1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.110 2008/07/07 17:31:07 dillon Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/proc.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 #include <sys/buf2.h> 58 #include <sys/thread2.h> 59 #include <sys/spinlock2.h> 60 #include <vm/vm_page2.h> 61 62 #include "opt_ddb.h" 63 #ifdef DDB 64 #include <ddb/ddb.h> 65 #endif 66 67 /* 68 * Buffer queues. 69 */ 70 enum bufq_type { 71 BQUEUE_NONE, /* not on any queue */ 72 BQUEUE_LOCKED, /* locked buffers */ 73 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 74 BQUEUE_DIRTY, /* B_DELWRI buffers */ 75 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 76 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 77 BQUEUE_EMPTY, /* empty buffer headers */ 78 79 BUFFER_QUEUES /* number of buffer queues */ 80 }; 81 82 typedef enum bufq_type bufq_type_t; 83 84 #define BD_WAKE_SIZE 128 85 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 86 87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 88 89 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 90 91 struct buf *buf; /* buffer header pool */ 92 93 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from, 94 vm_offset_t to); 95 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from, 96 vm_offset_t to); 97 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 98 int pageno, vm_page_t m); 99 static void vfs_clean_pages(struct buf *bp); 100 static void vfs_setdirty(struct buf *bp); 101 static void vfs_vmio_release(struct buf *bp); 102 static int flushbufqueues(bufq_type_t q); 103 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 104 105 static void bd_signal(int totalspace); 106 static void buf_daemon(void); 107 static void buf_daemon_hw(void); 108 109 /* 110 * bogus page -- for I/O to/from partially complete buffers 111 * this is a temporary solution to the problem, but it is not 112 * really that bad. it would be better to split the buffer 113 * for input in the case of buffers partially already in memory, 114 * but the code is intricate enough already. 115 */ 116 vm_page_t bogus_page; 117 118 /* 119 * These are all static, but make the ones we export globals so we do 120 * not need to use compiler magic. 121 */ 122 int bufspace, maxbufspace, 123 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 124 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 125 static int lorunningspace, hirunningspace, runningbufreq; 126 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace; 127 int dirtybufcount, dirtybufcounthw; 128 int runningbufspace, runningbufcount; 129 static int getnewbufcalls; 130 static int getnewbufrestarts; 131 static int recoverbufcalls; 132 static int needsbuffer; /* locked by needsbuffer_spin */ 133 static int bd_request; /* locked by needsbuffer_spin */ 134 static int bd_request_hw; /* locked by needsbuffer_spin */ 135 static u_int bd_wake_ary[BD_WAKE_SIZE]; 136 static u_int bd_wake_index; 137 static struct spinlock needsbuffer_spin; 138 139 static struct thread *bufdaemon_td; 140 static struct thread *bufdaemonhw_td; 141 142 143 /* 144 * Sysctls for operational control of the buffer cache. 145 */ 146 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 147 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 148 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 149 "High watermark used to trigger explicit flushing of dirty buffers"); 150 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 151 "Minimum amount of buffer space required for active I/O"); 152 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 153 "Maximum amount of buffer space to usable for active I/O"); 154 /* 155 * Sysctls determining current state of the buffer cache. 156 */ 157 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 158 "Total number of buffers in buffer cache"); 159 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 160 "Pending bytes of dirty buffers (all)"); 161 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 162 "Pending bytes of dirty buffers (heavy weight)"); 163 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 164 "Pending number of dirty buffers"); 165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 166 "Pending number of dirty buffers (heavy weight)"); 167 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 168 "I/O bytes currently in progress due to asynchronous writes"); 169 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 170 "I/O buffers currently in progress due to asynchronous writes"); 171 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 172 "Hard limit on maximum amount of memory usable for buffer space"); 173 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 174 "Soft limit on maximum amount of memory usable for buffer space"); 175 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 176 "Minimum amount of memory to reserve for system buffer space"); 177 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 178 "Amount of memory available for buffers"); 179 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 180 0, "Maximum amount of memory reserved for buffers using malloc"); 181 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 182 "Amount of memory left for buffers using malloc-scheme"); 183 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 184 "New buffer header acquisition requests"); 185 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 186 0, "New buffer header acquisition restarts"); 187 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 188 "Recover VM space in an emergency"); 189 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 190 "Buffer acquisition restarts due to fragmented buffer map"); 191 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 192 "Amount of time KVA space was deallocated in an arbitrary buffer"); 193 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 194 "Amount of time buffer re-use operations were successful"); 195 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 196 "sizeof(struct buf)"); 197 198 char *buf_wmesg = BUF_WMESG; 199 200 extern int vm_swap_size; 201 202 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 203 #define VFS_BIO_NEED_UNUSED02 0x02 204 #define VFS_BIO_NEED_UNUSED04 0x04 205 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 206 207 /* 208 * bufspacewakeup: 209 * 210 * Called when buffer space is potentially available for recovery. 211 * getnewbuf() will block on this flag when it is unable to free 212 * sufficient buffer space. Buffer space becomes recoverable when 213 * bp's get placed back in the queues. 214 */ 215 216 static __inline void 217 bufspacewakeup(void) 218 { 219 /* 220 * If someone is waiting for BUF space, wake them up. Even 221 * though we haven't freed the kva space yet, the waiting 222 * process will be able to now. 223 */ 224 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 225 spin_lock_wr(&needsbuffer_spin); 226 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 227 spin_unlock_wr(&needsbuffer_spin); 228 wakeup(&needsbuffer); 229 } 230 } 231 232 /* 233 * runningbufwakeup: 234 * 235 * Accounting for I/O in progress. 236 * 237 */ 238 static __inline void 239 runningbufwakeup(struct buf *bp) 240 { 241 int totalspace; 242 243 if ((totalspace = bp->b_runningbufspace) != 0) { 244 runningbufspace -= totalspace; 245 --runningbufcount; 246 bp->b_runningbufspace = 0; 247 if (runningbufreq && runningbufspace <= lorunningspace) { 248 runningbufreq = 0; 249 wakeup(&runningbufreq); 250 } 251 bd_signal(totalspace); 252 } 253 } 254 255 /* 256 * bufcountwakeup: 257 * 258 * Called when a buffer has been added to one of the free queues to 259 * account for the buffer and to wakeup anyone waiting for free buffers. 260 * This typically occurs when large amounts of metadata are being handled 261 * by the buffer cache ( else buffer space runs out first, usually ). 262 */ 263 264 static __inline void 265 bufcountwakeup(void) 266 { 267 if (needsbuffer) { 268 spin_lock_wr(&needsbuffer_spin); 269 needsbuffer &= ~VFS_BIO_NEED_ANY; 270 spin_unlock_wr(&needsbuffer_spin); 271 wakeup(&needsbuffer); 272 } 273 } 274 275 /* 276 * waitrunningbufspace() 277 * 278 * Wait for the amount of running I/O to drop to a reasonable level. 279 * 280 * The caller may be using this function to block in a tight loop, we 281 * must block of runningbufspace is greater then the passed limit. 282 * And even with that it may not be enough, due to the presence of 283 * B_LOCKED dirty buffers, so also wait for at least one running buffer 284 * to complete. 285 */ 286 static __inline void 287 waitrunningbufspace(int limit) 288 { 289 int lorun; 290 291 if (lorunningspace < limit) 292 lorun = lorunningspace; 293 else 294 lorun = limit; 295 296 crit_enter(); 297 if (runningbufspace > lorun) { 298 while (runningbufspace > lorun) { 299 ++runningbufreq; 300 tsleep(&runningbufreq, 0, "wdrain", 0); 301 } 302 } else if (runningbufspace) { 303 ++runningbufreq; 304 tsleep(&runningbufreq, 0, "wdrain2", 1); 305 } 306 crit_exit(); 307 } 308 309 /* 310 * vfs_buf_test_cache: 311 * 312 * Called when a buffer is extended. This function clears the B_CACHE 313 * bit if the newly extended portion of the buffer does not contain 314 * valid data. 315 */ 316 static __inline__ 317 void 318 vfs_buf_test_cache(struct buf *bp, 319 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 320 vm_page_t m) 321 { 322 if (bp->b_flags & B_CACHE) { 323 int base = (foff + off) & PAGE_MASK; 324 if (vm_page_is_valid(m, base, size) == 0) 325 bp->b_flags &= ~B_CACHE; 326 } 327 } 328 329 /* 330 * bd_speedup() 331 * 332 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 333 * low water mark. 334 */ 335 static __inline__ 336 void 337 bd_speedup(void) 338 { 339 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 340 return; 341 342 if (bd_request == 0 && 343 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 344 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 345 spin_lock_wr(&needsbuffer_spin); 346 bd_request = 1; 347 spin_unlock_wr(&needsbuffer_spin); 348 wakeup(&bd_request); 349 } 350 if (bd_request_hw == 0 && 351 (dirtybufspacehw > lodirtybufspace / 2 || 352 dirtybufcounthw >= nbuf / 2)) { 353 spin_lock_wr(&needsbuffer_spin); 354 bd_request_hw = 1; 355 spin_unlock_wr(&needsbuffer_spin); 356 wakeup(&bd_request_hw); 357 } 358 } 359 360 /* 361 * bd_heatup() 362 * 363 * Get the buf_daemon heated up when the number of running and dirty 364 * buffers exceeds the mid-point. 365 */ 366 int 367 bd_heatup(void) 368 { 369 int mid1; 370 int mid2; 371 int totalspace; 372 373 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 374 375 totalspace = runningbufspace + dirtybufspace; 376 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 377 bd_speedup(); 378 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 379 if (totalspace >= mid2) 380 return(totalspace - mid2); 381 } 382 return(0); 383 } 384 385 /* 386 * bd_wait() 387 * 388 * Wait for the buffer cache to flush (totalspace) bytes worth of 389 * buffers, then return. 390 * 391 * Regardless this function blocks while the number of dirty buffers 392 * exceeds hidirtybufspace. 393 */ 394 void 395 bd_wait(int totalspace) 396 { 397 u_int i; 398 int count; 399 400 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 401 return; 402 403 while (totalspace > 0) { 404 bd_heatup(); 405 crit_enter(); 406 if (totalspace > runningbufspace + dirtybufspace) 407 totalspace = runningbufspace + dirtybufspace; 408 count = totalspace / BKVASIZE; 409 if (count >= BD_WAKE_SIZE) 410 count = BD_WAKE_SIZE - 1; 411 i = (bd_wake_index + count) & BD_WAKE_MASK; 412 ++bd_wake_ary[i]; 413 tsleep(&bd_wake_ary[i], 0, "flstik", hz); 414 crit_exit(); 415 416 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 417 } 418 } 419 420 /* 421 * bd_signal() 422 * 423 * This function is called whenever runningbufspace or dirtybufspace 424 * is reduced. Track threads waiting for run+dirty buffer I/O 425 * complete. 426 */ 427 static void 428 bd_signal(int totalspace) 429 { 430 u_int i; 431 432 while (totalspace > 0) { 433 i = atomic_fetchadd_int(&bd_wake_index, 1); 434 i &= BD_WAKE_MASK; 435 if (bd_wake_ary[i]) { 436 bd_wake_ary[i] = 0; 437 wakeup(&bd_wake_ary[i]); 438 } 439 totalspace -= BKVASIZE; 440 } 441 } 442 443 /* 444 * bufinit: 445 * 446 * Load time initialisation of the buffer cache, called from machine 447 * dependant initialization code. 448 */ 449 void 450 bufinit(void) 451 { 452 struct buf *bp; 453 vm_offset_t bogus_offset; 454 int i; 455 456 spin_init(&needsbuffer_spin); 457 458 /* next, make a null set of free lists */ 459 for (i = 0; i < BUFFER_QUEUES; i++) 460 TAILQ_INIT(&bufqueues[i]); 461 462 /* finally, initialize each buffer header and stick on empty q */ 463 for (i = 0; i < nbuf; i++) { 464 bp = &buf[i]; 465 bzero(bp, sizeof *bp); 466 bp->b_flags = B_INVAL; /* we're just an empty header */ 467 bp->b_cmd = BUF_CMD_DONE; 468 bp->b_qindex = BQUEUE_EMPTY; 469 initbufbio(bp); 470 xio_init(&bp->b_xio); 471 buf_dep_init(bp); 472 BUF_LOCKINIT(bp); 473 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 474 } 475 476 /* 477 * maxbufspace is the absolute maximum amount of buffer space we are 478 * allowed to reserve in KVM and in real terms. The absolute maximum 479 * is nominally used by buf_daemon. hibufspace is the nominal maximum 480 * used by most other processes. The differential is required to 481 * ensure that buf_daemon is able to run when other processes might 482 * be blocked waiting for buffer space. 483 * 484 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 485 * this may result in KVM fragmentation which is not handled optimally 486 * by the system. 487 */ 488 maxbufspace = nbuf * BKVASIZE; 489 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 490 lobufspace = hibufspace - MAXBSIZE; 491 492 lorunningspace = 512 * 1024; 493 hirunningspace = 1024 * 1024; 494 495 /* 496 * Limit the amount of malloc memory since it is wired permanently 497 * into the kernel space. Even though this is accounted for in 498 * the buffer allocation, we don't want the malloced region to grow 499 * uncontrolled. The malloc scheme improves memory utilization 500 * significantly on average (small) directories. 501 */ 502 maxbufmallocspace = hibufspace / 20; 503 504 /* 505 * Reduce the chance of a deadlock occuring by limiting the number 506 * of delayed-write dirty buffers we allow to stack up. 507 */ 508 hidirtybufspace = hibufspace / 2; 509 dirtybufspace = 0; 510 dirtybufspacehw = 0; 511 512 lodirtybufspace = hidirtybufspace / 2; 513 514 /* 515 * Maximum number of async ops initiated per buf_daemon loop. This is 516 * somewhat of a hack at the moment, we really need to limit ourselves 517 * based on the number of bytes of I/O in-transit that were initiated 518 * from buf_daemon. 519 */ 520 521 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 522 bogus_page = vm_page_alloc(&kernel_object, 523 (bogus_offset >> PAGE_SHIFT), 524 VM_ALLOC_NORMAL); 525 vmstats.v_wire_count++; 526 527 } 528 529 /* 530 * Initialize the embedded bio structures 531 */ 532 void 533 initbufbio(struct buf *bp) 534 { 535 bp->b_bio1.bio_buf = bp; 536 bp->b_bio1.bio_prev = NULL; 537 bp->b_bio1.bio_offset = NOOFFSET; 538 bp->b_bio1.bio_next = &bp->b_bio2; 539 bp->b_bio1.bio_done = NULL; 540 541 bp->b_bio2.bio_buf = bp; 542 bp->b_bio2.bio_prev = &bp->b_bio1; 543 bp->b_bio2.bio_offset = NOOFFSET; 544 bp->b_bio2.bio_next = NULL; 545 bp->b_bio2.bio_done = NULL; 546 } 547 548 /* 549 * Reinitialize the embedded bio structures as well as any additional 550 * translation cache layers. 551 */ 552 void 553 reinitbufbio(struct buf *bp) 554 { 555 struct bio *bio; 556 557 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 558 bio->bio_done = NULL; 559 bio->bio_offset = NOOFFSET; 560 } 561 } 562 563 /* 564 * Push another BIO layer onto an existing BIO and return it. The new 565 * BIO layer may already exist, holding cached translation data. 566 */ 567 struct bio * 568 push_bio(struct bio *bio) 569 { 570 struct bio *nbio; 571 572 if ((nbio = bio->bio_next) == NULL) { 573 int index = bio - &bio->bio_buf->b_bio_array[0]; 574 if (index >= NBUF_BIO - 1) { 575 panic("push_bio: too many layers bp %p\n", 576 bio->bio_buf); 577 } 578 nbio = &bio->bio_buf->b_bio_array[index + 1]; 579 bio->bio_next = nbio; 580 nbio->bio_prev = bio; 581 nbio->bio_buf = bio->bio_buf; 582 nbio->bio_offset = NOOFFSET; 583 nbio->bio_done = NULL; 584 nbio->bio_next = NULL; 585 } 586 KKASSERT(nbio->bio_done == NULL); 587 return(nbio); 588 } 589 590 void 591 pop_bio(struct bio *bio) 592 { 593 /* NOP */ 594 } 595 596 void 597 clearbiocache(struct bio *bio) 598 { 599 while (bio) { 600 bio->bio_offset = NOOFFSET; 601 bio = bio->bio_next; 602 } 603 } 604 605 /* 606 * bfreekva: 607 * 608 * Free the KVA allocation for buffer 'bp'. 609 * 610 * Must be called from a critical section as this is the only locking for 611 * buffer_map. 612 * 613 * Since this call frees up buffer space, we call bufspacewakeup(). 614 */ 615 static void 616 bfreekva(struct buf *bp) 617 { 618 int count; 619 620 if (bp->b_kvasize) { 621 ++buffreekvacnt; 622 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 623 vm_map_lock(&buffer_map); 624 bufspace -= bp->b_kvasize; 625 vm_map_delete(&buffer_map, 626 (vm_offset_t) bp->b_kvabase, 627 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 628 &count 629 ); 630 vm_map_unlock(&buffer_map); 631 vm_map_entry_release(count); 632 bp->b_kvasize = 0; 633 bufspacewakeup(); 634 } 635 } 636 637 /* 638 * bremfree: 639 * 640 * Remove the buffer from the appropriate free list. 641 */ 642 void 643 bremfree(struct buf *bp) 644 { 645 int old_qindex; 646 647 crit_enter(); 648 old_qindex = bp->b_qindex; 649 650 if (bp->b_qindex != BQUEUE_NONE) { 651 KASSERT(BUF_REFCNTNB(bp) == 1, 652 ("bremfree: bp %p not locked",bp)); 653 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 654 bp->b_qindex = BQUEUE_NONE; 655 } else { 656 if (BUF_REFCNTNB(bp) <= 1) 657 panic("bremfree: removing a buffer not on a queue"); 658 } 659 660 crit_exit(); 661 } 662 663 664 /* 665 * bread: 666 * 667 * Get a buffer with the specified data. Look in the cache first. We 668 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 669 * is set, the buffer is valid and we do not have to do anything ( see 670 * getblk() ). 671 */ 672 int 673 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 674 { 675 struct buf *bp; 676 677 bp = getblk(vp, loffset, size, 0, 0); 678 *bpp = bp; 679 680 /* if not found in cache, do some I/O */ 681 if ((bp->b_flags & B_CACHE) == 0) { 682 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp)); 683 bp->b_flags &= ~(B_ERROR | B_INVAL); 684 bp->b_cmd = BUF_CMD_READ; 685 vfs_busy_pages(vp, bp); 686 vn_strategy(vp, &bp->b_bio1); 687 return (biowait(bp)); 688 } 689 return (0); 690 } 691 692 /* 693 * breadn: 694 * 695 * Operates like bread, but also starts asynchronous I/O on 696 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 697 * to initiating I/O . If B_CACHE is set, the buffer is valid 698 * and we do not have to do anything. 699 */ 700 int 701 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 702 int *rabsize, int cnt, struct buf **bpp) 703 { 704 struct buf *bp, *rabp; 705 int i; 706 int rv = 0, readwait = 0; 707 708 *bpp = bp = getblk(vp, loffset, size, 0, 0); 709 710 /* if not found in cache, do some I/O */ 711 if ((bp->b_flags & B_CACHE) == 0) { 712 bp->b_flags &= ~(B_ERROR | B_INVAL); 713 bp->b_cmd = BUF_CMD_READ; 714 vfs_busy_pages(vp, bp); 715 vn_strategy(vp, &bp->b_bio1); 716 ++readwait; 717 } 718 719 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 720 if (inmem(vp, *raoffset)) 721 continue; 722 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 723 724 if ((rabp->b_flags & B_CACHE) == 0) { 725 rabp->b_flags |= B_ASYNC; 726 rabp->b_flags &= ~(B_ERROR | B_INVAL); 727 rabp->b_cmd = BUF_CMD_READ; 728 vfs_busy_pages(vp, rabp); 729 BUF_KERNPROC(rabp); 730 vn_strategy(vp, &rabp->b_bio1); 731 } else { 732 brelse(rabp); 733 } 734 } 735 736 if (readwait) { 737 rv = biowait(bp); 738 } 739 return (rv); 740 } 741 742 /* 743 * bwrite: 744 * 745 * Write, release buffer on completion. (Done by iodone 746 * if async). Do not bother writing anything if the buffer 747 * is invalid. 748 * 749 * Note that we set B_CACHE here, indicating that buffer is 750 * fully valid and thus cacheable. This is true even of NFS 751 * now so we set it generally. This could be set either here 752 * or in biodone() since the I/O is synchronous. We put it 753 * here. 754 */ 755 int 756 bwrite(struct buf *bp) 757 { 758 int oldflags; 759 760 if (bp->b_flags & B_INVAL) { 761 brelse(bp); 762 return (0); 763 } 764 765 oldflags = bp->b_flags; 766 767 if (BUF_REFCNTNB(bp) == 0) 768 panic("bwrite: buffer is not busy???"); 769 crit_enter(); 770 771 /* Mark the buffer clean */ 772 bundirty(bp); 773 774 bp->b_flags &= ~B_ERROR; 775 bp->b_flags |= B_CACHE; 776 bp->b_cmd = BUF_CMD_WRITE; 777 vfs_busy_pages(bp->b_vp, bp); 778 779 /* 780 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 781 * valid for vnode-backed buffers. 782 */ 783 bp->b_runningbufspace = bp->b_bufsize; 784 if (bp->b_runningbufspace) { 785 runningbufspace += bp->b_runningbufspace; 786 ++runningbufcount; 787 } 788 789 crit_exit(); 790 if (oldflags & B_ASYNC) 791 BUF_KERNPROC(bp); 792 vn_strategy(bp->b_vp, &bp->b_bio1); 793 794 if ((oldflags & B_ASYNC) == 0) { 795 int rtval = biowait(bp); 796 brelse(bp); 797 return (rtval); 798 } 799 return (0); 800 } 801 802 /* 803 * bdwrite: 804 * 805 * Delayed write. (Buffer is marked dirty). Do not bother writing 806 * anything if the buffer is marked invalid. 807 * 808 * Note that since the buffer must be completely valid, we can safely 809 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 810 * biodone() in order to prevent getblk from writing the buffer 811 * out synchronously. 812 */ 813 void 814 bdwrite(struct buf *bp) 815 { 816 if (BUF_REFCNTNB(bp) == 0) 817 panic("bdwrite: buffer is not busy"); 818 819 if (bp->b_flags & B_INVAL) { 820 brelse(bp); 821 return; 822 } 823 bdirty(bp); 824 825 /* 826 * Set B_CACHE, indicating that the buffer is fully valid. This is 827 * true even of NFS now. 828 */ 829 bp->b_flags |= B_CACHE; 830 831 /* 832 * This bmap keeps the system from needing to do the bmap later, 833 * perhaps when the system is attempting to do a sync. Since it 834 * is likely that the indirect block -- or whatever other datastructure 835 * that the filesystem needs is still in memory now, it is a good 836 * thing to do this. Note also, that if the pageout daemon is 837 * requesting a sync -- there might not be enough memory to do 838 * the bmap then... So, this is important to do. 839 */ 840 if (bp->b_bio2.bio_offset == NOOFFSET) { 841 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 842 NULL, NULL, BUF_CMD_WRITE); 843 } 844 845 /* 846 * Set the *dirty* buffer range based upon the VM system dirty pages. 847 */ 848 vfs_setdirty(bp); 849 850 /* 851 * We need to do this here to satisfy the vnode_pager and the 852 * pageout daemon, so that it thinks that the pages have been 853 * "cleaned". Note that since the pages are in a delayed write 854 * buffer -- the VFS layer "will" see that the pages get written 855 * out on the next sync, or perhaps the cluster will be completed. 856 */ 857 vfs_clean_pages(bp); 858 bqrelse(bp); 859 860 /* 861 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 862 * due to the softdep code. 863 */ 864 } 865 866 /* 867 * bdirty: 868 * 869 * Turn buffer into delayed write request by marking it B_DELWRI. 870 * B_RELBUF and B_NOCACHE must be cleared. 871 * 872 * We reassign the buffer to itself to properly update it in the 873 * dirty/clean lists. 874 * 875 * Must be called from a critical section. 876 * The buffer must be on BQUEUE_NONE. 877 */ 878 void 879 bdirty(struct buf *bp) 880 { 881 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 882 if (bp->b_flags & B_NOCACHE) { 883 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 884 bp->b_flags &= ~B_NOCACHE; 885 } 886 if (bp->b_flags & B_INVAL) { 887 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 888 } 889 bp->b_flags &= ~B_RELBUF; 890 891 if ((bp->b_flags & B_DELWRI) == 0) { 892 bp->b_flags |= B_DELWRI; 893 reassignbuf(bp); 894 ++dirtybufcount; 895 dirtybufspace += bp->b_bufsize; 896 if (bp->b_flags & B_HEAVY) { 897 ++dirtybufcounthw; 898 dirtybufspacehw += bp->b_bufsize; 899 } 900 bd_heatup(); 901 } 902 } 903 904 /* 905 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 906 * needs to be flushed with a different buf_daemon thread to avoid 907 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 908 */ 909 void 910 bheavy(struct buf *bp) 911 { 912 if ((bp->b_flags & B_HEAVY) == 0) { 913 bp->b_flags |= B_HEAVY; 914 if (bp->b_flags & B_DELWRI) { 915 ++dirtybufcounthw; 916 dirtybufspacehw += bp->b_bufsize; 917 } 918 } 919 } 920 921 /* 922 * bundirty: 923 * 924 * Clear B_DELWRI for buffer. 925 * 926 * Must be called from a critical section. 927 * 928 * The buffer is typically on BQUEUE_NONE but there is one case in 929 * brelse() that calls this function after placing the buffer on 930 * a different queue. 931 */ 932 933 void 934 bundirty(struct buf *bp) 935 { 936 if (bp->b_flags & B_DELWRI) { 937 bp->b_flags &= ~B_DELWRI; 938 reassignbuf(bp); 939 --dirtybufcount; 940 dirtybufspace -= bp->b_bufsize; 941 if (bp->b_flags & B_HEAVY) { 942 --dirtybufcounthw; 943 dirtybufspacehw -= bp->b_bufsize; 944 } 945 bd_signal(bp->b_bufsize); 946 } 947 /* 948 * Since it is now being written, we can clear its deferred write flag. 949 */ 950 bp->b_flags &= ~B_DEFERRED; 951 } 952 953 /* 954 * bawrite: 955 * 956 * Asynchronous write. Start output on a buffer, but do not wait for 957 * it to complete. The buffer is released when the output completes. 958 * 959 * bwrite() ( or the VOP routine anyway ) is responsible for handling 960 * B_INVAL buffers. Not us. 961 */ 962 void 963 bawrite(struct buf *bp) 964 { 965 bp->b_flags |= B_ASYNC; 966 bwrite(bp); 967 } 968 969 /* 970 * bowrite: 971 * 972 * Ordered write. Start output on a buffer, and flag it so that the 973 * device will write it in the order it was queued. The buffer is 974 * released when the output completes. bwrite() ( or the VOP routine 975 * anyway ) is responsible for handling B_INVAL buffers. 976 */ 977 int 978 bowrite(struct buf *bp) 979 { 980 bp->b_flags |= B_ORDERED | B_ASYNC; 981 return (bwrite(bp)); 982 } 983 984 /* 985 * buf_dirty_count_severe: 986 * 987 * Return true if we have too many dirty buffers. 988 */ 989 int 990 buf_dirty_count_severe(void) 991 { 992 return (runningbufspace + dirtybufspace >= hidirtybufspace || 993 dirtybufcount >= nbuf / 2); 994 } 995 996 /* 997 * brelse: 998 * 999 * Release a busy buffer and, if requested, free its resources. The 1000 * buffer will be stashed in the appropriate bufqueue[] allowing it 1001 * to be accessed later as a cache entity or reused for other purposes. 1002 */ 1003 void 1004 brelse(struct buf *bp) 1005 { 1006 #ifdef INVARIANTS 1007 int saved_flags = bp->b_flags; 1008 #endif 1009 1010 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1011 1012 crit_enter(); 1013 1014 /* 1015 * If B_NOCACHE is set we are being asked to destroy the buffer and 1016 * its backing store. Clear B_DELWRI. 1017 * 1018 * B_NOCACHE is set in two cases: (1) when the caller really wants 1019 * to destroy the buffer and backing store and (2) when the caller 1020 * wants to destroy the buffer and backing store after a write 1021 * completes. 1022 */ 1023 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1024 bundirty(bp); 1025 } 1026 1027 if (bp->b_flags & B_LOCKED) 1028 bp->b_flags &= ~B_ERROR; 1029 1030 /* 1031 * If a write error occurs and the caller does not want to throw 1032 * away the buffer, redirty the buffer. This will also clear 1033 * B_NOCACHE. 1034 */ 1035 if (bp->b_cmd == BUF_CMD_WRITE && 1036 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 1037 /* 1038 * Failed write, redirty. Must clear B_ERROR to prevent 1039 * pages from being scrapped. If B_INVAL is set then 1040 * this case is not run and the next case is run to 1041 * destroy the buffer. B_INVAL can occur if the buffer 1042 * is outside the range supported by the underlying device. 1043 */ 1044 bp->b_flags &= ~B_ERROR; 1045 bdirty(bp); 1046 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1047 (bp->b_bufsize <= 0) || bp->b_cmd == BUF_CMD_FREEBLKS) { 1048 /* 1049 * Either a failed I/O or we were asked to free or not 1050 * cache the buffer. 1051 * 1052 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1053 * buffer cannot be immediately freed. 1054 */ 1055 bp->b_flags |= B_INVAL; 1056 if (LIST_FIRST(&bp->b_dep) != NULL) 1057 buf_deallocate(bp); 1058 if (bp->b_flags & B_DELWRI) { 1059 --dirtybufcount; 1060 dirtybufspace -= bp->b_bufsize; 1061 if (bp->b_flags & B_HEAVY) { 1062 --dirtybufcounthw; 1063 dirtybufspacehw -= bp->b_bufsize; 1064 } 1065 bd_signal(bp->b_bufsize); 1066 } 1067 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1068 } 1069 1070 /* 1071 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1072 * If vfs_vmio_release() is called with either bit set, the 1073 * underlying pages may wind up getting freed causing a previous 1074 * write (bdwrite()) to get 'lost' because pages associated with 1075 * a B_DELWRI bp are marked clean. Pages associated with a 1076 * B_LOCKED buffer may be mapped by the filesystem. 1077 * 1078 * If we want to release the buffer ourselves (rather then the 1079 * originator asking us to release it), give the originator a 1080 * chance to countermand the release by setting B_LOCKED. 1081 * 1082 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1083 * if B_DELWRI is set. 1084 * 1085 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1086 * on pages to return pages to the VM page queues. 1087 */ 1088 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1089 bp->b_flags &= ~B_RELBUF; 1090 } else if (vm_page_count_severe()) { 1091 if (LIST_FIRST(&bp->b_dep) != NULL) 1092 buf_deallocate(bp); 1093 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1094 bp->b_flags &= ~B_RELBUF; 1095 else 1096 bp->b_flags |= B_RELBUF; 1097 } 1098 1099 /* 1100 * At this point destroying the buffer is governed by the B_INVAL 1101 * or B_RELBUF flags. 1102 */ 1103 bp->b_cmd = BUF_CMD_DONE; 1104 1105 /* 1106 * VMIO buffer rundown. Make sure the VM page array is restored 1107 * after an I/O may have replaces some of the pages with bogus pages 1108 * in order to not destroy dirty pages in a fill-in read. 1109 * 1110 * Note that due to the code above, if a buffer is marked B_DELWRI 1111 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1112 * B_INVAL may still be set, however. 1113 * 1114 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1115 * but not the backing store. B_NOCACHE will destroy the backing 1116 * store. 1117 * 1118 * Note that dirty NFS buffers contain byte-granular write ranges 1119 * and should not be destroyed w/ B_INVAL even if the backing store 1120 * is left intact. 1121 */ 1122 if (bp->b_flags & B_VMIO) { 1123 /* 1124 * Rundown for VMIO buffers which are not dirty NFS buffers. 1125 */ 1126 int i, j, resid; 1127 vm_page_t m; 1128 off_t foff; 1129 vm_pindex_t poff; 1130 vm_object_t obj; 1131 struct vnode *vp; 1132 1133 vp = bp->b_vp; 1134 1135 /* 1136 * Get the base offset and length of the buffer. Note that 1137 * in the VMIO case if the buffer block size is not 1138 * page-aligned then b_data pointer may not be page-aligned. 1139 * But our b_xio.xio_pages array *IS* page aligned. 1140 * 1141 * block sizes less then DEV_BSIZE (usually 512) are not 1142 * supported due to the page granularity bits (m->valid, 1143 * m->dirty, etc...). 1144 * 1145 * See man buf(9) for more information 1146 */ 1147 1148 resid = bp->b_bufsize; 1149 foff = bp->b_loffset; 1150 1151 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1152 m = bp->b_xio.xio_pages[i]; 1153 vm_page_flag_clear(m, PG_ZERO); 1154 /* 1155 * If we hit a bogus page, fixup *all* of them 1156 * now. Note that we left these pages wired 1157 * when we removed them so they had better exist, 1158 * and they cannot be ripped out from under us so 1159 * no critical section protection is necessary. 1160 */ 1161 if (m == bogus_page) { 1162 obj = vp->v_object; 1163 poff = OFF_TO_IDX(bp->b_loffset); 1164 1165 for (j = i; j < bp->b_xio.xio_npages; j++) { 1166 vm_page_t mtmp; 1167 1168 mtmp = bp->b_xio.xio_pages[j]; 1169 if (mtmp == bogus_page) { 1170 mtmp = vm_page_lookup(obj, poff + j); 1171 if (!mtmp) { 1172 panic("brelse: page missing"); 1173 } 1174 bp->b_xio.xio_pages[j] = mtmp; 1175 } 1176 } 1177 1178 if ((bp->b_flags & B_INVAL) == 0) { 1179 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1180 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1181 } 1182 m = bp->b_xio.xio_pages[i]; 1183 } 1184 1185 /* 1186 * Invalidate the backing store if B_NOCACHE is set 1187 * (e.g. used with vinvalbuf()). If this is NFS 1188 * we impose a requirement that the block size be 1189 * a multiple of PAGE_SIZE and create a temporary 1190 * hack to basically invalidate the whole page. The 1191 * problem is that NFS uses really odd buffer sizes 1192 * especially when tracking piecemeal writes and 1193 * it also vinvalbuf()'s a lot, which would result 1194 * in only partial page validation and invalidation 1195 * here. If the file page is mmap()'d, however, 1196 * all the valid bits get set so after we invalidate 1197 * here we would end up with weird m->valid values 1198 * like 0xfc. nfs_getpages() can't handle this so 1199 * we clear all the valid bits for the NFS case 1200 * instead of just some of them. 1201 * 1202 * The real bug is the VM system having to set m->valid 1203 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1204 * itself is an artifact of the whole 512-byte 1205 * granular mess that exists to support odd block 1206 * sizes and UFS meta-data block sizes (e.g. 6144). 1207 * A complete rewrite is required. 1208 */ 1209 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1210 int poffset = foff & PAGE_MASK; 1211 int presid; 1212 1213 presid = PAGE_SIZE - poffset; 1214 if (bp->b_vp->v_tag == VT_NFS && 1215 bp->b_vp->v_type == VREG) { 1216 ; /* entire page */ 1217 } else if (presid > resid) { 1218 presid = resid; 1219 } 1220 KASSERT(presid >= 0, ("brelse: extra page")); 1221 vm_page_set_invalid(m, poffset, presid); 1222 } 1223 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1224 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1225 } 1226 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1227 vfs_vmio_release(bp); 1228 } else { 1229 /* 1230 * Rundown for non-VMIO buffers. 1231 */ 1232 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1233 #if 0 1234 if (bp->b_vp) 1235 kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags); 1236 #endif 1237 if (bp->b_bufsize) 1238 allocbuf(bp, 0); 1239 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1240 if (bp->b_vp) 1241 brelvp(bp); 1242 } 1243 } 1244 1245 if (bp->b_qindex != BQUEUE_NONE) 1246 panic("brelse: free buffer onto another queue???"); 1247 if (BUF_REFCNTNB(bp) > 1) { 1248 /* Temporary panic to verify exclusive locking */ 1249 /* This panic goes away when we allow shared refs */ 1250 panic("brelse: multiple refs"); 1251 /* do not release to free list */ 1252 BUF_UNLOCK(bp); 1253 crit_exit(); 1254 return; 1255 } 1256 1257 /* 1258 * Figure out the correct queue to place the cleaned up buffer on. 1259 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1260 * disassociated from their vnode. 1261 */ 1262 if (bp->b_flags & B_LOCKED) { 1263 /* 1264 * Buffers that are locked are placed in the locked queue 1265 * immediately, regardless of their state. 1266 */ 1267 bp->b_qindex = BQUEUE_LOCKED; 1268 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1269 } else if (bp->b_bufsize == 0) { 1270 /* 1271 * Buffers with no memory. Due to conditionals near the top 1272 * of brelse() such buffers should probably already be 1273 * marked B_INVAL and disassociated from their vnode. 1274 */ 1275 bp->b_flags |= B_INVAL; 1276 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1277 KKASSERT((bp->b_flags & B_HASHED) == 0); 1278 if (bp->b_kvasize) { 1279 bp->b_qindex = BQUEUE_EMPTYKVA; 1280 } else { 1281 bp->b_qindex = BQUEUE_EMPTY; 1282 } 1283 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1284 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) { 1285 /* 1286 * Buffers with junk contents. Again these buffers had better 1287 * already be disassociated from their vnode. 1288 */ 1289 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1290 KKASSERT((bp->b_flags & B_HASHED) == 0); 1291 bp->b_flags |= B_INVAL; 1292 bp->b_qindex = BQUEUE_CLEAN; 1293 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1294 } else { 1295 /* 1296 * Remaining buffers. These buffers are still associated with 1297 * their vnode. 1298 */ 1299 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1300 case B_DELWRI: 1301 bp->b_qindex = BQUEUE_DIRTY; 1302 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1303 break; 1304 case B_DELWRI | B_HEAVY: 1305 bp->b_qindex = BQUEUE_DIRTY_HW; 1306 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1307 b_freelist); 1308 break; 1309 default: 1310 /* 1311 * NOTE: Buffers are always placed at the end of the 1312 * queue. If B_AGE is not set the buffer will cycle 1313 * through the queue twice. 1314 */ 1315 bp->b_qindex = BQUEUE_CLEAN; 1316 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1317 break; 1318 } 1319 } 1320 1321 /* 1322 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1323 * on the correct queue. 1324 */ 1325 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1326 bundirty(bp); 1327 1328 /* 1329 * The bp is on an appropriate queue unless locked. If it is not 1330 * locked or dirty we can wakeup threads waiting for buffer space. 1331 * 1332 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1333 * if B_INVAL is set ). 1334 */ 1335 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1336 bufcountwakeup(); 1337 1338 /* 1339 * Something we can maybe free or reuse 1340 */ 1341 if (bp->b_bufsize || bp->b_kvasize) 1342 bufspacewakeup(); 1343 1344 /* 1345 * Clean up temporary flags and unlock the buffer. 1346 */ 1347 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT); 1348 BUF_UNLOCK(bp); 1349 crit_exit(); 1350 } 1351 1352 /* 1353 * bqrelse: 1354 * 1355 * Release a buffer back to the appropriate queue but do not try to free 1356 * it. The buffer is expected to be used again soon. 1357 * 1358 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1359 * biodone() to requeue an async I/O on completion. It is also used when 1360 * known good buffers need to be requeued but we think we may need the data 1361 * again soon. 1362 * 1363 * XXX we should be able to leave the B_RELBUF hint set on completion. 1364 */ 1365 void 1366 bqrelse(struct buf *bp) 1367 { 1368 crit_enter(); 1369 1370 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1371 1372 if (bp->b_qindex != BQUEUE_NONE) 1373 panic("bqrelse: free buffer onto another queue???"); 1374 if (BUF_REFCNTNB(bp) > 1) { 1375 /* do not release to free list */ 1376 panic("bqrelse: multiple refs"); 1377 BUF_UNLOCK(bp); 1378 crit_exit(); 1379 return; 1380 } 1381 if (bp->b_flags & B_LOCKED) { 1382 /* 1383 * Locked buffers are released to the locked queue. However, 1384 * if the buffer is dirty it will first go into the dirty 1385 * queue and later on after the I/O completes successfully it 1386 * will be released to the locked queue. 1387 */ 1388 bp->b_flags &= ~B_ERROR; 1389 bp->b_qindex = BQUEUE_LOCKED; 1390 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1391 } else if (bp->b_flags & B_DELWRI) { 1392 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1393 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1394 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1395 } else if (vm_page_count_severe()) { 1396 /* 1397 * We are too low on memory, we have to try to free the 1398 * buffer (most importantly: the wired pages making up its 1399 * backing store) *now*. 1400 */ 1401 crit_exit(); 1402 brelse(bp); 1403 return; 1404 } else { 1405 bp->b_qindex = BQUEUE_CLEAN; 1406 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1407 } 1408 1409 if ((bp->b_flags & B_LOCKED) == 0 && 1410 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1411 bufcountwakeup(); 1412 } 1413 1414 /* 1415 * Something we can maybe free or reuse. 1416 */ 1417 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1418 bufspacewakeup(); 1419 1420 /* 1421 * Final cleanup and unlock. Clear bits that are only used while a 1422 * buffer is actively locked. 1423 */ 1424 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF); 1425 BUF_UNLOCK(bp); 1426 crit_exit(); 1427 } 1428 1429 /* 1430 * vfs_vmio_release: 1431 * 1432 * Return backing pages held by the buffer 'bp' back to the VM system 1433 * if possible. The pages are freed if they are no longer valid or 1434 * attempt to free if it was used for direct I/O otherwise they are 1435 * sent to the page cache. 1436 * 1437 * Pages that were marked busy are left alone and skipped. 1438 * 1439 * The KVA mapping (b_data) for the underlying pages is removed by 1440 * this function. 1441 */ 1442 static void 1443 vfs_vmio_release(struct buf *bp) 1444 { 1445 int i; 1446 vm_page_t m; 1447 1448 crit_enter(); 1449 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1450 m = bp->b_xio.xio_pages[i]; 1451 bp->b_xio.xio_pages[i] = NULL; 1452 /* 1453 * In order to keep page LRU ordering consistent, put 1454 * everything on the inactive queue. 1455 */ 1456 vm_page_unwire(m, 0); 1457 /* 1458 * We don't mess with busy pages, it is 1459 * the responsibility of the process that 1460 * busied the pages to deal with them. 1461 */ 1462 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1463 continue; 1464 1465 if (m->wire_count == 0) { 1466 vm_page_flag_clear(m, PG_ZERO); 1467 /* 1468 * Might as well free the page if we can and it has 1469 * no valid data. We also free the page if the 1470 * buffer was used for direct I/O. 1471 */ 1472 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1473 m->hold_count == 0) { 1474 vm_page_busy(m); 1475 vm_page_protect(m, VM_PROT_NONE); 1476 vm_page_free(m); 1477 } else if (bp->b_flags & B_DIRECT) { 1478 vm_page_try_to_free(m); 1479 } else if (vm_page_count_severe()) { 1480 vm_page_try_to_cache(m); 1481 } 1482 } 1483 } 1484 crit_exit(); 1485 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages); 1486 if (bp->b_bufsize) { 1487 bufspacewakeup(); 1488 bp->b_bufsize = 0; 1489 } 1490 bp->b_xio.xio_npages = 0; 1491 bp->b_flags &= ~B_VMIO; 1492 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1493 if (bp->b_vp) 1494 brelvp(bp); 1495 } 1496 1497 /* 1498 * vfs_bio_awrite: 1499 * 1500 * Implement clustered async writes for clearing out B_DELWRI buffers. 1501 * This is much better then the old way of writing only one buffer at 1502 * a time. Note that we may not be presented with the buffers in the 1503 * correct order, so we search for the cluster in both directions. 1504 * 1505 * The buffer is locked on call. 1506 */ 1507 int 1508 vfs_bio_awrite(struct buf *bp) 1509 { 1510 int i; 1511 int j; 1512 off_t loffset = bp->b_loffset; 1513 struct vnode *vp = bp->b_vp; 1514 int nbytes; 1515 struct buf *bpa; 1516 int nwritten; 1517 int size; 1518 1519 crit_enter(); 1520 /* 1521 * right now we support clustered writing only to regular files. If 1522 * we find a clusterable block we could be in the middle of a cluster 1523 * rather then at the beginning. 1524 * 1525 * NOTE: b_bio1 contains the logical loffset and is aliased 1526 * to b_loffset. b_bio2 contains the translated block number. 1527 */ 1528 if ((vp->v_type == VREG) && 1529 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1530 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1531 1532 size = vp->v_mount->mnt_stat.f_iosize; 1533 1534 for (i = size; i < MAXPHYS; i += size) { 1535 if ((bpa = findblk(vp, loffset + i)) && 1536 BUF_REFCNT(bpa) == 0 && 1537 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1538 (B_DELWRI | B_CLUSTEROK)) && 1539 (bpa->b_bufsize == size)) { 1540 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1541 (bpa->b_bio2.bio_offset != 1542 bp->b_bio2.bio_offset + i)) 1543 break; 1544 } else { 1545 break; 1546 } 1547 } 1548 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1549 if ((bpa = findblk(vp, loffset - j)) && 1550 BUF_REFCNT(bpa) == 0 && 1551 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1552 (B_DELWRI | B_CLUSTEROK)) && 1553 (bpa->b_bufsize == size)) { 1554 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1555 (bpa->b_bio2.bio_offset != 1556 bp->b_bio2.bio_offset - j)) 1557 break; 1558 } else { 1559 break; 1560 } 1561 } 1562 j -= size; 1563 nbytes = (i + j); 1564 /* 1565 * this is a possible cluster write 1566 */ 1567 if (nbytes != size) { 1568 BUF_UNLOCK(bp); 1569 nwritten = cluster_wbuild(vp, size, 1570 loffset - j, nbytes); 1571 crit_exit(); 1572 return nwritten; 1573 } 1574 } 1575 1576 bremfree(bp); 1577 bp->b_flags |= B_ASYNC; 1578 1579 crit_exit(); 1580 /* 1581 * default (old) behavior, writing out only one block 1582 * 1583 * XXX returns b_bufsize instead of b_bcount for nwritten? 1584 */ 1585 nwritten = bp->b_bufsize; 1586 bwrite(bp); 1587 1588 return nwritten; 1589 } 1590 1591 /* 1592 * getnewbuf: 1593 * 1594 * Find and initialize a new buffer header, freeing up existing buffers 1595 * in the bufqueues as necessary. The new buffer is returned locked. 1596 * 1597 * Important: B_INVAL is not set. If the caller wishes to throw the 1598 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1599 * 1600 * We block if: 1601 * We have insufficient buffer headers 1602 * We have insufficient buffer space 1603 * buffer_map is too fragmented ( space reservation fails ) 1604 * If we have to flush dirty buffers ( but we try to avoid this ) 1605 * 1606 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1607 * Instead we ask the buf daemon to do it for us. We attempt to 1608 * avoid piecemeal wakeups of the pageout daemon. 1609 */ 1610 1611 static struct buf * 1612 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1613 { 1614 struct buf *bp; 1615 struct buf *nbp; 1616 int defrag = 0; 1617 int nqindex; 1618 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1619 static int flushingbufs; 1620 1621 /* 1622 * We can't afford to block since we might be holding a vnode lock, 1623 * which may prevent system daemons from running. We deal with 1624 * low-memory situations by proactively returning memory and running 1625 * async I/O rather then sync I/O. 1626 */ 1627 1628 ++getnewbufcalls; 1629 --getnewbufrestarts; 1630 restart: 1631 ++getnewbufrestarts; 1632 1633 /* 1634 * Setup for scan. If we do not have enough free buffers, 1635 * we setup a degenerate case that immediately fails. Note 1636 * that if we are specially marked process, we are allowed to 1637 * dip into our reserves. 1638 * 1639 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1640 * 1641 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1642 * However, there are a number of cases (defragging, reusing, ...) 1643 * where we cannot backup. 1644 */ 1645 nqindex = BQUEUE_EMPTYKVA; 1646 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1647 1648 if (nbp == NULL) { 1649 /* 1650 * If no EMPTYKVA buffers and we are either 1651 * defragging or reusing, locate a CLEAN buffer 1652 * to free or reuse. If bufspace useage is low 1653 * skip this step so we can allocate a new buffer. 1654 */ 1655 if (defrag || bufspace >= lobufspace) { 1656 nqindex = BQUEUE_CLEAN; 1657 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1658 } 1659 1660 /* 1661 * If we could not find or were not allowed to reuse a 1662 * CLEAN buffer, check to see if it is ok to use an EMPTY 1663 * buffer. We can only use an EMPTY buffer if allocating 1664 * its KVA would not otherwise run us out of buffer space. 1665 */ 1666 if (nbp == NULL && defrag == 0 && 1667 bufspace + maxsize < hibufspace) { 1668 nqindex = BQUEUE_EMPTY; 1669 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1670 } 1671 } 1672 1673 /* 1674 * Run scan, possibly freeing data and/or kva mappings on the fly 1675 * depending. 1676 */ 1677 1678 while ((bp = nbp) != NULL) { 1679 int qindex = nqindex; 1680 1681 nbp = TAILQ_NEXT(bp, b_freelist); 1682 1683 /* 1684 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1685 * cycles through the queue twice before being selected. 1686 */ 1687 if (qindex == BQUEUE_CLEAN && 1688 (bp->b_flags & B_AGE) == 0 && nbp) { 1689 bp->b_flags |= B_AGE; 1690 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 1691 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 1692 continue; 1693 } 1694 1695 /* 1696 * Calculate next bp ( we can only use it if we do not block 1697 * or do other fancy things ). 1698 */ 1699 if (nbp == NULL) { 1700 switch(qindex) { 1701 case BQUEUE_EMPTY: 1702 nqindex = BQUEUE_EMPTYKVA; 1703 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 1704 break; 1705 /* fall through */ 1706 case BQUEUE_EMPTYKVA: 1707 nqindex = BQUEUE_CLEAN; 1708 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 1709 break; 1710 /* fall through */ 1711 case BQUEUE_CLEAN: 1712 /* 1713 * nbp is NULL. 1714 */ 1715 break; 1716 } 1717 } 1718 1719 /* 1720 * Sanity Checks 1721 */ 1722 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 1723 1724 /* 1725 * Note: we no longer distinguish between VMIO and non-VMIO 1726 * buffers. 1727 */ 1728 1729 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1730 1731 /* 1732 * If we are defragging then we need a buffer with 1733 * b_kvasize != 0. XXX this situation should no longer 1734 * occur, if defrag is non-zero the buffer's b_kvasize 1735 * should also be non-zero at this point. XXX 1736 */ 1737 if (defrag && bp->b_kvasize == 0) { 1738 kprintf("Warning: defrag empty buffer %p\n", bp); 1739 continue; 1740 } 1741 1742 /* 1743 * Start freeing the bp. This is somewhat involved. nbp 1744 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 1745 * on the clean list must be disassociated from their 1746 * current vnode. Buffers on the empty[kva] lists have 1747 * already been disassociated. 1748 */ 1749 1750 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1751 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp); 1752 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 1753 goto restart; 1754 } 1755 if (bp->b_qindex != qindex) { 1756 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex); 1757 BUF_UNLOCK(bp); 1758 goto restart; 1759 } 1760 bremfree(bp); 1761 1762 /* 1763 * Dependancies must be handled before we disassociate the 1764 * vnode. 1765 * 1766 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 1767 * be immediately disassociated. HAMMER then becomes 1768 * responsible for releasing the buffer. 1769 */ 1770 if (LIST_FIRST(&bp->b_dep) != NULL) { 1771 buf_deallocate(bp); 1772 if (bp->b_flags & B_LOCKED) { 1773 bqrelse(bp); 1774 goto restart; 1775 } 1776 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 1777 } 1778 1779 if (qindex == BQUEUE_CLEAN) { 1780 if (bp->b_flags & B_VMIO) { 1781 bp->b_flags &= ~B_ASYNC; 1782 vfs_vmio_release(bp); 1783 } 1784 if (bp->b_vp) 1785 brelvp(bp); 1786 } 1787 1788 /* 1789 * NOTE: nbp is now entirely invalid. We can only restart 1790 * the scan from this point on. 1791 * 1792 * Get the rest of the buffer freed up. b_kva* is still 1793 * valid after this operation. 1794 */ 1795 1796 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 1797 KKASSERT((bp->b_flags & B_HASHED) == 0); 1798 1799 /* 1800 * critical section protection is not required when 1801 * scrapping a buffer's contents because it is already 1802 * wired. 1803 */ 1804 if (bp->b_bufsize) 1805 allocbuf(bp, 0); 1806 1807 bp->b_flags = B_BNOCLIP; 1808 bp->b_cmd = BUF_CMD_DONE; 1809 bp->b_vp = NULL; 1810 bp->b_error = 0; 1811 bp->b_resid = 0; 1812 bp->b_bcount = 0; 1813 bp->b_xio.xio_npages = 0; 1814 bp->b_dirtyoff = bp->b_dirtyend = 0; 1815 reinitbufbio(bp); 1816 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 1817 buf_dep_init(bp); 1818 if (blkflags & GETBLK_BHEAVY) 1819 bp->b_flags |= B_HEAVY; 1820 1821 /* 1822 * If we are defragging then free the buffer. 1823 */ 1824 if (defrag) { 1825 bp->b_flags |= B_INVAL; 1826 bfreekva(bp); 1827 brelse(bp); 1828 defrag = 0; 1829 goto restart; 1830 } 1831 1832 /* 1833 * If we are overcomitted then recover the buffer and its 1834 * KVM space. This occurs in rare situations when multiple 1835 * processes are blocked in getnewbuf() or allocbuf(). 1836 */ 1837 if (bufspace >= hibufspace) 1838 flushingbufs = 1; 1839 if (flushingbufs && bp->b_kvasize != 0) { 1840 bp->b_flags |= B_INVAL; 1841 bfreekva(bp); 1842 brelse(bp); 1843 goto restart; 1844 } 1845 if (bufspace < lobufspace) 1846 flushingbufs = 0; 1847 break; 1848 } 1849 1850 /* 1851 * If we exhausted our list, sleep as appropriate. We may have to 1852 * wakeup various daemons and write out some dirty buffers. 1853 * 1854 * Generally we are sleeping due to insufficient buffer space. 1855 */ 1856 1857 if (bp == NULL) { 1858 int flags; 1859 char *waitmsg; 1860 1861 if (defrag) { 1862 flags = VFS_BIO_NEED_BUFSPACE; 1863 waitmsg = "nbufkv"; 1864 } else if (bufspace >= hibufspace) { 1865 waitmsg = "nbufbs"; 1866 flags = VFS_BIO_NEED_BUFSPACE; 1867 } else { 1868 waitmsg = "newbuf"; 1869 flags = VFS_BIO_NEED_ANY; 1870 } 1871 1872 needsbuffer |= flags; 1873 bd_speedup(); /* heeeelp */ 1874 while (needsbuffer & flags) { 1875 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo)) 1876 return (NULL); 1877 } 1878 } else { 1879 /* 1880 * We finally have a valid bp. We aren't quite out of the 1881 * woods, we still have to reserve kva space. In order 1882 * to keep fragmentation sane we only allocate kva in 1883 * BKVASIZE chunks. 1884 */ 1885 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1886 1887 if (maxsize != bp->b_kvasize) { 1888 vm_offset_t addr = 0; 1889 int count; 1890 1891 bfreekva(bp); 1892 1893 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1894 vm_map_lock(&buffer_map); 1895 1896 if (vm_map_findspace(&buffer_map, 1897 vm_map_min(&buffer_map), maxsize, 1898 maxsize, &addr)) { 1899 /* 1900 * Uh oh. Buffer map is too fragmented. We 1901 * must defragment the map. 1902 */ 1903 vm_map_unlock(&buffer_map); 1904 vm_map_entry_release(count); 1905 ++bufdefragcnt; 1906 defrag = 1; 1907 bp->b_flags |= B_INVAL; 1908 brelse(bp); 1909 goto restart; 1910 } 1911 if (addr) { 1912 vm_map_insert(&buffer_map, &count, 1913 NULL, 0, 1914 addr, addr + maxsize, 1915 VM_MAPTYPE_NORMAL, 1916 VM_PROT_ALL, VM_PROT_ALL, 1917 MAP_NOFAULT); 1918 1919 bp->b_kvabase = (caddr_t) addr; 1920 bp->b_kvasize = maxsize; 1921 bufspace += bp->b_kvasize; 1922 ++bufreusecnt; 1923 } 1924 vm_map_unlock(&buffer_map); 1925 vm_map_entry_release(count); 1926 } 1927 bp->b_data = bp->b_kvabase; 1928 } 1929 return(bp); 1930 } 1931 1932 /* 1933 * This routine is called in an emergency to recover VM pages from the 1934 * buffer cache by cashing in clean buffers. The idea is to recover 1935 * enough pages to be able to satisfy a stuck bio_page_alloc(). 1936 */ 1937 static int 1938 recoverbufpages(void) 1939 { 1940 struct buf *bp; 1941 int bytes = 0; 1942 1943 ++recoverbufcalls; 1944 1945 while (bytes < MAXBSIZE) { 1946 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1947 if (bp == NULL) 1948 break; 1949 1950 /* 1951 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1952 * cycles through the queue twice before being selected. 1953 */ 1954 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 1955 bp->b_flags |= B_AGE; 1956 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1957 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 1958 bp, b_freelist); 1959 continue; 1960 } 1961 1962 /* 1963 * Sanity Checks 1964 */ 1965 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 1966 KKASSERT((bp->b_flags & B_DELWRI) == 0); 1967 1968 /* 1969 * Start freeing the bp. This is somewhat involved. 1970 * 1971 * Buffers on the clean list must be disassociated from 1972 * their current vnode 1973 */ 1974 1975 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1976 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp); 1977 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 1978 continue; 1979 } 1980 if (bp->b_qindex != BQUEUE_CLEAN) { 1981 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex); 1982 BUF_UNLOCK(bp); 1983 continue; 1984 } 1985 bremfree(bp); 1986 1987 /* 1988 * Dependancies must be handled before we disassociate the 1989 * vnode. 1990 * 1991 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 1992 * be immediately disassociated. HAMMER then becomes 1993 * responsible for releasing the buffer. 1994 */ 1995 if (LIST_FIRST(&bp->b_dep) != NULL) { 1996 buf_deallocate(bp); 1997 if (bp->b_flags & B_LOCKED) { 1998 bqrelse(bp); 1999 continue; 2000 } 2001 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2002 } 2003 2004 bytes += bp->b_bufsize; 2005 2006 if (bp->b_flags & B_VMIO) { 2007 bp->b_flags &= ~B_ASYNC; 2008 bp->b_flags |= B_DIRECT; /* try to free pages */ 2009 vfs_vmio_release(bp); 2010 } 2011 if (bp->b_vp) 2012 brelvp(bp); 2013 2014 KKASSERT(bp->b_vp == NULL); 2015 KKASSERT((bp->b_flags & B_HASHED) == 0); 2016 2017 /* 2018 * critical section protection is not required when 2019 * scrapping a buffer's contents because it is already 2020 * wired. 2021 */ 2022 if (bp->b_bufsize) 2023 allocbuf(bp, 0); 2024 2025 bp->b_flags = B_BNOCLIP; 2026 bp->b_cmd = BUF_CMD_DONE; 2027 bp->b_vp = NULL; 2028 bp->b_error = 0; 2029 bp->b_resid = 0; 2030 bp->b_bcount = 0; 2031 bp->b_xio.xio_npages = 0; 2032 bp->b_dirtyoff = bp->b_dirtyend = 0; 2033 reinitbufbio(bp); 2034 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2035 buf_dep_init(bp); 2036 bp->b_flags |= B_INVAL; 2037 /* bfreekva(bp); */ 2038 brelse(bp); 2039 } 2040 return(bytes); 2041 } 2042 2043 /* 2044 * buf_daemon: 2045 * 2046 * Buffer flushing daemon. Buffers are normally flushed by the 2047 * update daemon but if it cannot keep up this process starts to 2048 * take the load in an attempt to prevent getnewbuf() from blocking. 2049 * 2050 * Once a flush is initiated it does not stop until the number 2051 * of buffers falls below lodirtybuffers, but we will wake up anyone 2052 * waiting at the mid-point. 2053 */ 2054 2055 static struct kproc_desc buf_kp = { 2056 "bufdaemon", 2057 buf_daemon, 2058 &bufdaemon_td 2059 }; 2060 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2061 kproc_start, &buf_kp) 2062 2063 static struct kproc_desc bufhw_kp = { 2064 "bufdaemon_hw", 2065 buf_daemon_hw, 2066 &bufdaemonhw_td 2067 }; 2068 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2069 kproc_start, &bufhw_kp) 2070 2071 static void 2072 buf_daemon(void) 2073 { 2074 int limit; 2075 2076 /* 2077 * This process needs to be suspended prior to shutdown sync. 2078 */ 2079 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2080 bufdaemon_td, SHUTDOWN_PRI_LAST); 2081 curthread->td_flags |= TDF_SYSTHREAD; 2082 2083 /* 2084 * This process is allowed to take the buffer cache to the limit 2085 */ 2086 crit_enter(); 2087 2088 for (;;) { 2089 kproc_suspend_loop(); 2090 2091 /* 2092 * Do the flush. Limit the amount of in-transit I/O we 2093 * allow to build up, otherwise we would completely saturate 2094 * the I/O system. Wakeup any waiting processes before we 2095 * normally would so they can run in parallel with our drain. 2096 * 2097 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2098 * but because we split the operation into two threads we 2099 * have to cut it in half for each thread. 2100 */ 2101 limit = lodirtybufspace / 2; 2102 waitrunningbufspace(limit); 2103 while (runningbufspace + dirtybufspace > limit || 2104 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2105 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2106 break; 2107 waitrunningbufspace(limit); 2108 } 2109 2110 /* 2111 * We reached our low water mark, reset the 2112 * request and sleep until we are needed again. 2113 * The sleep is just so the suspend code works. 2114 */ 2115 spin_lock_wr(&needsbuffer_spin); 2116 if (bd_request == 0) { 2117 msleep(&bd_request, &needsbuffer_spin, 0, 2118 "psleep", hz); 2119 } 2120 bd_request = 0; 2121 spin_unlock_wr(&needsbuffer_spin); 2122 } 2123 } 2124 2125 static void 2126 buf_daemon_hw(void) 2127 { 2128 int limit; 2129 2130 /* 2131 * This process needs to be suspended prior to shutdown sync. 2132 */ 2133 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2134 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2135 curthread->td_flags |= TDF_SYSTHREAD; 2136 2137 /* 2138 * This process is allowed to take the buffer cache to the limit 2139 */ 2140 crit_enter(); 2141 2142 for (;;) { 2143 kproc_suspend_loop(); 2144 2145 /* 2146 * Do the flush. Limit the amount of in-transit I/O we 2147 * allow to build up, otherwise we would completely saturate 2148 * the I/O system. Wakeup any waiting processes before we 2149 * normally would so they can run in parallel with our drain. 2150 * 2151 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2152 * but because we split the operation into two threads we 2153 * have to cut it in half for each thread. 2154 */ 2155 limit = lodirtybufspace / 2; 2156 waitrunningbufspace(limit); 2157 while (runningbufspace + dirtybufspacehw > limit || 2158 dirtybufcounthw >= nbuf / 2) { 2159 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2160 break; 2161 waitrunningbufspace(limit); 2162 } 2163 2164 /* 2165 * We reached our low water mark, reset the 2166 * request and sleep until we are needed again. 2167 * The sleep is just so the suspend code works. 2168 */ 2169 spin_lock_wr(&needsbuffer_spin); 2170 if (bd_request_hw == 0) { 2171 msleep(&bd_request_hw, &needsbuffer_spin, 0, 2172 "psleep", hz); 2173 } 2174 bd_request_hw = 0; 2175 spin_unlock_wr(&needsbuffer_spin); 2176 } 2177 } 2178 2179 /* 2180 * flushbufqueues: 2181 * 2182 * Try to flush a buffer in the dirty queue. We must be careful to 2183 * free up B_INVAL buffers instead of write them, which NFS is 2184 * particularly sensitive to. 2185 * 2186 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2187 * that we really want to try to get the buffer out and reuse it 2188 * due to the write load on the machine. 2189 */ 2190 2191 static int 2192 flushbufqueues(bufq_type_t q) 2193 { 2194 struct buf *bp; 2195 int r = 0; 2196 2197 bp = TAILQ_FIRST(&bufqueues[q]); 2198 2199 while (bp) { 2200 KASSERT((bp->b_flags & B_DELWRI), 2201 ("unexpected clean buffer %p", bp)); 2202 2203 if (bp->b_flags & B_DELWRI) { 2204 if (bp->b_flags & B_INVAL) { 2205 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 2206 panic("flushbufqueues: locked buf"); 2207 bremfree(bp); 2208 brelse(bp); 2209 ++r; 2210 break; 2211 } 2212 if (LIST_FIRST(&bp->b_dep) != NULL && 2213 (bp->b_flags & B_DEFERRED) == 0 && 2214 buf_countdeps(bp, 0)) { 2215 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2216 TAILQ_INSERT_TAIL(&bufqueues[q], bp, 2217 b_freelist); 2218 bp->b_flags |= B_DEFERRED; 2219 bp = TAILQ_FIRST(&bufqueues[q]); 2220 continue; 2221 } 2222 2223 /* 2224 * Only write it out if we can successfully lock 2225 * it. If the buffer has a dependancy, 2226 * buf_checkwrite must also return 0. 2227 */ 2228 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 2229 if (LIST_FIRST(&bp->b_dep) != NULL && 2230 buf_checkwrite(bp)) { 2231 bremfree(bp); 2232 brelse(bp); 2233 } else { 2234 bp->b_flags |= B_AGE; 2235 vfs_bio_awrite(bp); 2236 } 2237 ++r; 2238 break; 2239 } 2240 } 2241 bp = TAILQ_NEXT(bp, b_freelist); 2242 } 2243 return (r); 2244 } 2245 2246 /* 2247 * inmem: 2248 * 2249 * Returns true if no I/O is needed to access the associated VM object. 2250 * This is like findblk except it also hunts around in the VM system for 2251 * the data. 2252 * 2253 * Note that we ignore vm_page_free() races from interrupts against our 2254 * lookup, since if the caller is not protected our return value will not 2255 * be any more valid then otherwise once we exit the critical section. 2256 */ 2257 int 2258 inmem(struct vnode *vp, off_t loffset) 2259 { 2260 vm_object_t obj; 2261 vm_offset_t toff, tinc, size; 2262 vm_page_t m; 2263 2264 if (findblk(vp, loffset)) 2265 return 1; 2266 if (vp->v_mount == NULL) 2267 return 0; 2268 if ((obj = vp->v_object) == NULL) 2269 return 0; 2270 2271 size = PAGE_SIZE; 2272 if (size > vp->v_mount->mnt_stat.f_iosize) 2273 size = vp->v_mount->mnt_stat.f_iosize; 2274 2275 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2276 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2277 if (m == NULL) 2278 return 0; 2279 tinc = size; 2280 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2281 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2282 if (vm_page_is_valid(m, 2283 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2284 return 0; 2285 } 2286 return 1; 2287 } 2288 2289 /* 2290 * vfs_setdirty: 2291 * 2292 * Sets the dirty range for a buffer based on the status of the dirty 2293 * bits in the pages comprising the buffer. 2294 * 2295 * The range is limited to the size of the buffer. 2296 * 2297 * This routine is primarily used by NFS, but is generalized for the 2298 * B_VMIO case. 2299 */ 2300 static void 2301 vfs_setdirty(struct buf *bp) 2302 { 2303 int i; 2304 vm_object_t object; 2305 2306 /* 2307 * Degenerate case - empty buffer 2308 */ 2309 2310 if (bp->b_bufsize == 0) 2311 return; 2312 2313 /* 2314 * We qualify the scan for modified pages on whether the 2315 * object has been flushed yet. The OBJ_WRITEABLE flag 2316 * is not cleared simply by protecting pages off. 2317 */ 2318 2319 if ((bp->b_flags & B_VMIO) == 0) 2320 return; 2321 2322 object = bp->b_xio.xio_pages[0]->object; 2323 2324 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2325 kprintf("Warning: object %p writeable but not mightbedirty\n", object); 2326 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2327 kprintf("Warning: object %p mightbedirty but not writeable\n", object); 2328 2329 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2330 vm_offset_t boffset; 2331 vm_offset_t eoffset; 2332 2333 /* 2334 * test the pages to see if they have been modified directly 2335 * by users through the VM system. 2336 */ 2337 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2338 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 2339 vm_page_test_dirty(bp->b_xio.xio_pages[i]); 2340 } 2341 2342 /* 2343 * Calculate the encompassing dirty range, boffset and eoffset, 2344 * (eoffset - boffset) bytes. 2345 */ 2346 2347 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2348 if (bp->b_xio.xio_pages[i]->dirty) 2349 break; 2350 } 2351 boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK); 2352 2353 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) { 2354 if (bp->b_xio.xio_pages[i]->dirty) { 2355 break; 2356 } 2357 } 2358 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK); 2359 2360 /* 2361 * Fit it to the buffer. 2362 */ 2363 2364 if (eoffset > bp->b_bcount) 2365 eoffset = bp->b_bcount; 2366 2367 /* 2368 * If we have a good dirty range, merge with the existing 2369 * dirty range. 2370 */ 2371 2372 if (boffset < eoffset) { 2373 if (bp->b_dirtyoff > boffset) 2374 bp->b_dirtyoff = boffset; 2375 if (bp->b_dirtyend < eoffset) 2376 bp->b_dirtyend = eoffset; 2377 } 2378 } 2379 } 2380 2381 /* 2382 * findblk: 2383 * 2384 * Locate and return the specified buffer, or NULL if the buffer does 2385 * not exist. Do not attempt to lock the buffer or manipulate it in 2386 * any way. The caller must validate that the correct buffer has been 2387 * obtain after locking it. 2388 */ 2389 struct buf * 2390 findblk(struct vnode *vp, off_t loffset) 2391 { 2392 struct buf *bp; 2393 2394 crit_enter(); 2395 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2396 crit_exit(); 2397 return(bp); 2398 } 2399 2400 /* 2401 * getblk: 2402 * 2403 * Get a block given a specified block and offset into a file/device. 2404 * B_INVAL may or may not be set on return. The caller should clear 2405 * B_INVAL prior to initiating a READ. 2406 * 2407 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2408 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2409 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2410 * without doing any of those things the system will likely believe 2411 * the buffer to be valid (especially if it is not B_VMIO), and the 2412 * next getblk() will return the buffer with B_CACHE set. 2413 * 2414 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2415 * an existing buffer. 2416 * 2417 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2418 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2419 * and then cleared based on the backing VM. If the previous buffer is 2420 * non-0-sized but invalid, B_CACHE will be cleared. 2421 * 2422 * If getblk() must create a new buffer, the new buffer is returned with 2423 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2424 * case it is returned with B_INVAL clear and B_CACHE set based on the 2425 * backing VM. 2426 * 2427 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2428 * B_CACHE bit is clear. 2429 * 2430 * What this means, basically, is that the caller should use B_CACHE to 2431 * determine whether the buffer is fully valid or not and should clear 2432 * B_INVAL prior to issuing a read. If the caller intends to validate 2433 * the buffer by loading its data area with something, the caller needs 2434 * to clear B_INVAL. If the caller does this without issuing an I/O, 2435 * the caller should set B_CACHE ( as an optimization ), else the caller 2436 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2437 * a write attempt or if it was a successfull read. If the caller 2438 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2439 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2440 * 2441 * getblk flags: 2442 * 2443 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2444 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2445 */ 2446 struct buf * 2447 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2448 { 2449 struct buf *bp; 2450 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2451 int error; 2452 2453 if (size > MAXBSIZE) 2454 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2455 if (vp->v_object == NULL) 2456 panic("getblk: vnode %p has no object!", vp); 2457 2458 crit_enter(); 2459 loop: 2460 if ((bp = findblk(vp, loffset))) { 2461 /* 2462 * The buffer was found in the cache, but we need to lock it. 2463 * Even with LK_NOWAIT the lockmgr may break our critical 2464 * section, so double-check the validity of the buffer 2465 * once the lock has been obtained. 2466 */ 2467 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2468 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2469 if (blkflags & GETBLK_PCATCH) 2470 lkflags |= LK_PCATCH; 2471 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2472 if (error) { 2473 if (error == ENOLCK) 2474 goto loop; 2475 crit_exit(); 2476 return (NULL); 2477 } 2478 } 2479 2480 /* 2481 * Once the buffer has been locked, make sure we didn't race 2482 * a buffer recyclement. Buffers that are no longer hashed 2483 * will have b_vp == NULL, so this takes care of that check 2484 * as well. 2485 */ 2486 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2487 kprintf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset); 2488 BUF_UNLOCK(bp); 2489 goto loop; 2490 } 2491 2492 /* 2493 * All vnode-based buffers must be backed by a VM object. 2494 */ 2495 KKASSERT(bp->b_flags & B_VMIO); 2496 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2497 bp->b_flags &= ~B_AGE; 2498 2499 /* 2500 * Make sure that B_INVAL buffers do not have a cached 2501 * block number translation. 2502 */ 2503 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2504 kprintf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset); 2505 clearbiocache(&bp->b_bio2); 2506 } 2507 2508 /* 2509 * The buffer is locked. B_CACHE is cleared if the buffer is 2510 * invalid. 2511 */ 2512 if (bp->b_flags & B_INVAL) 2513 bp->b_flags &= ~B_CACHE; 2514 bremfree(bp); 2515 2516 /* 2517 * Any size inconsistancy with a dirty buffer or a buffer 2518 * with a softupdates dependancy must be resolved. Resizing 2519 * the buffer in such circumstances can lead to problems. 2520 */ 2521 if (size != bp->b_bcount) { 2522 if (bp->b_flags & B_DELWRI) { 2523 bp->b_flags |= B_NOCACHE; 2524 bwrite(bp); 2525 } else if (LIST_FIRST(&bp->b_dep)) { 2526 bp->b_flags |= B_NOCACHE; 2527 bwrite(bp); 2528 } else { 2529 bp->b_flags |= B_RELBUF; 2530 brelse(bp); 2531 } 2532 goto loop; 2533 } 2534 KKASSERT(size <= bp->b_kvasize); 2535 KASSERT(bp->b_loffset != NOOFFSET, 2536 ("getblk: no buffer offset")); 2537 2538 /* 2539 * A buffer with B_DELWRI set and B_CACHE clear must 2540 * be committed before we can return the buffer in 2541 * order to prevent the caller from issuing a read 2542 * ( due to B_CACHE not being set ) and overwriting 2543 * it. 2544 * 2545 * Most callers, including NFS and FFS, need this to 2546 * operate properly either because they assume they 2547 * can issue a read if B_CACHE is not set, or because 2548 * ( for example ) an uncached B_DELWRI might loop due 2549 * to softupdates re-dirtying the buffer. In the latter 2550 * case, B_CACHE is set after the first write completes, 2551 * preventing further loops. 2552 * 2553 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2554 * above while extending the buffer, we cannot allow the 2555 * buffer to remain with B_CACHE set after the write 2556 * completes or it will represent a corrupt state. To 2557 * deal with this we set B_NOCACHE to scrap the buffer 2558 * after the write. 2559 * 2560 * We might be able to do something fancy, like setting 2561 * B_CACHE in bwrite() except if B_DELWRI is already set, 2562 * so the below call doesn't set B_CACHE, but that gets real 2563 * confusing. This is much easier. 2564 */ 2565 2566 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2567 bp->b_flags |= B_NOCACHE; 2568 bwrite(bp); 2569 goto loop; 2570 } 2571 crit_exit(); 2572 } else { 2573 /* 2574 * Buffer is not in-core, create new buffer. The buffer 2575 * returned by getnewbuf() is locked. Note that the returned 2576 * buffer is also considered valid (not marked B_INVAL). 2577 * 2578 * Calculating the offset for the I/O requires figuring out 2579 * the block size. We use DEV_BSIZE for VBLK or VCHR and 2580 * the mount's f_iosize otherwise. If the vnode does not 2581 * have an associated mount we assume that the passed size is 2582 * the block size. 2583 * 2584 * Note that vn_isdisk() cannot be used here since it may 2585 * return a failure for numerous reasons. Note that the 2586 * buffer size may be larger then the block size (the caller 2587 * will use block numbers with the proper multiple). Beware 2588 * of using any v_* fields which are part of unions. In 2589 * particular, in DragonFly the mount point overloading 2590 * mechanism uses the namecache only and the underlying 2591 * directory vnode is not a special case. 2592 */ 2593 int bsize, maxsize; 2594 2595 if (vp->v_type == VBLK || vp->v_type == VCHR) 2596 bsize = DEV_BSIZE; 2597 else if (vp->v_mount) 2598 bsize = vp->v_mount->mnt_stat.f_iosize; 2599 else 2600 bsize = size; 2601 2602 maxsize = size + (loffset & PAGE_MASK); 2603 maxsize = imax(maxsize, bsize); 2604 2605 if ((bp = getnewbuf(blkflags, slptimeo, size, maxsize)) == NULL) { 2606 if (slpflags || slptimeo) { 2607 crit_exit(); 2608 return NULL; 2609 } 2610 goto loop; 2611 } 2612 2613 /* 2614 * This code is used to make sure that a buffer is not 2615 * created while the getnewbuf routine is blocked. 2616 * This can be a problem whether the vnode is locked or not. 2617 * If the buffer is created out from under us, we have to 2618 * throw away the one we just created. There is no window 2619 * race because we are safely running in a critical section 2620 * from the point of the duplicate buffer creation through 2621 * to here, and we've locked the buffer. 2622 */ 2623 if (findblk(vp, loffset)) { 2624 bp->b_flags |= B_INVAL; 2625 brelse(bp); 2626 goto loop; 2627 } 2628 2629 /* 2630 * Insert the buffer into the hash, so that it can 2631 * be found by findblk(). 2632 * 2633 * Make sure the translation layer has been cleared. 2634 */ 2635 bp->b_loffset = loffset; 2636 bp->b_bio2.bio_offset = NOOFFSET; 2637 /* bp->b_bio2.bio_next = NULL; */ 2638 2639 bgetvp(vp, bp); 2640 2641 /* 2642 * All vnode-based buffers must be backed by a VM object. 2643 */ 2644 KKASSERT(vp->v_object != NULL); 2645 bp->b_flags |= B_VMIO; 2646 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2647 2648 allocbuf(bp, size); 2649 2650 crit_exit(); 2651 } 2652 return (bp); 2653 } 2654 2655 /* 2656 * regetblk(bp) 2657 * 2658 * Reacquire a buffer that was previously released to the locked queue, 2659 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 2660 * set B_LOCKED (which handles the acquisition race). 2661 * 2662 * To this end, either B_LOCKED must be set or the dependancy list must be 2663 * non-empty. 2664 */ 2665 void 2666 regetblk(struct buf *bp) 2667 { 2668 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 2669 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 2670 crit_enter(); 2671 bremfree(bp); 2672 crit_exit(); 2673 } 2674 2675 /* 2676 * geteblk: 2677 * 2678 * Get an empty, disassociated buffer of given size. The buffer is 2679 * initially set to B_INVAL. 2680 * 2681 * critical section protection is not required for the allocbuf() 2682 * call because races are impossible here. 2683 */ 2684 struct buf * 2685 geteblk(int size) 2686 { 2687 struct buf *bp; 2688 int maxsize; 2689 2690 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2691 2692 crit_enter(); 2693 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2694 ; 2695 crit_exit(); 2696 allocbuf(bp, size); 2697 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2698 return (bp); 2699 } 2700 2701 2702 /* 2703 * allocbuf: 2704 * 2705 * This code constitutes the buffer memory from either anonymous system 2706 * memory (in the case of non-VMIO operations) or from an associated 2707 * VM object (in the case of VMIO operations). This code is able to 2708 * resize a buffer up or down. 2709 * 2710 * Note that this code is tricky, and has many complications to resolve 2711 * deadlock or inconsistant data situations. Tread lightly!!! 2712 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2713 * the caller. Calling this code willy nilly can result in the loss of data. 2714 * 2715 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2716 * B_CACHE for the non-VMIO case. 2717 * 2718 * This routine does not need to be called from a critical section but you 2719 * must own the buffer. 2720 */ 2721 int 2722 allocbuf(struct buf *bp, int size) 2723 { 2724 int newbsize, mbsize; 2725 int i; 2726 2727 if (BUF_REFCNT(bp) == 0) 2728 panic("allocbuf: buffer not busy"); 2729 2730 if (bp->b_kvasize < size) 2731 panic("allocbuf: buffer too small"); 2732 2733 if ((bp->b_flags & B_VMIO) == 0) { 2734 caddr_t origbuf; 2735 int origbufsize; 2736 /* 2737 * Just get anonymous memory from the kernel. Don't 2738 * mess with B_CACHE. 2739 */ 2740 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2741 if (bp->b_flags & B_MALLOC) 2742 newbsize = mbsize; 2743 else 2744 newbsize = round_page(size); 2745 2746 if (newbsize < bp->b_bufsize) { 2747 /* 2748 * Malloced buffers are not shrunk 2749 */ 2750 if (bp->b_flags & B_MALLOC) { 2751 if (newbsize) { 2752 bp->b_bcount = size; 2753 } else { 2754 kfree(bp->b_data, M_BIOBUF); 2755 if (bp->b_bufsize) { 2756 bufmallocspace -= bp->b_bufsize; 2757 bufspacewakeup(); 2758 bp->b_bufsize = 0; 2759 } 2760 bp->b_data = bp->b_kvabase; 2761 bp->b_bcount = 0; 2762 bp->b_flags &= ~B_MALLOC; 2763 } 2764 return 1; 2765 } 2766 vm_hold_free_pages( 2767 bp, 2768 (vm_offset_t) bp->b_data + newbsize, 2769 (vm_offset_t) bp->b_data + bp->b_bufsize); 2770 } else if (newbsize > bp->b_bufsize) { 2771 /* 2772 * We only use malloced memory on the first allocation. 2773 * and revert to page-allocated memory when the buffer 2774 * grows. 2775 */ 2776 if ((bufmallocspace < maxbufmallocspace) && 2777 (bp->b_bufsize == 0) && 2778 (mbsize <= PAGE_SIZE/2)) { 2779 2780 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 2781 bp->b_bufsize = mbsize; 2782 bp->b_bcount = size; 2783 bp->b_flags |= B_MALLOC; 2784 bufmallocspace += mbsize; 2785 return 1; 2786 } 2787 origbuf = NULL; 2788 origbufsize = 0; 2789 /* 2790 * If the buffer is growing on its other-than-first 2791 * allocation, then we revert to the page-allocation 2792 * scheme. 2793 */ 2794 if (bp->b_flags & B_MALLOC) { 2795 origbuf = bp->b_data; 2796 origbufsize = bp->b_bufsize; 2797 bp->b_data = bp->b_kvabase; 2798 if (bp->b_bufsize) { 2799 bufmallocspace -= bp->b_bufsize; 2800 bufspacewakeup(); 2801 bp->b_bufsize = 0; 2802 } 2803 bp->b_flags &= ~B_MALLOC; 2804 newbsize = round_page(newbsize); 2805 } 2806 vm_hold_load_pages( 2807 bp, 2808 (vm_offset_t) bp->b_data + bp->b_bufsize, 2809 (vm_offset_t) bp->b_data + newbsize); 2810 if (origbuf) { 2811 bcopy(origbuf, bp->b_data, origbufsize); 2812 kfree(origbuf, M_BIOBUF); 2813 } 2814 } 2815 } else { 2816 vm_page_t m; 2817 int desiredpages; 2818 2819 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2820 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 2821 newbsize + PAGE_MASK) >> PAGE_SHIFT; 2822 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 2823 2824 if (bp->b_flags & B_MALLOC) 2825 panic("allocbuf: VMIO buffer can't be malloced"); 2826 /* 2827 * Set B_CACHE initially if buffer is 0 length or will become 2828 * 0-length. 2829 */ 2830 if (size == 0 || bp->b_bufsize == 0) 2831 bp->b_flags |= B_CACHE; 2832 2833 if (newbsize < bp->b_bufsize) { 2834 /* 2835 * DEV_BSIZE aligned new buffer size is less then the 2836 * DEV_BSIZE aligned existing buffer size. Figure out 2837 * if we have to remove any pages. 2838 */ 2839 if (desiredpages < bp->b_xio.xio_npages) { 2840 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 2841 /* 2842 * the page is not freed here -- it 2843 * is the responsibility of 2844 * vnode_pager_setsize 2845 */ 2846 m = bp->b_xio.xio_pages[i]; 2847 KASSERT(m != bogus_page, 2848 ("allocbuf: bogus page found")); 2849 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2850 ; 2851 2852 bp->b_xio.xio_pages[i] = NULL; 2853 vm_page_unwire(m, 0); 2854 } 2855 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2856 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 2857 bp->b_xio.xio_npages = desiredpages; 2858 } 2859 } else if (size > bp->b_bcount) { 2860 /* 2861 * We are growing the buffer, possibly in a 2862 * byte-granular fashion. 2863 */ 2864 struct vnode *vp; 2865 vm_object_t obj; 2866 vm_offset_t toff; 2867 vm_offset_t tinc; 2868 2869 /* 2870 * Step 1, bring in the VM pages from the object, 2871 * allocating them if necessary. We must clear 2872 * B_CACHE if these pages are not valid for the 2873 * range covered by the buffer. 2874 * 2875 * critical section protection is required to protect 2876 * against interrupts unbusying and freeing pages 2877 * between our vm_page_lookup() and our 2878 * busycheck/wiring call. 2879 */ 2880 vp = bp->b_vp; 2881 obj = vp->v_object; 2882 2883 crit_enter(); 2884 while (bp->b_xio.xio_npages < desiredpages) { 2885 vm_page_t m; 2886 vm_pindex_t pi; 2887 2888 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 2889 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2890 /* 2891 * note: must allocate system pages 2892 * since blocking here could intefere 2893 * with paging I/O, no matter which 2894 * process we are. 2895 */ 2896 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 2897 if (m) { 2898 vm_page_wire(m); 2899 vm_page_wakeup(m); 2900 bp->b_flags &= ~B_CACHE; 2901 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 2902 ++bp->b_xio.xio_npages; 2903 } 2904 continue; 2905 } 2906 2907 /* 2908 * We found a page. If we have to sleep on it, 2909 * retry because it might have gotten freed out 2910 * from under us. 2911 * 2912 * We can only test PG_BUSY here. Blocking on 2913 * m->busy might lead to a deadlock: 2914 * 2915 * vm_fault->getpages->cluster_read->allocbuf 2916 * 2917 */ 2918 2919 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2920 continue; 2921 2922 /* 2923 * We have a good page. Should we wakeup the 2924 * page daemon? 2925 */ 2926 if ((curthread != pagethread) && 2927 ((m->queue - m->pc) == PQ_CACHE) && 2928 ((vmstats.v_free_count + vmstats.v_cache_count) < 2929 (vmstats.v_free_min + vmstats.v_cache_min))) { 2930 pagedaemon_wakeup(); 2931 } 2932 vm_page_flag_clear(m, PG_ZERO); 2933 vm_page_wire(m); 2934 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 2935 ++bp->b_xio.xio_npages; 2936 } 2937 crit_exit(); 2938 2939 /* 2940 * Step 2. We've loaded the pages into the buffer, 2941 * we have to figure out if we can still have B_CACHE 2942 * set. Note that B_CACHE is set according to the 2943 * byte-granular range ( bcount and size ), not the 2944 * aligned range ( newbsize ). 2945 * 2946 * The VM test is against m->valid, which is DEV_BSIZE 2947 * aligned. Needless to say, the validity of the data 2948 * needs to also be DEV_BSIZE aligned. Note that this 2949 * fails with NFS if the server or some other client 2950 * extends the file's EOF. If our buffer is resized, 2951 * B_CACHE may remain set! XXX 2952 */ 2953 2954 toff = bp->b_bcount; 2955 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 2956 2957 while ((bp->b_flags & B_CACHE) && toff < size) { 2958 vm_pindex_t pi; 2959 2960 if (tinc > (size - toff)) 2961 tinc = size - toff; 2962 2963 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 2964 PAGE_SHIFT; 2965 2966 vfs_buf_test_cache( 2967 bp, 2968 bp->b_loffset, 2969 toff, 2970 tinc, 2971 bp->b_xio.xio_pages[pi] 2972 ); 2973 toff += tinc; 2974 tinc = PAGE_SIZE; 2975 } 2976 2977 /* 2978 * Step 3, fixup the KVM pmap. Remember that 2979 * bp->b_data is relative to bp->b_loffset, but 2980 * bp->b_loffset may be offset into the first page. 2981 */ 2982 2983 bp->b_data = (caddr_t) 2984 trunc_page((vm_offset_t)bp->b_data); 2985 pmap_qenter( 2986 (vm_offset_t)bp->b_data, 2987 bp->b_xio.xio_pages, 2988 bp->b_xio.xio_npages 2989 ); 2990 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2991 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 2992 } 2993 } 2994 2995 /* adjust space use on already-dirty buffer */ 2996 if (bp->b_flags & B_DELWRI) { 2997 dirtybufspace += newbsize - bp->b_bufsize; 2998 if (bp->b_flags & B_HEAVY) 2999 dirtybufspacehw += newbsize - bp->b_bufsize; 3000 } 3001 if (newbsize < bp->b_bufsize) 3002 bufspacewakeup(); 3003 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3004 bp->b_bcount = size; /* requested buffer size */ 3005 return 1; 3006 } 3007 3008 /* 3009 * biowait: 3010 * 3011 * Wait for buffer I/O completion, returning error status. The buffer 3012 * is left locked on return. B_EINTR is converted into an EINTR error 3013 * and cleared. 3014 * 3015 * NOTE! The original b_cmd is lost on return, since b_cmd will be 3016 * set to BUF_CMD_DONE. 3017 */ 3018 int 3019 biowait(struct buf *bp) 3020 { 3021 crit_enter(); 3022 while (bp->b_cmd != BUF_CMD_DONE) { 3023 if (bp->b_cmd == BUF_CMD_READ) 3024 tsleep(bp, 0, "biord", 0); 3025 else 3026 tsleep(bp, 0, "biowr", 0); 3027 } 3028 crit_exit(); 3029 if (bp->b_flags & B_EINTR) { 3030 bp->b_flags &= ~B_EINTR; 3031 return (EINTR); 3032 } 3033 if (bp->b_flags & B_ERROR) { 3034 return (bp->b_error ? bp->b_error : EIO); 3035 } else { 3036 return (0); 3037 } 3038 } 3039 3040 /* 3041 * This associates a tracking count with an I/O. vn_strategy() and 3042 * dev_dstrategy() do this automatically but there are a few cases 3043 * where a vnode or device layer is bypassed when a block translation 3044 * is cached. In such cases bio_start_transaction() may be called on 3045 * the bypassed layers so the system gets an I/O in progress indication 3046 * for those higher layers. 3047 */ 3048 void 3049 bio_start_transaction(struct bio *bio, struct bio_track *track) 3050 { 3051 bio->bio_track = track; 3052 atomic_add_int(&track->bk_active, 1); 3053 } 3054 3055 /* 3056 * Initiate I/O on a vnode. 3057 */ 3058 void 3059 vn_strategy(struct vnode *vp, struct bio *bio) 3060 { 3061 struct bio_track *track; 3062 3063 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE); 3064 if (bio->bio_buf->b_cmd == BUF_CMD_READ) 3065 track = &vp->v_track_read; 3066 else 3067 track = &vp->v_track_write; 3068 bio->bio_track = track; 3069 atomic_add_int(&track->bk_active, 1); 3070 vop_strategy(*vp->v_ops, vp, bio); 3071 } 3072 3073 3074 /* 3075 * biodone: 3076 * 3077 * Finish I/O on a buffer, optionally calling a completion function. 3078 * This is usually called from an interrupt so process blocking is 3079 * not allowed. 3080 * 3081 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 3082 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3083 * assuming B_INVAL is clear. 3084 * 3085 * For the VMIO case, we set B_CACHE if the op was a read and no 3086 * read error occured, or if the op was a write. B_CACHE is never 3087 * set if the buffer is invalid or otherwise uncacheable. 3088 * 3089 * biodone does not mess with B_INVAL, allowing the I/O routine or the 3090 * initiator to leave B_INVAL set to brelse the buffer out of existance 3091 * in the biodone routine. 3092 */ 3093 void 3094 biodone(struct bio *bio) 3095 { 3096 struct buf *bp = bio->bio_buf; 3097 buf_cmd_t cmd; 3098 3099 crit_enter(); 3100 3101 KASSERT(BUF_REFCNTNB(bp) > 0, 3102 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3103 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3104 ("biodone: bp %p already done!", bp)); 3105 3106 runningbufwakeup(bp); 3107 3108 /* 3109 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3110 */ 3111 while (bio) { 3112 biodone_t *done_func; 3113 struct bio_track *track; 3114 3115 /* 3116 * BIO tracking. Most but not all BIOs are tracked. 3117 */ 3118 if ((track = bio->bio_track) != NULL) { 3119 atomic_subtract_int(&track->bk_active, 1); 3120 if (track->bk_active < 0) { 3121 panic("biodone: bad active count bio %p\n", 3122 bio); 3123 } 3124 if (track->bk_waitflag) { 3125 track->bk_waitflag = 0; 3126 wakeup(track); 3127 } 3128 bio->bio_track = NULL; 3129 } 3130 3131 /* 3132 * A bio_done function terminates the loop. The function 3133 * will be responsible for any further chaining and/or 3134 * buffer management. 3135 * 3136 * WARNING! The done function can deallocate the buffer! 3137 */ 3138 if ((done_func = bio->bio_done) != NULL) { 3139 bio->bio_done = NULL; 3140 done_func(bio); 3141 crit_exit(); 3142 return; 3143 } 3144 bio = bio->bio_prev; 3145 } 3146 3147 cmd = bp->b_cmd; 3148 bp->b_cmd = BUF_CMD_DONE; 3149 3150 /* 3151 * Only reads and writes are processed past this point. 3152 */ 3153 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3154 brelse(bp); 3155 crit_exit(); 3156 return; 3157 } 3158 3159 /* 3160 * Warning: softupdates may re-dirty the buffer. 3161 */ 3162 if (LIST_FIRST(&bp->b_dep) != NULL) 3163 buf_complete(bp); 3164 3165 if (bp->b_flags & B_VMIO) { 3166 int i; 3167 vm_ooffset_t foff; 3168 vm_page_t m; 3169 vm_object_t obj; 3170 int iosize; 3171 struct vnode *vp = bp->b_vp; 3172 3173 obj = vp->v_object; 3174 3175 #if defined(VFS_BIO_DEBUG) 3176 if (vp->v_auxrefs == 0) 3177 panic("biodone: zero vnode hold count"); 3178 if ((vp->v_flag & VOBJBUF) == 0) 3179 panic("biodone: vnode is not setup for merged cache"); 3180 #endif 3181 3182 foff = bp->b_loffset; 3183 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3184 KASSERT(obj != NULL, ("biodone: missing VM object")); 3185 3186 #if defined(VFS_BIO_DEBUG) 3187 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3188 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3189 obj->paging_in_progress, bp->b_xio.xio_npages); 3190 } 3191 #endif 3192 3193 /* 3194 * Set B_CACHE if the op was a normal read and no error 3195 * occured. B_CACHE is set for writes in the b*write() 3196 * routines. 3197 */ 3198 iosize = bp->b_bcount - bp->b_resid; 3199 if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3200 bp->b_flags |= B_CACHE; 3201 } 3202 3203 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3204 int bogusflag = 0; 3205 int resid; 3206 3207 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3208 if (resid > iosize) 3209 resid = iosize; 3210 3211 /* 3212 * cleanup bogus pages, restoring the originals. Since 3213 * the originals should still be wired, we don't have 3214 * to worry about interrupt/freeing races destroying 3215 * the VM object association. 3216 */ 3217 m = bp->b_xio.xio_pages[i]; 3218 if (m == bogus_page) { 3219 bogusflag = 1; 3220 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3221 if (m == NULL) 3222 panic("biodone: page disappeared"); 3223 bp->b_xio.xio_pages[i] = m; 3224 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3225 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3226 } 3227 #if defined(VFS_BIO_DEBUG) 3228 if (OFF_TO_IDX(foff) != m->pindex) { 3229 kprintf( 3230 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 3231 (unsigned long)foff, m->pindex); 3232 } 3233 #endif 3234 3235 /* 3236 * In the write case, the valid and clean bits are 3237 * already changed correctly ( see bdwrite() ), so we 3238 * only need to do this here in the read case. 3239 */ 3240 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3241 vfs_page_set_valid(bp, foff, i, m); 3242 } 3243 vm_page_flag_clear(m, PG_ZERO); 3244 3245 /* 3246 * when debugging new filesystems or buffer I/O methods, this 3247 * is the most common error that pops up. if you see this, you 3248 * have not set the page busy flag correctly!!! 3249 */ 3250 if (m->busy == 0) { 3251 kprintf("biodone: page busy < 0, " 3252 "pindex: %d, foff: 0x(%x,%x), " 3253 "resid: %d, index: %d\n", 3254 (int) m->pindex, (int)(foff >> 32), 3255 (int) foff & 0xffffffff, resid, i); 3256 if (!vn_isdisk(vp, NULL)) 3257 kprintf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n", 3258 bp->b_vp->v_mount->mnt_stat.f_iosize, 3259 bp->b_loffset, 3260 bp->b_flags, bp->b_xio.xio_npages); 3261 else 3262 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3263 bp->b_loffset, 3264 bp->b_flags, bp->b_xio.xio_npages); 3265 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3266 m->valid, m->dirty, m->wire_count); 3267 panic("biodone: page busy < 0"); 3268 } 3269 vm_page_io_finish(m); 3270 vm_object_pip_subtract(obj, 1); 3271 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3272 iosize -= resid; 3273 } 3274 if (obj) 3275 vm_object_pip_wakeupn(obj, 0); 3276 } 3277 3278 /* 3279 * For asynchronous completions, release the buffer now. The brelse 3280 * will do a wakeup there if necessary - so no need to do a wakeup 3281 * here in the async case. The sync case always needs to do a wakeup. 3282 */ 3283 3284 if (bp->b_flags & B_ASYNC) { 3285 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0) 3286 brelse(bp); 3287 else 3288 bqrelse(bp); 3289 } else { 3290 wakeup(bp); 3291 } 3292 crit_exit(); 3293 } 3294 3295 /* 3296 * vfs_unbusy_pages: 3297 * 3298 * This routine is called in lieu of iodone in the case of 3299 * incomplete I/O. This keeps the busy status for pages 3300 * consistant. 3301 */ 3302 void 3303 vfs_unbusy_pages(struct buf *bp) 3304 { 3305 int i; 3306 3307 runningbufwakeup(bp); 3308 if (bp->b_flags & B_VMIO) { 3309 struct vnode *vp = bp->b_vp; 3310 vm_object_t obj; 3311 3312 obj = vp->v_object; 3313 3314 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3315 vm_page_t m = bp->b_xio.xio_pages[i]; 3316 3317 /* 3318 * When restoring bogus changes the original pages 3319 * should still be wired, so we are in no danger of 3320 * losing the object association and do not need 3321 * critical section protection particularly. 3322 */ 3323 if (m == bogus_page) { 3324 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3325 if (!m) { 3326 panic("vfs_unbusy_pages: page missing"); 3327 } 3328 bp->b_xio.xio_pages[i] = m; 3329 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3330 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3331 } 3332 vm_object_pip_subtract(obj, 1); 3333 vm_page_flag_clear(m, PG_ZERO); 3334 vm_page_io_finish(m); 3335 } 3336 vm_object_pip_wakeupn(obj, 0); 3337 } 3338 } 3339 3340 /* 3341 * vfs_page_set_valid: 3342 * 3343 * Set the valid bits in a page based on the supplied offset. The 3344 * range is restricted to the buffer's size. 3345 * 3346 * This routine is typically called after a read completes. 3347 */ 3348 static void 3349 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3350 { 3351 vm_ooffset_t soff, eoff; 3352 3353 /* 3354 * Start and end offsets in buffer. eoff - soff may not cross a 3355 * page boundry or cross the end of the buffer. The end of the 3356 * buffer, in this case, is our file EOF, not the allocation size 3357 * of the buffer. 3358 */ 3359 soff = off; 3360 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3361 if (eoff > bp->b_loffset + bp->b_bcount) 3362 eoff = bp->b_loffset + bp->b_bcount; 3363 3364 /* 3365 * Set valid range. This is typically the entire buffer and thus the 3366 * entire page. 3367 */ 3368 if (eoff > soff) { 3369 vm_page_set_validclean( 3370 m, 3371 (vm_offset_t) (soff & PAGE_MASK), 3372 (vm_offset_t) (eoff - soff) 3373 ); 3374 } 3375 } 3376 3377 /* 3378 * vfs_busy_pages: 3379 * 3380 * This routine is called before a device strategy routine. 3381 * It is used to tell the VM system that paging I/O is in 3382 * progress, and treat the pages associated with the buffer 3383 * almost as being PG_BUSY. Also the object 'paging_in_progress' 3384 * flag is handled to make sure that the object doesn't become 3385 * inconsistant. 3386 * 3387 * Since I/O has not been initiated yet, certain buffer flags 3388 * such as B_ERROR or B_INVAL may be in an inconsistant state 3389 * and should be ignored. 3390 */ 3391 void 3392 vfs_busy_pages(struct vnode *vp, struct buf *bp) 3393 { 3394 int i, bogus; 3395 struct lwp *lp = curthread->td_lwp; 3396 3397 /* 3398 * The buffer's I/O command must already be set. If reading, 3399 * B_CACHE must be 0 (double check against callers only doing 3400 * I/O when B_CACHE is 0). 3401 */ 3402 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3403 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 3404 3405 if (bp->b_flags & B_VMIO) { 3406 vm_object_t obj; 3407 vm_ooffset_t foff; 3408 3409 obj = vp->v_object; 3410 foff = bp->b_loffset; 3411 KASSERT(bp->b_loffset != NOOFFSET, 3412 ("vfs_busy_pages: no buffer offset")); 3413 vfs_setdirty(bp); 3414 3415 /* 3416 * Loop until none of the pages are busy. 3417 */ 3418 retry: 3419 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3420 vm_page_t m = bp->b_xio.xio_pages[i]; 3421 3422 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3423 goto retry; 3424 } 3425 3426 /* 3427 * Setup for I/O, soft-busy the page right now because 3428 * the next loop may block. 3429 */ 3430 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3431 vm_page_t m = bp->b_xio.xio_pages[i]; 3432 3433 vm_page_flag_clear(m, PG_ZERO); 3434 if ((bp->b_flags & B_CLUSTER) == 0) { 3435 vm_object_pip_add(obj, 1); 3436 vm_page_io_start(m); 3437 } 3438 } 3439 3440 /* 3441 * Adjust protections for I/O and do bogus-page mapping. 3442 * Assume that vm_page_protect() can block (it can block 3443 * if VM_PROT_NONE, don't take any chances regardless). 3444 */ 3445 bogus = 0; 3446 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3447 vm_page_t m = bp->b_xio.xio_pages[i]; 3448 3449 /* 3450 * When readying a vnode-backed buffer for a write 3451 * we must zero-fill any invalid portions of the 3452 * backing VM pages. 3453 * 3454 * When readying a vnode-backed buffer for a read 3455 * we must replace any dirty pages with a bogus 3456 * page so we do not destroy dirty data when 3457 * filling in gaps. Dirty pages might not 3458 * necessarily be marked dirty yet, so use m->valid 3459 * as a reasonable test. 3460 * 3461 * Bogus page replacement is, uh, bogus. We need 3462 * to find a better way. 3463 */ 3464 if (bp->b_cmd == BUF_CMD_WRITE) { 3465 vm_page_protect(m, VM_PROT_READ); 3466 vfs_page_set_valid(bp, foff, i, m); 3467 } else if (m->valid == VM_PAGE_BITS_ALL) { 3468 bp->b_xio.xio_pages[i] = bogus_page; 3469 bogus++; 3470 } else { 3471 vm_page_protect(m, VM_PROT_NONE); 3472 } 3473 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3474 } 3475 if (bogus) 3476 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3477 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3478 } 3479 3480 /* 3481 * This is the easiest place to put the process accounting for the I/O 3482 * for now. 3483 */ 3484 if (lp != NULL) { 3485 if (bp->b_cmd == BUF_CMD_READ) 3486 lp->lwp_ru.ru_inblock++; 3487 else 3488 lp->lwp_ru.ru_oublock++; 3489 } 3490 } 3491 3492 /* 3493 * vfs_clean_pages: 3494 * 3495 * Tell the VM system that the pages associated with this buffer 3496 * are clean. This is used for delayed writes where the data is 3497 * going to go to disk eventually without additional VM intevention. 3498 * 3499 * Note that while we only really need to clean through to b_bcount, we 3500 * just go ahead and clean through to b_bufsize. 3501 */ 3502 static void 3503 vfs_clean_pages(struct buf *bp) 3504 { 3505 int i; 3506 3507 if (bp->b_flags & B_VMIO) { 3508 vm_ooffset_t foff; 3509 3510 foff = bp->b_loffset; 3511 KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset")); 3512 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3513 vm_page_t m = bp->b_xio.xio_pages[i]; 3514 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3515 vm_ooffset_t eoff = noff; 3516 3517 if (eoff > bp->b_loffset + bp->b_bufsize) 3518 eoff = bp->b_loffset + bp->b_bufsize; 3519 vfs_page_set_valid(bp, foff, i, m); 3520 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3521 foff = noff; 3522 } 3523 } 3524 } 3525 3526 /* 3527 * vfs_bio_set_validclean: 3528 * 3529 * Set the range within the buffer to valid and clean. The range is 3530 * relative to the beginning of the buffer, b_loffset. Note that 3531 * b_loffset itself may be offset from the beginning of the first page. 3532 */ 3533 3534 void 3535 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3536 { 3537 if (bp->b_flags & B_VMIO) { 3538 int i; 3539 int n; 3540 3541 /* 3542 * Fixup base to be relative to beginning of first page. 3543 * Set initial n to be the maximum number of bytes in the 3544 * first page that can be validated. 3545 */ 3546 3547 base += (bp->b_loffset & PAGE_MASK); 3548 n = PAGE_SIZE - (base & PAGE_MASK); 3549 3550 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) { 3551 vm_page_t m = bp->b_xio.xio_pages[i]; 3552 3553 if (n > size) 3554 n = size; 3555 3556 vm_page_set_validclean(m, base & PAGE_MASK, n); 3557 base += n; 3558 size -= n; 3559 n = PAGE_SIZE; 3560 } 3561 } 3562 } 3563 3564 /* 3565 * vfs_bio_clrbuf: 3566 * 3567 * Clear a buffer. This routine essentially fakes an I/O, so we need 3568 * to clear B_ERROR and B_INVAL. 3569 * 3570 * Note that while we only theoretically need to clear through b_bcount, 3571 * we go ahead and clear through b_bufsize. 3572 */ 3573 3574 void 3575 vfs_bio_clrbuf(struct buf *bp) 3576 { 3577 int i, mask = 0; 3578 caddr_t sa, ea; 3579 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3580 bp->b_flags &= ~(B_INVAL|B_ERROR); 3581 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3582 (bp->b_loffset & PAGE_MASK) == 0) { 3583 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3584 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 3585 bp->b_resid = 0; 3586 return; 3587 } 3588 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 3589 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 3590 bzero(bp->b_data, bp->b_bufsize); 3591 bp->b_xio.xio_pages[0]->valid |= mask; 3592 bp->b_resid = 0; 3593 return; 3594 } 3595 } 3596 ea = sa = bp->b_data; 3597 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 3598 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3599 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3600 ea = (caddr_t)(vm_offset_t)ulmin( 3601 (u_long)(vm_offset_t)ea, 3602 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3603 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3604 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 3605 continue; 3606 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 3607 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 3608 bzero(sa, ea - sa); 3609 } 3610 } else { 3611 for (; sa < ea; sa += DEV_BSIZE, j++) { 3612 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 3613 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 3614 bzero(sa, DEV_BSIZE); 3615 } 3616 } 3617 bp->b_xio.xio_pages[i]->valid |= mask; 3618 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 3619 } 3620 bp->b_resid = 0; 3621 } else { 3622 clrbuf(bp); 3623 } 3624 } 3625 3626 /* 3627 * vm_hold_load_pages: 3628 * 3629 * Load pages into the buffer's address space. The pages are 3630 * allocated from the kernel object in order to reduce interference 3631 * with the any VM paging I/O activity. The range of loaded 3632 * pages will be wired. 3633 * 3634 * If a page cannot be allocated, the 'pagedaemon' is woken up to 3635 * retrieve the full range (to - from) of pages. 3636 * 3637 */ 3638 void 3639 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 3640 { 3641 vm_offset_t pg; 3642 vm_page_t p; 3643 int index; 3644 3645 to = round_page(to); 3646 from = round_page(from); 3647 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3648 3649 pg = from; 3650 while (pg < to) { 3651 /* 3652 * Note: must allocate system pages since blocking here 3653 * could intefere with paging I/O, no matter which 3654 * process we are. 3655 */ 3656 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 3657 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 3658 if (p) { 3659 vm_page_wire(p); 3660 p->valid = VM_PAGE_BITS_ALL; 3661 vm_page_flag_clear(p, PG_ZERO); 3662 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 3663 bp->b_xio.xio_pages[index] = p; 3664 vm_page_wakeup(p); 3665 3666 pg += PAGE_SIZE; 3667 ++index; 3668 } 3669 } 3670 bp->b_xio.xio_npages = index; 3671 } 3672 3673 /* 3674 * Allocate pages for a buffer cache buffer. 3675 * 3676 * Under extremely severe memory conditions even allocating out of the 3677 * system reserve can fail. If this occurs we must allocate out of the 3678 * interrupt reserve to avoid a deadlock with the pageout daemon. 3679 * 3680 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 3681 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 3682 * against the pageout daemon if pages are not freed from other sources. 3683 */ 3684 static 3685 vm_page_t 3686 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 3687 { 3688 vm_page_t p; 3689 3690 /* 3691 * Try a normal allocation, allow use of system reserve. 3692 */ 3693 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 3694 if (p) 3695 return(p); 3696 3697 /* 3698 * The normal allocation failed and we clearly have a page 3699 * deficit. Try to reclaim some clean VM pages directly 3700 * from the buffer cache. 3701 */ 3702 vm_pageout_deficit += deficit; 3703 recoverbufpages(); 3704 3705 /* 3706 * We may have blocked, the caller will know what to do if the 3707 * page now exists. 3708 */ 3709 if (vm_page_lookup(obj, pg)) 3710 return(NULL); 3711 3712 /* 3713 * Allocate and allow use of the interrupt reserve. 3714 * 3715 * If after all that we still can't allocate a VM page we are 3716 * in real trouble, but we slog on anyway hoping that the system 3717 * won't deadlock. 3718 */ 3719 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 3720 VM_ALLOC_INTERRUPT); 3721 if (p) { 3722 kprintf("bio_page_alloc: WARNING emergency page " 3723 "allocation\n"); 3724 if (vm_page_count_severe()) 3725 vm_wait(hz / 20); 3726 } else { 3727 kprintf("bio_page_alloc: WARNING emergency page " 3728 "allocation failed\n"); 3729 vm_wait(hz * 5); 3730 } 3731 return(p); 3732 } 3733 3734 /* 3735 * vm_hold_free_pages: 3736 * 3737 * Return pages associated with the buffer back to the VM system. 3738 * 3739 * The range of pages underlying the buffer's address space will 3740 * be unmapped and un-wired. 3741 */ 3742 void 3743 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 3744 { 3745 vm_offset_t pg; 3746 vm_page_t p; 3747 int index, newnpages; 3748 3749 from = round_page(from); 3750 to = round_page(to); 3751 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3752 3753 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3754 p = bp->b_xio.xio_pages[index]; 3755 if (p && (index < bp->b_xio.xio_npages)) { 3756 if (p->busy) { 3757 kprintf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n", 3758 bp->b_bio2.bio_offset, bp->b_loffset); 3759 } 3760 bp->b_xio.xio_pages[index] = NULL; 3761 pmap_kremove(pg); 3762 vm_page_busy(p); 3763 vm_page_unwire(p, 0); 3764 vm_page_free(p); 3765 } 3766 } 3767 bp->b_xio.xio_npages = newnpages; 3768 } 3769 3770 /* 3771 * vmapbuf: 3772 * 3773 * Map a user buffer into KVM via a pbuf. On return the buffer's 3774 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 3775 * initialized. 3776 */ 3777 int 3778 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 3779 { 3780 caddr_t addr; 3781 vm_offset_t va; 3782 vm_page_t m; 3783 int vmprot; 3784 int error; 3785 int pidx; 3786 int i; 3787 3788 /* 3789 * bp had better have a command and it better be a pbuf. 3790 */ 3791 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3792 KKASSERT(bp->b_flags & B_PAGING); 3793 3794 if (bytes < 0) 3795 return (-1); 3796 3797 /* 3798 * Map the user data into KVM. Mappings have to be page-aligned. 3799 */ 3800 addr = (caddr_t)trunc_page((vm_offset_t)udata); 3801 pidx = 0; 3802 3803 vmprot = VM_PROT_READ; 3804 if (bp->b_cmd == BUF_CMD_READ) 3805 vmprot |= VM_PROT_WRITE; 3806 3807 while (addr < udata + bytes) { 3808 /* 3809 * Do the vm_fault if needed; do the copy-on-write thing 3810 * when reading stuff off device into memory. 3811 * 3812 * vm_fault_page*() returns a held VM page. 3813 */ 3814 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 3815 va = trunc_page(va); 3816 3817 m = vm_fault_page_quick(va, vmprot, &error); 3818 if (m == NULL) { 3819 for (i = 0; i < pidx; ++i) { 3820 vm_page_unhold(bp->b_xio.xio_pages[i]); 3821 bp->b_xio.xio_pages[i] = NULL; 3822 } 3823 return(-1); 3824 } 3825 bp->b_xio.xio_pages[pidx] = m; 3826 addr += PAGE_SIZE; 3827 ++pidx; 3828 } 3829 3830 /* 3831 * Map the page array and set the buffer fields to point to 3832 * the mapped data buffer. 3833 */ 3834 if (pidx > btoc(MAXPHYS)) 3835 panic("vmapbuf: mapped more than MAXPHYS"); 3836 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 3837 3838 bp->b_xio.xio_npages = pidx; 3839 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 3840 bp->b_bcount = bytes; 3841 bp->b_bufsize = bytes; 3842 return(0); 3843 } 3844 3845 /* 3846 * vunmapbuf: 3847 * 3848 * Free the io map PTEs associated with this IO operation. 3849 * We also invalidate the TLB entries and restore the original b_addr. 3850 */ 3851 void 3852 vunmapbuf(struct buf *bp) 3853 { 3854 int pidx; 3855 int npages; 3856 3857 KKASSERT(bp->b_flags & B_PAGING); 3858 3859 npages = bp->b_xio.xio_npages; 3860 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 3861 for (pidx = 0; pidx < npages; ++pidx) { 3862 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 3863 bp->b_xio.xio_pages[pidx] = NULL; 3864 } 3865 bp->b_xio.xio_npages = 0; 3866 bp->b_data = bp->b_kvabase; 3867 } 3868 3869 /* 3870 * Scan all buffers in the system and issue the callback. 3871 */ 3872 int 3873 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 3874 { 3875 int count = 0; 3876 int error; 3877 int n; 3878 3879 for (n = 0; n < nbuf; ++n) { 3880 if ((error = callback(&buf[n], info)) < 0) { 3881 count = error; 3882 break; 3883 } 3884 count += error; 3885 } 3886 return (count); 3887 } 3888 3889 /* 3890 * print out statistics from the current status of the buffer pool 3891 * this can be toggeled by the system control option debug.syncprt 3892 */ 3893 #ifdef DEBUG 3894 void 3895 vfs_bufstats(void) 3896 { 3897 int i, j, count; 3898 struct buf *bp; 3899 struct bqueues *dp; 3900 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 3901 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 3902 3903 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 3904 count = 0; 3905 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 3906 counts[j] = 0; 3907 crit_enter(); 3908 TAILQ_FOREACH(bp, dp, b_freelist) { 3909 counts[bp->b_bufsize/PAGE_SIZE]++; 3910 count++; 3911 } 3912 crit_exit(); 3913 kprintf("%s: total-%d", bname[i], count); 3914 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 3915 if (counts[j] != 0) 3916 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 3917 kprintf("\n"); 3918 } 3919 } 3920 #endif 3921 3922 #ifdef DDB 3923 3924 DB_SHOW_COMMAND(buffer, db_show_buffer) 3925 { 3926 /* get args */ 3927 struct buf *bp = (struct buf *)addr; 3928 3929 if (!have_addr) { 3930 db_printf("usage: show buffer <addr>\n"); 3931 return; 3932 } 3933 3934 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3935 db_printf("b_cmd = %d\n", bp->b_cmd); 3936 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 3937 "b_resid = %d\n, b_data = %p, " 3938 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 3939 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3940 bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 3941 if (bp->b_xio.xio_npages) { 3942 int i; 3943 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 3944 bp->b_xio.xio_npages); 3945 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3946 vm_page_t m; 3947 m = bp->b_xio.xio_pages[i]; 3948 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3949 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3950 if ((i + 1) < bp->b_xio.xio_npages) 3951 db_printf(","); 3952 } 3953 db_printf("\n"); 3954 } 3955 } 3956 #endif /* DDB */ 3957