1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.19 2004/03/01 06:33:17 dillon Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/proc.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 #include <sys/buf2.h> 57 #include <vm/vm_page2.h> 58 59 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 60 61 struct bio_ops bioops; /* I/O operation notification */ 62 63 struct buf *buf; /* buffer header pool */ 64 struct swqueue bswlist; 65 66 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 67 vm_offset_t to); 68 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 69 vm_offset_t to); 70 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 71 int pageno, vm_page_t m); 72 static void vfs_clean_pages(struct buf * bp); 73 static void vfs_setdirty(struct buf *bp); 74 static void vfs_vmio_release(struct buf *bp); 75 static void vfs_backgroundwritedone(struct buf *bp); 76 static int flushbufqueues(void); 77 78 static int bd_request; 79 80 static void buf_daemon (void); 81 /* 82 * bogus page -- for I/O to/from partially complete buffers 83 * this is a temporary solution to the problem, but it is not 84 * really that bad. it would be better to split the buffer 85 * for input in the case of buffers partially already in memory, 86 * but the code is intricate enough already. 87 */ 88 vm_page_t bogus_page; 89 int vmiodirenable = TRUE; 90 int runningbufspace; 91 struct lwkt_token buftimetoken; /* Interlock on setting prio and timo */ 92 93 static vm_offset_t bogus_offset; 94 95 static int bufspace, maxbufspace, 96 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 97 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 98 static int needsbuffer; 99 static int lorunningspace, hirunningspace, runningbufreq; 100 static int numdirtybuffers, lodirtybuffers, hidirtybuffers; 101 static int numfreebuffers, lofreebuffers, hifreebuffers; 102 static int getnewbufcalls; 103 static int getnewbufrestarts; 104 105 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, 106 &numdirtybuffers, 0, ""); 107 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, 108 &lodirtybuffers, 0, ""); 109 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, 110 &hidirtybuffers, 0, ""); 111 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, 112 &numfreebuffers, 0, ""); 113 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, 114 &lofreebuffers, 0, ""); 115 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, 116 &hifreebuffers, 0, ""); 117 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, 118 &runningbufspace, 0, ""); 119 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, 120 &lorunningspace, 0, ""); 121 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, 122 &hirunningspace, 0, ""); 123 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, 124 &maxbufspace, 0, ""); 125 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, 126 &hibufspace, 0, ""); 127 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, 128 &lobufspace, 0, ""); 129 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, 130 &bufspace, 0, ""); 131 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, 132 &maxbufmallocspace, 0, ""); 133 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, 134 &bufmallocspace, 0, ""); 135 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, 136 &getnewbufcalls, 0, ""); 137 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, 138 &getnewbufrestarts, 0, ""); 139 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, 140 &vmiodirenable, 0, ""); 141 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, 142 &bufdefragcnt, 0, ""); 143 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, 144 &buffreekvacnt, 0, ""); 145 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, 146 &bufreusecnt, 0, ""); 147 148 /* 149 * Disable background writes for now. There appear to be races in the 150 * flags tests and locking operations as well as races in the completion 151 * code modifying the original bp (origbp) without holding a lock, assuming 152 * splbio protection when there might not be splbio protection. 153 */ 154 static int dobkgrdwrite = 0; 155 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 156 "Do background writes (honoring the BV_BKGRDWRITE flag)?"); 157 158 static int bufhashmask; 159 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 160 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } }; 161 char *buf_wmesg = BUF_WMESG; 162 163 extern int vm_swap_size; 164 165 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 166 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 167 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 168 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 169 170 /* 171 * Buffer hash table code. Note that the logical block scans linearly, which 172 * gives us some L1 cache locality. 173 */ 174 175 static __inline 176 struct bufhashhdr * 177 bufhash(struct vnode *vnp, daddr_t bn) 178 { 179 return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]); 180 } 181 182 /* 183 * numdirtywakeup: 184 * 185 * If someone is blocked due to there being too many dirty buffers, 186 * and numdirtybuffers is now reasonable, wake them up. 187 */ 188 189 static __inline void 190 numdirtywakeup(int level) 191 { 192 if (numdirtybuffers <= level) { 193 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 194 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 195 wakeup(&needsbuffer); 196 } 197 } 198 } 199 200 /* 201 * bufspacewakeup: 202 * 203 * Called when buffer space is potentially available for recovery. 204 * getnewbuf() will block on this flag when it is unable to free 205 * sufficient buffer space. Buffer space becomes recoverable when 206 * bp's get placed back in the queues. 207 */ 208 209 static __inline void 210 bufspacewakeup(void) 211 { 212 /* 213 * If someone is waiting for BUF space, wake them up. Even 214 * though we haven't freed the kva space yet, the waiting 215 * process will be able to now. 216 */ 217 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 218 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 219 wakeup(&needsbuffer); 220 } 221 } 222 223 /* 224 * runningbufwakeup() - in-progress I/O accounting. 225 * 226 */ 227 static __inline void 228 runningbufwakeup(struct buf *bp) 229 { 230 if (bp->b_runningbufspace) { 231 runningbufspace -= bp->b_runningbufspace; 232 bp->b_runningbufspace = 0; 233 if (runningbufreq && runningbufspace <= lorunningspace) { 234 runningbufreq = 0; 235 wakeup(&runningbufreq); 236 } 237 } 238 } 239 240 /* 241 * bufcountwakeup: 242 * 243 * Called when a buffer has been added to one of the free queues to 244 * account for the buffer and to wakeup anyone waiting for free buffers. 245 * This typically occurs when large amounts of metadata are being handled 246 * by the buffer cache ( else buffer space runs out first, usually ). 247 */ 248 249 static __inline void 250 bufcountwakeup(void) 251 { 252 ++numfreebuffers; 253 if (needsbuffer) { 254 needsbuffer &= ~VFS_BIO_NEED_ANY; 255 if (numfreebuffers >= hifreebuffers) 256 needsbuffer &= ~VFS_BIO_NEED_FREE; 257 wakeup(&needsbuffer); 258 } 259 } 260 261 /* 262 * waitrunningbufspace() 263 * 264 * runningbufspace is a measure of the amount of I/O currently 265 * running. This routine is used in async-write situations to 266 * prevent creating huge backups of pending writes to a device. 267 * Only asynchronous writes are governed by this function. 268 * 269 * Reads will adjust runningbufspace, but will not block based on it. 270 * The read load has a side effect of reducing the allowed write load. 271 * 272 * This does NOT turn an async write into a sync write. It waits 273 * for earlier writes to complete and generally returns before the 274 * caller's write has reached the device. 275 */ 276 static __inline void 277 waitrunningbufspace(void) 278 { 279 while (runningbufspace > hirunningspace) { 280 int s; 281 282 s = splbio(); /* fix race against interrupt/biodone() */ 283 ++runningbufreq; 284 tsleep(&runningbufreq, 0, "wdrain", 0); 285 splx(s); 286 } 287 } 288 289 /* 290 * vfs_buf_test_cache: 291 * 292 * Called when a buffer is extended. This function clears the B_CACHE 293 * bit if the newly extended portion of the buffer does not contain 294 * valid data. 295 */ 296 static __inline__ 297 void 298 vfs_buf_test_cache(struct buf *bp, 299 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 300 vm_page_t m) 301 { 302 if (bp->b_flags & B_CACHE) { 303 int base = (foff + off) & PAGE_MASK; 304 if (vm_page_is_valid(m, base, size) == 0) 305 bp->b_flags &= ~B_CACHE; 306 } 307 } 308 309 static __inline__ 310 void 311 bd_wakeup(int dirtybuflevel) 312 { 313 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 314 bd_request = 1; 315 wakeup(&bd_request); 316 } 317 } 318 319 /* 320 * bd_speedup - speedup the buffer cache flushing code 321 */ 322 323 static __inline__ 324 void 325 bd_speedup(void) 326 { 327 bd_wakeup(1); 328 } 329 330 /* 331 * Initialize buffer headers and related structures. 332 */ 333 334 caddr_t 335 bufhashinit(caddr_t vaddr) 336 { 337 /* first, make a null hash table */ 338 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) 339 ; 340 bufhashtbl = (void *)vaddr; 341 vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask; 342 --bufhashmask; 343 return(vaddr); 344 } 345 346 void 347 bufinit(void) 348 { 349 struct buf *bp; 350 int i; 351 352 TAILQ_INIT(&bswlist); 353 LIST_INIT(&invalhash); 354 lwkt_token_init(&buftimetoken); 355 356 for (i = 0; i <= bufhashmask; i++) 357 LIST_INIT(&bufhashtbl[i]); 358 359 /* next, make a null set of free lists */ 360 for (i = 0; i < BUFFER_QUEUES; i++) 361 TAILQ_INIT(&bufqueues[i]); 362 363 /* finally, initialize each buffer header and stick on empty q */ 364 for (i = 0; i < nbuf; i++) { 365 bp = &buf[i]; 366 bzero(bp, sizeof *bp); 367 bp->b_flags = B_INVAL; /* we're just an empty header */ 368 bp->b_dev = NODEV; 369 bp->b_qindex = QUEUE_EMPTY; 370 bp->b_xflags = 0; 371 LIST_INIT(&bp->b_dep); 372 BUF_LOCKINIT(bp); 373 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 374 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 375 } 376 377 /* 378 * maxbufspace is the absolute maximum amount of buffer space we are 379 * allowed to reserve in KVM and in real terms. The absolute maximum 380 * is nominally used by buf_daemon. hibufspace is the nominal maximum 381 * used by most other processes. The differential is required to 382 * ensure that buf_daemon is able to run when other processes might 383 * be blocked waiting for buffer space. 384 * 385 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 386 * this may result in KVM fragmentation which is not handled optimally 387 * by the system. 388 */ 389 maxbufspace = nbuf * BKVASIZE; 390 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 391 lobufspace = hibufspace - MAXBSIZE; 392 393 lorunningspace = 512 * 1024; 394 hirunningspace = 1024 * 1024; 395 396 /* 397 * Limit the amount of malloc memory since it is wired permanently into 398 * the kernel space. Even though this is accounted for in the buffer 399 * allocation, we don't want the malloced region to grow uncontrolled. 400 * The malloc scheme improves memory utilization significantly on average 401 * (small) directories. 402 */ 403 maxbufmallocspace = hibufspace / 20; 404 405 /* 406 * Reduce the chance of a deadlock occuring by limiting the number 407 * of delayed-write dirty buffers we allow to stack up. 408 */ 409 hidirtybuffers = nbuf / 4 + 20; 410 numdirtybuffers = 0; 411 /* 412 * To support extreme low-memory systems, make sure hidirtybuffers cannot 413 * eat up all available buffer space. This occurs when our minimum cannot 414 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 415 * BKVASIZE'd (8K) buffers. 416 */ 417 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 418 hidirtybuffers >>= 1; 419 } 420 lodirtybuffers = hidirtybuffers / 2; 421 422 /* 423 * Try to keep the number of free buffers in the specified range, 424 * and give special processes (e.g. like buf_daemon) access to an 425 * emergency reserve. 426 */ 427 lofreebuffers = nbuf / 18 + 5; 428 hifreebuffers = 2 * lofreebuffers; 429 numfreebuffers = nbuf; 430 431 /* 432 * Maximum number of async ops initiated per buf_daemon loop. This is 433 * somewhat of a hack at the moment, we really need to limit ourselves 434 * based on the number of bytes of I/O in-transit that were initiated 435 * from buf_daemon. 436 */ 437 438 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 439 bogus_page = vm_page_alloc(kernel_object, 440 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 441 VM_ALLOC_NORMAL); 442 vmstats.v_wire_count++; 443 444 } 445 446 /* 447 * bfreekva() - free the kva allocation for a buffer. 448 * 449 * Must be called at splbio() or higher as this is the only locking for 450 * buffer_map. 451 * 452 * Since this call frees up buffer space, we call bufspacewakeup(). 453 */ 454 static void 455 bfreekva(struct buf * bp) 456 { 457 int count; 458 459 if (bp->b_kvasize) { 460 ++buffreekvacnt; 461 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 462 vm_map_lock(buffer_map); 463 bufspace -= bp->b_kvasize; 464 vm_map_delete(buffer_map, 465 (vm_offset_t) bp->b_kvabase, 466 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 467 &count 468 ); 469 vm_map_unlock(buffer_map); 470 vm_map_entry_release(count); 471 bp->b_kvasize = 0; 472 bufspacewakeup(); 473 } 474 } 475 476 /* 477 * bremfree: 478 * 479 * Remove the buffer from the appropriate free list. 480 */ 481 void 482 bremfree(struct buf * bp) 483 { 484 int s = splbio(); 485 int old_qindex = bp->b_qindex; 486 487 if (bp->b_qindex != QUEUE_NONE) { 488 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 489 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 490 bp->b_qindex = QUEUE_NONE; 491 } else { 492 if (BUF_REFCNT(bp) <= 1) 493 panic("bremfree: removing a buffer not on a queue"); 494 } 495 496 /* 497 * Fixup numfreebuffers count. If the buffer is invalid or not 498 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 499 * the buffer was free and we must decrement numfreebuffers. 500 */ 501 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 502 switch(old_qindex) { 503 case QUEUE_DIRTY: 504 case QUEUE_CLEAN: 505 case QUEUE_EMPTY: 506 case QUEUE_EMPTYKVA: 507 --numfreebuffers; 508 break; 509 default: 510 break; 511 } 512 } 513 splx(s); 514 } 515 516 517 /* 518 * Get a buffer with the specified data. Look in the cache first. We 519 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 520 * is set, the buffer is valid and we do not have to do anything ( see 521 * getblk() ). 522 */ 523 int 524 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp) 525 { 526 struct buf *bp; 527 528 bp = getblk(vp, blkno, size, 0, 0); 529 *bpp = bp; 530 531 /* if not found in cache, do some I/O */ 532 if ((bp->b_flags & B_CACHE) == 0) { 533 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp)); 534 bp->b_flags |= B_READ; 535 bp->b_flags &= ~(B_ERROR | B_INVAL); 536 vfs_busy_pages(bp, 0); 537 VOP_STRATEGY(vp, bp); 538 return (biowait(bp)); 539 } 540 return (0); 541 } 542 543 /* 544 * Operates like bread, but also starts asynchronous I/O on 545 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 546 * to initiating I/O . If B_CACHE is set, the buffer is valid 547 * and we do not have to do anything. 548 */ 549 int 550 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno, 551 int *rabsize, int cnt, struct buf ** bpp) 552 { 553 struct buf *bp, *rabp; 554 int i; 555 int rv = 0, readwait = 0; 556 557 *bpp = bp = getblk(vp, blkno, size, 0, 0); 558 559 /* if not found in cache, do some I/O */ 560 if ((bp->b_flags & B_CACHE) == 0) { 561 bp->b_flags |= B_READ; 562 bp->b_flags &= ~(B_ERROR | B_INVAL); 563 vfs_busy_pages(bp, 0); 564 VOP_STRATEGY(vp, bp); 565 ++readwait; 566 } 567 568 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 569 if (inmem(vp, *rablkno)) 570 continue; 571 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 572 573 if ((rabp->b_flags & B_CACHE) == 0) { 574 rabp->b_flags |= B_READ | B_ASYNC; 575 rabp->b_flags &= ~(B_ERROR | B_INVAL); 576 vfs_busy_pages(rabp, 0); 577 BUF_KERNPROC(rabp); 578 VOP_STRATEGY(vp, rabp); 579 } else { 580 brelse(rabp); 581 } 582 } 583 584 if (readwait) { 585 rv = biowait(bp); 586 } 587 return (rv); 588 } 589 590 /* 591 * Write, release buffer on completion. (Done by iodone 592 * if async). Do not bother writing anything if the buffer 593 * is invalid. 594 * 595 * Note that we set B_CACHE here, indicating that buffer is 596 * fully valid and thus cacheable. This is true even of NFS 597 * now so we set it generally. This could be set either here 598 * or in biodone() since the I/O is synchronous. We put it 599 * here. 600 */ 601 int 602 bwrite(struct buf * bp) 603 { 604 int oldflags, s; 605 struct buf *newbp; 606 607 if (bp->b_flags & B_INVAL) { 608 brelse(bp); 609 return (0); 610 } 611 612 oldflags = bp->b_flags; 613 614 if (BUF_REFCNT(bp) == 0) 615 panic("bwrite: buffer is not busy???"); 616 s = splbio(); 617 /* 618 * If a background write is already in progress, delay 619 * writing this block if it is asynchronous. Otherwise 620 * wait for the background write to complete. 621 */ 622 if (bp->b_xflags & BX_BKGRDINPROG) { 623 if (bp->b_flags & B_ASYNC) { 624 splx(s); 625 bdwrite(bp); 626 return (0); 627 } 628 bp->b_xflags |= BX_BKGRDWAIT; 629 tsleep(&bp->b_xflags, 0, "biord", 0); 630 if (bp->b_xflags & BX_BKGRDINPROG) 631 panic("bwrite: still writing"); 632 } 633 634 /* Mark the buffer clean */ 635 bundirty(bp); 636 637 /* 638 * If this buffer is marked for background writing and we 639 * do not have to wait for it, make a copy and write the 640 * copy so as to leave this buffer ready for further use. 641 * 642 * This optimization eats a lot of memory. If we have a page 643 * or buffer shortfull we can't do it. 644 */ 645 if (dobkgrdwrite && 646 (bp->b_xflags & BX_BKGRDWRITE) && 647 (bp->b_flags & B_ASYNC) && 648 !vm_page_count_severe() && 649 !buf_dirty_count_severe()) { 650 if (bp->b_flags & B_CALL) 651 panic("bwrite: need chained iodone"); 652 653 /* get a new block */ 654 newbp = geteblk(bp->b_bufsize); 655 656 /* set it to be identical to the old block */ 657 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 658 bgetvp(bp->b_vp, newbp); 659 newbp->b_lblkno = bp->b_lblkno; 660 newbp->b_blkno = bp->b_blkno; 661 newbp->b_offset = bp->b_offset; 662 newbp->b_iodone = vfs_backgroundwritedone; 663 newbp->b_flags |= B_ASYNC | B_CALL; 664 newbp->b_flags &= ~B_INVAL; 665 666 /* move over the dependencies */ 667 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps) 668 (*bioops.io_movedeps)(bp, newbp); 669 670 /* 671 * Initiate write on the copy, release the original to 672 * the B_LOCKED queue so that it cannot go away until 673 * the background write completes. If not locked it could go 674 * away and then be reconstituted while it was being written. 675 * If the reconstituted buffer were written, we could end up 676 * with two background copies being written at the same time. 677 */ 678 bp->b_xflags |= BX_BKGRDINPROG; 679 bp->b_flags |= B_LOCKED; 680 bqrelse(bp); 681 bp = newbp; 682 } 683 684 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR); 685 bp->b_flags |= B_WRITEINPROG | B_CACHE; 686 687 bp->b_vp->v_numoutput++; 688 vfs_busy_pages(bp, 1); 689 690 /* 691 * Normal bwrites pipeline writes 692 */ 693 bp->b_runningbufspace = bp->b_bufsize; 694 runningbufspace += bp->b_runningbufspace; 695 696 splx(s); 697 if (oldflags & B_ASYNC) 698 BUF_KERNPROC(bp); 699 VOP_STRATEGY(bp->b_vp, bp); 700 701 if ((oldflags & B_ASYNC) == 0) { 702 int rtval = biowait(bp); 703 brelse(bp); 704 return (rtval); 705 } else if ((oldflags & B_NOWDRAIN) == 0) { 706 /* 707 * don't allow the async write to saturate the I/O 708 * system. Deadlocks can occur only if a device strategy 709 * routine (like in VN) turns around and issues another 710 * high-level write, in which case B_NOWDRAIN is expected 711 * to be set. Otherwise we will not deadlock here because 712 * we are blocking waiting for I/O that is already in-progress 713 * to complete. 714 */ 715 waitrunningbufspace(); 716 } 717 718 return (0); 719 } 720 721 /* 722 * Complete a background write started from bwrite. 723 */ 724 static void 725 vfs_backgroundwritedone(bp) 726 struct buf *bp; 727 { 728 struct buf *origbp; 729 730 /* 731 * Find the original buffer that we are writing. 732 */ 733 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 734 panic("backgroundwritedone: lost buffer"); 735 /* 736 * Process dependencies then return any unfinished ones. 737 */ 738 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 739 (*bioops.io_complete)(bp); 740 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps) 741 (*bioops.io_movedeps)(bp, origbp); 742 /* 743 * Clear the BX_BKGRDINPROG flag in the original buffer 744 * and awaken it if it is waiting for the write to complete. 745 * If BX_BKGRDINPROG is not set in the original buffer it must 746 * have been released and re-instantiated - which is not legal. 747 */ 748 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2")); 749 origbp->b_xflags &= ~BX_BKGRDINPROG; 750 if (origbp->b_xflags & BX_BKGRDWAIT) { 751 origbp->b_xflags &= ~BX_BKGRDWAIT; 752 wakeup(&origbp->b_xflags); 753 } 754 /* 755 * Clear the B_LOCKED flag and remove it from the locked 756 * queue if it currently resides there. 757 */ 758 origbp->b_flags &= ~B_LOCKED; 759 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 760 bremfree(origbp); 761 bqrelse(origbp); 762 } 763 /* 764 * This buffer is marked B_NOCACHE, so when it is released 765 * by biodone, it will be tossed. We mark it with B_READ 766 * to avoid biodone doing a second vwakeup. 767 */ 768 bp->b_flags |= B_NOCACHE | B_READ; 769 bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE); 770 bp->b_iodone = 0; 771 biodone(bp); 772 } 773 774 /* 775 * Delayed write. (Buffer is marked dirty). Do not bother writing 776 * anything if the buffer is marked invalid. 777 * 778 * Note that since the buffer must be completely valid, we can safely 779 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 780 * biodone() in order to prevent getblk from writing the buffer 781 * out synchronously. 782 */ 783 void 784 bdwrite(struct buf * bp) 785 { 786 if (BUF_REFCNT(bp) == 0) 787 panic("bdwrite: buffer is not busy"); 788 789 if (bp->b_flags & B_INVAL) { 790 brelse(bp); 791 return; 792 } 793 bdirty(bp); 794 795 /* 796 * Set B_CACHE, indicating that the buffer is fully valid. This is 797 * true even of NFS now. 798 */ 799 bp->b_flags |= B_CACHE; 800 801 /* 802 * This bmap keeps the system from needing to do the bmap later, 803 * perhaps when the system is attempting to do a sync. Since it 804 * is likely that the indirect block -- or whatever other datastructure 805 * that the filesystem needs is still in memory now, it is a good 806 * thing to do this. Note also, that if the pageout daemon is 807 * requesting a sync -- there might not be enough memory to do 808 * the bmap then... So, this is important to do. 809 */ 810 if (bp->b_lblkno == bp->b_blkno) { 811 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 812 } 813 814 /* 815 * Set the *dirty* buffer range based upon the VM system dirty pages. 816 */ 817 vfs_setdirty(bp); 818 819 /* 820 * We need to do this here to satisfy the vnode_pager and the 821 * pageout daemon, so that it thinks that the pages have been 822 * "cleaned". Note that since the pages are in a delayed write 823 * buffer -- the VFS layer "will" see that the pages get written 824 * out on the next sync, or perhaps the cluster will be completed. 825 */ 826 vfs_clean_pages(bp); 827 bqrelse(bp); 828 829 /* 830 * Wakeup the buffer flushing daemon if we have a lot of dirty 831 * buffers (midpoint between our recovery point and our stall 832 * point). 833 */ 834 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 835 836 /* 837 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 838 * due to the softdep code. 839 */ 840 } 841 842 /* 843 * bdirty: 844 * 845 * Turn buffer into delayed write request. We must clear B_READ and 846 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 847 * itself to properly update it in the dirty/clean lists. We mark it 848 * B_DONE to ensure that any asynchronization of the buffer properly 849 * clears B_DONE ( else a panic will occur later ). 850 * 851 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 852 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 853 * should only be called if the buffer is known-good. 854 * 855 * Since the buffer is not on a queue, we do not update the numfreebuffers 856 * count. 857 * 858 * Must be called at splbio(). 859 * The buffer must be on QUEUE_NONE. 860 */ 861 void 862 bdirty(bp) 863 struct buf *bp; 864 { 865 KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 866 bp->b_flags &= ~(B_READ|B_RELBUF); 867 868 if ((bp->b_flags & B_DELWRI) == 0) { 869 bp->b_flags |= B_DONE | B_DELWRI; 870 reassignbuf(bp, bp->b_vp); 871 ++numdirtybuffers; 872 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 873 } 874 } 875 876 /* 877 * bundirty: 878 * 879 * Clear B_DELWRI for buffer. 880 * 881 * Since the buffer is not on a queue, we do not update the numfreebuffers 882 * count. 883 * 884 * Must be called at splbio(). 885 * The buffer must be on QUEUE_NONE. 886 */ 887 888 void 889 bundirty(bp) 890 struct buf *bp; 891 { 892 KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 893 894 if (bp->b_flags & B_DELWRI) { 895 bp->b_flags &= ~B_DELWRI; 896 reassignbuf(bp, bp->b_vp); 897 --numdirtybuffers; 898 numdirtywakeup(lodirtybuffers); 899 } 900 /* 901 * Since it is now being written, we can clear its deferred write flag. 902 */ 903 bp->b_flags &= ~B_DEFERRED; 904 } 905 906 /* 907 * bawrite: 908 * 909 * Asynchronous write. Start output on a buffer, but do not wait for 910 * it to complete. The buffer is released when the output completes. 911 * 912 * bwrite() ( or the VOP routine anyway ) is responsible for handling 913 * B_INVAL buffers. Not us. 914 */ 915 void 916 bawrite(struct buf * bp) 917 { 918 bp->b_flags |= B_ASYNC; 919 (void) VOP_BWRITE(bp->b_vp, bp); 920 } 921 922 /* 923 * bowrite: 924 * 925 * Ordered write. Start output on a buffer, and flag it so that the 926 * device will write it in the order it was queued. The buffer is 927 * released when the output completes. bwrite() ( or the VOP routine 928 * anyway ) is responsible for handling B_INVAL buffers. 929 */ 930 int 931 bowrite(struct buf * bp) 932 { 933 bp->b_flags |= B_ORDERED | B_ASYNC; 934 return (VOP_BWRITE(bp->b_vp, bp)); 935 } 936 937 /* 938 * bwillwrite: 939 * 940 * Called prior to the locking of any vnodes when we are expecting to 941 * write. We do not want to starve the buffer cache with too many 942 * dirty buffers so we block here. By blocking prior to the locking 943 * of any vnodes we attempt to avoid the situation where a locked vnode 944 * prevents the various system daemons from flushing related buffers. 945 */ 946 947 void 948 bwillwrite(void) 949 { 950 if (numdirtybuffers >= hidirtybuffers) { 951 int s; 952 953 s = splbio(); 954 while (numdirtybuffers >= hidirtybuffers) { 955 bd_wakeup(1); 956 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 957 tsleep(&needsbuffer, 0, "flswai", 0); 958 } 959 splx(s); 960 } 961 } 962 963 /* 964 * Return true if we have too many dirty buffers. 965 */ 966 int 967 buf_dirty_count_severe(void) 968 { 969 return(numdirtybuffers >= hidirtybuffers); 970 } 971 972 /* 973 * brelse: 974 * 975 * Release a busy buffer and, if requested, free its resources. The 976 * buffer will be stashed in the appropriate bufqueue[] allowing it 977 * to be accessed later as a cache entity or reused for other purposes. 978 */ 979 void 980 brelse(struct buf * bp) 981 { 982 int s; 983 984 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 985 986 s = splbio(); 987 988 if (bp->b_flags & B_LOCKED) 989 bp->b_flags &= ~B_ERROR; 990 991 if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) { 992 /* 993 * Failed write, redirty. Must clear B_ERROR to prevent 994 * pages from being scrapped. If B_INVAL is set then 995 * this case is not run and the next case is run to 996 * destroy the buffer. B_INVAL can occur if the buffer 997 * is outside the range supported by the underlying device. 998 */ 999 bp->b_flags &= ~B_ERROR; 1000 bdirty(bp); 1001 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) || 1002 (bp->b_bufsize <= 0)) { 1003 /* 1004 * Either a failed I/O or we were asked to free or not 1005 * cache the buffer. 1006 */ 1007 bp->b_flags |= B_INVAL; 1008 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1009 (*bioops.io_deallocate)(bp); 1010 if (bp->b_flags & B_DELWRI) { 1011 --numdirtybuffers; 1012 numdirtywakeup(lodirtybuffers); 1013 } 1014 bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF); 1015 if ((bp->b_flags & B_VMIO) == 0) { 1016 if (bp->b_bufsize) 1017 allocbuf(bp, 0); 1018 if (bp->b_vp) 1019 brelvp(bp); 1020 } 1021 } 1022 1023 /* 1024 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1025 * is called with B_DELWRI set, the underlying pages may wind up 1026 * getting freed causing a previous write (bdwrite()) to get 'lost' 1027 * because pages associated with a B_DELWRI bp are marked clean. 1028 * 1029 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1030 * if B_DELWRI is set. 1031 * 1032 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1033 * on pages to return pages to the VM page queues. 1034 */ 1035 if (bp->b_flags & B_DELWRI) 1036 bp->b_flags &= ~B_RELBUF; 1037 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1038 bp->b_flags |= B_RELBUF; 1039 1040 /* 1041 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1042 * constituted, not even NFS buffers now. Two flags effect this. If 1043 * B_INVAL, the struct buf is invalidated but the VM object is kept 1044 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1045 * 1046 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be 1047 * invalidated. B_ERROR cannot be set for a failed write unless the 1048 * buffer is also B_INVAL because it hits the re-dirtying code above. 1049 * 1050 * Normally we can do this whether a buffer is B_DELWRI or not. If 1051 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1052 * the commit state and we cannot afford to lose the buffer. If the 1053 * buffer has a background write in progress, we need to keep it 1054 * around to prevent it from being reconstituted and starting a second 1055 * background write. 1056 */ 1057 if ((bp->b_flags & B_VMIO) 1058 && !(bp->b_vp->v_tag == VT_NFS && 1059 !vn_isdisk(bp->b_vp, NULL) && 1060 (bp->b_flags & B_DELWRI)) 1061 ) { 1062 1063 int i, j, resid; 1064 vm_page_t m; 1065 off_t foff; 1066 vm_pindex_t poff; 1067 vm_object_t obj; 1068 struct vnode *vp; 1069 1070 vp = bp->b_vp; 1071 1072 /* 1073 * Get the base offset and length of the buffer. Note that 1074 * in the VMIO case if the buffer block size is not 1075 * page-aligned then b_data pointer may not be page-aligned. 1076 * But our b_pages[] array *IS* page aligned. 1077 * 1078 * block sizes less then DEV_BSIZE (usually 512) are not 1079 * supported due to the page granularity bits (m->valid, 1080 * m->dirty, etc...). 1081 * 1082 * See man buf(9) for more information 1083 */ 1084 1085 resid = bp->b_bufsize; 1086 foff = bp->b_offset; 1087 1088 for (i = 0; i < bp->b_npages; i++) { 1089 m = bp->b_pages[i]; 1090 vm_page_flag_clear(m, PG_ZERO); 1091 /* 1092 * If we hit a bogus page, fixup *all* of them 1093 * now. 1094 */ 1095 if (m == bogus_page) { 1096 VOP_GETVOBJECT(vp, &obj); 1097 poff = OFF_TO_IDX(bp->b_offset); 1098 1099 for (j = i; j < bp->b_npages; j++) { 1100 vm_page_t mtmp; 1101 1102 mtmp = bp->b_pages[j]; 1103 if (mtmp == bogus_page) { 1104 mtmp = vm_page_lookup(obj, poff + j); 1105 if (!mtmp) { 1106 panic("brelse: page missing\n"); 1107 } 1108 bp->b_pages[j] = mtmp; 1109 } 1110 } 1111 1112 if ((bp->b_flags & B_INVAL) == 0) { 1113 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 1114 } 1115 m = bp->b_pages[i]; 1116 } 1117 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1118 int poffset = foff & PAGE_MASK; 1119 int presid = resid > (PAGE_SIZE - poffset) ? 1120 (PAGE_SIZE - poffset) : resid; 1121 1122 KASSERT(presid >= 0, ("brelse: extra page")); 1123 vm_page_set_invalid(m, poffset, presid); 1124 } 1125 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1126 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1127 } 1128 1129 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1130 vfs_vmio_release(bp); 1131 1132 } else if (bp->b_flags & B_VMIO) { 1133 1134 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1135 vfs_vmio_release(bp); 1136 1137 } 1138 1139 if (bp->b_qindex != QUEUE_NONE) 1140 panic("brelse: free buffer onto another queue???"); 1141 if (BUF_REFCNT(bp) > 1) { 1142 /* Temporary panic to verify exclusive locking */ 1143 /* This panic goes away when we allow shared refs */ 1144 panic("brelse: multiple refs"); 1145 /* do not release to free list */ 1146 BUF_UNLOCK(bp); 1147 splx(s); 1148 return; 1149 } 1150 1151 /* enqueue */ 1152 1153 /* buffers with no memory */ 1154 if (bp->b_bufsize == 0) { 1155 bp->b_flags |= B_INVAL; 1156 bp->b_xflags &= ~BX_BKGRDWRITE; 1157 if (bp->b_xflags & BX_BKGRDINPROG) 1158 panic("losing buffer 1"); 1159 if (bp->b_kvasize) { 1160 bp->b_qindex = QUEUE_EMPTYKVA; 1161 } else { 1162 bp->b_qindex = QUEUE_EMPTY; 1163 } 1164 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1165 LIST_REMOVE(bp, b_hash); 1166 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1167 bp->b_dev = NODEV; 1168 /* buffers with junk contents */ 1169 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) { 1170 bp->b_flags |= B_INVAL; 1171 bp->b_xflags &= ~BX_BKGRDWRITE; 1172 if (bp->b_xflags & BX_BKGRDINPROG) 1173 panic("losing buffer 2"); 1174 bp->b_qindex = QUEUE_CLEAN; 1175 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1176 LIST_REMOVE(bp, b_hash); 1177 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1178 bp->b_dev = NODEV; 1179 1180 /* buffers that are locked */ 1181 } else if (bp->b_flags & B_LOCKED) { 1182 bp->b_qindex = QUEUE_LOCKED; 1183 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1184 1185 /* remaining buffers */ 1186 } else { 1187 switch(bp->b_flags & (B_DELWRI|B_AGE)) { 1188 case B_DELWRI | B_AGE: 1189 bp->b_qindex = QUEUE_DIRTY; 1190 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1191 break; 1192 case B_DELWRI: 1193 bp->b_qindex = QUEUE_DIRTY; 1194 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1195 break; 1196 case B_AGE: 1197 bp->b_qindex = QUEUE_CLEAN; 1198 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1199 break; 1200 default: 1201 bp->b_qindex = QUEUE_CLEAN; 1202 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1203 break; 1204 } 1205 } 1206 1207 /* 1208 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1209 * on the correct queue. 1210 */ 1211 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1212 bundirty(bp); 1213 1214 /* 1215 * Fixup numfreebuffers count. The bp is on an appropriate queue 1216 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1217 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1218 * if B_INVAL is set ). 1219 */ 1220 1221 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1222 bufcountwakeup(); 1223 1224 /* 1225 * Something we can maybe free or reuse 1226 */ 1227 if (bp->b_bufsize || bp->b_kvasize) 1228 bufspacewakeup(); 1229 1230 /* unlock */ 1231 BUF_UNLOCK(bp); 1232 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | 1233 B_DIRECT | B_NOWDRAIN); 1234 splx(s); 1235 } 1236 1237 /* 1238 * Release a buffer back to the appropriate queue but do not try to free 1239 * it. The buffer is expected to be used again soon. 1240 * 1241 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1242 * biodone() to requeue an async I/O on completion. It is also used when 1243 * known good buffers need to be requeued but we think we may need the data 1244 * again soon. 1245 * 1246 * XXX we should be able to leave the B_RELBUF hint set on completion. 1247 */ 1248 void 1249 bqrelse(struct buf * bp) 1250 { 1251 int s; 1252 1253 s = splbio(); 1254 1255 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1256 1257 if (bp->b_qindex != QUEUE_NONE) 1258 panic("bqrelse: free buffer onto another queue???"); 1259 if (BUF_REFCNT(bp) > 1) { 1260 /* do not release to free list */ 1261 panic("bqrelse: multiple refs"); 1262 BUF_UNLOCK(bp); 1263 splx(s); 1264 return; 1265 } 1266 if (bp->b_flags & B_LOCKED) { 1267 bp->b_flags &= ~B_ERROR; 1268 bp->b_qindex = QUEUE_LOCKED; 1269 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1270 /* buffers with stale but valid contents */ 1271 } else if (bp->b_flags & B_DELWRI) { 1272 bp->b_qindex = QUEUE_DIRTY; 1273 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1274 } else if (vm_page_count_severe()) { 1275 /* 1276 * We are too low on memory, we have to try to free the 1277 * buffer (most importantly: the wired pages making up its 1278 * backing store) *now*. 1279 */ 1280 splx(s); 1281 brelse(bp); 1282 return; 1283 } else { 1284 bp->b_qindex = QUEUE_CLEAN; 1285 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1286 } 1287 1288 if ((bp->b_flags & B_LOCKED) == 0 && 1289 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1290 bufcountwakeup(); 1291 } 1292 1293 /* 1294 * Something we can maybe free or reuse. 1295 */ 1296 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1297 bufspacewakeup(); 1298 1299 /* unlock */ 1300 BUF_UNLOCK(bp); 1301 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1302 splx(s); 1303 } 1304 1305 static void 1306 vfs_vmio_release(bp) 1307 struct buf *bp; 1308 { 1309 int i, s; 1310 vm_page_t m; 1311 1312 s = splvm(); 1313 for (i = 0; i < bp->b_npages; i++) { 1314 m = bp->b_pages[i]; 1315 bp->b_pages[i] = NULL; 1316 /* 1317 * In order to keep page LRU ordering consistent, put 1318 * everything on the inactive queue. 1319 */ 1320 vm_page_unwire(m, 0); 1321 /* 1322 * We don't mess with busy pages, it is 1323 * the responsibility of the process that 1324 * busied the pages to deal with them. 1325 */ 1326 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1327 continue; 1328 1329 if (m->wire_count == 0) { 1330 vm_page_flag_clear(m, PG_ZERO); 1331 /* 1332 * Might as well free the page if we can and it has 1333 * no valid data. We also free the page if the 1334 * buffer was used for direct I/O. 1335 */ 1336 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) { 1337 vm_page_busy(m); 1338 vm_page_protect(m, VM_PROT_NONE); 1339 vm_page_free(m); 1340 } else if (bp->b_flags & B_DIRECT) { 1341 vm_page_try_to_free(m); 1342 } else if (vm_page_count_severe()) { 1343 vm_page_try_to_cache(m); 1344 } 1345 } 1346 } 1347 splx(s); 1348 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1349 if (bp->b_bufsize) { 1350 bufspacewakeup(); 1351 bp->b_bufsize = 0; 1352 } 1353 bp->b_npages = 0; 1354 bp->b_flags &= ~B_VMIO; 1355 if (bp->b_vp) 1356 brelvp(bp); 1357 } 1358 1359 /* 1360 * Check to see if a block is currently memory resident. 1361 */ 1362 struct buf * 1363 gbincore(struct vnode * vp, daddr_t blkno) 1364 { 1365 struct buf *bp; 1366 struct bufhashhdr *bh; 1367 1368 bh = bufhash(vp, blkno); 1369 1370 /* Search hash chain */ 1371 LIST_FOREACH(bp, bh, b_hash) { 1372 /* hit */ 1373 if (bp->b_vp == vp && bp->b_lblkno == blkno && 1374 (bp->b_flags & B_INVAL) == 0) { 1375 break; 1376 } 1377 } 1378 return (bp); 1379 } 1380 1381 /* 1382 * vfs_bio_awrite: 1383 * 1384 * Implement clustered async writes for clearing out B_DELWRI buffers. 1385 * This is much better then the old way of writing only one buffer at 1386 * a time. Note that we may not be presented with the buffers in the 1387 * correct order, so we search for the cluster in both directions. 1388 */ 1389 int 1390 vfs_bio_awrite(struct buf * bp) 1391 { 1392 int i; 1393 int j; 1394 daddr_t lblkno = bp->b_lblkno; 1395 struct vnode *vp = bp->b_vp; 1396 int s; 1397 int ncl; 1398 struct buf *bpa; 1399 int nwritten; 1400 int size; 1401 int maxcl; 1402 1403 s = splbio(); 1404 /* 1405 * right now we support clustered writing only to regular files. If 1406 * we find a clusterable block we could be in the middle of a cluster 1407 * rather then at the beginning. 1408 */ 1409 if ((vp->v_type == VREG) && 1410 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1411 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1412 1413 size = vp->v_mount->mnt_stat.f_iosize; 1414 maxcl = MAXPHYS / size; 1415 1416 for (i = 1; i < maxcl; i++) { 1417 if ((bpa = gbincore(vp, lblkno + i)) && 1418 BUF_REFCNT(bpa) == 0 && 1419 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1420 (B_DELWRI | B_CLUSTEROK)) && 1421 (bpa->b_bufsize == size)) { 1422 if ((bpa->b_blkno == bpa->b_lblkno) || 1423 (bpa->b_blkno != 1424 bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1425 break; 1426 } else { 1427 break; 1428 } 1429 } 1430 for (j = 1; i + j <= maxcl && j <= lblkno; j++) { 1431 if ((bpa = gbincore(vp, lblkno - j)) && 1432 BUF_REFCNT(bpa) == 0 && 1433 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1434 (B_DELWRI | B_CLUSTEROK)) && 1435 (bpa->b_bufsize == size)) { 1436 if ((bpa->b_blkno == bpa->b_lblkno) || 1437 (bpa->b_blkno != 1438 bp->b_blkno - ((j * size) >> DEV_BSHIFT))) 1439 break; 1440 } else { 1441 break; 1442 } 1443 } 1444 --j; 1445 ncl = i + j; 1446 /* 1447 * this is a possible cluster write 1448 */ 1449 if (ncl != 1) { 1450 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1451 splx(s); 1452 return nwritten; 1453 } 1454 } 1455 1456 BUF_LOCK(bp, LK_EXCLUSIVE); 1457 bremfree(bp); 1458 bp->b_flags |= B_ASYNC; 1459 1460 splx(s); 1461 /* 1462 * default (old) behavior, writing out only one block 1463 * 1464 * XXX returns b_bufsize instead of b_bcount for nwritten? 1465 */ 1466 nwritten = bp->b_bufsize; 1467 (void) VOP_BWRITE(bp->b_vp, bp); 1468 1469 return nwritten; 1470 } 1471 1472 /* 1473 * getnewbuf: 1474 * 1475 * Find and initialize a new buffer header, freeing up existing buffers 1476 * in the bufqueues as necessary. The new buffer is returned locked. 1477 * 1478 * Important: B_INVAL is not set. If the caller wishes to throw the 1479 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1480 * 1481 * We block if: 1482 * We have insufficient buffer headers 1483 * We have insufficient buffer space 1484 * buffer_map is too fragmented ( space reservation fails ) 1485 * If we have to flush dirty buffers ( but we try to avoid this ) 1486 * 1487 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1488 * Instead we ask the buf daemon to do it for us. We attempt to 1489 * avoid piecemeal wakeups of the pageout daemon. 1490 */ 1491 1492 static struct buf * 1493 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1494 { 1495 struct buf *bp; 1496 struct buf *nbp; 1497 int defrag = 0; 1498 int nqindex; 1499 static int flushingbufs; 1500 1501 /* 1502 * We can't afford to block since we might be holding a vnode lock, 1503 * which may prevent system daemons from running. We deal with 1504 * low-memory situations by proactively returning memory and running 1505 * async I/O rather then sync I/O. 1506 */ 1507 1508 ++getnewbufcalls; 1509 --getnewbufrestarts; 1510 restart: 1511 ++getnewbufrestarts; 1512 1513 /* 1514 * Setup for scan. If we do not have enough free buffers, 1515 * we setup a degenerate case that immediately fails. Note 1516 * that if we are specially marked process, we are allowed to 1517 * dip into our reserves. 1518 * 1519 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1520 * 1521 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1522 * However, there are a number of cases (defragging, reusing, ...) 1523 * where we cannot backup. 1524 */ 1525 nqindex = QUEUE_EMPTYKVA; 1526 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1527 1528 if (nbp == NULL) { 1529 /* 1530 * If no EMPTYKVA buffers and we are either 1531 * defragging or reusing, locate a CLEAN buffer 1532 * to free or reuse. If bufspace useage is low 1533 * skip this step so we can allocate a new buffer. 1534 */ 1535 if (defrag || bufspace >= lobufspace) { 1536 nqindex = QUEUE_CLEAN; 1537 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1538 } 1539 1540 /* 1541 * If we could not find or were not allowed to reuse a 1542 * CLEAN buffer, check to see if it is ok to use an EMPTY 1543 * buffer. We can only use an EMPTY buffer if allocating 1544 * its KVA would not otherwise run us out of buffer space. 1545 */ 1546 if (nbp == NULL && defrag == 0 && 1547 bufspace + maxsize < hibufspace) { 1548 nqindex = QUEUE_EMPTY; 1549 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1550 } 1551 } 1552 1553 /* 1554 * Run scan, possibly freeing data and/or kva mappings on the fly 1555 * depending. 1556 */ 1557 1558 while ((bp = nbp) != NULL) { 1559 int qindex = nqindex; 1560 1561 /* 1562 * Calculate next bp ( we can only use it if we do not block 1563 * or do other fancy things ). 1564 */ 1565 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1566 switch(qindex) { 1567 case QUEUE_EMPTY: 1568 nqindex = QUEUE_EMPTYKVA; 1569 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1570 break; 1571 /* fall through */ 1572 case QUEUE_EMPTYKVA: 1573 nqindex = QUEUE_CLEAN; 1574 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1575 break; 1576 /* fall through */ 1577 case QUEUE_CLEAN: 1578 /* 1579 * nbp is NULL. 1580 */ 1581 break; 1582 } 1583 } 1584 1585 /* 1586 * Sanity Checks 1587 */ 1588 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1589 1590 /* 1591 * Note: we no longer distinguish between VMIO and non-VMIO 1592 * buffers. 1593 */ 1594 1595 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1596 1597 /* 1598 * If we are defragging then we need a buffer with 1599 * b_kvasize != 0. XXX this situation should no longer 1600 * occur, if defrag is non-zero the buffer's b_kvasize 1601 * should also be non-zero at this point. XXX 1602 */ 1603 if (defrag && bp->b_kvasize == 0) { 1604 printf("Warning: defrag empty buffer %p\n", bp); 1605 continue; 1606 } 1607 1608 /* 1609 * Start freeing the bp. This is somewhat involved. nbp 1610 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1611 */ 1612 1613 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1614 panic("getnewbuf: locked buf"); 1615 bremfree(bp); 1616 1617 if (qindex == QUEUE_CLEAN) { 1618 if (bp->b_flags & B_VMIO) { 1619 bp->b_flags &= ~B_ASYNC; 1620 vfs_vmio_release(bp); 1621 } 1622 if (bp->b_vp) 1623 brelvp(bp); 1624 } 1625 1626 /* 1627 * NOTE: nbp is now entirely invalid. We can only restart 1628 * the scan from this point on. 1629 * 1630 * Get the rest of the buffer freed up. b_kva* is still 1631 * valid after this operation. 1632 */ 1633 1634 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1635 (*bioops.io_deallocate)(bp); 1636 if (bp->b_xflags & BX_BKGRDINPROG) 1637 panic("losing buffer 3"); 1638 LIST_REMOVE(bp, b_hash); 1639 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1640 1641 if (bp->b_bufsize) 1642 allocbuf(bp, 0); 1643 1644 bp->b_flags = 0; 1645 bp->b_xflags = 0; 1646 bp->b_dev = NODEV; 1647 bp->b_vp = NULL; 1648 bp->b_blkno = bp->b_lblkno = 0; 1649 bp->b_offset = NOOFFSET; 1650 bp->b_iodone = 0; 1651 bp->b_error = 0; 1652 bp->b_resid = 0; 1653 bp->b_bcount = 0; 1654 bp->b_npages = 0; 1655 bp->b_dirtyoff = bp->b_dirtyend = 0; 1656 1657 LIST_INIT(&bp->b_dep); 1658 1659 /* 1660 * If we are defragging then free the buffer. 1661 */ 1662 if (defrag) { 1663 bp->b_flags |= B_INVAL; 1664 bfreekva(bp); 1665 brelse(bp); 1666 defrag = 0; 1667 goto restart; 1668 } 1669 1670 /* 1671 * If we are overcomitted then recover the buffer and its 1672 * KVM space. This occurs in rare situations when multiple 1673 * processes are blocked in getnewbuf() or allocbuf(). 1674 */ 1675 if (bufspace >= hibufspace) 1676 flushingbufs = 1; 1677 if (flushingbufs && bp->b_kvasize != 0) { 1678 bp->b_flags |= B_INVAL; 1679 bfreekva(bp); 1680 brelse(bp); 1681 goto restart; 1682 } 1683 if (bufspace < lobufspace) 1684 flushingbufs = 0; 1685 break; 1686 } 1687 1688 /* 1689 * If we exhausted our list, sleep as appropriate. We may have to 1690 * wakeup various daemons and write out some dirty buffers. 1691 * 1692 * Generally we are sleeping due to insufficient buffer space. 1693 */ 1694 1695 if (bp == NULL) { 1696 int flags; 1697 char *waitmsg; 1698 1699 if (defrag) { 1700 flags = VFS_BIO_NEED_BUFSPACE; 1701 waitmsg = "nbufkv"; 1702 } else if (bufspace >= hibufspace) { 1703 waitmsg = "nbufbs"; 1704 flags = VFS_BIO_NEED_BUFSPACE; 1705 } else { 1706 waitmsg = "newbuf"; 1707 flags = VFS_BIO_NEED_ANY; 1708 } 1709 1710 bd_speedup(); /* heeeelp */ 1711 1712 needsbuffer |= flags; 1713 while (needsbuffer & flags) { 1714 if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo)) 1715 return (NULL); 1716 } 1717 } else { 1718 /* 1719 * We finally have a valid bp. We aren't quite out of the 1720 * woods, we still have to reserve kva space. In order 1721 * to keep fragmentation sane we only allocate kva in 1722 * BKVASIZE chunks. 1723 */ 1724 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1725 1726 if (maxsize != bp->b_kvasize) { 1727 vm_offset_t addr = 0; 1728 int count; 1729 1730 bfreekva(bp); 1731 1732 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1733 vm_map_lock(buffer_map); 1734 1735 if (vm_map_findspace(buffer_map, 1736 vm_map_min(buffer_map), maxsize, 1737 maxsize, &addr)) { 1738 /* 1739 * Uh oh. Buffer map is to fragmented. We 1740 * must defragment the map. 1741 */ 1742 vm_map_unlock(buffer_map); 1743 vm_map_entry_release(count); 1744 ++bufdefragcnt; 1745 defrag = 1; 1746 bp->b_flags |= B_INVAL; 1747 brelse(bp); 1748 goto restart; 1749 } 1750 if (addr) { 1751 vm_map_insert(buffer_map, &count, 1752 NULL, 0, 1753 addr, addr + maxsize, 1754 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1755 1756 bp->b_kvabase = (caddr_t) addr; 1757 bp->b_kvasize = maxsize; 1758 bufspace += bp->b_kvasize; 1759 ++bufreusecnt; 1760 } 1761 vm_map_unlock(buffer_map); 1762 vm_map_entry_release(count); 1763 } 1764 bp->b_data = bp->b_kvabase; 1765 } 1766 return(bp); 1767 } 1768 1769 /* 1770 * buf_daemon: 1771 * 1772 * buffer flushing daemon. Buffers are normally flushed by the 1773 * update daemon but if it cannot keep up this process starts to 1774 * take the load in an attempt to prevent getnewbuf() from blocking. 1775 */ 1776 1777 static struct thread *bufdaemonthread; 1778 1779 static struct kproc_desc buf_kp = { 1780 "bufdaemon", 1781 buf_daemon, 1782 &bufdaemonthread 1783 }; 1784 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 1785 1786 static void 1787 buf_daemon() 1788 { 1789 int s; 1790 1791 /* 1792 * This process needs to be suspended prior to shutdown sync. 1793 */ 1794 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 1795 bufdaemonthread, SHUTDOWN_PRI_LAST); 1796 1797 /* 1798 * This process is allowed to take the buffer cache to the limit 1799 */ 1800 s = splbio(); 1801 1802 for (;;) { 1803 kproc_suspend_loop(); 1804 1805 /* 1806 * Do the flush. Limit the amount of in-transit I/O we 1807 * allow to build up, otherwise we would completely saturate 1808 * the I/O system. Wakeup any waiting processes before we 1809 * normally would so they can run in parallel with our drain. 1810 */ 1811 while (numdirtybuffers > lodirtybuffers) { 1812 if (flushbufqueues() == 0) 1813 break; 1814 waitrunningbufspace(); 1815 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 1816 } 1817 1818 /* 1819 * Only clear bd_request if we have reached our low water 1820 * mark. The buf_daemon normally waits 5 seconds and 1821 * then incrementally flushes any dirty buffers that have 1822 * built up, within reason. 1823 * 1824 * If we were unable to hit our low water mark and couldn't 1825 * find any flushable buffers, we sleep half a second. 1826 * Otherwise we loop immediately. 1827 */ 1828 if (numdirtybuffers <= lodirtybuffers) { 1829 /* 1830 * We reached our low water mark, reset the 1831 * request and sleep until we are needed again. 1832 * The sleep is just so the suspend code works. 1833 */ 1834 bd_request = 0; 1835 tsleep(&bd_request, 0, "psleep", hz); 1836 } else { 1837 /* 1838 * We couldn't find any flushable dirty buffers but 1839 * still have too many dirty buffers, we 1840 * have to sleep and try again. (rare) 1841 */ 1842 tsleep(&bd_request, 0, "qsleep", hz / 2); 1843 } 1844 } 1845 } 1846 1847 /* 1848 * flushbufqueues: 1849 * 1850 * Try to flush a buffer in the dirty queue. We must be careful to 1851 * free up B_INVAL buffers instead of write them, which NFS is 1852 * particularly sensitive to. 1853 */ 1854 1855 static int 1856 flushbufqueues(void) 1857 { 1858 struct buf *bp; 1859 int r = 0; 1860 1861 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1862 1863 while (bp) { 1864 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp)); 1865 if ((bp->b_flags & B_DELWRI) != 0 && 1866 (bp->b_xflags & BX_BKGRDINPROG) == 0) { 1867 if (bp->b_flags & B_INVAL) { 1868 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1869 panic("flushbufqueues: locked buf"); 1870 bremfree(bp); 1871 brelse(bp); 1872 ++r; 1873 break; 1874 } 1875 if (LIST_FIRST(&bp->b_dep) != NULL && 1876 bioops.io_countdeps && 1877 (bp->b_flags & B_DEFERRED) == 0 && 1878 (*bioops.io_countdeps)(bp, 0)) { 1879 TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], 1880 bp, b_freelist); 1881 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], 1882 bp, b_freelist); 1883 bp->b_flags |= B_DEFERRED; 1884 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1885 continue; 1886 } 1887 vfs_bio_awrite(bp); 1888 ++r; 1889 break; 1890 } 1891 bp = TAILQ_NEXT(bp, b_freelist); 1892 } 1893 return (r); 1894 } 1895 1896 /* 1897 * Check to see if a block is currently memory resident. 1898 */ 1899 struct buf * 1900 incore(struct vnode * vp, daddr_t blkno) 1901 { 1902 struct buf *bp; 1903 1904 int s = splbio(); 1905 bp = gbincore(vp, blkno); 1906 splx(s); 1907 return (bp); 1908 } 1909 1910 /* 1911 * Returns true if no I/O is needed to access the 1912 * associated VM object. This is like incore except 1913 * it also hunts around in the VM system for the data. 1914 */ 1915 1916 int 1917 inmem(struct vnode * vp, daddr_t blkno) 1918 { 1919 vm_object_t obj; 1920 vm_offset_t toff, tinc, size; 1921 vm_page_t m; 1922 vm_ooffset_t off; 1923 1924 if (incore(vp, blkno)) 1925 return 1; 1926 if (vp->v_mount == NULL) 1927 return 0; 1928 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0) 1929 return 0; 1930 1931 size = PAGE_SIZE; 1932 if (size > vp->v_mount->mnt_stat.f_iosize) 1933 size = vp->v_mount->mnt_stat.f_iosize; 1934 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 1935 1936 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 1937 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 1938 if (!m) 1939 return 0; 1940 tinc = size; 1941 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 1942 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 1943 if (vm_page_is_valid(m, 1944 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 1945 return 0; 1946 } 1947 return 1; 1948 } 1949 1950 /* 1951 * vfs_setdirty: 1952 * 1953 * Sets the dirty range for a buffer based on the status of the dirty 1954 * bits in the pages comprising the buffer. 1955 * 1956 * The range is limited to the size of the buffer. 1957 * 1958 * This routine is primarily used by NFS, but is generalized for the 1959 * B_VMIO case. 1960 */ 1961 static void 1962 vfs_setdirty(struct buf *bp) 1963 { 1964 int i; 1965 vm_object_t object; 1966 1967 /* 1968 * Degenerate case - empty buffer 1969 */ 1970 1971 if (bp->b_bufsize == 0) 1972 return; 1973 1974 /* 1975 * We qualify the scan for modified pages on whether the 1976 * object has been flushed yet. The OBJ_WRITEABLE flag 1977 * is not cleared simply by protecting pages off. 1978 */ 1979 1980 if ((bp->b_flags & B_VMIO) == 0) 1981 return; 1982 1983 object = bp->b_pages[0]->object; 1984 1985 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 1986 printf("Warning: object %p writeable but not mightbedirty\n", object); 1987 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 1988 printf("Warning: object %p mightbedirty but not writeable\n", object); 1989 1990 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 1991 vm_offset_t boffset; 1992 vm_offset_t eoffset; 1993 1994 /* 1995 * test the pages to see if they have been modified directly 1996 * by users through the VM system. 1997 */ 1998 for (i = 0; i < bp->b_npages; i++) { 1999 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 2000 vm_page_test_dirty(bp->b_pages[i]); 2001 } 2002 2003 /* 2004 * Calculate the encompassing dirty range, boffset and eoffset, 2005 * (eoffset - boffset) bytes. 2006 */ 2007 2008 for (i = 0; i < bp->b_npages; i++) { 2009 if (bp->b_pages[i]->dirty) 2010 break; 2011 } 2012 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2013 2014 for (i = bp->b_npages - 1; i >= 0; --i) { 2015 if (bp->b_pages[i]->dirty) { 2016 break; 2017 } 2018 } 2019 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2020 2021 /* 2022 * Fit it to the buffer. 2023 */ 2024 2025 if (eoffset > bp->b_bcount) 2026 eoffset = bp->b_bcount; 2027 2028 /* 2029 * If we have a good dirty range, merge with the existing 2030 * dirty range. 2031 */ 2032 2033 if (boffset < eoffset) { 2034 if (bp->b_dirtyoff > boffset) 2035 bp->b_dirtyoff = boffset; 2036 if (bp->b_dirtyend < eoffset) 2037 bp->b_dirtyend = eoffset; 2038 } 2039 } 2040 } 2041 2042 /* 2043 * getblk: 2044 * 2045 * Get a block given a specified block and offset into a file/device. 2046 * The buffers B_DONE bit will be cleared on return, making it almost 2047 * ready for an I/O initiation. B_INVAL may or may not be set on 2048 * return. The caller should clear B_INVAL prior to initiating a 2049 * READ. 2050 * 2051 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2052 * an existing buffer. 2053 * 2054 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2055 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2056 * and then cleared based on the backing VM. If the previous buffer is 2057 * non-0-sized but invalid, B_CACHE will be cleared. 2058 * 2059 * If getblk() must create a new buffer, the new buffer is returned with 2060 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2061 * case it is returned with B_INVAL clear and B_CACHE set based on the 2062 * backing VM. 2063 * 2064 * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos 2065 * B_CACHE bit is clear. 2066 * 2067 * What this means, basically, is that the caller should use B_CACHE to 2068 * determine whether the buffer is fully valid or not and should clear 2069 * B_INVAL prior to issuing a read. If the caller intends to validate 2070 * the buffer by loading its data area with something, the caller needs 2071 * to clear B_INVAL. If the caller does this without issuing an I/O, 2072 * the caller should set B_CACHE ( as an optimization ), else the caller 2073 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2074 * a write attempt or if it was a successfull read. If the caller 2075 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2076 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2077 */ 2078 struct buf * 2079 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 2080 { 2081 struct buf *bp; 2082 int s; 2083 struct bufhashhdr *bh; 2084 2085 if (size > MAXBSIZE) 2086 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 2087 2088 s = splbio(); 2089 loop: 2090 /* 2091 * Block if we are low on buffers. Certain processes are allowed 2092 * to completely exhaust the buffer cache. 2093 * 2094 * If this check ever becomes a bottleneck it may be better to 2095 * move it into the else, when gbincore() fails. At the moment 2096 * it isn't a problem. 2097 * 2098 * XXX remove, we cannot afford to block anywhere if holding a vnode 2099 * lock in low-memory situation, so take it to the max. 2100 */ 2101 if (numfreebuffers == 0) { 2102 if (!curproc) 2103 return NULL; 2104 needsbuffer |= VFS_BIO_NEED_ANY; 2105 tsleep(&needsbuffer, slpflag, "newbuf", slptimeo); 2106 } 2107 2108 if ((bp = gbincore(vp, blkno))) { 2109 /* 2110 * Buffer is in-core. If the buffer is not busy, it must 2111 * be on a queue. 2112 */ 2113 2114 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2115 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, 2116 "getblk", slpflag, slptimeo) == ENOLCK) 2117 goto loop; 2118 splx(s); 2119 return (struct buf *) NULL; 2120 } 2121 2122 /* 2123 * The buffer is locked. B_CACHE is cleared if the buffer is 2124 * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set 2125 * and for a VMIO buffer B_CACHE is adjusted according to the 2126 * backing VM cache. 2127 */ 2128 if (bp->b_flags & B_INVAL) 2129 bp->b_flags &= ~B_CACHE; 2130 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2131 bp->b_flags |= B_CACHE; 2132 bremfree(bp); 2133 2134 /* 2135 * check for size inconsistancies for non-VMIO case. 2136 */ 2137 2138 if (bp->b_bcount != size) { 2139 if ((bp->b_flags & B_VMIO) == 0 || 2140 (size > bp->b_kvasize)) { 2141 if (bp->b_flags & B_DELWRI) { 2142 bp->b_flags |= B_NOCACHE; 2143 VOP_BWRITE(bp->b_vp, bp); 2144 } else { 2145 if ((bp->b_flags & B_VMIO) && 2146 (LIST_FIRST(&bp->b_dep) == NULL)) { 2147 bp->b_flags |= B_RELBUF; 2148 brelse(bp); 2149 } else { 2150 bp->b_flags |= B_NOCACHE; 2151 VOP_BWRITE(bp->b_vp, bp); 2152 } 2153 } 2154 goto loop; 2155 } 2156 } 2157 2158 /* 2159 * If the size is inconsistant in the VMIO case, we can resize 2160 * the buffer. This might lead to B_CACHE getting set or 2161 * cleared. If the size has not changed, B_CACHE remains 2162 * unchanged from its previous state. 2163 */ 2164 2165 if (bp->b_bcount != size) 2166 allocbuf(bp, size); 2167 2168 KASSERT(bp->b_offset != NOOFFSET, 2169 ("getblk: no buffer offset")); 2170 2171 /* 2172 * A buffer with B_DELWRI set and B_CACHE clear must 2173 * be committed before we can return the buffer in 2174 * order to prevent the caller from issuing a read 2175 * ( due to B_CACHE not being set ) and overwriting 2176 * it. 2177 * 2178 * Most callers, including NFS and FFS, need this to 2179 * operate properly either because they assume they 2180 * can issue a read if B_CACHE is not set, or because 2181 * ( for example ) an uncached B_DELWRI might loop due 2182 * to softupdates re-dirtying the buffer. In the latter 2183 * case, B_CACHE is set after the first write completes, 2184 * preventing further loops. 2185 * 2186 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2187 * above while extending the buffer, we cannot allow the 2188 * buffer to remain with B_CACHE set after the write 2189 * completes or it will represent a corrupt state. To 2190 * deal with this we set B_NOCACHE to scrap the buffer 2191 * after the write. 2192 * 2193 * We might be able to do something fancy, like setting 2194 * B_CACHE in bwrite() except if B_DELWRI is already set, 2195 * so the below call doesn't set B_CACHE, but that gets real 2196 * confusing. This is much easier. 2197 */ 2198 2199 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2200 bp->b_flags |= B_NOCACHE; 2201 VOP_BWRITE(bp->b_vp, bp); 2202 goto loop; 2203 } 2204 2205 splx(s); 2206 bp->b_flags &= ~B_DONE; 2207 } else { 2208 /* 2209 * Buffer is not in-core, create new buffer. The buffer 2210 * returned by getnewbuf() is locked. Note that the returned 2211 * buffer is also considered valid (not marked B_INVAL). 2212 */ 2213 int bsize, maxsize, vmio; 2214 off_t offset; 2215 2216 if (vn_isdisk(vp, NULL)) 2217 bsize = DEV_BSIZE; 2218 else if (vp->v_mountedhere) 2219 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2220 else if (vp->v_mount) 2221 bsize = vp->v_mount->mnt_stat.f_iosize; 2222 else 2223 bsize = size; 2224 2225 offset = (off_t)blkno * bsize; 2226 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF); 2227 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2228 maxsize = imax(maxsize, bsize); 2229 2230 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2231 if (slpflag || slptimeo) { 2232 splx(s); 2233 return NULL; 2234 } 2235 goto loop; 2236 } 2237 2238 /* 2239 * This code is used to make sure that a buffer is not 2240 * created while the getnewbuf routine is blocked. 2241 * This can be a problem whether the vnode is locked or not. 2242 * If the buffer is created out from under us, we have to 2243 * throw away the one we just created. There is now window 2244 * race because we are safely running at splbio() from the 2245 * point of the duplicate buffer creation through to here, 2246 * and we've locked the buffer. 2247 */ 2248 if (gbincore(vp, blkno)) { 2249 bp->b_flags |= B_INVAL; 2250 brelse(bp); 2251 goto loop; 2252 } 2253 2254 /* 2255 * Insert the buffer into the hash, so that it can 2256 * be found by incore. 2257 */ 2258 bp->b_blkno = bp->b_lblkno = blkno; 2259 bp->b_offset = offset; 2260 2261 bgetvp(vp, bp); 2262 LIST_REMOVE(bp, b_hash); 2263 bh = bufhash(vp, blkno); 2264 LIST_INSERT_HEAD(bh, bp, b_hash); 2265 2266 /* 2267 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2268 * buffer size starts out as 0, B_CACHE will be set by 2269 * allocbuf() for the VMIO case prior to it testing the 2270 * backing store for validity. 2271 */ 2272 2273 if (vmio) { 2274 bp->b_flags |= B_VMIO; 2275 #if defined(VFS_BIO_DEBUG) 2276 if (vp->v_type != VREG && vp->v_type != VBLK) 2277 printf("getblk: vmioing file type %d???\n", vp->v_type); 2278 #endif 2279 } else { 2280 bp->b_flags &= ~B_VMIO; 2281 } 2282 2283 allocbuf(bp, size); 2284 2285 splx(s); 2286 bp->b_flags &= ~B_DONE; 2287 } 2288 return (bp); 2289 } 2290 2291 /* 2292 * Get an empty, disassociated buffer of given size. The buffer is initially 2293 * set to B_INVAL. 2294 */ 2295 struct buf * 2296 geteblk(int size) 2297 { 2298 struct buf *bp; 2299 int s; 2300 int maxsize; 2301 2302 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2303 2304 s = splbio(); 2305 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0); 2306 splx(s); 2307 allocbuf(bp, size); 2308 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2309 return (bp); 2310 } 2311 2312 2313 /* 2314 * This code constitutes the buffer memory from either anonymous system 2315 * memory (in the case of non-VMIO operations) or from an associated 2316 * VM object (in the case of VMIO operations). This code is able to 2317 * resize a buffer up or down. 2318 * 2319 * Note that this code is tricky, and has many complications to resolve 2320 * deadlock or inconsistant data situations. Tread lightly!!! 2321 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2322 * the caller. Calling this code willy nilly can result in the loss of data. 2323 * 2324 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2325 * B_CACHE for the non-VMIO case. 2326 */ 2327 2328 int 2329 allocbuf(struct buf *bp, int size) 2330 { 2331 int newbsize, mbsize; 2332 int i; 2333 2334 if (BUF_REFCNT(bp) == 0) 2335 panic("allocbuf: buffer not busy"); 2336 2337 if (bp->b_kvasize < size) 2338 panic("allocbuf: buffer too small"); 2339 2340 if ((bp->b_flags & B_VMIO) == 0) { 2341 caddr_t origbuf; 2342 int origbufsize; 2343 /* 2344 * Just get anonymous memory from the kernel. Don't 2345 * mess with B_CACHE. 2346 */ 2347 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2348 #if !defined(NO_B_MALLOC) 2349 if (bp->b_flags & B_MALLOC) 2350 newbsize = mbsize; 2351 else 2352 #endif 2353 newbsize = round_page(size); 2354 2355 if (newbsize < bp->b_bufsize) { 2356 #if !defined(NO_B_MALLOC) 2357 /* 2358 * malloced buffers are not shrunk 2359 */ 2360 if (bp->b_flags & B_MALLOC) { 2361 if (newbsize) { 2362 bp->b_bcount = size; 2363 } else { 2364 free(bp->b_data, M_BIOBUF); 2365 if (bp->b_bufsize) { 2366 bufmallocspace -= bp->b_bufsize; 2367 bufspacewakeup(); 2368 bp->b_bufsize = 0; 2369 } 2370 bp->b_data = bp->b_kvabase; 2371 bp->b_bcount = 0; 2372 bp->b_flags &= ~B_MALLOC; 2373 } 2374 return 1; 2375 } 2376 #endif 2377 vm_hold_free_pages( 2378 bp, 2379 (vm_offset_t) bp->b_data + newbsize, 2380 (vm_offset_t) bp->b_data + bp->b_bufsize); 2381 } else if (newbsize > bp->b_bufsize) { 2382 #if !defined(NO_B_MALLOC) 2383 /* 2384 * We only use malloced memory on the first allocation. 2385 * and revert to page-allocated memory when the buffer 2386 * grows. 2387 */ 2388 if ( (bufmallocspace < maxbufmallocspace) && 2389 (bp->b_bufsize == 0) && 2390 (mbsize <= PAGE_SIZE/2)) { 2391 2392 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2393 bp->b_bufsize = mbsize; 2394 bp->b_bcount = size; 2395 bp->b_flags |= B_MALLOC; 2396 bufmallocspace += mbsize; 2397 return 1; 2398 } 2399 #endif 2400 origbuf = NULL; 2401 origbufsize = 0; 2402 #if !defined(NO_B_MALLOC) 2403 /* 2404 * If the buffer is growing on its other-than-first allocation, 2405 * then we revert to the page-allocation scheme. 2406 */ 2407 if (bp->b_flags & B_MALLOC) { 2408 origbuf = bp->b_data; 2409 origbufsize = bp->b_bufsize; 2410 bp->b_data = bp->b_kvabase; 2411 if (bp->b_bufsize) { 2412 bufmallocspace -= bp->b_bufsize; 2413 bufspacewakeup(); 2414 bp->b_bufsize = 0; 2415 } 2416 bp->b_flags &= ~B_MALLOC; 2417 newbsize = round_page(newbsize); 2418 } 2419 #endif 2420 vm_hold_load_pages( 2421 bp, 2422 (vm_offset_t) bp->b_data + bp->b_bufsize, 2423 (vm_offset_t) bp->b_data + newbsize); 2424 #if !defined(NO_B_MALLOC) 2425 if (origbuf) { 2426 bcopy(origbuf, bp->b_data, origbufsize); 2427 free(origbuf, M_BIOBUF); 2428 } 2429 #endif 2430 } 2431 } else { 2432 vm_page_t m; 2433 int desiredpages; 2434 2435 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2436 desiredpages = (size == 0) ? 0 : 2437 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2438 2439 #if !defined(NO_B_MALLOC) 2440 if (bp->b_flags & B_MALLOC) 2441 panic("allocbuf: VMIO buffer can't be malloced"); 2442 #endif 2443 /* 2444 * Set B_CACHE initially if buffer is 0 length or will become 2445 * 0-length. 2446 */ 2447 if (size == 0 || bp->b_bufsize == 0) 2448 bp->b_flags |= B_CACHE; 2449 2450 if (newbsize < bp->b_bufsize) { 2451 /* 2452 * DEV_BSIZE aligned new buffer size is less then the 2453 * DEV_BSIZE aligned existing buffer size. Figure out 2454 * if we have to remove any pages. 2455 */ 2456 if (desiredpages < bp->b_npages) { 2457 for (i = desiredpages; i < bp->b_npages; i++) { 2458 /* 2459 * the page is not freed here -- it 2460 * is the responsibility of 2461 * vnode_pager_setsize 2462 */ 2463 m = bp->b_pages[i]; 2464 KASSERT(m != bogus_page, 2465 ("allocbuf: bogus page found")); 2466 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2467 ; 2468 2469 bp->b_pages[i] = NULL; 2470 vm_page_unwire(m, 0); 2471 } 2472 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2473 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2474 bp->b_npages = desiredpages; 2475 } 2476 } else if (size > bp->b_bcount) { 2477 /* 2478 * We are growing the buffer, possibly in a 2479 * byte-granular fashion. 2480 */ 2481 struct vnode *vp; 2482 vm_object_t obj; 2483 vm_offset_t toff; 2484 vm_offset_t tinc; 2485 2486 /* 2487 * Step 1, bring in the VM pages from the object, 2488 * allocating them if necessary. We must clear 2489 * B_CACHE if these pages are not valid for the 2490 * range covered by the buffer. 2491 */ 2492 2493 vp = bp->b_vp; 2494 VOP_GETVOBJECT(vp, &obj); 2495 2496 while (bp->b_npages < desiredpages) { 2497 vm_page_t m; 2498 vm_pindex_t pi; 2499 2500 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2501 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2502 /* 2503 * note: must allocate system pages 2504 * since blocking here could intefere 2505 * with paging I/O, no matter which 2506 * process we are. 2507 */ 2508 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 2509 if (m == NULL) { 2510 VM_WAIT; 2511 vm_pageout_deficit += desiredpages - bp->b_npages; 2512 } else { 2513 vm_page_wire(m); 2514 vm_page_wakeup(m); 2515 bp->b_flags &= ~B_CACHE; 2516 bp->b_pages[bp->b_npages] = m; 2517 ++bp->b_npages; 2518 } 2519 continue; 2520 } 2521 2522 /* 2523 * We found a page. If we have to sleep on it, 2524 * retry because it might have gotten freed out 2525 * from under us. 2526 * 2527 * We can only test PG_BUSY here. Blocking on 2528 * m->busy might lead to a deadlock: 2529 * 2530 * vm_fault->getpages->cluster_read->allocbuf 2531 * 2532 */ 2533 2534 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2535 continue; 2536 2537 /* 2538 * We have a good page. Should we wakeup the 2539 * page daemon? 2540 */ 2541 if ((curthread != pagethread) && 2542 ((m->queue - m->pc) == PQ_CACHE) && 2543 ((vmstats.v_free_count + vmstats.v_cache_count) < 2544 (vmstats.v_free_min + vmstats.v_cache_min))) { 2545 pagedaemon_wakeup(); 2546 } 2547 vm_page_flag_clear(m, PG_ZERO); 2548 vm_page_wire(m); 2549 bp->b_pages[bp->b_npages] = m; 2550 ++bp->b_npages; 2551 } 2552 2553 /* 2554 * Step 2. We've loaded the pages into the buffer, 2555 * we have to figure out if we can still have B_CACHE 2556 * set. Note that B_CACHE is set according to the 2557 * byte-granular range ( bcount and size ), new the 2558 * aligned range ( newbsize ). 2559 * 2560 * The VM test is against m->valid, which is DEV_BSIZE 2561 * aligned. Needless to say, the validity of the data 2562 * needs to also be DEV_BSIZE aligned. Note that this 2563 * fails with NFS if the server or some other client 2564 * extends the file's EOF. If our buffer is resized, 2565 * B_CACHE may remain set! XXX 2566 */ 2567 2568 toff = bp->b_bcount; 2569 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2570 2571 while ((bp->b_flags & B_CACHE) && toff < size) { 2572 vm_pindex_t pi; 2573 2574 if (tinc > (size - toff)) 2575 tinc = size - toff; 2576 2577 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2578 PAGE_SHIFT; 2579 2580 vfs_buf_test_cache( 2581 bp, 2582 bp->b_offset, 2583 toff, 2584 tinc, 2585 bp->b_pages[pi] 2586 ); 2587 toff += tinc; 2588 tinc = PAGE_SIZE; 2589 } 2590 2591 /* 2592 * Step 3, fixup the KVM pmap. Remember that 2593 * bp->b_data is relative to bp->b_offset, but 2594 * bp->b_offset may be offset into the first page. 2595 */ 2596 2597 bp->b_data = (caddr_t) 2598 trunc_page((vm_offset_t)bp->b_data); 2599 pmap_qenter( 2600 (vm_offset_t)bp->b_data, 2601 bp->b_pages, 2602 bp->b_npages 2603 ); 2604 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2605 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2606 } 2607 } 2608 if (newbsize < bp->b_bufsize) 2609 bufspacewakeup(); 2610 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2611 bp->b_bcount = size; /* requested buffer size */ 2612 return 1; 2613 } 2614 2615 /* 2616 * biowait: 2617 * 2618 * Wait for buffer I/O completion, returning error status. The buffer 2619 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR 2620 * error and cleared. 2621 */ 2622 int 2623 biowait(struct buf * bp) 2624 { 2625 int s; 2626 2627 s = splbio(); 2628 while ((bp->b_flags & B_DONE) == 0) { 2629 #if defined(NO_SCHEDULE_MODS) 2630 tsleep(bp, 0, "biowait", 0); 2631 #else 2632 if (bp->b_flags & B_READ) 2633 tsleep(bp, 0, "biord", 0); 2634 else 2635 tsleep(bp, 0, "biowr", 0); 2636 #endif 2637 } 2638 splx(s); 2639 if (bp->b_flags & B_EINTR) { 2640 bp->b_flags &= ~B_EINTR; 2641 return (EINTR); 2642 } 2643 if (bp->b_flags & B_ERROR) { 2644 return (bp->b_error ? bp->b_error : EIO); 2645 } else { 2646 return (0); 2647 } 2648 } 2649 2650 /* 2651 * biodone: 2652 * 2653 * Finish I/O on a buffer, optionally calling a completion function. 2654 * This is usually called from an interrupt so process blocking is 2655 * not allowed. 2656 * 2657 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2658 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2659 * assuming B_INVAL is clear. 2660 * 2661 * For the VMIO case, we set B_CACHE if the op was a read and no 2662 * read error occured, or if the op was a write. B_CACHE is never 2663 * set if the buffer is invalid or otherwise uncacheable. 2664 * 2665 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2666 * initiator to leave B_INVAL set to brelse the buffer out of existance 2667 * in the biodone routine. 2668 */ 2669 void 2670 biodone(struct buf * bp) 2671 { 2672 int s, error; 2673 2674 s = splbio(); 2675 2676 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 2677 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 2678 2679 bp->b_flags |= B_DONE; 2680 runningbufwakeup(bp); 2681 2682 if (bp->b_flags & B_FREEBUF) { 2683 brelse(bp); 2684 splx(s); 2685 return; 2686 } 2687 2688 if ((bp->b_flags & B_READ) == 0) { 2689 vwakeup(bp); 2690 } 2691 2692 /* call optional completion function if requested */ 2693 if (bp->b_flags & B_CALL) { 2694 bp->b_flags &= ~B_CALL; 2695 (*bp->b_iodone) (bp); 2696 splx(s); 2697 return; 2698 } 2699 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 2700 (*bioops.io_complete)(bp); 2701 2702 if (bp->b_flags & B_VMIO) { 2703 int i; 2704 vm_ooffset_t foff; 2705 vm_page_t m; 2706 vm_object_t obj; 2707 int iosize; 2708 struct vnode *vp = bp->b_vp; 2709 2710 error = VOP_GETVOBJECT(vp, &obj); 2711 2712 #if defined(VFS_BIO_DEBUG) 2713 if (vp->v_usecount == 0) { 2714 panic("biodone: zero vnode ref count"); 2715 } 2716 2717 if (error) { 2718 panic("biodone: missing VM object"); 2719 } 2720 2721 if ((vp->v_flag & VOBJBUF) == 0) { 2722 panic("biodone: vnode is not setup for merged cache"); 2723 } 2724 #endif 2725 2726 foff = bp->b_offset; 2727 KASSERT(bp->b_offset != NOOFFSET, 2728 ("biodone: no buffer offset")); 2729 2730 if (error) { 2731 panic("biodone: no object"); 2732 } 2733 #if defined(VFS_BIO_DEBUG) 2734 if (obj->paging_in_progress < bp->b_npages) { 2735 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 2736 obj->paging_in_progress, bp->b_npages); 2737 } 2738 #endif 2739 2740 /* 2741 * Set B_CACHE if the op was a normal read and no error 2742 * occured. B_CACHE is set for writes in the b*write() 2743 * routines. 2744 */ 2745 iosize = bp->b_bcount - bp->b_resid; 2746 if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) { 2747 bp->b_flags |= B_CACHE; 2748 } 2749 2750 for (i = 0; i < bp->b_npages; i++) { 2751 int bogusflag = 0; 2752 int resid; 2753 2754 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2755 if (resid > iosize) 2756 resid = iosize; 2757 2758 /* 2759 * cleanup bogus pages, restoring the originals 2760 */ 2761 m = bp->b_pages[i]; 2762 if (m == bogus_page) { 2763 bogusflag = 1; 2764 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2765 if (m == NULL) 2766 panic("biodone: page disappeared"); 2767 bp->b_pages[i] = m; 2768 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2769 } 2770 #if defined(VFS_BIO_DEBUG) 2771 if (OFF_TO_IDX(foff) != m->pindex) { 2772 printf( 2773 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 2774 (unsigned long)foff, m->pindex); 2775 } 2776 #endif 2777 2778 /* 2779 * In the write case, the valid and clean bits are 2780 * already changed correctly ( see bdwrite() ), so we 2781 * only need to do this here in the read case. 2782 */ 2783 if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) { 2784 vfs_page_set_valid(bp, foff, i, m); 2785 } 2786 vm_page_flag_clear(m, PG_ZERO); 2787 2788 /* 2789 * when debugging new filesystems or buffer I/O methods, this 2790 * is the most common error that pops up. if you see this, you 2791 * have not set the page busy flag correctly!!! 2792 */ 2793 if (m->busy == 0) { 2794 printf("biodone: page busy < 0, " 2795 "pindex: %d, foff: 0x(%x,%x), " 2796 "resid: %d, index: %d\n", 2797 (int) m->pindex, (int)(foff >> 32), 2798 (int) foff & 0xffffffff, resid, i); 2799 if (!vn_isdisk(vp, NULL)) 2800 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n", 2801 bp->b_vp->v_mount->mnt_stat.f_iosize, 2802 (int) bp->b_lblkno, 2803 bp->b_flags, bp->b_npages); 2804 else 2805 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n", 2806 (int) bp->b_lblkno, 2807 bp->b_flags, bp->b_npages); 2808 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 2809 m->valid, m->dirty, m->wire_count); 2810 panic("biodone: page busy < 0\n"); 2811 } 2812 vm_page_io_finish(m); 2813 vm_object_pip_subtract(obj, 1); 2814 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2815 iosize -= resid; 2816 } 2817 if (obj) 2818 vm_object_pip_wakeupn(obj, 0); 2819 } 2820 2821 /* 2822 * For asynchronous completions, release the buffer now. The brelse 2823 * will do a wakeup there if necessary - so no need to do a wakeup 2824 * here in the async case. The sync case always needs to do a wakeup. 2825 */ 2826 2827 if (bp->b_flags & B_ASYNC) { 2828 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0) 2829 brelse(bp); 2830 else 2831 bqrelse(bp); 2832 } else { 2833 wakeup(bp); 2834 } 2835 splx(s); 2836 } 2837 2838 /* 2839 * This routine is called in lieu of iodone in the case of 2840 * incomplete I/O. This keeps the busy status for pages 2841 * consistant. 2842 */ 2843 void 2844 vfs_unbusy_pages(struct buf * bp) 2845 { 2846 int i; 2847 2848 runningbufwakeup(bp); 2849 if (bp->b_flags & B_VMIO) { 2850 struct vnode *vp = bp->b_vp; 2851 vm_object_t obj; 2852 2853 VOP_GETVOBJECT(vp, &obj); 2854 2855 for (i = 0; i < bp->b_npages; i++) { 2856 vm_page_t m = bp->b_pages[i]; 2857 2858 if (m == bogus_page) { 2859 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 2860 if (!m) { 2861 panic("vfs_unbusy_pages: page missing\n"); 2862 } 2863 bp->b_pages[i] = m; 2864 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2865 } 2866 vm_object_pip_subtract(obj, 1); 2867 vm_page_flag_clear(m, PG_ZERO); 2868 vm_page_io_finish(m); 2869 } 2870 vm_object_pip_wakeupn(obj, 0); 2871 } 2872 } 2873 2874 /* 2875 * vfs_page_set_valid: 2876 * 2877 * Set the valid bits in a page based on the supplied offset. The 2878 * range is restricted to the buffer's size. 2879 * 2880 * This routine is typically called after a read completes. 2881 */ 2882 static void 2883 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 2884 { 2885 vm_ooffset_t soff, eoff; 2886 2887 /* 2888 * Start and end offsets in buffer. eoff - soff may not cross a 2889 * page boundry or cross the end of the buffer. The end of the 2890 * buffer, in this case, is our file EOF, not the allocation size 2891 * of the buffer. 2892 */ 2893 soff = off; 2894 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2895 if (eoff > bp->b_offset + bp->b_bcount) 2896 eoff = bp->b_offset + bp->b_bcount; 2897 2898 /* 2899 * Set valid range. This is typically the entire buffer and thus the 2900 * entire page. 2901 */ 2902 if (eoff > soff) { 2903 vm_page_set_validclean( 2904 m, 2905 (vm_offset_t) (soff & PAGE_MASK), 2906 (vm_offset_t) (eoff - soff) 2907 ); 2908 } 2909 } 2910 2911 /* 2912 * This routine is called before a device strategy routine. 2913 * It is used to tell the VM system that paging I/O is in 2914 * progress, and treat the pages associated with the buffer 2915 * almost as being PG_BUSY. Also the object paging_in_progress 2916 * flag is handled to make sure that the object doesn't become 2917 * inconsistant. 2918 * 2919 * Since I/O has not been initiated yet, certain buffer flags 2920 * such as B_ERROR or B_INVAL may be in an inconsistant state 2921 * and should be ignored. 2922 */ 2923 void 2924 vfs_busy_pages(struct buf * bp, int clear_modify) 2925 { 2926 int i, bogus; 2927 2928 if (bp->b_flags & B_VMIO) { 2929 struct vnode *vp = bp->b_vp; 2930 vm_object_t obj; 2931 vm_ooffset_t foff; 2932 2933 VOP_GETVOBJECT(vp, &obj); 2934 foff = bp->b_offset; 2935 KASSERT(bp->b_offset != NOOFFSET, 2936 ("vfs_busy_pages: no buffer offset")); 2937 vfs_setdirty(bp); 2938 2939 retry: 2940 for (i = 0; i < bp->b_npages; i++) { 2941 vm_page_t m = bp->b_pages[i]; 2942 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 2943 goto retry; 2944 } 2945 2946 bogus = 0; 2947 for (i = 0; i < bp->b_npages; i++) { 2948 vm_page_t m = bp->b_pages[i]; 2949 2950 vm_page_flag_clear(m, PG_ZERO); 2951 if ((bp->b_flags & B_CLUSTER) == 0) { 2952 vm_object_pip_add(obj, 1); 2953 vm_page_io_start(m); 2954 } 2955 2956 /* 2957 * When readying a buffer for a read ( i.e 2958 * clear_modify == 0 ), it is important to do 2959 * bogus_page replacement for valid pages in 2960 * partially instantiated buffers. Partially 2961 * instantiated buffers can, in turn, occur when 2962 * reconstituting a buffer from its VM backing store 2963 * base. We only have to do this if B_CACHE is 2964 * clear ( which causes the I/O to occur in the 2965 * first place ). The replacement prevents the read 2966 * I/O from overwriting potentially dirty VM-backed 2967 * pages. XXX bogus page replacement is, uh, bogus. 2968 * It may not work properly with small-block devices. 2969 * We need to find a better way. 2970 */ 2971 2972 vm_page_protect(m, VM_PROT_NONE); 2973 if (clear_modify) 2974 vfs_page_set_valid(bp, foff, i, m); 2975 else if (m->valid == VM_PAGE_BITS_ALL && 2976 (bp->b_flags & B_CACHE) == 0) { 2977 bp->b_pages[i] = bogus_page; 2978 bogus++; 2979 } 2980 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2981 } 2982 if (bogus) 2983 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2984 } 2985 2986 /* 2987 * This is the easiest place to put the process accounting for the I/O 2988 * for now. 2989 */ 2990 { 2991 struct proc *p; 2992 2993 if ((p = curthread->td_proc) != NULL) { 2994 if (bp->b_flags & B_READ) 2995 p->p_stats->p_ru.ru_inblock++; 2996 else 2997 p->p_stats->p_ru.ru_oublock++; 2998 } 2999 } 3000 } 3001 3002 /* 3003 * Tell the VM system that the pages associated with this buffer 3004 * are clean. This is used for delayed writes where the data is 3005 * going to go to disk eventually without additional VM intevention. 3006 * 3007 * Note that while we only really need to clean through to b_bcount, we 3008 * just go ahead and clean through to b_bufsize. 3009 */ 3010 static void 3011 vfs_clean_pages(struct buf * bp) 3012 { 3013 int i; 3014 3015 if (bp->b_flags & B_VMIO) { 3016 vm_ooffset_t foff; 3017 3018 foff = bp->b_offset; 3019 KASSERT(bp->b_offset != NOOFFSET, 3020 ("vfs_clean_pages: no buffer offset")); 3021 for (i = 0; i < bp->b_npages; i++) { 3022 vm_page_t m = bp->b_pages[i]; 3023 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3024 vm_ooffset_t eoff = noff; 3025 3026 if (eoff > bp->b_offset + bp->b_bufsize) 3027 eoff = bp->b_offset + bp->b_bufsize; 3028 vfs_page_set_valid(bp, foff, i, m); 3029 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3030 foff = noff; 3031 } 3032 } 3033 } 3034 3035 /* 3036 * vfs_bio_set_validclean: 3037 * 3038 * Set the range within the buffer to valid and clean. The range is 3039 * relative to the beginning of the buffer, b_offset. Note that b_offset 3040 * itself may be offset from the beginning of the first page. 3041 */ 3042 3043 void 3044 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3045 { 3046 if (bp->b_flags & B_VMIO) { 3047 int i; 3048 int n; 3049 3050 /* 3051 * Fixup base to be relative to beginning of first page. 3052 * Set initial n to be the maximum number of bytes in the 3053 * first page that can be validated. 3054 */ 3055 3056 base += (bp->b_offset & PAGE_MASK); 3057 n = PAGE_SIZE - (base & PAGE_MASK); 3058 3059 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 3060 vm_page_t m = bp->b_pages[i]; 3061 3062 if (n > size) 3063 n = size; 3064 3065 vm_page_set_validclean(m, base & PAGE_MASK, n); 3066 base += n; 3067 size -= n; 3068 n = PAGE_SIZE; 3069 } 3070 } 3071 } 3072 3073 /* 3074 * vfs_bio_clrbuf: 3075 * 3076 * clear a buffer. This routine essentially fakes an I/O, so we need 3077 * to clear B_ERROR and B_INVAL. 3078 * 3079 * Note that while we only theoretically need to clear through b_bcount, 3080 * we go ahead and clear through b_bufsize. 3081 */ 3082 3083 void 3084 vfs_bio_clrbuf(struct buf *bp) 3085 { 3086 int i, mask = 0; 3087 caddr_t sa, ea; 3088 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3089 bp->b_flags &= ~(B_INVAL|B_ERROR); 3090 if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3091 (bp->b_offset & PAGE_MASK) == 0) { 3092 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3093 if ((bp->b_pages[0]->valid & mask) == mask) { 3094 bp->b_resid = 0; 3095 return; 3096 } 3097 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 3098 ((bp->b_pages[0]->valid & mask) == 0)) { 3099 bzero(bp->b_data, bp->b_bufsize); 3100 bp->b_pages[0]->valid |= mask; 3101 bp->b_resid = 0; 3102 return; 3103 } 3104 } 3105 ea = sa = bp->b_data; 3106 for(i=0;i<bp->b_npages;i++,sa=ea) { 3107 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3108 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3109 ea = (caddr_t)(vm_offset_t)ulmin( 3110 (u_long)(vm_offset_t)ea, 3111 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3112 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3113 if ((bp->b_pages[i]->valid & mask) == mask) 3114 continue; 3115 if ((bp->b_pages[i]->valid & mask) == 0) { 3116 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 3117 bzero(sa, ea - sa); 3118 } 3119 } else { 3120 for (; sa < ea; sa += DEV_BSIZE, j++) { 3121 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 3122 (bp->b_pages[i]->valid & (1<<j)) == 0) 3123 bzero(sa, DEV_BSIZE); 3124 } 3125 } 3126 bp->b_pages[i]->valid |= mask; 3127 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3128 } 3129 bp->b_resid = 0; 3130 } else { 3131 clrbuf(bp); 3132 } 3133 } 3134 3135 /* 3136 * vm_hold_load_pages and vm_hold_unload pages get pages into 3137 * a buffers address space. The pages are anonymous and are 3138 * not associated with a file object. 3139 */ 3140 void 3141 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3142 { 3143 vm_offset_t pg; 3144 vm_page_t p; 3145 int index; 3146 3147 to = round_page(to); 3148 from = round_page(from); 3149 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3150 3151 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3152 3153 tryagain: 3154 3155 /* 3156 * note: must allocate system pages since blocking here 3157 * could intefere with paging I/O, no matter which 3158 * process we are. 3159 */ 3160 p = vm_page_alloc(kernel_object, 3161 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3162 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 3163 if (!p) { 3164 vm_pageout_deficit += (to - from) >> PAGE_SHIFT; 3165 VM_WAIT; 3166 goto tryagain; 3167 } 3168 vm_page_wire(p); 3169 p->valid = VM_PAGE_BITS_ALL; 3170 vm_page_flag_clear(p, PG_ZERO); 3171 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 3172 bp->b_pages[index] = p; 3173 vm_page_wakeup(p); 3174 } 3175 bp->b_npages = index; 3176 } 3177 3178 void 3179 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3180 { 3181 vm_offset_t pg; 3182 vm_page_t p; 3183 int index, newnpages; 3184 3185 from = round_page(from); 3186 to = round_page(to); 3187 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3188 3189 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3190 p = bp->b_pages[index]; 3191 if (p && (index < bp->b_npages)) { 3192 if (p->busy) { 3193 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n", 3194 bp->b_blkno, bp->b_lblkno); 3195 } 3196 bp->b_pages[index] = NULL; 3197 pmap_kremove(pg); 3198 vm_page_busy(p); 3199 vm_page_unwire(p, 0); 3200 vm_page_free(p); 3201 } 3202 } 3203 bp->b_npages = newnpages; 3204 } 3205 3206 /* 3207 * Map an IO request into kernel virtual address space. 3208 * 3209 * All requests are (re)mapped into kernel VA space. 3210 * Notice that we use b_bufsize for the size of the buffer 3211 * to be mapped. b_bcount might be modified by the driver. 3212 */ 3213 int 3214 vmapbuf(struct buf *bp) 3215 { 3216 caddr_t addr, v, kva; 3217 vm_paddr_t pa; 3218 int pidx; 3219 int i; 3220 struct vm_page *m; 3221 3222 if ((bp->b_flags & B_PHYS) == 0) 3223 panic("vmapbuf"); 3224 if (bp->b_bufsize < 0) 3225 return (-1); 3226 for (v = bp->b_saveaddr, 3227 addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), 3228 pidx = 0; 3229 addr < bp->b_data + bp->b_bufsize; 3230 addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) { 3231 /* 3232 * Do the vm_fault if needed; do the copy-on-write thing 3233 * when reading stuff off device into memory. 3234 */ 3235 retry: 3236 i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data, 3237 (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ); 3238 if (i < 0) { 3239 for (i = 0; i < pidx; ++i) { 3240 vm_page_unhold(bp->b_pages[i]); 3241 bp->b_pages[i] = NULL; 3242 } 3243 return(-1); 3244 } 3245 3246 /* 3247 * WARNING! If sparc support is MFCd in the future this will 3248 * have to be changed from pmap_kextract() to pmap_extract() 3249 * ala -current. 3250 */ 3251 #ifdef __sparc64__ 3252 #error "If MFCing sparc support use pmap_extract" 3253 #endif 3254 pa = pmap_kextract((vm_offset_t)addr); 3255 if (pa == 0) { 3256 printf("vmapbuf: warning, race against user address during I/O"); 3257 goto retry; 3258 } 3259 m = PHYS_TO_VM_PAGE(pa); 3260 vm_page_hold(m); 3261 bp->b_pages[pidx] = m; 3262 } 3263 if (pidx > btoc(MAXPHYS)) 3264 panic("vmapbuf: mapped more than MAXPHYS"); 3265 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx); 3266 3267 kva = bp->b_saveaddr; 3268 bp->b_npages = pidx; 3269 bp->b_saveaddr = bp->b_data; 3270 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); 3271 return(0); 3272 } 3273 3274 /* 3275 * Free the io map PTEs associated with this IO operation. 3276 * We also invalidate the TLB entries and restore the original b_addr. 3277 */ 3278 void 3279 vunmapbuf(bp) 3280 struct buf *bp; 3281 { 3282 int pidx; 3283 int npages; 3284 vm_page_t *m; 3285 3286 if ((bp->b_flags & B_PHYS) == 0) 3287 panic("vunmapbuf"); 3288 3289 npages = bp->b_npages; 3290 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), 3291 npages); 3292 m = bp->b_pages; 3293 for (pidx = 0; pidx < npages; pidx++) 3294 vm_page_unhold(*m++); 3295 3296 bp->b_data = bp->b_saveaddr; 3297 } 3298 3299 #include "opt_ddb.h" 3300 #ifdef DDB 3301 #include <ddb/ddb.h> 3302 3303 DB_SHOW_COMMAND(buffer, db_show_buffer) 3304 { 3305 /* get args */ 3306 struct buf *bp = (struct buf *)addr; 3307 3308 if (!have_addr) { 3309 db_printf("usage: show buffer <addr>\n"); 3310 return; 3311 } 3312 3313 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3314 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, " 3315 "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, " 3316 "b_blkno = %d, b_pblkno = %d\n", 3317 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3318 major(bp->b_dev), minor(bp->b_dev), 3319 bp->b_data, bp->b_blkno, bp->b_pblkno); 3320 if (bp->b_npages) { 3321 int i; 3322 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3323 for (i = 0; i < bp->b_npages; i++) { 3324 vm_page_t m; 3325 m = bp->b_pages[i]; 3326 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3327 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3328 if ((i + 1) < bp->b_npages) 3329 db_printf(","); 3330 } 3331 db_printf("\n"); 3332 } 3333 } 3334 #endif /* DDB */ 3335