1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.14 2003/08/27 01:43:07 dillon Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/proc.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 #include <sys/buf2.h> 57 #include <vm/vm_page2.h> 58 59 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 60 61 struct bio_ops bioops; /* I/O operation notification */ 62 63 struct buf *buf; /* buffer header pool */ 64 struct swqueue bswlist; 65 66 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 67 vm_offset_t to); 68 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 69 vm_offset_t to); 70 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 71 int pageno, vm_page_t m); 72 static void vfs_clean_pages(struct buf * bp); 73 static void vfs_setdirty(struct buf *bp); 74 static void vfs_vmio_release(struct buf *bp); 75 static void vfs_backgroundwritedone(struct buf *bp); 76 static int flushbufqueues(void); 77 78 static int bd_request; 79 80 static void buf_daemon (void); 81 /* 82 * bogus page -- for I/O to/from partially complete buffers 83 * this is a temporary solution to the problem, but it is not 84 * really that bad. it would be better to split the buffer 85 * for input in the case of buffers partially already in memory, 86 * but the code is intricate enough already. 87 */ 88 vm_page_t bogus_page; 89 int vmiodirenable = TRUE; 90 int runningbufspace; 91 static vm_offset_t bogus_offset; 92 93 static int bufspace, maxbufspace, 94 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 95 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 96 static int needsbuffer; 97 static int lorunningspace, hirunningspace, runningbufreq; 98 static int numdirtybuffers, lodirtybuffers, hidirtybuffers; 99 static int numfreebuffers, lofreebuffers, hifreebuffers; 100 static int getnewbufcalls; 101 static int getnewbufrestarts; 102 103 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, 104 &numdirtybuffers, 0, ""); 105 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, 106 &lodirtybuffers, 0, ""); 107 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, 108 &hidirtybuffers, 0, ""); 109 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, 110 &numfreebuffers, 0, ""); 111 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, 112 &lofreebuffers, 0, ""); 113 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, 114 &hifreebuffers, 0, ""); 115 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, 116 &runningbufspace, 0, ""); 117 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, 118 &lorunningspace, 0, ""); 119 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, 120 &hirunningspace, 0, ""); 121 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, 122 &maxbufspace, 0, ""); 123 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, 124 &hibufspace, 0, ""); 125 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, 126 &lobufspace, 0, ""); 127 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, 128 &bufspace, 0, ""); 129 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, 130 &maxbufmallocspace, 0, ""); 131 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, 132 &bufmallocspace, 0, ""); 133 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, 134 &getnewbufcalls, 0, ""); 135 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, 136 &getnewbufrestarts, 0, ""); 137 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, 138 &vmiodirenable, 0, ""); 139 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, 140 &bufdefragcnt, 0, ""); 141 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, 142 &buffreekvacnt, 0, ""); 143 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, 144 &bufreusecnt, 0, ""); 145 146 static int bufhashmask; 147 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 148 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } }; 149 char *buf_wmesg = BUF_WMESG; 150 151 extern int vm_swap_size; 152 153 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 154 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 155 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 156 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 157 158 /* 159 * Buffer hash table code. Note that the logical block scans linearly, which 160 * gives us some L1 cache locality. 161 */ 162 163 static __inline 164 struct bufhashhdr * 165 bufhash(struct vnode *vnp, daddr_t bn) 166 { 167 return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]); 168 } 169 170 /* 171 * numdirtywakeup: 172 * 173 * If someone is blocked due to there being too many dirty buffers, 174 * and numdirtybuffers is now reasonable, wake them up. 175 */ 176 177 static __inline void 178 numdirtywakeup(int level) 179 { 180 if (numdirtybuffers <= level) { 181 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 182 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 183 wakeup(&needsbuffer); 184 } 185 } 186 } 187 188 /* 189 * bufspacewakeup: 190 * 191 * Called when buffer space is potentially available for recovery. 192 * getnewbuf() will block on this flag when it is unable to free 193 * sufficient buffer space. Buffer space becomes recoverable when 194 * bp's get placed back in the queues. 195 */ 196 197 static __inline void 198 bufspacewakeup(void) 199 { 200 /* 201 * If someone is waiting for BUF space, wake them up. Even 202 * though we haven't freed the kva space yet, the waiting 203 * process will be able to now. 204 */ 205 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 206 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 207 wakeup(&needsbuffer); 208 } 209 } 210 211 /* 212 * runningbufwakeup() - in-progress I/O accounting. 213 * 214 */ 215 static __inline void 216 runningbufwakeup(struct buf *bp) 217 { 218 if (bp->b_runningbufspace) { 219 runningbufspace -= bp->b_runningbufspace; 220 bp->b_runningbufspace = 0; 221 if (runningbufreq && runningbufspace <= lorunningspace) { 222 runningbufreq = 0; 223 wakeup(&runningbufreq); 224 } 225 } 226 } 227 228 /* 229 * bufcountwakeup: 230 * 231 * Called when a buffer has been added to one of the free queues to 232 * account for the buffer and to wakeup anyone waiting for free buffers. 233 * This typically occurs when large amounts of metadata are being handled 234 * by the buffer cache ( else buffer space runs out first, usually ). 235 */ 236 237 static __inline void 238 bufcountwakeup(void) 239 { 240 ++numfreebuffers; 241 if (needsbuffer) { 242 needsbuffer &= ~VFS_BIO_NEED_ANY; 243 if (numfreebuffers >= hifreebuffers) 244 needsbuffer &= ~VFS_BIO_NEED_FREE; 245 wakeup(&needsbuffer); 246 } 247 } 248 249 /* 250 * waitrunningbufspace() 251 * 252 * runningbufspace is a measure of the amount of I/O currently 253 * running. This routine is used in async-write situations to 254 * prevent creating huge backups of pending writes to a device. 255 * Only asynchronous writes are governed by this function. 256 * 257 * Reads will adjust runningbufspace, but will not block based on it. 258 * The read load has a side effect of reducing the allowed write load. 259 * 260 * This does NOT turn an async write into a sync write. It waits 261 * for earlier writes to complete and generally returns before the 262 * caller's write has reached the device. 263 */ 264 static __inline void 265 waitrunningbufspace(void) 266 { 267 while (runningbufspace > hirunningspace) { 268 int s; 269 270 s = splbio(); /* fix race against interrupt/biodone() */ 271 ++runningbufreq; 272 tsleep(&runningbufreq, 0, "wdrain", 0); 273 splx(s); 274 } 275 } 276 277 /* 278 * vfs_buf_test_cache: 279 * 280 * Called when a buffer is extended. This function clears the B_CACHE 281 * bit if the newly extended portion of the buffer does not contain 282 * valid data. 283 */ 284 static __inline__ 285 void 286 vfs_buf_test_cache(struct buf *bp, 287 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 288 vm_page_t m) 289 { 290 if (bp->b_flags & B_CACHE) { 291 int base = (foff + off) & PAGE_MASK; 292 if (vm_page_is_valid(m, base, size) == 0) 293 bp->b_flags &= ~B_CACHE; 294 } 295 } 296 297 static __inline__ 298 void 299 bd_wakeup(int dirtybuflevel) 300 { 301 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 302 bd_request = 1; 303 wakeup(&bd_request); 304 } 305 } 306 307 /* 308 * bd_speedup - speedup the buffer cache flushing code 309 */ 310 311 static __inline__ 312 void 313 bd_speedup(void) 314 { 315 bd_wakeup(1); 316 } 317 318 /* 319 * Initialize buffer headers and related structures. 320 */ 321 322 caddr_t 323 bufhashinit(caddr_t vaddr) 324 { 325 /* first, make a null hash table */ 326 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) 327 ; 328 bufhashtbl = (void *)vaddr; 329 vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask; 330 --bufhashmask; 331 return(vaddr); 332 } 333 334 void 335 bufinit(void) 336 { 337 struct buf *bp; 338 int i; 339 340 TAILQ_INIT(&bswlist); 341 LIST_INIT(&invalhash); 342 lwkt_inittoken(&buftimetoken); 343 344 for (i = 0; i <= bufhashmask; i++) 345 LIST_INIT(&bufhashtbl[i]); 346 347 /* next, make a null set of free lists */ 348 for (i = 0; i < BUFFER_QUEUES; i++) 349 TAILQ_INIT(&bufqueues[i]); 350 351 /* finally, initialize each buffer header and stick on empty q */ 352 for (i = 0; i < nbuf; i++) { 353 bp = &buf[i]; 354 bzero(bp, sizeof *bp); 355 bp->b_flags = B_INVAL; /* we're just an empty header */ 356 bp->b_dev = NODEV; 357 bp->b_qindex = QUEUE_EMPTY; 358 bp->b_xflags = 0; 359 LIST_INIT(&bp->b_dep); 360 BUF_LOCKINIT(bp); 361 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 362 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 363 } 364 365 /* 366 * maxbufspace is the absolute maximum amount of buffer space we are 367 * allowed to reserve in KVM and in real terms. The absolute maximum 368 * is nominally used by buf_daemon. hibufspace is the nominal maximum 369 * used by most other processes. The differential is required to 370 * ensure that buf_daemon is able to run when other processes might 371 * be blocked waiting for buffer space. 372 * 373 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 374 * this may result in KVM fragmentation which is not handled optimally 375 * by the system. 376 */ 377 maxbufspace = nbuf * BKVASIZE; 378 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 379 lobufspace = hibufspace - MAXBSIZE; 380 381 lorunningspace = 512 * 1024; 382 hirunningspace = 1024 * 1024; 383 384 /* 385 * Limit the amount of malloc memory since it is wired permanently into 386 * the kernel space. Even though this is accounted for in the buffer 387 * allocation, we don't want the malloced region to grow uncontrolled. 388 * The malloc scheme improves memory utilization significantly on average 389 * (small) directories. 390 */ 391 maxbufmallocspace = hibufspace / 20; 392 393 /* 394 * Reduce the chance of a deadlock occuring by limiting the number 395 * of delayed-write dirty buffers we allow to stack up. 396 */ 397 hidirtybuffers = nbuf / 4 + 20; 398 numdirtybuffers = 0; 399 /* 400 * To support extreme low-memory systems, make sure hidirtybuffers cannot 401 * eat up all available buffer space. This occurs when our minimum cannot 402 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 403 * BKVASIZE'd (8K) buffers. 404 */ 405 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 406 hidirtybuffers >>= 1; 407 } 408 lodirtybuffers = hidirtybuffers / 2; 409 410 /* 411 * Try to keep the number of free buffers in the specified range, 412 * and give special processes (e.g. like buf_daemon) access to an 413 * emergency reserve. 414 */ 415 lofreebuffers = nbuf / 18 + 5; 416 hifreebuffers = 2 * lofreebuffers; 417 numfreebuffers = nbuf; 418 419 /* 420 * Maximum number of async ops initiated per buf_daemon loop. This is 421 * somewhat of a hack at the moment, we really need to limit ourselves 422 * based on the number of bytes of I/O in-transit that were initiated 423 * from buf_daemon. 424 */ 425 426 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 427 bogus_page = vm_page_alloc(kernel_object, 428 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 429 VM_ALLOC_NORMAL); 430 vmstats.v_wire_count++; 431 432 } 433 434 /* 435 * bfreekva() - free the kva allocation for a buffer. 436 * 437 * Must be called at splbio() or higher as this is the only locking for 438 * buffer_map. 439 * 440 * Since this call frees up buffer space, we call bufspacewakeup(). 441 */ 442 static void 443 bfreekva(struct buf * bp) 444 { 445 int count; 446 447 if (bp->b_kvasize) { 448 ++buffreekvacnt; 449 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 450 vm_map_lock(buffer_map); 451 bufspace -= bp->b_kvasize; 452 vm_map_delete(buffer_map, 453 (vm_offset_t) bp->b_kvabase, 454 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 455 &count 456 ); 457 vm_map_unlock(buffer_map); 458 vm_map_entry_release(count); 459 bp->b_kvasize = 0; 460 bufspacewakeup(); 461 } 462 } 463 464 /* 465 * bremfree: 466 * 467 * Remove the buffer from the appropriate free list. 468 */ 469 void 470 bremfree(struct buf * bp) 471 { 472 int s = splbio(); 473 int old_qindex = bp->b_qindex; 474 475 if (bp->b_qindex != QUEUE_NONE) { 476 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 477 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 478 bp->b_qindex = QUEUE_NONE; 479 } else { 480 if (BUF_REFCNT(bp) <= 1) 481 panic("bremfree: removing a buffer not on a queue"); 482 } 483 484 /* 485 * Fixup numfreebuffers count. If the buffer is invalid or not 486 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 487 * the buffer was free and we must decrement numfreebuffers. 488 */ 489 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 490 switch(old_qindex) { 491 case QUEUE_DIRTY: 492 case QUEUE_CLEAN: 493 case QUEUE_EMPTY: 494 case QUEUE_EMPTYKVA: 495 --numfreebuffers; 496 break; 497 default: 498 break; 499 } 500 } 501 splx(s); 502 } 503 504 505 /* 506 * Get a buffer with the specified data. Look in the cache first. We 507 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 508 * is set, the buffer is valid and we do not have to do anything ( see 509 * getblk() ). 510 */ 511 int 512 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp) 513 { 514 struct buf *bp; 515 516 bp = getblk(vp, blkno, size, 0, 0); 517 *bpp = bp; 518 519 /* if not found in cache, do some I/O */ 520 if ((bp->b_flags & B_CACHE) == 0) { 521 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp)); 522 bp->b_flags |= B_READ; 523 bp->b_flags &= ~(B_ERROR | B_INVAL); 524 vfs_busy_pages(bp, 0); 525 VOP_STRATEGY(vp, bp); 526 return (biowait(bp)); 527 } 528 return (0); 529 } 530 531 /* 532 * Operates like bread, but also starts asynchronous I/O on 533 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 534 * to initiating I/O . If B_CACHE is set, the buffer is valid 535 * and we do not have to do anything. 536 */ 537 int 538 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno, 539 int *rabsize, int cnt, struct buf ** bpp) 540 { 541 struct buf *bp, *rabp; 542 int i; 543 int rv = 0, readwait = 0; 544 545 *bpp = bp = getblk(vp, blkno, size, 0, 0); 546 547 /* if not found in cache, do some I/O */ 548 if ((bp->b_flags & B_CACHE) == 0) { 549 bp->b_flags |= B_READ; 550 bp->b_flags &= ~(B_ERROR | B_INVAL); 551 vfs_busy_pages(bp, 0); 552 VOP_STRATEGY(vp, bp); 553 ++readwait; 554 } 555 556 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 557 if (inmem(vp, *rablkno)) 558 continue; 559 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 560 561 if ((rabp->b_flags & B_CACHE) == 0) { 562 rabp->b_flags |= B_READ | B_ASYNC; 563 rabp->b_flags &= ~(B_ERROR | B_INVAL); 564 vfs_busy_pages(rabp, 0); 565 BUF_KERNPROC(rabp); 566 VOP_STRATEGY(vp, rabp); 567 } else { 568 brelse(rabp); 569 } 570 } 571 572 if (readwait) { 573 rv = biowait(bp); 574 } 575 return (rv); 576 } 577 578 /* 579 * Write, release buffer on completion. (Done by iodone 580 * if async). Do not bother writing anything if the buffer 581 * is invalid. 582 * 583 * Note that we set B_CACHE here, indicating that buffer is 584 * fully valid and thus cacheable. This is true even of NFS 585 * now so we set it generally. This could be set either here 586 * or in biodone() since the I/O is synchronous. We put it 587 * here. 588 */ 589 int 590 bwrite(struct buf * bp) 591 { 592 int oldflags, s; 593 struct buf *newbp; 594 595 if (bp->b_flags & B_INVAL) { 596 brelse(bp); 597 return (0); 598 } 599 600 oldflags = bp->b_flags; 601 602 if (BUF_REFCNT(bp) == 0) 603 panic("bwrite: buffer is not busy???"); 604 s = splbio(); 605 /* 606 * If a background write is already in progress, delay 607 * writing this block if it is asynchronous. Otherwise 608 * wait for the background write to complete. 609 */ 610 if (bp->b_xflags & BX_BKGRDINPROG) { 611 if (bp->b_flags & B_ASYNC) { 612 splx(s); 613 bdwrite(bp); 614 return (0); 615 } 616 bp->b_xflags |= BX_BKGRDWAIT; 617 tsleep(&bp->b_xflags, 0, "biord", 0); 618 if (bp->b_xflags & BX_BKGRDINPROG) 619 panic("bwrite: still writing"); 620 } 621 622 /* Mark the buffer clean */ 623 bundirty(bp); 624 625 /* 626 * If this buffer is marked for background writing and we 627 * do not have to wait for it, make a copy and write the 628 * copy so as to leave this buffer ready for further use. 629 * 630 * This optimization eats a lot of memory. If we have a page 631 * or buffer shortfull we can't do it. 632 */ 633 if ((bp->b_xflags & BX_BKGRDWRITE) && 634 (bp->b_flags & B_ASYNC) && 635 !vm_page_count_severe() && 636 !buf_dirty_count_severe()) { 637 if (bp->b_flags & B_CALL) 638 panic("bwrite: need chained iodone"); 639 640 /* get a new block */ 641 newbp = geteblk(bp->b_bufsize); 642 643 /* set it to be identical to the old block */ 644 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 645 bgetvp(bp->b_vp, newbp); 646 newbp->b_lblkno = bp->b_lblkno; 647 newbp->b_blkno = bp->b_blkno; 648 newbp->b_offset = bp->b_offset; 649 newbp->b_iodone = vfs_backgroundwritedone; 650 newbp->b_flags |= B_ASYNC | B_CALL; 651 newbp->b_flags &= ~B_INVAL; 652 653 /* move over the dependencies */ 654 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps) 655 (*bioops.io_movedeps)(bp, newbp); 656 657 /* 658 * Initiate write on the copy, release the original to 659 * the B_LOCKED queue so that it cannot go away until 660 * the background write completes. If not locked it could go 661 * away and then be reconstituted while it was being written. 662 * If the reconstituted buffer were written, we could end up 663 * with two background copies being written at the same time. 664 */ 665 bp->b_xflags |= BX_BKGRDINPROG; 666 bp->b_flags |= B_LOCKED; 667 bqrelse(bp); 668 bp = newbp; 669 } 670 671 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR); 672 bp->b_flags |= B_WRITEINPROG | B_CACHE; 673 674 bp->b_vp->v_numoutput++; 675 vfs_busy_pages(bp, 1); 676 677 /* 678 * Normal bwrites pipeline writes 679 */ 680 bp->b_runningbufspace = bp->b_bufsize; 681 runningbufspace += bp->b_runningbufspace; 682 683 splx(s); 684 if (oldflags & B_ASYNC) 685 BUF_KERNPROC(bp); 686 VOP_STRATEGY(bp->b_vp, bp); 687 688 if ((oldflags & B_ASYNC) == 0) { 689 int rtval = biowait(bp); 690 brelse(bp); 691 return (rtval); 692 } else if ((oldflags & B_NOWDRAIN) == 0) { 693 /* 694 * don't allow the async write to saturate the I/O 695 * system. Deadlocks can occur only if a device strategy 696 * routine (like in VN) turns around and issues another 697 * high-level write, in which case B_NOWDRAIN is expected 698 * to be set. Otherwise we will not deadlock here because 699 * we are blocking waiting for I/O that is already in-progress 700 * to complete. 701 */ 702 waitrunningbufspace(); 703 } 704 705 return (0); 706 } 707 708 /* 709 * Complete a background write started from bwrite. 710 */ 711 static void 712 vfs_backgroundwritedone(bp) 713 struct buf *bp; 714 { 715 struct buf *origbp; 716 717 /* 718 * Find the original buffer that we are writing. 719 */ 720 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 721 panic("backgroundwritedone: lost buffer"); 722 /* 723 * Process dependencies then return any unfinished ones. 724 */ 725 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 726 (*bioops.io_complete)(bp); 727 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps) 728 (*bioops.io_movedeps)(bp, origbp); 729 /* 730 * Clear the BX_BKGRDINPROG flag in the original buffer 731 * and awaken it if it is waiting for the write to complete. 732 * If BX_BKGRDINPROG is not set in the original buffer it must 733 * have been released and re-instantiated - which is not legal. 734 */ 735 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2")); 736 origbp->b_xflags &= ~BX_BKGRDINPROG; 737 if (origbp->b_xflags & BX_BKGRDWAIT) { 738 origbp->b_xflags &= ~BX_BKGRDWAIT; 739 wakeup(&origbp->b_xflags); 740 } 741 /* 742 * Clear the B_LOCKED flag and remove it from the locked 743 * queue if it currently resides there. 744 */ 745 origbp->b_flags &= ~B_LOCKED; 746 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 747 bremfree(origbp); 748 bqrelse(origbp); 749 } 750 /* 751 * This buffer is marked B_NOCACHE, so when it is released 752 * by biodone, it will be tossed. We mark it with B_READ 753 * to avoid biodone doing a second vwakeup. 754 */ 755 bp->b_flags |= B_NOCACHE | B_READ; 756 bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE); 757 bp->b_iodone = 0; 758 biodone(bp); 759 } 760 761 /* 762 * Delayed write. (Buffer is marked dirty). Do not bother writing 763 * anything if the buffer is marked invalid. 764 * 765 * Note that since the buffer must be completely valid, we can safely 766 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 767 * biodone() in order to prevent getblk from writing the buffer 768 * out synchronously. 769 */ 770 void 771 bdwrite(struct buf * bp) 772 { 773 if (BUF_REFCNT(bp) == 0) 774 panic("bdwrite: buffer is not busy"); 775 776 if (bp->b_flags & B_INVAL) { 777 brelse(bp); 778 return; 779 } 780 bdirty(bp); 781 782 /* 783 * Set B_CACHE, indicating that the buffer is fully valid. This is 784 * true even of NFS now. 785 */ 786 bp->b_flags |= B_CACHE; 787 788 /* 789 * This bmap keeps the system from needing to do the bmap later, 790 * perhaps when the system is attempting to do a sync. Since it 791 * is likely that the indirect block -- or whatever other datastructure 792 * that the filesystem needs is still in memory now, it is a good 793 * thing to do this. Note also, that if the pageout daemon is 794 * requesting a sync -- there might not be enough memory to do 795 * the bmap then... So, this is important to do. 796 */ 797 if (bp->b_lblkno == bp->b_blkno) { 798 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 799 } 800 801 /* 802 * Set the *dirty* buffer range based upon the VM system dirty pages. 803 */ 804 vfs_setdirty(bp); 805 806 /* 807 * We need to do this here to satisfy the vnode_pager and the 808 * pageout daemon, so that it thinks that the pages have been 809 * "cleaned". Note that since the pages are in a delayed write 810 * buffer -- the VFS layer "will" see that the pages get written 811 * out on the next sync, or perhaps the cluster will be completed. 812 */ 813 vfs_clean_pages(bp); 814 bqrelse(bp); 815 816 /* 817 * Wakeup the buffer flushing daemon if we have a lot of dirty 818 * buffers (midpoint between our recovery point and our stall 819 * point). 820 */ 821 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 822 823 /* 824 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 825 * due to the softdep code. 826 */ 827 } 828 829 /* 830 * bdirty: 831 * 832 * Turn buffer into delayed write request. We must clear B_READ and 833 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 834 * itself to properly update it in the dirty/clean lists. We mark it 835 * B_DONE to ensure that any asynchronization of the buffer properly 836 * clears B_DONE ( else a panic will occur later ). 837 * 838 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 839 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 840 * should only be called if the buffer is known-good. 841 * 842 * Since the buffer is not on a queue, we do not update the numfreebuffers 843 * count. 844 * 845 * Must be called at splbio(). 846 * The buffer must be on QUEUE_NONE. 847 */ 848 void 849 bdirty(bp) 850 struct buf *bp; 851 { 852 KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 853 bp->b_flags &= ~(B_READ|B_RELBUF); 854 855 if ((bp->b_flags & B_DELWRI) == 0) { 856 bp->b_flags |= B_DONE | B_DELWRI; 857 reassignbuf(bp, bp->b_vp); 858 ++numdirtybuffers; 859 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 860 } 861 } 862 863 /* 864 * bundirty: 865 * 866 * Clear B_DELWRI for buffer. 867 * 868 * Since the buffer is not on a queue, we do not update the numfreebuffers 869 * count. 870 * 871 * Must be called at splbio(). 872 * The buffer must be on QUEUE_NONE. 873 */ 874 875 void 876 bundirty(bp) 877 struct buf *bp; 878 { 879 KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 880 881 if (bp->b_flags & B_DELWRI) { 882 bp->b_flags &= ~B_DELWRI; 883 reassignbuf(bp, bp->b_vp); 884 --numdirtybuffers; 885 numdirtywakeup(lodirtybuffers); 886 } 887 /* 888 * Since it is now being written, we can clear its deferred write flag. 889 */ 890 bp->b_flags &= ~B_DEFERRED; 891 } 892 893 /* 894 * bawrite: 895 * 896 * Asynchronous write. Start output on a buffer, but do not wait for 897 * it to complete. The buffer is released when the output completes. 898 * 899 * bwrite() ( or the VOP routine anyway ) is responsible for handling 900 * B_INVAL buffers. Not us. 901 */ 902 void 903 bawrite(struct buf * bp) 904 { 905 bp->b_flags |= B_ASYNC; 906 (void) VOP_BWRITE(bp->b_vp, bp); 907 } 908 909 /* 910 * bowrite: 911 * 912 * Ordered write. Start output on a buffer, and flag it so that the 913 * device will write it in the order it was queued. The buffer is 914 * released when the output completes. bwrite() ( or the VOP routine 915 * anyway ) is responsible for handling B_INVAL buffers. 916 */ 917 int 918 bowrite(struct buf * bp) 919 { 920 bp->b_flags |= B_ORDERED | B_ASYNC; 921 return (VOP_BWRITE(bp->b_vp, bp)); 922 } 923 924 /* 925 * bwillwrite: 926 * 927 * Called prior to the locking of any vnodes when we are expecting to 928 * write. We do not want to starve the buffer cache with too many 929 * dirty buffers so we block here. By blocking prior to the locking 930 * of any vnodes we attempt to avoid the situation where a locked vnode 931 * prevents the various system daemons from flushing related buffers. 932 */ 933 934 void 935 bwillwrite(void) 936 { 937 if (numdirtybuffers >= hidirtybuffers) { 938 int s; 939 940 s = splbio(); 941 while (numdirtybuffers >= hidirtybuffers) { 942 bd_wakeup(1); 943 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 944 tsleep(&needsbuffer, 0, "flswai", 0); 945 } 946 splx(s); 947 } 948 } 949 950 /* 951 * Return true if we have too many dirty buffers. 952 */ 953 int 954 buf_dirty_count_severe(void) 955 { 956 return(numdirtybuffers >= hidirtybuffers); 957 } 958 959 /* 960 * brelse: 961 * 962 * Release a busy buffer and, if requested, free its resources. The 963 * buffer will be stashed in the appropriate bufqueue[] allowing it 964 * to be accessed later as a cache entity or reused for other purposes. 965 */ 966 void 967 brelse(struct buf * bp) 968 { 969 int s; 970 971 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 972 973 s = splbio(); 974 975 if (bp->b_flags & B_LOCKED) 976 bp->b_flags &= ~B_ERROR; 977 978 if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) { 979 /* 980 * Failed write, redirty. Must clear B_ERROR to prevent 981 * pages from being scrapped. If B_INVAL is set then 982 * this case is not run and the next case is run to 983 * destroy the buffer. B_INVAL can occur if the buffer 984 * is outside the range supported by the underlying device. 985 */ 986 bp->b_flags &= ~B_ERROR; 987 bdirty(bp); 988 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) || 989 (bp->b_bufsize <= 0)) { 990 /* 991 * Either a failed I/O or we were asked to free or not 992 * cache the buffer. 993 */ 994 bp->b_flags |= B_INVAL; 995 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 996 (*bioops.io_deallocate)(bp); 997 if (bp->b_flags & B_DELWRI) { 998 --numdirtybuffers; 999 numdirtywakeup(lodirtybuffers); 1000 } 1001 bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF); 1002 if ((bp->b_flags & B_VMIO) == 0) { 1003 if (bp->b_bufsize) 1004 allocbuf(bp, 0); 1005 if (bp->b_vp) 1006 brelvp(bp); 1007 } 1008 } 1009 1010 /* 1011 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1012 * is called with B_DELWRI set, the underlying pages may wind up 1013 * getting freed causing a previous write (bdwrite()) to get 'lost' 1014 * because pages associated with a B_DELWRI bp are marked clean. 1015 * 1016 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1017 * if B_DELWRI is set. 1018 * 1019 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1020 * on pages to return pages to the VM page queues. 1021 */ 1022 if (bp->b_flags & B_DELWRI) 1023 bp->b_flags &= ~B_RELBUF; 1024 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1025 bp->b_flags |= B_RELBUF; 1026 1027 /* 1028 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1029 * constituted, not even NFS buffers now. Two flags effect this. If 1030 * B_INVAL, the struct buf is invalidated but the VM object is kept 1031 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1032 * 1033 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be 1034 * invalidated. B_ERROR cannot be set for a failed write unless the 1035 * buffer is also B_INVAL because it hits the re-dirtying code above. 1036 * 1037 * Normally we can do this whether a buffer is B_DELWRI or not. If 1038 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1039 * the commit state and we cannot afford to lose the buffer. If the 1040 * buffer has a background write in progress, we need to keep it 1041 * around to prevent it from being reconstituted and starting a second 1042 * background write. 1043 */ 1044 if ((bp->b_flags & B_VMIO) 1045 && !(bp->b_vp->v_tag == VT_NFS && 1046 !vn_isdisk(bp->b_vp, NULL) && 1047 (bp->b_flags & B_DELWRI)) 1048 ) { 1049 1050 int i, j, resid; 1051 vm_page_t m; 1052 off_t foff; 1053 vm_pindex_t poff; 1054 vm_object_t obj; 1055 struct vnode *vp; 1056 1057 vp = bp->b_vp; 1058 1059 /* 1060 * Get the base offset and length of the buffer. Note that 1061 * in the VMIO case if the buffer block size is not 1062 * page-aligned then b_data pointer may not be page-aligned. 1063 * But our b_pages[] array *IS* page aligned. 1064 * 1065 * block sizes less then DEV_BSIZE (usually 512) are not 1066 * supported due to the page granularity bits (m->valid, 1067 * m->dirty, etc...). 1068 * 1069 * See man buf(9) for more information 1070 */ 1071 1072 resid = bp->b_bufsize; 1073 foff = bp->b_offset; 1074 1075 for (i = 0; i < bp->b_npages; i++) { 1076 m = bp->b_pages[i]; 1077 vm_page_flag_clear(m, PG_ZERO); 1078 /* 1079 * If we hit a bogus page, fixup *all* of them 1080 * now. 1081 */ 1082 if (m == bogus_page) { 1083 VOP_GETVOBJECT(vp, &obj); 1084 poff = OFF_TO_IDX(bp->b_offset); 1085 1086 for (j = i; j < bp->b_npages; j++) { 1087 vm_page_t mtmp; 1088 1089 mtmp = bp->b_pages[j]; 1090 if (mtmp == bogus_page) { 1091 mtmp = vm_page_lookup(obj, poff + j); 1092 if (!mtmp) { 1093 panic("brelse: page missing\n"); 1094 } 1095 bp->b_pages[j] = mtmp; 1096 } 1097 } 1098 1099 if ((bp->b_flags & B_INVAL) == 0) { 1100 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 1101 } 1102 m = bp->b_pages[i]; 1103 } 1104 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1105 int poffset = foff & PAGE_MASK; 1106 int presid = resid > (PAGE_SIZE - poffset) ? 1107 (PAGE_SIZE - poffset) : resid; 1108 1109 KASSERT(presid >= 0, ("brelse: extra page")); 1110 vm_page_set_invalid(m, poffset, presid); 1111 } 1112 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1113 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1114 } 1115 1116 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1117 vfs_vmio_release(bp); 1118 1119 } else if (bp->b_flags & B_VMIO) { 1120 1121 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1122 vfs_vmio_release(bp); 1123 1124 } 1125 1126 if (bp->b_qindex != QUEUE_NONE) 1127 panic("brelse: free buffer onto another queue???"); 1128 if (BUF_REFCNT(bp) > 1) { 1129 /* Temporary panic to verify exclusive locking */ 1130 /* This panic goes away when we allow shared refs */ 1131 panic("brelse: multiple refs"); 1132 /* do not release to free list */ 1133 BUF_UNLOCK(bp); 1134 splx(s); 1135 return; 1136 } 1137 1138 /* enqueue */ 1139 1140 /* buffers with no memory */ 1141 if (bp->b_bufsize == 0) { 1142 bp->b_flags |= B_INVAL; 1143 bp->b_xflags &= ~BX_BKGRDWRITE; 1144 if (bp->b_xflags & BX_BKGRDINPROG) 1145 panic("losing buffer 1"); 1146 if (bp->b_kvasize) { 1147 bp->b_qindex = QUEUE_EMPTYKVA; 1148 } else { 1149 bp->b_qindex = QUEUE_EMPTY; 1150 } 1151 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1152 LIST_REMOVE(bp, b_hash); 1153 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1154 bp->b_dev = NODEV; 1155 /* buffers with junk contents */ 1156 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) { 1157 bp->b_flags |= B_INVAL; 1158 bp->b_xflags &= ~BX_BKGRDWRITE; 1159 if (bp->b_xflags & BX_BKGRDINPROG) 1160 panic("losing buffer 2"); 1161 bp->b_qindex = QUEUE_CLEAN; 1162 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1163 LIST_REMOVE(bp, b_hash); 1164 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1165 bp->b_dev = NODEV; 1166 1167 /* buffers that are locked */ 1168 } else if (bp->b_flags & B_LOCKED) { 1169 bp->b_qindex = QUEUE_LOCKED; 1170 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1171 1172 /* remaining buffers */ 1173 } else { 1174 switch(bp->b_flags & (B_DELWRI|B_AGE)) { 1175 case B_DELWRI | B_AGE: 1176 bp->b_qindex = QUEUE_DIRTY; 1177 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1178 break; 1179 case B_DELWRI: 1180 bp->b_qindex = QUEUE_DIRTY; 1181 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1182 break; 1183 case B_AGE: 1184 bp->b_qindex = QUEUE_CLEAN; 1185 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1186 break; 1187 default: 1188 bp->b_qindex = QUEUE_CLEAN; 1189 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1190 break; 1191 } 1192 } 1193 1194 /* 1195 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1196 * on the correct queue. 1197 */ 1198 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1199 bundirty(bp); 1200 1201 /* 1202 * Fixup numfreebuffers count. The bp is on an appropriate queue 1203 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1204 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1205 * if B_INVAL is set ). 1206 */ 1207 1208 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1209 bufcountwakeup(); 1210 1211 /* 1212 * Something we can maybe free or reuse 1213 */ 1214 if (bp->b_bufsize || bp->b_kvasize) 1215 bufspacewakeup(); 1216 1217 /* unlock */ 1218 BUF_UNLOCK(bp); 1219 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | 1220 B_DIRECT | B_NOWDRAIN); 1221 splx(s); 1222 } 1223 1224 /* 1225 * Release a buffer back to the appropriate queue but do not try to free 1226 * it. The buffer is expected to be used again soon. 1227 * 1228 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1229 * biodone() to requeue an async I/O on completion. It is also used when 1230 * known good buffers need to be requeued but we think we may need the data 1231 * again soon. 1232 * 1233 * XXX we should be able to leave the B_RELBUF hint set on completion. 1234 */ 1235 void 1236 bqrelse(struct buf * bp) 1237 { 1238 int s; 1239 1240 s = splbio(); 1241 1242 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1243 1244 if (bp->b_qindex != QUEUE_NONE) 1245 panic("bqrelse: free buffer onto another queue???"); 1246 if (BUF_REFCNT(bp) > 1) { 1247 /* do not release to free list */ 1248 panic("bqrelse: multiple refs"); 1249 BUF_UNLOCK(bp); 1250 splx(s); 1251 return; 1252 } 1253 if (bp->b_flags & B_LOCKED) { 1254 bp->b_flags &= ~B_ERROR; 1255 bp->b_qindex = QUEUE_LOCKED; 1256 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1257 /* buffers with stale but valid contents */ 1258 } else if (bp->b_flags & B_DELWRI) { 1259 bp->b_qindex = QUEUE_DIRTY; 1260 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1261 } else if (vm_page_count_severe()) { 1262 /* 1263 * We are too low on memory, we have to try to free the 1264 * buffer (most importantly: the wired pages making up its 1265 * backing store) *now*. 1266 */ 1267 splx(s); 1268 brelse(bp); 1269 return; 1270 } else { 1271 bp->b_qindex = QUEUE_CLEAN; 1272 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1273 } 1274 1275 if ((bp->b_flags & B_LOCKED) == 0 && 1276 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1277 bufcountwakeup(); 1278 } 1279 1280 /* 1281 * Something we can maybe free or reuse. 1282 */ 1283 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1284 bufspacewakeup(); 1285 1286 /* unlock */ 1287 BUF_UNLOCK(bp); 1288 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1289 splx(s); 1290 } 1291 1292 static void 1293 vfs_vmio_release(bp) 1294 struct buf *bp; 1295 { 1296 int i, s; 1297 vm_page_t m; 1298 1299 s = splvm(); 1300 for (i = 0; i < bp->b_npages; i++) { 1301 m = bp->b_pages[i]; 1302 bp->b_pages[i] = NULL; 1303 /* 1304 * In order to keep page LRU ordering consistent, put 1305 * everything on the inactive queue. 1306 */ 1307 vm_page_unwire(m, 0); 1308 /* 1309 * We don't mess with busy pages, it is 1310 * the responsibility of the process that 1311 * busied the pages to deal with them. 1312 */ 1313 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1314 continue; 1315 1316 if (m->wire_count == 0) { 1317 vm_page_flag_clear(m, PG_ZERO); 1318 /* 1319 * Might as well free the page if we can and it has 1320 * no valid data. We also free the page if the 1321 * buffer was used for direct I/O. 1322 */ 1323 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) { 1324 vm_page_busy(m); 1325 vm_page_protect(m, VM_PROT_NONE); 1326 vm_page_free(m); 1327 } else if (bp->b_flags & B_DIRECT) { 1328 vm_page_try_to_free(m); 1329 } else if (vm_page_count_severe()) { 1330 vm_page_try_to_cache(m); 1331 } 1332 } 1333 } 1334 splx(s); 1335 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1336 if (bp->b_bufsize) { 1337 bufspacewakeup(); 1338 bp->b_bufsize = 0; 1339 } 1340 bp->b_npages = 0; 1341 bp->b_flags &= ~B_VMIO; 1342 if (bp->b_vp) 1343 brelvp(bp); 1344 } 1345 1346 /* 1347 * Check to see if a block is currently memory resident. 1348 */ 1349 struct buf * 1350 gbincore(struct vnode * vp, daddr_t blkno) 1351 { 1352 struct buf *bp; 1353 struct bufhashhdr *bh; 1354 1355 bh = bufhash(vp, blkno); 1356 1357 /* Search hash chain */ 1358 LIST_FOREACH(bp, bh, b_hash) { 1359 /* hit */ 1360 if (bp->b_vp == vp && bp->b_lblkno == blkno && 1361 (bp->b_flags & B_INVAL) == 0) { 1362 break; 1363 } 1364 } 1365 return (bp); 1366 } 1367 1368 /* 1369 * vfs_bio_awrite: 1370 * 1371 * Implement clustered async writes for clearing out B_DELWRI buffers. 1372 * This is much better then the old way of writing only one buffer at 1373 * a time. Note that we may not be presented with the buffers in the 1374 * correct order, so we search for the cluster in both directions. 1375 */ 1376 int 1377 vfs_bio_awrite(struct buf * bp) 1378 { 1379 int i; 1380 int j; 1381 daddr_t lblkno = bp->b_lblkno; 1382 struct vnode *vp = bp->b_vp; 1383 int s; 1384 int ncl; 1385 struct buf *bpa; 1386 int nwritten; 1387 int size; 1388 int maxcl; 1389 1390 s = splbio(); 1391 /* 1392 * right now we support clustered writing only to regular files. If 1393 * we find a clusterable block we could be in the middle of a cluster 1394 * rather then at the beginning. 1395 */ 1396 if ((vp->v_type == VREG) && 1397 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1398 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1399 1400 size = vp->v_mount->mnt_stat.f_iosize; 1401 maxcl = MAXPHYS / size; 1402 1403 for (i = 1; i < maxcl; i++) { 1404 if ((bpa = gbincore(vp, lblkno + i)) && 1405 BUF_REFCNT(bpa) == 0 && 1406 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1407 (B_DELWRI | B_CLUSTEROK)) && 1408 (bpa->b_bufsize == size)) { 1409 if ((bpa->b_blkno == bpa->b_lblkno) || 1410 (bpa->b_blkno != 1411 bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1412 break; 1413 } else { 1414 break; 1415 } 1416 } 1417 for (j = 1; i + j <= maxcl && j <= lblkno; j++) { 1418 if ((bpa = gbincore(vp, lblkno - j)) && 1419 BUF_REFCNT(bpa) == 0 && 1420 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1421 (B_DELWRI | B_CLUSTEROK)) && 1422 (bpa->b_bufsize == size)) { 1423 if ((bpa->b_blkno == bpa->b_lblkno) || 1424 (bpa->b_blkno != 1425 bp->b_blkno - ((j * size) >> DEV_BSHIFT))) 1426 break; 1427 } else { 1428 break; 1429 } 1430 } 1431 --j; 1432 ncl = i + j; 1433 /* 1434 * this is a possible cluster write 1435 */ 1436 if (ncl != 1) { 1437 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1438 splx(s); 1439 return nwritten; 1440 } 1441 } 1442 1443 BUF_LOCK(bp, LK_EXCLUSIVE); 1444 bremfree(bp); 1445 bp->b_flags |= B_ASYNC; 1446 1447 splx(s); 1448 /* 1449 * default (old) behavior, writing out only one block 1450 * 1451 * XXX returns b_bufsize instead of b_bcount for nwritten? 1452 */ 1453 nwritten = bp->b_bufsize; 1454 (void) VOP_BWRITE(bp->b_vp, bp); 1455 1456 return nwritten; 1457 } 1458 1459 /* 1460 * getnewbuf: 1461 * 1462 * Find and initialize a new buffer header, freeing up existing buffers 1463 * in the bufqueues as necessary. The new buffer is returned locked. 1464 * 1465 * Important: B_INVAL is not set. If the caller wishes to throw the 1466 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1467 * 1468 * We block if: 1469 * We have insufficient buffer headers 1470 * We have insufficient buffer space 1471 * buffer_map is too fragmented ( space reservation fails ) 1472 * If we have to flush dirty buffers ( but we try to avoid this ) 1473 * 1474 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1475 * Instead we ask the buf daemon to do it for us. We attempt to 1476 * avoid piecemeal wakeups of the pageout daemon. 1477 */ 1478 1479 static struct buf * 1480 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1481 { 1482 struct buf *bp; 1483 struct buf *nbp; 1484 int defrag = 0; 1485 int nqindex; 1486 static int flushingbufs; 1487 1488 /* 1489 * We can't afford to block since we might be holding a vnode lock, 1490 * which may prevent system daemons from running. We deal with 1491 * low-memory situations by proactively returning memory and running 1492 * async I/O rather then sync I/O. 1493 */ 1494 1495 ++getnewbufcalls; 1496 --getnewbufrestarts; 1497 restart: 1498 ++getnewbufrestarts; 1499 1500 /* 1501 * Setup for scan. If we do not have enough free buffers, 1502 * we setup a degenerate case that immediately fails. Note 1503 * that if we are specially marked process, we are allowed to 1504 * dip into our reserves. 1505 * 1506 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1507 * 1508 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1509 * However, there are a number of cases (defragging, reusing, ...) 1510 * where we cannot backup. 1511 */ 1512 nqindex = QUEUE_EMPTYKVA; 1513 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1514 1515 if (nbp == NULL) { 1516 /* 1517 * If no EMPTYKVA buffers and we are either 1518 * defragging or reusing, locate a CLEAN buffer 1519 * to free or reuse. If bufspace useage is low 1520 * skip this step so we can allocate a new buffer. 1521 */ 1522 if (defrag || bufspace >= lobufspace) { 1523 nqindex = QUEUE_CLEAN; 1524 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1525 } 1526 1527 /* 1528 * If we could not find or were not allowed to reuse a 1529 * CLEAN buffer, check to see if it is ok to use an EMPTY 1530 * buffer. We can only use an EMPTY buffer if allocating 1531 * its KVA would not otherwise run us out of buffer space. 1532 */ 1533 if (nbp == NULL && defrag == 0 && 1534 bufspace + maxsize < hibufspace) { 1535 nqindex = QUEUE_EMPTY; 1536 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1537 } 1538 } 1539 1540 /* 1541 * Run scan, possibly freeing data and/or kva mappings on the fly 1542 * depending. 1543 */ 1544 1545 while ((bp = nbp) != NULL) { 1546 int qindex = nqindex; 1547 1548 /* 1549 * Calculate next bp ( we can only use it if we do not block 1550 * or do other fancy things ). 1551 */ 1552 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1553 switch(qindex) { 1554 case QUEUE_EMPTY: 1555 nqindex = QUEUE_EMPTYKVA; 1556 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1557 break; 1558 /* fall through */ 1559 case QUEUE_EMPTYKVA: 1560 nqindex = QUEUE_CLEAN; 1561 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1562 break; 1563 /* fall through */ 1564 case QUEUE_CLEAN: 1565 /* 1566 * nbp is NULL. 1567 */ 1568 break; 1569 } 1570 } 1571 1572 /* 1573 * Sanity Checks 1574 */ 1575 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1576 1577 /* 1578 * Note: we no longer distinguish between VMIO and non-VMIO 1579 * buffers. 1580 */ 1581 1582 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1583 1584 /* 1585 * If we are defragging then we need a buffer with 1586 * b_kvasize != 0. XXX this situation should no longer 1587 * occur, if defrag is non-zero the buffer's b_kvasize 1588 * should also be non-zero at this point. XXX 1589 */ 1590 if (defrag && bp->b_kvasize == 0) { 1591 printf("Warning: defrag empty buffer %p\n", bp); 1592 continue; 1593 } 1594 1595 /* 1596 * Start freeing the bp. This is somewhat involved. nbp 1597 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1598 */ 1599 1600 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1601 panic("getnewbuf: locked buf"); 1602 bremfree(bp); 1603 1604 if (qindex == QUEUE_CLEAN) { 1605 if (bp->b_flags & B_VMIO) { 1606 bp->b_flags &= ~B_ASYNC; 1607 vfs_vmio_release(bp); 1608 } 1609 if (bp->b_vp) 1610 brelvp(bp); 1611 } 1612 1613 /* 1614 * NOTE: nbp is now entirely invalid. We can only restart 1615 * the scan from this point on. 1616 * 1617 * Get the rest of the buffer freed up. b_kva* is still 1618 * valid after this operation. 1619 */ 1620 1621 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1622 (*bioops.io_deallocate)(bp); 1623 if (bp->b_xflags & BX_BKGRDINPROG) 1624 panic("losing buffer 3"); 1625 LIST_REMOVE(bp, b_hash); 1626 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1627 1628 if (bp->b_bufsize) 1629 allocbuf(bp, 0); 1630 1631 bp->b_flags = 0; 1632 bp->b_xflags = 0; 1633 bp->b_dev = NODEV; 1634 bp->b_vp = NULL; 1635 bp->b_blkno = bp->b_lblkno = 0; 1636 bp->b_offset = NOOFFSET; 1637 bp->b_iodone = 0; 1638 bp->b_error = 0; 1639 bp->b_resid = 0; 1640 bp->b_bcount = 0; 1641 bp->b_npages = 0; 1642 bp->b_dirtyoff = bp->b_dirtyend = 0; 1643 1644 LIST_INIT(&bp->b_dep); 1645 1646 /* 1647 * If we are defragging then free the buffer. 1648 */ 1649 if (defrag) { 1650 bp->b_flags |= B_INVAL; 1651 bfreekva(bp); 1652 brelse(bp); 1653 defrag = 0; 1654 goto restart; 1655 } 1656 1657 /* 1658 * If we are overcomitted then recover the buffer and its 1659 * KVM space. This occurs in rare situations when multiple 1660 * processes are blocked in getnewbuf() or allocbuf(). 1661 */ 1662 if (bufspace >= hibufspace) 1663 flushingbufs = 1; 1664 if (flushingbufs && bp->b_kvasize != 0) { 1665 bp->b_flags |= B_INVAL; 1666 bfreekva(bp); 1667 brelse(bp); 1668 goto restart; 1669 } 1670 if (bufspace < lobufspace) 1671 flushingbufs = 0; 1672 break; 1673 } 1674 1675 /* 1676 * If we exhausted our list, sleep as appropriate. We may have to 1677 * wakeup various daemons and write out some dirty buffers. 1678 * 1679 * Generally we are sleeping due to insufficient buffer space. 1680 */ 1681 1682 if (bp == NULL) { 1683 int flags; 1684 char *waitmsg; 1685 1686 if (defrag) { 1687 flags = VFS_BIO_NEED_BUFSPACE; 1688 waitmsg = "nbufkv"; 1689 } else if (bufspace >= hibufspace) { 1690 waitmsg = "nbufbs"; 1691 flags = VFS_BIO_NEED_BUFSPACE; 1692 } else { 1693 waitmsg = "newbuf"; 1694 flags = VFS_BIO_NEED_ANY; 1695 } 1696 1697 bd_speedup(); /* heeeelp */ 1698 1699 needsbuffer |= flags; 1700 while (needsbuffer & flags) { 1701 if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo)) 1702 return (NULL); 1703 } 1704 } else { 1705 /* 1706 * We finally have a valid bp. We aren't quite out of the 1707 * woods, we still have to reserve kva space. In order 1708 * to keep fragmentation sane we only allocate kva in 1709 * BKVASIZE chunks. 1710 */ 1711 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1712 1713 if (maxsize != bp->b_kvasize) { 1714 vm_offset_t addr = 0; 1715 int count; 1716 1717 bfreekva(bp); 1718 1719 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1720 vm_map_lock(buffer_map); 1721 1722 if (vm_map_findspace(buffer_map, 1723 vm_map_min(buffer_map), maxsize, 1724 maxsize, &addr)) { 1725 /* 1726 * Uh oh. Buffer map is to fragmented. We 1727 * must defragment the map. 1728 */ 1729 vm_map_unlock(buffer_map); 1730 vm_map_entry_release(count); 1731 ++bufdefragcnt; 1732 defrag = 1; 1733 bp->b_flags |= B_INVAL; 1734 brelse(bp); 1735 goto restart; 1736 } 1737 if (addr) { 1738 vm_map_insert(buffer_map, &count, 1739 NULL, 0, 1740 addr, addr + maxsize, 1741 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1742 1743 bp->b_kvabase = (caddr_t) addr; 1744 bp->b_kvasize = maxsize; 1745 bufspace += bp->b_kvasize; 1746 ++bufreusecnt; 1747 } 1748 vm_map_unlock(buffer_map); 1749 vm_map_entry_release(count); 1750 } 1751 bp->b_data = bp->b_kvabase; 1752 } 1753 return(bp); 1754 } 1755 1756 /* 1757 * buf_daemon: 1758 * 1759 * buffer flushing daemon. Buffers are normally flushed by the 1760 * update daemon but if it cannot keep up this process starts to 1761 * take the load in an attempt to prevent getnewbuf() from blocking. 1762 */ 1763 1764 static struct thread *bufdaemonthread; 1765 1766 static struct kproc_desc buf_kp = { 1767 "bufdaemon", 1768 buf_daemon, 1769 &bufdaemonthread 1770 }; 1771 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 1772 1773 static void 1774 buf_daemon() 1775 { 1776 int s; 1777 1778 /* 1779 * This process needs to be suspended prior to shutdown sync. 1780 */ 1781 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 1782 bufdaemonthread, SHUTDOWN_PRI_LAST); 1783 1784 /* 1785 * This process is allowed to take the buffer cache to the limit 1786 */ 1787 s = splbio(); 1788 1789 for (;;) { 1790 kproc_suspend_loop(); 1791 1792 /* 1793 * Do the flush. Limit the amount of in-transit I/O we 1794 * allow to build up, otherwise we would completely saturate 1795 * the I/O system. Wakeup any waiting processes before we 1796 * normally would so they can run in parallel with our drain. 1797 */ 1798 while (numdirtybuffers > lodirtybuffers) { 1799 if (flushbufqueues() == 0) 1800 break; 1801 waitrunningbufspace(); 1802 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 1803 } 1804 1805 /* 1806 * Only clear bd_request if we have reached our low water 1807 * mark. The buf_daemon normally waits 5 seconds and 1808 * then incrementally flushes any dirty buffers that have 1809 * built up, within reason. 1810 * 1811 * If we were unable to hit our low water mark and couldn't 1812 * find any flushable buffers, we sleep half a second. 1813 * Otherwise we loop immediately. 1814 */ 1815 if (numdirtybuffers <= lodirtybuffers) { 1816 /* 1817 * We reached our low water mark, reset the 1818 * request and sleep until we are needed again. 1819 * The sleep is just so the suspend code works. 1820 */ 1821 bd_request = 0; 1822 tsleep(&bd_request, 0, "psleep", hz); 1823 } else { 1824 /* 1825 * We couldn't find any flushable dirty buffers but 1826 * still have too many dirty buffers, we 1827 * have to sleep and try again. (rare) 1828 */ 1829 tsleep(&bd_request, 0, "qsleep", hz / 2); 1830 } 1831 } 1832 } 1833 1834 /* 1835 * flushbufqueues: 1836 * 1837 * Try to flush a buffer in the dirty queue. We must be careful to 1838 * free up B_INVAL buffers instead of write them, which NFS is 1839 * particularly sensitive to. 1840 */ 1841 1842 static int 1843 flushbufqueues(void) 1844 { 1845 struct buf *bp; 1846 int r = 0; 1847 1848 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1849 1850 while (bp) { 1851 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp)); 1852 if ((bp->b_flags & B_DELWRI) != 0 && 1853 (bp->b_xflags & BX_BKGRDINPROG) == 0) { 1854 if (bp->b_flags & B_INVAL) { 1855 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1856 panic("flushbufqueues: locked buf"); 1857 bremfree(bp); 1858 brelse(bp); 1859 ++r; 1860 break; 1861 } 1862 if (LIST_FIRST(&bp->b_dep) != NULL && 1863 bioops.io_countdeps && 1864 (bp->b_flags & B_DEFERRED) == 0 && 1865 (*bioops.io_countdeps)(bp, 0)) { 1866 TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], 1867 bp, b_freelist); 1868 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], 1869 bp, b_freelist); 1870 bp->b_flags |= B_DEFERRED; 1871 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1872 continue; 1873 } 1874 vfs_bio_awrite(bp); 1875 ++r; 1876 break; 1877 } 1878 bp = TAILQ_NEXT(bp, b_freelist); 1879 } 1880 return (r); 1881 } 1882 1883 /* 1884 * Check to see if a block is currently memory resident. 1885 */ 1886 struct buf * 1887 incore(struct vnode * vp, daddr_t blkno) 1888 { 1889 struct buf *bp; 1890 1891 int s = splbio(); 1892 bp = gbincore(vp, blkno); 1893 splx(s); 1894 return (bp); 1895 } 1896 1897 /* 1898 * Returns true if no I/O is needed to access the 1899 * associated VM object. This is like incore except 1900 * it also hunts around in the VM system for the data. 1901 */ 1902 1903 int 1904 inmem(struct vnode * vp, daddr_t blkno) 1905 { 1906 vm_object_t obj; 1907 vm_offset_t toff, tinc, size; 1908 vm_page_t m; 1909 vm_ooffset_t off; 1910 1911 if (incore(vp, blkno)) 1912 return 1; 1913 if (vp->v_mount == NULL) 1914 return 0; 1915 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0) 1916 return 0; 1917 1918 size = PAGE_SIZE; 1919 if (size > vp->v_mount->mnt_stat.f_iosize) 1920 size = vp->v_mount->mnt_stat.f_iosize; 1921 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 1922 1923 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 1924 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 1925 if (!m) 1926 return 0; 1927 tinc = size; 1928 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 1929 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 1930 if (vm_page_is_valid(m, 1931 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 1932 return 0; 1933 } 1934 return 1; 1935 } 1936 1937 /* 1938 * vfs_setdirty: 1939 * 1940 * Sets the dirty range for a buffer based on the status of the dirty 1941 * bits in the pages comprising the buffer. 1942 * 1943 * The range is limited to the size of the buffer. 1944 * 1945 * This routine is primarily used by NFS, but is generalized for the 1946 * B_VMIO case. 1947 */ 1948 static void 1949 vfs_setdirty(struct buf *bp) 1950 { 1951 int i; 1952 vm_object_t object; 1953 1954 /* 1955 * Degenerate case - empty buffer 1956 */ 1957 1958 if (bp->b_bufsize == 0) 1959 return; 1960 1961 /* 1962 * We qualify the scan for modified pages on whether the 1963 * object has been flushed yet. The OBJ_WRITEABLE flag 1964 * is not cleared simply by protecting pages off. 1965 */ 1966 1967 if ((bp->b_flags & B_VMIO) == 0) 1968 return; 1969 1970 object = bp->b_pages[0]->object; 1971 1972 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 1973 printf("Warning: object %p writeable but not mightbedirty\n", object); 1974 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 1975 printf("Warning: object %p mightbedirty but not writeable\n", object); 1976 1977 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 1978 vm_offset_t boffset; 1979 vm_offset_t eoffset; 1980 1981 /* 1982 * test the pages to see if they have been modified directly 1983 * by users through the VM system. 1984 */ 1985 for (i = 0; i < bp->b_npages; i++) { 1986 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 1987 vm_page_test_dirty(bp->b_pages[i]); 1988 } 1989 1990 /* 1991 * Calculate the encompassing dirty range, boffset and eoffset, 1992 * (eoffset - boffset) bytes. 1993 */ 1994 1995 for (i = 0; i < bp->b_npages; i++) { 1996 if (bp->b_pages[i]->dirty) 1997 break; 1998 } 1999 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2000 2001 for (i = bp->b_npages - 1; i >= 0; --i) { 2002 if (bp->b_pages[i]->dirty) { 2003 break; 2004 } 2005 } 2006 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2007 2008 /* 2009 * Fit it to the buffer. 2010 */ 2011 2012 if (eoffset > bp->b_bcount) 2013 eoffset = bp->b_bcount; 2014 2015 /* 2016 * If we have a good dirty range, merge with the existing 2017 * dirty range. 2018 */ 2019 2020 if (boffset < eoffset) { 2021 if (bp->b_dirtyoff > boffset) 2022 bp->b_dirtyoff = boffset; 2023 if (bp->b_dirtyend < eoffset) 2024 bp->b_dirtyend = eoffset; 2025 } 2026 } 2027 } 2028 2029 /* 2030 * getblk: 2031 * 2032 * Get a block given a specified block and offset into a file/device. 2033 * The buffers B_DONE bit will be cleared on return, making it almost 2034 * ready for an I/O initiation. B_INVAL may or may not be set on 2035 * return. The caller should clear B_INVAL prior to initiating a 2036 * READ. 2037 * 2038 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2039 * an existing buffer. 2040 * 2041 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2042 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2043 * and then cleared based on the backing VM. If the previous buffer is 2044 * non-0-sized but invalid, B_CACHE will be cleared. 2045 * 2046 * If getblk() must create a new buffer, the new buffer is returned with 2047 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2048 * case it is returned with B_INVAL clear and B_CACHE set based on the 2049 * backing VM. 2050 * 2051 * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos 2052 * B_CACHE bit is clear. 2053 * 2054 * What this means, basically, is that the caller should use B_CACHE to 2055 * determine whether the buffer is fully valid or not and should clear 2056 * B_INVAL prior to issuing a read. If the caller intends to validate 2057 * the buffer by loading its data area with something, the caller needs 2058 * to clear B_INVAL. If the caller does this without issuing an I/O, 2059 * the caller should set B_CACHE ( as an optimization ), else the caller 2060 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2061 * a write attempt or if it was a successfull read. If the caller 2062 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2063 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2064 */ 2065 struct buf * 2066 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 2067 { 2068 struct buf *bp; 2069 int s; 2070 struct bufhashhdr *bh; 2071 2072 if (size > MAXBSIZE) 2073 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 2074 2075 s = splbio(); 2076 loop: 2077 /* 2078 * Block if we are low on buffers. Certain processes are allowed 2079 * to completely exhaust the buffer cache. 2080 * 2081 * If this check ever becomes a bottleneck it may be better to 2082 * move it into the else, when gbincore() fails. At the moment 2083 * it isn't a problem. 2084 * 2085 * XXX remove, we cannot afford to block anywhere if holding a vnode 2086 * lock in low-memory situation, so take it to the max. 2087 */ 2088 if (numfreebuffers == 0) { 2089 if (!curproc) 2090 return NULL; 2091 needsbuffer |= VFS_BIO_NEED_ANY; 2092 tsleep(&needsbuffer, slpflag, "newbuf", slptimeo); 2093 } 2094 2095 if ((bp = gbincore(vp, blkno))) { 2096 /* 2097 * Buffer is in-core. If the buffer is not busy, it must 2098 * be on a queue. 2099 */ 2100 2101 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2102 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, 2103 "getblk", slpflag, slptimeo) == ENOLCK) 2104 goto loop; 2105 splx(s); 2106 return (struct buf *) NULL; 2107 } 2108 2109 /* 2110 * The buffer is locked. B_CACHE is cleared if the buffer is 2111 * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set 2112 * and for a VMIO buffer B_CACHE is adjusted according to the 2113 * backing VM cache. 2114 */ 2115 if (bp->b_flags & B_INVAL) 2116 bp->b_flags &= ~B_CACHE; 2117 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2118 bp->b_flags |= B_CACHE; 2119 bremfree(bp); 2120 2121 /* 2122 * check for size inconsistancies for non-VMIO case. 2123 */ 2124 2125 if (bp->b_bcount != size) { 2126 if ((bp->b_flags & B_VMIO) == 0 || 2127 (size > bp->b_kvasize)) { 2128 if (bp->b_flags & B_DELWRI) { 2129 bp->b_flags |= B_NOCACHE; 2130 VOP_BWRITE(bp->b_vp, bp); 2131 } else { 2132 if ((bp->b_flags & B_VMIO) && 2133 (LIST_FIRST(&bp->b_dep) == NULL)) { 2134 bp->b_flags |= B_RELBUF; 2135 brelse(bp); 2136 } else { 2137 bp->b_flags |= B_NOCACHE; 2138 VOP_BWRITE(bp->b_vp, bp); 2139 } 2140 } 2141 goto loop; 2142 } 2143 } 2144 2145 /* 2146 * If the size is inconsistant in the VMIO case, we can resize 2147 * the buffer. This might lead to B_CACHE getting set or 2148 * cleared. If the size has not changed, B_CACHE remains 2149 * unchanged from its previous state. 2150 */ 2151 2152 if (bp->b_bcount != size) 2153 allocbuf(bp, size); 2154 2155 KASSERT(bp->b_offset != NOOFFSET, 2156 ("getblk: no buffer offset")); 2157 2158 /* 2159 * A buffer with B_DELWRI set and B_CACHE clear must 2160 * be committed before we can return the buffer in 2161 * order to prevent the caller from issuing a read 2162 * ( due to B_CACHE not being set ) and overwriting 2163 * it. 2164 * 2165 * Most callers, including NFS and FFS, need this to 2166 * operate properly either because they assume they 2167 * can issue a read if B_CACHE is not set, or because 2168 * ( for example ) an uncached B_DELWRI might loop due 2169 * to softupdates re-dirtying the buffer. In the latter 2170 * case, B_CACHE is set after the first write completes, 2171 * preventing further loops. 2172 * 2173 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2174 * above while extending the buffer, we cannot allow the 2175 * buffer to remain with B_CACHE set after the write 2176 * completes or it will represent a corrupt state. To 2177 * deal with this we set B_NOCACHE to scrap the buffer 2178 * after the write. 2179 * 2180 * We might be able to do something fancy, like setting 2181 * B_CACHE in bwrite() except if B_DELWRI is already set, 2182 * so the below call doesn't set B_CACHE, but that gets real 2183 * confusing. This is much easier. 2184 */ 2185 2186 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2187 bp->b_flags |= B_NOCACHE; 2188 VOP_BWRITE(bp->b_vp, bp); 2189 goto loop; 2190 } 2191 2192 splx(s); 2193 bp->b_flags &= ~B_DONE; 2194 } else { 2195 /* 2196 * Buffer is not in-core, create new buffer. The buffer 2197 * returned by getnewbuf() is locked. Note that the returned 2198 * buffer is also considered valid (not marked B_INVAL). 2199 */ 2200 int bsize, maxsize, vmio; 2201 off_t offset; 2202 2203 if (vn_isdisk(vp, NULL)) 2204 bsize = DEV_BSIZE; 2205 else if (vp->v_mountedhere) 2206 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2207 else if (vp->v_mount) 2208 bsize = vp->v_mount->mnt_stat.f_iosize; 2209 else 2210 bsize = size; 2211 2212 offset = (off_t)blkno * bsize; 2213 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF); 2214 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2215 maxsize = imax(maxsize, bsize); 2216 2217 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2218 if (slpflag || slptimeo) { 2219 splx(s); 2220 return NULL; 2221 } 2222 goto loop; 2223 } 2224 2225 /* 2226 * This code is used to make sure that a buffer is not 2227 * created while the getnewbuf routine is blocked. 2228 * This can be a problem whether the vnode is locked or not. 2229 * If the buffer is created out from under us, we have to 2230 * throw away the one we just created. There is now window 2231 * race because we are safely running at splbio() from the 2232 * point of the duplicate buffer creation through to here, 2233 * and we've locked the buffer. 2234 */ 2235 if (gbincore(vp, blkno)) { 2236 bp->b_flags |= B_INVAL; 2237 brelse(bp); 2238 goto loop; 2239 } 2240 2241 /* 2242 * Insert the buffer into the hash, so that it can 2243 * be found by incore. 2244 */ 2245 bp->b_blkno = bp->b_lblkno = blkno; 2246 bp->b_offset = offset; 2247 2248 bgetvp(vp, bp); 2249 LIST_REMOVE(bp, b_hash); 2250 bh = bufhash(vp, blkno); 2251 LIST_INSERT_HEAD(bh, bp, b_hash); 2252 2253 /* 2254 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2255 * buffer size starts out as 0, B_CACHE will be set by 2256 * allocbuf() for the VMIO case prior to it testing the 2257 * backing store for validity. 2258 */ 2259 2260 if (vmio) { 2261 bp->b_flags |= B_VMIO; 2262 #if defined(VFS_BIO_DEBUG) 2263 if (vp->v_type != VREG && vp->v_type != VBLK) 2264 printf("getblk: vmioing file type %d???\n", vp->v_type); 2265 #endif 2266 } else { 2267 bp->b_flags &= ~B_VMIO; 2268 } 2269 2270 allocbuf(bp, size); 2271 2272 splx(s); 2273 bp->b_flags &= ~B_DONE; 2274 } 2275 return (bp); 2276 } 2277 2278 /* 2279 * Get an empty, disassociated buffer of given size. The buffer is initially 2280 * set to B_INVAL. 2281 */ 2282 struct buf * 2283 geteblk(int size) 2284 { 2285 struct buf *bp; 2286 int s; 2287 int maxsize; 2288 2289 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2290 2291 s = splbio(); 2292 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0); 2293 splx(s); 2294 allocbuf(bp, size); 2295 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2296 return (bp); 2297 } 2298 2299 2300 /* 2301 * This code constitutes the buffer memory from either anonymous system 2302 * memory (in the case of non-VMIO operations) or from an associated 2303 * VM object (in the case of VMIO operations). This code is able to 2304 * resize a buffer up or down. 2305 * 2306 * Note that this code is tricky, and has many complications to resolve 2307 * deadlock or inconsistant data situations. Tread lightly!!! 2308 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2309 * the caller. Calling this code willy nilly can result in the loss of data. 2310 * 2311 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2312 * B_CACHE for the non-VMIO case. 2313 */ 2314 2315 int 2316 allocbuf(struct buf *bp, int size) 2317 { 2318 int newbsize, mbsize; 2319 int i; 2320 2321 if (BUF_REFCNT(bp) == 0) 2322 panic("allocbuf: buffer not busy"); 2323 2324 if (bp->b_kvasize < size) 2325 panic("allocbuf: buffer too small"); 2326 2327 if ((bp->b_flags & B_VMIO) == 0) { 2328 caddr_t origbuf; 2329 int origbufsize; 2330 /* 2331 * Just get anonymous memory from the kernel. Don't 2332 * mess with B_CACHE. 2333 */ 2334 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2335 #if !defined(NO_B_MALLOC) 2336 if (bp->b_flags & B_MALLOC) 2337 newbsize = mbsize; 2338 else 2339 #endif 2340 newbsize = round_page(size); 2341 2342 if (newbsize < bp->b_bufsize) { 2343 #if !defined(NO_B_MALLOC) 2344 /* 2345 * malloced buffers are not shrunk 2346 */ 2347 if (bp->b_flags & B_MALLOC) { 2348 if (newbsize) { 2349 bp->b_bcount = size; 2350 } else { 2351 free(bp->b_data, M_BIOBUF); 2352 if (bp->b_bufsize) { 2353 bufmallocspace -= bp->b_bufsize; 2354 bufspacewakeup(); 2355 bp->b_bufsize = 0; 2356 } 2357 bp->b_data = bp->b_kvabase; 2358 bp->b_bcount = 0; 2359 bp->b_flags &= ~B_MALLOC; 2360 } 2361 return 1; 2362 } 2363 #endif 2364 vm_hold_free_pages( 2365 bp, 2366 (vm_offset_t) bp->b_data + newbsize, 2367 (vm_offset_t) bp->b_data + bp->b_bufsize); 2368 } else if (newbsize > bp->b_bufsize) { 2369 #if !defined(NO_B_MALLOC) 2370 /* 2371 * We only use malloced memory on the first allocation. 2372 * and revert to page-allocated memory when the buffer 2373 * grows. 2374 */ 2375 if ( (bufmallocspace < maxbufmallocspace) && 2376 (bp->b_bufsize == 0) && 2377 (mbsize <= PAGE_SIZE/2)) { 2378 2379 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2380 bp->b_bufsize = mbsize; 2381 bp->b_bcount = size; 2382 bp->b_flags |= B_MALLOC; 2383 bufmallocspace += mbsize; 2384 return 1; 2385 } 2386 #endif 2387 origbuf = NULL; 2388 origbufsize = 0; 2389 #if !defined(NO_B_MALLOC) 2390 /* 2391 * If the buffer is growing on its other-than-first allocation, 2392 * then we revert to the page-allocation scheme. 2393 */ 2394 if (bp->b_flags & B_MALLOC) { 2395 origbuf = bp->b_data; 2396 origbufsize = bp->b_bufsize; 2397 bp->b_data = bp->b_kvabase; 2398 if (bp->b_bufsize) { 2399 bufmallocspace -= bp->b_bufsize; 2400 bufspacewakeup(); 2401 bp->b_bufsize = 0; 2402 } 2403 bp->b_flags &= ~B_MALLOC; 2404 newbsize = round_page(newbsize); 2405 } 2406 #endif 2407 vm_hold_load_pages( 2408 bp, 2409 (vm_offset_t) bp->b_data + bp->b_bufsize, 2410 (vm_offset_t) bp->b_data + newbsize); 2411 #if !defined(NO_B_MALLOC) 2412 if (origbuf) { 2413 bcopy(origbuf, bp->b_data, origbufsize); 2414 free(origbuf, M_BIOBUF); 2415 } 2416 #endif 2417 } 2418 } else { 2419 vm_page_t m; 2420 int desiredpages; 2421 2422 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2423 desiredpages = (size == 0) ? 0 : 2424 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2425 2426 #if !defined(NO_B_MALLOC) 2427 if (bp->b_flags & B_MALLOC) 2428 panic("allocbuf: VMIO buffer can't be malloced"); 2429 #endif 2430 /* 2431 * Set B_CACHE initially if buffer is 0 length or will become 2432 * 0-length. 2433 */ 2434 if (size == 0 || bp->b_bufsize == 0) 2435 bp->b_flags |= B_CACHE; 2436 2437 if (newbsize < bp->b_bufsize) { 2438 /* 2439 * DEV_BSIZE aligned new buffer size is less then the 2440 * DEV_BSIZE aligned existing buffer size. Figure out 2441 * if we have to remove any pages. 2442 */ 2443 if (desiredpages < bp->b_npages) { 2444 for (i = desiredpages; i < bp->b_npages; i++) { 2445 /* 2446 * the page is not freed here -- it 2447 * is the responsibility of 2448 * vnode_pager_setsize 2449 */ 2450 m = bp->b_pages[i]; 2451 KASSERT(m != bogus_page, 2452 ("allocbuf: bogus page found")); 2453 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2454 ; 2455 2456 bp->b_pages[i] = NULL; 2457 vm_page_unwire(m, 0); 2458 } 2459 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2460 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2461 bp->b_npages = desiredpages; 2462 } 2463 } else if (size > bp->b_bcount) { 2464 /* 2465 * We are growing the buffer, possibly in a 2466 * byte-granular fashion. 2467 */ 2468 struct vnode *vp; 2469 vm_object_t obj; 2470 vm_offset_t toff; 2471 vm_offset_t tinc; 2472 2473 /* 2474 * Step 1, bring in the VM pages from the object, 2475 * allocating them if necessary. We must clear 2476 * B_CACHE if these pages are not valid for the 2477 * range covered by the buffer. 2478 */ 2479 2480 vp = bp->b_vp; 2481 VOP_GETVOBJECT(vp, &obj); 2482 2483 while (bp->b_npages < desiredpages) { 2484 vm_page_t m; 2485 vm_pindex_t pi; 2486 2487 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2488 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2489 /* 2490 * note: must allocate system pages 2491 * since blocking here could intefere 2492 * with paging I/O, no matter which 2493 * process we are. 2494 */ 2495 m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM); 2496 if (m == NULL) { 2497 VM_WAIT; 2498 vm_pageout_deficit += desiredpages - bp->b_npages; 2499 } else { 2500 vm_page_wire(m); 2501 vm_page_wakeup(m); 2502 bp->b_flags &= ~B_CACHE; 2503 bp->b_pages[bp->b_npages] = m; 2504 ++bp->b_npages; 2505 } 2506 continue; 2507 } 2508 2509 /* 2510 * We found a page. If we have to sleep on it, 2511 * retry because it might have gotten freed out 2512 * from under us. 2513 * 2514 * We can only test PG_BUSY here. Blocking on 2515 * m->busy might lead to a deadlock: 2516 * 2517 * vm_fault->getpages->cluster_read->allocbuf 2518 * 2519 */ 2520 2521 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2522 continue; 2523 2524 /* 2525 * We have a good page. Should we wakeup the 2526 * page daemon? 2527 */ 2528 if ((curthread != pagethread) && 2529 ((m->queue - m->pc) == PQ_CACHE) && 2530 ((vmstats.v_free_count + vmstats.v_cache_count) < 2531 (vmstats.v_free_min + vmstats.v_cache_min))) { 2532 pagedaemon_wakeup(); 2533 } 2534 vm_page_flag_clear(m, PG_ZERO); 2535 vm_page_wire(m); 2536 bp->b_pages[bp->b_npages] = m; 2537 ++bp->b_npages; 2538 } 2539 2540 /* 2541 * Step 2. We've loaded the pages into the buffer, 2542 * we have to figure out if we can still have B_CACHE 2543 * set. Note that B_CACHE is set according to the 2544 * byte-granular range ( bcount and size ), new the 2545 * aligned range ( newbsize ). 2546 * 2547 * The VM test is against m->valid, which is DEV_BSIZE 2548 * aligned. Needless to say, the validity of the data 2549 * needs to also be DEV_BSIZE aligned. Note that this 2550 * fails with NFS if the server or some other client 2551 * extends the file's EOF. If our buffer is resized, 2552 * B_CACHE may remain set! XXX 2553 */ 2554 2555 toff = bp->b_bcount; 2556 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2557 2558 while ((bp->b_flags & B_CACHE) && toff < size) { 2559 vm_pindex_t pi; 2560 2561 if (tinc > (size - toff)) 2562 tinc = size - toff; 2563 2564 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2565 PAGE_SHIFT; 2566 2567 vfs_buf_test_cache( 2568 bp, 2569 bp->b_offset, 2570 toff, 2571 tinc, 2572 bp->b_pages[pi] 2573 ); 2574 toff += tinc; 2575 tinc = PAGE_SIZE; 2576 } 2577 2578 /* 2579 * Step 3, fixup the KVM pmap. Remember that 2580 * bp->b_data is relative to bp->b_offset, but 2581 * bp->b_offset may be offset into the first page. 2582 */ 2583 2584 bp->b_data = (caddr_t) 2585 trunc_page((vm_offset_t)bp->b_data); 2586 pmap_qenter( 2587 (vm_offset_t)bp->b_data, 2588 bp->b_pages, 2589 bp->b_npages 2590 ); 2591 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2592 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2593 } 2594 } 2595 if (newbsize < bp->b_bufsize) 2596 bufspacewakeup(); 2597 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2598 bp->b_bcount = size; /* requested buffer size */ 2599 return 1; 2600 } 2601 2602 /* 2603 * biowait: 2604 * 2605 * Wait for buffer I/O completion, returning error status. The buffer 2606 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR 2607 * error and cleared. 2608 */ 2609 int 2610 biowait(struct buf * bp) 2611 { 2612 int s; 2613 2614 s = splbio(); 2615 while ((bp->b_flags & B_DONE) == 0) { 2616 #if defined(NO_SCHEDULE_MODS) 2617 tsleep(bp, 0, "biowait", 0); 2618 #else 2619 if (bp->b_flags & B_READ) 2620 tsleep(bp, 0, "biord", 0); 2621 else 2622 tsleep(bp, 0, "biowr", 0); 2623 #endif 2624 } 2625 splx(s); 2626 if (bp->b_flags & B_EINTR) { 2627 bp->b_flags &= ~B_EINTR; 2628 return (EINTR); 2629 } 2630 if (bp->b_flags & B_ERROR) { 2631 return (bp->b_error ? bp->b_error : EIO); 2632 } else { 2633 return (0); 2634 } 2635 } 2636 2637 /* 2638 * biodone: 2639 * 2640 * Finish I/O on a buffer, optionally calling a completion function. 2641 * This is usually called from an interrupt so process blocking is 2642 * not allowed. 2643 * 2644 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2645 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2646 * assuming B_INVAL is clear. 2647 * 2648 * For the VMIO case, we set B_CACHE if the op was a read and no 2649 * read error occured, or if the op was a write. B_CACHE is never 2650 * set if the buffer is invalid or otherwise uncacheable. 2651 * 2652 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2653 * initiator to leave B_INVAL set to brelse the buffer out of existance 2654 * in the biodone routine. 2655 */ 2656 void 2657 biodone(struct buf * bp) 2658 { 2659 int s, error; 2660 2661 s = splbio(); 2662 2663 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 2664 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 2665 2666 bp->b_flags |= B_DONE; 2667 runningbufwakeup(bp); 2668 2669 if (bp->b_flags & B_FREEBUF) { 2670 brelse(bp); 2671 splx(s); 2672 return; 2673 } 2674 2675 if ((bp->b_flags & B_READ) == 0) { 2676 vwakeup(bp); 2677 } 2678 2679 /* call optional completion function if requested */ 2680 if (bp->b_flags & B_CALL) { 2681 bp->b_flags &= ~B_CALL; 2682 (*bp->b_iodone) (bp); 2683 splx(s); 2684 return; 2685 } 2686 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 2687 (*bioops.io_complete)(bp); 2688 2689 if (bp->b_flags & B_VMIO) { 2690 int i; 2691 vm_ooffset_t foff; 2692 vm_page_t m; 2693 vm_object_t obj; 2694 int iosize; 2695 struct vnode *vp = bp->b_vp; 2696 2697 error = VOP_GETVOBJECT(vp, &obj); 2698 2699 #if defined(VFS_BIO_DEBUG) 2700 if (vp->v_usecount == 0) { 2701 panic("biodone: zero vnode ref count"); 2702 } 2703 2704 if (error) { 2705 panic("biodone: missing VM object"); 2706 } 2707 2708 if ((vp->v_flag & VOBJBUF) == 0) { 2709 panic("biodone: vnode is not setup for merged cache"); 2710 } 2711 #endif 2712 2713 foff = bp->b_offset; 2714 KASSERT(bp->b_offset != NOOFFSET, 2715 ("biodone: no buffer offset")); 2716 2717 if (error) { 2718 panic("biodone: no object"); 2719 } 2720 #if defined(VFS_BIO_DEBUG) 2721 if (obj->paging_in_progress < bp->b_npages) { 2722 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 2723 obj->paging_in_progress, bp->b_npages); 2724 } 2725 #endif 2726 2727 /* 2728 * Set B_CACHE if the op was a normal read and no error 2729 * occured. B_CACHE is set for writes in the b*write() 2730 * routines. 2731 */ 2732 iosize = bp->b_bcount - bp->b_resid; 2733 if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) { 2734 bp->b_flags |= B_CACHE; 2735 } 2736 2737 for (i = 0; i < bp->b_npages; i++) { 2738 int bogusflag = 0; 2739 int resid; 2740 2741 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2742 if (resid > iosize) 2743 resid = iosize; 2744 2745 /* 2746 * cleanup bogus pages, restoring the originals 2747 */ 2748 m = bp->b_pages[i]; 2749 if (m == bogus_page) { 2750 bogusflag = 1; 2751 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2752 if (m == NULL) 2753 panic("biodone: page disappeared"); 2754 bp->b_pages[i] = m; 2755 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2756 } 2757 #if defined(VFS_BIO_DEBUG) 2758 if (OFF_TO_IDX(foff) != m->pindex) { 2759 printf( 2760 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 2761 (unsigned long)foff, m->pindex); 2762 } 2763 #endif 2764 2765 /* 2766 * In the write case, the valid and clean bits are 2767 * already changed correctly ( see bdwrite() ), so we 2768 * only need to do this here in the read case. 2769 */ 2770 if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) { 2771 vfs_page_set_valid(bp, foff, i, m); 2772 } 2773 vm_page_flag_clear(m, PG_ZERO); 2774 2775 /* 2776 * when debugging new filesystems or buffer I/O methods, this 2777 * is the most common error that pops up. if you see this, you 2778 * have not set the page busy flag correctly!!! 2779 */ 2780 if (m->busy == 0) { 2781 printf("biodone: page busy < 0, " 2782 "pindex: %d, foff: 0x(%x,%x), " 2783 "resid: %d, index: %d\n", 2784 (int) m->pindex, (int)(foff >> 32), 2785 (int) foff & 0xffffffff, resid, i); 2786 if (!vn_isdisk(vp, NULL)) 2787 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n", 2788 bp->b_vp->v_mount->mnt_stat.f_iosize, 2789 (int) bp->b_lblkno, 2790 bp->b_flags, bp->b_npages); 2791 else 2792 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n", 2793 (int) bp->b_lblkno, 2794 bp->b_flags, bp->b_npages); 2795 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 2796 m->valid, m->dirty, m->wire_count); 2797 panic("biodone: page busy < 0\n"); 2798 } 2799 vm_page_io_finish(m); 2800 vm_object_pip_subtract(obj, 1); 2801 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2802 iosize -= resid; 2803 } 2804 if (obj) 2805 vm_object_pip_wakeupn(obj, 0); 2806 } 2807 2808 /* 2809 * For asynchronous completions, release the buffer now. The brelse 2810 * will do a wakeup there if necessary - so no need to do a wakeup 2811 * here in the async case. The sync case always needs to do a wakeup. 2812 */ 2813 2814 if (bp->b_flags & B_ASYNC) { 2815 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0) 2816 brelse(bp); 2817 else 2818 bqrelse(bp); 2819 } else { 2820 wakeup(bp); 2821 } 2822 splx(s); 2823 } 2824 2825 /* 2826 * This routine is called in lieu of iodone in the case of 2827 * incomplete I/O. This keeps the busy status for pages 2828 * consistant. 2829 */ 2830 void 2831 vfs_unbusy_pages(struct buf * bp) 2832 { 2833 int i; 2834 2835 runningbufwakeup(bp); 2836 if (bp->b_flags & B_VMIO) { 2837 struct vnode *vp = bp->b_vp; 2838 vm_object_t obj; 2839 2840 VOP_GETVOBJECT(vp, &obj); 2841 2842 for (i = 0; i < bp->b_npages; i++) { 2843 vm_page_t m = bp->b_pages[i]; 2844 2845 if (m == bogus_page) { 2846 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 2847 if (!m) { 2848 panic("vfs_unbusy_pages: page missing\n"); 2849 } 2850 bp->b_pages[i] = m; 2851 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2852 } 2853 vm_object_pip_subtract(obj, 1); 2854 vm_page_flag_clear(m, PG_ZERO); 2855 vm_page_io_finish(m); 2856 } 2857 vm_object_pip_wakeupn(obj, 0); 2858 } 2859 } 2860 2861 /* 2862 * vfs_page_set_valid: 2863 * 2864 * Set the valid bits in a page based on the supplied offset. The 2865 * range is restricted to the buffer's size. 2866 * 2867 * This routine is typically called after a read completes. 2868 */ 2869 static void 2870 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 2871 { 2872 vm_ooffset_t soff, eoff; 2873 2874 /* 2875 * Start and end offsets in buffer. eoff - soff may not cross a 2876 * page boundry or cross the end of the buffer. The end of the 2877 * buffer, in this case, is our file EOF, not the allocation size 2878 * of the buffer. 2879 */ 2880 soff = off; 2881 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2882 if (eoff > bp->b_offset + bp->b_bcount) 2883 eoff = bp->b_offset + bp->b_bcount; 2884 2885 /* 2886 * Set valid range. This is typically the entire buffer and thus the 2887 * entire page. 2888 */ 2889 if (eoff > soff) { 2890 vm_page_set_validclean( 2891 m, 2892 (vm_offset_t) (soff & PAGE_MASK), 2893 (vm_offset_t) (eoff - soff) 2894 ); 2895 } 2896 } 2897 2898 /* 2899 * This routine is called before a device strategy routine. 2900 * It is used to tell the VM system that paging I/O is in 2901 * progress, and treat the pages associated with the buffer 2902 * almost as being PG_BUSY. Also the object paging_in_progress 2903 * flag is handled to make sure that the object doesn't become 2904 * inconsistant. 2905 * 2906 * Since I/O has not been initiated yet, certain buffer flags 2907 * such as B_ERROR or B_INVAL may be in an inconsistant state 2908 * and should be ignored. 2909 */ 2910 void 2911 vfs_busy_pages(struct buf * bp, int clear_modify) 2912 { 2913 int i, bogus; 2914 2915 if (bp->b_flags & B_VMIO) { 2916 struct vnode *vp = bp->b_vp; 2917 vm_object_t obj; 2918 vm_ooffset_t foff; 2919 2920 VOP_GETVOBJECT(vp, &obj); 2921 foff = bp->b_offset; 2922 KASSERT(bp->b_offset != NOOFFSET, 2923 ("vfs_busy_pages: no buffer offset")); 2924 vfs_setdirty(bp); 2925 2926 retry: 2927 for (i = 0; i < bp->b_npages; i++) { 2928 vm_page_t m = bp->b_pages[i]; 2929 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 2930 goto retry; 2931 } 2932 2933 bogus = 0; 2934 for (i = 0; i < bp->b_npages; i++) { 2935 vm_page_t m = bp->b_pages[i]; 2936 2937 vm_page_flag_clear(m, PG_ZERO); 2938 if ((bp->b_flags & B_CLUSTER) == 0) { 2939 vm_object_pip_add(obj, 1); 2940 vm_page_io_start(m); 2941 } 2942 2943 /* 2944 * When readying a buffer for a read ( i.e 2945 * clear_modify == 0 ), it is important to do 2946 * bogus_page replacement for valid pages in 2947 * partially instantiated buffers. Partially 2948 * instantiated buffers can, in turn, occur when 2949 * reconstituting a buffer from its VM backing store 2950 * base. We only have to do this if B_CACHE is 2951 * clear ( which causes the I/O to occur in the 2952 * first place ). The replacement prevents the read 2953 * I/O from overwriting potentially dirty VM-backed 2954 * pages. XXX bogus page replacement is, uh, bogus. 2955 * It may not work properly with small-block devices. 2956 * We need to find a better way. 2957 */ 2958 2959 vm_page_protect(m, VM_PROT_NONE); 2960 if (clear_modify) 2961 vfs_page_set_valid(bp, foff, i, m); 2962 else if (m->valid == VM_PAGE_BITS_ALL && 2963 (bp->b_flags & B_CACHE) == 0) { 2964 bp->b_pages[i] = bogus_page; 2965 bogus++; 2966 } 2967 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2968 } 2969 if (bogus) 2970 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2971 } 2972 2973 /* 2974 * This is the easiest place to put the process accounting for the I/O 2975 * for now. 2976 */ 2977 { 2978 struct proc *p; 2979 2980 if ((p = curthread->td_proc) != NULL) { 2981 if (bp->b_flags & B_READ) 2982 p->p_stats->p_ru.ru_inblock++; 2983 else 2984 p->p_stats->p_ru.ru_oublock++; 2985 } 2986 } 2987 } 2988 2989 /* 2990 * Tell the VM system that the pages associated with this buffer 2991 * are clean. This is used for delayed writes where the data is 2992 * going to go to disk eventually without additional VM intevention. 2993 * 2994 * Note that while we only really need to clean through to b_bcount, we 2995 * just go ahead and clean through to b_bufsize. 2996 */ 2997 static void 2998 vfs_clean_pages(struct buf * bp) 2999 { 3000 int i; 3001 3002 if (bp->b_flags & B_VMIO) { 3003 vm_ooffset_t foff; 3004 3005 foff = bp->b_offset; 3006 KASSERT(bp->b_offset != NOOFFSET, 3007 ("vfs_clean_pages: no buffer offset")); 3008 for (i = 0; i < bp->b_npages; i++) { 3009 vm_page_t m = bp->b_pages[i]; 3010 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3011 vm_ooffset_t eoff = noff; 3012 3013 if (eoff > bp->b_offset + bp->b_bufsize) 3014 eoff = bp->b_offset + bp->b_bufsize; 3015 vfs_page_set_valid(bp, foff, i, m); 3016 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3017 foff = noff; 3018 } 3019 } 3020 } 3021 3022 /* 3023 * vfs_bio_set_validclean: 3024 * 3025 * Set the range within the buffer to valid and clean. The range is 3026 * relative to the beginning of the buffer, b_offset. Note that b_offset 3027 * itself may be offset from the beginning of the first page. 3028 */ 3029 3030 void 3031 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3032 { 3033 if (bp->b_flags & B_VMIO) { 3034 int i; 3035 int n; 3036 3037 /* 3038 * Fixup base to be relative to beginning of first page. 3039 * Set initial n to be the maximum number of bytes in the 3040 * first page that can be validated. 3041 */ 3042 3043 base += (bp->b_offset & PAGE_MASK); 3044 n = PAGE_SIZE - (base & PAGE_MASK); 3045 3046 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 3047 vm_page_t m = bp->b_pages[i]; 3048 3049 if (n > size) 3050 n = size; 3051 3052 vm_page_set_validclean(m, base & PAGE_MASK, n); 3053 base += n; 3054 size -= n; 3055 n = PAGE_SIZE; 3056 } 3057 } 3058 } 3059 3060 /* 3061 * vfs_bio_clrbuf: 3062 * 3063 * clear a buffer. This routine essentially fakes an I/O, so we need 3064 * to clear B_ERROR and B_INVAL. 3065 * 3066 * Note that while we only theoretically need to clear through b_bcount, 3067 * we go ahead and clear through b_bufsize. 3068 */ 3069 3070 void 3071 vfs_bio_clrbuf(struct buf *bp) 3072 { 3073 int i, mask = 0; 3074 caddr_t sa, ea; 3075 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3076 bp->b_flags &= ~(B_INVAL|B_ERROR); 3077 if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3078 (bp->b_offset & PAGE_MASK) == 0) { 3079 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3080 if ((bp->b_pages[0]->valid & mask) == mask) { 3081 bp->b_resid = 0; 3082 return; 3083 } 3084 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 3085 ((bp->b_pages[0]->valid & mask) == 0)) { 3086 bzero(bp->b_data, bp->b_bufsize); 3087 bp->b_pages[0]->valid |= mask; 3088 bp->b_resid = 0; 3089 return; 3090 } 3091 } 3092 ea = sa = bp->b_data; 3093 for(i=0;i<bp->b_npages;i++,sa=ea) { 3094 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3095 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3096 ea = (caddr_t)(vm_offset_t)ulmin( 3097 (u_long)(vm_offset_t)ea, 3098 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3099 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3100 if ((bp->b_pages[i]->valid & mask) == mask) 3101 continue; 3102 if ((bp->b_pages[i]->valid & mask) == 0) { 3103 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 3104 bzero(sa, ea - sa); 3105 } 3106 } else { 3107 for (; sa < ea; sa += DEV_BSIZE, j++) { 3108 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 3109 (bp->b_pages[i]->valid & (1<<j)) == 0) 3110 bzero(sa, DEV_BSIZE); 3111 } 3112 } 3113 bp->b_pages[i]->valid |= mask; 3114 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3115 } 3116 bp->b_resid = 0; 3117 } else { 3118 clrbuf(bp); 3119 } 3120 } 3121 3122 /* 3123 * vm_hold_load_pages and vm_hold_unload pages get pages into 3124 * a buffers address space. The pages are anonymous and are 3125 * not associated with a file object. 3126 */ 3127 void 3128 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3129 { 3130 vm_offset_t pg; 3131 vm_page_t p; 3132 int index; 3133 3134 to = round_page(to); 3135 from = round_page(from); 3136 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3137 3138 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3139 3140 tryagain: 3141 3142 /* 3143 * note: must allocate system pages since blocking here 3144 * could intefere with paging I/O, no matter which 3145 * process we are. 3146 */ 3147 p = vm_page_alloc(kernel_object, 3148 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3149 VM_ALLOC_SYSTEM); 3150 if (!p) { 3151 vm_pageout_deficit += (to - from) >> PAGE_SHIFT; 3152 VM_WAIT; 3153 goto tryagain; 3154 } 3155 vm_page_wire(p); 3156 p->valid = VM_PAGE_BITS_ALL; 3157 vm_page_flag_clear(p, PG_ZERO); 3158 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 3159 bp->b_pages[index] = p; 3160 vm_page_wakeup(p); 3161 } 3162 bp->b_npages = index; 3163 } 3164 3165 void 3166 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3167 { 3168 vm_offset_t pg; 3169 vm_page_t p; 3170 int index, newnpages; 3171 3172 from = round_page(from); 3173 to = round_page(to); 3174 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3175 3176 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3177 p = bp->b_pages[index]; 3178 if (p && (index < bp->b_npages)) { 3179 if (p->busy) { 3180 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n", 3181 bp->b_blkno, bp->b_lblkno); 3182 } 3183 bp->b_pages[index] = NULL; 3184 pmap_kremove(pg); 3185 vm_page_busy(p); 3186 vm_page_unwire(p, 0); 3187 vm_page_free(p); 3188 } 3189 } 3190 bp->b_npages = newnpages; 3191 } 3192 3193 /* 3194 * Map an IO request into kernel virtual address space. 3195 * 3196 * All requests are (re)mapped into kernel VA space. 3197 * Notice that we use b_bufsize for the size of the buffer 3198 * to be mapped. b_bcount might be modified by the driver. 3199 */ 3200 int 3201 vmapbuf(struct buf *bp) 3202 { 3203 caddr_t addr, v, kva; 3204 vm_offset_t pa; 3205 int pidx; 3206 int i; 3207 struct vm_page *m; 3208 3209 if ((bp->b_flags & B_PHYS) == 0) 3210 panic("vmapbuf"); 3211 if (bp->b_bufsize < 0) 3212 return (-1); 3213 for (v = bp->b_saveaddr, 3214 addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), 3215 pidx = 0; 3216 addr < bp->b_data + bp->b_bufsize; 3217 addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) { 3218 /* 3219 * Do the vm_fault if needed; do the copy-on-write thing 3220 * when reading stuff off device into memory. 3221 */ 3222 retry: 3223 i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data, 3224 (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ); 3225 if (i < 0) { 3226 for (i = 0; i < pidx; ++i) { 3227 vm_page_unhold(bp->b_pages[i]); 3228 bp->b_pages[i] = NULL; 3229 } 3230 return(-1); 3231 } 3232 3233 /* 3234 * WARNING! If sparc support is MFCd in the future this will 3235 * have to be changed from pmap_kextract() to pmap_extract() 3236 * ala -current. 3237 */ 3238 #ifdef __sparc64__ 3239 #error "If MFCing sparc support use pmap_extract" 3240 #endif 3241 pa = pmap_kextract((vm_offset_t)addr); 3242 if (pa == 0) { 3243 printf("vmapbuf: warning, race against user address during I/O"); 3244 goto retry; 3245 } 3246 m = PHYS_TO_VM_PAGE(pa); 3247 vm_page_hold(m); 3248 bp->b_pages[pidx] = m; 3249 } 3250 if (pidx > btoc(MAXPHYS)) 3251 panic("vmapbuf: mapped more than MAXPHYS"); 3252 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx); 3253 3254 kva = bp->b_saveaddr; 3255 bp->b_npages = pidx; 3256 bp->b_saveaddr = bp->b_data; 3257 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); 3258 return(0); 3259 } 3260 3261 /* 3262 * Free the io map PTEs associated with this IO operation. 3263 * We also invalidate the TLB entries and restore the original b_addr. 3264 */ 3265 void 3266 vunmapbuf(bp) 3267 struct buf *bp; 3268 { 3269 int pidx; 3270 int npages; 3271 vm_page_t *m; 3272 3273 if ((bp->b_flags & B_PHYS) == 0) 3274 panic("vunmapbuf"); 3275 3276 npages = bp->b_npages; 3277 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), 3278 npages); 3279 m = bp->b_pages; 3280 for (pidx = 0; pidx < npages; pidx++) 3281 vm_page_unhold(*m++); 3282 3283 bp->b_data = bp->b_saveaddr; 3284 } 3285 3286 #include "opt_ddb.h" 3287 #ifdef DDB 3288 #include <ddb/ddb.h> 3289 3290 DB_SHOW_COMMAND(buffer, db_show_buffer) 3291 { 3292 /* get args */ 3293 struct buf *bp = (struct buf *)addr; 3294 3295 if (!have_addr) { 3296 db_printf("usage: show buffer <addr>\n"); 3297 return; 3298 } 3299 3300 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3301 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, " 3302 "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, " 3303 "b_blkno = %d, b_pblkno = %d\n", 3304 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3305 major(bp->b_dev), minor(bp->b_dev), 3306 bp->b_data, bp->b_blkno, bp->b_pblkno); 3307 if (bp->b_npages) { 3308 int i; 3309 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3310 for (i = 0; i < bp->b_npages; i++) { 3311 vm_page_t m; 3312 m = bp->b_pages[i]; 3313 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3314 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3315 if ((i + 1) < bp->b_npages) 3316 db_printf(","); 3317 } 3318 db_printf("\n"); 3319 } 3320 } 3321 #endif /* DDB */ 3322