xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 9bb2a92deb77a8c17f5fcc2740d0e3cc0e1c6c84)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.19 2004/03/01 06:33:17 dillon Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <sys/buf2.h>
57 #include <vm/vm_page2.h>
58 
59 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
60 
61 struct	bio_ops bioops;		/* I/O operation notification */
62 
63 struct buf *buf;		/* buffer header pool */
64 struct swqueue bswlist;
65 
66 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
67 		vm_offset_t to);
68 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
69 		vm_offset_t to);
70 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
71 			       int pageno, vm_page_t m);
72 static void vfs_clean_pages(struct buf * bp);
73 static void vfs_setdirty(struct buf *bp);
74 static void vfs_vmio_release(struct buf *bp);
75 static void vfs_backgroundwritedone(struct buf *bp);
76 static int flushbufqueues(void);
77 
78 static int bd_request;
79 
80 static void buf_daemon (void);
81 /*
82  * bogus page -- for I/O to/from partially complete buffers
83  * this is a temporary solution to the problem, but it is not
84  * really that bad.  it would be better to split the buffer
85  * for input in the case of buffers partially already in memory,
86  * but the code is intricate enough already.
87  */
88 vm_page_t bogus_page;
89 int vmiodirenable = TRUE;
90 int runningbufspace;
91 struct lwkt_token buftimetoken;  /* Interlock on setting prio and timo */
92 
93 static vm_offset_t bogus_offset;
94 
95 static int bufspace, maxbufspace,
96 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
97 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
98 static int needsbuffer;
99 static int lorunningspace, hirunningspace, runningbufreq;
100 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
101 static int numfreebuffers, lofreebuffers, hifreebuffers;
102 static int getnewbufcalls;
103 static int getnewbufrestarts;
104 
105 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
106 	&numdirtybuffers, 0, "");
107 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
108 	&lodirtybuffers, 0, "");
109 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
110 	&hidirtybuffers, 0, "");
111 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
112 	&numfreebuffers, 0, "");
113 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
114 	&lofreebuffers, 0, "");
115 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
116 	&hifreebuffers, 0, "");
117 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
118 	&runningbufspace, 0, "");
119 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
120 	&lorunningspace, 0, "");
121 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
122 	&hirunningspace, 0, "");
123 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
124 	&maxbufspace, 0, "");
125 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
126 	&hibufspace, 0, "");
127 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
128 	&lobufspace, 0, "");
129 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
130 	&bufspace, 0, "");
131 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
132 	&maxbufmallocspace, 0, "");
133 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
134 	&bufmallocspace, 0, "");
135 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
136 	&getnewbufcalls, 0, "");
137 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
138 	&getnewbufrestarts, 0, "");
139 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
140 	&vmiodirenable, 0, "");
141 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
142 	&bufdefragcnt, 0, "");
143 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
144 	&buffreekvacnt, 0, "");
145 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
146 	&bufreusecnt, 0, "");
147 
148 /*
149  * Disable background writes for now.  There appear to be races in the
150  * flags tests and locking operations as well as races in the completion
151  * code modifying the original bp (origbp) without holding a lock, assuming
152  * splbio protection when there might not be splbio protection.
153  */
154 static int dobkgrdwrite = 0;
155 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
156 	"Do background writes (honoring the BV_BKGRDWRITE flag)?");
157 
158 static int bufhashmask;
159 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
160 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
161 char *buf_wmesg = BUF_WMESG;
162 
163 extern int vm_swap_size;
164 
165 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
166 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
167 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
168 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
169 
170 /*
171  * Buffer hash table code.  Note that the logical block scans linearly, which
172  * gives us some L1 cache locality.
173  */
174 
175 static __inline
176 struct bufhashhdr *
177 bufhash(struct vnode *vnp, daddr_t bn)
178 {
179 	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
180 }
181 
182 /*
183  *	numdirtywakeup:
184  *
185  *	If someone is blocked due to there being too many dirty buffers,
186  *	and numdirtybuffers is now reasonable, wake them up.
187  */
188 
189 static __inline void
190 numdirtywakeup(int level)
191 {
192 	if (numdirtybuffers <= level) {
193 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
194 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
195 			wakeup(&needsbuffer);
196 		}
197 	}
198 }
199 
200 /*
201  *	bufspacewakeup:
202  *
203  *	Called when buffer space is potentially available for recovery.
204  *	getnewbuf() will block on this flag when it is unable to free
205  *	sufficient buffer space.  Buffer space becomes recoverable when
206  *	bp's get placed back in the queues.
207  */
208 
209 static __inline void
210 bufspacewakeup(void)
211 {
212 	/*
213 	 * If someone is waiting for BUF space, wake them up.  Even
214 	 * though we haven't freed the kva space yet, the waiting
215 	 * process will be able to now.
216 	 */
217 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
218 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
219 		wakeup(&needsbuffer);
220 	}
221 }
222 
223 /*
224  * runningbufwakeup() - in-progress I/O accounting.
225  *
226  */
227 static __inline void
228 runningbufwakeup(struct buf *bp)
229 {
230 	if (bp->b_runningbufspace) {
231 		runningbufspace -= bp->b_runningbufspace;
232 		bp->b_runningbufspace = 0;
233 		if (runningbufreq && runningbufspace <= lorunningspace) {
234 			runningbufreq = 0;
235 			wakeup(&runningbufreq);
236 		}
237 	}
238 }
239 
240 /*
241  *	bufcountwakeup:
242  *
243  *	Called when a buffer has been added to one of the free queues to
244  *	account for the buffer and to wakeup anyone waiting for free buffers.
245  *	This typically occurs when large amounts of metadata are being handled
246  *	by the buffer cache ( else buffer space runs out first, usually ).
247  */
248 
249 static __inline void
250 bufcountwakeup(void)
251 {
252 	++numfreebuffers;
253 	if (needsbuffer) {
254 		needsbuffer &= ~VFS_BIO_NEED_ANY;
255 		if (numfreebuffers >= hifreebuffers)
256 			needsbuffer &= ~VFS_BIO_NEED_FREE;
257 		wakeup(&needsbuffer);
258 	}
259 }
260 
261 /*
262  *	waitrunningbufspace()
263  *
264  *	runningbufspace is a measure of the amount of I/O currently
265  *	running.  This routine is used in async-write situations to
266  *	prevent creating huge backups of pending writes to a device.
267  *	Only asynchronous writes are governed by this function.
268  *
269  *	Reads will adjust runningbufspace, but will not block based on it.
270  *	The read load has a side effect of reducing the allowed write load.
271  *
272  *	This does NOT turn an async write into a sync write.  It waits
273  *	for earlier writes to complete and generally returns before the
274  *	caller's write has reached the device.
275  */
276 static __inline void
277 waitrunningbufspace(void)
278 {
279 	while (runningbufspace > hirunningspace) {
280 		int s;
281 
282 		s = splbio();	/* fix race against interrupt/biodone() */
283 		++runningbufreq;
284 		tsleep(&runningbufreq, 0, "wdrain", 0);
285 		splx(s);
286 	}
287 }
288 
289 /*
290  *	vfs_buf_test_cache:
291  *
292  *	Called when a buffer is extended.  This function clears the B_CACHE
293  *	bit if the newly extended portion of the buffer does not contain
294  *	valid data.
295  */
296 static __inline__
297 void
298 vfs_buf_test_cache(struct buf *bp,
299 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
300 		  vm_page_t m)
301 {
302 	if (bp->b_flags & B_CACHE) {
303 		int base = (foff + off) & PAGE_MASK;
304 		if (vm_page_is_valid(m, base, size) == 0)
305 			bp->b_flags &= ~B_CACHE;
306 	}
307 }
308 
309 static __inline__
310 void
311 bd_wakeup(int dirtybuflevel)
312 {
313 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
314 		bd_request = 1;
315 		wakeup(&bd_request);
316 	}
317 }
318 
319 /*
320  * bd_speedup - speedup the buffer cache flushing code
321  */
322 
323 static __inline__
324 void
325 bd_speedup(void)
326 {
327 	bd_wakeup(1);
328 }
329 
330 /*
331  * Initialize buffer headers and related structures.
332  */
333 
334 caddr_t
335 bufhashinit(caddr_t vaddr)
336 {
337 	/* first, make a null hash table */
338 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
339 		;
340 	bufhashtbl = (void *)vaddr;
341 	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
342 	--bufhashmask;
343 	return(vaddr);
344 }
345 
346 void
347 bufinit(void)
348 {
349 	struct buf *bp;
350 	int i;
351 
352 	TAILQ_INIT(&bswlist);
353 	LIST_INIT(&invalhash);
354 	lwkt_token_init(&buftimetoken);
355 
356 	for (i = 0; i <= bufhashmask; i++)
357 		LIST_INIT(&bufhashtbl[i]);
358 
359 	/* next, make a null set of free lists */
360 	for (i = 0; i < BUFFER_QUEUES; i++)
361 		TAILQ_INIT(&bufqueues[i]);
362 
363 	/* finally, initialize each buffer header and stick on empty q */
364 	for (i = 0; i < nbuf; i++) {
365 		bp = &buf[i];
366 		bzero(bp, sizeof *bp);
367 		bp->b_flags = B_INVAL;	/* we're just an empty header */
368 		bp->b_dev = NODEV;
369 		bp->b_qindex = QUEUE_EMPTY;
370 		bp->b_xflags = 0;
371 		LIST_INIT(&bp->b_dep);
372 		BUF_LOCKINIT(bp);
373 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
374 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
375 	}
376 
377 	/*
378 	 * maxbufspace is the absolute maximum amount of buffer space we are
379 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
380 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
381 	 * used by most other processes.  The differential is required to
382 	 * ensure that buf_daemon is able to run when other processes might
383 	 * be blocked waiting for buffer space.
384 	 *
385 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
386 	 * this may result in KVM fragmentation which is not handled optimally
387 	 * by the system.
388 	 */
389 	maxbufspace = nbuf * BKVASIZE;
390 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
391 	lobufspace = hibufspace - MAXBSIZE;
392 
393 	lorunningspace = 512 * 1024;
394 	hirunningspace = 1024 * 1024;
395 
396 /*
397  * Limit the amount of malloc memory since it is wired permanently into
398  * the kernel space.  Even though this is accounted for in the buffer
399  * allocation, we don't want the malloced region to grow uncontrolled.
400  * The malloc scheme improves memory utilization significantly on average
401  * (small) directories.
402  */
403 	maxbufmallocspace = hibufspace / 20;
404 
405 /*
406  * Reduce the chance of a deadlock occuring by limiting the number
407  * of delayed-write dirty buffers we allow to stack up.
408  */
409 	hidirtybuffers = nbuf / 4 + 20;
410 	numdirtybuffers = 0;
411 /*
412  * To support extreme low-memory systems, make sure hidirtybuffers cannot
413  * eat up all available buffer space.  This occurs when our minimum cannot
414  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
415  * BKVASIZE'd (8K) buffers.
416  */
417 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
418 		hidirtybuffers >>= 1;
419 	}
420 	lodirtybuffers = hidirtybuffers / 2;
421 
422 /*
423  * Try to keep the number of free buffers in the specified range,
424  * and give special processes (e.g. like buf_daemon) access to an
425  * emergency reserve.
426  */
427 	lofreebuffers = nbuf / 18 + 5;
428 	hifreebuffers = 2 * lofreebuffers;
429 	numfreebuffers = nbuf;
430 
431 /*
432  * Maximum number of async ops initiated per buf_daemon loop.  This is
433  * somewhat of a hack at the moment, we really need to limit ourselves
434  * based on the number of bytes of I/O in-transit that were initiated
435  * from buf_daemon.
436  */
437 
438 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
439 	bogus_page = vm_page_alloc(kernel_object,
440 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
441 			VM_ALLOC_NORMAL);
442 	vmstats.v_wire_count++;
443 
444 }
445 
446 /*
447  * bfreekva() - free the kva allocation for a buffer.
448  *
449  *	Must be called at splbio() or higher as this is the only locking for
450  *	buffer_map.
451  *
452  *	Since this call frees up buffer space, we call bufspacewakeup().
453  */
454 static void
455 bfreekva(struct buf * bp)
456 {
457 	int count;
458 
459 	if (bp->b_kvasize) {
460 		++buffreekvacnt;
461 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
462 		vm_map_lock(buffer_map);
463 		bufspace -= bp->b_kvasize;
464 		vm_map_delete(buffer_map,
465 		    (vm_offset_t) bp->b_kvabase,
466 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
467 		    &count
468 		);
469 		vm_map_unlock(buffer_map);
470 		vm_map_entry_release(count);
471 		bp->b_kvasize = 0;
472 		bufspacewakeup();
473 	}
474 }
475 
476 /*
477  *	bremfree:
478  *
479  *	Remove the buffer from the appropriate free list.
480  */
481 void
482 bremfree(struct buf * bp)
483 {
484 	int s = splbio();
485 	int old_qindex = bp->b_qindex;
486 
487 	if (bp->b_qindex != QUEUE_NONE) {
488 		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
489 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
490 		bp->b_qindex = QUEUE_NONE;
491 	} else {
492 		if (BUF_REFCNT(bp) <= 1)
493 			panic("bremfree: removing a buffer not on a queue");
494 	}
495 
496 	/*
497 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
498 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
499 	 * the buffer was free and we must decrement numfreebuffers.
500 	 */
501 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
502 		switch(old_qindex) {
503 		case QUEUE_DIRTY:
504 		case QUEUE_CLEAN:
505 		case QUEUE_EMPTY:
506 		case QUEUE_EMPTYKVA:
507 			--numfreebuffers;
508 			break;
509 		default:
510 			break;
511 		}
512 	}
513 	splx(s);
514 }
515 
516 
517 /*
518  * Get a buffer with the specified data.  Look in the cache first.  We
519  * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
520  * is set, the buffer is valid and we do not have to do anything ( see
521  * getblk() ).
522  */
523 int
524 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp)
525 {
526 	struct buf *bp;
527 
528 	bp = getblk(vp, blkno, size, 0, 0);
529 	*bpp = bp;
530 
531 	/* if not found in cache, do some I/O */
532 	if ((bp->b_flags & B_CACHE) == 0) {
533 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
534 		bp->b_flags |= B_READ;
535 		bp->b_flags &= ~(B_ERROR | B_INVAL);
536 		vfs_busy_pages(bp, 0);
537 		VOP_STRATEGY(vp, bp);
538 		return (biowait(bp));
539 	}
540 	return (0);
541 }
542 
543 /*
544  * Operates like bread, but also starts asynchronous I/O on
545  * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
546  * to initiating I/O . If B_CACHE is set, the buffer is valid
547  * and we do not have to do anything.
548  */
549 int
550 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno,
551 	int *rabsize, int cnt, struct buf ** bpp)
552 {
553 	struct buf *bp, *rabp;
554 	int i;
555 	int rv = 0, readwait = 0;
556 
557 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
558 
559 	/* if not found in cache, do some I/O */
560 	if ((bp->b_flags & B_CACHE) == 0) {
561 		bp->b_flags |= B_READ;
562 		bp->b_flags &= ~(B_ERROR | B_INVAL);
563 		vfs_busy_pages(bp, 0);
564 		VOP_STRATEGY(vp, bp);
565 		++readwait;
566 	}
567 
568 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
569 		if (inmem(vp, *rablkno))
570 			continue;
571 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
572 
573 		if ((rabp->b_flags & B_CACHE) == 0) {
574 			rabp->b_flags |= B_READ | B_ASYNC;
575 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
576 			vfs_busy_pages(rabp, 0);
577 			BUF_KERNPROC(rabp);
578 			VOP_STRATEGY(vp, rabp);
579 		} else {
580 			brelse(rabp);
581 		}
582 	}
583 
584 	if (readwait) {
585 		rv = biowait(bp);
586 	}
587 	return (rv);
588 }
589 
590 /*
591  * Write, release buffer on completion.  (Done by iodone
592  * if async).  Do not bother writing anything if the buffer
593  * is invalid.
594  *
595  * Note that we set B_CACHE here, indicating that buffer is
596  * fully valid and thus cacheable.  This is true even of NFS
597  * now so we set it generally.  This could be set either here
598  * or in biodone() since the I/O is synchronous.  We put it
599  * here.
600  */
601 int
602 bwrite(struct buf * bp)
603 {
604 	int oldflags, s;
605 	struct buf *newbp;
606 
607 	if (bp->b_flags & B_INVAL) {
608 		brelse(bp);
609 		return (0);
610 	}
611 
612 	oldflags = bp->b_flags;
613 
614 	if (BUF_REFCNT(bp) == 0)
615 		panic("bwrite: buffer is not busy???");
616 	s = splbio();
617 	/*
618 	 * If a background write is already in progress, delay
619 	 * writing this block if it is asynchronous. Otherwise
620 	 * wait for the background write to complete.
621 	 */
622 	if (bp->b_xflags & BX_BKGRDINPROG) {
623 		if (bp->b_flags & B_ASYNC) {
624 			splx(s);
625 			bdwrite(bp);
626 			return (0);
627 		}
628 		bp->b_xflags |= BX_BKGRDWAIT;
629 		tsleep(&bp->b_xflags, 0, "biord", 0);
630 		if (bp->b_xflags & BX_BKGRDINPROG)
631 			panic("bwrite: still writing");
632 	}
633 
634 	/* Mark the buffer clean */
635 	bundirty(bp);
636 
637 	/*
638 	 * If this buffer is marked for background writing and we
639 	 * do not have to wait for it, make a copy and write the
640 	 * copy so as to leave this buffer ready for further use.
641 	 *
642 	 * This optimization eats a lot of memory.  If we have a page
643 	 * or buffer shortfull we can't do it.
644 	 */
645 	if (dobkgrdwrite &&
646 	    (bp->b_xflags & BX_BKGRDWRITE) &&
647 	    (bp->b_flags & B_ASYNC) &&
648 	    !vm_page_count_severe() &&
649 	    !buf_dirty_count_severe()) {
650 		if (bp->b_flags & B_CALL)
651 			panic("bwrite: need chained iodone");
652 
653 		/* get a new block */
654 		newbp = geteblk(bp->b_bufsize);
655 
656 		/* set it to be identical to the old block */
657 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
658 		bgetvp(bp->b_vp, newbp);
659 		newbp->b_lblkno = bp->b_lblkno;
660 		newbp->b_blkno = bp->b_blkno;
661 		newbp->b_offset = bp->b_offset;
662 		newbp->b_iodone = vfs_backgroundwritedone;
663 		newbp->b_flags |= B_ASYNC | B_CALL;
664 		newbp->b_flags &= ~B_INVAL;
665 
666 		/* move over the dependencies */
667 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
668 			(*bioops.io_movedeps)(bp, newbp);
669 
670 		/*
671 		 * Initiate write on the copy, release the original to
672 		 * the B_LOCKED queue so that it cannot go away until
673 		 * the background write completes. If not locked it could go
674 		 * away and then be reconstituted while it was being written.
675 		 * If the reconstituted buffer were written, we could end up
676 		 * with two background copies being written at the same time.
677 		 */
678 		bp->b_xflags |= BX_BKGRDINPROG;
679 		bp->b_flags |= B_LOCKED;
680 		bqrelse(bp);
681 		bp = newbp;
682 	}
683 
684 	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
685 	bp->b_flags |= B_WRITEINPROG | B_CACHE;
686 
687 	bp->b_vp->v_numoutput++;
688 	vfs_busy_pages(bp, 1);
689 
690 	/*
691 	 * Normal bwrites pipeline writes
692 	 */
693 	bp->b_runningbufspace = bp->b_bufsize;
694 	runningbufspace += bp->b_runningbufspace;
695 
696 	splx(s);
697 	if (oldflags & B_ASYNC)
698 		BUF_KERNPROC(bp);
699 	VOP_STRATEGY(bp->b_vp, bp);
700 
701 	if ((oldflags & B_ASYNC) == 0) {
702 		int rtval = biowait(bp);
703 		brelse(bp);
704 		return (rtval);
705 	} else if ((oldflags & B_NOWDRAIN) == 0) {
706 		/*
707 		 * don't allow the async write to saturate the I/O
708 		 * system.  Deadlocks can occur only if a device strategy
709 		 * routine (like in VN) turns around and issues another
710 		 * high-level write, in which case B_NOWDRAIN is expected
711 		 * to be set.   Otherwise we will not deadlock here because
712 		 * we are blocking waiting for I/O that is already in-progress
713 		 * to complete.
714 		 */
715 		waitrunningbufspace();
716 	}
717 
718 	return (0);
719 }
720 
721 /*
722  * Complete a background write started from bwrite.
723  */
724 static void
725 vfs_backgroundwritedone(bp)
726 	struct buf *bp;
727 {
728 	struct buf *origbp;
729 
730 	/*
731 	 * Find the original buffer that we are writing.
732 	 */
733 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
734 		panic("backgroundwritedone: lost buffer");
735 	/*
736 	 * Process dependencies then return any unfinished ones.
737 	 */
738 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
739 		(*bioops.io_complete)(bp);
740 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
741 		(*bioops.io_movedeps)(bp, origbp);
742 	/*
743 	 * Clear the BX_BKGRDINPROG flag in the original buffer
744 	 * and awaken it if it is waiting for the write to complete.
745 	 * If BX_BKGRDINPROG is not set in the original buffer it must
746 	 * have been released and re-instantiated - which is not legal.
747 	 */
748 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
749 	origbp->b_xflags &= ~BX_BKGRDINPROG;
750 	if (origbp->b_xflags & BX_BKGRDWAIT) {
751 		origbp->b_xflags &= ~BX_BKGRDWAIT;
752 		wakeup(&origbp->b_xflags);
753 	}
754 	/*
755 	 * Clear the B_LOCKED flag and remove it from the locked
756 	 * queue if it currently resides there.
757 	 */
758 	origbp->b_flags &= ~B_LOCKED;
759 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
760 		bremfree(origbp);
761 		bqrelse(origbp);
762 	}
763 	/*
764 	 * This buffer is marked B_NOCACHE, so when it is released
765 	 * by biodone, it will be tossed. We mark it with B_READ
766 	 * to avoid biodone doing a second vwakeup.
767 	 */
768 	bp->b_flags |= B_NOCACHE | B_READ;
769 	bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE);
770 	bp->b_iodone = 0;
771 	biodone(bp);
772 }
773 
774 /*
775  * Delayed write. (Buffer is marked dirty).  Do not bother writing
776  * anything if the buffer is marked invalid.
777  *
778  * Note that since the buffer must be completely valid, we can safely
779  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
780  * biodone() in order to prevent getblk from writing the buffer
781  * out synchronously.
782  */
783 void
784 bdwrite(struct buf * bp)
785 {
786 	if (BUF_REFCNT(bp) == 0)
787 		panic("bdwrite: buffer is not busy");
788 
789 	if (bp->b_flags & B_INVAL) {
790 		brelse(bp);
791 		return;
792 	}
793 	bdirty(bp);
794 
795 	/*
796 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
797 	 * true even of NFS now.
798 	 */
799 	bp->b_flags |= B_CACHE;
800 
801 	/*
802 	 * This bmap keeps the system from needing to do the bmap later,
803 	 * perhaps when the system is attempting to do a sync.  Since it
804 	 * is likely that the indirect block -- or whatever other datastructure
805 	 * that the filesystem needs is still in memory now, it is a good
806 	 * thing to do this.  Note also, that if the pageout daemon is
807 	 * requesting a sync -- there might not be enough memory to do
808 	 * the bmap then...  So, this is important to do.
809 	 */
810 	if (bp->b_lblkno == bp->b_blkno) {
811 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
812 	}
813 
814 	/*
815 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
816 	 */
817 	vfs_setdirty(bp);
818 
819 	/*
820 	 * We need to do this here to satisfy the vnode_pager and the
821 	 * pageout daemon, so that it thinks that the pages have been
822 	 * "cleaned".  Note that since the pages are in a delayed write
823 	 * buffer -- the VFS layer "will" see that the pages get written
824 	 * out on the next sync, or perhaps the cluster will be completed.
825 	 */
826 	vfs_clean_pages(bp);
827 	bqrelse(bp);
828 
829 	/*
830 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
831 	 * buffers (midpoint between our recovery point and our stall
832 	 * point).
833 	 */
834 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
835 
836 	/*
837 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
838 	 * due to the softdep code.
839 	 */
840 }
841 
842 /*
843  *	bdirty:
844  *
845  *	Turn buffer into delayed write request.  We must clear B_READ and
846  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
847  *	itself to properly update it in the dirty/clean lists.  We mark it
848  *	B_DONE to ensure that any asynchronization of the buffer properly
849  *	clears B_DONE ( else a panic will occur later ).
850  *
851  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
852  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
853  *	should only be called if the buffer is known-good.
854  *
855  *	Since the buffer is not on a queue, we do not update the numfreebuffers
856  *	count.
857  *
858  *	Must be called at splbio().
859  *	The buffer must be on QUEUE_NONE.
860  */
861 void
862 bdirty(bp)
863 	struct buf *bp;
864 {
865 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
866 	bp->b_flags &= ~(B_READ|B_RELBUF);
867 
868 	if ((bp->b_flags & B_DELWRI) == 0) {
869 		bp->b_flags |= B_DONE | B_DELWRI;
870 		reassignbuf(bp, bp->b_vp);
871 		++numdirtybuffers;
872 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
873 	}
874 }
875 
876 /*
877  *	bundirty:
878  *
879  *	Clear B_DELWRI for buffer.
880  *
881  *	Since the buffer is not on a queue, we do not update the numfreebuffers
882  *	count.
883  *
884  *	Must be called at splbio().
885  *	The buffer must be on QUEUE_NONE.
886  */
887 
888 void
889 bundirty(bp)
890 	struct buf *bp;
891 {
892 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
893 
894 	if (bp->b_flags & B_DELWRI) {
895 		bp->b_flags &= ~B_DELWRI;
896 		reassignbuf(bp, bp->b_vp);
897 		--numdirtybuffers;
898 		numdirtywakeup(lodirtybuffers);
899 	}
900 	/*
901 	 * Since it is now being written, we can clear its deferred write flag.
902 	 */
903 	bp->b_flags &= ~B_DEFERRED;
904 }
905 
906 /*
907  *	bawrite:
908  *
909  *	Asynchronous write.  Start output on a buffer, but do not wait for
910  *	it to complete.  The buffer is released when the output completes.
911  *
912  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
913  *	B_INVAL buffers.  Not us.
914  */
915 void
916 bawrite(struct buf * bp)
917 {
918 	bp->b_flags |= B_ASYNC;
919 	(void) VOP_BWRITE(bp->b_vp, bp);
920 }
921 
922 /*
923  *	bowrite:
924  *
925  *	Ordered write.  Start output on a buffer, and flag it so that the
926  *	device will write it in the order it was queued.  The buffer is
927  *	released when the output completes.  bwrite() ( or the VOP routine
928  *	anyway ) is responsible for handling B_INVAL buffers.
929  */
930 int
931 bowrite(struct buf * bp)
932 {
933 	bp->b_flags |= B_ORDERED | B_ASYNC;
934 	return (VOP_BWRITE(bp->b_vp, bp));
935 }
936 
937 /*
938  *	bwillwrite:
939  *
940  *	Called prior to the locking of any vnodes when we are expecting to
941  *	write.  We do not want to starve the buffer cache with too many
942  *	dirty buffers so we block here.  By blocking prior to the locking
943  *	of any vnodes we attempt to avoid the situation where a locked vnode
944  *	prevents the various system daemons from flushing related buffers.
945  */
946 
947 void
948 bwillwrite(void)
949 {
950 	if (numdirtybuffers >= hidirtybuffers) {
951 		int s;
952 
953 		s = splbio();
954 		while (numdirtybuffers >= hidirtybuffers) {
955 			bd_wakeup(1);
956 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
957 			tsleep(&needsbuffer, 0, "flswai", 0);
958 		}
959 		splx(s);
960 	}
961 }
962 
963 /*
964  * Return true if we have too many dirty buffers.
965  */
966 int
967 buf_dirty_count_severe(void)
968 {
969 	return(numdirtybuffers >= hidirtybuffers);
970 }
971 
972 /*
973  *	brelse:
974  *
975  *	Release a busy buffer and, if requested, free its resources.  The
976  *	buffer will be stashed in the appropriate bufqueue[] allowing it
977  *	to be accessed later as a cache entity or reused for other purposes.
978  */
979 void
980 brelse(struct buf * bp)
981 {
982 	int s;
983 
984 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
985 
986 	s = splbio();
987 
988 	if (bp->b_flags & B_LOCKED)
989 		bp->b_flags &= ~B_ERROR;
990 
991 	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
992 		/*
993 		 * Failed write, redirty.  Must clear B_ERROR to prevent
994 		 * pages from being scrapped.  If B_INVAL is set then
995 		 * this case is not run and the next case is run to
996 		 * destroy the buffer.  B_INVAL can occur if the buffer
997 		 * is outside the range supported by the underlying device.
998 		 */
999 		bp->b_flags &= ~B_ERROR;
1000 		bdirty(bp);
1001 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
1002 	    (bp->b_bufsize <= 0)) {
1003 		/*
1004 		 * Either a failed I/O or we were asked to free or not
1005 		 * cache the buffer.
1006 		 */
1007 		bp->b_flags |= B_INVAL;
1008 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1009 			(*bioops.io_deallocate)(bp);
1010 		if (bp->b_flags & B_DELWRI) {
1011 			--numdirtybuffers;
1012 			numdirtywakeup(lodirtybuffers);
1013 		}
1014 		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
1015 		if ((bp->b_flags & B_VMIO) == 0) {
1016 			if (bp->b_bufsize)
1017 				allocbuf(bp, 0);
1018 			if (bp->b_vp)
1019 				brelvp(bp);
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1025 	 * is called with B_DELWRI set, the underlying pages may wind up
1026 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1027 	 * because pages associated with a B_DELWRI bp are marked clean.
1028 	 *
1029 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1030 	 * if B_DELWRI is set.
1031 	 *
1032 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1033 	 * on pages to return pages to the VM page queues.
1034 	 */
1035 	if (bp->b_flags & B_DELWRI)
1036 		bp->b_flags &= ~B_RELBUF;
1037 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1038 		bp->b_flags |= B_RELBUF;
1039 
1040 	/*
1041 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1042 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1043 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1044 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1045 	 *
1046 	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1047 	 * invalidated.  B_ERROR cannot be set for a failed write unless the
1048 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1049 	 *
1050 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1051 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1052 	 * the commit state and we cannot afford to lose the buffer. If the
1053 	 * buffer has a background write in progress, we need to keep it
1054 	 * around to prevent it from being reconstituted and starting a second
1055 	 * background write.
1056 	 */
1057 	if ((bp->b_flags & B_VMIO)
1058 	    && !(bp->b_vp->v_tag == VT_NFS &&
1059 		 !vn_isdisk(bp->b_vp, NULL) &&
1060 		 (bp->b_flags & B_DELWRI))
1061 	    ) {
1062 
1063 		int i, j, resid;
1064 		vm_page_t m;
1065 		off_t foff;
1066 		vm_pindex_t poff;
1067 		vm_object_t obj;
1068 		struct vnode *vp;
1069 
1070 		vp = bp->b_vp;
1071 
1072 		/*
1073 		 * Get the base offset and length of the buffer.  Note that
1074 		 * in the VMIO case if the buffer block size is not
1075 		 * page-aligned then b_data pointer may not be page-aligned.
1076 		 * But our b_pages[] array *IS* page aligned.
1077 		 *
1078 		 * block sizes less then DEV_BSIZE (usually 512) are not
1079 		 * supported due to the page granularity bits (m->valid,
1080 		 * m->dirty, etc...).
1081 		 *
1082 		 * See man buf(9) for more information
1083 		 */
1084 
1085 		resid = bp->b_bufsize;
1086 		foff = bp->b_offset;
1087 
1088 		for (i = 0; i < bp->b_npages; i++) {
1089 			m = bp->b_pages[i];
1090 			vm_page_flag_clear(m, PG_ZERO);
1091 			/*
1092 			 * If we hit a bogus page, fixup *all* of them
1093 			 * now.
1094 			 */
1095 			if (m == bogus_page) {
1096 				VOP_GETVOBJECT(vp, &obj);
1097 				poff = OFF_TO_IDX(bp->b_offset);
1098 
1099 				for (j = i; j < bp->b_npages; j++) {
1100 					vm_page_t mtmp;
1101 
1102 					mtmp = bp->b_pages[j];
1103 					if (mtmp == bogus_page) {
1104 						mtmp = vm_page_lookup(obj, poff + j);
1105 						if (!mtmp) {
1106 							panic("brelse: page missing\n");
1107 						}
1108 						bp->b_pages[j] = mtmp;
1109 					}
1110 				}
1111 
1112 				if ((bp->b_flags & B_INVAL) == 0) {
1113 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1114 				}
1115 				m = bp->b_pages[i];
1116 			}
1117 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1118 				int poffset = foff & PAGE_MASK;
1119 				int presid = resid > (PAGE_SIZE - poffset) ?
1120 					(PAGE_SIZE - poffset) : resid;
1121 
1122 				KASSERT(presid >= 0, ("brelse: extra page"));
1123 				vm_page_set_invalid(m, poffset, presid);
1124 			}
1125 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1126 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1127 		}
1128 
1129 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1130 			vfs_vmio_release(bp);
1131 
1132 	} else if (bp->b_flags & B_VMIO) {
1133 
1134 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1135 			vfs_vmio_release(bp);
1136 
1137 	}
1138 
1139 	if (bp->b_qindex != QUEUE_NONE)
1140 		panic("brelse: free buffer onto another queue???");
1141 	if (BUF_REFCNT(bp) > 1) {
1142 		/* Temporary panic to verify exclusive locking */
1143 		/* This panic goes away when we allow shared refs */
1144 		panic("brelse: multiple refs");
1145 		/* do not release to free list */
1146 		BUF_UNLOCK(bp);
1147 		splx(s);
1148 		return;
1149 	}
1150 
1151 	/* enqueue */
1152 
1153 	/* buffers with no memory */
1154 	if (bp->b_bufsize == 0) {
1155 		bp->b_flags |= B_INVAL;
1156 		bp->b_xflags &= ~BX_BKGRDWRITE;
1157 		if (bp->b_xflags & BX_BKGRDINPROG)
1158 			panic("losing buffer 1");
1159 		if (bp->b_kvasize) {
1160 			bp->b_qindex = QUEUE_EMPTYKVA;
1161 		} else {
1162 			bp->b_qindex = QUEUE_EMPTY;
1163 		}
1164 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1165 		LIST_REMOVE(bp, b_hash);
1166 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1167 		bp->b_dev = NODEV;
1168 	/* buffers with junk contents */
1169 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1170 		bp->b_flags |= B_INVAL;
1171 		bp->b_xflags &= ~BX_BKGRDWRITE;
1172 		if (bp->b_xflags & BX_BKGRDINPROG)
1173 			panic("losing buffer 2");
1174 		bp->b_qindex = QUEUE_CLEAN;
1175 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1176 		LIST_REMOVE(bp, b_hash);
1177 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1178 		bp->b_dev = NODEV;
1179 
1180 	/* buffers that are locked */
1181 	} else if (bp->b_flags & B_LOCKED) {
1182 		bp->b_qindex = QUEUE_LOCKED;
1183 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1184 
1185 	/* remaining buffers */
1186 	} else {
1187 		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1188 		case B_DELWRI | B_AGE:
1189 		    bp->b_qindex = QUEUE_DIRTY;
1190 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1191 		    break;
1192 		case B_DELWRI:
1193 		    bp->b_qindex = QUEUE_DIRTY;
1194 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1195 		    break;
1196 		case B_AGE:
1197 		    bp->b_qindex = QUEUE_CLEAN;
1198 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1199 		    break;
1200 		default:
1201 		    bp->b_qindex = QUEUE_CLEAN;
1202 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1203 		    break;
1204 		}
1205 	}
1206 
1207 	/*
1208 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1209 	 * on the correct queue.
1210 	 */
1211 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1212 		bundirty(bp);
1213 
1214 	/*
1215 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1216 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1217 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1218 	 * if B_INVAL is set ).
1219 	 */
1220 
1221 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1222 		bufcountwakeup();
1223 
1224 	/*
1225 	 * Something we can maybe free or reuse
1226 	 */
1227 	if (bp->b_bufsize || bp->b_kvasize)
1228 		bufspacewakeup();
1229 
1230 	/* unlock */
1231 	BUF_UNLOCK(bp);
1232 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1233 			B_DIRECT | B_NOWDRAIN);
1234 	splx(s);
1235 }
1236 
1237 /*
1238  * Release a buffer back to the appropriate queue but do not try to free
1239  * it.  The buffer is expected to be used again soon.
1240  *
1241  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1242  * biodone() to requeue an async I/O on completion.  It is also used when
1243  * known good buffers need to be requeued but we think we may need the data
1244  * again soon.
1245  *
1246  * XXX we should be able to leave the B_RELBUF hint set on completion.
1247  */
1248 void
1249 bqrelse(struct buf * bp)
1250 {
1251 	int s;
1252 
1253 	s = splbio();
1254 
1255 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1256 
1257 	if (bp->b_qindex != QUEUE_NONE)
1258 		panic("bqrelse: free buffer onto another queue???");
1259 	if (BUF_REFCNT(bp) > 1) {
1260 		/* do not release to free list */
1261 		panic("bqrelse: multiple refs");
1262 		BUF_UNLOCK(bp);
1263 		splx(s);
1264 		return;
1265 	}
1266 	if (bp->b_flags & B_LOCKED) {
1267 		bp->b_flags &= ~B_ERROR;
1268 		bp->b_qindex = QUEUE_LOCKED;
1269 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1270 		/* buffers with stale but valid contents */
1271 	} else if (bp->b_flags & B_DELWRI) {
1272 		bp->b_qindex = QUEUE_DIRTY;
1273 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1274 	} else if (vm_page_count_severe()) {
1275 		/*
1276 		 * We are too low on memory, we have to try to free the
1277 		 * buffer (most importantly: the wired pages making up its
1278 		 * backing store) *now*.
1279 		 */
1280 		splx(s);
1281 		brelse(bp);
1282 		return;
1283 	} else {
1284 		bp->b_qindex = QUEUE_CLEAN;
1285 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1286 	}
1287 
1288 	if ((bp->b_flags & B_LOCKED) == 0 &&
1289 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1290 		bufcountwakeup();
1291 	}
1292 
1293 	/*
1294 	 * Something we can maybe free or reuse.
1295 	 */
1296 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1297 		bufspacewakeup();
1298 
1299 	/* unlock */
1300 	BUF_UNLOCK(bp);
1301 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1302 	splx(s);
1303 }
1304 
1305 static void
1306 vfs_vmio_release(bp)
1307 	struct buf *bp;
1308 {
1309 	int i, s;
1310 	vm_page_t m;
1311 
1312 	s = splvm();
1313 	for (i = 0; i < bp->b_npages; i++) {
1314 		m = bp->b_pages[i];
1315 		bp->b_pages[i] = NULL;
1316 		/*
1317 		 * In order to keep page LRU ordering consistent, put
1318 		 * everything on the inactive queue.
1319 		 */
1320 		vm_page_unwire(m, 0);
1321 		/*
1322 		 * We don't mess with busy pages, it is
1323 		 * the responsibility of the process that
1324 		 * busied the pages to deal with them.
1325 		 */
1326 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1327 			continue;
1328 
1329 		if (m->wire_count == 0) {
1330 			vm_page_flag_clear(m, PG_ZERO);
1331 			/*
1332 			 * Might as well free the page if we can and it has
1333 			 * no valid data.  We also free the page if the
1334 			 * buffer was used for direct I/O.
1335 			 */
1336 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1337 				vm_page_busy(m);
1338 				vm_page_protect(m, VM_PROT_NONE);
1339 				vm_page_free(m);
1340 			} else if (bp->b_flags & B_DIRECT) {
1341 				vm_page_try_to_free(m);
1342 			} else if (vm_page_count_severe()) {
1343 				vm_page_try_to_cache(m);
1344 			}
1345 		}
1346 	}
1347 	splx(s);
1348 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1349 	if (bp->b_bufsize) {
1350 		bufspacewakeup();
1351 		bp->b_bufsize = 0;
1352 	}
1353 	bp->b_npages = 0;
1354 	bp->b_flags &= ~B_VMIO;
1355 	if (bp->b_vp)
1356 		brelvp(bp);
1357 }
1358 
1359 /*
1360  * Check to see if a block is currently memory resident.
1361  */
1362 struct buf *
1363 gbincore(struct vnode * vp, daddr_t blkno)
1364 {
1365 	struct buf *bp;
1366 	struct bufhashhdr *bh;
1367 
1368 	bh = bufhash(vp, blkno);
1369 
1370 	/* Search hash chain */
1371 	LIST_FOREACH(bp, bh, b_hash) {
1372 		/* hit */
1373 		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1374 		    (bp->b_flags & B_INVAL) == 0) {
1375 			break;
1376 		}
1377 	}
1378 	return (bp);
1379 }
1380 
1381 /*
1382  *	vfs_bio_awrite:
1383  *
1384  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1385  *	This is much better then the old way of writing only one buffer at
1386  *	a time.  Note that we may not be presented with the buffers in the
1387  *	correct order, so we search for the cluster in both directions.
1388  */
1389 int
1390 vfs_bio_awrite(struct buf * bp)
1391 {
1392 	int i;
1393 	int j;
1394 	daddr_t lblkno = bp->b_lblkno;
1395 	struct vnode *vp = bp->b_vp;
1396 	int s;
1397 	int ncl;
1398 	struct buf *bpa;
1399 	int nwritten;
1400 	int size;
1401 	int maxcl;
1402 
1403 	s = splbio();
1404 	/*
1405 	 * right now we support clustered writing only to regular files.  If
1406 	 * we find a clusterable block we could be in the middle of a cluster
1407 	 * rather then at the beginning.
1408 	 */
1409 	if ((vp->v_type == VREG) &&
1410 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1411 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1412 
1413 		size = vp->v_mount->mnt_stat.f_iosize;
1414 		maxcl = MAXPHYS / size;
1415 
1416 		for (i = 1; i < maxcl; i++) {
1417 			if ((bpa = gbincore(vp, lblkno + i)) &&
1418 			    BUF_REFCNT(bpa) == 0 &&
1419 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1420 			    (B_DELWRI | B_CLUSTEROK)) &&
1421 			    (bpa->b_bufsize == size)) {
1422 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1423 				    (bpa->b_blkno !=
1424 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1425 					break;
1426 			} else {
1427 				break;
1428 			}
1429 		}
1430 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1431 			if ((bpa = gbincore(vp, lblkno - j)) &&
1432 			    BUF_REFCNT(bpa) == 0 &&
1433 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1434 			    (B_DELWRI | B_CLUSTEROK)) &&
1435 			    (bpa->b_bufsize == size)) {
1436 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1437 				    (bpa->b_blkno !=
1438 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1439 					break;
1440 			} else {
1441 				break;
1442 			}
1443 		}
1444 		--j;
1445 		ncl = i + j;
1446 		/*
1447 		 * this is a possible cluster write
1448 		 */
1449 		if (ncl != 1) {
1450 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1451 			splx(s);
1452 			return nwritten;
1453 		}
1454 	}
1455 
1456 	BUF_LOCK(bp, LK_EXCLUSIVE);
1457 	bremfree(bp);
1458 	bp->b_flags |= B_ASYNC;
1459 
1460 	splx(s);
1461 	/*
1462 	 * default (old) behavior, writing out only one block
1463 	 *
1464 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1465 	 */
1466 	nwritten = bp->b_bufsize;
1467 	(void) VOP_BWRITE(bp->b_vp, bp);
1468 
1469 	return nwritten;
1470 }
1471 
1472 /*
1473  *	getnewbuf:
1474  *
1475  *	Find and initialize a new buffer header, freeing up existing buffers
1476  *	in the bufqueues as necessary.  The new buffer is returned locked.
1477  *
1478  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1479  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1480  *
1481  *	We block if:
1482  *		We have insufficient buffer headers
1483  *		We have insufficient buffer space
1484  *		buffer_map is too fragmented ( space reservation fails )
1485  *		If we have to flush dirty buffers ( but we try to avoid this )
1486  *
1487  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1488  *	Instead we ask the buf daemon to do it for us.  We attempt to
1489  *	avoid piecemeal wakeups of the pageout daemon.
1490  */
1491 
1492 static struct buf *
1493 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1494 {
1495 	struct buf *bp;
1496 	struct buf *nbp;
1497 	int defrag = 0;
1498 	int nqindex;
1499 	static int flushingbufs;
1500 
1501 	/*
1502 	 * We can't afford to block since we might be holding a vnode lock,
1503 	 * which may prevent system daemons from running.  We deal with
1504 	 * low-memory situations by proactively returning memory and running
1505 	 * async I/O rather then sync I/O.
1506 	 */
1507 
1508 	++getnewbufcalls;
1509 	--getnewbufrestarts;
1510 restart:
1511 	++getnewbufrestarts;
1512 
1513 	/*
1514 	 * Setup for scan.  If we do not have enough free buffers,
1515 	 * we setup a degenerate case that immediately fails.  Note
1516 	 * that if we are specially marked process, we are allowed to
1517 	 * dip into our reserves.
1518 	 *
1519 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1520 	 *
1521 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1522 	 * However, there are a number of cases (defragging, reusing, ...)
1523 	 * where we cannot backup.
1524 	 */
1525 	nqindex = QUEUE_EMPTYKVA;
1526 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1527 
1528 	if (nbp == NULL) {
1529 		/*
1530 		 * If no EMPTYKVA buffers and we are either
1531 		 * defragging or reusing, locate a CLEAN buffer
1532 		 * to free or reuse.  If bufspace useage is low
1533 		 * skip this step so we can allocate a new buffer.
1534 		 */
1535 		if (defrag || bufspace >= lobufspace) {
1536 			nqindex = QUEUE_CLEAN;
1537 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1538 		}
1539 
1540 		/*
1541 		 * If we could not find or were not allowed to reuse a
1542 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1543 		 * buffer.  We can only use an EMPTY buffer if allocating
1544 		 * its KVA would not otherwise run us out of buffer space.
1545 		 */
1546 		if (nbp == NULL && defrag == 0 &&
1547 		    bufspace + maxsize < hibufspace) {
1548 			nqindex = QUEUE_EMPTY;
1549 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1550 		}
1551 	}
1552 
1553 	/*
1554 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1555 	 * depending.
1556 	 */
1557 
1558 	while ((bp = nbp) != NULL) {
1559 		int qindex = nqindex;
1560 
1561 		/*
1562 		 * Calculate next bp ( we can only use it if we do not block
1563 		 * or do other fancy things ).
1564 		 */
1565 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1566 			switch(qindex) {
1567 			case QUEUE_EMPTY:
1568 				nqindex = QUEUE_EMPTYKVA;
1569 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1570 					break;
1571 				/* fall through */
1572 			case QUEUE_EMPTYKVA:
1573 				nqindex = QUEUE_CLEAN;
1574 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1575 					break;
1576 				/* fall through */
1577 			case QUEUE_CLEAN:
1578 				/*
1579 				 * nbp is NULL.
1580 				 */
1581 				break;
1582 			}
1583 		}
1584 
1585 		/*
1586 		 * Sanity Checks
1587 		 */
1588 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1589 
1590 		/*
1591 		 * Note: we no longer distinguish between VMIO and non-VMIO
1592 		 * buffers.
1593 		 */
1594 
1595 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1596 
1597 		/*
1598 		 * If we are defragging then we need a buffer with
1599 		 * b_kvasize != 0.  XXX this situation should no longer
1600 		 * occur, if defrag is non-zero the buffer's b_kvasize
1601 		 * should also be non-zero at this point.  XXX
1602 		 */
1603 		if (defrag && bp->b_kvasize == 0) {
1604 			printf("Warning: defrag empty buffer %p\n", bp);
1605 			continue;
1606 		}
1607 
1608 		/*
1609 		 * Start freeing the bp.  This is somewhat involved.  nbp
1610 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1611 		 */
1612 
1613 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1614 			panic("getnewbuf: locked buf");
1615 		bremfree(bp);
1616 
1617 		if (qindex == QUEUE_CLEAN) {
1618 			if (bp->b_flags & B_VMIO) {
1619 				bp->b_flags &= ~B_ASYNC;
1620 				vfs_vmio_release(bp);
1621 			}
1622 			if (bp->b_vp)
1623 				brelvp(bp);
1624 		}
1625 
1626 		/*
1627 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1628 		 * the scan from this point on.
1629 		 *
1630 		 * Get the rest of the buffer freed up.  b_kva* is still
1631 		 * valid after this operation.
1632 		 */
1633 
1634 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1635 			(*bioops.io_deallocate)(bp);
1636 		if (bp->b_xflags & BX_BKGRDINPROG)
1637 			panic("losing buffer 3");
1638 		LIST_REMOVE(bp, b_hash);
1639 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1640 
1641 		if (bp->b_bufsize)
1642 			allocbuf(bp, 0);
1643 
1644 		bp->b_flags = 0;
1645 		bp->b_xflags = 0;
1646 		bp->b_dev = NODEV;
1647 		bp->b_vp = NULL;
1648 		bp->b_blkno = bp->b_lblkno = 0;
1649 		bp->b_offset = NOOFFSET;
1650 		bp->b_iodone = 0;
1651 		bp->b_error = 0;
1652 		bp->b_resid = 0;
1653 		bp->b_bcount = 0;
1654 		bp->b_npages = 0;
1655 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1656 
1657 		LIST_INIT(&bp->b_dep);
1658 
1659 		/*
1660 		 * If we are defragging then free the buffer.
1661 		 */
1662 		if (defrag) {
1663 			bp->b_flags |= B_INVAL;
1664 			bfreekva(bp);
1665 			brelse(bp);
1666 			defrag = 0;
1667 			goto restart;
1668 		}
1669 
1670 		/*
1671 		 * If we are overcomitted then recover the buffer and its
1672 		 * KVM space.  This occurs in rare situations when multiple
1673 		 * processes are blocked in getnewbuf() or allocbuf().
1674 		 */
1675 		if (bufspace >= hibufspace)
1676 			flushingbufs = 1;
1677 		if (flushingbufs && bp->b_kvasize != 0) {
1678 			bp->b_flags |= B_INVAL;
1679 			bfreekva(bp);
1680 			brelse(bp);
1681 			goto restart;
1682 		}
1683 		if (bufspace < lobufspace)
1684 			flushingbufs = 0;
1685 		break;
1686 	}
1687 
1688 	/*
1689 	 * If we exhausted our list, sleep as appropriate.  We may have to
1690 	 * wakeup various daemons and write out some dirty buffers.
1691 	 *
1692 	 * Generally we are sleeping due to insufficient buffer space.
1693 	 */
1694 
1695 	if (bp == NULL) {
1696 		int flags;
1697 		char *waitmsg;
1698 
1699 		if (defrag) {
1700 			flags = VFS_BIO_NEED_BUFSPACE;
1701 			waitmsg = "nbufkv";
1702 		} else if (bufspace >= hibufspace) {
1703 			waitmsg = "nbufbs";
1704 			flags = VFS_BIO_NEED_BUFSPACE;
1705 		} else {
1706 			waitmsg = "newbuf";
1707 			flags = VFS_BIO_NEED_ANY;
1708 		}
1709 
1710 		bd_speedup();	/* heeeelp */
1711 
1712 		needsbuffer |= flags;
1713 		while (needsbuffer & flags) {
1714 			if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1715 				return (NULL);
1716 		}
1717 	} else {
1718 		/*
1719 		 * We finally have a valid bp.  We aren't quite out of the
1720 		 * woods, we still have to reserve kva space.  In order
1721 		 * to keep fragmentation sane we only allocate kva in
1722 		 * BKVASIZE chunks.
1723 		 */
1724 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1725 
1726 		if (maxsize != bp->b_kvasize) {
1727 			vm_offset_t addr = 0;
1728 			int count;
1729 
1730 			bfreekva(bp);
1731 
1732 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1733 			vm_map_lock(buffer_map);
1734 
1735 			if (vm_map_findspace(buffer_map,
1736 				    vm_map_min(buffer_map), maxsize,
1737 				    maxsize, &addr)) {
1738 				/*
1739 				 * Uh oh.  Buffer map is to fragmented.  We
1740 				 * must defragment the map.
1741 				 */
1742 				vm_map_unlock(buffer_map);
1743 				vm_map_entry_release(count);
1744 				++bufdefragcnt;
1745 				defrag = 1;
1746 				bp->b_flags |= B_INVAL;
1747 				brelse(bp);
1748 				goto restart;
1749 			}
1750 			if (addr) {
1751 				vm_map_insert(buffer_map, &count,
1752 					NULL, 0,
1753 					addr, addr + maxsize,
1754 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1755 
1756 				bp->b_kvabase = (caddr_t) addr;
1757 				bp->b_kvasize = maxsize;
1758 				bufspace += bp->b_kvasize;
1759 				++bufreusecnt;
1760 			}
1761 			vm_map_unlock(buffer_map);
1762 			vm_map_entry_release(count);
1763 		}
1764 		bp->b_data = bp->b_kvabase;
1765 	}
1766 	return(bp);
1767 }
1768 
1769 /*
1770  *	buf_daemon:
1771  *
1772  *	buffer flushing daemon.  Buffers are normally flushed by the
1773  *	update daemon but if it cannot keep up this process starts to
1774  *	take the load in an attempt to prevent getnewbuf() from blocking.
1775  */
1776 
1777 static struct thread *bufdaemonthread;
1778 
1779 static struct kproc_desc buf_kp = {
1780 	"bufdaemon",
1781 	buf_daemon,
1782 	&bufdaemonthread
1783 };
1784 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1785 
1786 static void
1787 buf_daemon()
1788 {
1789 	int s;
1790 
1791 	/*
1792 	 * This process needs to be suspended prior to shutdown sync.
1793 	 */
1794 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1795 	    bufdaemonthread, SHUTDOWN_PRI_LAST);
1796 
1797 	/*
1798 	 * This process is allowed to take the buffer cache to the limit
1799 	 */
1800 	s = splbio();
1801 
1802 	for (;;) {
1803 		kproc_suspend_loop();
1804 
1805 		/*
1806 		 * Do the flush.  Limit the amount of in-transit I/O we
1807 		 * allow to build up, otherwise we would completely saturate
1808 		 * the I/O system.  Wakeup any waiting processes before we
1809 		 * normally would so they can run in parallel with our drain.
1810 		 */
1811 		while (numdirtybuffers > lodirtybuffers) {
1812 			if (flushbufqueues() == 0)
1813 				break;
1814 			waitrunningbufspace();
1815 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1816 		}
1817 
1818 		/*
1819 		 * Only clear bd_request if we have reached our low water
1820 		 * mark.  The buf_daemon normally waits 5 seconds and
1821 		 * then incrementally flushes any dirty buffers that have
1822 		 * built up, within reason.
1823 		 *
1824 		 * If we were unable to hit our low water mark and couldn't
1825 		 * find any flushable buffers, we sleep half a second.
1826 		 * Otherwise we loop immediately.
1827 		 */
1828 		if (numdirtybuffers <= lodirtybuffers) {
1829 			/*
1830 			 * We reached our low water mark, reset the
1831 			 * request and sleep until we are needed again.
1832 			 * The sleep is just so the suspend code works.
1833 			 */
1834 			bd_request = 0;
1835 			tsleep(&bd_request, 0, "psleep", hz);
1836 		} else {
1837 			/*
1838 			 * We couldn't find any flushable dirty buffers but
1839 			 * still have too many dirty buffers, we
1840 			 * have to sleep and try again.  (rare)
1841 			 */
1842 			tsleep(&bd_request, 0, "qsleep", hz / 2);
1843 		}
1844 	}
1845 }
1846 
1847 /*
1848  *	flushbufqueues:
1849  *
1850  *	Try to flush a buffer in the dirty queue.  We must be careful to
1851  *	free up B_INVAL buffers instead of write them, which NFS is
1852  *	particularly sensitive to.
1853  */
1854 
1855 static int
1856 flushbufqueues(void)
1857 {
1858 	struct buf *bp;
1859 	int r = 0;
1860 
1861 	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1862 
1863 	while (bp) {
1864 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1865 		if ((bp->b_flags & B_DELWRI) != 0 &&
1866 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1867 			if (bp->b_flags & B_INVAL) {
1868 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1869 					panic("flushbufqueues: locked buf");
1870 				bremfree(bp);
1871 				brelse(bp);
1872 				++r;
1873 				break;
1874 			}
1875 			if (LIST_FIRST(&bp->b_dep) != NULL &&
1876 			    bioops.io_countdeps &&
1877 			    (bp->b_flags & B_DEFERRED) == 0 &&
1878 			    (*bioops.io_countdeps)(bp, 0)) {
1879 				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1880 				    bp, b_freelist);
1881 				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1882 				    bp, b_freelist);
1883 				bp->b_flags |= B_DEFERRED;
1884 				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1885 				continue;
1886 			}
1887 			vfs_bio_awrite(bp);
1888 			++r;
1889 			break;
1890 		}
1891 		bp = TAILQ_NEXT(bp, b_freelist);
1892 	}
1893 	return (r);
1894 }
1895 
1896 /*
1897  * Check to see if a block is currently memory resident.
1898  */
1899 struct buf *
1900 incore(struct vnode * vp, daddr_t blkno)
1901 {
1902 	struct buf *bp;
1903 
1904 	int s = splbio();
1905 	bp = gbincore(vp, blkno);
1906 	splx(s);
1907 	return (bp);
1908 }
1909 
1910 /*
1911  * Returns true if no I/O is needed to access the
1912  * associated VM object.  This is like incore except
1913  * it also hunts around in the VM system for the data.
1914  */
1915 
1916 int
1917 inmem(struct vnode * vp, daddr_t blkno)
1918 {
1919 	vm_object_t obj;
1920 	vm_offset_t toff, tinc, size;
1921 	vm_page_t m;
1922 	vm_ooffset_t off;
1923 
1924 	if (incore(vp, blkno))
1925 		return 1;
1926 	if (vp->v_mount == NULL)
1927 		return 0;
1928 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
1929  		return 0;
1930 
1931 	size = PAGE_SIZE;
1932 	if (size > vp->v_mount->mnt_stat.f_iosize)
1933 		size = vp->v_mount->mnt_stat.f_iosize;
1934 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1935 
1936 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1937 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1938 		if (!m)
1939 			return 0;
1940 		tinc = size;
1941 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1942 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1943 		if (vm_page_is_valid(m,
1944 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1945 			return 0;
1946 	}
1947 	return 1;
1948 }
1949 
1950 /*
1951  *	vfs_setdirty:
1952  *
1953  *	Sets the dirty range for a buffer based on the status of the dirty
1954  *	bits in the pages comprising the buffer.
1955  *
1956  *	The range is limited to the size of the buffer.
1957  *
1958  *	This routine is primarily used by NFS, but is generalized for the
1959  *	B_VMIO case.
1960  */
1961 static void
1962 vfs_setdirty(struct buf *bp)
1963 {
1964 	int i;
1965 	vm_object_t object;
1966 
1967 	/*
1968 	 * Degenerate case - empty buffer
1969 	 */
1970 
1971 	if (bp->b_bufsize == 0)
1972 		return;
1973 
1974 	/*
1975 	 * We qualify the scan for modified pages on whether the
1976 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1977 	 * is not cleared simply by protecting pages off.
1978 	 */
1979 
1980 	if ((bp->b_flags & B_VMIO) == 0)
1981 		return;
1982 
1983 	object = bp->b_pages[0]->object;
1984 
1985 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1986 		printf("Warning: object %p writeable but not mightbedirty\n", object);
1987 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1988 		printf("Warning: object %p mightbedirty but not writeable\n", object);
1989 
1990 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1991 		vm_offset_t boffset;
1992 		vm_offset_t eoffset;
1993 
1994 		/*
1995 		 * test the pages to see if they have been modified directly
1996 		 * by users through the VM system.
1997 		 */
1998 		for (i = 0; i < bp->b_npages; i++) {
1999 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2000 			vm_page_test_dirty(bp->b_pages[i]);
2001 		}
2002 
2003 		/*
2004 		 * Calculate the encompassing dirty range, boffset and eoffset,
2005 		 * (eoffset - boffset) bytes.
2006 		 */
2007 
2008 		for (i = 0; i < bp->b_npages; i++) {
2009 			if (bp->b_pages[i]->dirty)
2010 				break;
2011 		}
2012 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2013 
2014 		for (i = bp->b_npages - 1; i >= 0; --i) {
2015 			if (bp->b_pages[i]->dirty) {
2016 				break;
2017 			}
2018 		}
2019 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2020 
2021 		/*
2022 		 * Fit it to the buffer.
2023 		 */
2024 
2025 		if (eoffset > bp->b_bcount)
2026 			eoffset = bp->b_bcount;
2027 
2028 		/*
2029 		 * If we have a good dirty range, merge with the existing
2030 		 * dirty range.
2031 		 */
2032 
2033 		if (boffset < eoffset) {
2034 			if (bp->b_dirtyoff > boffset)
2035 				bp->b_dirtyoff = boffset;
2036 			if (bp->b_dirtyend < eoffset)
2037 				bp->b_dirtyend = eoffset;
2038 		}
2039 	}
2040 }
2041 
2042 /*
2043  *	getblk:
2044  *
2045  *	Get a block given a specified block and offset into a file/device.
2046  *	The buffers B_DONE bit will be cleared on return, making it almost
2047  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2048  *	return.  The caller should clear B_INVAL prior to initiating a
2049  *	READ.
2050  *
2051  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2052  *	an existing buffer.
2053  *
2054  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2055  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2056  *	and then cleared based on the backing VM.  If the previous buffer is
2057  *	non-0-sized but invalid, B_CACHE will be cleared.
2058  *
2059  *	If getblk() must create a new buffer, the new buffer is returned with
2060  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2061  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2062  *	backing VM.
2063  *
2064  *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2065  *	B_CACHE bit is clear.
2066  *
2067  *	What this means, basically, is that the caller should use B_CACHE to
2068  *	determine whether the buffer is fully valid or not and should clear
2069  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2070  *	the buffer by loading its data area with something, the caller needs
2071  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2072  *	the caller should set B_CACHE ( as an optimization ), else the caller
2073  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2074  *	a write attempt or if it was a successfull read.  If the caller
2075  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2076  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2077  */
2078 struct buf *
2079 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2080 {
2081 	struct buf *bp;
2082 	int s;
2083 	struct bufhashhdr *bh;
2084 
2085 	if (size > MAXBSIZE)
2086 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2087 
2088 	s = splbio();
2089 loop:
2090 	/*
2091 	 * Block if we are low on buffers.   Certain processes are allowed
2092 	 * to completely exhaust the buffer cache.
2093          *
2094          * If this check ever becomes a bottleneck it may be better to
2095          * move it into the else, when gbincore() fails.  At the moment
2096          * it isn't a problem.
2097 	 *
2098 	 * XXX remove, we cannot afford to block anywhere if holding a vnode
2099 	 * lock in low-memory situation, so take it to the max.
2100          */
2101 	if (numfreebuffers == 0) {
2102 		if (!curproc)
2103 			return NULL;
2104 		needsbuffer |= VFS_BIO_NEED_ANY;
2105 		tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2106 	}
2107 
2108 	if ((bp = gbincore(vp, blkno))) {
2109 		/*
2110 		 * Buffer is in-core.  If the buffer is not busy, it must
2111 		 * be on a queue.
2112 		 */
2113 
2114 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2115 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2116 			    "getblk", slpflag, slptimeo) == ENOLCK)
2117 				goto loop;
2118 			splx(s);
2119 			return (struct buf *) NULL;
2120 		}
2121 
2122 		/*
2123 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2124 		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2125 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2126 		 * backing VM cache.
2127 		 */
2128 		if (bp->b_flags & B_INVAL)
2129 			bp->b_flags &= ~B_CACHE;
2130 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2131 			bp->b_flags |= B_CACHE;
2132 		bremfree(bp);
2133 
2134 		/*
2135 		 * check for size inconsistancies for non-VMIO case.
2136 		 */
2137 
2138 		if (bp->b_bcount != size) {
2139 			if ((bp->b_flags & B_VMIO) == 0 ||
2140 			    (size > bp->b_kvasize)) {
2141 				if (bp->b_flags & B_DELWRI) {
2142 					bp->b_flags |= B_NOCACHE;
2143 					VOP_BWRITE(bp->b_vp, bp);
2144 				} else {
2145 					if ((bp->b_flags & B_VMIO) &&
2146 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2147 						bp->b_flags |= B_RELBUF;
2148 						brelse(bp);
2149 					} else {
2150 						bp->b_flags |= B_NOCACHE;
2151 						VOP_BWRITE(bp->b_vp, bp);
2152 					}
2153 				}
2154 				goto loop;
2155 			}
2156 		}
2157 
2158 		/*
2159 		 * If the size is inconsistant in the VMIO case, we can resize
2160 		 * the buffer.  This might lead to B_CACHE getting set or
2161 		 * cleared.  If the size has not changed, B_CACHE remains
2162 		 * unchanged from its previous state.
2163 		 */
2164 
2165 		if (bp->b_bcount != size)
2166 			allocbuf(bp, size);
2167 
2168 		KASSERT(bp->b_offset != NOOFFSET,
2169 		    ("getblk: no buffer offset"));
2170 
2171 		/*
2172 		 * A buffer with B_DELWRI set and B_CACHE clear must
2173 		 * be committed before we can return the buffer in
2174 		 * order to prevent the caller from issuing a read
2175 		 * ( due to B_CACHE not being set ) and overwriting
2176 		 * it.
2177 		 *
2178 		 * Most callers, including NFS and FFS, need this to
2179 		 * operate properly either because they assume they
2180 		 * can issue a read if B_CACHE is not set, or because
2181 		 * ( for example ) an uncached B_DELWRI might loop due
2182 		 * to softupdates re-dirtying the buffer.  In the latter
2183 		 * case, B_CACHE is set after the first write completes,
2184 		 * preventing further loops.
2185 		 *
2186 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2187 		 * above while extending the buffer, we cannot allow the
2188 		 * buffer to remain with B_CACHE set after the write
2189 		 * completes or it will represent a corrupt state.  To
2190 		 * deal with this we set B_NOCACHE to scrap the buffer
2191 		 * after the write.
2192 		 *
2193 		 * We might be able to do something fancy, like setting
2194 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2195 		 * so the below call doesn't set B_CACHE, but that gets real
2196 		 * confusing.  This is much easier.
2197 		 */
2198 
2199 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2200 			bp->b_flags |= B_NOCACHE;
2201 			VOP_BWRITE(bp->b_vp, bp);
2202 			goto loop;
2203 		}
2204 
2205 		splx(s);
2206 		bp->b_flags &= ~B_DONE;
2207 	} else {
2208 		/*
2209 		 * Buffer is not in-core, create new buffer.  The buffer
2210 		 * returned by getnewbuf() is locked.  Note that the returned
2211 		 * buffer is also considered valid (not marked B_INVAL).
2212 		 */
2213 		int bsize, maxsize, vmio;
2214 		off_t offset;
2215 
2216 		if (vn_isdisk(vp, NULL))
2217 			bsize = DEV_BSIZE;
2218 		else if (vp->v_mountedhere)
2219 			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2220 		else if (vp->v_mount)
2221 			bsize = vp->v_mount->mnt_stat.f_iosize;
2222 		else
2223 			bsize = size;
2224 
2225 		offset = (off_t)blkno * bsize;
2226 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2227 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2228 		maxsize = imax(maxsize, bsize);
2229 
2230 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2231 			if (slpflag || slptimeo) {
2232 				splx(s);
2233 				return NULL;
2234 			}
2235 			goto loop;
2236 		}
2237 
2238 		/*
2239 		 * This code is used to make sure that a buffer is not
2240 		 * created while the getnewbuf routine is blocked.
2241 		 * This can be a problem whether the vnode is locked or not.
2242 		 * If the buffer is created out from under us, we have to
2243 		 * throw away the one we just created.  There is now window
2244 		 * race because we are safely running at splbio() from the
2245 		 * point of the duplicate buffer creation through to here,
2246 		 * and we've locked the buffer.
2247 		 */
2248 		if (gbincore(vp, blkno)) {
2249 			bp->b_flags |= B_INVAL;
2250 			brelse(bp);
2251 			goto loop;
2252 		}
2253 
2254 		/*
2255 		 * Insert the buffer into the hash, so that it can
2256 		 * be found by incore.
2257 		 */
2258 		bp->b_blkno = bp->b_lblkno = blkno;
2259 		bp->b_offset = offset;
2260 
2261 		bgetvp(vp, bp);
2262 		LIST_REMOVE(bp, b_hash);
2263 		bh = bufhash(vp, blkno);
2264 		LIST_INSERT_HEAD(bh, bp, b_hash);
2265 
2266 		/*
2267 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2268 		 * buffer size starts out as 0, B_CACHE will be set by
2269 		 * allocbuf() for the VMIO case prior to it testing the
2270 		 * backing store for validity.
2271 		 */
2272 
2273 		if (vmio) {
2274 			bp->b_flags |= B_VMIO;
2275 #if defined(VFS_BIO_DEBUG)
2276 			if (vp->v_type != VREG && vp->v_type != VBLK)
2277 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2278 #endif
2279 		} else {
2280 			bp->b_flags &= ~B_VMIO;
2281 		}
2282 
2283 		allocbuf(bp, size);
2284 
2285 		splx(s);
2286 		bp->b_flags &= ~B_DONE;
2287 	}
2288 	return (bp);
2289 }
2290 
2291 /*
2292  * Get an empty, disassociated buffer of given size.  The buffer is initially
2293  * set to B_INVAL.
2294  */
2295 struct buf *
2296 geteblk(int size)
2297 {
2298 	struct buf *bp;
2299 	int s;
2300 	int maxsize;
2301 
2302 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2303 
2304 	s = splbio();
2305 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2306 	splx(s);
2307 	allocbuf(bp, size);
2308 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2309 	return (bp);
2310 }
2311 
2312 
2313 /*
2314  * This code constitutes the buffer memory from either anonymous system
2315  * memory (in the case of non-VMIO operations) or from an associated
2316  * VM object (in the case of VMIO operations).  This code is able to
2317  * resize a buffer up or down.
2318  *
2319  * Note that this code is tricky, and has many complications to resolve
2320  * deadlock or inconsistant data situations.  Tread lightly!!!
2321  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2322  * the caller.  Calling this code willy nilly can result in the loss of data.
2323  *
2324  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2325  * B_CACHE for the non-VMIO case.
2326  */
2327 
2328 int
2329 allocbuf(struct buf *bp, int size)
2330 {
2331 	int newbsize, mbsize;
2332 	int i;
2333 
2334 	if (BUF_REFCNT(bp) == 0)
2335 		panic("allocbuf: buffer not busy");
2336 
2337 	if (bp->b_kvasize < size)
2338 		panic("allocbuf: buffer too small");
2339 
2340 	if ((bp->b_flags & B_VMIO) == 0) {
2341 		caddr_t origbuf;
2342 		int origbufsize;
2343 		/*
2344 		 * Just get anonymous memory from the kernel.  Don't
2345 		 * mess with B_CACHE.
2346 		 */
2347 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2348 #if !defined(NO_B_MALLOC)
2349 		if (bp->b_flags & B_MALLOC)
2350 			newbsize = mbsize;
2351 		else
2352 #endif
2353 			newbsize = round_page(size);
2354 
2355 		if (newbsize < bp->b_bufsize) {
2356 #if !defined(NO_B_MALLOC)
2357 			/*
2358 			 * malloced buffers are not shrunk
2359 			 */
2360 			if (bp->b_flags & B_MALLOC) {
2361 				if (newbsize) {
2362 					bp->b_bcount = size;
2363 				} else {
2364 					free(bp->b_data, M_BIOBUF);
2365 					if (bp->b_bufsize) {
2366 						bufmallocspace -= bp->b_bufsize;
2367 						bufspacewakeup();
2368 						bp->b_bufsize = 0;
2369 					}
2370 					bp->b_data = bp->b_kvabase;
2371 					bp->b_bcount = 0;
2372 					bp->b_flags &= ~B_MALLOC;
2373 				}
2374 				return 1;
2375 			}
2376 #endif
2377 			vm_hold_free_pages(
2378 			    bp,
2379 			    (vm_offset_t) bp->b_data + newbsize,
2380 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2381 		} else if (newbsize > bp->b_bufsize) {
2382 #if !defined(NO_B_MALLOC)
2383 			/*
2384 			 * We only use malloced memory on the first allocation.
2385 			 * and revert to page-allocated memory when the buffer
2386 			 * grows.
2387 			 */
2388 			if ( (bufmallocspace < maxbufmallocspace) &&
2389 				(bp->b_bufsize == 0) &&
2390 				(mbsize <= PAGE_SIZE/2)) {
2391 
2392 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2393 				bp->b_bufsize = mbsize;
2394 				bp->b_bcount = size;
2395 				bp->b_flags |= B_MALLOC;
2396 				bufmallocspace += mbsize;
2397 				return 1;
2398 			}
2399 #endif
2400 			origbuf = NULL;
2401 			origbufsize = 0;
2402 #if !defined(NO_B_MALLOC)
2403 			/*
2404 			 * If the buffer is growing on its other-than-first allocation,
2405 			 * then we revert to the page-allocation scheme.
2406 			 */
2407 			if (bp->b_flags & B_MALLOC) {
2408 				origbuf = bp->b_data;
2409 				origbufsize = bp->b_bufsize;
2410 				bp->b_data = bp->b_kvabase;
2411 				if (bp->b_bufsize) {
2412 					bufmallocspace -= bp->b_bufsize;
2413 					bufspacewakeup();
2414 					bp->b_bufsize = 0;
2415 				}
2416 				bp->b_flags &= ~B_MALLOC;
2417 				newbsize = round_page(newbsize);
2418 			}
2419 #endif
2420 			vm_hold_load_pages(
2421 			    bp,
2422 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2423 			    (vm_offset_t) bp->b_data + newbsize);
2424 #if !defined(NO_B_MALLOC)
2425 			if (origbuf) {
2426 				bcopy(origbuf, bp->b_data, origbufsize);
2427 				free(origbuf, M_BIOBUF);
2428 			}
2429 #endif
2430 		}
2431 	} else {
2432 		vm_page_t m;
2433 		int desiredpages;
2434 
2435 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2436 		desiredpages = (size == 0) ? 0 :
2437 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2438 
2439 #if !defined(NO_B_MALLOC)
2440 		if (bp->b_flags & B_MALLOC)
2441 			panic("allocbuf: VMIO buffer can't be malloced");
2442 #endif
2443 		/*
2444 		 * Set B_CACHE initially if buffer is 0 length or will become
2445 		 * 0-length.
2446 		 */
2447 		if (size == 0 || bp->b_bufsize == 0)
2448 			bp->b_flags |= B_CACHE;
2449 
2450 		if (newbsize < bp->b_bufsize) {
2451 			/*
2452 			 * DEV_BSIZE aligned new buffer size is less then the
2453 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2454 			 * if we have to remove any pages.
2455 			 */
2456 			if (desiredpages < bp->b_npages) {
2457 				for (i = desiredpages; i < bp->b_npages; i++) {
2458 					/*
2459 					 * the page is not freed here -- it
2460 					 * is the responsibility of
2461 					 * vnode_pager_setsize
2462 					 */
2463 					m = bp->b_pages[i];
2464 					KASSERT(m != bogus_page,
2465 					    ("allocbuf: bogus page found"));
2466 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2467 						;
2468 
2469 					bp->b_pages[i] = NULL;
2470 					vm_page_unwire(m, 0);
2471 				}
2472 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2473 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2474 				bp->b_npages = desiredpages;
2475 			}
2476 		} else if (size > bp->b_bcount) {
2477 			/*
2478 			 * We are growing the buffer, possibly in a
2479 			 * byte-granular fashion.
2480 			 */
2481 			struct vnode *vp;
2482 			vm_object_t obj;
2483 			vm_offset_t toff;
2484 			vm_offset_t tinc;
2485 
2486 			/*
2487 			 * Step 1, bring in the VM pages from the object,
2488 			 * allocating them if necessary.  We must clear
2489 			 * B_CACHE if these pages are not valid for the
2490 			 * range covered by the buffer.
2491 			 */
2492 
2493 			vp = bp->b_vp;
2494 			VOP_GETVOBJECT(vp, &obj);
2495 
2496 			while (bp->b_npages < desiredpages) {
2497 				vm_page_t m;
2498 				vm_pindex_t pi;
2499 
2500 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2501 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2502 					/*
2503 					 * note: must allocate system pages
2504 					 * since blocking here could intefere
2505 					 * with paging I/O, no matter which
2506 					 * process we are.
2507 					 */
2508 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2509 					if (m == NULL) {
2510 						VM_WAIT;
2511 						vm_pageout_deficit += desiredpages - bp->b_npages;
2512 					} else {
2513 						vm_page_wire(m);
2514 						vm_page_wakeup(m);
2515 						bp->b_flags &= ~B_CACHE;
2516 						bp->b_pages[bp->b_npages] = m;
2517 						++bp->b_npages;
2518 					}
2519 					continue;
2520 				}
2521 
2522 				/*
2523 				 * We found a page.  If we have to sleep on it,
2524 				 * retry because it might have gotten freed out
2525 				 * from under us.
2526 				 *
2527 				 * We can only test PG_BUSY here.  Blocking on
2528 				 * m->busy might lead to a deadlock:
2529 				 *
2530 				 *  vm_fault->getpages->cluster_read->allocbuf
2531 				 *
2532 				 */
2533 
2534 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2535 					continue;
2536 
2537 				/*
2538 				 * We have a good page.  Should we wakeup the
2539 				 * page daemon?
2540 				 */
2541 				if ((curthread != pagethread) &&
2542 				    ((m->queue - m->pc) == PQ_CACHE) &&
2543 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2544 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2545 					pagedaemon_wakeup();
2546 				}
2547 				vm_page_flag_clear(m, PG_ZERO);
2548 				vm_page_wire(m);
2549 				bp->b_pages[bp->b_npages] = m;
2550 				++bp->b_npages;
2551 			}
2552 
2553 			/*
2554 			 * Step 2.  We've loaded the pages into the buffer,
2555 			 * we have to figure out if we can still have B_CACHE
2556 			 * set.  Note that B_CACHE is set according to the
2557 			 * byte-granular range ( bcount and size ), new the
2558 			 * aligned range ( newbsize ).
2559 			 *
2560 			 * The VM test is against m->valid, which is DEV_BSIZE
2561 			 * aligned.  Needless to say, the validity of the data
2562 			 * needs to also be DEV_BSIZE aligned.  Note that this
2563 			 * fails with NFS if the server or some other client
2564 			 * extends the file's EOF.  If our buffer is resized,
2565 			 * B_CACHE may remain set! XXX
2566 			 */
2567 
2568 			toff = bp->b_bcount;
2569 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2570 
2571 			while ((bp->b_flags & B_CACHE) && toff < size) {
2572 				vm_pindex_t pi;
2573 
2574 				if (tinc > (size - toff))
2575 					tinc = size - toff;
2576 
2577 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2578 				    PAGE_SHIFT;
2579 
2580 				vfs_buf_test_cache(
2581 				    bp,
2582 				    bp->b_offset,
2583 				    toff,
2584 				    tinc,
2585 				    bp->b_pages[pi]
2586 				);
2587 				toff += tinc;
2588 				tinc = PAGE_SIZE;
2589 			}
2590 
2591 			/*
2592 			 * Step 3, fixup the KVM pmap.  Remember that
2593 			 * bp->b_data is relative to bp->b_offset, but
2594 			 * bp->b_offset may be offset into the first page.
2595 			 */
2596 
2597 			bp->b_data = (caddr_t)
2598 			    trunc_page((vm_offset_t)bp->b_data);
2599 			pmap_qenter(
2600 			    (vm_offset_t)bp->b_data,
2601 			    bp->b_pages,
2602 			    bp->b_npages
2603 			);
2604 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2605 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2606 		}
2607 	}
2608 	if (newbsize < bp->b_bufsize)
2609 		bufspacewakeup();
2610 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2611 	bp->b_bcount = size;		/* requested buffer size	*/
2612 	return 1;
2613 }
2614 
2615 /*
2616  *	biowait:
2617  *
2618  *	Wait for buffer I/O completion, returning error status.  The buffer
2619  *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2620  *	error and cleared.
2621  */
2622 int
2623 biowait(struct buf * bp)
2624 {
2625 	int s;
2626 
2627 	s = splbio();
2628 	while ((bp->b_flags & B_DONE) == 0) {
2629 #if defined(NO_SCHEDULE_MODS)
2630 		tsleep(bp, 0, "biowait", 0);
2631 #else
2632 		if (bp->b_flags & B_READ)
2633 			tsleep(bp, 0, "biord", 0);
2634 		else
2635 			tsleep(bp, 0, "biowr", 0);
2636 #endif
2637 	}
2638 	splx(s);
2639 	if (bp->b_flags & B_EINTR) {
2640 		bp->b_flags &= ~B_EINTR;
2641 		return (EINTR);
2642 	}
2643 	if (bp->b_flags & B_ERROR) {
2644 		return (bp->b_error ? bp->b_error : EIO);
2645 	} else {
2646 		return (0);
2647 	}
2648 }
2649 
2650 /*
2651  *	biodone:
2652  *
2653  *	Finish I/O on a buffer, optionally calling a completion function.
2654  *	This is usually called from an interrupt so process blocking is
2655  *	not allowed.
2656  *
2657  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2658  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2659  *	assuming B_INVAL is clear.
2660  *
2661  *	For the VMIO case, we set B_CACHE if the op was a read and no
2662  *	read error occured, or if the op was a write.  B_CACHE is never
2663  *	set if the buffer is invalid or otherwise uncacheable.
2664  *
2665  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2666  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2667  *	in the biodone routine.
2668  */
2669 void
2670 biodone(struct buf * bp)
2671 {
2672 	int s, error;
2673 
2674 	s = splbio();
2675 
2676 	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2677 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2678 
2679 	bp->b_flags |= B_DONE;
2680 	runningbufwakeup(bp);
2681 
2682 	if (bp->b_flags & B_FREEBUF) {
2683 		brelse(bp);
2684 		splx(s);
2685 		return;
2686 	}
2687 
2688 	if ((bp->b_flags & B_READ) == 0) {
2689 		vwakeup(bp);
2690 	}
2691 
2692 	/* call optional completion function if requested */
2693 	if (bp->b_flags & B_CALL) {
2694 		bp->b_flags &= ~B_CALL;
2695 		(*bp->b_iodone) (bp);
2696 		splx(s);
2697 		return;
2698 	}
2699 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2700 		(*bioops.io_complete)(bp);
2701 
2702 	if (bp->b_flags & B_VMIO) {
2703 		int i;
2704 		vm_ooffset_t foff;
2705 		vm_page_t m;
2706 		vm_object_t obj;
2707 		int iosize;
2708 		struct vnode *vp = bp->b_vp;
2709 
2710 		error = VOP_GETVOBJECT(vp, &obj);
2711 
2712 #if defined(VFS_BIO_DEBUG)
2713 		if (vp->v_usecount == 0) {
2714 			panic("biodone: zero vnode ref count");
2715 		}
2716 
2717 		if (error) {
2718 			panic("biodone: missing VM object");
2719 		}
2720 
2721 		if ((vp->v_flag & VOBJBUF) == 0) {
2722 			panic("biodone: vnode is not setup for merged cache");
2723 		}
2724 #endif
2725 
2726 		foff = bp->b_offset;
2727 		KASSERT(bp->b_offset != NOOFFSET,
2728 		    ("biodone: no buffer offset"));
2729 
2730 		if (error) {
2731 			panic("biodone: no object");
2732 		}
2733 #if defined(VFS_BIO_DEBUG)
2734 		if (obj->paging_in_progress < bp->b_npages) {
2735 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2736 			    obj->paging_in_progress, bp->b_npages);
2737 		}
2738 #endif
2739 
2740 		/*
2741 		 * Set B_CACHE if the op was a normal read and no error
2742 		 * occured.  B_CACHE is set for writes in the b*write()
2743 		 * routines.
2744 		 */
2745 		iosize = bp->b_bcount - bp->b_resid;
2746 		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2747 			bp->b_flags |= B_CACHE;
2748 		}
2749 
2750 		for (i = 0; i < bp->b_npages; i++) {
2751 			int bogusflag = 0;
2752 			int resid;
2753 
2754 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2755 			if (resid > iosize)
2756 				resid = iosize;
2757 
2758 			/*
2759 			 * cleanup bogus pages, restoring the originals
2760 			 */
2761 			m = bp->b_pages[i];
2762 			if (m == bogus_page) {
2763 				bogusflag = 1;
2764 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2765 				if (m == NULL)
2766 					panic("biodone: page disappeared");
2767 				bp->b_pages[i] = m;
2768 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2769 			}
2770 #if defined(VFS_BIO_DEBUG)
2771 			if (OFF_TO_IDX(foff) != m->pindex) {
2772 				printf(
2773 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2774 				    (unsigned long)foff, m->pindex);
2775 			}
2776 #endif
2777 
2778 			/*
2779 			 * In the write case, the valid and clean bits are
2780 			 * already changed correctly ( see bdwrite() ), so we
2781 			 * only need to do this here in the read case.
2782 			 */
2783 			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2784 				vfs_page_set_valid(bp, foff, i, m);
2785 			}
2786 			vm_page_flag_clear(m, PG_ZERO);
2787 
2788 			/*
2789 			 * when debugging new filesystems or buffer I/O methods, this
2790 			 * is the most common error that pops up.  if you see this, you
2791 			 * have not set the page busy flag correctly!!!
2792 			 */
2793 			if (m->busy == 0) {
2794 				printf("biodone: page busy < 0, "
2795 				    "pindex: %d, foff: 0x(%x,%x), "
2796 				    "resid: %d, index: %d\n",
2797 				    (int) m->pindex, (int)(foff >> 32),
2798 						(int) foff & 0xffffffff, resid, i);
2799 				if (!vn_isdisk(vp, NULL))
2800 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2801 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2802 					    (int) bp->b_lblkno,
2803 					    bp->b_flags, bp->b_npages);
2804 				else
2805 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2806 					    (int) bp->b_lblkno,
2807 					    bp->b_flags, bp->b_npages);
2808 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2809 				    m->valid, m->dirty, m->wire_count);
2810 				panic("biodone: page busy < 0\n");
2811 			}
2812 			vm_page_io_finish(m);
2813 			vm_object_pip_subtract(obj, 1);
2814 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2815 			iosize -= resid;
2816 		}
2817 		if (obj)
2818 			vm_object_pip_wakeupn(obj, 0);
2819 	}
2820 
2821 	/*
2822 	 * For asynchronous completions, release the buffer now. The brelse
2823 	 * will do a wakeup there if necessary - so no need to do a wakeup
2824 	 * here in the async case. The sync case always needs to do a wakeup.
2825 	 */
2826 
2827 	if (bp->b_flags & B_ASYNC) {
2828 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2829 			brelse(bp);
2830 		else
2831 			bqrelse(bp);
2832 	} else {
2833 		wakeup(bp);
2834 	}
2835 	splx(s);
2836 }
2837 
2838 /*
2839  * This routine is called in lieu of iodone in the case of
2840  * incomplete I/O.  This keeps the busy status for pages
2841  * consistant.
2842  */
2843 void
2844 vfs_unbusy_pages(struct buf * bp)
2845 {
2846 	int i;
2847 
2848 	runningbufwakeup(bp);
2849 	if (bp->b_flags & B_VMIO) {
2850 		struct vnode *vp = bp->b_vp;
2851 		vm_object_t obj;
2852 
2853 		VOP_GETVOBJECT(vp, &obj);
2854 
2855 		for (i = 0; i < bp->b_npages; i++) {
2856 			vm_page_t m = bp->b_pages[i];
2857 
2858 			if (m == bogus_page) {
2859 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2860 				if (!m) {
2861 					panic("vfs_unbusy_pages: page missing\n");
2862 				}
2863 				bp->b_pages[i] = m;
2864 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2865 			}
2866 			vm_object_pip_subtract(obj, 1);
2867 			vm_page_flag_clear(m, PG_ZERO);
2868 			vm_page_io_finish(m);
2869 		}
2870 		vm_object_pip_wakeupn(obj, 0);
2871 	}
2872 }
2873 
2874 /*
2875  * vfs_page_set_valid:
2876  *
2877  *	Set the valid bits in a page based on the supplied offset.   The
2878  *	range is restricted to the buffer's size.
2879  *
2880  *	This routine is typically called after a read completes.
2881  */
2882 static void
2883 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2884 {
2885 	vm_ooffset_t soff, eoff;
2886 
2887 	/*
2888 	 * Start and end offsets in buffer.  eoff - soff may not cross a
2889 	 * page boundry or cross the end of the buffer.  The end of the
2890 	 * buffer, in this case, is our file EOF, not the allocation size
2891 	 * of the buffer.
2892 	 */
2893 	soff = off;
2894 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2895 	if (eoff > bp->b_offset + bp->b_bcount)
2896 		eoff = bp->b_offset + bp->b_bcount;
2897 
2898 	/*
2899 	 * Set valid range.  This is typically the entire buffer and thus the
2900 	 * entire page.
2901 	 */
2902 	if (eoff > soff) {
2903 		vm_page_set_validclean(
2904 		    m,
2905 		   (vm_offset_t) (soff & PAGE_MASK),
2906 		   (vm_offset_t) (eoff - soff)
2907 		);
2908 	}
2909 }
2910 
2911 /*
2912  * This routine is called before a device strategy routine.
2913  * It is used to tell the VM system that paging I/O is in
2914  * progress, and treat the pages associated with the buffer
2915  * almost as being PG_BUSY.  Also the object paging_in_progress
2916  * flag is handled to make sure that the object doesn't become
2917  * inconsistant.
2918  *
2919  * Since I/O has not been initiated yet, certain buffer flags
2920  * such as B_ERROR or B_INVAL may be in an inconsistant state
2921  * and should be ignored.
2922  */
2923 void
2924 vfs_busy_pages(struct buf * bp, int clear_modify)
2925 {
2926 	int i, bogus;
2927 
2928 	if (bp->b_flags & B_VMIO) {
2929 		struct vnode *vp = bp->b_vp;
2930 		vm_object_t obj;
2931 		vm_ooffset_t foff;
2932 
2933 		VOP_GETVOBJECT(vp, &obj);
2934 		foff = bp->b_offset;
2935 		KASSERT(bp->b_offset != NOOFFSET,
2936 		    ("vfs_busy_pages: no buffer offset"));
2937 		vfs_setdirty(bp);
2938 
2939 retry:
2940 		for (i = 0; i < bp->b_npages; i++) {
2941 			vm_page_t m = bp->b_pages[i];
2942 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2943 				goto retry;
2944 		}
2945 
2946 		bogus = 0;
2947 		for (i = 0; i < bp->b_npages; i++) {
2948 			vm_page_t m = bp->b_pages[i];
2949 
2950 			vm_page_flag_clear(m, PG_ZERO);
2951 			if ((bp->b_flags & B_CLUSTER) == 0) {
2952 				vm_object_pip_add(obj, 1);
2953 				vm_page_io_start(m);
2954 			}
2955 
2956 			/*
2957 			 * When readying a buffer for a read ( i.e
2958 			 * clear_modify == 0 ), it is important to do
2959 			 * bogus_page replacement for valid pages in
2960 			 * partially instantiated buffers.  Partially
2961 			 * instantiated buffers can, in turn, occur when
2962 			 * reconstituting a buffer from its VM backing store
2963 			 * base.  We only have to do this if B_CACHE is
2964 			 * clear ( which causes the I/O to occur in the
2965 			 * first place ).  The replacement prevents the read
2966 			 * I/O from overwriting potentially dirty VM-backed
2967 			 * pages.  XXX bogus page replacement is, uh, bogus.
2968 			 * It may not work properly with small-block devices.
2969 			 * We need to find a better way.
2970 			 */
2971 
2972 			vm_page_protect(m, VM_PROT_NONE);
2973 			if (clear_modify)
2974 				vfs_page_set_valid(bp, foff, i, m);
2975 			else if (m->valid == VM_PAGE_BITS_ALL &&
2976 				(bp->b_flags & B_CACHE) == 0) {
2977 				bp->b_pages[i] = bogus_page;
2978 				bogus++;
2979 			}
2980 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2981 		}
2982 		if (bogus)
2983 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2984 	}
2985 
2986 	/*
2987 	 * This is the easiest place to put the process accounting for the I/O
2988 	 * for now.
2989 	 */
2990 	{
2991 		struct proc *p;
2992 
2993 		if ((p = curthread->td_proc) != NULL) {
2994 			if (bp->b_flags & B_READ)
2995 				p->p_stats->p_ru.ru_inblock++;
2996 			else
2997 				p->p_stats->p_ru.ru_oublock++;
2998 		}
2999 	}
3000 }
3001 
3002 /*
3003  * Tell the VM system that the pages associated with this buffer
3004  * are clean.  This is used for delayed writes where the data is
3005  * going to go to disk eventually without additional VM intevention.
3006  *
3007  * Note that while we only really need to clean through to b_bcount, we
3008  * just go ahead and clean through to b_bufsize.
3009  */
3010 static void
3011 vfs_clean_pages(struct buf * bp)
3012 {
3013 	int i;
3014 
3015 	if (bp->b_flags & B_VMIO) {
3016 		vm_ooffset_t foff;
3017 
3018 		foff = bp->b_offset;
3019 		KASSERT(bp->b_offset != NOOFFSET,
3020 		    ("vfs_clean_pages: no buffer offset"));
3021 		for (i = 0; i < bp->b_npages; i++) {
3022 			vm_page_t m = bp->b_pages[i];
3023 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3024 			vm_ooffset_t eoff = noff;
3025 
3026 			if (eoff > bp->b_offset + bp->b_bufsize)
3027 				eoff = bp->b_offset + bp->b_bufsize;
3028 			vfs_page_set_valid(bp, foff, i, m);
3029 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3030 			foff = noff;
3031 		}
3032 	}
3033 }
3034 
3035 /*
3036  *	vfs_bio_set_validclean:
3037  *
3038  *	Set the range within the buffer to valid and clean.  The range is
3039  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3040  *	itself may be offset from the beginning of the first page.
3041  */
3042 
3043 void
3044 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3045 {
3046 	if (bp->b_flags & B_VMIO) {
3047 		int i;
3048 		int n;
3049 
3050 		/*
3051 		 * Fixup base to be relative to beginning of first page.
3052 		 * Set initial n to be the maximum number of bytes in the
3053 		 * first page that can be validated.
3054 		 */
3055 
3056 		base += (bp->b_offset & PAGE_MASK);
3057 		n = PAGE_SIZE - (base & PAGE_MASK);
3058 
3059 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3060 			vm_page_t m = bp->b_pages[i];
3061 
3062 			if (n > size)
3063 				n = size;
3064 
3065 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3066 			base += n;
3067 			size -= n;
3068 			n = PAGE_SIZE;
3069 		}
3070 	}
3071 }
3072 
3073 /*
3074  *	vfs_bio_clrbuf:
3075  *
3076  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3077  *	to clear B_ERROR and B_INVAL.
3078  *
3079  *	Note that while we only theoretically need to clear through b_bcount,
3080  *	we go ahead and clear through b_bufsize.
3081  */
3082 
3083 void
3084 vfs_bio_clrbuf(struct buf *bp)
3085 {
3086 	int i, mask = 0;
3087 	caddr_t sa, ea;
3088 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3089 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3090 		if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3091 		    (bp->b_offset & PAGE_MASK) == 0) {
3092 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3093 			if ((bp->b_pages[0]->valid & mask) == mask) {
3094 				bp->b_resid = 0;
3095 				return;
3096 			}
3097 			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3098 			    ((bp->b_pages[0]->valid & mask) == 0)) {
3099 				bzero(bp->b_data, bp->b_bufsize);
3100 				bp->b_pages[0]->valid |= mask;
3101 				bp->b_resid = 0;
3102 				return;
3103 			}
3104 		}
3105 		ea = sa = bp->b_data;
3106 		for(i=0;i<bp->b_npages;i++,sa=ea) {
3107 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3108 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3109 			ea = (caddr_t)(vm_offset_t)ulmin(
3110 			    (u_long)(vm_offset_t)ea,
3111 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3112 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3113 			if ((bp->b_pages[i]->valid & mask) == mask)
3114 				continue;
3115 			if ((bp->b_pages[i]->valid & mask) == 0) {
3116 				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3117 					bzero(sa, ea - sa);
3118 				}
3119 			} else {
3120 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3121 					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3122 						(bp->b_pages[i]->valid & (1<<j)) == 0)
3123 						bzero(sa, DEV_BSIZE);
3124 				}
3125 			}
3126 			bp->b_pages[i]->valid |= mask;
3127 			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3128 		}
3129 		bp->b_resid = 0;
3130 	} else {
3131 		clrbuf(bp);
3132 	}
3133 }
3134 
3135 /*
3136  * vm_hold_load_pages and vm_hold_unload pages get pages into
3137  * a buffers address space.  The pages are anonymous and are
3138  * not associated with a file object.
3139  */
3140 void
3141 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3142 {
3143 	vm_offset_t pg;
3144 	vm_page_t p;
3145 	int index;
3146 
3147 	to = round_page(to);
3148 	from = round_page(from);
3149 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3150 
3151 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3152 
3153 tryagain:
3154 
3155 		/*
3156 		 * note: must allocate system pages since blocking here
3157 		 * could intefere with paging I/O, no matter which
3158 		 * process we are.
3159 		 */
3160 		p = vm_page_alloc(kernel_object,
3161 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3162 			VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3163 		if (!p) {
3164 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3165 			VM_WAIT;
3166 			goto tryagain;
3167 		}
3168 		vm_page_wire(p);
3169 		p->valid = VM_PAGE_BITS_ALL;
3170 		vm_page_flag_clear(p, PG_ZERO);
3171 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3172 		bp->b_pages[index] = p;
3173 		vm_page_wakeup(p);
3174 	}
3175 	bp->b_npages = index;
3176 }
3177 
3178 void
3179 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3180 {
3181 	vm_offset_t pg;
3182 	vm_page_t p;
3183 	int index, newnpages;
3184 
3185 	from = round_page(from);
3186 	to = round_page(to);
3187 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3188 
3189 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3190 		p = bp->b_pages[index];
3191 		if (p && (index < bp->b_npages)) {
3192 			if (p->busy) {
3193 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3194 					bp->b_blkno, bp->b_lblkno);
3195 			}
3196 			bp->b_pages[index] = NULL;
3197 			pmap_kremove(pg);
3198 			vm_page_busy(p);
3199 			vm_page_unwire(p, 0);
3200 			vm_page_free(p);
3201 		}
3202 	}
3203 	bp->b_npages = newnpages;
3204 }
3205 
3206 /*
3207  * Map an IO request into kernel virtual address space.
3208  *
3209  * All requests are (re)mapped into kernel VA space.
3210  * Notice that we use b_bufsize for the size of the buffer
3211  * to be mapped.  b_bcount might be modified by the driver.
3212  */
3213 int
3214 vmapbuf(struct buf *bp)
3215 {
3216 	caddr_t addr, v, kva;
3217 	vm_paddr_t pa;
3218 	int pidx;
3219 	int i;
3220 	struct vm_page *m;
3221 
3222 	if ((bp->b_flags & B_PHYS) == 0)
3223 		panic("vmapbuf");
3224 	if (bp->b_bufsize < 0)
3225 		return (-1);
3226 	for (v = bp->b_saveaddr,
3227 		     addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3228 		     pidx = 0;
3229 	     addr < bp->b_data + bp->b_bufsize;
3230 	     addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3231 		/*
3232 		 * Do the vm_fault if needed; do the copy-on-write thing
3233 		 * when reading stuff off device into memory.
3234 		 */
3235 retry:
3236 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3237 			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3238 		if (i < 0) {
3239 			for (i = 0; i < pidx; ++i) {
3240 			    vm_page_unhold(bp->b_pages[i]);
3241 			    bp->b_pages[i] = NULL;
3242 			}
3243 			return(-1);
3244 		}
3245 
3246 		/*
3247 		 * WARNING!  If sparc support is MFCd in the future this will
3248 		 * have to be changed from pmap_kextract() to pmap_extract()
3249 		 * ala -current.
3250 		 */
3251 #ifdef __sparc64__
3252 #error "If MFCing sparc support use pmap_extract"
3253 #endif
3254 		pa = pmap_kextract((vm_offset_t)addr);
3255 		if (pa == 0) {
3256 			printf("vmapbuf: warning, race against user address during I/O");
3257 			goto retry;
3258 		}
3259 		m = PHYS_TO_VM_PAGE(pa);
3260 		vm_page_hold(m);
3261 		bp->b_pages[pidx] = m;
3262 	}
3263 	if (pidx > btoc(MAXPHYS))
3264 		panic("vmapbuf: mapped more than MAXPHYS");
3265 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3266 
3267 	kva = bp->b_saveaddr;
3268 	bp->b_npages = pidx;
3269 	bp->b_saveaddr = bp->b_data;
3270 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3271 	return(0);
3272 }
3273 
3274 /*
3275  * Free the io map PTEs associated with this IO operation.
3276  * We also invalidate the TLB entries and restore the original b_addr.
3277  */
3278 void
3279 vunmapbuf(bp)
3280 	struct buf *bp;
3281 {
3282 	int pidx;
3283 	int npages;
3284 	vm_page_t *m;
3285 
3286 	if ((bp->b_flags & B_PHYS) == 0)
3287 		panic("vunmapbuf");
3288 
3289 	npages = bp->b_npages;
3290 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3291 		     npages);
3292 	m = bp->b_pages;
3293 	for (pidx = 0; pidx < npages; pidx++)
3294 		vm_page_unhold(*m++);
3295 
3296 	bp->b_data = bp->b_saveaddr;
3297 }
3298 
3299 #include "opt_ddb.h"
3300 #ifdef DDB
3301 #include <ddb/ddb.h>
3302 
3303 DB_SHOW_COMMAND(buffer, db_show_buffer)
3304 {
3305 	/* get args */
3306 	struct buf *bp = (struct buf *)addr;
3307 
3308 	if (!have_addr) {
3309 		db_printf("usage: show buffer <addr>\n");
3310 		return;
3311 	}
3312 
3313 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3314 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3315 		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3316 		  "b_blkno = %d, b_pblkno = %d\n",
3317 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3318 		  major(bp->b_dev), minor(bp->b_dev),
3319 		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3320 	if (bp->b_npages) {
3321 		int i;
3322 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3323 		for (i = 0; i < bp->b_npages; i++) {
3324 			vm_page_t m;
3325 			m = bp->b_pages[i];
3326 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3327 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3328 			if ((i + 1) < bp->b_npages)
3329 				db_printf(",");
3330 		}
3331 		db_printf("\n");
3332 	}
3333 }
3334 #endif /* DDB */
3335