xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 97fecd825dd1a70c628493b90a9b1b1724f151df)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
61 
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Buffer queues.
69  */
70 enum bufq_type {
71 	BQUEUE_NONE,    	/* not on any queue */
72 	BQUEUE_LOCKED,  	/* locked buffers */
73 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
74 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
75 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
76 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
77 	BQUEUE_EMPTY,    	/* empty buffer headers */
78 
79 	BUFFER_QUEUES		/* number of buffer queues */
80 };
81 
82 typedef enum bufq_type bufq_type_t;
83 
84 #define BD_WAKE_SIZE	128
85 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
86 
87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
88 
89 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
90 
91 struct buf *buf;		/* buffer header pool */
92 
93 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
94 			       int pageno, vm_page_t m);
95 static void vfs_clean_pages(struct buf *bp);
96 static void vfs_setdirty(struct buf *bp);
97 static void vfs_vmio_release(struct buf *bp);
98 static int flushbufqueues(bufq_type_t q);
99 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
100 
101 static void bd_signal(int totalspace);
102 static void buf_daemon(void);
103 static void buf_daemon_hw(void);
104 
105 /*
106  * bogus page -- for I/O to/from partially complete buffers
107  * this is a temporary solution to the problem, but it is not
108  * really that bad.  it would be better to split the buffer
109  * for input in the case of buffers partially already in memory,
110  * but the code is intricate enough already.
111  */
112 vm_page_t bogus_page;
113 
114 /*
115  * These are all static, but make the ones we export globals so we do
116  * not need to use compiler magic.
117  */
118 int bufspace, maxbufspace,
119 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
120 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
121 static int lorunningspace, hirunningspace, runningbufreq;
122 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
123 int dirtybufcount, dirtybufcounthw;
124 int runningbufspace, runningbufcount;
125 static int getnewbufcalls;
126 static int getnewbufrestarts;
127 static int recoverbufcalls;
128 static int needsbuffer;		/* locked by needsbuffer_spin */
129 static int bd_request;		/* locked by needsbuffer_spin */
130 static int bd_request_hw;	/* locked by needsbuffer_spin */
131 static u_int bd_wake_ary[BD_WAKE_SIZE];
132 static u_int bd_wake_index;
133 static struct spinlock needsbuffer_spin;
134 
135 static struct thread *bufdaemon_td;
136 static struct thread *bufdaemonhw_td;
137 
138 
139 /*
140  * Sysctls for operational control of the buffer cache.
141  */
142 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
143 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
144 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
145 	"High watermark used to trigger explicit flushing of dirty buffers");
146 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
147 	"Minimum amount of buffer space required for active I/O");
148 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
149 	"Maximum amount of buffer space to usable for active I/O");
150 /*
151  * Sysctls determining current state of the buffer cache.
152  */
153 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
154 	"Total number of buffers in buffer cache");
155 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
156 	"Pending bytes of dirty buffers (all)");
157 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
158 	"Pending bytes of dirty buffers (heavy weight)");
159 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
160 	"Pending number of dirty buffers");
161 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
162 	"Pending number of dirty buffers (heavy weight)");
163 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
164 	"I/O bytes currently in progress due to asynchronous writes");
165 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
166 	"I/O buffers currently in progress due to asynchronous writes");
167 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
168 	"Hard limit on maximum amount of memory usable for buffer space");
169 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
170 	"Soft limit on maximum amount of memory usable for buffer space");
171 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
172 	"Minimum amount of memory to reserve for system buffer space");
173 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
174 	"Amount of memory available for buffers");
175 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
176 	0, "Maximum amount of memory reserved for buffers using malloc");
177 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
178 	"Amount of memory left for buffers using malloc-scheme");
179 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
180 	"New buffer header acquisition requests");
181 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
182 	0, "New buffer header acquisition restarts");
183 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
184 	"Recover VM space in an emergency");
185 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
186 	"Buffer acquisition restarts due to fragmented buffer map");
187 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
188 	"Amount of time KVA space was deallocated in an arbitrary buffer");
189 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
190 	"Amount of time buffer re-use operations were successful");
191 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
192 	"sizeof(struct buf)");
193 
194 char *buf_wmesg = BUF_WMESG;
195 
196 extern int vm_swap_size;
197 
198 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
199 #define VFS_BIO_NEED_UNUSED02	0x02
200 #define VFS_BIO_NEED_UNUSED04	0x04
201 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
202 
203 /*
204  * bufspacewakeup:
205  *
206  *	Called when buffer space is potentially available for recovery.
207  *	getnewbuf() will block on this flag when it is unable to free
208  *	sufficient buffer space.  Buffer space becomes recoverable when
209  *	bp's get placed back in the queues.
210  */
211 
212 static __inline void
213 bufspacewakeup(void)
214 {
215 	/*
216 	 * If someone is waiting for BUF space, wake them up.  Even
217 	 * though we haven't freed the kva space yet, the waiting
218 	 * process will be able to now.
219 	 */
220 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
221 		spin_lock_wr(&needsbuffer_spin);
222 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
223 		spin_unlock_wr(&needsbuffer_spin);
224 		wakeup(&needsbuffer);
225 	}
226 }
227 
228 /*
229  * runningbufwakeup:
230  *
231  *	Accounting for I/O in progress.
232  *
233  */
234 static __inline void
235 runningbufwakeup(struct buf *bp)
236 {
237 	int totalspace;
238 
239 	if ((totalspace = bp->b_runningbufspace) != 0) {
240 		runningbufspace -= totalspace;
241 		--runningbufcount;
242 		bp->b_runningbufspace = 0;
243 		if (runningbufreq && runningbufspace <= lorunningspace) {
244 			runningbufreq = 0;
245 			wakeup(&runningbufreq);
246 		}
247 		bd_signal(totalspace);
248 	}
249 }
250 
251 /*
252  * bufcountwakeup:
253  *
254  *	Called when a buffer has been added to one of the free queues to
255  *	account for the buffer and to wakeup anyone waiting for free buffers.
256  *	This typically occurs when large amounts of metadata are being handled
257  *	by the buffer cache ( else buffer space runs out first, usually ).
258  */
259 
260 static __inline void
261 bufcountwakeup(void)
262 {
263 	if (needsbuffer) {
264 		spin_lock_wr(&needsbuffer_spin);
265 		needsbuffer &= ~VFS_BIO_NEED_ANY;
266 		spin_unlock_wr(&needsbuffer_spin);
267 		wakeup(&needsbuffer);
268 	}
269 }
270 
271 /*
272  * waitrunningbufspace()
273  *
274  * Wait for the amount of running I/O to drop to a reasonable level.
275  *
276  * The caller may be using this function to block in a tight loop, we
277  * must block of runningbufspace is greater then the passed limit.
278  * And even with that it may not be enough, due to the presence of
279  * B_LOCKED dirty buffers, so also wait for at least one running buffer
280  * to complete.
281  */
282 static __inline void
283 waitrunningbufspace(int limit)
284 {
285 	int lorun;
286 
287 	if (lorunningspace < limit)
288 		lorun = lorunningspace;
289 	else
290 		lorun = limit;
291 
292 	crit_enter();
293 	if (runningbufspace > lorun) {
294 		while (runningbufspace > lorun) {
295 			++runningbufreq;
296 			tsleep(&runningbufreq, 0, "wdrain", 0);
297 		}
298 	} else if (runningbufspace) {
299 		++runningbufreq;
300 		tsleep(&runningbufreq, 0, "wdrain2", 1);
301 	}
302 	crit_exit();
303 }
304 
305 /*
306  * vfs_buf_test_cache:
307  *
308  *	Called when a buffer is extended.  This function clears the B_CACHE
309  *	bit if the newly extended portion of the buffer does not contain
310  *	valid data.
311  */
312 static __inline__
313 void
314 vfs_buf_test_cache(struct buf *bp,
315 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
316 		  vm_page_t m)
317 {
318 	if (bp->b_flags & B_CACHE) {
319 		int base = (foff + off) & PAGE_MASK;
320 		if (vm_page_is_valid(m, base, size) == 0)
321 			bp->b_flags &= ~B_CACHE;
322 	}
323 }
324 
325 /*
326  * bd_speedup()
327  *
328  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
329  * low water mark.
330  */
331 static __inline__
332 void
333 bd_speedup(void)
334 {
335 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
336 		return;
337 
338 	if (bd_request == 0 &&
339 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
340 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
341 		spin_lock_wr(&needsbuffer_spin);
342 		bd_request = 1;
343 		spin_unlock_wr(&needsbuffer_spin);
344 		wakeup(&bd_request);
345 	}
346 	if (bd_request_hw == 0 &&
347 	    (dirtybufspacehw > lodirtybufspace / 2 ||
348 	     dirtybufcounthw >= nbuf / 2)) {
349 		spin_lock_wr(&needsbuffer_spin);
350 		bd_request_hw = 1;
351 		spin_unlock_wr(&needsbuffer_spin);
352 		wakeup(&bd_request_hw);
353 	}
354 }
355 
356 /*
357  * bd_heatup()
358  *
359  *	Get the buf_daemon heated up when the number of running and dirty
360  *	buffers exceeds the mid-point.
361  */
362 int
363 bd_heatup(void)
364 {
365 	int mid1;
366 	int mid2;
367 	int totalspace;
368 
369 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
370 
371 	totalspace = runningbufspace + dirtybufspace;
372 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
373 		bd_speedup();
374 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
375 		if (totalspace >= mid2)
376 			return(totalspace - mid2);
377 	}
378 	return(0);
379 }
380 
381 /*
382  * bd_wait()
383  *
384  *	Wait for the buffer cache to flush (totalspace) bytes worth of
385  *	buffers, then return.
386  *
387  *	Regardless this function blocks while the number of dirty buffers
388  *	exceeds hidirtybufspace.
389  */
390 void
391 bd_wait(int totalspace)
392 {
393 	u_int i;
394 	int count;
395 
396 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
397 		return;
398 
399 	while (totalspace > 0) {
400 		bd_heatup();
401 		crit_enter();
402 		if (totalspace > runningbufspace + dirtybufspace)
403 			totalspace = runningbufspace + dirtybufspace;
404 		count = totalspace / BKVASIZE;
405 		if (count >= BD_WAKE_SIZE)
406 			count = BD_WAKE_SIZE - 1;
407 		i = (bd_wake_index + count) & BD_WAKE_MASK;
408 		++bd_wake_ary[i];
409 		tsleep(&bd_wake_ary[i], 0, "flstik", hz);
410 		crit_exit();
411 
412 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
413 	}
414 }
415 
416 /*
417  * bd_signal()
418  *
419  *	This function is called whenever runningbufspace or dirtybufspace
420  *	is reduced.  Track threads waiting for run+dirty buffer I/O
421  *	complete.
422  */
423 static void
424 bd_signal(int totalspace)
425 {
426 	u_int i;
427 
428 	while (totalspace > 0) {
429 		i = atomic_fetchadd_int(&bd_wake_index, 1);
430 		i &= BD_WAKE_MASK;
431 		if (bd_wake_ary[i]) {
432 			bd_wake_ary[i] = 0;
433 			wakeup(&bd_wake_ary[i]);
434 		}
435 		totalspace -= BKVASIZE;
436 	}
437 }
438 
439 /*
440  * bufinit:
441  *
442  *	Load time initialisation of the buffer cache, called from machine
443  *	dependant initialization code.
444  */
445 void
446 bufinit(void)
447 {
448 	struct buf *bp;
449 	vm_offset_t bogus_offset;
450 	int i;
451 
452 	spin_init(&needsbuffer_spin);
453 
454 	/* next, make a null set of free lists */
455 	for (i = 0; i < BUFFER_QUEUES; i++)
456 		TAILQ_INIT(&bufqueues[i]);
457 
458 	/* finally, initialize each buffer header and stick on empty q */
459 	for (i = 0; i < nbuf; i++) {
460 		bp = &buf[i];
461 		bzero(bp, sizeof *bp);
462 		bp->b_flags = B_INVAL;	/* we're just an empty header */
463 		bp->b_cmd = BUF_CMD_DONE;
464 		bp->b_qindex = BQUEUE_EMPTY;
465 		initbufbio(bp);
466 		xio_init(&bp->b_xio);
467 		buf_dep_init(bp);
468 		BUF_LOCKINIT(bp);
469 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
470 	}
471 
472 	/*
473 	 * maxbufspace is the absolute maximum amount of buffer space we are
474 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
475 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
476 	 * used by most other processes.  The differential is required to
477 	 * ensure that buf_daemon is able to run when other processes might
478 	 * be blocked waiting for buffer space.
479 	 *
480 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
481 	 * this may result in KVM fragmentation which is not handled optimally
482 	 * by the system.
483 	 */
484 	maxbufspace = nbuf * BKVASIZE;
485 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
486 	lobufspace = hibufspace - MAXBSIZE;
487 
488 	lorunningspace = 512 * 1024;
489 	hirunningspace = 1024 * 1024;
490 
491 	/*
492 	 * Limit the amount of malloc memory since it is wired permanently
493 	 * into the kernel space.  Even though this is accounted for in
494 	 * the buffer allocation, we don't want the malloced region to grow
495 	 * uncontrolled.  The malloc scheme improves memory utilization
496 	 * significantly on average (small) directories.
497 	 */
498 	maxbufmallocspace = hibufspace / 20;
499 
500 	/*
501 	 * Reduce the chance of a deadlock occuring by limiting the number
502 	 * of delayed-write dirty buffers we allow to stack up.
503 	 */
504 	hidirtybufspace = hibufspace / 2;
505 	dirtybufspace = 0;
506 	dirtybufspacehw = 0;
507 
508 	lodirtybufspace = hidirtybufspace / 2;
509 
510 	/*
511 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
512 	 * somewhat of a hack at the moment, we really need to limit ourselves
513 	 * based on the number of bytes of I/O in-transit that were initiated
514 	 * from buf_daemon.
515 	 */
516 
517 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
518 	bogus_page = vm_page_alloc(&kernel_object,
519 				   (bogus_offset >> PAGE_SHIFT),
520 				   VM_ALLOC_NORMAL);
521 	vmstats.v_wire_count++;
522 
523 }
524 
525 /*
526  * Initialize the embedded bio structures
527  */
528 void
529 initbufbio(struct buf *bp)
530 {
531 	bp->b_bio1.bio_buf = bp;
532 	bp->b_bio1.bio_prev = NULL;
533 	bp->b_bio1.bio_offset = NOOFFSET;
534 	bp->b_bio1.bio_next = &bp->b_bio2;
535 	bp->b_bio1.bio_done = NULL;
536 
537 	bp->b_bio2.bio_buf = bp;
538 	bp->b_bio2.bio_prev = &bp->b_bio1;
539 	bp->b_bio2.bio_offset = NOOFFSET;
540 	bp->b_bio2.bio_next = NULL;
541 	bp->b_bio2.bio_done = NULL;
542 }
543 
544 /*
545  * Reinitialize the embedded bio structures as well as any additional
546  * translation cache layers.
547  */
548 void
549 reinitbufbio(struct buf *bp)
550 {
551 	struct bio *bio;
552 
553 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
554 		bio->bio_done = NULL;
555 		bio->bio_offset = NOOFFSET;
556 	}
557 }
558 
559 /*
560  * Push another BIO layer onto an existing BIO and return it.  The new
561  * BIO layer may already exist, holding cached translation data.
562  */
563 struct bio *
564 push_bio(struct bio *bio)
565 {
566 	struct bio *nbio;
567 
568 	if ((nbio = bio->bio_next) == NULL) {
569 		int index = bio - &bio->bio_buf->b_bio_array[0];
570 		if (index >= NBUF_BIO - 1) {
571 			panic("push_bio: too many layers bp %p\n",
572 				bio->bio_buf);
573 		}
574 		nbio = &bio->bio_buf->b_bio_array[index + 1];
575 		bio->bio_next = nbio;
576 		nbio->bio_prev = bio;
577 		nbio->bio_buf = bio->bio_buf;
578 		nbio->bio_offset = NOOFFSET;
579 		nbio->bio_done = NULL;
580 		nbio->bio_next = NULL;
581 	}
582 	KKASSERT(nbio->bio_done == NULL);
583 	return(nbio);
584 }
585 
586 /*
587  * Pop a BIO translation layer, returning the previous layer.  The
588  * must have been previously pushed.
589  */
590 struct bio *
591 pop_bio(struct bio *bio)
592 {
593 	return(bio->bio_prev);
594 }
595 
596 void
597 clearbiocache(struct bio *bio)
598 {
599 	while (bio) {
600 		bio->bio_offset = NOOFFSET;
601 		bio = bio->bio_next;
602 	}
603 }
604 
605 /*
606  * bfreekva:
607  *
608  *	Free the KVA allocation for buffer 'bp'.
609  *
610  *	Must be called from a critical section as this is the only locking for
611  *	buffer_map.
612  *
613  *	Since this call frees up buffer space, we call bufspacewakeup().
614  */
615 static void
616 bfreekva(struct buf *bp)
617 {
618 	int count;
619 
620 	if (bp->b_kvasize) {
621 		++buffreekvacnt;
622 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
623 		vm_map_lock(&buffer_map);
624 		bufspace -= bp->b_kvasize;
625 		vm_map_delete(&buffer_map,
626 		    (vm_offset_t) bp->b_kvabase,
627 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
628 		    &count
629 		);
630 		vm_map_unlock(&buffer_map);
631 		vm_map_entry_release(count);
632 		bp->b_kvasize = 0;
633 		bufspacewakeup();
634 	}
635 }
636 
637 /*
638  * bremfree:
639  *
640  *	Remove the buffer from the appropriate free list.
641  */
642 void
643 bremfree(struct buf *bp)
644 {
645 	crit_enter();
646 
647 	if (bp->b_qindex != BQUEUE_NONE) {
648 		KASSERT(BUF_REFCNTNB(bp) == 1,
649 				("bremfree: bp %p not locked",bp));
650 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
651 		bp->b_qindex = BQUEUE_NONE;
652 	} else {
653 		if (BUF_REFCNTNB(bp) <= 1)
654 			panic("bremfree: removing a buffer not on a queue");
655 	}
656 
657 	crit_exit();
658 }
659 
660 
661 /*
662  * bread:
663  *
664  *	Get a buffer with the specified data.  Look in the cache first.  We
665  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
666  *	is set, the buffer is valid and we do not have to do anything ( see
667  *	getblk() ).
668  */
669 int
670 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
671 {
672 	struct buf *bp;
673 
674 	bp = getblk(vp, loffset, size, 0, 0);
675 	*bpp = bp;
676 
677 	/* if not found in cache, do some I/O */
678 	if ((bp->b_flags & B_CACHE) == 0) {
679 		KASSERT(!(bp->b_flags & B_ASYNC),
680 			("bread: illegal async bp %p", bp));
681 		bp->b_flags &= ~(B_ERROR | B_INVAL);
682 		bp->b_cmd = BUF_CMD_READ;
683 		vfs_busy_pages(vp, bp);
684 		vn_strategy(vp, &bp->b_bio1);
685 		return (biowait(bp));
686 	}
687 	return (0);
688 }
689 
690 /*
691  * breadn:
692  *
693  *	Operates like bread, but also starts asynchronous I/O on
694  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
695  *	to initiating I/O . If B_CACHE is set, the buffer is valid
696  *	and we do not have to do anything.
697  */
698 int
699 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
700 	int *rabsize, int cnt, struct buf **bpp)
701 {
702 	struct buf *bp, *rabp;
703 	int i;
704 	int rv = 0, readwait = 0;
705 
706 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
707 
708 	/* if not found in cache, do some I/O */
709 	if ((bp->b_flags & B_CACHE) == 0) {
710 		bp->b_flags &= ~(B_ERROR | B_INVAL);
711 		bp->b_cmd = BUF_CMD_READ;
712 		vfs_busy_pages(vp, bp);
713 		vn_strategy(vp, &bp->b_bio1);
714 		++readwait;
715 	}
716 
717 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
718 		if (inmem(vp, *raoffset))
719 			continue;
720 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
721 
722 		if ((rabp->b_flags & B_CACHE) == 0) {
723 			rabp->b_flags |= B_ASYNC;
724 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
725 			rabp->b_cmd = BUF_CMD_READ;
726 			vfs_busy_pages(vp, rabp);
727 			BUF_KERNPROC(rabp);
728 			vn_strategy(vp, &rabp->b_bio1);
729 		} else {
730 			brelse(rabp);
731 		}
732 	}
733 
734 	if (readwait) {
735 		rv = biowait(bp);
736 	}
737 	return (rv);
738 }
739 
740 /*
741  * bwrite:
742  *
743  *	Write, release buffer on completion.  (Done by iodone
744  *	if async).  Do not bother writing anything if the buffer
745  *	is invalid.
746  *
747  *	Note that we set B_CACHE here, indicating that buffer is
748  *	fully valid and thus cacheable.  This is true even of NFS
749  *	now so we set it generally.  This could be set either here
750  *	or in biodone() since the I/O is synchronous.  We put it
751  *	here.
752  */
753 int
754 bwrite(struct buf *bp)
755 {
756 	int oldflags;
757 
758 	if (bp->b_flags & B_INVAL) {
759 		brelse(bp);
760 		return (0);
761 	}
762 
763 	oldflags = bp->b_flags;
764 
765 	if (BUF_REFCNTNB(bp) == 0)
766 		panic("bwrite: buffer is not busy???");
767 	crit_enter();
768 
769 	/* Mark the buffer clean */
770 	bundirty(bp);
771 
772 	bp->b_flags &= ~B_ERROR;
773 	bp->b_flags |= B_CACHE;
774 	bp->b_cmd = BUF_CMD_WRITE;
775 	vfs_busy_pages(bp->b_vp, bp);
776 
777 	/*
778 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
779 	 * valid for vnode-backed buffers.
780 	 */
781 	bp->b_runningbufspace = bp->b_bufsize;
782 	if (bp->b_runningbufspace) {
783 		runningbufspace += bp->b_runningbufspace;
784 		++runningbufcount;
785 	}
786 
787 	crit_exit();
788 	if (oldflags & B_ASYNC)
789 		BUF_KERNPROC(bp);
790 	vn_strategy(bp->b_vp, &bp->b_bio1);
791 
792 	if ((oldflags & B_ASYNC) == 0) {
793 		int rtval = biowait(bp);
794 		brelse(bp);
795 		return (rtval);
796 	}
797 	return (0);
798 }
799 
800 /*
801  * bdwrite:
802  *
803  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
804  *	anything if the buffer is marked invalid.
805  *
806  *	Note that since the buffer must be completely valid, we can safely
807  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
808  *	biodone() in order to prevent getblk from writing the buffer
809  *	out synchronously.
810  */
811 void
812 bdwrite(struct buf *bp)
813 {
814 	if (BUF_REFCNTNB(bp) == 0)
815 		panic("bdwrite: buffer is not busy");
816 
817 	if (bp->b_flags & B_INVAL) {
818 		brelse(bp);
819 		return;
820 	}
821 	bdirty(bp);
822 
823 	/*
824 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
825 	 * true even of NFS now.
826 	 */
827 	bp->b_flags |= B_CACHE;
828 
829 	/*
830 	 * This bmap keeps the system from needing to do the bmap later,
831 	 * perhaps when the system is attempting to do a sync.  Since it
832 	 * is likely that the indirect block -- or whatever other datastructure
833 	 * that the filesystem needs is still in memory now, it is a good
834 	 * thing to do this.  Note also, that if the pageout daemon is
835 	 * requesting a sync -- there might not be enough memory to do
836 	 * the bmap then...  So, this is important to do.
837 	 */
838 	if (bp->b_bio2.bio_offset == NOOFFSET) {
839 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
840 			 NULL, NULL, BUF_CMD_WRITE);
841 	}
842 
843 	/*
844 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
845 	 */
846 	vfs_setdirty(bp);
847 
848 	/*
849 	 * We need to do this here to satisfy the vnode_pager and the
850 	 * pageout daemon, so that it thinks that the pages have been
851 	 * "cleaned".  Note that since the pages are in a delayed write
852 	 * buffer -- the VFS layer "will" see that the pages get written
853 	 * out on the next sync, or perhaps the cluster will be completed.
854 	 */
855 	vfs_clean_pages(bp);
856 	bqrelse(bp);
857 
858 	/*
859 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
860 	 * due to the softdep code.
861 	 */
862 }
863 
864 /*
865  * bdirty:
866  *
867  *	Turn buffer into delayed write request by marking it B_DELWRI.
868  *	B_RELBUF and B_NOCACHE must be cleared.
869  *
870  *	We reassign the buffer to itself to properly update it in the
871  *	dirty/clean lists.
872  *
873  *	Must be called from a critical section.
874  *	The buffer must be on BQUEUE_NONE.
875  */
876 void
877 bdirty(struct buf *bp)
878 {
879 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
880 	if (bp->b_flags & B_NOCACHE) {
881 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
882 		bp->b_flags &= ~B_NOCACHE;
883 	}
884 	if (bp->b_flags & B_INVAL) {
885 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
886 	}
887 	bp->b_flags &= ~B_RELBUF;
888 
889 	if ((bp->b_flags & B_DELWRI) == 0) {
890 		bp->b_flags |= B_DELWRI;
891 		reassignbuf(bp);
892 		++dirtybufcount;
893 		dirtybufspace += bp->b_bufsize;
894 		if (bp->b_flags & B_HEAVY) {
895 			++dirtybufcounthw;
896 			dirtybufspacehw += bp->b_bufsize;
897 		}
898 		bd_heatup();
899 	}
900 }
901 
902 /*
903  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
904  * needs to be flushed with a different buf_daemon thread to avoid
905  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
906  */
907 void
908 bheavy(struct buf *bp)
909 {
910 	if ((bp->b_flags & B_HEAVY) == 0) {
911 		bp->b_flags |= B_HEAVY;
912 		if (bp->b_flags & B_DELWRI) {
913 			++dirtybufcounthw;
914 			dirtybufspacehw += bp->b_bufsize;
915 		}
916 	}
917 }
918 
919 /*
920  * bundirty:
921  *
922  *	Clear B_DELWRI for buffer.
923  *
924  *	Must be called from a critical section.
925  *
926  *	The buffer is typically on BQUEUE_NONE but there is one case in
927  *	brelse() that calls this function after placing the buffer on
928  *	a different queue.
929  */
930 
931 void
932 bundirty(struct buf *bp)
933 {
934 	if (bp->b_flags & B_DELWRI) {
935 		bp->b_flags &= ~B_DELWRI;
936 		reassignbuf(bp);
937 		--dirtybufcount;
938 		dirtybufspace -= bp->b_bufsize;
939 		if (bp->b_flags & B_HEAVY) {
940 			--dirtybufcounthw;
941 			dirtybufspacehw -= bp->b_bufsize;
942 		}
943 		bd_signal(bp->b_bufsize);
944 	}
945 	/*
946 	 * Since it is now being written, we can clear its deferred write flag.
947 	 */
948 	bp->b_flags &= ~B_DEFERRED;
949 }
950 
951 /*
952  * bawrite:
953  *
954  *	Asynchronous write.  Start output on a buffer, but do not wait for
955  *	it to complete.  The buffer is released when the output completes.
956  *
957  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
958  *	B_INVAL buffers.  Not us.
959  */
960 void
961 bawrite(struct buf *bp)
962 {
963 	bp->b_flags |= B_ASYNC;
964 	bwrite(bp);
965 }
966 
967 /*
968  * bowrite:
969  *
970  *	Ordered write.  Start output on a buffer, and flag it so that the
971  *	device will write it in the order it was queued.  The buffer is
972  *	released when the output completes.  bwrite() ( or the VOP routine
973  *	anyway ) is responsible for handling B_INVAL buffers.
974  */
975 int
976 bowrite(struct buf *bp)
977 {
978 	bp->b_flags |= B_ORDERED | B_ASYNC;
979 	return (bwrite(bp));
980 }
981 
982 /*
983  * buf_dirty_count_severe:
984  *
985  *	Return true if we have too many dirty buffers.
986  */
987 int
988 buf_dirty_count_severe(void)
989 {
990 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
991 	        dirtybufcount >= nbuf / 2);
992 }
993 
994 /*
995  * brelse:
996  *
997  *	Release a busy buffer and, if requested, free its resources.  The
998  *	buffer will be stashed in the appropriate bufqueue[] allowing it
999  *	to be accessed later as a cache entity or reused for other purposes.
1000  */
1001 void
1002 brelse(struct buf *bp)
1003 {
1004 #ifdef INVARIANTS
1005 	int saved_flags = bp->b_flags;
1006 #endif
1007 
1008 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1009 
1010 	crit_enter();
1011 
1012 	/*
1013 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1014 	 * its backing store.  Clear B_DELWRI.
1015 	 *
1016 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1017 	 * to destroy the buffer and backing store and (2) when the caller
1018 	 * wants to destroy the buffer and backing store after a write
1019 	 * completes.
1020 	 */
1021 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1022 		bundirty(bp);
1023 	}
1024 
1025 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1026 		/*
1027 		 * A re-dirtied buffer is only subject to destruction
1028 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1029 		 */
1030 		/* leave buffer intact */
1031 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1032 		   (bp->b_bufsize <= 0)) {
1033 		/*
1034 		 * Either a failed read or we were asked to free or not
1035 		 * cache the buffer.  This path is reached with B_DELWRI
1036 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1037 		 * backing store destruction.
1038 		 *
1039 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1040 		 * buffer cannot be immediately freed.
1041 		 */
1042 		bp->b_flags |= B_INVAL;
1043 		if (LIST_FIRST(&bp->b_dep) != NULL)
1044 			buf_deallocate(bp);
1045 		if (bp->b_flags & B_DELWRI) {
1046 			--dirtybufcount;
1047 			dirtybufspace -= bp->b_bufsize;
1048 			if (bp->b_flags & B_HEAVY) {
1049 				--dirtybufcounthw;
1050 				dirtybufspacehw -= bp->b_bufsize;
1051 			}
1052 			bd_signal(bp->b_bufsize);
1053 		}
1054 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1055 	}
1056 
1057 	/*
1058 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1059 	 * If vfs_vmio_release() is called with either bit set, the
1060 	 * underlying pages may wind up getting freed causing a previous
1061 	 * write (bdwrite()) to get 'lost' because pages associated with
1062 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1063 	 * B_LOCKED buffer may be mapped by the filesystem.
1064 	 *
1065 	 * If we want to release the buffer ourselves (rather then the
1066 	 * originator asking us to release it), give the originator a
1067 	 * chance to countermand the release by setting B_LOCKED.
1068 	 *
1069 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1070 	 * if B_DELWRI is set.
1071 	 *
1072 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1073 	 * on pages to return pages to the VM page queues.
1074 	 */
1075 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1076 		bp->b_flags &= ~B_RELBUF;
1077 	} else if (vm_page_count_severe()) {
1078 		if (LIST_FIRST(&bp->b_dep) != NULL)
1079 			buf_deallocate(bp);		/* can set B_LOCKED */
1080 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1081 			bp->b_flags &= ~B_RELBUF;
1082 		else
1083 			bp->b_flags |= B_RELBUF;
1084 	}
1085 
1086 	/*
1087 	 * Make sure b_cmd is clear.  It may have already been cleared by
1088 	 * biodone().
1089 	 *
1090 	 * At this point destroying the buffer is governed by the B_INVAL
1091 	 * or B_RELBUF flags.
1092 	 */
1093 	bp->b_cmd = BUF_CMD_DONE;
1094 
1095 	/*
1096 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1097 	 * after an I/O may have replaces some of the pages with bogus pages
1098 	 * in order to not destroy dirty pages in a fill-in read.
1099 	 *
1100 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1101 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1102 	 * B_INVAL may still be set, however.
1103 	 *
1104 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1105 	 * but not the backing store.   B_NOCACHE will destroy the backing
1106 	 * store.
1107 	 *
1108 	 * Note that dirty NFS buffers contain byte-granular write ranges
1109 	 * and should not be destroyed w/ B_INVAL even if the backing store
1110 	 * is left intact.
1111 	 */
1112 	if (bp->b_flags & B_VMIO) {
1113 		/*
1114 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1115 		 */
1116 		int i, j, resid;
1117 		vm_page_t m;
1118 		off_t foff;
1119 		vm_pindex_t poff;
1120 		vm_object_t obj;
1121 		struct vnode *vp;
1122 
1123 		vp = bp->b_vp;
1124 
1125 		/*
1126 		 * Get the base offset and length of the buffer.  Note that
1127 		 * in the VMIO case if the buffer block size is not
1128 		 * page-aligned then b_data pointer may not be page-aligned.
1129 		 * But our b_xio.xio_pages array *IS* page aligned.
1130 		 *
1131 		 * block sizes less then DEV_BSIZE (usually 512) are not
1132 		 * supported due to the page granularity bits (m->valid,
1133 		 * m->dirty, etc...).
1134 		 *
1135 		 * See man buf(9) for more information
1136 		 */
1137 
1138 		resid = bp->b_bufsize;
1139 		foff = bp->b_loffset;
1140 
1141 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1142 			m = bp->b_xio.xio_pages[i];
1143 			vm_page_flag_clear(m, PG_ZERO);
1144 			/*
1145 			 * If we hit a bogus page, fixup *all* of them
1146 			 * now.  Note that we left these pages wired
1147 			 * when we removed them so they had better exist,
1148 			 * and they cannot be ripped out from under us so
1149 			 * no critical section protection is necessary.
1150 			 */
1151 			if (m == bogus_page) {
1152 				obj = vp->v_object;
1153 				poff = OFF_TO_IDX(bp->b_loffset);
1154 
1155 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1156 					vm_page_t mtmp;
1157 
1158 					mtmp = bp->b_xio.xio_pages[j];
1159 					if (mtmp == bogus_page) {
1160 						mtmp = vm_page_lookup(obj, poff + j);
1161 						if (!mtmp) {
1162 							panic("brelse: page missing");
1163 						}
1164 						bp->b_xio.xio_pages[j] = mtmp;
1165 					}
1166 				}
1167 
1168 				if ((bp->b_flags & B_INVAL) == 0) {
1169 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1170 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1171 				}
1172 				m = bp->b_xio.xio_pages[i];
1173 			}
1174 
1175 			/*
1176 			 * Invalidate the backing store if B_NOCACHE is set
1177 			 * (e.g. used with vinvalbuf()).  If this is NFS
1178 			 * we impose a requirement that the block size be
1179 			 * a multiple of PAGE_SIZE and create a temporary
1180 			 * hack to basically invalidate the whole page.  The
1181 			 * problem is that NFS uses really odd buffer sizes
1182 			 * especially when tracking piecemeal writes and
1183 			 * it also vinvalbuf()'s a lot, which would result
1184 			 * in only partial page validation and invalidation
1185 			 * here.  If the file page is mmap()'d, however,
1186 			 * all the valid bits get set so after we invalidate
1187 			 * here we would end up with weird m->valid values
1188 			 * like 0xfc.  nfs_getpages() can't handle this so
1189 			 * we clear all the valid bits for the NFS case
1190 			 * instead of just some of them.
1191 			 *
1192 			 * The real bug is the VM system having to set m->valid
1193 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1194 			 * itself is an artifact of the whole 512-byte
1195 			 * granular mess that exists to support odd block
1196 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1197 			 * A complete rewrite is required.
1198 			 */
1199 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1200 				int poffset = foff & PAGE_MASK;
1201 				int presid;
1202 
1203 				presid = PAGE_SIZE - poffset;
1204 				if (bp->b_vp->v_tag == VT_NFS &&
1205 				    bp->b_vp->v_type == VREG) {
1206 					; /* entire page */
1207 				} else if (presid > resid) {
1208 					presid = resid;
1209 				}
1210 				KASSERT(presid >= 0, ("brelse: extra page"));
1211 				vm_page_set_invalid(m, poffset, presid);
1212 			}
1213 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1214 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1215 		}
1216 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1217 			vfs_vmio_release(bp);
1218 	} else {
1219 		/*
1220 		 * Rundown for non-VMIO buffers.
1221 		 */
1222 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1223 #if 0
1224 			if (bp->b_vp)
1225 				kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1226 #endif
1227 			if (bp->b_bufsize)
1228 				allocbuf(bp, 0);
1229 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1230 			if (bp->b_vp)
1231 				brelvp(bp);
1232 		}
1233 	}
1234 
1235 	if (bp->b_qindex != BQUEUE_NONE)
1236 		panic("brelse: free buffer onto another queue???");
1237 	if (BUF_REFCNTNB(bp) > 1) {
1238 		/* Temporary panic to verify exclusive locking */
1239 		/* This panic goes away when we allow shared refs */
1240 		panic("brelse: multiple refs");
1241 		/* do not release to free list */
1242 		BUF_UNLOCK(bp);
1243 		crit_exit();
1244 		return;
1245 	}
1246 
1247 	/*
1248 	 * Figure out the correct queue to place the cleaned up buffer on.
1249 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1250 	 * disassociated from their vnode.
1251 	 */
1252 	if (bp->b_flags & B_LOCKED) {
1253 		/*
1254 		 * Buffers that are locked are placed in the locked queue
1255 		 * immediately, regardless of their state.
1256 		 */
1257 		bp->b_qindex = BQUEUE_LOCKED;
1258 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1259 	} else if (bp->b_bufsize == 0) {
1260 		/*
1261 		 * Buffers with no memory.  Due to conditionals near the top
1262 		 * of brelse() such buffers should probably already be
1263 		 * marked B_INVAL and disassociated from their vnode.
1264 		 */
1265 		bp->b_flags |= B_INVAL;
1266 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1267 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1268 		if (bp->b_kvasize) {
1269 			bp->b_qindex = BQUEUE_EMPTYKVA;
1270 		} else {
1271 			bp->b_qindex = BQUEUE_EMPTY;
1272 		}
1273 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1274 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1275 		/*
1276 		 * Buffers with junk contents.   Again these buffers had better
1277 		 * already be disassociated from their vnode.
1278 		 */
1279 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1280 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1281 		bp->b_flags |= B_INVAL;
1282 		bp->b_qindex = BQUEUE_CLEAN;
1283 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1284 	} else {
1285 		/*
1286 		 * Remaining buffers.  These buffers are still associated with
1287 		 * their vnode.
1288 		 */
1289 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1290 		case B_DELWRI:
1291 		    bp->b_qindex = BQUEUE_DIRTY;
1292 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1293 		    break;
1294 		case B_DELWRI | B_HEAVY:
1295 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1296 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1297 				      b_freelist);
1298 		    break;
1299 		default:
1300 		    /*
1301 		     * NOTE: Buffers are always placed at the end of the
1302 		     * queue.  If B_AGE is not set the buffer will cycle
1303 		     * through the queue twice.
1304 		     */
1305 		    bp->b_qindex = BQUEUE_CLEAN;
1306 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1307 		    break;
1308 		}
1309 	}
1310 
1311 	/*
1312 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1313 	 * on the correct queue.
1314 	 */
1315 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1316 		bundirty(bp);
1317 
1318 	/*
1319 	 * The bp is on an appropriate queue unless locked.  If it is not
1320 	 * locked or dirty we can wakeup threads waiting for buffer space.
1321 	 *
1322 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1323 	 * if B_INVAL is set ).
1324 	 */
1325 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1326 		bufcountwakeup();
1327 
1328 	/*
1329 	 * Something we can maybe free or reuse
1330 	 */
1331 	if (bp->b_bufsize || bp->b_kvasize)
1332 		bufspacewakeup();
1333 
1334 	/*
1335 	 * Clean up temporary flags and unlock the buffer.
1336 	 */
1337 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
1338 	BUF_UNLOCK(bp);
1339 	crit_exit();
1340 }
1341 
1342 /*
1343  * bqrelse:
1344  *
1345  *	Release a buffer back to the appropriate queue but do not try to free
1346  *	it.  The buffer is expected to be used again soon.
1347  *
1348  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1349  *	biodone() to requeue an async I/O on completion.  It is also used when
1350  *	known good buffers need to be requeued but we think we may need the data
1351  *	again soon.
1352  *
1353  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1354  */
1355 void
1356 bqrelse(struct buf *bp)
1357 {
1358 	crit_enter();
1359 
1360 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1361 
1362 	if (bp->b_qindex != BQUEUE_NONE)
1363 		panic("bqrelse: free buffer onto another queue???");
1364 	if (BUF_REFCNTNB(bp) > 1) {
1365 		/* do not release to free list */
1366 		panic("bqrelse: multiple refs");
1367 		BUF_UNLOCK(bp);
1368 		crit_exit();
1369 		return;
1370 	}
1371 	if (bp->b_flags & B_LOCKED) {
1372 		/*
1373 		 * Locked buffers are released to the locked queue.  However,
1374 		 * if the buffer is dirty it will first go into the dirty
1375 		 * queue and later on after the I/O completes successfully it
1376 		 * will be released to the locked queue.
1377 		 */
1378 		bp->b_qindex = BQUEUE_LOCKED;
1379 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1380 	} else if (bp->b_flags & B_DELWRI) {
1381 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1382 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1383 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1384 	} else if (vm_page_count_severe()) {
1385 		/*
1386 		 * We are too low on memory, we have to try to free the
1387 		 * buffer (most importantly: the wired pages making up its
1388 		 * backing store) *now*.
1389 		 */
1390 		crit_exit();
1391 		brelse(bp);
1392 		return;
1393 	} else {
1394 		bp->b_qindex = BQUEUE_CLEAN;
1395 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1396 	}
1397 
1398 	if ((bp->b_flags & B_LOCKED) == 0 &&
1399 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1400 		bufcountwakeup();
1401 	}
1402 
1403 	/*
1404 	 * Something we can maybe free or reuse.
1405 	 */
1406 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1407 		bufspacewakeup();
1408 
1409 	/*
1410 	 * Final cleanup and unlock.  Clear bits that are only used while a
1411 	 * buffer is actively locked.
1412 	 */
1413 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF);
1414 	BUF_UNLOCK(bp);
1415 	crit_exit();
1416 }
1417 
1418 /*
1419  * vfs_vmio_release:
1420  *
1421  *	Return backing pages held by the buffer 'bp' back to the VM system
1422  *	if possible.  The pages are freed if they are no longer valid or
1423  *	attempt to free if it was used for direct I/O otherwise they are
1424  *	sent to the page cache.
1425  *
1426  *	Pages that were marked busy are left alone and skipped.
1427  *
1428  *	The KVA mapping (b_data) for the underlying pages is removed by
1429  *	this function.
1430  */
1431 static void
1432 vfs_vmio_release(struct buf *bp)
1433 {
1434 	int i;
1435 	vm_page_t m;
1436 
1437 	crit_enter();
1438 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1439 		m = bp->b_xio.xio_pages[i];
1440 		bp->b_xio.xio_pages[i] = NULL;
1441 		/*
1442 		 * In order to keep page LRU ordering consistent, put
1443 		 * everything on the inactive queue.
1444 		 */
1445 		vm_page_unwire(m, 0);
1446 		/*
1447 		 * We don't mess with busy pages, it is
1448 		 * the responsibility of the process that
1449 		 * busied the pages to deal with them.
1450 		 */
1451 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1452 			continue;
1453 
1454 		if (m->wire_count == 0) {
1455 			vm_page_flag_clear(m, PG_ZERO);
1456 			/*
1457 			 * Might as well free the page if we can and it has
1458 			 * no valid data.  We also free the page if the
1459 			 * buffer was used for direct I/O.
1460 			 */
1461 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1462 					m->hold_count == 0) {
1463 				vm_page_busy(m);
1464 				vm_page_protect(m, VM_PROT_NONE);
1465 				vm_page_free(m);
1466 			} else if (bp->b_flags & B_DIRECT) {
1467 				vm_page_try_to_free(m);
1468 			} else if (vm_page_count_severe()) {
1469 				vm_page_try_to_cache(m);
1470 			}
1471 		}
1472 	}
1473 	crit_exit();
1474 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1475 	if (bp->b_bufsize) {
1476 		bufspacewakeup();
1477 		bp->b_bufsize = 0;
1478 	}
1479 	bp->b_xio.xio_npages = 0;
1480 	bp->b_flags &= ~B_VMIO;
1481 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1482 	if (bp->b_vp)
1483 		brelvp(bp);
1484 }
1485 
1486 /*
1487  * vfs_bio_awrite:
1488  *
1489  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1490  *	This is much better then the old way of writing only one buffer at
1491  *	a time.  Note that we may not be presented with the buffers in the
1492  *	correct order, so we search for the cluster in both directions.
1493  *
1494  *	The buffer is locked on call.
1495  */
1496 int
1497 vfs_bio_awrite(struct buf *bp)
1498 {
1499 	int i;
1500 	int j;
1501 	off_t loffset = bp->b_loffset;
1502 	struct vnode *vp = bp->b_vp;
1503 	int nbytes;
1504 	struct buf *bpa;
1505 	int nwritten;
1506 	int size;
1507 
1508 	crit_enter();
1509 	/*
1510 	 * right now we support clustered writing only to regular files.  If
1511 	 * we find a clusterable block we could be in the middle of a cluster
1512 	 * rather then at the beginning.
1513 	 *
1514 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1515 	 * to b_loffset.  b_bio2 contains the translated block number.
1516 	 */
1517 	if ((vp->v_type == VREG) &&
1518 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1519 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1520 
1521 		size = vp->v_mount->mnt_stat.f_iosize;
1522 
1523 		for (i = size; i < MAXPHYS; i += size) {
1524 			if ((bpa = findblk(vp, loffset + i)) &&
1525 			    BUF_REFCNT(bpa) == 0 &&
1526 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1527 			    (B_DELWRI | B_CLUSTEROK)) &&
1528 			    (bpa->b_bufsize == size)) {
1529 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1530 				    (bpa->b_bio2.bio_offset !=
1531 				     bp->b_bio2.bio_offset + i))
1532 					break;
1533 			} else {
1534 				break;
1535 			}
1536 		}
1537 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1538 			if ((bpa = findblk(vp, loffset - j)) &&
1539 			    BUF_REFCNT(bpa) == 0 &&
1540 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1541 			    (B_DELWRI | B_CLUSTEROK)) &&
1542 			    (bpa->b_bufsize == size)) {
1543 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1544 				    (bpa->b_bio2.bio_offset !=
1545 				     bp->b_bio2.bio_offset - j))
1546 					break;
1547 			} else {
1548 				break;
1549 			}
1550 		}
1551 		j -= size;
1552 		nbytes = (i + j);
1553 		/*
1554 		 * this is a possible cluster write
1555 		 */
1556 		if (nbytes != size) {
1557 			BUF_UNLOCK(bp);
1558 			nwritten = cluster_wbuild(vp, size,
1559 						  loffset - j, nbytes);
1560 			crit_exit();
1561 			return nwritten;
1562 		}
1563 	}
1564 
1565 	bremfree(bp);
1566 	bp->b_flags |= B_ASYNC;
1567 
1568 	crit_exit();
1569 	/*
1570 	 * default (old) behavior, writing out only one block
1571 	 *
1572 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1573 	 */
1574 	nwritten = bp->b_bufsize;
1575 	bwrite(bp);
1576 
1577 	return nwritten;
1578 }
1579 
1580 /*
1581  * getnewbuf:
1582  *
1583  *	Find and initialize a new buffer header, freeing up existing buffers
1584  *	in the bufqueues as necessary.  The new buffer is returned locked.
1585  *
1586  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1587  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1588  *
1589  *	We block if:
1590  *		We have insufficient buffer headers
1591  *		We have insufficient buffer space
1592  *		buffer_map is too fragmented ( space reservation fails )
1593  *		If we have to flush dirty buffers ( but we try to avoid this )
1594  *
1595  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1596  *	Instead we ask the buf daemon to do it for us.  We attempt to
1597  *	avoid piecemeal wakeups of the pageout daemon.
1598  */
1599 
1600 static struct buf *
1601 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1602 {
1603 	struct buf *bp;
1604 	struct buf *nbp;
1605 	int defrag = 0;
1606 	int nqindex;
1607 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1608 	static int flushingbufs;
1609 
1610 	/*
1611 	 * We can't afford to block since we might be holding a vnode lock,
1612 	 * which may prevent system daemons from running.  We deal with
1613 	 * low-memory situations by proactively returning memory and running
1614 	 * async I/O rather then sync I/O.
1615 	 */
1616 
1617 	++getnewbufcalls;
1618 	--getnewbufrestarts;
1619 restart:
1620 	++getnewbufrestarts;
1621 
1622 	/*
1623 	 * Setup for scan.  If we do not have enough free buffers,
1624 	 * we setup a degenerate case that immediately fails.  Note
1625 	 * that if we are specially marked process, we are allowed to
1626 	 * dip into our reserves.
1627 	 *
1628 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1629 	 *
1630 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1631 	 * However, there are a number of cases (defragging, reusing, ...)
1632 	 * where we cannot backup.
1633 	 */
1634 	nqindex = BQUEUE_EMPTYKVA;
1635 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1636 
1637 	if (nbp == NULL) {
1638 		/*
1639 		 * If no EMPTYKVA buffers and we are either
1640 		 * defragging or reusing, locate a CLEAN buffer
1641 		 * to free or reuse.  If bufspace useage is low
1642 		 * skip this step so we can allocate a new buffer.
1643 		 */
1644 		if (defrag || bufspace >= lobufspace) {
1645 			nqindex = BQUEUE_CLEAN;
1646 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1647 		}
1648 
1649 		/*
1650 		 * If we could not find or were not allowed to reuse a
1651 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1652 		 * buffer.  We can only use an EMPTY buffer if allocating
1653 		 * its KVA would not otherwise run us out of buffer space.
1654 		 */
1655 		if (nbp == NULL && defrag == 0 &&
1656 		    bufspace + maxsize < hibufspace) {
1657 			nqindex = BQUEUE_EMPTY;
1658 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1659 		}
1660 	}
1661 
1662 	/*
1663 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1664 	 * depending.
1665 	 */
1666 
1667 	while ((bp = nbp) != NULL) {
1668 		int qindex = nqindex;
1669 
1670 		nbp = TAILQ_NEXT(bp, b_freelist);
1671 
1672 		/*
1673 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1674 		 * cycles through the queue twice before being selected.
1675 		 */
1676 		if (qindex == BQUEUE_CLEAN &&
1677 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1678 			bp->b_flags |= B_AGE;
1679 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1680 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1681 			continue;
1682 		}
1683 
1684 		/*
1685 		 * Calculate next bp ( we can only use it if we do not block
1686 		 * or do other fancy things ).
1687 		 */
1688 		if (nbp == NULL) {
1689 			switch(qindex) {
1690 			case BQUEUE_EMPTY:
1691 				nqindex = BQUEUE_EMPTYKVA;
1692 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1693 					break;
1694 				/* fall through */
1695 			case BQUEUE_EMPTYKVA:
1696 				nqindex = BQUEUE_CLEAN;
1697 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1698 					break;
1699 				/* fall through */
1700 			case BQUEUE_CLEAN:
1701 				/*
1702 				 * nbp is NULL.
1703 				 */
1704 				break;
1705 			}
1706 		}
1707 
1708 		/*
1709 		 * Sanity Checks
1710 		 */
1711 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1712 
1713 		/*
1714 		 * Note: we no longer distinguish between VMIO and non-VMIO
1715 		 * buffers.
1716 		 */
1717 
1718 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1719 
1720 		/*
1721 		 * If we are defragging then we need a buffer with
1722 		 * b_kvasize != 0.  XXX this situation should no longer
1723 		 * occur, if defrag is non-zero the buffer's b_kvasize
1724 		 * should also be non-zero at this point.  XXX
1725 		 */
1726 		if (defrag && bp->b_kvasize == 0) {
1727 			kprintf("Warning: defrag empty buffer %p\n", bp);
1728 			continue;
1729 		}
1730 
1731 		/*
1732 		 * Start freeing the bp.  This is somewhat involved.  nbp
1733 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1734 		 * on the clean list must be disassociated from their
1735 		 * current vnode.  Buffers on the empty[kva] lists have
1736 		 * already been disassociated.
1737 		 */
1738 
1739 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1740 			kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1741 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1742 			goto restart;
1743 		}
1744 		if (bp->b_qindex != qindex) {
1745 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1746 			BUF_UNLOCK(bp);
1747 			goto restart;
1748 		}
1749 		bremfree(bp);
1750 
1751 		/*
1752 		 * Dependancies must be handled before we disassociate the
1753 		 * vnode.
1754 		 *
1755 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1756 		 * be immediately disassociated.  HAMMER then becomes
1757 		 * responsible for releasing the buffer.
1758 		 */
1759 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1760 			buf_deallocate(bp);
1761 			if (bp->b_flags & B_LOCKED) {
1762 				bqrelse(bp);
1763 				goto restart;
1764 			}
1765 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1766 		}
1767 
1768 		if (qindex == BQUEUE_CLEAN) {
1769 			if (bp->b_flags & B_VMIO) {
1770 				bp->b_flags &= ~B_ASYNC;
1771 				vfs_vmio_release(bp);
1772 			}
1773 			if (bp->b_vp)
1774 				brelvp(bp);
1775 		}
1776 
1777 		/*
1778 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1779 		 * the scan from this point on.
1780 		 *
1781 		 * Get the rest of the buffer freed up.  b_kva* is still
1782 		 * valid after this operation.
1783 		 */
1784 
1785 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1786 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1787 
1788 		/*
1789 		 * critical section protection is not required when
1790 		 * scrapping a buffer's contents because it is already
1791 		 * wired.
1792 		 */
1793 		if (bp->b_bufsize)
1794 			allocbuf(bp, 0);
1795 
1796 		bp->b_flags = B_BNOCLIP;
1797 		bp->b_cmd = BUF_CMD_DONE;
1798 		bp->b_vp = NULL;
1799 		bp->b_error = 0;
1800 		bp->b_resid = 0;
1801 		bp->b_bcount = 0;
1802 		bp->b_xio.xio_npages = 0;
1803 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1804 		reinitbufbio(bp);
1805 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1806 		buf_dep_init(bp);
1807 		if (blkflags & GETBLK_BHEAVY)
1808 			bp->b_flags |= B_HEAVY;
1809 
1810 		/*
1811 		 * If we are defragging then free the buffer.
1812 		 */
1813 		if (defrag) {
1814 			bp->b_flags |= B_INVAL;
1815 			bfreekva(bp);
1816 			brelse(bp);
1817 			defrag = 0;
1818 			goto restart;
1819 		}
1820 
1821 		/*
1822 		 * If we are overcomitted then recover the buffer and its
1823 		 * KVM space.  This occurs in rare situations when multiple
1824 		 * processes are blocked in getnewbuf() or allocbuf().
1825 		 */
1826 		if (bufspace >= hibufspace)
1827 			flushingbufs = 1;
1828 		if (flushingbufs && bp->b_kvasize != 0) {
1829 			bp->b_flags |= B_INVAL;
1830 			bfreekva(bp);
1831 			brelse(bp);
1832 			goto restart;
1833 		}
1834 		if (bufspace < lobufspace)
1835 			flushingbufs = 0;
1836 		break;
1837 	}
1838 
1839 	/*
1840 	 * If we exhausted our list, sleep as appropriate.  We may have to
1841 	 * wakeup various daemons and write out some dirty buffers.
1842 	 *
1843 	 * Generally we are sleeping due to insufficient buffer space.
1844 	 */
1845 
1846 	if (bp == NULL) {
1847 		int flags;
1848 		char *waitmsg;
1849 
1850 		if (defrag) {
1851 			flags = VFS_BIO_NEED_BUFSPACE;
1852 			waitmsg = "nbufkv";
1853 		} else if (bufspace >= hibufspace) {
1854 			waitmsg = "nbufbs";
1855 			flags = VFS_BIO_NEED_BUFSPACE;
1856 		} else {
1857 			waitmsg = "newbuf";
1858 			flags = VFS_BIO_NEED_ANY;
1859 		}
1860 
1861 		needsbuffer |= flags;
1862 		bd_speedup();	/* heeeelp */
1863 		while (needsbuffer & flags) {
1864 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
1865 				return (NULL);
1866 		}
1867 	} else {
1868 		/*
1869 		 * We finally have a valid bp.  We aren't quite out of the
1870 		 * woods, we still have to reserve kva space.  In order
1871 		 * to keep fragmentation sane we only allocate kva in
1872 		 * BKVASIZE chunks.
1873 		 */
1874 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1875 
1876 		if (maxsize != bp->b_kvasize) {
1877 			vm_offset_t addr = 0;
1878 			int count;
1879 
1880 			bfreekva(bp);
1881 
1882 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1883 			vm_map_lock(&buffer_map);
1884 
1885 			if (vm_map_findspace(&buffer_map,
1886 				    vm_map_min(&buffer_map), maxsize,
1887 				    maxsize, 0, &addr)) {
1888 				/*
1889 				 * Uh oh.  Buffer map is too fragmented.  We
1890 				 * must defragment the map.
1891 				 */
1892 				vm_map_unlock(&buffer_map);
1893 				vm_map_entry_release(count);
1894 				++bufdefragcnt;
1895 				defrag = 1;
1896 				bp->b_flags |= B_INVAL;
1897 				brelse(bp);
1898 				goto restart;
1899 			}
1900 			if (addr) {
1901 				vm_map_insert(&buffer_map, &count,
1902 					NULL, 0,
1903 					addr, addr + maxsize,
1904 					VM_MAPTYPE_NORMAL,
1905 					VM_PROT_ALL, VM_PROT_ALL,
1906 					MAP_NOFAULT);
1907 
1908 				bp->b_kvabase = (caddr_t) addr;
1909 				bp->b_kvasize = maxsize;
1910 				bufspace += bp->b_kvasize;
1911 				++bufreusecnt;
1912 			}
1913 			vm_map_unlock(&buffer_map);
1914 			vm_map_entry_release(count);
1915 		}
1916 		bp->b_data = bp->b_kvabase;
1917 	}
1918 	return(bp);
1919 }
1920 
1921 /*
1922  * This routine is called in an emergency to recover VM pages from the
1923  * buffer cache by cashing in clean buffers.  The idea is to recover
1924  * enough pages to be able to satisfy a stuck bio_page_alloc().
1925  */
1926 static int
1927 recoverbufpages(void)
1928 {
1929 	struct buf *bp;
1930 	int bytes = 0;
1931 
1932 	++recoverbufcalls;
1933 
1934 	while (bytes < MAXBSIZE) {
1935 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1936 		if (bp == NULL)
1937 			break;
1938 
1939 		/*
1940 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1941 		 * cycles through the queue twice before being selected.
1942 		 */
1943 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
1944 			bp->b_flags |= B_AGE;
1945 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1946 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
1947 					  bp, b_freelist);
1948 			continue;
1949 		}
1950 
1951 		/*
1952 		 * Sanity Checks
1953 		 */
1954 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
1955 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
1956 
1957 		/*
1958 		 * Start freeing the bp.  This is somewhat involved.
1959 		 *
1960 		 * Buffers on the clean list must be disassociated from
1961 		 * their current vnode
1962 		 */
1963 
1964 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1965 			kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
1966 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1967 			continue;
1968 		}
1969 		if (bp->b_qindex != BQUEUE_CLEAN) {
1970 			kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
1971 			BUF_UNLOCK(bp);
1972 			continue;
1973 		}
1974 		bremfree(bp);
1975 
1976 		/*
1977 		 * Dependancies must be handled before we disassociate the
1978 		 * vnode.
1979 		 *
1980 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1981 		 * be immediately disassociated.  HAMMER then becomes
1982 		 * responsible for releasing the buffer.
1983 		 */
1984 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1985 			buf_deallocate(bp);
1986 			if (bp->b_flags & B_LOCKED) {
1987 				bqrelse(bp);
1988 				continue;
1989 			}
1990 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1991 		}
1992 
1993 		bytes += bp->b_bufsize;
1994 
1995 		if (bp->b_flags & B_VMIO) {
1996 			bp->b_flags &= ~B_ASYNC;
1997 			bp->b_flags |= B_DIRECT;    /* try to free pages */
1998 			vfs_vmio_release(bp);
1999 		}
2000 		if (bp->b_vp)
2001 			brelvp(bp);
2002 
2003 		KKASSERT(bp->b_vp == NULL);
2004 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2005 
2006 		/*
2007 		 * critical section protection is not required when
2008 		 * scrapping a buffer's contents because it is already
2009 		 * wired.
2010 		 */
2011 		if (bp->b_bufsize)
2012 			allocbuf(bp, 0);
2013 
2014 		bp->b_flags = B_BNOCLIP;
2015 		bp->b_cmd = BUF_CMD_DONE;
2016 		bp->b_vp = NULL;
2017 		bp->b_error = 0;
2018 		bp->b_resid = 0;
2019 		bp->b_bcount = 0;
2020 		bp->b_xio.xio_npages = 0;
2021 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2022 		reinitbufbio(bp);
2023 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2024 		buf_dep_init(bp);
2025 		bp->b_flags |= B_INVAL;
2026 		/* bfreekva(bp); */
2027 		brelse(bp);
2028 	}
2029 	return(bytes);
2030 }
2031 
2032 /*
2033  * buf_daemon:
2034  *
2035  *	Buffer flushing daemon.  Buffers are normally flushed by the
2036  *	update daemon but if it cannot keep up this process starts to
2037  *	take the load in an attempt to prevent getnewbuf() from blocking.
2038  *
2039  *	Once a flush is initiated it does not stop until the number
2040  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2041  *	waiting at the mid-point.
2042  */
2043 
2044 static struct kproc_desc buf_kp = {
2045 	"bufdaemon",
2046 	buf_daemon,
2047 	&bufdaemon_td
2048 };
2049 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2050 	kproc_start, &buf_kp)
2051 
2052 static struct kproc_desc bufhw_kp = {
2053 	"bufdaemon_hw",
2054 	buf_daemon_hw,
2055 	&bufdaemonhw_td
2056 };
2057 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2058 	kproc_start, &bufhw_kp)
2059 
2060 static void
2061 buf_daemon(void)
2062 {
2063 	int limit;
2064 
2065 	/*
2066 	 * This process needs to be suspended prior to shutdown sync.
2067 	 */
2068 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2069 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2070 	curthread->td_flags |= TDF_SYSTHREAD;
2071 
2072 	/*
2073 	 * This process is allowed to take the buffer cache to the limit
2074 	 */
2075 	crit_enter();
2076 
2077 	for (;;) {
2078 		kproc_suspend_loop();
2079 
2080 		/*
2081 		 * Do the flush.  Limit the amount of in-transit I/O we
2082 		 * allow to build up, otherwise we would completely saturate
2083 		 * the I/O system.  Wakeup any waiting processes before we
2084 		 * normally would so they can run in parallel with our drain.
2085 		 *
2086 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2087 		 * but because we split the operation into two threads we
2088 		 * have to cut it in half for each thread.
2089 		 */
2090 		limit = lodirtybufspace / 2;
2091 		waitrunningbufspace(limit);
2092 		while (runningbufspace + dirtybufspace > limit ||
2093 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2094 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2095 				break;
2096 			waitrunningbufspace(limit);
2097 		}
2098 
2099 		/*
2100 		 * We reached our low water mark, reset the
2101 		 * request and sleep until we are needed again.
2102 		 * The sleep is just so the suspend code works.
2103 		 */
2104 		spin_lock_wr(&needsbuffer_spin);
2105 		if (bd_request == 0) {
2106 			msleep(&bd_request, &needsbuffer_spin, 0,
2107 			       "psleep", hz);
2108 		}
2109 		bd_request = 0;
2110 		spin_unlock_wr(&needsbuffer_spin);
2111 	}
2112 }
2113 
2114 static void
2115 buf_daemon_hw(void)
2116 {
2117 	int limit;
2118 
2119 	/*
2120 	 * This process needs to be suspended prior to shutdown sync.
2121 	 */
2122 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2123 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2124 	curthread->td_flags |= TDF_SYSTHREAD;
2125 
2126 	/*
2127 	 * This process is allowed to take the buffer cache to the limit
2128 	 */
2129 	crit_enter();
2130 
2131 	for (;;) {
2132 		kproc_suspend_loop();
2133 
2134 		/*
2135 		 * Do the flush.  Limit the amount of in-transit I/O we
2136 		 * allow to build up, otherwise we would completely saturate
2137 		 * the I/O system.  Wakeup any waiting processes before we
2138 		 * normally would so they can run in parallel with our drain.
2139 		 *
2140 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2141 		 * but because we split the operation into two threads we
2142 		 * have to cut it in half for each thread.
2143 		 */
2144 		limit = lodirtybufspace / 2;
2145 		waitrunningbufspace(limit);
2146 		while (runningbufspace + dirtybufspacehw > limit ||
2147 		       dirtybufcounthw >= nbuf / 2) {
2148 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2149 				break;
2150 			waitrunningbufspace(limit);
2151 		}
2152 
2153 		/*
2154 		 * We reached our low water mark, reset the
2155 		 * request and sleep until we are needed again.
2156 		 * The sleep is just so the suspend code works.
2157 		 */
2158 		spin_lock_wr(&needsbuffer_spin);
2159 		if (bd_request_hw == 0) {
2160 			msleep(&bd_request_hw, &needsbuffer_spin, 0,
2161 			       "psleep", hz);
2162 		}
2163 		bd_request_hw = 0;
2164 		spin_unlock_wr(&needsbuffer_spin);
2165 	}
2166 }
2167 
2168 /*
2169  * flushbufqueues:
2170  *
2171  *	Try to flush a buffer in the dirty queue.  We must be careful to
2172  *	free up B_INVAL buffers instead of write them, which NFS is
2173  *	particularly sensitive to.
2174  *
2175  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2176  *	that we really want to try to get the buffer out and reuse it
2177  *	due to the write load on the machine.
2178  */
2179 
2180 static int
2181 flushbufqueues(bufq_type_t q)
2182 {
2183 	struct buf *bp;
2184 	int r = 0;
2185 
2186 	bp = TAILQ_FIRST(&bufqueues[q]);
2187 	while (bp) {
2188 		KASSERT((bp->b_flags & B_DELWRI),
2189 			("unexpected clean buffer %p", bp));
2190 
2191 		if (bp->b_flags & B_DELWRI) {
2192 			if (bp->b_flags & B_INVAL) {
2193 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2194 					panic("flushbufqueues: locked buf");
2195 				bremfree(bp);
2196 				brelse(bp);
2197 				++r;
2198 				break;
2199 			}
2200 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2201 			    (bp->b_flags & B_DEFERRED) == 0 &&
2202 			    buf_countdeps(bp, 0)) {
2203 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2204 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2205 						  b_freelist);
2206 				bp->b_flags |= B_DEFERRED;
2207 				bp = TAILQ_FIRST(&bufqueues[q]);
2208 				continue;
2209 			}
2210 
2211 			/*
2212 			 * Only write it out if we can successfully lock
2213 			 * it.  If the buffer has a dependancy,
2214 			 * buf_checkwrite must also return 0 for us to
2215 			 * be able to initate the write.
2216 			 *
2217 			 * If the buffer is flagged B_ERROR it may be
2218 			 * requeued over and over again, we try to
2219 			 * avoid a live lock.
2220 			 */
2221 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2222 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2223 				    buf_checkwrite(bp)) {
2224 					bremfree(bp);
2225 					brelse(bp);
2226 				} else if (bp->b_flags & B_ERROR) {
2227 					tsleep(bp, 0, "bioer", 1);
2228 					bp->b_flags &= ~B_AGE;
2229 					vfs_bio_awrite(bp);
2230 				} else {
2231 					bp->b_flags |= B_AGE;
2232 					vfs_bio_awrite(bp);
2233 				}
2234 				++r;
2235 				break;
2236 			}
2237 		}
2238 		bp = TAILQ_NEXT(bp, b_freelist);
2239 	}
2240 	return (r);
2241 }
2242 
2243 /*
2244  * inmem:
2245  *
2246  *	Returns true if no I/O is needed to access the associated VM object.
2247  *	This is like findblk except it also hunts around in the VM system for
2248  *	the data.
2249  *
2250  *	Note that we ignore vm_page_free() races from interrupts against our
2251  *	lookup, since if the caller is not protected our return value will not
2252  *	be any more valid then otherwise once we exit the critical section.
2253  */
2254 int
2255 inmem(struct vnode *vp, off_t loffset)
2256 {
2257 	vm_object_t obj;
2258 	vm_offset_t toff, tinc, size;
2259 	vm_page_t m;
2260 
2261 	if (findblk(vp, loffset))
2262 		return 1;
2263 	if (vp->v_mount == NULL)
2264 		return 0;
2265 	if ((obj = vp->v_object) == NULL)
2266 		return 0;
2267 
2268 	size = PAGE_SIZE;
2269 	if (size > vp->v_mount->mnt_stat.f_iosize)
2270 		size = vp->v_mount->mnt_stat.f_iosize;
2271 
2272 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2273 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2274 		if (m == NULL)
2275 			return 0;
2276 		tinc = size;
2277 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2278 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2279 		if (vm_page_is_valid(m,
2280 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2281 			return 0;
2282 	}
2283 	return 1;
2284 }
2285 
2286 /*
2287  * vfs_setdirty:
2288  *
2289  *	Sets the dirty range for a buffer based on the status of the dirty
2290  *	bits in the pages comprising the buffer.
2291  *
2292  *	The range is limited to the size of the buffer.
2293  *
2294  *	This routine is primarily used by NFS, but is generalized for the
2295  *	B_VMIO case.
2296  */
2297 static void
2298 vfs_setdirty(struct buf *bp)
2299 {
2300 	int i;
2301 	vm_object_t object;
2302 
2303 	/*
2304 	 * Degenerate case - empty buffer
2305 	 */
2306 
2307 	if (bp->b_bufsize == 0)
2308 		return;
2309 
2310 	/*
2311 	 * We qualify the scan for modified pages on whether the
2312 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2313 	 * is not cleared simply by protecting pages off.
2314 	 */
2315 
2316 	if ((bp->b_flags & B_VMIO) == 0)
2317 		return;
2318 
2319 	object = bp->b_xio.xio_pages[0]->object;
2320 
2321 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2322 		kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2323 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2324 		kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2325 
2326 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2327 		vm_offset_t boffset;
2328 		vm_offset_t eoffset;
2329 
2330 		/*
2331 		 * test the pages to see if they have been modified directly
2332 		 * by users through the VM system.
2333 		 */
2334 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2335 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2336 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2337 		}
2338 
2339 		/*
2340 		 * Calculate the encompassing dirty range, boffset and eoffset,
2341 		 * (eoffset - boffset) bytes.
2342 		 */
2343 
2344 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2345 			if (bp->b_xio.xio_pages[i]->dirty)
2346 				break;
2347 		}
2348 		boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2349 
2350 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2351 			if (bp->b_xio.xio_pages[i]->dirty) {
2352 				break;
2353 			}
2354 		}
2355 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2356 
2357 		/*
2358 		 * Fit it to the buffer.
2359 		 */
2360 
2361 		if (eoffset > bp->b_bcount)
2362 			eoffset = bp->b_bcount;
2363 
2364 		/*
2365 		 * If we have a good dirty range, merge with the existing
2366 		 * dirty range.
2367 		 */
2368 
2369 		if (boffset < eoffset) {
2370 			if (bp->b_dirtyoff > boffset)
2371 				bp->b_dirtyoff = boffset;
2372 			if (bp->b_dirtyend < eoffset)
2373 				bp->b_dirtyend = eoffset;
2374 		}
2375 	}
2376 }
2377 
2378 /*
2379  * findblk:
2380  *
2381  *	Locate and return the specified buffer, or NULL if the buffer does
2382  *	not exist.  Do not attempt to lock the buffer or manipulate it in
2383  *	any way.  The caller must validate that the correct buffer has been
2384  *	obtain after locking it.
2385  */
2386 struct buf *
2387 findblk(struct vnode *vp, off_t loffset)
2388 {
2389 	struct buf *bp;
2390 
2391 	crit_enter();
2392 	bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2393 	crit_exit();
2394 	return(bp);
2395 }
2396 
2397 /*
2398  * getblk:
2399  *
2400  *	Get a block given a specified block and offset into a file/device.
2401  * 	B_INVAL may or may not be set on return.  The caller should clear
2402  *	B_INVAL prior to initiating a READ.
2403  *
2404  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2405  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2406  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2407  *	without doing any of those things the system will likely believe
2408  *	the buffer to be valid (especially if it is not B_VMIO), and the
2409  *	next getblk() will return the buffer with B_CACHE set.
2410  *
2411  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2412  *	an existing buffer.
2413  *
2414  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2415  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2416  *	and then cleared based on the backing VM.  If the previous buffer is
2417  *	non-0-sized but invalid, B_CACHE will be cleared.
2418  *
2419  *	If getblk() must create a new buffer, the new buffer is returned with
2420  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2421  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2422  *	backing VM.
2423  *
2424  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2425  *	B_CACHE bit is clear.
2426  *
2427  *	What this means, basically, is that the caller should use B_CACHE to
2428  *	determine whether the buffer is fully valid or not and should clear
2429  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2430  *	the buffer by loading its data area with something, the caller needs
2431  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2432  *	the caller should set B_CACHE ( as an optimization ), else the caller
2433  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2434  *	a write attempt or if it was a successfull read.  If the caller
2435  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2436  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2437  *
2438  *	getblk flags:
2439  *
2440  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2441  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2442  */
2443 struct buf *
2444 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2445 {
2446 	struct buf *bp;
2447 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2448 	int error;
2449 
2450 	if (size > MAXBSIZE)
2451 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2452 	if (vp->v_object == NULL)
2453 		panic("getblk: vnode %p has no object!", vp);
2454 
2455 	crit_enter();
2456 loop:
2457 	if ((bp = findblk(vp, loffset))) {
2458 		/*
2459 		 * The buffer was found in the cache, but we need to lock it.
2460 		 * Even with LK_NOWAIT the lockmgr may break our critical
2461 		 * section, so double-check the validity of the buffer
2462 		 * once the lock has been obtained.
2463 		 */
2464 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2465 			if (blkflags & GETBLK_NOWAIT) {
2466 				crit_exit();
2467 				return(NULL);
2468 			}
2469 			int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2470 			if (blkflags & GETBLK_PCATCH)
2471 				lkflags |= LK_PCATCH;
2472 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2473 			if (error) {
2474 				if (error == ENOLCK)
2475 					goto loop;
2476 				crit_exit();
2477 				return (NULL);
2478 			}
2479 		}
2480 
2481 		/*
2482 		 * Once the buffer has been locked, make sure we didn't race
2483 		 * a buffer recyclement.  Buffers that are no longer hashed
2484 		 * will have b_vp == NULL, so this takes care of that check
2485 		 * as well.
2486 		 */
2487 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2488 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2489 				"was recycled\n",
2490 				bp, vp, (long long)loffset);
2491 			BUF_UNLOCK(bp);
2492 			goto loop;
2493 		}
2494 
2495 		/*
2496 		 * If SZMATCH any pre-existing buffer must be of the requested
2497 		 * size or NULL is returned.  The caller absolutely does not
2498 		 * want getblk() to bwrite() the buffer on a size mismatch.
2499 		 */
2500 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2501 			BUF_UNLOCK(bp);
2502 			crit_exit();
2503 			return(NULL);
2504 		}
2505 
2506 		/*
2507 		 * All vnode-based buffers must be backed by a VM object.
2508 		 */
2509 		KKASSERT(bp->b_flags & B_VMIO);
2510 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2511 		bp->b_flags &= ~B_AGE;
2512 
2513 		/*
2514 		 * Make sure that B_INVAL buffers do not have a cached
2515 		 * block number translation.
2516 		 */
2517 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2518 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2519 				" did not have cleared bio_offset cache\n",
2520 				bp, vp, (long long)loffset);
2521 			clearbiocache(&bp->b_bio2);
2522 		}
2523 
2524 		/*
2525 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2526 		 * invalid.
2527 		 */
2528 		if (bp->b_flags & B_INVAL)
2529 			bp->b_flags &= ~B_CACHE;
2530 		bremfree(bp);
2531 
2532 		/*
2533 		 * Any size inconsistancy with a dirty buffer or a buffer
2534 		 * with a softupdates dependancy must be resolved.  Resizing
2535 		 * the buffer in such circumstances can lead to problems.
2536 		 */
2537 		if (size != bp->b_bcount) {
2538 			if (bp->b_flags & B_DELWRI) {
2539 				bp->b_flags |= B_NOCACHE;
2540 				bwrite(bp);
2541 			} else if (LIST_FIRST(&bp->b_dep)) {
2542 				bp->b_flags |= B_NOCACHE;
2543 				bwrite(bp);
2544 			} else {
2545 				bp->b_flags |= B_RELBUF;
2546 				brelse(bp);
2547 			}
2548 			goto loop;
2549 		}
2550 		KKASSERT(size <= bp->b_kvasize);
2551 		KASSERT(bp->b_loffset != NOOFFSET,
2552 			("getblk: no buffer offset"));
2553 
2554 		/*
2555 		 * A buffer with B_DELWRI set and B_CACHE clear must
2556 		 * be committed before we can return the buffer in
2557 		 * order to prevent the caller from issuing a read
2558 		 * ( due to B_CACHE not being set ) and overwriting
2559 		 * it.
2560 		 *
2561 		 * Most callers, including NFS and FFS, need this to
2562 		 * operate properly either because they assume they
2563 		 * can issue a read if B_CACHE is not set, or because
2564 		 * ( for example ) an uncached B_DELWRI might loop due
2565 		 * to softupdates re-dirtying the buffer.  In the latter
2566 		 * case, B_CACHE is set after the first write completes,
2567 		 * preventing further loops.
2568 		 *
2569 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2570 		 * above while extending the buffer, we cannot allow the
2571 		 * buffer to remain with B_CACHE set after the write
2572 		 * completes or it will represent a corrupt state.  To
2573 		 * deal with this we set B_NOCACHE to scrap the buffer
2574 		 * after the write.
2575 		 *
2576 		 * We might be able to do something fancy, like setting
2577 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2578 		 * so the below call doesn't set B_CACHE, but that gets real
2579 		 * confusing.  This is much easier.
2580 		 */
2581 
2582 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2583 			bp->b_flags |= B_NOCACHE;
2584 			bwrite(bp);
2585 			goto loop;
2586 		}
2587 		crit_exit();
2588 	} else {
2589 		/*
2590 		 * Buffer is not in-core, create new buffer.  The buffer
2591 		 * returned by getnewbuf() is locked.  Note that the returned
2592 		 * buffer is also considered valid (not marked B_INVAL).
2593 		 *
2594 		 * Calculating the offset for the I/O requires figuring out
2595 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2596 		 * the mount's f_iosize otherwise.  If the vnode does not
2597 		 * have an associated mount we assume that the passed size is
2598 		 * the block size.
2599 		 *
2600 		 * Note that vn_isdisk() cannot be used here since it may
2601 		 * return a failure for numerous reasons.   Note that the
2602 		 * buffer size may be larger then the block size (the caller
2603 		 * will use block numbers with the proper multiple).  Beware
2604 		 * of using any v_* fields which are part of unions.  In
2605 		 * particular, in DragonFly the mount point overloading
2606 		 * mechanism uses the namecache only and the underlying
2607 		 * directory vnode is not a special case.
2608 		 */
2609 		int bsize, maxsize;
2610 
2611 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2612 			bsize = DEV_BSIZE;
2613 		else if (vp->v_mount)
2614 			bsize = vp->v_mount->mnt_stat.f_iosize;
2615 		else
2616 			bsize = size;
2617 
2618 		maxsize = size + (loffset & PAGE_MASK);
2619 		maxsize = imax(maxsize, bsize);
2620 
2621 		if ((bp = getnewbuf(blkflags, slptimeo, size, maxsize)) == NULL) {
2622 			if (slpflags || slptimeo) {
2623 				crit_exit();
2624 				return NULL;
2625 			}
2626 			goto loop;
2627 		}
2628 
2629 		/*
2630 		 * This code is used to make sure that a buffer is not
2631 		 * created while the getnewbuf routine is blocked.
2632 		 * This can be a problem whether the vnode is locked or not.
2633 		 * If the buffer is created out from under us, we have to
2634 		 * throw away the one we just created.  There is no window
2635 		 * race because we are safely running in a critical section
2636 		 * from the point of the duplicate buffer creation through
2637 		 * to here, and we've locked the buffer.
2638 		 */
2639 		if (findblk(vp, loffset)) {
2640 			bp->b_flags |= B_INVAL;
2641 			brelse(bp);
2642 			goto loop;
2643 		}
2644 
2645 		/*
2646 		 * Insert the buffer into the hash, so that it can
2647 		 * be found by findblk().
2648 		 *
2649 		 * Make sure the translation layer has been cleared.
2650 		 */
2651 		bp->b_loffset = loffset;
2652 		bp->b_bio2.bio_offset = NOOFFSET;
2653 		/* bp->b_bio2.bio_next = NULL; */
2654 
2655 		bgetvp(vp, bp);
2656 
2657 		/*
2658 		 * All vnode-based buffers must be backed by a VM object.
2659 		 */
2660 		KKASSERT(vp->v_object != NULL);
2661 		bp->b_flags |= B_VMIO;
2662 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2663 
2664 		allocbuf(bp, size);
2665 
2666 		crit_exit();
2667 	}
2668 	return (bp);
2669 }
2670 
2671 /*
2672  * regetblk(bp)
2673  *
2674  * Reacquire a buffer that was previously released to the locked queue,
2675  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2676  * set B_LOCKED (which handles the acquisition race).
2677  *
2678  * To this end, either B_LOCKED must be set or the dependancy list must be
2679  * non-empty.
2680  */
2681 void
2682 regetblk(struct buf *bp)
2683 {
2684 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2685 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2686 	crit_enter();
2687 	bremfree(bp);
2688 	crit_exit();
2689 }
2690 
2691 /*
2692  * geteblk:
2693  *
2694  *	Get an empty, disassociated buffer of given size.  The buffer is
2695  *	initially set to B_INVAL.
2696  *
2697  *	critical section protection is not required for the allocbuf()
2698  *	call because races are impossible here.
2699  */
2700 struct buf *
2701 geteblk(int size)
2702 {
2703 	struct buf *bp;
2704 	int maxsize;
2705 
2706 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2707 
2708 	crit_enter();
2709 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2710 		;
2711 	crit_exit();
2712 	allocbuf(bp, size);
2713 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2714 	return (bp);
2715 }
2716 
2717 
2718 /*
2719  * allocbuf:
2720  *
2721  *	This code constitutes the buffer memory from either anonymous system
2722  *	memory (in the case of non-VMIO operations) or from an associated
2723  *	VM object (in the case of VMIO operations).  This code is able to
2724  *	resize a buffer up or down.
2725  *
2726  *	Note that this code is tricky, and has many complications to resolve
2727  *	deadlock or inconsistant data situations.  Tread lightly!!!
2728  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2729  *	the caller.  Calling this code willy nilly can result in the loss of data.
2730  *
2731  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2732  *	B_CACHE for the non-VMIO case.
2733  *
2734  *	This routine does not need to be called from a critical section but you
2735  *	must own the buffer.
2736  */
2737 int
2738 allocbuf(struct buf *bp, int size)
2739 {
2740 	int newbsize, mbsize;
2741 	int i;
2742 
2743 	if (BUF_REFCNT(bp) == 0)
2744 		panic("allocbuf: buffer not busy");
2745 
2746 	if (bp->b_kvasize < size)
2747 		panic("allocbuf: buffer too small");
2748 
2749 	if ((bp->b_flags & B_VMIO) == 0) {
2750 		caddr_t origbuf;
2751 		int origbufsize;
2752 		/*
2753 		 * Just get anonymous memory from the kernel.  Don't
2754 		 * mess with B_CACHE.
2755 		 */
2756 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2757 		if (bp->b_flags & B_MALLOC)
2758 			newbsize = mbsize;
2759 		else
2760 			newbsize = round_page(size);
2761 
2762 		if (newbsize < bp->b_bufsize) {
2763 			/*
2764 			 * Malloced buffers are not shrunk
2765 			 */
2766 			if (bp->b_flags & B_MALLOC) {
2767 				if (newbsize) {
2768 					bp->b_bcount = size;
2769 				} else {
2770 					kfree(bp->b_data, M_BIOBUF);
2771 					if (bp->b_bufsize) {
2772 						bufmallocspace -= bp->b_bufsize;
2773 						bufspacewakeup();
2774 						bp->b_bufsize = 0;
2775 					}
2776 					bp->b_data = bp->b_kvabase;
2777 					bp->b_bcount = 0;
2778 					bp->b_flags &= ~B_MALLOC;
2779 				}
2780 				return 1;
2781 			}
2782 			vm_hold_free_pages(
2783 			    bp,
2784 			    (vm_offset_t) bp->b_data + newbsize,
2785 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2786 		} else if (newbsize > bp->b_bufsize) {
2787 			/*
2788 			 * We only use malloced memory on the first allocation.
2789 			 * and revert to page-allocated memory when the buffer
2790 			 * grows.
2791 			 */
2792 			if ((bufmallocspace < maxbufmallocspace) &&
2793 				(bp->b_bufsize == 0) &&
2794 				(mbsize <= PAGE_SIZE/2)) {
2795 
2796 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
2797 				bp->b_bufsize = mbsize;
2798 				bp->b_bcount = size;
2799 				bp->b_flags |= B_MALLOC;
2800 				bufmallocspace += mbsize;
2801 				return 1;
2802 			}
2803 			origbuf = NULL;
2804 			origbufsize = 0;
2805 			/*
2806 			 * If the buffer is growing on its other-than-first
2807 			 * allocation, then we revert to the page-allocation
2808 			 * scheme.
2809 			 */
2810 			if (bp->b_flags & B_MALLOC) {
2811 				origbuf = bp->b_data;
2812 				origbufsize = bp->b_bufsize;
2813 				bp->b_data = bp->b_kvabase;
2814 				if (bp->b_bufsize) {
2815 					bufmallocspace -= bp->b_bufsize;
2816 					bufspacewakeup();
2817 					bp->b_bufsize = 0;
2818 				}
2819 				bp->b_flags &= ~B_MALLOC;
2820 				newbsize = round_page(newbsize);
2821 			}
2822 			vm_hold_load_pages(
2823 			    bp,
2824 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2825 			    (vm_offset_t) bp->b_data + newbsize);
2826 			if (origbuf) {
2827 				bcopy(origbuf, bp->b_data, origbufsize);
2828 				kfree(origbuf, M_BIOBUF);
2829 			}
2830 		}
2831 	} else {
2832 		vm_page_t m;
2833 		int desiredpages;
2834 
2835 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2836 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
2837 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
2838 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
2839 
2840 		if (bp->b_flags & B_MALLOC)
2841 			panic("allocbuf: VMIO buffer can't be malloced");
2842 		/*
2843 		 * Set B_CACHE initially if buffer is 0 length or will become
2844 		 * 0-length.
2845 		 */
2846 		if (size == 0 || bp->b_bufsize == 0)
2847 			bp->b_flags |= B_CACHE;
2848 
2849 		if (newbsize < bp->b_bufsize) {
2850 			/*
2851 			 * DEV_BSIZE aligned new buffer size is less then the
2852 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2853 			 * if we have to remove any pages.
2854 			 */
2855 			if (desiredpages < bp->b_xio.xio_npages) {
2856 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2857 					/*
2858 					 * the page is not freed here -- it
2859 					 * is the responsibility of
2860 					 * vnode_pager_setsize
2861 					 */
2862 					m = bp->b_xio.xio_pages[i];
2863 					KASSERT(m != bogus_page,
2864 					    ("allocbuf: bogus page found"));
2865 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2866 						;
2867 
2868 					bp->b_xio.xio_pages[i] = NULL;
2869 					vm_page_unwire(m, 0);
2870 				}
2871 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2872 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2873 				bp->b_xio.xio_npages = desiredpages;
2874 			}
2875 		} else if (size > bp->b_bcount) {
2876 			/*
2877 			 * We are growing the buffer, possibly in a
2878 			 * byte-granular fashion.
2879 			 */
2880 			struct vnode *vp;
2881 			vm_object_t obj;
2882 			vm_offset_t toff;
2883 			vm_offset_t tinc;
2884 
2885 			/*
2886 			 * Step 1, bring in the VM pages from the object,
2887 			 * allocating them if necessary.  We must clear
2888 			 * B_CACHE if these pages are not valid for the
2889 			 * range covered by the buffer.
2890 			 *
2891 			 * critical section protection is required to protect
2892 			 * against interrupts unbusying and freeing pages
2893 			 * between our vm_page_lookup() and our
2894 			 * busycheck/wiring call.
2895 			 */
2896 			vp = bp->b_vp;
2897 			obj = vp->v_object;
2898 
2899 			crit_enter();
2900 			while (bp->b_xio.xio_npages < desiredpages) {
2901 				vm_page_t m;
2902 				vm_pindex_t pi;
2903 
2904 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2905 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2906 					/*
2907 					 * note: must allocate system pages
2908 					 * since blocking here could intefere
2909 					 * with paging I/O, no matter which
2910 					 * process we are.
2911 					 */
2912 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
2913 					if (m) {
2914 						vm_page_wire(m);
2915 						vm_page_wakeup(m);
2916 						bp->b_flags &= ~B_CACHE;
2917 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2918 						++bp->b_xio.xio_npages;
2919 					}
2920 					continue;
2921 				}
2922 
2923 				/*
2924 				 * We found a page.  If we have to sleep on it,
2925 				 * retry because it might have gotten freed out
2926 				 * from under us.
2927 				 *
2928 				 * We can only test PG_BUSY here.  Blocking on
2929 				 * m->busy might lead to a deadlock:
2930 				 *
2931 				 *  vm_fault->getpages->cluster_read->allocbuf
2932 				 *
2933 				 */
2934 
2935 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2936 					continue;
2937 				vm_page_flag_clear(m, PG_ZERO);
2938 				vm_page_wire(m);
2939 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2940 				++bp->b_xio.xio_npages;
2941 			}
2942 			crit_exit();
2943 
2944 			/*
2945 			 * Step 2.  We've loaded the pages into the buffer,
2946 			 * we have to figure out if we can still have B_CACHE
2947 			 * set.  Note that B_CACHE is set according to the
2948 			 * byte-granular range ( bcount and size ), not the
2949 			 * aligned range ( newbsize ).
2950 			 *
2951 			 * The VM test is against m->valid, which is DEV_BSIZE
2952 			 * aligned.  Needless to say, the validity of the data
2953 			 * needs to also be DEV_BSIZE aligned.  Note that this
2954 			 * fails with NFS if the server or some other client
2955 			 * extends the file's EOF.  If our buffer is resized,
2956 			 * B_CACHE may remain set! XXX
2957 			 */
2958 
2959 			toff = bp->b_bcount;
2960 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2961 
2962 			while ((bp->b_flags & B_CACHE) && toff < size) {
2963 				vm_pindex_t pi;
2964 
2965 				if (tinc > (size - toff))
2966 					tinc = size - toff;
2967 
2968 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2969 				    PAGE_SHIFT;
2970 
2971 				vfs_buf_test_cache(
2972 				    bp,
2973 				    bp->b_loffset,
2974 				    toff,
2975 				    tinc,
2976 				    bp->b_xio.xio_pages[pi]
2977 				);
2978 				toff += tinc;
2979 				tinc = PAGE_SIZE;
2980 			}
2981 
2982 			/*
2983 			 * Step 3, fixup the KVM pmap.  Remember that
2984 			 * bp->b_data is relative to bp->b_loffset, but
2985 			 * bp->b_loffset may be offset into the first page.
2986 			 */
2987 
2988 			bp->b_data = (caddr_t)
2989 			    trunc_page((vm_offset_t)bp->b_data);
2990 			pmap_qenter(
2991 			    (vm_offset_t)bp->b_data,
2992 			    bp->b_xio.xio_pages,
2993 			    bp->b_xio.xio_npages
2994 			);
2995 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2996 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2997 		}
2998 	}
2999 
3000 	/* adjust space use on already-dirty buffer */
3001 	if (bp->b_flags & B_DELWRI) {
3002 		dirtybufspace += newbsize - bp->b_bufsize;
3003 		if (bp->b_flags & B_HEAVY)
3004 			dirtybufspacehw += newbsize - bp->b_bufsize;
3005 	}
3006 	if (newbsize < bp->b_bufsize)
3007 		bufspacewakeup();
3008 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3009 	bp->b_bcount = size;		/* requested buffer size	*/
3010 	return 1;
3011 }
3012 
3013 /*
3014  * biowait:
3015  *
3016  *	Wait for buffer I/O completion, returning error status.  The buffer
3017  *	is left locked on return.  B_EINTR is converted into an EINTR error
3018  *	and cleared.
3019  *
3020  *	NOTE!  The original b_cmd is lost on return, since b_cmd will be
3021  *	set to BUF_CMD_DONE.
3022  */
3023 int
3024 biowait(struct buf *bp)
3025 {
3026 	crit_enter();
3027 	while (bp->b_cmd != BUF_CMD_DONE) {
3028 		if (bp->b_cmd == BUF_CMD_READ)
3029 			tsleep(bp, 0, "biord", 0);
3030 		else
3031 			tsleep(bp, 0, "biowr", 0);
3032 	}
3033 	crit_exit();
3034 	if (bp->b_flags & B_EINTR) {
3035 		bp->b_flags &= ~B_EINTR;
3036 		return (EINTR);
3037 	}
3038 	if (bp->b_flags & B_ERROR) {
3039 		return (bp->b_error ? bp->b_error : EIO);
3040 	} else {
3041 		return (0);
3042 	}
3043 }
3044 
3045 /*
3046  * This associates a tracking count with an I/O.  vn_strategy() and
3047  * dev_dstrategy() do this automatically but there are a few cases
3048  * where a vnode or device layer is bypassed when a block translation
3049  * is cached.  In such cases bio_start_transaction() may be called on
3050  * the bypassed layers so the system gets an I/O in progress indication
3051  * for those higher layers.
3052  */
3053 void
3054 bio_start_transaction(struct bio *bio, struct bio_track *track)
3055 {
3056 	bio->bio_track = track;
3057 	atomic_add_int(&track->bk_active, 1);
3058 }
3059 
3060 /*
3061  * Initiate I/O on a vnode.
3062  */
3063 void
3064 vn_strategy(struct vnode *vp, struct bio *bio)
3065 {
3066 	struct bio_track *track;
3067 
3068 	KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
3069         if (bio->bio_buf->b_cmd == BUF_CMD_READ)
3070                 track = &vp->v_track_read;
3071         else
3072                 track = &vp->v_track_write;
3073 	bio->bio_track = track;
3074 	atomic_add_int(&track->bk_active, 1);
3075         vop_strategy(*vp->v_ops, vp, bio);
3076 }
3077 
3078 
3079 /*
3080  * biodone:
3081  *
3082  *	Finish I/O on a buffer, optionally calling a completion function.
3083  *	This is usually called from an interrupt so process blocking is
3084  *	not allowed.
3085  *
3086  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3087  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3088  *	assuming B_INVAL is clear.
3089  *
3090  *	For the VMIO case, we set B_CACHE if the op was a read and no
3091  *	read error occured, or if the op was a write.  B_CACHE is never
3092  *	set if the buffer is invalid or otherwise uncacheable.
3093  *
3094  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3095  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3096  *	in the biodone routine.
3097  */
3098 void
3099 biodone(struct bio *bio)
3100 {
3101 	struct buf *bp = bio->bio_buf;
3102 	buf_cmd_t cmd;
3103 
3104 	crit_enter();
3105 
3106 	KASSERT(BUF_REFCNTNB(bp) > 0,
3107 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3108 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3109 		("biodone: bp %p already done!", bp));
3110 
3111 	runningbufwakeup(bp);
3112 
3113 	/*
3114 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3115 	 */
3116 	while (bio) {
3117 		biodone_t *done_func;
3118 		struct bio_track *track;
3119 
3120 		/*
3121 		 * BIO tracking.  Most but not all BIOs are tracked.
3122 		 */
3123 		if ((track = bio->bio_track) != NULL) {
3124 			atomic_subtract_int(&track->bk_active, 1);
3125 			if (track->bk_active < 0) {
3126 				panic("biodone: bad active count bio %p\n",
3127 				      bio);
3128 			}
3129 			if (track->bk_waitflag) {
3130 				track->bk_waitflag = 0;
3131 				wakeup(track);
3132 			}
3133 			bio->bio_track = NULL;
3134 		}
3135 
3136 		/*
3137 		 * A bio_done function terminates the loop.  The function
3138 		 * will be responsible for any further chaining and/or
3139 		 * buffer management.
3140 		 *
3141 		 * WARNING!  The done function can deallocate the buffer!
3142 		 */
3143 		if ((done_func = bio->bio_done) != NULL) {
3144 			bio->bio_done = NULL;
3145 			done_func(bio);
3146 			crit_exit();
3147 			return;
3148 		}
3149 		bio = bio->bio_prev;
3150 	}
3151 
3152 	cmd = bp->b_cmd;
3153 	bp->b_cmd = BUF_CMD_DONE;
3154 
3155 	/*
3156 	 * Only reads and writes are processed past this point.
3157 	 */
3158 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3159 		if (cmd == BUF_CMD_FREEBLKS)
3160 			bp->b_flags |= B_NOCACHE;
3161 		brelse(bp);
3162 		crit_exit();
3163 		return;
3164 	}
3165 
3166 	/*
3167 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3168 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3169 	 */
3170 	if (LIST_FIRST(&bp->b_dep) != NULL)
3171 		buf_complete(bp);
3172 
3173 	/*
3174 	 * A failed write must re-dirty the buffer unless B_INVAL
3175 	 * was set.
3176 	 */
3177 	if (cmd == BUF_CMD_WRITE &&
3178 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3179 		bp->b_flags &= ~B_NOCACHE;
3180 		bdirty(bp);
3181 	}
3182 
3183 
3184 	if (bp->b_flags & B_VMIO) {
3185 		int i;
3186 		vm_ooffset_t foff;
3187 		vm_page_t m;
3188 		vm_object_t obj;
3189 		int iosize;
3190 		struct vnode *vp = bp->b_vp;
3191 
3192 		obj = vp->v_object;
3193 
3194 #if defined(VFS_BIO_DEBUG)
3195 		if (vp->v_auxrefs == 0)
3196 			panic("biodone: zero vnode hold count");
3197 		if ((vp->v_flag & VOBJBUF) == 0)
3198 			panic("biodone: vnode is not setup for merged cache");
3199 #endif
3200 
3201 		foff = bp->b_loffset;
3202 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3203 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3204 
3205 #if defined(VFS_BIO_DEBUG)
3206 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3207 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3208 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3209 		}
3210 #endif
3211 
3212 		/*
3213 		 * Set B_CACHE if the op was a normal read and no error
3214 		 * occured.  B_CACHE is set for writes in the b*write()
3215 		 * routines.
3216 		 */
3217 		iosize = bp->b_bcount - bp->b_resid;
3218 		if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3219 			bp->b_flags |= B_CACHE;
3220 		}
3221 
3222 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3223 			int bogusflag = 0;
3224 			int resid;
3225 
3226 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3227 			if (resid > iosize)
3228 				resid = iosize;
3229 
3230 			/*
3231 			 * cleanup bogus pages, restoring the originals.  Since
3232 			 * the originals should still be wired, we don't have
3233 			 * to worry about interrupt/freeing races destroying
3234 			 * the VM object association.
3235 			 */
3236 			m = bp->b_xio.xio_pages[i];
3237 			if (m == bogus_page) {
3238 				bogusflag = 1;
3239 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3240 				if (m == NULL)
3241 					panic("biodone: page disappeared");
3242 				bp->b_xio.xio_pages[i] = m;
3243 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3244 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3245 			}
3246 #if defined(VFS_BIO_DEBUG)
3247 			if (OFF_TO_IDX(foff) != m->pindex) {
3248 				kprintf(
3249 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
3250 				    (unsigned long)foff, m->pindex);
3251 			}
3252 #endif
3253 
3254 			/*
3255 			 * In the write case, the valid and clean bits are
3256 			 * already changed correctly ( see bdwrite() ), so we
3257 			 * only need to do this here in the read case.
3258 			 */
3259 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3260 				vfs_page_set_valid(bp, foff, i, m);
3261 			}
3262 			vm_page_flag_clear(m, PG_ZERO);
3263 
3264 			/*
3265 			 * when debugging new filesystems or buffer I/O methods, this
3266 			 * is the most common error that pops up.  if you see this, you
3267 			 * have not set the page busy flag correctly!!!
3268 			 */
3269 			if (m->busy == 0) {
3270 				kprintf("biodone: page busy < 0, "
3271 				    "pindex: %d, foff: 0x(%x,%x), "
3272 				    "resid: %d, index: %d\n",
3273 				    (int) m->pindex, (int)(foff >> 32),
3274 						(int) foff & 0xffffffff, resid, i);
3275 				if (!vn_isdisk(vp, NULL))
3276 					kprintf(" iosize: %ld, loffset: %lld, "
3277 						"flags: 0x%08x, npages: %d\n",
3278 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3279 					    (long long)bp->b_loffset,
3280 					    bp->b_flags, bp->b_xio.xio_npages);
3281 				else
3282 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3283 					    (long long)bp->b_loffset,
3284 					    bp->b_flags, bp->b_xio.xio_npages);
3285 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3286 				    m->valid, m->dirty, m->wire_count);
3287 				panic("biodone: page busy < 0");
3288 			}
3289 			vm_page_io_finish(m);
3290 			vm_object_pip_subtract(obj, 1);
3291 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3292 			iosize -= resid;
3293 		}
3294 		if (obj)
3295 			vm_object_pip_wakeupn(obj, 0);
3296 	}
3297 
3298 	/*
3299 	 * For asynchronous completions, release the buffer now. The brelse
3300 	 * will do a wakeup there if necessary - so no need to do a wakeup
3301 	 * here in the async case. The sync case always needs to do a wakeup.
3302 	 */
3303 
3304 	if (bp->b_flags & B_ASYNC) {
3305 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3306 			brelse(bp);
3307 		else
3308 			bqrelse(bp);
3309 	} else {
3310 		wakeup(bp);
3311 	}
3312 	crit_exit();
3313 }
3314 
3315 /*
3316  * vfs_unbusy_pages:
3317  *
3318  *	This routine is called in lieu of iodone in the case of
3319  *	incomplete I/O.  This keeps the busy status for pages
3320  *	consistant.
3321  */
3322 void
3323 vfs_unbusy_pages(struct buf *bp)
3324 {
3325 	int i;
3326 
3327 	runningbufwakeup(bp);
3328 	if (bp->b_flags & B_VMIO) {
3329 		struct vnode *vp = bp->b_vp;
3330 		vm_object_t obj;
3331 
3332 		obj = vp->v_object;
3333 
3334 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3335 			vm_page_t m = bp->b_xio.xio_pages[i];
3336 
3337 			/*
3338 			 * When restoring bogus changes the original pages
3339 			 * should still be wired, so we are in no danger of
3340 			 * losing the object association and do not need
3341 			 * critical section protection particularly.
3342 			 */
3343 			if (m == bogus_page) {
3344 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3345 				if (!m) {
3346 					panic("vfs_unbusy_pages: page missing");
3347 				}
3348 				bp->b_xio.xio_pages[i] = m;
3349 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3350 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3351 			}
3352 			vm_object_pip_subtract(obj, 1);
3353 			vm_page_flag_clear(m, PG_ZERO);
3354 			vm_page_io_finish(m);
3355 		}
3356 		vm_object_pip_wakeupn(obj, 0);
3357 	}
3358 }
3359 
3360 /*
3361  * vfs_page_set_valid:
3362  *
3363  *	Set the valid bits in a page based on the supplied offset.   The
3364  *	range is restricted to the buffer's size.
3365  *
3366  *	This routine is typically called after a read completes.
3367  */
3368 static void
3369 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3370 {
3371 	vm_ooffset_t soff, eoff;
3372 
3373 	/*
3374 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3375 	 * page boundry or cross the end of the buffer.  The end of the
3376 	 * buffer, in this case, is our file EOF, not the allocation size
3377 	 * of the buffer.
3378 	 */
3379 	soff = off;
3380 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3381 	if (eoff > bp->b_loffset + bp->b_bcount)
3382 		eoff = bp->b_loffset + bp->b_bcount;
3383 
3384 	/*
3385 	 * Set valid range.  This is typically the entire buffer and thus the
3386 	 * entire page.
3387 	 */
3388 	if (eoff > soff) {
3389 		vm_page_set_validclean(
3390 		    m,
3391 		   (vm_offset_t) (soff & PAGE_MASK),
3392 		   (vm_offset_t) (eoff - soff)
3393 		);
3394 	}
3395 }
3396 
3397 /*
3398  * vfs_busy_pages:
3399  *
3400  *	This routine is called before a device strategy routine.
3401  *	It is used to tell the VM system that paging I/O is in
3402  *	progress, and treat the pages associated with the buffer
3403  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3404  *	flag is handled to make sure that the object doesn't become
3405  *	inconsistant.
3406  *
3407  *	Since I/O has not been initiated yet, certain buffer flags
3408  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3409  *	and should be ignored.
3410  */
3411 void
3412 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3413 {
3414 	int i, bogus;
3415 	struct lwp *lp = curthread->td_lwp;
3416 
3417 	/*
3418 	 * The buffer's I/O command must already be set.  If reading,
3419 	 * B_CACHE must be 0 (double check against callers only doing
3420 	 * I/O when B_CACHE is 0).
3421 	 */
3422 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3423 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3424 
3425 	if (bp->b_flags & B_VMIO) {
3426 		vm_object_t obj;
3427 		vm_ooffset_t foff;
3428 
3429 		obj = vp->v_object;
3430 		foff = bp->b_loffset;
3431 		KASSERT(bp->b_loffset != NOOFFSET,
3432 			("vfs_busy_pages: no buffer offset"));
3433 		vfs_setdirty(bp);
3434 
3435 		/*
3436 		 * Loop until none of the pages are busy.
3437 		 */
3438 retry:
3439 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3440 			vm_page_t m = bp->b_xio.xio_pages[i];
3441 
3442 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3443 				goto retry;
3444 		}
3445 
3446 		/*
3447 		 * Setup for I/O, soft-busy the page right now because
3448 		 * the next loop may block.
3449 		 */
3450 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3451 			vm_page_t m = bp->b_xio.xio_pages[i];
3452 
3453 			vm_page_flag_clear(m, PG_ZERO);
3454 			if ((bp->b_flags & B_CLUSTER) == 0) {
3455 				vm_object_pip_add(obj, 1);
3456 				vm_page_io_start(m);
3457 			}
3458 		}
3459 
3460 		/*
3461 		 * Adjust protections for I/O and do bogus-page mapping.
3462 		 * Assume that vm_page_protect() can block (it can block
3463 		 * if VM_PROT_NONE, don't take any chances regardless).
3464 		 */
3465 		bogus = 0;
3466 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3467 			vm_page_t m = bp->b_xio.xio_pages[i];
3468 
3469 			/*
3470 			 * When readying a vnode-backed buffer for a write
3471 			 * we must zero-fill any invalid portions of the
3472 			 * backing VM pages.
3473 			 *
3474 			 * When readying a vnode-backed buffer for a read
3475 			 * we must replace any dirty pages with a bogus
3476 			 * page so we do not destroy dirty data when
3477 			 * filling in gaps.  Dirty pages might not
3478 			 * necessarily be marked dirty yet, so use m->valid
3479 			 * as a reasonable test.
3480 			 *
3481 			 * Bogus page replacement is, uh, bogus.  We need
3482 			 * to find a better way.
3483 			 */
3484 			if (bp->b_cmd == BUF_CMD_WRITE) {
3485 				vm_page_protect(m, VM_PROT_READ);
3486 				vfs_page_set_valid(bp, foff, i, m);
3487 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3488 				bp->b_xio.xio_pages[i] = bogus_page;
3489 				bogus++;
3490 			} else {
3491 				vm_page_protect(m, VM_PROT_NONE);
3492 			}
3493 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3494 		}
3495 		if (bogus)
3496 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3497 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3498 	}
3499 
3500 	/*
3501 	 * This is the easiest place to put the process accounting for the I/O
3502 	 * for now.
3503 	 */
3504 	if (lp != NULL) {
3505 		if (bp->b_cmd == BUF_CMD_READ)
3506 			lp->lwp_ru.ru_inblock++;
3507 		else
3508 			lp->lwp_ru.ru_oublock++;
3509 	}
3510 }
3511 
3512 /*
3513  * vfs_clean_pages:
3514  *
3515  *	Tell the VM system that the pages associated with this buffer
3516  *	are clean.  This is used for delayed writes where the data is
3517  *	going to go to disk eventually without additional VM intevention.
3518  *
3519  *	Note that while we only really need to clean through to b_bcount, we
3520  *	just go ahead and clean through to b_bufsize.
3521  */
3522 static void
3523 vfs_clean_pages(struct buf *bp)
3524 {
3525 	int i;
3526 
3527 	if (bp->b_flags & B_VMIO) {
3528 		vm_ooffset_t foff;
3529 
3530 		foff = bp->b_loffset;
3531 		KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3532 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3533 			vm_page_t m = bp->b_xio.xio_pages[i];
3534 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3535 
3536 			vfs_page_set_valid(bp, foff, i, m);
3537 			foff = noff;
3538 		}
3539 	}
3540 }
3541 
3542 /*
3543  * vfs_bio_set_validclean:
3544  *
3545  *	Set the range within the buffer to valid and clean.  The range is
3546  *	relative to the beginning of the buffer, b_loffset.  Note that
3547  *	b_loffset itself may be offset from the beginning of the first page.
3548  */
3549 
3550 void
3551 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3552 {
3553 	if (bp->b_flags & B_VMIO) {
3554 		int i;
3555 		int n;
3556 
3557 		/*
3558 		 * Fixup base to be relative to beginning of first page.
3559 		 * Set initial n to be the maximum number of bytes in the
3560 		 * first page that can be validated.
3561 		 */
3562 
3563 		base += (bp->b_loffset & PAGE_MASK);
3564 		n = PAGE_SIZE - (base & PAGE_MASK);
3565 
3566 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3567 			vm_page_t m = bp->b_xio.xio_pages[i];
3568 
3569 			if (n > size)
3570 				n = size;
3571 
3572 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3573 			base += n;
3574 			size -= n;
3575 			n = PAGE_SIZE;
3576 		}
3577 	}
3578 }
3579 
3580 /*
3581  * vfs_bio_clrbuf:
3582  *
3583  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3584  *	to clear B_ERROR and B_INVAL.
3585  *
3586  *	Note that while we only theoretically need to clear through b_bcount,
3587  *	we go ahead and clear through b_bufsize.
3588  */
3589 
3590 void
3591 vfs_bio_clrbuf(struct buf *bp)
3592 {
3593 	int i, mask = 0;
3594 	caddr_t sa, ea;
3595 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3596 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3597 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3598 		    (bp->b_loffset & PAGE_MASK) == 0) {
3599 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3600 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3601 				bp->b_resid = 0;
3602 				return;
3603 			}
3604 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3605 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3606 				bzero(bp->b_data, bp->b_bufsize);
3607 				bp->b_xio.xio_pages[0]->valid |= mask;
3608 				bp->b_resid = 0;
3609 				return;
3610 			}
3611 		}
3612 		sa = bp->b_data;
3613 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3614 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3615 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3616 			ea = (caddr_t)(vm_offset_t)ulmin(
3617 			    (u_long)(vm_offset_t)ea,
3618 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3619 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3620 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3621 				continue;
3622 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3623 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3624 					bzero(sa, ea - sa);
3625 				}
3626 			} else {
3627 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3628 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3629 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3630 						bzero(sa, DEV_BSIZE);
3631 				}
3632 			}
3633 			bp->b_xio.xio_pages[i]->valid |= mask;
3634 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3635 		}
3636 		bp->b_resid = 0;
3637 	} else {
3638 		clrbuf(bp);
3639 	}
3640 }
3641 
3642 /*
3643  * vm_hold_load_pages:
3644  *
3645  *	Load pages into the buffer's address space.  The pages are
3646  *	allocated from the kernel object in order to reduce interference
3647  *	with the any VM paging I/O activity.  The range of loaded
3648  *	pages will be wired.
3649  *
3650  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
3651  *	retrieve the full range (to - from) of pages.
3652  *
3653  */
3654 void
3655 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3656 {
3657 	vm_offset_t pg;
3658 	vm_page_t p;
3659 	int index;
3660 
3661 	to = round_page(to);
3662 	from = round_page(from);
3663 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3664 
3665 	pg = from;
3666 	while (pg < to) {
3667 		/*
3668 		 * Note: must allocate system pages since blocking here
3669 		 * could intefere with paging I/O, no matter which
3670 		 * process we are.
3671 		 */
3672 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
3673 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
3674 		if (p) {
3675 			vm_page_wire(p);
3676 			p->valid = VM_PAGE_BITS_ALL;
3677 			vm_page_flag_clear(p, PG_ZERO);
3678 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3679 			bp->b_xio.xio_pages[index] = p;
3680 			vm_page_wakeup(p);
3681 
3682 			pg += PAGE_SIZE;
3683 			++index;
3684 		}
3685 	}
3686 	bp->b_xio.xio_npages = index;
3687 }
3688 
3689 /*
3690  * Allocate pages for a buffer cache buffer.
3691  *
3692  * Under extremely severe memory conditions even allocating out of the
3693  * system reserve can fail.  If this occurs we must allocate out of the
3694  * interrupt reserve to avoid a deadlock with the pageout daemon.
3695  *
3696  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
3697  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
3698  * against the pageout daemon if pages are not freed from other sources.
3699  */
3700 static
3701 vm_page_t
3702 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
3703 {
3704 	vm_page_t p;
3705 
3706 	/*
3707 	 * Try a normal allocation, allow use of system reserve.
3708 	 */
3709 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3710 	if (p)
3711 		return(p);
3712 
3713 	/*
3714 	 * The normal allocation failed and we clearly have a page
3715 	 * deficit.  Try to reclaim some clean VM pages directly
3716 	 * from the buffer cache.
3717 	 */
3718 	vm_pageout_deficit += deficit;
3719 	recoverbufpages();
3720 
3721 	/*
3722 	 * We may have blocked, the caller will know what to do if the
3723 	 * page now exists.
3724 	 */
3725 	if (vm_page_lookup(obj, pg))
3726 		return(NULL);
3727 
3728 	/*
3729 	 * Allocate and allow use of the interrupt reserve.
3730 	 *
3731 	 * If after all that we still can't allocate a VM page we are
3732 	 * in real trouble, but we slog on anyway hoping that the system
3733 	 * won't deadlock.
3734 	 */
3735 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
3736 				   VM_ALLOC_INTERRUPT);
3737 	if (p) {
3738 		if (vm_page_count_severe()) {
3739 			kprintf("bio_page_alloc: WARNING emergency page "
3740 				"allocation\n");
3741 			vm_wait(hz / 20);
3742 		}
3743 	} else {
3744 		kprintf("bio_page_alloc: WARNING emergency page "
3745 			"allocation failed\n");
3746 		vm_wait(hz * 5);
3747 	}
3748 	return(p);
3749 }
3750 
3751 /*
3752  * vm_hold_free_pages:
3753  *
3754  *	Return pages associated with the buffer back to the VM system.
3755  *
3756  *	The range of pages underlying the buffer's address space will
3757  *	be unmapped and un-wired.
3758  */
3759 void
3760 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3761 {
3762 	vm_offset_t pg;
3763 	vm_page_t p;
3764 	int index, newnpages;
3765 
3766 	from = round_page(from);
3767 	to = round_page(to);
3768 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3769 
3770 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3771 		p = bp->b_xio.xio_pages[index];
3772 		if (p && (index < bp->b_xio.xio_npages)) {
3773 			if (p->busy) {
3774 				kprintf("vm_hold_free_pages: doffset: %lld, "
3775 					"loffset: %lld\n",
3776 					(long long)bp->b_bio2.bio_offset,
3777 					(long long)bp->b_loffset);
3778 			}
3779 			bp->b_xio.xio_pages[index] = NULL;
3780 			pmap_kremove(pg);
3781 			vm_page_busy(p);
3782 			vm_page_unwire(p, 0);
3783 			vm_page_free(p);
3784 		}
3785 	}
3786 	bp->b_xio.xio_npages = newnpages;
3787 }
3788 
3789 /*
3790  * vmapbuf:
3791  *
3792  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
3793  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
3794  *	initialized.
3795  */
3796 int
3797 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
3798 {
3799 	caddr_t addr;
3800 	vm_offset_t va;
3801 	vm_page_t m;
3802 	int vmprot;
3803 	int error;
3804 	int pidx;
3805 	int i;
3806 
3807 	/*
3808 	 * bp had better have a command and it better be a pbuf.
3809 	 */
3810 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3811 	KKASSERT(bp->b_flags & B_PAGING);
3812 
3813 	if (bytes < 0)
3814 		return (-1);
3815 
3816 	/*
3817 	 * Map the user data into KVM.  Mappings have to be page-aligned.
3818 	 */
3819 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
3820 	pidx = 0;
3821 
3822 	vmprot = VM_PROT_READ;
3823 	if (bp->b_cmd == BUF_CMD_READ)
3824 		vmprot |= VM_PROT_WRITE;
3825 
3826 	while (addr < udata + bytes) {
3827 		/*
3828 		 * Do the vm_fault if needed; do the copy-on-write thing
3829 		 * when reading stuff off device into memory.
3830 		 *
3831 		 * vm_fault_page*() returns a held VM page.
3832 		 */
3833 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
3834 		va = trunc_page(va);
3835 
3836 		m = vm_fault_page_quick(va, vmprot, &error);
3837 		if (m == NULL) {
3838 			for (i = 0; i < pidx; ++i) {
3839 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3840 			    bp->b_xio.xio_pages[i] = NULL;
3841 			}
3842 			return(-1);
3843 		}
3844 		bp->b_xio.xio_pages[pidx] = m;
3845 		addr += PAGE_SIZE;
3846 		++pidx;
3847 	}
3848 
3849 	/*
3850 	 * Map the page array and set the buffer fields to point to
3851 	 * the mapped data buffer.
3852 	 */
3853 	if (pidx > btoc(MAXPHYS))
3854 		panic("vmapbuf: mapped more than MAXPHYS");
3855 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
3856 
3857 	bp->b_xio.xio_npages = pidx;
3858 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
3859 	bp->b_bcount = bytes;
3860 	bp->b_bufsize = bytes;
3861 	return(0);
3862 }
3863 
3864 /*
3865  * vunmapbuf:
3866  *
3867  *	Free the io map PTEs associated with this IO operation.
3868  *	We also invalidate the TLB entries and restore the original b_addr.
3869  */
3870 void
3871 vunmapbuf(struct buf *bp)
3872 {
3873 	int pidx;
3874 	int npages;
3875 
3876 	KKASSERT(bp->b_flags & B_PAGING);
3877 
3878 	npages = bp->b_xio.xio_npages;
3879 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3880 	for (pidx = 0; pidx < npages; ++pidx) {
3881 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
3882 		bp->b_xio.xio_pages[pidx] = NULL;
3883 	}
3884 	bp->b_xio.xio_npages = 0;
3885 	bp->b_data = bp->b_kvabase;
3886 }
3887 
3888 /*
3889  * Scan all buffers in the system and issue the callback.
3890  */
3891 int
3892 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
3893 {
3894 	int count = 0;
3895 	int error;
3896 	int n;
3897 
3898 	for (n = 0; n < nbuf; ++n) {
3899 		if ((error = callback(&buf[n], info)) < 0) {
3900 			count = error;
3901 			break;
3902 		}
3903 		count += error;
3904 	}
3905 	return (count);
3906 }
3907 
3908 /*
3909  * print out statistics from the current status of the buffer pool
3910  * this can be toggeled by the system control option debug.syncprt
3911  */
3912 #ifdef DEBUG
3913 void
3914 vfs_bufstats(void)
3915 {
3916         int i, j, count;
3917         struct buf *bp;
3918         struct bqueues *dp;
3919         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3920         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3921 
3922         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3923                 count = 0;
3924                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3925                         counts[j] = 0;
3926 		crit_enter();
3927                 TAILQ_FOREACH(bp, dp, b_freelist) {
3928                         counts[bp->b_bufsize/PAGE_SIZE]++;
3929                         count++;
3930                 }
3931 		crit_exit();
3932                 kprintf("%s: total-%d", bname[i], count);
3933                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3934                         if (counts[j] != 0)
3935                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
3936                 kprintf("\n");
3937         }
3938 }
3939 #endif
3940 
3941 #ifdef DDB
3942 
3943 DB_SHOW_COMMAND(buffer, db_show_buffer)
3944 {
3945 	/* get args */
3946 	struct buf *bp = (struct buf *)addr;
3947 
3948 	if (!have_addr) {
3949 		db_printf("usage: show buffer <addr>\n");
3950 		return;
3951 	}
3952 
3953 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3954 	db_printf("b_cmd = %d\n", bp->b_cmd);
3955 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3956 		  "b_resid = %d\n, b_data = %p, "
3957 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3958 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3959 		  bp->b_data,
3960 		  (long long)bp->b_bio2.bio_offset,
3961 		  (long long)(bp->b_bio2.bio_next ?
3962 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
3963 	if (bp->b_xio.xio_npages) {
3964 		int i;
3965 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3966 			bp->b_xio.xio_npages);
3967 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3968 			vm_page_t m;
3969 			m = bp->b_xio.xio_pages[i];
3970 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3971 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3972 			if ((i + 1) < bp->b_xio.xio_npages)
3973 				db_printf(",");
3974 		}
3975 		db_printf("\n");
3976 	}
3977 }
3978 #endif /* DDB */
3979