.  Note that the returned
2905 		 * buffer is also considered valid (not marked B_INVAL).
2906 		 *
2907 		 * Calculating the offset for the I/O requires figuring out
2908 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2909 		 * the mount's f_iosize otherwise.  If the vnode does not
2910 		 * have an associated mount we assume that the passed size is
2911 		 * the block size.
2912 		 *
2913 		 * Note that vn_isdisk() cannot be used here since it may
2914 		 * return a failure for numerous reasons.   Note that the
2915 		 * buffer size may be larger then the block size (the caller
2916 		 * will use block numbers with the proper multiple).  Beware
2917 		 * of using any v_* fields which are part of unions.  In
2918 		 * particular, in DragonFly the mount point overloading
2919 		 * mechanism uses the namecache only and the underlying
2920 		 * directory vnode is not a special case.
2921 		 */
2922 		int bsize, maxsize;
2923 
2924 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2925 			bsize = DEV_BSIZE;
2926 		else if (vp->v_mount)
2927 			bsize = vp->v_mount->mnt_stat.f_iosize;
2928 		else
2929 			bsize = size;
2930 
2931 		maxsize = size + (loffset & PAGE_MASK);
2932 		maxsize = imax(maxsize, bsize);
2933 
2934 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2935 		if (bp == NULL) {
2936 			if (slpflags || slptimeo)
2937 				return NULL;
2938 			goto loop;
2939 		}
2940 
2941 		/*
2942 		 * Atomically insert the buffer into the hash, so that it can
2943 		 * be found by findblk().
2944 		 *
2945 		 * If bgetvp() returns non-zero a collision occured, and the
2946 		 * bp will not be associated with the vnode.
2947 		 *
2948 		 * Make sure the translation layer has been cleared.
2949 		 */
2950 		bp->b_loffset = loffset;
2951 		bp->b_bio2.bio_offset = NOOFFSET;
2952 		/* bp->b_bio2.bio_next = NULL; */
2953 
2954 		if (bgetvp(vp, bp, size)) {
2955 			bp->b_flags |= B_INVAL;
2956 			brelse(bp);
2957 			goto loop;
2958 		}
2959 
2960 		/*
2961 		 * All vnode-based buffers must be backed by a VM object.
2962 		 */
2963 		KKASSERT(vp->v_object != NULL);
2964 		bp->b_flags |= B_VMIO;
2965 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2966 
2967 		get_mplock();
2968 		allocbuf(bp, size);
2969 		rel_mplock();
2970 	}
2971 	KKASSERT(dsched_is_clear_buf_priv(bp));
2972 	return (bp);
2973 }
2974 
2975 /*
2976  * regetblk(bp)
2977  *
2978  * Reacquire a buffer that was previously released to the locked queue,
2979  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2980  * set B_LOCKED (which handles the acquisition race).
2981  *
2982  * To this end, either B_LOCKED must be set or the dependancy list must be
2983  * non-empty.
2984  *
2985  * MPSAFE
2986  */
2987 void
2988 regetblk(struct buf *bp)
2989 {
2990 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2991 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2992 	bremfree(bp);
2993 }
2994 
2995 /*
2996  * geteblk:
2997  *
2998  *	Get an empty, disassociated buffer of given size.  The buffer is
2999  *	initially set to B_INVAL.
3000  *
3001  *	critical section protection is not required for the allocbuf()
3002  *	call because races are impossible here.
3003  *
3004  * MPALMOSTSAFE
3005  */
3006 struct buf *
3007 geteblk(int size)
3008 {
3009 	struct buf *bp;
3010 	int maxsize;
3011 
3012 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3013 
3014 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
3015 		;
3016 	get_mplock();
3017 	allocbuf(bp, size);
3018 	rel_mplock();
3019 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3020 	KKASSERT(dsched_is_clear_buf_priv(bp));
3021 	return (bp);
3022 }
3023 
3024 
3025 /*
3026  * allocbuf:
3027  *
3028  *	This code constitutes the buffer memory from either anonymous system
3029  *	memory (in the case of non-VMIO operations) or from an associated
3030  *	VM object (in the case of VMIO operations).  This code is able to
3031  *	resize a buffer up or down.
3032  *
3033  *	Note that this code is tricky, and has many complications to resolve
3034  *	deadlock or inconsistant data situations.  Tread lightly!!!
3035  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3036  *	the caller.  Calling this code willy nilly can result in the loss of data.
3037  *
3038  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3039  *	B_CACHE for the non-VMIO case.
3040  *
3041  *	This routine does not need to be called from a critical section but you
3042  *	must own the buffer.
3043  *
3044  * NOTMPSAFE
3045  */
3046 int
3047 allocbuf(struct buf *bp, int size)
3048 {
3049 	int newbsize, mbsize;
3050 	int i;
3051 
3052 	if (BUF_REFCNT(bp) == 0)
3053 		panic("allocbuf: buffer not busy");
3054 
3055 	if (bp->b_kvasize < size)
3056 		panic("allocbuf: buffer too small");
3057 
3058 	if ((bp->b_flags & B_VMIO) == 0) {
3059 		caddr_t origbuf;
3060 		int origbufsize;
3061 		/*
3062 		 * Just get anonymous memory from the kernel.  Don't
3063 		 * mess with B_CACHE.
3064 		 */
3065 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3066 		if (bp->b_flags & B_MALLOC)
3067 			newbsize = mbsize;
3068 		else
3069 			newbsize = round_page(size);
3070 
3071 		if (newbsize < bp->b_bufsize) {
3072 			/*
3073 			 * Malloced buffers are not shrunk
3074 			 */
3075 			if (bp->b_flags & B_MALLOC) {
3076 				if (newbsize) {
3077 					bp->b_bcount = size;
3078 				} else {
3079 					kfree(bp->b_data, M_BIOBUF);
3080 					if (bp->b_bufsize) {
3081 						bufmallocspace -= bp->b_bufsize;
3082 						bufspacewakeup();
3083 						bp->b_bufsize = 0;
3084 					}
3085 					bp->b_data = bp->b_kvabase;
3086 					bp->b_bcount = 0;
3087 					bp->b_flags &= ~B_MALLOC;
3088 				}
3089 				return 1;
3090 			}
3091 			vm_hold_free_pages(
3092 			    bp,
3093 			    (vm_offset_t) bp->b_data + newbsize,
3094 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3095 		} else if (newbsize > bp->b_bufsize) {
3096 			/*
3097 			 * We only use malloced memory on the first allocation.
3098 			 * and revert to page-allocated memory when the buffer
3099 			 * grows.
3100 			 */
3101 			if ((bufmallocspace < maxbufmallocspace) &&
3102 				(bp->b_bufsize == 0) &&
3103 				(mbsize <= PAGE_SIZE/2)) {
3104 
3105 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3106 				bp->b_bufsize = mbsize;
3107 				bp->b_bcount = size;
3108 				bp->b_flags |= B_MALLOC;
3109 				bufmallocspace += mbsize;
3110 				return 1;
3111 			}
3112 			origbuf = NULL;
3113 			origbufsize = 0;
3114 			/*
3115 			 * If the buffer is growing on its other-than-first
3116 			 * allocation, then we revert to the page-allocation
3117 			 * scheme.
3118 			 */
3119 			if (bp->b_flags & B_MALLOC) {
3120 				origbuf = bp->b_data;
3121 				origbufsize = bp->b_bufsize;
3122 				bp->b_data = bp->b_kvabase;
3123 				if (bp->b_bufsize) {
3124 					bufmallocspace -= bp->b_bufsize;
3125 					bufspacewakeup();
3126 					bp->b_bufsize = 0;
3127 				}
3128 				bp->b_flags &= ~B_MALLOC;
3129 				newbsize = round_page(newbsize);
3130 			}
3131 			vm_hold_load_pages(
3132 			    bp,
3133 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3134 			    (vm_offset_t) bp->b_data + newbsize);
3135 			if (origbuf) {
3136 				bcopy(origbuf, bp->b_data, origbufsize);
3137 				kfree(origbuf, M_BIOBUF);
3138 			}
3139 		}
3140 	} else {
3141 		vm_page_t m;
3142 		int desiredpages;
3143 
3144 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3145 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3146 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3147 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3148 
3149 		if (bp->b_flags & B_MALLOC)
3150 			panic("allocbuf: VMIO buffer can't be malloced");
3151 		/*
3152 		 * Set B_CACHE initially if buffer is 0 length or will become
3153 		 * 0-length.
3154 		 */
3155 		if (size == 0 || bp->b_bufsize == 0)
3156 			bp->b_flags |= B_CACHE;
3157 
3158 		if (newbsize < bp->b_bufsize) {
3159 			/*
3160 			 * DEV_BSIZE aligned new buffer size is less then the
3161 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3162 			 * if we have to remove any pages.
3163 			 */
3164 			if (desiredpages < bp->b_xio.xio_npages) {
3165 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3166 					/*
3167 					 * the page is not freed here -- it
3168 					 * is the responsibility of
3169 					 * vnode_pager_setsize
3170 					 */
3171 					m = bp->b_xio.xio_pages[i];
3172 					KASSERT(m != bogus_page,
3173 					    ("allocbuf: bogus page found"));
3174 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3175 						;
3176 
3177 					bp->b_xio.xio_pages[i] = NULL;
3178 					vm_page_unwire(m, 0);
3179 				}
3180 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3181 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3182 				bp->b_xio.xio_npages = desiredpages;
3183 			}
3184 		} else if (size > bp->b_bcount) {
3185 			/*
3186 			 * We are growing the buffer, possibly in a
3187 			 * byte-granular fashion.
3188 			 */
3189 			struct vnode *vp;
3190 			vm_object_t obj;
3191 			vm_offset_t toff;
3192 			vm_offset_t tinc;
3193 
3194 			/*
3195 			 * Step 1, bring in the VM pages from the object,
3196 			 * allocating them if necessary.  We must clear
3197 			 * B_CACHE if these pages are not valid for the
3198 			 * range covered by the buffer.
3199 			 *
3200 			 * critical section protection is required to protect
3201 			 * against interrupts unbusying and freeing pages
3202 			 * between our vm_page_lookup() and our
3203 			 * busycheck/wiring call.
3204 			 */
3205 			vp = bp->b_vp;
3206 			obj = vp->v_object;
3207 
3208 			crit_enter();
3209 			while (bp->b_xio.xio_npages < desiredpages) {
3210 				vm_page_t m;
3211 				vm_pindex_t pi;
3212 
3213 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3214 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3215 					/*
3216 					 * note: must allocate system pages
3217 					 * since blocking here could intefere
3218 					 * with paging I/O, no matter which
3219 					 * process we are.
3220 					 */
3221 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3222 					if (m) {
3223 						vm_page_wire(m);
3224 						vm_page_wakeup(m);
3225 						vm_page_flag_clear(m, PG_ZERO);
3226 						bp->b_flags &= ~B_CACHE;
3227 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3228 						++bp->b_xio.xio_npages;
3229 					}
3230 					continue;
3231 				}
3232 
3233 				/*
3234 				 * We found a page.  If we have to sleep on it,
3235 				 * retry because it might have gotten freed out
3236 				 * from under us.
3237 				 *
3238 				 * We can only test PG_BUSY here.  Blocking on
3239 				 * m->busy might lead to a deadlock:
3240 				 *
3241 				 *  vm_fault->getpages->cluster_read->allocbuf
3242 				 *
3243 				 */
3244 
3245 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3246 					continue;
3247 				vm_page_flag_clear(m, PG_ZERO);
3248 				vm_page_wire(m);
3249 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3250 				++bp->b_xio.xio_npages;
3251 				if (bp->b_act_count < m->act_count)
3252 					bp->b_act_count = m->act_count;
3253 			}
3254 			crit_exit();
3255 
3256 			/*
3257 			 * Step 2.  We've loaded the pages into the buffer,
3258 			 * we have to figure out if we can still have B_CACHE
3259 			 * set.  Note that B_CACHE is set according to the
3260 			 * byte-granular range ( bcount and size ), not the
3261 			 * aligned range ( newbsize ).
3262 			 *
3263 			 * The VM test is against m->valid, which is DEV_BSIZE
3264 			 * aligned.  Needless to say, the validity of the data
3265 			 * needs to also be DEV_BSIZE aligned.  Note that this
3266 			 * fails with NFS if the server or some other client
3267 			 * extends the file's EOF.  If our buffer is resized,
3268 			 * B_CACHE may remain set! XXX
3269 			 */
3270 
3271 			toff = bp->b_bcount;
3272 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3273 
3274 			while ((bp->b_flags & B_CACHE) && toff < size) {
3275 				vm_pindex_t pi;
3276 
3277 				if (tinc > (size - toff))
3278 					tinc = size - toff;
3279 
3280 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3281 				    PAGE_SHIFT;
3282 
3283 				vfs_buf_test_cache(
3284 				    bp,
3285 				    bp->b_loffset,
3286 				    toff,
3287 				    tinc,
3288 				    bp->b_xio.xio_pages[pi]
3289 				);
3290 				toff += tinc;
3291 				tinc = PAGE_SIZE;
3292 			}
3293 
3294 			/*
3295 			 * Step 3, fixup the KVM pmap.  Remember that
3296 			 * bp->b_data is relative to bp->b_loffset, but
3297 			 * bp->b_loffset may be offset into the first page.
3298 			 */
3299 
3300 			bp->b_data = (caddr_t)
3301 			    trunc_page((vm_offset_t)bp->b_data);
3302 			pmap_qenter(
3303 			    (vm_offset_t)bp->b_data,
3304 			    bp->b_xio.xio_pages,
3305 			    bp->b_xio.xio_npages
3306 			);
3307 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3308 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3309 		}
3310 	}
3311 
3312 	/* adjust space use on already-dirty buffer */
3313 	if (bp->b_flags & B_DELWRI) {
3314 		dirtybufspace += newbsize - bp->b_bufsize;
3315 		if (bp->b_flags & B_HEAVY)
3316 			dirtybufspacehw += newbsize - bp->b_bufsize;
3317 	}
3318 	if (newbsize < bp->b_bufsize)
3319 		bufspacewakeup();
3320 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3321 	bp->b_bcount = size;		/* requested buffer size	*/
3322 	return 1;
3323 }
3324 
3325 /*
3326  * biowait:
3327  *
3328  *	Wait for buffer I/O completion, returning error status. B_EINTR
3329  *	is converted into an EINTR error but not cleared (since a chain
3330  *	of biowait() calls may occur).
3331  *
3332  *	On return bpdone() will have been called but the buffer will remain
3333  *	locked and will not have been brelse()'d.
3334  *
3335  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3336  *	likely still in progress on return.
3337  *
3338  *	NOTE!  This operation is on a BIO, not a BUF.
3339  *
3340  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3341  *
3342  * MPSAFE
3343  */
3344 static __inline int
3345 _biowait(struct bio *bio, const char *wmesg, int to)
3346 {
3347 	struct buf *bp = bio->bio_buf;
3348 	u_int32_t flags;
3349 	u_int32_t nflags;
3350 	int error;
3351 
3352 	KKASSERT(bio == &bp->b_bio1);
3353 	for (;;) {
3354 		flags = bio->bio_flags;
3355 		if (flags & BIO_DONE)
3356 			break;
3357 		tsleep_interlock(bio, 0);
3358 		nflags = flags | BIO_WANT;
3359 		tsleep_interlock(bio, 0);
3360 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3361 			if (wmesg)
3362 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3363 			else if (bp->b_cmd == BUF_CMD_READ)
3364 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3365 			else
3366 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3367 			if (error) {
3368 				kprintf("tsleep error biowait %d\n", error);
3369 				return (error);
3370 			}
3371 		}
3372 	}
3373 
3374 	/*
3375 	 * Finish up.
3376 	 */
3377 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3378 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3379 	if (bp->b_flags & B_EINTR)
3380 		return (EINTR);
3381 	if (bp->b_flags & B_ERROR)
3382 		return (bp->b_error ? bp->b_error : EIO);
3383 	return (0);
3384 }
3385 
3386 int
3387 biowait(struct bio *bio, const char *wmesg)
3388 {
3389 	return(_biowait(bio, wmesg, 0));
3390 }
3391 
3392 int
3393 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3394 {
3395 	return(_biowait(bio, wmesg, to));
3396 }
3397 
3398 /*
3399  * This associates a tracking count with an I/O.  vn_strategy() and
3400  * dev_dstrategy() do this automatically but there are a few cases
3401  * where a vnode or device layer is bypassed when a block translation
3402  * is cached.  In such cases bio_start_transaction() may be called on
3403  * the bypassed layers so the system gets an I/O in progress indication
3404  * for those higher layers.
3405  */
3406 void
3407 bio_start_transaction(struct bio *bio, struct bio_track *track)
3408 {
3409 	bio->bio_track = track;
3410 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3411 		dsched_new_buf(bio->bio_buf);
3412 	bio_track_ref(track);
3413 }
3414 
3415 /*
3416  * Initiate I/O on a vnode.
3417  *
3418  * SWAPCACHE OPERATION:
3419  *
3420  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3421  *	devfs also uses b_vp for fake buffers so we also have to check
3422  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3423  *	underlying block device.  The swap assignments are related to the
3424  *	buffer cache buffer's b_vp, not the passed vp.
3425  *
3426  *	The passed vp == bp->b_vp only in the case where the strategy call
3427  *	is made on the vp itself for its own buffers (a regular file or
3428  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3429  *	after translating the request to an underlying device.
3430  *
3431  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3432  *	underlying buffer cache buffers.
3433  *
3434  *	We can only deal with page-aligned buffers at the moment, because
3435  *	we can't tell what the real dirty state for pages straddling a buffer
3436  *	are.
3437  *
3438  *	In order to call swap_pager_strategy() we must provide the VM object
3439  *	and base offset for the underlying buffer cache pages so it can find
3440  *	the swap blocks.
3441  */
3442 void
3443 vn_strategy(struct vnode *vp, struct bio *bio)
3444 {
3445 	struct bio_track *track;
3446 	struct buf *bp = bio->bio_buf;
3447 
3448 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3449 
3450 	/*
3451 	 * Handle the swap cache intercept.
3452 	 */
3453 	if (vn_cache_strategy(vp, bio))
3454 		return;
3455 
3456 	/*
3457 	 * Otherwise do the operation through the filesystem
3458 	 */
3459         if (bp->b_cmd == BUF_CMD_READ)
3460                 track = &vp->v_track_read;
3461         else
3462                 track = &vp->v_track_write;
3463 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3464 	bio->bio_track = track;
3465 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3466 		dsched_new_buf(bio->bio_buf);
3467 	bio_track_ref(track);
3468         vop_strategy(*vp->v_ops, vp, bio);
3469 }
3470 
3471 int
3472 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3473 {
3474 	struct buf *bp = bio->bio_buf;
3475 	struct bio *nbio;
3476 	vm_object_t object;
3477 	vm_page_t m;
3478 	int i;
3479 
3480 	/*
3481 	 * Is this buffer cache buffer suitable for reading from
3482 	 * the swap cache?
3483 	 */
3484 	if (vm_swapcache_read_enable == 0 ||
3485 	    bp->b_cmd != BUF_CMD_READ ||
3486 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3487 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3488 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3489 	    (bp->b_bcount & PAGE_MASK) != 0) {
3490 		return(0);
3491 	}
3492 
3493 	/*
3494 	 * Figure out the original VM object (it will match the underlying
3495 	 * VM pages).  Note that swap cached data uses page indices relative
3496 	 * to that object, not relative to bio->bio_offset.
3497 	 */
3498 	if (bp->b_flags & B_CLUSTER)
3499 		object = vp->v_object;
3500 	else
3501 		object = bp->b_vp->v_object;
3502 
3503 	/*
3504 	 * In order to be able to use the swap cache all underlying VM
3505 	 * pages must be marked as such, and we can't have any bogus pages.
3506 	 */
3507 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3508 		m = bp->b_xio.xio_pages[i];
3509 		if ((m->flags & PG_SWAPPED) == 0)
3510 			break;
3511 		if (m == bogus_page)
3512 			break;
3513 	}
3514 
3515 	/*
3516 	 * If we are good then issue the I/O using swap_pager_strategy()
3517 	 */
3518 	if (i == bp->b_xio.xio_npages) {
3519 		m = bp->b_xio.xio_pages[0];
3520 		nbio = push_bio(bio);
3521 		nbio->bio_offset = ptoa(m->pindex);
3522 		KKASSERT(m->object == object);
3523 		swap_pager_strategy(object, nbio);
3524 		return(1);
3525 	}
3526 	return(0);
3527 }
3528 
3529 /*
3530  * bpdone:
3531  *
3532  *	Finish I/O on a buffer after all BIOs have been processed.
3533  *	Called when the bio chain is exhausted or by biowait.  If called
3534  *	by biowait, elseit is typically 0.
3535  *
3536  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3537  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3538  *	assuming B_INVAL is clear.
3539  *
3540  *	For the VMIO case, we set B_CACHE if the op was a read and no
3541  *	read error occured, or if the op was a write.  B_CACHE is never
3542  *	set if the buffer is invalid or otherwise uncacheable.
3543  *
3544  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3545  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3546  *	in the biodone routine.
3547  */
3548 void
3549 bpdone(struct buf *bp, int elseit)
3550 {
3551 	buf_cmd_t cmd;
3552 
3553 	KASSERT(BUF_REFCNTNB(bp) > 0,
3554 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3555 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3556 		("biodone: bp %p already done!", bp));
3557 
3558 	/*
3559 	 * No more BIOs are left.  All completion functions have been dealt
3560 	 * with, now we clean up the buffer.
3561 	 */
3562 	cmd = bp->b_cmd;
3563 	bp->b_cmd = BUF_CMD_DONE;
3564 
3565 	/*
3566 	 * Only reads and writes are processed past this point.
3567 	 */
3568 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3569 		if (cmd == BUF_CMD_FREEBLKS)
3570 			bp->b_flags |= B_NOCACHE;
3571 		if (elseit)
3572 			brelse(bp);
3573 		return;
3574 	}
3575 
3576 	/*
3577 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3578 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3579 	 */
3580 	if (LIST_FIRST(&bp->b_dep) != NULL)
3581 		buf_complete(bp);
3582 
3583 	/*
3584 	 * A failed write must re-dirty the buffer unless B_INVAL
3585 	 * was set.  Only applicable to normal buffers (with VPs).
3586 	 * vinum buffers may not have a vp.
3587 	 */
3588 	if (cmd == BUF_CMD_WRITE &&
3589 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3590 		bp->b_flags &= ~B_NOCACHE;
3591 		if (bp->b_vp)
3592 			bdirty(bp);
3593 	}
3594 
3595 	if (bp->b_flags & B_VMIO) {
3596 		int i;
3597 		vm_ooffset_t foff;
3598 		vm_page_t m;
3599 		vm_object_t obj;
3600 		int iosize;
3601 		struct vnode *vp = bp->b_vp;
3602 
3603 		obj = vp->v_object;
3604 
3605 #if defined(VFS_BIO_DEBUG)
3606 		if (vp->v_auxrefs == 0)
3607 			panic("biodone: zero vnode hold count");
3608 		if ((vp->v_flag & VOBJBUF) == 0)
3609 			panic("biodone: vnode is not setup for merged cache");
3610 #endif
3611 
3612 		foff = bp->b_loffset;
3613 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3614 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3615 
3616 #if defined(VFS_BIO_DEBUG)
3617 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3618 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3619 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3620 		}
3621 #endif
3622 
3623 		/*
3624 		 * Set B_CACHE if the op was a normal read and no error
3625 		 * occured.  B_CACHE is set for writes in the b*write()
3626 		 * routines.
3627 		 */
3628 		iosize = bp->b_bcount - bp->b_resid;
3629 		if (cmd == BUF_CMD_READ &&
3630 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3631 			bp->b_flags |= B_CACHE;
3632 		}
3633 
3634 		crit_enter();
3635 		get_mplock();
3636 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3637 			int bogusflag = 0;
3638 			int resid;
3639 
3640 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3641 			if (resid > iosize)
3642 				resid = iosize;
3643 
3644 			/*
3645 			 * cleanup bogus pages, restoring the originals.  Since
3646 			 * the originals should still be wired, we don't have
3647 			 * to worry about interrupt/freeing races destroying
3648 			 * the VM object association.
3649 			 */
3650 			m = bp->b_xio.xio_pages[i];
3651 			if (m == bogus_page) {
3652 				bogusflag = 1;
3653 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3654 				if (m == NULL)
3655 					panic("biodone: page disappeared");
3656 				bp->b_xio.xio_pages[i] = m;
3657 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3658 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3659 			}
3660 #if defined(VFS_BIO_DEBUG)
3661 			if (OFF_TO_IDX(foff) != m->pindex) {
3662 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3663 					"mismatch\n",
3664 					(unsigned long)foff, (long)m->pindex);
3665 			}
3666 #endif
3667 
3668 			/*
3669 			 * In the write case, the valid and clean bits are
3670 			 * already changed correctly (see bdwrite()), so we
3671 			 * only need to do this here in the read case.
3672 			 */
3673 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3674 				vfs_clean_one_page(bp, i, m);
3675 			}
3676 			vm_page_flag_clear(m, PG_ZERO);
3677 
3678 			/*
3679 			 * when debugging new filesystems or buffer I/O
3680 			 * methods, this is the most common error that pops
3681 			 * up.  if you see this, you have not set the page
3682 			 * busy flag correctly!!!
3683 			 */
3684 			if (m->busy == 0) {
3685 				kprintf("biodone: page busy < 0, "
3686 				    "pindex: %d, foff: 0x(%x,%x), "
3687 				    "resid: %d, index: %d\n",
3688 				    (int) m->pindex, (int)(foff >> 32),
3689 						(int) foff & 0xffffffff, resid, i);
3690 				if (!vn_isdisk(vp, NULL))
3691 					kprintf(" iosize: %ld, loffset: %lld, "
3692 						"flags: 0x%08x, npages: %d\n",
3693 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3694 					    (long long)bp->b_loffset,
3695 					    bp->b_flags, bp->b_xio.xio_npages);
3696 				else
3697 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3698 					    (long long)bp->b_loffset,
3699 					    bp->b_flags, bp->b_xio.xio_npages);
3700 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3701 				    m->valid, m->dirty, m->wire_count);
3702 				panic("biodone: page busy < 0");
3703 			}
3704 			vm_page_io_finish(m);
3705 			vm_object_pip_subtract(obj, 1);
3706 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3707 			iosize -= resid;
3708 		}
3709 		bp->b_flags &= ~B_HASBOGUS;
3710 		if (obj)
3711 			vm_object_pip_wakeupn(obj, 0);
3712 		rel_mplock();
3713 		crit_exit();
3714 	}
3715 
3716 	/*
3717 	 * Finish up by releasing the buffer.  There are no more synchronous
3718 	 * or asynchronous completions, those were handled by bio_done
3719 	 * callbacks.
3720 	 */
3721 	if (elseit) {
3722 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3723 			brelse(bp);
3724 		else
3725 			bqrelse(bp);
3726 	}
3727 }
3728 
3729 /*
3730  * Normal biodone.
3731  */
3732 void
3733 biodone(struct bio *bio)
3734 {
3735 	struct buf *bp = bio->bio_buf;
3736 
3737 	runningbufwakeup(bp);
3738 
3739 	/*
3740 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3741 	 */
3742 	while (bio) {
3743 		biodone_t *done_func;
3744 		struct bio_track *track;
3745 
3746 		/*
3747 		 * BIO tracking.  Most but not all BIOs are tracked.
3748 		 */
3749 		if ((track = bio->bio_track) != NULL) {
3750 			bio_track_rel(track);
3751 			bio->bio_track = NULL;
3752 		}
3753 
3754 		/*
3755 		 * A bio_done function terminates the loop.  The function
3756 		 * will be responsible for any further chaining and/or
3757 		 * buffer management.
3758 		 *
3759 		 * WARNING!  The done function can deallocate the buffer!
3760 		 */
3761 		if ((done_func = bio->bio_done) != NULL) {
3762 			bio->bio_done = NULL;
3763 			done_func(bio);
3764 			return;
3765 		}
3766 		bio = bio->bio_prev;
3767 	}
3768 
3769 	/*
3770 	 * If we've run out of bio's do normal [a]synchronous completion.
3771 	 */
3772 	bpdone(bp, 1);
3773 }
3774 
3775 /*
3776  * Synchronous biodone - this terminates a synchronous BIO.
3777  *
3778  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3779  * but still locked.  The caller must brelse() the buffer after waiting
3780  * for completion.
3781  */
3782 void
3783 biodone_sync(struct bio *bio)
3784 {
3785 	struct buf *bp = bio->bio_buf;
3786 	int flags;
3787 	int nflags;
3788 
3789 	KKASSERT(bio == &bp->b_bio1);
3790 	bpdone(bp, 0);
3791 
3792 	for (;;) {
3793 		flags = bio->bio_flags;
3794 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3795 
3796 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3797 			if (flags & BIO_WANT)
3798 				wakeup(bio);
3799 			break;
3800 		}
3801 	}
3802 }
3803 
3804 /*
3805  * vfs_unbusy_pages:
3806  *
3807  *	This routine is called in lieu of iodone in the case of
3808  *	incomplete I/O.  This keeps the busy status for pages
3809  *	consistant.
3810  */
3811 void
3812 vfs_unbusy_pages(struct buf *bp)
3813 {
3814 	int i;
3815 
3816 	runningbufwakeup(bp);
3817 	if (bp->b_flags & B_VMIO) {
3818 		struct vnode *vp = bp->b_vp;
3819 		vm_object_t obj;
3820 
3821 		obj = vp->v_object;
3822 
3823 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3824 			vm_page_t m = bp->b_xio.xio_pages[i];
3825 
3826 			/*
3827 			 * When restoring bogus changes the original pages
3828 			 * should still be wired, so we are in no danger of
3829 			 * losing the object association and do not need
3830 			 * critical section protection particularly.
3831 			 */
3832 			if (m == bogus_page) {
3833 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3834 				if (!m) {
3835 					panic("vfs_unbusy_pages: page missing");
3836 				}
3837 				bp->b_xio.xio_pages[i] = m;
3838 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3839 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3840 			}
3841 			vm_object_pip_subtract(obj, 1);
3842 			vm_page_flag_clear(m, PG_ZERO);
3843 			vm_page_io_finish(m);
3844 		}
3845 		bp->b_flags &= ~B_HASBOGUS;
3846 		vm_object_pip_wakeupn(obj, 0);
3847 	}
3848 }
3849 
3850 /*
3851  * vfs_busy_pages:
3852  *
3853  *	This routine is called before a device strategy routine.
3854  *	It is used to tell the VM system that paging I/O is in
3855  *	progress, and treat the pages associated with the buffer
3856  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3857  *	flag is handled to make sure that the object doesn't become
3858  *	inconsistant.
3859  *
3860  *	Since I/O has not been initiated yet, certain buffer flags
3861  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3862  *	and should be ignored.
3863  */
3864 void
3865 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3866 {
3867 	int i, bogus;
3868 	struct lwp *lp = curthread->td_lwp;
3869 
3870 	/*
3871 	 * The buffer's I/O command must already be set.  If reading,
3872 	 * B_CACHE must be 0 (double check against callers only doing
3873 	 * I/O when B_CACHE is 0).
3874 	 */
3875 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3876 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3877 
3878 	if (bp->b_flags & B_VMIO) {
3879 		vm_object_t obj;
3880 
3881 		obj = vp->v_object;
3882 		KASSERT(bp->b_loffset != NOOFFSET,
3883 			("vfs_busy_pages: no buffer offset"));
3884 
3885 		/*
3886 		 * Loop until none of the pages are busy.
3887 		 */
3888 retry:
3889 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3890 			vm_page_t m = bp->b_xio.xio_pages[i];
3891 
3892 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3893 				goto retry;
3894 		}
3895 
3896 		/*
3897 		 * Setup for I/O, soft-busy the page right now because
3898 		 * the next loop may block.
3899 		 */
3900 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3901 			vm_page_t m = bp->b_xio.xio_pages[i];
3902 
3903 			vm_page_flag_clear(m, PG_ZERO);
3904 			if ((bp->b_flags & B_CLUSTER) == 0) {
3905 				vm_object_pip_add(obj, 1);
3906 				vm_page_io_start(m);
3907 			}
3908 		}
3909 
3910 		/*
3911 		 * Adjust protections for I/O and do bogus-page mapping.
3912 		 * Assume that vm_page_protect() can block (it can block
3913 		 * if VM_PROT_NONE, don't take any chances regardless).
3914 		 *
3915 		 * In particular note that for writes we must incorporate
3916 		 * page dirtyness from the VM system into the buffer's
3917 		 * dirty range.
3918 		 *
3919 		 * For reads we theoretically must incorporate page dirtyness
3920 		 * from the VM system to determine if the page needs bogus
3921 		 * replacement, but we shortcut the test by simply checking
3922 		 * that all m->valid bits are set, indicating that the page
3923 		 * is fully valid and does not need to be re-read.  For any
3924 		 * VM system dirtyness the page will also be fully valid
3925 		 * since it was mapped at one point.
3926 		 */
3927 		bogus = 0;
3928 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3929 			vm_page_t m = bp->b_xio.xio_pages[i];
3930 
3931 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
3932 			if (bp->b_cmd == BUF_CMD_WRITE) {
3933 				/*
3934 				 * When readying a vnode-backed buffer for
3935 				 * a write we must zero-fill any invalid
3936 				 * portions of the backing VM pages, mark
3937 				 * it valid and clear related dirty bits.
3938 				 *
3939 				 * vfs_clean_one_page() incorporates any
3940 				 * VM dirtyness and updates the b_dirtyoff
3941 				 * range (after we've made the page RO).
3942 				 *
3943 				 * It is also expected that the pmap modified
3944 				 * bit has already been cleared by the
3945 				 * vm_page_protect().  We may not be able
3946 				 * to clear all dirty bits for a page if it
3947 				 * was also memory mapped (NFS).
3948 				 *
3949 				 * Finally be sure to unassign any swap-cache
3950 				 * backing store as it is now stale.
3951 				 */
3952 				vm_page_protect(m, VM_PROT_READ);
3953 				vfs_clean_one_page(bp, i, m);
3954 				swap_pager_unswapped(m);
3955 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3956 				/*
3957 				 * When readying a vnode-backed buffer for
3958 				 * read we must replace any dirty pages with
3959 				 * a bogus page so dirty data is not destroyed
3960 				 * when filling gaps.
3961 				 *
3962 				 * To avoid testing whether the page is
3963 				 * dirty we instead test that the page was
3964 				 * at some point mapped (m->valid fully
3965 				 * valid) with the understanding that
3966 				 * this also covers the dirty case.
3967 				 */
3968 				bp->b_xio.xio_pages[i] = bogus_page;
3969 				bp->b_flags |= B_HASBOGUS;
3970 				bogus++;
3971 			} else if (m->valid & m->dirty) {
3972 				/*
3973 				 * This case should not occur as partial
3974 				 * dirtyment can only happen if the buffer
3975 				 * is B_CACHE, and this code is not entered
3976 				 * if the buffer is B_CACHE.
3977 				 */
3978 				kprintf("Warning: vfs_busy_pages - page not "
3979 					"fully valid! loff=%jx bpf=%08x "
3980 					"idx=%d val=%02x dir=%02x\n",
3981 					(intmax_t)bp->b_loffset, bp->b_flags,
3982 					i, m->valid, m->dirty);
3983 				vm_page_protect(m, VM_PROT_NONE);
3984 			} else {
3985 				/*
3986 				 * The page is not valid and can be made
3987 				 * part of the read.
3988 				 */
3989 				vm_page_protect(m, VM_PROT_NONE);
3990 			}
3991 		}
3992 		if (bogus) {
3993 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3994 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3995 		}
3996 	}
3997 
3998 	/*
3999 	 * This is the easiest place to put the process accounting for the I/O
4000 	 * for now.
4001 	 */
4002 	if (lp != NULL) {
4003 		if (bp->b_cmd == BUF_CMD_READ)
4004 			lp->lwp_ru.ru_inblock++;
4005 		else
4006 			lp->lwp_ru.ru_oublock++;
4007 	}
4008 }
4009 
4010 /*
4011  * vfs_clean_pages:
4012  *
4013  *	Tell the VM system that the pages associated with this buffer
4014  *	are clean.  This is used for delayed writes where the data is
4015  *	going to go to disk eventually without additional VM intevention.
4016  *
4017  *	Note that while we only really need to clean through to b_bcount, we
4018  *	just go ahead and clean through to b_bufsize.
4019  */
4020 static void
4021 vfs_clean_pages(struct buf *bp)
4022 {
4023 	vm_page_t m;
4024 	int i;
4025 
4026 	if ((bp->b_flags & B_VMIO) == 0)
4027 		return;
4028 
4029 	KASSERT(bp->b_loffset != NOOFFSET,
4030 		("vfs_clean_pages: no buffer offset"));
4031 
4032 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4033 		m = bp->b_xio.xio_pages[i];
4034 		vfs_clean_one_page(bp, i, m);
4035 	}
4036 }
4037 
4038 /*
4039  * vfs_clean_one_page:
4040  *
4041  *	Set the valid bits and clear the dirty bits in a page within a
4042  *	buffer.  The range is restricted to the buffer's size and the
4043  *	buffer's logical offset might index into the first page.
4044  *
4045  *	The caller has busied or soft-busied the page and it is not mapped,
4046  *	test and incorporate the dirty bits into b_dirtyoff/end before
4047  *	clearing them.  Note that we need to clear the pmap modified bits
4048  *	after determining the the page was dirty, vm_page_set_validclean()
4049  *	does not do it for us.
4050  *
4051  *	This routine is typically called after a read completes (dirty should
4052  *	be zero in that case as we are not called on bogus-replace pages),
4053  *	or before a write is initiated.
4054  */
4055 static void
4056 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4057 {
4058 	int bcount;
4059 	int xoff;
4060 	int soff;
4061 	int eoff;
4062 
4063 	/*
4064 	 * Calculate offset range within the page but relative to buffer's
4065 	 * loffset.  loffset might be offset into the first page.
4066 	 */
4067 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4068 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4069 
4070 	if (pageno == 0) {
4071 		soff = xoff;
4072 		eoff = PAGE_SIZE;
4073 	} else {
4074 		soff = (pageno << PAGE_SHIFT);
4075 		eoff = soff + PAGE_SIZE;
4076 	}
4077 	if (eoff > bcount)
4078 		eoff = bcount;
4079 	if (soff >= eoff)
4080 		return;
4081 
4082 	/*
4083 	 * Test dirty bits and adjust b_dirtyoff/end.
4084 	 *
4085 	 * If dirty pages are incorporated into the bp any prior
4086 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4087 	 * caller has not taken into account the new dirty data.
4088 	 *
4089 	 * If the page was memory mapped the dirty bits might go beyond the
4090 	 * end of the buffer, but we can't really make the assumption that
4091 	 * a file EOF straddles the buffer (even though this is the case for
4092 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4093 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4094 	 * This also saves some console spam.
4095 	 *
4096 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4097 	 * NFS can handle huge commits but not huge writes.
4098 	 */
4099 	vm_page_test_dirty(m);
4100 	if (m->dirty) {
4101 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4102 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4103 			if (debug_commit)
4104 			kprintf("Warning: vfs_clean_one_page: bp %p "
4105 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4106 				" cmd %d vd %02x/%02x x/s/e %d %d %d "
4107 				"doff/end %d %d\n",
4108 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4109 				bp->b_flags, bp->b_cmd,
4110 				m->valid, m->dirty, xoff, soff, eoff,
4111 				bp->b_dirtyoff, bp->b_dirtyend);
4112 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4113 			if (debug_commit)
4114 				print_backtrace(-1);
4115 		}
4116 		/*
4117 		 * Only clear the pmap modified bits if ALL the dirty bits
4118 		 * are set, otherwise the system might mis-clear portions
4119 		 * of a page.
4120 		 */
4121 		if (m->dirty == VM_PAGE_BITS_ALL &&
4122 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4123 			pmap_clear_modify(m);
4124 		}
4125 		if (bp->b_dirtyoff > soff - xoff)
4126 			bp->b_dirtyoff = soff - xoff;
4127 		if (bp->b_dirtyend < eoff - xoff)
4128 			bp->b_dirtyend = eoff - xoff;
4129 	}
4130 
4131 	/*
4132 	 * Set related valid bits, clear related dirty bits.
4133 	 * Does not mess with the pmap modified bit.
4134 	 *
4135 	 * WARNING!  We cannot just clear all of m->dirty here as the
4136 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4137 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4138 	 *	     The putpages code can clear m->dirty to 0.
4139 	 *
4140 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4141 	 *	     covers the same space as mapped writable pages the
4142 	 *	     buffer flush might not be able to clear all the dirty
4143 	 *	     bits and still require a putpages from the VM system
4144 	 *	     to finish it off.
4145 	 */
4146 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4147 }
4148 
4149 /*
4150  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4151  * The page data is assumed to be valid (there is no zeroing here).
4152  */
4153 static void
4154 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4155 {
4156 	int bcount;
4157 	int xoff;
4158 	int soff;
4159 	int eoff;
4160 
4161 	/*
4162 	 * Calculate offset range within the page but relative to buffer's
4163 	 * loffset.  loffset might be offset into the first page.
4164 	 */
4165 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4166 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4167 
4168 	if (pageno == 0) {
4169 		soff = xoff;
4170 		eoff = PAGE_SIZE;
4171 	} else {
4172 		soff = (pageno << PAGE_SHIFT);
4173 		eoff = soff + PAGE_SIZE;
4174 	}
4175 	if (eoff > bcount)
4176 		eoff = bcount;
4177 	if (soff >= eoff)
4178 		return;
4179 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4180 }
4181 
4182 /*
4183  * vfs_bio_clrbuf:
4184  *
4185  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4186  *	to clear B_ERROR and B_INVAL.
4187  *
4188  *	Note that while we only theoretically need to clear through b_bcount,
4189  *	we go ahead and clear through b_bufsize.
4190  */
4191 
4192 void
4193 vfs_bio_clrbuf(struct buf *bp)
4194 {
4195 	int i, mask = 0;
4196 	caddr_t sa, ea;
4197 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4198 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4199 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4200 		    (bp->b_loffset & PAGE_MASK) == 0) {
4201 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4202 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4203 				bp->b_resid = 0;
4204 				return;
4205 			}
4206 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4207 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4208 				bzero(bp->b_data, bp->b_bufsize);
4209 				bp->b_xio.xio_pages[0]->valid |= mask;
4210 				bp->b_resid = 0;
4211 				return;
4212 			}
4213 		}
4214 		sa = bp->b_data;
4215 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4216 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4217 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4218 			ea = (caddr_t)(vm_offset_t)ulmin(
4219 			    (u_long)(vm_offset_t)ea,
4220 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4221 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4222 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4223 				continue;
4224 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4225 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4226 					bzero(sa, ea - sa);
4227 				}
4228 			} else {
4229 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4230 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4231 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4232 						bzero(sa, DEV_BSIZE);
4233 				}
4234 			}
4235 			bp->b_xio.xio_pages[i]->valid |= mask;
4236 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4237 		}
4238 		bp->b_resid = 0;
4239 	} else {
4240 		clrbuf(bp);
4241 	}
4242 }
4243 
4244 /*
4245  * vm_hold_load_pages:
4246  *
4247  *	Load pages into the buffer's address space.  The pages are
4248  *	allocated from the kernel object in order to reduce interference
4249  *	with the any VM paging I/O activity.  The range of loaded
4250  *	pages will be wired.
4251  *
4252  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4253  *	retrieve the full range (to - from) of pages.
4254  *
4255  */
4256 void
4257 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4258 {
4259 	vm_offset_t pg;
4260 	vm_page_t p;
4261 	int index;
4262 
4263 	to = round_page(to);
4264 	from = round_page(from);
4265 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4266 
4267 	pg = from;
4268 	while (pg < to) {
4269 		/*
4270 		 * Note: must allocate system pages since blocking here
4271 		 * could intefere with paging I/O, no matter which
4272 		 * process we are.
4273 		 */
4274 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4275 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4276 		if (p) {
4277 			vm_page_wire(p);
4278 			p->valid = VM_PAGE_BITS_ALL;
4279 			vm_page_flag_clear(p, PG_ZERO);
4280 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4281 			bp->b_xio.xio_pages[index] = p;
4282 			vm_page_wakeup(p);
4283 
4284 			pg += PAGE_SIZE;
4285 			++index;
4286 		}
4287 	}
4288 	bp->b_xio.xio_npages = index;
4289 }
4290 
4291 /*
4292  * Allocate pages for a buffer cache buffer.
4293  *
4294  * Under extremely severe memory conditions even allocating out of the
4295  * system reserve can fail.  If this occurs we must allocate out of the
4296  * interrupt reserve to avoid a deadlock with the pageout daemon.
4297  *
4298  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4299  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4300  * against the pageout daemon if pages are not freed from other sources.
4301  */
4302 static
4303 vm_page_t
4304 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4305 {
4306 	vm_page_t p;
4307 
4308 	/*
4309 	 * Try a normal allocation, allow use of system reserve.
4310 	 */
4311 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4312 	if (p)
4313 		return(p);
4314 
4315 	/*
4316 	 * The normal allocation failed and we clearly have a page
4317 	 * deficit.  Try to reclaim some clean VM pages directly
4318 	 * from the buffer cache.
4319 	 */
4320 	vm_pageout_deficit += deficit;
4321 	recoverbufpages();
4322 
4323 	/*
4324 	 * We may have blocked, the caller will know what to do if the
4325 	 * page now exists.
4326 	 */
4327 	if (vm_page_lookup(obj, pg))
4328 		return(NULL);
4329 
4330 	/*
4331 	 * Allocate and allow use of the interrupt reserve.
4332 	 *
4333 	 * If after all that we still can't allocate a VM page we are
4334 	 * in real trouble, but we slog on anyway hoping that the system
4335 	 * won't deadlock.
4336 	 */
4337 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4338 				   VM_ALLOC_INTERRUPT);
4339 	if (p) {
4340 		if (vm_page_count_severe()) {
4341 			kprintf("bio_page_alloc: WARNING emergency page "
4342 				"allocation\n");
4343 			vm_wait(hz / 20);
4344 		}
4345 	} else {
4346 		kprintf("bio_page_alloc: WARNING emergency page "
4347 			"allocation failed\n");
4348 		vm_wait(hz * 5);
4349 	}
4350 	return(p);
4351 }
4352 
4353 /*
4354  * vm_hold_free_pages:
4355  *
4356  *	Return pages associated with the buffer back to the VM system.
4357  *
4358  *	The range of pages underlying the buffer's address space will
4359  *	be unmapped and un-wired.
4360  */
4361 void
4362 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4363 {
4364 	vm_offset_t pg;
4365 	vm_page_t p;
4366 	int index, newnpages;
4367 
4368 	from = round_page(from);
4369 	to = round_page(to);
4370 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4371 	newnpages = index;
4372 
4373 	lwkt_gettoken(&vm_token);
4374 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4375 		p = bp->b_xio.xio_pages[index];
4376 		if (p && (index < bp->b_xio.xio_npages)) {
4377 			if (p->busy) {
4378 				kprintf("vm_hold_free_pages: doffset: %lld, "
4379 					"loffset: %lld\n",
4380 					(long long)bp->b_bio2.bio_offset,
4381 					(long long)bp->b_loffset);
4382 			}
4383 			bp->b_xio.xio_pages[index] = NULL;
4384 			pmap_kremove(pg);
4385 			vm_page_busy(p);
4386 			vm_page_unwire(p, 0);
4387 			vm_page_free(p);
4388 		}
4389 	}
4390 	bp->b_xio.xio_npages = newnpages;
4391 	lwkt_reltoken(&vm_token);
4392 }
4393 
4394 /*
4395  * vmapbuf:
4396  *
4397  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4398  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4399  *	initialized.
4400  */
4401 int
4402 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4403 {
4404 	caddr_t addr;
4405 	vm_offset_t va;
4406 	vm_page_t m;
4407 	int vmprot;
4408 	int error;
4409 	int pidx;
4410 	int i;
4411 
4412 	/*
4413 	 * bp had better have a command and it better be a pbuf.
4414 	 */
4415 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4416 	KKASSERT(bp->b_flags & B_PAGING);
4417 	KKASSERT(bp->b_kvabase);
4418 
4419 	if (bytes < 0)
4420 		return (-1);
4421 
4422 	/*
4423 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4424 	 */
4425 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4426 	pidx = 0;
4427 
4428 	vmprot = VM_PROT_READ;
4429 	if (bp->b_cmd == BUF_CMD_READ)
4430 		vmprot |= VM_PROT_WRITE;
4431 
4432 	while (addr < udata + bytes) {
4433 		/*
4434 		 * Do the vm_fault if needed; do the copy-on-write thing
4435 		 * when reading stuff off device into memory.
4436 		 *
4437 		 * vm_fault_page*() returns a held VM page.
4438 		 */
4439 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4440 		va = trunc_page(va);
4441 
4442 		m = vm_fault_page_quick(va, vmprot, &error);
4443 		if (m == NULL) {
4444 			for (i = 0; i < pidx; ++i) {
4445 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4446 			    bp->b_xio.xio_pages[i] = NULL;
4447 			}
4448 			return(-1);
4449 		}
4450 		bp->b_xio.xio_pages[pidx] = m;
4451 		addr += PAGE_SIZE;
4452 		++pidx;
4453 	}
4454 
4455 	/*
4456 	 * Map the page array and set the buffer fields to point to
4457 	 * the mapped data buffer.
4458 	 */
4459 	if (pidx > btoc(MAXPHYS))
4460 		panic("vmapbuf: mapped more than MAXPHYS");
4461 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4462 
4463 	bp->b_xio.xio_npages = pidx;
4464 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4465 	bp->b_bcount = bytes;
4466 	bp->b_bufsize = bytes;
4467 	return(0);
4468 }
4469 
4470 /*
4471  * vunmapbuf:
4472  *
4473  *	Free the io map PTEs associated with this IO operation.
4474  *	We also invalidate the TLB entries and restore the original b_addr.
4475  */
4476 void
4477 vunmapbuf(struct buf *bp)
4478 {
4479 	int pidx;
4480 	int npages;
4481 
4482 	KKASSERT(bp->b_flags & B_PAGING);
4483 
4484 	npages = bp->b_xio.xio_npages;
4485 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4486 	for (pidx = 0; pidx < npages; ++pidx) {
4487 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4488 		bp->b_xio.xio_pages[pidx] = NULL;
4489 	}
4490 	bp->b_xio.xio_npages = 0;
4491 	bp->b_data = bp->b_kvabase;
4492 }
4493 
4494 /*
4495  * Scan all buffers in the system and issue the callback.
4496  */
4497 int
4498 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4499 {
4500 	int count = 0;
4501 	int error;
4502 	int n;
4503 
4504 	for (n = 0; n < nbuf; ++n) {
4505 		if ((error = callback(&buf[n], info)) < 0) {
4506 			count = error;
4507 			break;
4508 		}
4509 		count += error;
4510 	}
4511 	return (count);
4512 }
4513 
4514 /*
4515  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4516  * completion to the master buffer.
4517  */
4518 static void
4519 nestiobuf_iodone(struct bio *bio)
4520 {
4521 	struct bio *mbio;
4522 	struct buf *mbp, *bp;
4523 	int error;
4524 	int donebytes;
4525 
4526 	bp = bio->bio_buf;
4527 	mbio = bio->bio_caller_info1.ptr;
4528 	mbp = mbio->bio_buf;
4529 
4530 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4531 	KKASSERT(mbp != bp);
4532 
4533 	error = bp->b_error;
4534 	if (bp->b_error == 0 &&
4535 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4536 		/*
4537 		 * Not all got transfered, raise an error. We have no way to
4538 		 * propagate these conditions to mbp.
4539 		 */
4540 		error = EIO;
4541 	}
4542 
4543 	donebytes = bp->b_bufsize;
4544 
4545 	relpbuf(bp, NULL);
4546 	nestiobuf_done(mbio, donebytes, error);
4547 }
4548 
4549 void
4550 nestiobuf_done(struct bio *mbio, int donebytes, int error)
4551 {
4552 	struct buf *mbp;
4553 
4554 	mbp = mbio->bio_buf;
4555 
4556 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4557 
4558 	/*
4559 	 * If an error occured, propagate it to the master buffer.
4560 	 *
4561 	 * Several biodone()s may wind up running concurrently so
4562 	 * use an atomic op to adjust b_flags.
4563 	 */
4564 	if (error) {
4565 		mbp->b_error = error;
4566 		atomic_set_int(&mbp->b_flags, B_ERROR);
4567 	}
4568 
4569 	/*
4570 	 * Decrement the master buf b_resid according to our donebytes, and
4571 	 * also check if this is the last missing bit for the whole nestio
4572 	 * mess to complete. If so, call biodone() on the master buf mbp.
4573 	 */
4574 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4575 		mbp->b_resid = 0;
4576 		biodone(mbio);
4577 	}
4578 }
4579 
4580 /*
4581  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4582  * the mbio from being biodone()'d while we are still adding sub-bios to
4583  * it.
4584  */
4585 void
4586 nestiobuf_init(struct bio *bio)
4587 {
4588 	bio->bio_driver_info = (void *)1;
4589 }
4590 
4591 /*
4592  * The BIOs added to the nestedio have already been started, remove the
4593  * count that placeheld our mbio and biodone() it if the count would
4594  * transition to 0.
4595  */
4596 void
4597 nestiobuf_start(struct bio *mbio)
4598 {
4599 	struct buf *mbp = mbio->bio_buf;
4600 
4601 	/*
4602 	 * Decrement the master buf b_resid according to our donebytes, and
4603 	 * also check if this is the last missing bit for the whole nestio
4604 	 * mess to complete. If so, call biodone() on the master buf mbp.
4605 	 */
4606 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4607 		if (mbp->b_flags & B_ERROR)
4608 			mbp->b_resid = mbp->b_bcount;
4609 		else
4610 			mbp->b_resid = 0;
4611 		biodone(mbio);
4612 	}
4613 }
4614 
4615 /*
4616  * Set an intermediate error prior to calling nestiobuf_start()
4617  */
4618 void
4619 nestiobuf_error(struct bio *mbio, int error)
4620 {
4621 	struct buf *mbp = mbio->bio_buf;
4622 
4623 	if (error) {
4624 		mbp->b_error = error;
4625 		atomic_set_int(&mbp->b_flags, B_ERROR);
4626 	}
4627 }
4628 
4629 /*
4630  * nestiobuf_add: setup a "nested" buffer.
4631  *
4632  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4633  * => 'bp' should be a buffer allocated by getiobuf.
4634  * => 'offset' is a byte offset in the master buffer.
4635  * => 'size' is a size in bytes of this nested buffer.
4636  */
4637 void
4638 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size)
4639 {
4640 	struct buf *mbp = mbio->bio_buf;
4641 	struct vnode *vp = mbp->b_vp;
4642 
4643 	KKASSERT(mbp->b_bcount >= offset + size);
4644 
4645 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4646 
4647 	/* kernel needs to own the lock for it to be released in biodone */
4648 	BUF_KERNPROC(bp);
4649 	bp->b_vp = vp;
4650 	bp->b_cmd = mbp->b_cmd;
4651 	bp->b_bio1.bio_done = nestiobuf_iodone;
4652 	bp->b_data = (char *)mbp->b_data + offset;
4653 	bp->b_resid = bp->b_bcount = size;
4654 	bp->b_bufsize = bp->b_bcount;
4655 
4656 	bp->b_bio1.bio_track = NULL;
4657 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4658 }
4659 
4660 /*
4661  * print out statistics from the current status of the buffer pool
4662  * this can be toggeled by the system control option debug.syncprt
4663  */
4664 #ifdef DEBUG
4665 void
4666 vfs_bufstats(void)
4667 {
4668         int i, j, count;
4669         struct buf *bp;
4670         struct bqueues *dp;
4671         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4672         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4673 
4674         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4675                 count = 0;
4676                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4677                         counts[j] = 0;
4678 		crit_enter();
4679                 TAILQ_FOREACH(bp, dp, b_freelist) {
4680                         counts[bp->b_bufsize/PAGE_SIZE]++;
4681                         count++;
4682                 }
4683 		crit_exit();
4684                 kprintf("%s: total-%d", bname[i], count);
4685                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4686                         if (counts[j] != 0)
4687                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4688                 kprintf("\n");
4689         }
4690 }
4691 #endif
4692 
4693 #ifdef DDB
4694 
4695 DB_SHOW_COMMAND(buffer, db_show_buffer)
4696 {
4697 	/* get args */
4698 	struct buf *bp = (struct buf *)addr;
4699 
4700 	if (!have_addr) {
4701 		db_printf("usage: show buffer <addr>\n");
4702 		return;
4703 	}
4704 
4705 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4706 	db_printf("b_cmd = %d\n", bp->b_cmd);
4707 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4708 		  "b_resid = %d\n, b_data = %p, "
4709 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4710 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4711 		  bp->b_data,
4712 		  (long long)bp->b_bio2.bio_offset,
4713 		  (long long)(bp->b_bio2.bio_next ?
4714 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4715 	if (bp->b_xio.xio_npages) {
4716 		int i;
4717 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4718 			bp->b_xio.xio_npages);
4719 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4720 			vm_page_t m;
4721 			m = bp->b_xio.xio_pages[i];
4722 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4723 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4724 			if ((i + 1) < bp->b_xio.xio_npages)
4725 				db_printf(",");
4726 		}
4727 		db_printf("\n");
4728 	}
4729 }
4730 #endif /* DDB */
4731