1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. Note that man buf(9) doesn't reflect 28 * the actual buf/bio implementation in DragonFly. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/devicestat.h> 36 #include <sys/eventhandler.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mount.h> 40 #include <sys/kernel.h> 41 #include <sys/kthread.h> 42 #include <sys/proc.h> 43 #include <sys/reboot.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 #include <sys/dsched.h> 49 #include <vm/vm.h> 50 #include <vm/vm_param.h> 51 #include <vm/vm_kern.h> 52 #include <vm/vm_pageout.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_map.h> 57 #include <vm/vm_pager.h> 58 #include <vm/swap_pager.h> 59 60 #include <sys/buf2.h> 61 #include <sys/thread2.h> 62 #include <sys/spinlock2.h> 63 #include <vm/vm_page2.h> 64 65 #include "opt_ddb.h" 66 #ifdef DDB 67 #include <ddb/ddb.h> 68 #endif 69 70 /* 71 * Buffer queues. 72 */ 73 enum bufq_type { 74 BQUEUE_NONE, /* not on any queue */ 75 BQUEUE_LOCKED, /* locked buffers */ 76 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 77 BQUEUE_DIRTY, /* B_DELWRI buffers */ 78 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 79 BQUEUE_EMPTY, /* empty buffer headers */ 80 81 BUFFER_QUEUES /* number of buffer queues */ 82 }; 83 84 typedef enum bufq_type bufq_type_t; 85 86 #define BD_WAKE_SIZE 16384 87 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 88 89 TAILQ_HEAD(bqueues, buf); 90 91 struct bufpcpu { 92 struct spinlock spin; 93 struct bqueues bufqueues[BUFFER_QUEUES]; 94 } __cachealign; 95 96 struct bufpcpu bufpcpu[MAXCPU]; 97 98 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 99 100 struct buf *buf; /* buffer header pool */ 101 102 static void vfs_clean_pages(struct buf *bp); 103 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 104 #if 0 105 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m); 106 #endif 107 static void vfs_vmio_release(struct buf *bp); 108 static int flushbufqueues(struct buf *marker, bufq_type_t q); 109 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj, 110 vm_pindex_t pg, int deficit); 111 112 static void bd_signal(long totalspace); 113 static void buf_daemon(void); 114 static void buf_daemon_hw(void); 115 116 /* 117 * bogus page -- for I/O to/from partially complete buffers 118 * this is a temporary solution to the problem, but it is not 119 * really that bad. it would be better to split the buffer 120 * for input in the case of buffers partially already in memory, 121 * but the code is intricate enough already. 122 */ 123 vm_page_t bogus_page; 124 125 /* 126 * These are all static, but make the ones we export globals so we do 127 * not need to use compiler magic. 128 */ 129 long bufspace; /* atomic ops */ 130 long maxbufspace; 131 long maxbufmallocspace, lobufspace, hibufspace; 132 static long lorunningspace; 133 static long hirunningspace; 134 static long dirtykvaspace; /* atomic */ 135 long dirtybufspace; /* atomic (global for systat) */ 136 static long dirtybufcount; /* atomic */ 137 static long dirtybufspacehw; /* atomic */ 138 static long dirtybufcounthw; /* atomic */ 139 static long runningbufspace; /* atomic */ 140 static long runningbufcount; /* atomic */ 141 long lodirtybufspace; 142 long hidirtybufspace; 143 static int getnewbufcalls; 144 static int needsbuffer; /* atomic */ 145 static int runningbufreq; /* atomic */ 146 static int bd_request; /* atomic */ 147 static int bd_request_hw; /* atomic */ 148 static u_int bd_wake_ary[BD_WAKE_SIZE]; 149 static u_int bd_wake_index; 150 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */ 151 static int debug_commit; 152 static int debug_bufbio; 153 static int debug_kvabio; 154 static long bufcache_bw = 200 * 1024 * 1024; 155 156 static struct thread *bufdaemon_td; 157 static struct thread *bufdaemonhw_td; 158 static u_int lowmempgallocs; 159 static u_int flushperqueue = 1024; 160 161 /* 162 * Sysctls for operational control of the buffer cache. 163 */ 164 SYSCTL_UINT(_vfs, OID_AUTO, flushperqueue, CTLFLAG_RW, &flushperqueue, 0, 165 "Number of buffers to flush from each per-cpu queue"); 166 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 167 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 168 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 169 "High watermark used to trigger explicit flushing of dirty buffers"); 170 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 171 "Minimum amount of buffer space required for active I/O"); 172 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 173 "Maximum amount of buffer space to usable for active I/O"); 174 SYSCTL_LONG(_vfs, OID_AUTO, bufcache_bw, CTLFLAG_RW, &bufcache_bw, 0, 175 "Buffer-cache -> VM page cache transfer bandwidth"); 176 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0, 177 "Page allocations done during periods of very low free memory"); 178 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0, 179 "Recycle pages to active or inactive queue transition pt 0-64"); 180 /* 181 * Sysctls determining current state of the buffer cache. 182 */ 183 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 184 "Total number of buffers in buffer cache"); 185 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0, 186 "KVA reserved by dirty buffers (all)"); 187 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 188 "Pending bytes of dirty buffers (all)"); 189 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 190 "Pending bytes of dirty buffers (heavy weight)"); 191 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 192 "Pending number of dirty buffers"); 193 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 194 "Pending number of dirty buffers (heavy weight)"); 195 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 196 "I/O bytes currently in progress due to asynchronous writes"); 197 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 198 "I/O buffers currently in progress due to asynchronous writes"); 199 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 200 "Hard limit on maximum amount of memory usable for buffer space"); 201 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 202 "Soft limit on maximum amount of memory usable for buffer space"); 203 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 204 "Minimum amount of memory to reserve for system buffer space"); 205 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 206 "Amount of memory available for buffers"); 207 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 208 0, "Maximum amount of memory reserved for buffers using malloc"); 209 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 210 "New buffer header acquisition requests"); 211 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, ""); 212 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, ""); 213 SYSCTL_INT(_vfs, OID_AUTO, debug_kvabio, CTLFLAG_RW, &debug_kvabio, 0, ""); 214 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 215 "sizeof(struct buf)"); 216 217 char *buf_wmesg = BUF_WMESG; 218 219 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 220 #define VFS_BIO_NEED_UNUSED02 0x02 221 #define VFS_BIO_NEED_UNUSED04 0x04 222 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 223 224 /* 225 * Called when buffer space is potentially available for recovery. 226 * getnewbuf() will block on this flag when it is unable to free 227 * sufficient buffer space. Buffer space becomes recoverable when 228 * bp's get placed back in the queues. 229 */ 230 static __inline void 231 bufspacewakeup(void) 232 { 233 /* 234 * If someone is waiting for BUF space, wake them up. Even 235 * though we haven't freed the kva space yet, the waiting 236 * process will be able to now. 237 */ 238 for (;;) { 239 int flags = needsbuffer; 240 cpu_ccfence(); 241 if ((flags & VFS_BIO_NEED_BUFSPACE) == 0) 242 break; 243 if (atomic_cmpset_int(&needsbuffer, flags, 244 flags & ~VFS_BIO_NEED_BUFSPACE)) { 245 wakeup(&needsbuffer); 246 break; 247 } 248 /* retry */ 249 } 250 } 251 252 /* 253 * runningbufwakeup: 254 * 255 * Accounting for I/O in progress. 256 * 257 */ 258 static __inline void 259 runningbufwakeup(struct buf *bp) 260 { 261 long totalspace; 262 long flags; 263 264 if ((totalspace = bp->b_runningbufspace) != 0) { 265 atomic_add_long(&runningbufspace, -totalspace); 266 atomic_add_long(&runningbufcount, -1); 267 bp->b_runningbufspace = 0; 268 269 /* 270 * see waitrunningbufspace() for limit test. 271 */ 272 for (;;) { 273 flags = runningbufreq; 274 cpu_ccfence(); 275 if (flags == 0) 276 break; 277 if (atomic_cmpset_int(&runningbufreq, flags, 0)) { 278 wakeup(&runningbufreq); 279 break; 280 } 281 /* retry */ 282 } 283 bd_signal(totalspace); 284 } 285 } 286 287 /* 288 * bufcountwakeup: 289 * 290 * Called when a buffer has been added to one of the free queues to 291 * account for the buffer and to wakeup anyone waiting for free buffers. 292 * This typically occurs when large amounts of metadata are being handled 293 * by the buffer cache ( else buffer space runs out first, usually ). 294 */ 295 static __inline void 296 bufcountwakeup(void) 297 { 298 long flags; 299 300 for (;;) { 301 flags = needsbuffer; 302 if (flags == 0) 303 break; 304 if (atomic_cmpset_int(&needsbuffer, flags, 305 (flags & ~VFS_BIO_NEED_ANY))) { 306 wakeup(&needsbuffer); 307 break; 308 } 309 /* retry */ 310 } 311 } 312 313 /* 314 * waitrunningbufspace() 315 * 316 * If runningbufspace exceeds 4/6 hirunningspace we block until 317 * runningbufspace drops to 3/6 hirunningspace. We also block if another 318 * thread blocked here in order to be fair, even if runningbufspace 319 * is now lower than the limit. 320 * 321 * The caller may be using this function to block in a tight loop, we 322 * must block while runningbufspace is greater than at least 323 * hirunningspace * 3 / 6. 324 */ 325 void 326 waitrunningbufspace(void) 327 { 328 long limit = hirunningspace * 4 / 6; 329 long flags; 330 331 while (runningbufspace > limit || runningbufreq) { 332 tsleep_interlock(&runningbufreq, 0); 333 flags = atomic_fetchadd_int(&runningbufreq, 1); 334 if (runningbufspace > limit || flags) 335 tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz); 336 } 337 } 338 339 /* 340 * buf_dirty_count_severe: 341 * 342 * Return true if we have too many dirty buffers. 343 */ 344 int 345 buf_dirty_count_severe(void) 346 { 347 return (runningbufspace + dirtykvaspace >= hidirtybufspace || 348 dirtybufcount >= nbuf / 2); 349 } 350 351 /* 352 * Return true if the amount of running I/O is severe and BIOQ should 353 * start bursting. 354 */ 355 int 356 buf_runningbufspace_severe(void) 357 { 358 return (runningbufspace >= hirunningspace * 4 / 6); 359 } 360 361 /* 362 * vfs_buf_test_cache: 363 * 364 * Called when a buffer is extended. This function clears the B_CACHE 365 * bit if the newly extended portion of the buffer does not contain 366 * valid data. 367 * 368 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 369 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 370 * them while a clean buffer was present. 371 */ 372 static __inline__ 373 void 374 vfs_buf_test_cache(struct buf *bp, 375 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 376 vm_page_t m) 377 { 378 if (bp->b_flags & B_CACHE) { 379 int base = (foff + off) & PAGE_MASK; 380 if (vm_page_is_valid(m, base, size) == 0) 381 bp->b_flags &= ~B_CACHE; 382 } 383 } 384 385 /* 386 * bd_speedup() 387 * 388 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 389 * low water mark. 390 */ 391 static __inline__ 392 void 393 bd_speedup(void) 394 { 395 if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2) 396 return; 397 398 if (bd_request == 0 && 399 (dirtykvaspace > lodirtybufspace / 2 || 400 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 401 if (atomic_fetchadd_int(&bd_request, 1) == 0) 402 wakeup(&bd_request); 403 } 404 if (bd_request_hw == 0 && 405 (dirtykvaspace > lodirtybufspace / 2 || 406 dirtybufcounthw >= nbuf / 2)) { 407 if (atomic_fetchadd_int(&bd_request_hw, 1) == 0) 408 wakeup(&bd_request_hw); 409 } 410 } 411 412 /* 413 * bd_heatup() 414 * 415 * Get the buf_daemon heated up when the number of running and dirty 416 * buffers exceeds the mid-point. 417 * 418 * Return the total number of dirty bytes past the second mid point 419 * as a measure of how much excess dirty data there is in the system. 420 */ 421 long 422 bd_heatup(void) 423 { 424 long mid1; 425 long mid2; 426 long totalspace; 427 428 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 429 430 totalspace = runningbufspace + dirtykvaspace; 431 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 432 bd_speedup(); 433 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 434 if (totalspace >= mid2) 435 return(totalspace - mid2); 436 } 437 return(0); 438 } 439 440 /* 441 * bd_wait() 442 * 443 * Wait for the buffer cache to flush (totalspace) bytes worth of 444 * buffers, then return. 445 * 446 * Regardless this function blocks while the number of dirty buffers 447 * exceeds hidirtybufspace. 448 */ 449 void 450 bd_wait(long totalspace) 451 { 452 u_int i; 453 u_int j; 454 u_int mi; 455 int count; 456 457 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 458 return; 459 460 while (totalspace > 0) { 461 bd_heatup(); 462 463 /* 464 * Order is important. Suppliers adjust bd_wake_index after 465 * updating runningbufspace/dirtykvaspace. We want to fetch 466 * bd_wake_index before accessing. Any error should thus 467 * be in our favor. 468 */ 469 i = atomic_fetchadd_int(&bd_wake_index, 0); 470 if (totalspace > runningbufspace + dirtykvaspace) 471 totalspace = runningbufspace + dirtykvaspace; 472 count = totalspace / MAXBSIZE; 473 if (count >= BD_WAKE_SIZE / 2) 474 count = BD_WAKE_SIZE / 2; 475 i = i + count; 476 mi = i & BD_WAKE_MASK; 477 478 /* 479 * This is not a strict interlock, so we play a bit loose 480 * with locking access to dirtybufspace*. We have to re-check 481 * bd_wake_index to ensure that it hasn't passed us. 482 */ 483 tsleep_interlock(&bd_wake_ary[mi], 0); 484 atomic_add_int(&bd_wake_ary[mi], 1); 485 j = atomic_fetchadd_int(&bd_wake_index, 0); 486 if ((int)(i - j) >= 0) 487 tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz); 488 489 totalspace = runningbufspace + dirtykvaspace - hidirtybufspace; 490 } 491 } 492 493 /* 494 * bd_signal() 495 * 496 * This function is called whenever runningbufspace or dirtykvaspace 497 * is reduced. Track threads waiting for run+dirty buffer I/O 498 * complete. 499 */ 500 static void 501 bd_signal(long totalspace) 502 { 503 u_int i; 504 505 if (totalspace > 0) { 506 if (totalspace > MAXBSIZE * BD_WAKE_SIZE) 507 totalspace = MAXBSIZE * BD_WAKE_SIZE; 508 while (totalspace > 0) { 509 i = atomic_fetchadd_int(&bd_wake_index, 1); 510 i &= BD_WAKE_MASK; 511 if (atomic_readandclear_int(&bd_wake_ary[i])) 512 wakeup(&bd_wake_ary[i]); 513 totalspace -= MAXBSIZE; 514 } 515 } 516 } 517 518 /* 519 * BIO tracking support routines. 520 * 521 * Release a ref on a bio_track. Wakeup requests are atomically released 522 * along with the last reference so bk_active will never wind up set to 523 * only 0x80000000. 524 */ 525 static 526 void 527 bio_track_rel(struct bio_track *track) 528 { 529 int active; 530 int desired; 531 532 /* 533 * Shortcut 534 */ 535 active = track->bk_active; 536 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 537 return; 538 539 /* 540 * Full-on. Note that the wait flag is only atomically released on 541 * the 1->0 count transition. 542 * 543 * We check for a negative count transition using bit 30 since bit 31 544 * has a different meaning. 545 */ 546 for (;;) { 547 desired = (active & 0x7FFFFFFF) - 1; 548 if (desired) 549 desired |= active & 0x80000000; 550 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 551 if (desired & 0x40000000) 552 panic("bio_track_rel: bad count: %p", track); 553 if (active & 0x80000000) 554 wakeup(track); 555 break; 556 } 557 active = track->bk_active; 558 } 559 } 560 561 /* 562 * Wait for the tracking count to reach 0. 563 * 564 * Use atomic ops such that the wait flag is only set atomically when 565 * bk_active is non-zero. 566 */ 567 int 568 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 569 { 570 int active; 571 int desired; 572 int error; 573 574 /* 575 * Shortcut 576 */ 577 if (track->bk_active == 0) 578 return(0); 579 580 /* 581 * Full-on. Note that the wait flag may only be atomically set if 582 * the active count is non-zero. 583 * 584 * NOTE: We cannot optimize active == desired since a wakeup could 585 * clear active prior to our tsleep_interlock(). 586 */ 587 error = 0; 588 while ((active = track->bk_active) != 0) { 589 cpu_ccfence(); 590 desired = active | 0x80000000; 591 tsleep_interlock(track, slp_flags); 592 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 593 error = tsleep(track, slp_flags | PINTERLOCKED, 594 "trwait", slp_timo); 595 if (error) 596 break; 597 } 598 } 599 return (error); 600 } 601 602 /* 603 * bufinit: 604 * 605 * Load time initialisation of the buffer cache, called from machine 606 * dependant initialization code. 607 */ 608 static 609 void 610 bufinit(void *dummy __unused) 611 { 612 struct bufpcpu *pcpu; 613 struct buf *bp; 614 vm_offset_t bogus_offset; 615 int i; 616 int j; 617 long n; 618 619 /* next, make a null set of free lists */ 620 for (i = 0; i < ncpus; ++i) { 621 pcpu = &bufpcpu[i]; 622 spin_init(&pcpu->spin, "bufinit"); 623 for (j = 0; j < BUFFER_QUEUES; j++) 624 TAILQ_INIT(&pcpu->bufqueues[j]); 625 } 626 627 /* 628 * Finally, initialize each buffer header and stick on empty q. 629 * Each buffer gets its own KVA reservation. 630 */ 631 i = 0; 632 pcpu = &bufpcpu[i]; 633 634 for (n = 0; n < nbuf; n++) { 635 bp = &buf[n]; 636 bzero(bp, sizeof *bp); 637 bp->b_flags = B_INVAL; /* we're just an empty header */ 638 bp->b_cmd = BUF_CMD_DONE; 639 bp->b_qindex = BQUEUE_EMPTY; 640 bp->b_qcpu = i; 641 bp->b_kvabase = (void *)(vm_map_min(&buffer_map) + 642 MAXBSIZE * n); 643 bp->b_kvasize = MAXBSIZE; 644 initbufbio(bp); 645 xio_init(&bp->b_xio); 646 buf_dep_init(bp); 647 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex], 648 bp, b_freelist); 649 650 i = (i + 1) % ncpus; 651 pcpu = &bufpcpu[i]; 652 } 653 654 /* 655 * maxbufspace is the absolute maximum amount of buffer space we are 656 * allowed to reserve in KVM and in real terms. The absolute maximum 657 * is nominally used by buf_daemon. hibufspace is the nominal maximum 658 * used by most other processes. The differential is required to 659 * ensure that buf_daemon is able to run when other processes might 660 * be blocked waiting for buffer space. 661 * 662 * Calculate hysteresis (lobufspace, hibufspace). Don't make it 663 * too large or we might lockup a cpu for too long a period of 664 * time in our tight loop. 665 */ 666 maxbufspace = nbuf * NBUFCALCSIZE; 667 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 668 lobufspace = hibufspace * 7 / 8; 669 if (hibufspace - lobufspace > 64 * 1024 * 1024) 670 lobufspace = hibufspace - 64 * 1024 * 1024; 671 if (lobufspace > hibufspace - MAXBSIZE) 672 lobufspace = hibufspace - MAXBSIZE; 673 674 lorunningspace = 512 * 1024; 675 /* hirunningspace -- see below */ 676 677 /* 678 * Limit the amount of malloc memory since it is wired permanently 679 * into the kernel space. Even though this is accounted for in 680 * the buffer allocation, we don't want the malloced region to grow 681 * uncontrolled. The malloc scheme improves memory utilization 682 * significantly on average (small) directories. 683 */ 684 maxbufmallocspace = hibufspace / 20; 685 686 /* 687 * Reduce the chance of a deadlock occuring by limiting the number 688 * of delayed-write dirty buffers we allow to stack up. 689 * 690 * We don't want too much actually queued to the device at once 691 * (XXX this needs to be per-mount!), because the buffers will 692 * wind up locked for a very long period of time while the I/O 693 * drains. 694 */ 695 hidirtybufspace = hibufspace / 2; /* dirty + running */ 696 hirunningspace = hibufspace / 16; /* locked & queued to device */ 697 if (hirunningspace < 1024 * 1024) 698 hirunningspace = 1024 * 1024; 699 700 dirtykvaspace = 0; 701 dirtybufspace = 0; 702 dirtybufspacehw = 0; 703 704 lodirtybufspace = hidirtybufspace / 2; 705 706 /* 707 * Maximum number of async ops initiated per buf_daemon loop. This is 708 * somewhat of a hack at the moment, we really need to limit ourselves 709 * based on the number of bytes of I/O in-transit that were initiated 710 * from buf_daemon. 711 */ 712 713 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE, 714 VM_SUBSYS_BOGUS); 715 vm_object_hold(&kernel_object); 716 bogus_page = vm_page_alloc(&kernel_object, 717 (bogus_offset >> PAGE_SHIFT), 718 VM_ALLOC_NORMAL); 719 vm_object_drop(&kernel_object); 720 vmstats.v_wire_count++; 721 722 } 723 724 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL); 725 726 /* 727 * Initialize the embedded bio structures, typically used by 728 * deprecated code which tries to allocate its own struct bufs. 729 */ 730 void 731 initbufbio(struct buf *bp) 732 { 733 bp->b_bio1.bio_buf = bp; 734 bp->b_bio1.bio_prev = NULL; 735 bp->b_bio1.bio_offset = NOOFFSET; 736 bp->b_bio1.bio_next = &bp->b_bio2; 737 bp->b_bio1.bio_done = NULL; 738 bp->b_bio1.bio_flags = 0; 739 740 bp->b_bio2.bio_buf = bp; 741 bp->b_bio2.bio_prev = &bp->b_bio1; 742 bp->b_bio2.bio_offset = NOOFFSET; 743 bp->b_bio2.bio_next = NULL; 744 bp->b_bio2.bio_done = NULL; 745 bp->b_bio2.bio_flags = 0; 746 747 BUF_LOCKINIT(bp); 748 } 749 750 /* 751 * Reinitialize the embedded bio structures as well as any additional 752 * translation cache layers. 753 */ 754 void 755 reinitbufbio(struct buf *bp) 756 { 757 struct bio *bio; 758 759 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 760 bio->bio_done = NULL; 761 bio->bio_offset = NOOFFSET; 762 } 763 } 764 765 /* 766 * Undo the effects of an initbufbio(). 767 */ 768 void 769 uninitbufbio(struct buf *bp) 770 { 771 dsched_buf_exit(bp); 772 BUF_LOCKFREE(bp); 773 } 774 775 /* 776 * Push another BIO layer onto an existing BIO and return it. The new 777 * BIO layer may already exist, holding cached translation data. 778 */ 779 struct bio * 780 push_bio(struct bio *bio) 781 { 782 struct bio *nbio; 783 784 if ((nbio = bio->bio_next) == NULL) { 785 int index = bio - &bio->bio_buf->b_bio_array[0]; 786 if (index >= NBUF_BIO - 1) { 787 panic("push_bio: too many layers %d for bp %p", 788 index, bio->bio_buf); 789 } 790 nbio = &bio->bio_buf->b_bio_array[index + 1]; 791 bio->bio_next = nbio; 792 nbio->bio_prev = bio; 793 nbio->bio_buf = bio->bio_buf; 794 nbio->bio_offset = NOOFFSET; 795 nbio->bio_done = NULL; 796 nbio->bio_next = NULL; 797 } 798 KKASSERT(nbio->bio_done == NULL); 799 return(nbio); 800 } 801 802 /* 803 * Pop a BIO translation layer, returning the previous layer. The 804 * must have been previously pushed. 805 */ 806 struct bio * 807 pop_bio(struct bio *bio) 808 { 809 return(bio->bio_prev); 810 } 811 812 void 813 clearbiocache(struct bio *bio) 814 { 815 while (bio) { 816 bio->bio_offset = NOOFFSET; 817 bio = bio->bio_next; 818 } 819 } 820 821 /* 822 * Remove the buffer from the appropriate free list. 823 * (caller must be locked) 824 */ 825 static __inline void 826 _bremfree(struct buf *bp) 827 { 828 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu]; 829 830 if (bp->b_qindex != BQUEUE_NONE) { 831 KASSERT(BUF_LOCKINUSE(bp), ("bremfree: bp %p not locked", bp)); 832 TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist); 833 bp->b_qindex = BQUEUE_NONE; 834 } else { 835 if (!BUF_LOCKINUSE(bp)) 836 panic("bremfree: removing a buffer not on a queue"); 837 } 838 } 839 840 /* 841 * bremfree() - must be called with a locked buffer 842 */ 843 void 844 bremfree(struct buf *bp) 845 { 846 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu]; 847 848 spin_lock(&pcpu->spin); 849 _bremfree(bp); 850 spin_unlock(&pcpu->spin); 851 } 852 853 /* 854 * bremfree_locked - must be called with pcpu->spin locked 855 */ 856 static void 857 bremfree_locked(struct buf *bp) 858 { 859 _bremfree(bp); 860 } 861 862 /* 863 * This version of bread issues any required I/O asyncnronously and 864 * makes a callback on completion. 865 * 866 * The callback must check whether BIO_DONE is set in the bio and issue 867 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing 868 * BIO_DONE and disposing of the I/O (bqrelse()ing it). 869 */ 870 void 871 breadcb(struct vnode *vp, off_t loffset, int size, int bflags, 872 void (*func)(struct bio *), void *arg) 873 { 874 struct buf *bp; 875 876 bp = getblk(vp, loffset, size, 0, 0); 877 878 /* if not found in cache, do some I/O */ 879 if ((bp->b_flags & B_CACHE) == 0) { 880 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL | B_NOTMETA); 881 bp->b_flags |= bflags; 882 bp->b_cmd = BUF_CMD_READ; 883 bp->b_bio1.bio_done = func; 884 bp->b_bio1.bio_caller_info1.ptr = arg; 885 vfs_busy_pages(vp, bp); 886 BUF_KERNPROC(bp); 887 vn_strategy(vp, &bp->b_bio1); 888 } else if (func) { 889 /* 890 * Since we are issuing the callback synchronously it cannot 891 * race the BIO_DONE, so no need for atomic ops here. 892 */ 893 /*bp->b_bio1.bio_done = func;*/ 894 bp->b_bio1.bio_caller_info1.ptr = arg; 895 bp->b_bio1.bio_flags |= BIO_DONE; 896 func(&bp->b_bio1); 897 } else { 898 bqrelse(bp); 899 } 900 } 901 902 /* 903 * breadnx() - Terminal function for bread() and breadn(). 904 * 905 * This function will start asynchronous I/O on read-ahead blocks as well 906 * as satisfy the primary request. 907 * 908 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is 909 * set, the buffer is valid and we do not have to do anything. 910 */ 911 int 912 breadnx(struct vnode *vp, off_t loffset, int size, int bflags, 913 off_t *raoffset, int *rabsize, 914 int cnt, struct buf **bpp) 915 { 916 struct buf *bp, *rabp; 917 int i; 918 int rv = 0, readwait = 0; 919 int blkflags = (bflags & B_KVABIO) ? GETBLK_KVABIO : 0; 920 921 if (*bpp) 922 bp = *bpp; 923 else 924 *bpp = bp = getblk(vp, loffset, size, blkflags, 0); 925 926 /* if not found in cache, do some I/O */ 927 if ((bp->b_flags & B_CACHE) == 0) { 928 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL | B_NOTMETA); 929 bp->b_flags |= bflags; 930 bp->b_cmd = BUF_CMD_READ; 931 bp->b_bio1.bio_done = biodone_sync; 932 bp->b_bio1.bio_flags |= BIO_SYNC; 933 vfs_busy_pages(vp, bp); 934 vn_strategy(vp, &bp->b_bio1); 935 ++readwait; 936 } 937 938 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 939 if (inmem(vp, *raoffset)) 940 continue; 941 rabp = getblk(vp, *raoffset, *rabsize, GETBLK_KVABIO, 0); 942 943 if ((rabp->b_flags & B_CACHE) == 0) { 944 rabp->b_flags &= ~(B_ERROR | B_EINTR | 945 B_INVAL | B_NOTMETA); 946 rabp->b_flags |= (bflags & ~B_KVABIO); 947 rabp->b_cmd = BUF_CMD_READ; 948 vfs_busy_pages(vp, rabp); 949 BUF_KERNPROC(rabp); 950 vn_strategy(vp, &rabp->b_bio1); 951 } else { 952 brelse(rabp); 953 } 954 } 955 if (readwait) 956 rv = biowait(&bp->b_bio1, "biord"); 957 return (rv); 958 } 959 960 /* 961 * bwrite: 962 * 963 * Synchronous write, waits for completion. 964 * 965 * Write, release buffer on completion. (Done by iodone 966 * if async). Do not bother writing anything if the buffer 967 * is invalid. 968 * 969 * Note that we set B_CACHE here, indicating that buffer is 970 * fully valid and thus cacheable. This is true even of NFS 971 * now so we set it generally. This could be set either here 972 * or in biodone() since the I/O is synchronous. We put it 973 * here. 974 */ 975 int 976 bwrite(struct buf *bp) 977 { 978 int error; 979 980 if (bp->b_flags & B_INVAL) { 981 brelse(bp); 982 return (0); 983 } 984 if (BUF_LOCKINUSE(bp) == 0) 985 panic("bwrite: buffer is not busy???"); 986 987 /* 988 * NOTE: We no longer mark the buffer clear prior to the vn_strategy() 989 * call because it will remove the buffer from the vnode's 990 * dirty buffer list prematurely and possibly cause filesystem 991 * checks to race buffer flushes. This is now handled in 992 * bpdone(). 993 * 994 * bundirty(bp); REMOVED 995 */ 996 997 bp->b_flags &= ~(B_ERROR | B_EINTR); 998 bp->b_flags |= B_CACHE; 999 bp->b_cmd = BUF_CMD_WRITE; 1000 bp->b_error = 0; 1001 bp->b_bio1.bio_done = biodone_sync; 1002 bp->b_bio1.bio_flags |= BIO_SYNC; 1003 vfs_busy_pages(bp->b_vp, bp); 1004 1005 /* 1006 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1007 * valid for vnode-backed buffers. 1008 */ 1009 bsetrunningbufspace(bp, bp->b_bufsize); 1010 vn_strategy(bp->b_vp, &bp->b_bio1); 1011 error = biowait(&bp->b_bio1, "biows"); 1012 brelse(bp); 1013 1014 return (error); 1015 } 1016 1017 /* 1018 * bawrite: 1019 * 1020 * Asynchronous write. Start output on a buffer, but do not wait for 1021 * it to complete. The buffer is released when the output completes. 1022 * 1023 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1024 * B_INVAL buffers. Not us. 1025 */ 1026 void 1027 bawrite(struct buf *bp) 1028 { 1029 if (bp->b_flags & B_INVAL) { 1030 brelse(bp); 1031 return; 1032 } 1033 if (BUF_LOCKINUSE(bp) == 0) 1034 panic("bawrite: buffer is not busy???"); 1035 1036 /* 1037 * NOTE: We no longer mark the buffer clear prior to the vn_strategy() 1038 * call because it will remove the buffer from the vnode's 1039 * dirty buffer list prematurely and possibly cause filesystem 1040 * checks to race buffer flushes. This is now handled in 1041 * bpdone(). 1042 * 1043 * bundirty(bp); REMOVED 1044 */ 1045 bp->b_flags &= ~(B_ERROR | B_EINTR); 1046 bp->b_flags |= B_CACHE; 1047 bp->b_cmd = BUF_CMD_WRITE; 1048 bp->b_error = 0; 1049 KKASSERT(bp->b_bio1.bio_done == NULL); 1050 vfs_busy_pages(bp->b_vp, bp); 1051 1052 /* 1053 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1054 * valid for vnode-backed buffers. 1055 */ 1056 bsetrunningbufspace(bp, bp->b_bufsize); 1057 BUF_KERNPROC(bp); 1058 vn_strategy(bp->b_vp, &bp->b_bio1); 1059 } 1060 1061 /* 1062 * bdwrite: 1063 * 1064 * Delayed write. (Buffer is marked dirty). Do not bother writing 1065 * anything if the buffer is marked invalid. 1066 * 1067 * Note that since the buffer must be completely valid, we can safely 1068 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1069 * biodone() in order to prevent getblk from writing the buffer 1070 * out synchronously. 1071 */ 1072 void 1073 bdwrite(struct buf *bp) 1074 { 1075 if (BUF_LOCKINUSE(bp) == 0) 1076 panic("bdwrite: buffer is not busy"); 1077 1078 if (bp->b_flags & B_INVAL) { 1079 brelse(bp); 1080 return; 1081 } 1082 bdirty(bp); 1083 1084 dsched_buf_enter(bp); /* might stack */ 1085 1086 /* 1087 * Set B_CACHE, indicating that the buffer is fully valid. This is 1088 * true even of NFS now. 1089 */ 1090 bp->b_flags |= B_CACHE; 1091 1092 /* 1093 * This bmap keeps the system from needing to do the bmap later, 1094 * perhaps when the system is attempting to do a sync. Since it 1095 * is likely that the indirect block -- or whatever other datastructure 1096 * that the filesystem needs is still in memory now, it is a good 1097 * thing to do this. Note also, that if the pageout daemon is 1098 * requesting a sync -- there might not be enough memory to do 1099 * the bmap then... So, this is important to do. 1100 */ 1101 if (bp->b_bio2.bio_offset == NOOFFSET) { 1102 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1103 NULL, NULL, BUF_CMD_WRITE); 1104 } 1105 1106 /* 1107 * Because the underlying pages may still be mapped and 1108 * writable trying to set the dirty buffer (b_dirtyoff/end) 1109 * range here will be inaccurate. 1110 * 1111 * However, we must still clean the pages to satisfy the 1112 * vnode_pager and pageout daemon, so they think the pages 1113 * have been "cleaned". What has really occured is that 1114 * they've been earmarked for later writing by the buffer 1115 * cache. 1116 * 1117 * So we get the b_dirtyoff/end update but will not actually 1118 * depend on it (NFS that is) until the pages are busied for 1119 * writing later on. 1120 */ 1121 vfs_clean_pages(bp); 1122 bqrelse(bp); 1123 1124 /* 1125 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1126 * due to the softdep code. 1127 */ 1128 } 1129 1130 /* 1131 * Fake write - return pages to VM system as dirty, leave the buffer clean. 1132 * This is used by tmpfs. 1133 * 1134 * It is important for any VFS using this routine to NOT use it for 1135 * IO_SYNC or IO_ASYNC operations which occur when the system really 1136 * wants to flush VM pages to backing store. 1137 */ 1138 void 1139 buwrite(struct buf *bp) 1140 { 1141 vm_page_t m; 1142 int i; 1143 1144 /* 1145 * Only works for VMIO buffers. If the buffer is already 1146 * marked for delayed-write we can't avoid the bdwrite(). 1147 */ 1148 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) { 1149 bdwrite(bp); 1150 return; 1151 } 1152 1153 /* 1154 * Mark as needing a commit. 1155 */ 1156 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1157 m = bp->b_xio.xio_pages[i]; 1158 vm_page_need_commit(m); 1159 } 1160 bqrelse(bp); 1161 } 1162 1163 /* 1164 * bdirty: 1165 * 1166 * Turn buffer into delayed write request by marking it B_DELWRI. 1167 * B_RELBUF and B_NOCACHE must be cleared. 1168 * 1169 * We reassign the buffer to itself to properly update it in the 1170 * dirty/clean lists. 1171 * 1172 * Must be called from a critical section. 1173 * The buffer must be on BQUEUE_NONE. 1174 */ 1175 void 1176 bdirty(struct buf *bp) 1177 { 1178 KASSERT(bp->b_qindex == BQUEUE_NONE, 1179 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1180 if (bp->b_flags & B_NOCACHE) { 1181 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1182 bp->b_flags &= ~B_NOCACHE; 1183 } 1184 if (bp->b_flags & B_INVAL) { 1185 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1186 } 1187 bp->b_flags &= ~B_RELBUF; 1188 1189 if ((bp->b_flags & B_DELWRI) == 0) { 1190 lwkt_gettoken(&bp->b_vp->v_token); 1191 bp->b_flags |= B_DELWRI; 1192 reassignbuf(bp); 1193 lwkt_reltoken(&bp->b_vp->v_token); 1194 1195 atomic_add_long(&dirtybufcount, 1); 1196 atomic_add_long(&dirtykvaspace, bp->b_kvasize); 1197 atomic_add_long(&dirtybufspace, bp->b_bufsize); 1198 if (bp->b_flags & B_HEAVY) { 1199 atomic_add_long(&dirtybufcounthw, 1); 1200 atomic_add_long(&dirtybufspacehw, bp->b_bufsize); 1201 } 1202 bd_heatup(); 1203 } 1204 } 1205 1206 /* 1207 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1208 * needs to be flushed with a different buf_daemon thread to avoid 1209 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1210 */ 1211 void 1212 bheavy(struct buf *bp) 1213 { 1214 if ((bp->b_flags & B_HEAVY) == 0) { 1215 bp->b_flags |= B_HEAVY; 1216 if (bp->b_flags & B_DELWRI) { 1217 atomic_add_long(&dirtybufcounthw, 1); 1218 atomic_add_long(&dirtybufspacehw, bp->b_bufsize); 1219 } 1220 } 1221 } 1222 1223 /* 1224 * bundirty: 1225 * 1226 * Clear B_DELWRI for buffer. 1227 * 1228 * Must be called from a critical section. 1229 * 1230 * The buffer is typically on BQUEUE_NONE but there is one case in 1231 * brelse() that calls this function after placing the buffer on 1232 * a different queue. 1233 */ 1234 void 1235 bundirty(struct buf *bp) 1236 { 1237 if (bp->b_flags & B_DELWRI) { 1238 lwkt_gettoken(&bp->b_vp->v_token); 1239 bp->b_flags &= ~B_DELWRI; 1240 reassignbuf(bp); 1241 lwkt_reltoken(&bp->b_vp->v_token); 1242 1243 atomic_add_long(&dirtybufcount, -1); 1244 atomic_add_long(&dirtykvaspace, -bp->b_kvasize); 1245 atomic_add_long(&dirtybufspace, -bp->b_bufsize); 1246 if (bp->b_flags & B_HEAVY) { 1247 atomic_add_long(&dirtybufcounthw, -1); 1248 atomic_add_long(&dirtybufspacehw, -bp->b_bufsize); 1249 } 1250 bd_signal(bp->b_bufsize); 1251 } 1252 /* 1253 * Since it is now being written, we can clear its deferred write flag. 1254 */ 1255 bp->b_flags &= ~B_DEFERRED; 1256 } 1257 1258 /* 1259 * Set the b_runningbufspace field, used to track how much I/O is 1260 * in progress at any given moment. 1261 */ 1262 void 1263 bsetrunningbufspace(struct buf *bp, int bytes) 1264 { 1265 bp->b_runningbufspace = bytes; 1266 if (bytes) { 1267 atomic_add_long(&runningbufspace, bytes); 1268 atomic_add_long(&runningbufcount, 1); 1269 } 1270 } 1271 1272 /* 1273 * brelse: 1274 * 1275 * Release a busy buffer and, if requested, free its resources. The 1276 * buffer will be stashed in the appropriate bufqueue[] allowing it 1277 * to be accessed later as a cache entity or reused for other purposes. 1278 */ 1279 void 1280 brelse(struct buf *bp) 1281 { 1282 struct bufpcpu *pcpu; 1283 #ifdef INVARIANTS 1284 int saved_flags = bp->b_flags; 1285 #endif 1286 1287 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1288 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1289 1290 /* 1291 * If B_NOCACHE is set we are being asked to destroy the buffer and 1292 * its backing store. Clear B_DELWRI. 1293 * 1294 * B_NOCACHE is set in two cases: (1) when the caller really wants 1295 * to destroy the buffer and backing store and (2) when the caller 1296 * wants to destroy the buffer and backing store after a write 1297 * completes. 1298 */ 1299 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1300 bundirty(bp); 1301 } 1302 1303 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1304 /* 1305 * A re-dirtied buffer is only subject to destruction 1306 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1307 */ 1308 /* leave buffer intact */ 1309 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1310 (bp->b_bufsize <= 0)) { 1311 /* 1312 * Either a failed read or we were asked to free or not 1313 * cache the buffer. This path is reached with B_DELWRI 1314 * set only if B_INVAL is already set. B_NOCACHE governs 1315 * backing store destruction. 1316 * 1317 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1318 * buffer cannot be immediately freed. 1319 */ 1320 bp->b_flags |= B_INVAL; 1321 if (LIST_FIRST(&bp->b_dep) != NULL) 1322 buf_deallocate(bp); 1323 if (bp->b_flags & B_DELWRI) { 1324 atomic_add_long(&dirtybufcount, -1); 1325 atomic_add_long(&dirtykvaspace, -bp->b_kvasize); 1326 atomic_add_long(&dirtybufspace, -bp->b_bufsize); 1327 if (bp->b_flags & B_HEAVY) { 1328 atomic_add_long(&dirtybufcounthw, -1); 1329 atomic_add_long(&dirtybufspacehw, 1330 -bp->b_bufsize); 1331 } 1332 bd_signal(bp->b_bufsize); 1333 } 1334 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1335 } 1336 1337 /* 1338 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set, 1339 * or if b_refs is non-zero. 1340 * 1341 * If vfs_vmio_release() is called with either bit set, the 1342 * underlying pages may wind up getting freed causing a previous 1343 * write (bdwrite()) to get 'lost' because pages associated with 1344 * a B_DELWRI bp are marked clean. Pages associated with a 1345 * B_LOCKED buffer may be mapped by the filesystem. 1346 * 1347 * If we want to release the buffer ourselves (rather then the 1348 * originator asking us to release it), give the originator a 1349 * chance to countermand the release by setting B_LOCKED. 1350 * 1351 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1352 * if B_DELWRI is set. 1353 * 1354 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1355 * on pages to return pages to the VM page queues. 1356 */ 1357 if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) { 1358 bp->b_flags &= ~B_RELBUF; 1359 } else if (vm_page_count_min(0)) { 1360 if (LIST_FIRST(&bp->b_dep) != NULL) 1361 buf_deallocate(bp); /* can set B_LOCKED */ 1362 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1363 bp->b_flags &= ~B_RELBUF; 1364 else 1365 bp->b_flags |= B_RELBUF; 1366 } 1367 1368 /* 1369 * Make sure b_cmd is clear. It may have already been cleared by 1370 * biodone(). 1371 * 1372 * At this point destroying the buffer is governed by the B_INVAL 1373 * or B_RELBUF flags. 1374 */ 1375 bp->b_cmd = BUF_CMD_DONE; 1376 dsched_buf_exit(bp); 1377 1378 /* 1379 * VMIO buffer rundown. Make sure the VM page array is restored 1380 * after an I/O may have replaces some of the pages with bogus pages 1381 * in order to not destroy dirty pages in a fill-in read. 1382 * 1383 * Note that due to the code above, if a buffer is marked B_DELWRI 1384 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1385 * B_INVAL may still be set, however. 1386 * 1387 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1388 * but not the backing store. B_NOCACHE will destroy the backing 1389 * store. 1390 * 1391 * Note that dirty NFS buffers contain byte-granular write ranges 1392 * and should not be destroyed w/ B_INVAL even if the backing store 1393 * is left intact. 1394 */ 1395 if (bp->b_flags & B_VMIO) { 1396 /* 1397 * Rundown for VMIO buffers which are not dirty NFS buffers. 1398 */ 1399 int i, j, resid; 1400 vm_page_t m; 1401 off_t foff; 1402 vm_pindex_t poff; 1403 vm_object_t obj; 1404 struct vnode *vp; 1405 1406 vp = bp->b_vp; 1407 1408 /* 1409 * Get the base offset and length of the buffer. Note that 1410 * in the VMIO case if the buffer block size is not 1411 * page-aligned then b_data pointer may not be page-aligned. 1412 * But our b_xio.xio_pages array *IS* page aligned. 1413 * 1414 * block sizes less then DEV_BSIZE (usually 512) are not 1415 * supported due to the page granularity bits (m->valid, 1416 * m->dirty, etc...). 1417 * 1418 * See man buf(9) for more information 1419 */ 1420 1421 resid = bp->b_bufsize; 1422 foff = bp->b_loffset; 1423 1424 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1425 m = bp->b_xio.xio_pages[i]; 1426 1427 /* 1428 * If we hit a bogus page, fixup *all* of them 1429 * now. Note that we left these pages wired 1430 * when we removed them so they had better exist, 1431 * and they cannot be ripped out from under us so 1432 * no critical section protection is necessary. 1433 */ 1434 if (m == bogus_page) { 1435 obj = vp->v_object; 1436 poff = OFF_TO_IDX(bp->b_loffset); 1437 1438 vm_object_hold(obj); 1439 for (j = i; j < bp->b_xio.xio_npages; j++) { 1440 vm_page_t mtmp; 1441 1442 mtmp = bp->b_xio.xio_pages[j]; 1443 if (mtmp == bogus_page) { 1444 if ((bp->b_flags & B_HASBOGUS) == 0) 1445 panic("brelse: bp %p corrupt bogus", bp); 1446 mtmp = vm_page_lookup(obj, poff + j); 1447 if (!mtmp) 1448 panic("brelse: bp %p page %d missing", bp, j); 1449 bp->b_xio.xio_pages[j] = mtmp; 1450 } 1451 } 1452 vm_object_drop(obj); 1453 1454 if ((bp->b_flags & B_HASBOGUS) || 1455 (bp->b_flags & B_INVAL) == 0) { 1456 pmap_qenter_noinval( 1457 trunc_page((vm_offset_t)bp->b_data), 1458 bp->b_xio.xio_pages, 1459 bp->b_xio.xio_npages); 1460 bp->b_flags &= ~B_HASBOGUS; 1461 bp->b_flags |= B_KVABIO; 1462 bkvareset(bp); 1463 } 1464 m = bp->b_xio.xio_pages[i]; 1465 } 1466 1467 /* 1468 * Invalidate the backing store if B_NOCACHE is set 1469 * (e.g. used with vinvalbuf()). If this is NFS 1470 * we impose a requirement that the block size be 1471 * a multiple of PAGE_SIZE and create a temporary 1472 * hack to basically invalidate the whole page. The 1473 * problem is that NFS uses really odd buffer sizes 1474 * especially when tracking piecemeal writes and 1475 * it also vinvalbuf()'s a lot, which would result 1476 * in only partial page validation and invalidation 1477 * here. If the file page is mmap()'d, however, 1478 * all the valid bits get set so after we invalidate 1479 * here we would end up with weird m->valid values 1480 * like 0xfc. nfs_getpages() can't handle this so 1481 * we clear all the valid bits for the NFS case 1482 * instead of just some of them. 1483 * 1484 * The real bug is the VM system having to set m->valid 1485 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1486 * itself is an artifact of the whole 512-byte 1487 * granular mess that exists to support odd block 1488 * sizes and UFS meta-data block sizes (e.g. 6144). 1489 * A complete rewrite is required. 1490 * 1491 * XXX 1492 */ 1493 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1494 int poffset = foff & PAGE_MASK; 1495 int presid; 1496 1497 presid = PAGE_SIZE - poffset; 1498 if (bp->b_vp->v_tag == VT_NFS && 1499 bp->b_vp->v_type == VREG) { 1500 ; /* entire page */ 1501 } else if (presid > resid) { 1502 presid = resid; 1503 } 1504 KASSERT(presid >= 0, ("brelse: extra page")); 1505 vm_page_set_invalid(m, poffset, presid); 1506 1507 /* 1508 * Also make sure any swap cache is removed 1509 * as it is now stale (HAMMER in particular 1510 * uses B_NOCACHE to deal with buffer 1511 * aliasing). 1512 */ 1513 swap_pager_unswapped(m); 1514 } 1515 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1516 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1517 } 1518 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1519 vfs_vmio_release(bp); 1520 } else { 1521 /* 1522 * Rundown for non-VMIO buffers. 1523 * 1524 * XXX With B_MALLOC buffers removed, there should no longer 1525 * be any situation where brelse() is called on a non B_VMIO 1526 * buffer. Recommend assertion here. XXX 1527 */ 1528 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1529 if (bp->b_bufsize) 1530 allocbuf(bp, 0); 1531 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1532 if (bp->b_vp) 1533 brelvp(bp); 1534 } 1535 } 1536 1537 if (bp->b_qindex != BQUEUE_NONE) 1538 panic("brelse: free buffer onto another queue???"); 1539 1540 /* 1541 * Figure out the correct queue to place the cleaned up buffer on. 1542 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1543 * disassociated from their vnode. 1544 * 1545 * Return the buffer to its original pcpu area 1546 */ 1547 pcpu = &bufpcpu[bp->b_qcpu]; 1548 spin_lock(&pcpu->spin); 1549 1550 if (bp->b_flags & B_LOCKED) { 1551 /* 1552 * Buffers that are locked are placed in the locked queue 1553 * immediately, regardless of their state. 1554 */ 1555 bp->b_qindex = BQUEUE_LOCKED; 1556 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex], 1557 bp, b_freelist); 1558 } else if (bp->b_bufsize == 0) { 1559 /* 1560 * Buffers with no memory. Due to conditionals near the top 1561 * of brelse() such buffers should probably already be 1562 * marked B_INVAL and disassociated from their vnode. 1563 */ 1564 bp->b_flags |= B_INVAL; 1565 KASSERT(bp->b_vp == NULL, 1566 ("bp1 %p flags %08x/%08x vnode %p " 1567 "unexpectededly still associated!", 1568 bp, saved_flags, bp->b_flags, bp->b_vp)); 1569 KKASSERT((bp->b_flags & B_HASHED) == 0); 1570 bp->b_qindex = BQUEUE_EMPTY; 1571 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex], 1572 bp, b_freelist); 1573 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1574 /* 1575 * Buffers with junk contents. Again these buffers had better 1576 * already be disassociated from their vnode. 1577 */ 1578 KASSERT(bp->b_vp == NULL, 1579 ("bp2 %p flags %08x/%08x vnode %p unexpectededly " 1580 "still associated!", 1581 bp, saved_flags, bp->b_flags, bp->b_vp)); 1582 KKASSERT((bp->b_flags & B_HASHED) == 0); 1583 bp->b_flags |= B_INVAL; 1584 bp->b_qindex = BQUEUE_CLEAN; 1585 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex], 1586 bp, b_freelist); 1587 } else { 1588 /* 1589 * Remaining buffers. These buffers are still associated with 1590 * their vnode. 1591 */ 1592 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1593 case B_DELWRI: 1594 bp->b_qindex = BQUEUE_DIRTY; 1595 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex], 1596 bp, b_freelist); 1597 break; 1598 case B_DELWRI | B_HEAVY: 1599 bp->b_qindex = BQUEUE_DIRTY_HW; 1600 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex], 1601 bp, b_freelist); 1602 break; 1603 default: 1604 /* 1605 * NOTE: Buffers are always placed at the end of the 1606 * queue. If B_AGE is not set the buffer will cycle 1607 * through the queue twice. 1608 */ 1609 bp->b_qindex = BQUEUE_CLEAN; 1610 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex], 1611 bp, b_freelist); 1612 break; 1613 } 1614 } 1615 spin_unlock(&pcpu->spin); 1616 1617 /* 1618 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1619 * on the correct queue but we have not yet unlocked it. 1620 */ 1621 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1622 bundirty(bp); 1623 1624 /* 1625 * The bp is on an appropriate queue unless locked. If it is not 1626 * locked or dirty we can wakeup threads waiting for buffer space. 1627 * 1628 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1629 * if B_INVAL is set ). 1630 */ 1631 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1632 bufcountwakeup(); 1633 1634 /* 1635 * Something we can maybe free or reuse 1636 */ 1637 if (bp->b_bufsize || bp->b_kvasize) 1638 bufspacewakeup(); 1639 1640 /* 1641 * Clean up temporary flags and unlock the buffer. 1642 */ 1643 bp->b_flags &= ~(B_NOCACHE | B_RELBUF | B_DIRECT); 1644 BUF_UNLOCK(bp); 1645 } 1646 1647 /* 1648 * bqrelse: 1649 * 1650 * Release a buffer back to the appropriate queue but do not try to free 1651 * it. The buffer is expected to be used again soon. 1652 * 1653 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1654 * biodone() to requeue an async I/O on completion. It is also used when 1655 * known good buffers need to be requeued but we think we may need the data 1656 * again soon. 1657 * 1658 * XXX we should be able to leave the B_RELBUF hint set on completion. 1659 */ 1660 void 1661 bqrelse(struct buf *bp) 1662 { 1663 struct bufpcpu *pcpu; 1664 1665 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1666 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1667 1668 if (bp->b_qindex != BQUEUE_NONE) 1669 panic("bqrelse: free buffer onto another queue???"); 1670 1671 buf_act_advance(bp); 1672 1673 pcpu = &bufpcpu[bp->b_qcpu]; 1674 spin_lock(&pcpu->spin); 1675 1676 if (bp->b_flags & B_LOCKED) { 1677 /* 1678 * Locked buffers are released to the locked queue. However, 1679 * if the buffer is dirty it will first go into the dirty 1680 * queue and later on after the I/O completes successfully it 1681 * will be released to the locked queue. 1682 */ 1683 bp->b_qindex = BQUEUE_LOCKED; 1684 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex], 1685 bp, b_freelist); 1686 } else if (bp->b_flags & B_DELWRI) { 1687 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1688 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1689 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex], 1690 bp, b_freelist); 1691 } else if (vm_page_count_min(0)) { 1692 /* 1693 * We are too low on memory, we have to try to free the 1694 * buffer (most importantly: the wired pages making up its 1695 * backing store) *now*. 1696 */ 1697 spin_unlock(&pcpu->spin); 1698 brelse(bp); 1699 return; 1700 } else { 1701 bp->b_qindex = BQUEUE_CLEAN; 1702 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex], 1703 bp, b_freelist); 1704 } 1705 spin_unlock(&pcpu->spin); 1706 1707 /* 1708 * We have now placed the buffer on the proper queue, but have yet 1709 * to unlock it. 1710 */ 1711 if ((bp->b_flags & B_LOCKED) == 0 && 1712 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1713 bufcountwakeup(); 1714 } 1715 1716 /* 1717 * Something we can maybe free or reuse. 1718 */ 1719 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1720 bufspacewakeup(); 1721 1722 /* 1723 * Final cleanup and unlock. Clear bits that are only used while a 1724 * buffer is actively locked. 1725 */ 1726 bp->b_flags &= ~(B_NOCACHE | B_RELBUF); 1727 dsched_buf_exit(bp); 1728 BUF_UNLOCK(bp); 1729 } 1730 1731 /* 1732 * Hold a buffer, preventing it from being reused. This will prevent 1733 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL 1734 * operations. If a B_INVAL operation occurs the buffer will remain held 1735 * but the underlying pages may get ripped out. 1736 * 1737 * These functions are typically used in VOP_READ/VOP_WRITE functions 1738 * to hold a buffer during a copyin or copyout, preventing deadlocks 1739 * or recursive lock panics when read()/write() is used over mmap()'d 1740 * space. 1741 * 1742 * NOTE: bqhold() requires that the buffer be locked at the time of the 1743 * hold. bqdrop() has no requirements other than the buffer having 1744 * previously been held. 1745 */ 1746 void 1747 bqhold(struct buf *bp) 1748 { 1749 atomic_add_int(&bp->b_refs, 1); 1750 } 1751 1752 void 1753 bqdrop(struct buf *bp) 1754 { 1755 KKASSERT(bp->b_refs > 0); 1756 atomic_add_int(&bp->b_refs, -1); 1757 } 1758 1759 /* 1760 * Return backing pages held by the buffer 'bp' back to the VM system. 1761 * This routine is called when the bp is invalidated, released, or 1762 * reused. 1763 * 1764 * The KVA mapping (b_data) for the underlying pages is removed by 1765 * this function. 1766 * 1767 * WARNING! This routine is integral to the low memory critical path 1768 * when a buffer is B_RELBUF'd. If the system has a severe page 1769 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE 1770 * queues so they can be reused in the current pageout daemon 1771 * pass. 1772 */ 1773 static void 1774 vfs_vmio_release(struct buf *bp) 1775 { 1776 int i; 1777 vm_page_t m; 1778 1779 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1780 m = bp->b_xio.xio_pages[i]; 1781 bp->b_xio.xio_pages[i] = NULL; 1782 1783 /* 1784 * We need to own the page in order to safely unwire it. 1785 */ 1786 vm_page_busy_wait(m, FALSE, "vmiopg"); 1787 1788 /* 1789 * The VFS is telling us this is not a meta-data buffer 1790 * even if it is backed by a block device. 1791 */ 1792 if (bp->b_flags & B_NOTMETA) 1793 vm_page_flag_set(m, PG_NOTMETA); 1794 1795 /* 1796 * This is a very important bit of code. We try to track 1797 * VM page use whether the pages are wired into the buffer 1798 * cache or not. While wired into the buffer cache the 1799 * bp tracks the act_count. 1800 * 1801 * We can choose to place unwired pages on the inactive 1802 * queue (0) or active queue (1). If we place too many 1803 * on the active queue the queue will cycle the act_count 1804 * on pages we'd like to keep, just from single-use pages 1805 * (such as when doing a tar-up or file scan). 1806 */ 1807 if (bp->b_act_count < vm_cycle_point) 1808 vm_page_unwire(m, 0); 1809 else 1810 vm_page_unwire(m, 1); 1811 1812 /* 1813 * If the wire_count has dropped to 0 we may need to take 1814 * further action before unbusying the page. 1815 * 1816 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us. 1817 */ 1818 if (m->wire_count == 0) { 1819 if (bp->b_flags & B_DIRECT) { 1820 /* 1821 * Attempt to free the page if B_DIRECT is 1822 * set, the caller does not desire the page 1823 * to be cached. 1824 */ 1825 vm_page_wakeup(m); 1826 vm_page_try_to_free(m); 1827 } else if ((bp->b_flags & B_NOTMETA) || 1828 vm_page_count_min(0)) { 1829 /* 1830 * Attempt to move the page to PQ_CACHE 1831 * if B_NOTMETA is set. This flag is set 1832 * by HAMMER to remove one of the two pages 1833 * present when double buffering is enabled. 1834 * 1835 * Attempt to move the page to PQ_CACHE 1836 * If we have a severe page deficit. This 1837 * will cause buffer cache operations related 1838 * to pageouts to recycle the related pages 1839 * in order to avoid a low memory deadlock. 1840 */ 1841 m->act_count = bp->b_act_count; 1842 vm_page_try_to_cache(m); 1843 } else { 1844 /* 1845 * Nominal case, leave the page on the 1846 * queue the original unwiring placed it on 1847 * (active or inactive). 1848 */ 1849 m->act_count = bp->b_act_count; 1850 vm_page_wakeup(m); 1851 } 1852 } else { 1853 vm_page_wakeup(m); 1854 } 1855 } 1856 1857 /* 1858 * Zero out the pmap pte's for the mapping, but don't bother 1859 * invalidating the TLB. The range will be properly invalidating 1860 * when new pages are entered into the mapping. 1861 * 1862 * This in particular reduces tmpfs tear-down overhead and reduces 1863 * buffer cache re-use overhead (one invalidation sequence instead 1864 * of two per re-use). 1865 */ 1866 pmap_qremove_noinval(trunc_page((vm_offset_t) bp->b_data), 1867 bp->b_xio.xio_npages); 1868 CPUMASK_ASSZERO(bp->b_cpumask); 1869 if (bp->b_bufsize) { 1870 atomic_add_long(&bufspace, -bp->b_bufsize); 1871 bp->b_bufsize = 0; 1872 bufspacewakeup(); 1873 } 1874 bp->b_xio.xio_npages = 0; 1875 bp->b_flags &= ~B_VMIO; 1876 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1877 if (bp->b_vp) 1878 brelvp(bp); 1879 } 1880 1881 /* 1882 * Find and initialize a new buffer header, freeing up existing buffers 1883 * in the bufqueues as necessary. The new buffer is returned locked. 1884 * 1885 * Important: B_INVAL is not set. If the caller wishes to throw the 1886 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1887 * 1888 * We block if: 1889 * We have insufficient buffer headers 1890 * We have insufficient buffer space 1891 * 1892 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1893 * Instead we ask the buf daemon to do it for us. We attempt to 1894 * avoid piecemeal wakeups of the pageout daemon. 1895 */ 1896 struct buf * 1897 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1898 { 1899 struct bufpcpu *pcpu; 1900 struct buf *bp; 1901 struct buf *nbp; 1902 int nqindex; 1903 int nqcpu; 1904 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1905 int maxloops = 200000; 1906 int restart_reason = 0; 1907 struct buf *restart_bp = NULL; 1908 static char flushingbufs[MAXCPU]; 1909 char *flushingp; 1910 1911 /* 1912 * We can't afford to block since we might be holding a vnode lock, 1913 * which may prevent system daemons from running. We deal with 1914 * low-memory situations by proactively returning memory and running 1915 * async I/O rather then sync I/O. 1916 */ 1917 1918 ++getnewbufcalls; 1919 nqcpu = mycpu->gd_cpuid; 1920 flushingp = &flushingbufs[nqcpu]; 1921 restart: 1922 if (bufspace < lobufspace) 1923 *flushingp = 0; 1924 1925 if (debug_bufbio && --maxloops == 0) 1926 panic("getnewbuf, excessive loops on cpu %d restart %d (%p)", 1927 mycpu->gd_cpuid, restart_reason, restart_bp); 1928 1929 /* 1930 * Setup for scan. If we do not have enough free buffers, 1931 * we setup a degenerate case that immediately fails. Note 1932 * that if we are specially marked process, we are allowed to 1933 * dip into our reserves. 1934 * 1935 * The scanning sequence is nominally: EMPTY->CLEAN 1936 */ 1937 pcpu = &bufpcpu[nqcpu]; 1938 spin_lock(&pcpu->spin); 1939 1940 /* 1941 * Prime the scan for this cpu. Locate the first buffer to 1942 * check. If we are flushing buffers we must skip the 1943 * EMPTY queue. 1944 */ 1945 nqindex = BQUEUE_EMPTY; 1946 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]); 1947 if (nbp == NULL || *flushingp) { 1948 nqindex = BQUEUE_CLEAN; 1949 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]); 1950 } 1951 1952 /* 1953 * Run scan, possibly freeing data and/or kva mappings on the fly, 1954 * depending. 1955 * 1956 * WARNING! spin is held! 1957 */ 1958 while ((bp = nbp) != NULL) { 1959 int qindex = nqindex; 1960 1961 nbp = TAILQ_NEXT(bp, b_freelist); 1962 1963 /* 1964 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1965 * cycles through the queue twice before being selected. 1966 */ 1967 if (qindex == BQUEUE_CLEAN && 1968 (bp->b_flags & B_AGE) == 0 && nbp) { 1969 bp->b_flags |= B_AGE; 1970 TAILQ_REMOVE(&pcpu->bufqueues[qindex], 1971 bp, b_freelist); 1972 TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex], 1973 bp, b_freelist); 1974 continue; 1975 } 1976 1977 /* 1978 * Calculate next bp ( we can only use it if we do not block 1979 * or do other fancy things ). 1980 */ 1981 if (nbp == NULL) { 1982 switch(qindex) { 1983 case BQUEUE_EMPTY: 1984 nqindex = BQUEUE_CLEAN; 1985 if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]))) 1986 break; 1987 /* fall through */ 1988 case BQUEUE_CLEAN: 1989 /* 1990 * nbp is NULL. 1991 */ 1992 break; 1993 } 1994 } 1995 1996 /* 1997 * Sanity Checks 1998 */ 1999 KASSERT(bp->b_qindex == qindex, 2000 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 2001 2002 /* 2003 * Note: we no longer distinguish between VMIO and non-VMIO 2004 * buffers. 2005 */ 2006 KASSERT((bp->b_flags & B_DELWRI) == 0, 2007 ("delwri buffer %p found in queue %d", bp, qindex)); 2008 2009 /* 2010 * Do not try to reuse a buffer with a non-zero b_refs. 2011 * This is an unsynchronized test. A synchronized test 2012 * is also performed after we lock the buffer. 2013 */ 2014 if (bp->b_refs) 2015 continue; 2016 2017 /* 2018 * Start freeing the bp. This is somewhat involved. nbp 2019 * remains valid only for BQUEUE_EMPTY bp's. Buffers 2020 * on the clean list must be disassociated from their 2021 * current vnode. Buffers on the empty lists have 2022 * already been disassociated. 2023 * 2024 * b_refs is checked after locking along with queue changes. 2025 * We must check here to deal with zero->nonzero transitions 2026 * made by the owner of the buffer lock, which is used by 2027 * VFS's to hold the buffer while issuing an unlocked 2028 * uiomove()s. We cannot invalidate the buffer's pages 2029 * for this case. Once we successfully lock a buffer the 2030 * only 0->1 transitions of b_refs will occur via findblk(). 2031 * 2032 * We must also check for queue changes after successful 2033 * locking as the current lock holder may dispose of the 2034 * buffer and change its queue. 2035 */ 2036 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2037 spin_unlock(&pcpu->spin); 2038 tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100); 2039 restart_reason = 1; 2040 restart_bp = bp; 2041 goto restart; 2042 } 2043 if (bp->b_qindex != qindex || bp->b_refs) { 2044 spin_unlock(&pcpu->spin); 2045 BUF_UNLOCK(bp); 2046 restart_reason = 2; 2047 restart_bp = bp; 2048 goto restart; 2049 } 2050 bremfree_locked(bp); 2051 spin_unlock(&pcpu->spin); 2052 2053 /* 2054 * Dependancies must be handled before we disassociate the 2055 * vnode. 2056 * 2057 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2058 * be immediately disassociated. HAMMER then becomes 2059 * responsible for releasing the buffer. 2060 * 2061 * NOTE: spin is UNLOCKED now. 2062 */ 2063 if (LIST_FIRST(&bp->b_dep) != NULL) { 2064 buf_deallocate(bp); 2065 if (bp->b_flags & B_LOCKED) { 2066 bqrelse(bp); 2067 restart_reason = 3; 2068 restart_bp = bp; 2069 goto restart; 2070 } 2071 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2072 } 2073 2074 /* 2075 * CLEAN buffers have content or associations that must be 2076 * cleaned out if not repurposing. 2077 */ 2078 if (qindex == BQUEUE_CLEAN) { 2079 if (bp->b_flags & B_VMIO) 2080 vfs_vmio_release(bp); 2081 if (bp->b_vp) 2082 brelvp(bp); 2083 } 2084 2085 /* 2086 * NOTE: nbp is now entirely invalid. We can only restart 2087 * the scan from this point on. 2088 * 2089 * Get the rest of the buffer freed up. b_kva* is still 2090 * valid after this operation. 2091 */ 2092 KASSERT(bp->b_vp == NULL, 2093 ("bp3 %p flags %08x vnode %p qindex %d " 2094 "unexpectededly still associated!", 2095 bp, bp->b_flags, bp->b_vp, qindex)); 2096 KKASSERT((bp->b_flags & B_HASHED) == 0); 2097 2098 if (bp->b_bufsize) 2099 allocbuf(bp, 0); 2100 2101 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) { 2102 kprintf("getnewbuf: caught bug vp queue " 2103 "%p/%08x qidx %d\n", 2104 bp, bp->b_flags, qindex); 2105 brelvp(bp); 2106 } 2107 bp->b_flags = B_BNOCLIP; 2108 bp->b_cmd = BUF_CMD_DONE; 2109 bp->b_vp = NULL; 2110 bp->b_error = 0; 2111 bp->b_resid = 0; 2112 bp->b_bcount = 0; 2113 bp->b_xio.xio_npages = 0; 2114 bp->b_dirtyoff = bp->b_dirtyend = 0; 2115 bp->b_act_count = ACT_INIT; 2116 reinitbufbio(bp); 2117 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2118 buf_dep_init(bp); 2119 if (blkflags & GETBLK_BHEAVY) 2120 bp->b_flags |= B_HEAVY; 2121 2122 if (bufspace >= hibufspace) 2123 *flushingp = 1; 2124 if (bufspace < lobufspace) 2125 *flushingp = 0; 2126 if (*flushingp) { 2127 bp->b_flags |= B_INVAL; 2128 brelse(bp); 2129 restart_reason = 5; 2130 restart_bp = bp; 2131 goto restart; 2132 } 2133 2134 /* 2135 * b_refs can transition to a non-zero value while we hold 2136 * the buffer locked due to a findblk(). Our brelvp() above 2137 * interlocked any future possible transitions due to 2138 * findblk()s. 2139 * 2140 * If we find b_refs to be non-zero we can destroy the 2141 * buffer's contents but we cannot yet reuse the buffer. 2142 */ 2143 if (bp->b_refs) { 2144 bp->b_flags |= B_INVAL; 2145 brelse(bp); 2146 restart_reason = 6; 2147 restart_bp = bp; 2148 2149 goto restart; 2150 } 2151 2152 /* 2153 * We found our buffer! 2154 */ 2155 break; 2156 } 2157 2158 /* 2159 * If we exhausted our list, iterate other cpus. If that fails, 2160 * sleep as appropriate. We may have to wakeup various daemons 2161 * and write out some dirty buffers. 2162 * 2163 * Generally we are sleeping due to insufficient buffer space. 2164 * 2165 * NOTE: spin is held if bp is NULL, else it is not held. 2166 */ 2167 if (bp == NULL) { 2168 int flags; 2169 char *waitmsg; 2170 2171 spin_unlock(&pcpu->spin); 2172 2173 nqcpu = (nqcpu + 1) % ncpus; 2174 if (nqcpu != mycpu->gd_cpuid) { 2175 restart_reason = 7; 2176 restart_bp = bp; 2177 goto restart; 2178 } 2179 2180 if (bufspace >= hibufspace) { 2181 waitmsg = "bufspc"; 2182 flags = VFS_BIO_NEED_BUFSPACE; 2183 } else { 2184 waitmsg = "newbuf"; 2185 flags = VFS_BIO_NEED_ANY; 2186 } 2187 2188 bd_speedup(); /* heeeelp */ 2189 atomic_set_int(&needsbuffer, flags); 2190 while (needsbuffer & flags) { 2191 int value; 2192 2193 tsleep_interlock(&needsbuffer, 0); 2194 value = atomic_fetchadd_int(&needsbuffer, 0); 2195 if (value & flags) { 2196 if (tsleep(&needsbuffer, PINTERLOCKED|slpflags, 2197 waitmsg, slptimeo)) { 2198 return (NULL); 2199 } 2200 } 2201 } 2202 } else { 2203 /* 2204 * We finally have a valid bp. Reset b_data. 2205 * 2206 * (spin is not held) 2207 */ 2208 bp->b_data = bp->b_kvabase; 2209 } 2210 return(bp); 2211 } 2212 2213 /* 2214 * buf_daemon: 2215 * 2216 * Buffer flushing daemon. Buffers are normally flushed by the 2217 * update daemon but if it cannot keep up this process starts to 2218 * take the load in an attempt to prevent getnewbuf() from blocking. 2219 * 2220 * Once a flush is initiated it does not stop until the number 2221 * of buffers falls below lodirtybuffers, but we will wake up anyone 2222 * waiting at the mid-point. 2223 */ 2224 static struct kproc_desc buf_kp = { 2225 "bufdaemon", 2226 buf_daemon, 2227 &bufdaemon_td 2228 }; 2229 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2230 kproc_start, &buf_kp); 2231 2232 static struct kproc_desc bufhw_kp = { 2233 "bufdaemon_hw", 2234 buf_daemon_hw, 2235 &bufdaemonhw_td 2236 }; 2237 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2238 kproc_start, &bufhw_kp); 2239 2240 static void 2241 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long), 2242 int *bd_req) 2243 { 2244 long limit; 2245 struct buf *marker; 2246 2247 marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO); 2248 marker->b_flags |= B_MARKER; 2249 marker->b_qindex = BQUEUE_NONE; 2250 marker->b_qcpu = 0; 2251 2252 /* 2253 * This process needs to be suspended prior to shutdown sync. 2254 */ 2255 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2256 td, SHUTDOWN_PRI_LAST); 2257 curthread->td_flags |= TDF_SYSTHREAD; 2258 2259 /* 2260 * This process is allowed to take the buffer cache to the limit 2261 */ 2262 for (;;) { 2263 kproc_suspend_loop(); 2264 2265 /* 2266 * Do the flush as long as the number of dirty buffers 2267 * (including those running) exceeds lodirtybufspace. 2268 * 2269 * When flushing limit running I/O to hirunningspace 2270 * Do the flush. Limit the amount of in-transit I/O we 2271 * allow to build up, otherwise we would completely saturate 2272 * the I/O system. Wakeup any waiting processes before we 2273 * normally would so they can run in parallel with our drain. 2274 * 2275 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2276 * but because we split the operation into two threads we 2277 * have to cut it in half for each thread. 2278 */ 2279 waitrunningbufspace(); 2280 limit = lodirtybufspace / 2; 2281 while (buf_limit_fn(limit)) { 2282 if (flushbufqueues(marker, queue) == 0) 2283 break; 2284 if (runningbufspace < hirunningspace) 2285 continue; 2286 waitrunningbufspace(); 2287 } 2288 2289 /* 2290 * We reached our low water mark, reset the 2291 * request and sleep until we are needed again. 2292 * The sleep is just so the suspend code works. 2293 */ 2294 tsleep_interlock(bd_req, 0); 2295 if (atomic_swap_int(bd_req, 0) == 0) 2296 tsleep(bd_req, PINTERLOCKED, "psleep", hz); 2297 } 2298 /* NOT REACHED */ 2299 /*kfree(marker, M_BIOBUF);*/ 2300 } 2301 2302 static int 2303 buf_daemon_limit(long limit) 2304 { 2305 return (runningbufspace + dirtykvaspace > limit || 2306 dirtybufcount - dirtybufcounthw >= nbuf / 2); 2307 } 2308 2309 static int 2310 buf_daemon_hw_limit(long limit) 2311 { 2312 return (runningbufspace + dirtykvaspace > limit || 2313 dirtybufcounthw >= nbuf / 2); 2314 } 2315 2316 static void 2317 buf_daemon(void) 2318 { 2319 buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit, 2320 &bd_request); 2321 } 2322 2323 static void 2324 buf_daemon_hw(void) 2325 { 2326 buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit, 2327 &bd_request_hw); 2328 } 2329 2330 /* 2331 * Flush up to (flushperqueue) buffers in the dirty queue. Each cpu has a 2332 * localized version of the queue. Each call made to this function iterates 2333 * to another cpu. It is desireable to flush several buffers from the same 2334 * cpu's queue at once, as these are likely going to be linear. 2335 * 2336 * We must be careful to free up B_INVAL buffers instead of write them, which 2337 * NFS is particularly sensitive to. 2338 * 2339 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate that we 2340 * really want to try to get the buffer out and reuse it due to the write 2341 * load on the machine. 2342 * 2343 * We must lock the buffer in order to check its validity before we can mess 2344 * with its contents. spin isn't enough. 2345 */ 2346 static int 2347 flushbufqueues(struct buf *marker, bufq_type_t q) 2348 { 2349 struct bufpcpu *pcpu; 2350 struct buf *bp; 2351 int r = 0; 2352 u_int loops = flushperqueue; 2353 int lcpu = marker->b_qcpu; 2354 2355 KKASSERT(marker->b_qindex == BQUEUE_NONE); 2356 KKASSERT(marker->b_flags & B_MARKER); 2357 2358 again: 2359 /* 2360 * Spinlock needed to perform operations on the queue and may be 2361 * held through a non-blocking BUF_LOCK(), but cannot be held when 2362 * BUF_UNLOCK()ing or through any other major operation. 2363 */ 2364 pcpu = &bufpcpu[marker->b_qcpu]; 2365 spin_lock(&pcpu->spin); 2366 marker->b_qindex = q; 2367 TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist); 2368 bp = marker; 2369 2370 while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) { 2371 /* 2372 * NOTE: spinlock is always held at the top of the loop 2373 */ 2374 if (bp->b_flags & B_MARKER) 2375 continue; 2376 if ((bp->b_flags & B_DELWRI) == 0) { 2377 kprintf("Unexpected clean buffer %p\n", bp); 2378 continue; 2379 } 2380 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) 2381 continue; 2382 KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q); 2383 2384 /* 2385 * Once the buffer is locked we will have no choice but to 2386 * unlock the spinlock around a later BUF_UNLOCK and re-set 2387 * bp = marker when looping. Move the marker now to make 2388 * things easier. 2389 */ 2390 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist); 2391 TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist); 2392 2393 /* 2394 * Must recheck B_DELWRI after successfully locking 2395 * the buffer. 2396 */ 2397 if ((bp->b_flags & B_DELWRI) == 0) { 2398 spin_unlock(&pcpu->spin); 2399 BUF_UNLOCK(bp); 2400 spin_lock(&pcpu->spin); 2401 bp = marker; 2402 continue; 2403 } 2404 2405 /* 2406 * Remove the buffer from its queue. We still own the 2407 * spinlock here. 2408 */ 2409 _bremfree(bp); 2410 2411 /* 2412 * Disposing of an invalid buffer counts as a flush op 2413 */ 2414 if (bp->b_flags & B_INVAL) { 2415 spin_unlock(&pcpu->spin); 2416 brelse(bp); 2417 goto doloop; 2418 } 2419 2420 /* 2421 * Release the spinlock for the more complex ops we 2422 * are now going to do. 2423 */ 2424 spin_unlock(&pcpu->spin); 2425 lwkt_yield(); 2426 2427 /* 2428 * This is a bit messy 2429 */ 2430 if (LIST_FIRST(&bp->b_dep) != NULL && 2431 (bp->b_flags & B_DEFERRED) == 0 && 2432 buf_countdeps(bp, 0)) { 2433 spin_lock(&pcpu->spin); 2434 TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist); 2435 bp->b_qindex = q; 2436 bp->b_flags |= B_DEFERRED; 2437 spin_unlock(&pcpu->spin); 2438 BUF_UNLOCK(bp); 2439 spin_lock(&pcpu->spin); 2440 bp = marker; 2441 continue; 2442 } 2443 2444 /* 2445 * spinlock not held here. 2446 * 2447 * If the buffer has a dependancy, buf_checkwrite() must 2448 * also return 0 for us to be able to initate the write. 2449 * 2450 * If the buffer is flagged B_ERROR it may be requeued 2451 * over and over again, we try to avoid a live lock. 2452 */ 2453 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) { 2454 brelse(bp); 2455 } else if (bp->b_flags & B_ERROR) { 2456 tsleep(bp, 0, "bioer", 1); 2457 bp->b_flags &= ~B_AGE; 2458 cluster_awrite(bp); 2459 } else { 2460 bp->b_flags |= B_AGE | B_KVABIO; 2461 cluster_awrite(bp); 2462 } 2463 /* bp invalid but needs to be NULL-tested if we break out */ 2464 doloop: 2465 spin_lock(&pcpu->spin); 2466 ++r; 2467 if (--loops == 0) 2468 break; 2469 bp = marker; 2470 } 2471 /* bp is invalid here but can be NULL-tested to advance */ 2472 2473 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist); 2474 marker->b_qindex = BQUEUE_NONE; 2475 spin_unlock(&pcpu->spin); 2476 2477 /* 2478 * Advance the marker to be fair. 2479 */ 2480 marker->b_qcpu = (marker->b_qcpu + 1) % ncpus; 2481 if (bp == NULL) { 2482 if (marker->b_qcpu != lcpu) 2483 goto again; 2484 } 2485 2486 return (r); 2487 } 2488 2489 /* 2490 * inmem: 2491 * 2492 * Returns true if no I/O is needed to access the associated VM object. 2493 * This is like findblk except it also hunts around in the VM system for 2494 * the data. 2495 * 2496 * Note that we ignore vm_page_free() races from interrupts against our 2497 * lookup, since if the caller is not protected our return value will not 2498 * be any more valid then otherwise once we exit the critical section. 2499 */ 2500 int 2501 inmem(struct vnode *vp, off_t loffset) 2502 { 2503 vm_object_t obj; 2504 vm_offset_t toff, tinc, size; 2505 vm_page_t m; 2506 int res = 1; 2507 2508 if (findblk(vp, loffset, FINDBLK_TEST)) 2509 return 1; 2510 if (vp->v_mount == NULL) 2511 return 0; 2512 if ((obj = vp->v_object) == NULL) 2513 return 0; 2514 2515 size = PAGE_SIZE; 2516 if (size > vp->v_mount->mnt_stat.f_iosize) 2517 size = vp->v_mount->mnt_stat.f_iosize; 2518 2519 vm_object_hold(obj); 2520 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2521 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2522 if (m == NULL) { 2523 res = 0; 2524 break; 2525 } 2526 tinc = size; 2527 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2528 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2529 if (vm_page_is_valid(m, 2530 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) { 2531 res = 0; 2532 break; 2533 } 2534 } 2535 vm_object_drop(obj); 2536 return (res); 2537 } 2538 2539 /* 2540 * findblk: 2541 * 2542 * Locate and return the specified buffer. Unless flagged otherwise, 2543 * a locked buffer will be returned if it exists or NULL if it does not. 2544 * 2545 * findblk()'d buffers are still on the bufqueues and if you intend 2546 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2547 * and possibly do other stuff to it. 2548 * 2549 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2550 * for locking the buffer and ensuring that it remains 2551 * the desired buffer after locking. 2552 * 2553 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2554 * to acquire the lock we return NULL, even if the 2555 * buffer exists. 2556 * 2557 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal 2558 * reuse by getnewbuf() but does not prevent 2559 * disassociation (B_INVAL). Used to avoid deadlocks 2560 * against random (vp,loffset)s due to reassignment. 2561 * 2562 * FINDBLK_KVABIO - Only applicable when returning a locked buffer. 2563 * Indicates that the caller supports B_KVABIO. 2564 * 2565 * (0) - Lock the buffer blocking. 2566 */ 2567 struct buf * 2568 findblk(struct vnode *vp, off_t loffset, int flags) 2569 { 2570 struct buf *bp; 2571 int lkflags; 2572 2573 lkflags = LK_EXCLUSIVE; 2574 if (flags & FINDBLK_NBLOCK) 2575 lkflags |= LK_NOWAIT; 2576 2577 for (;;) { 2578 /* 2579 * Lookup. Ref the buf while holding v_token to prevent 2580 * reuse (but does not prevent diassociation). 2581 */ 2582 lwkt_gettoken_shared(&vp->v_token); 2583 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2584 if (bp == NULL) { 2585 lwkt_reltoken(&vp->v_token); 2586 return(NULL); 2587 } 2588 bqhold(bp); 2589 lwkt_reltoken(&vp->v_token); 2590 2591 /* 2592 * If testing only break and return bp, do not lock. 2593 */ 2594 if (flags & FINDBLK_TEST) 2595 break; 2596 2597 /* 2598 * Lock the buffer, return an error if the lock fails. 2599 * (only FINDBLK_NBLOCK can cause the lock to fail). 2600 */ 2601 if (BUF_LOCK(bp, lkflags)) { 2602 atomic_subtract_int(&bp->b_refs, 1); 2603 /* bp = NULL; not needed */ 2604 return(NULL); 2605 } 2606 2607 /* 2608 * Revalidate the locked buf before allowing it to be 2609 * returned. 2610 * 2611 * B_KVABIO is only set/cleared when locking. When 2612 * clearing B_KVABIO, we must ensure that the buffer 2613 * is synchronized to all cpus. 2614 */ 2615 if (bp->b_vp == vp && bp->b_loffset == loffset) { 2616 if (flags & FINDBLK_KVABIO) 2617 bp->b_flags |= B_KVABIO; 2618 else 2619 bkvasync_all(bp); 2620 break; 2621 } 2622 atomic_subtract_int(&bp->b_refs, 1); 2623 BUF_UNLOCK(bp); 2624 } 2625 2626 /* 2627 * Success 2628 */ 2629 if ((flags & FINDBLK_REF) == 0) 2630 atomic_subtract_int(&bp->b_refs, 1); 2631 return(bp); 2632 } 2633 2634 /* 2635 * getcacheblk: 2636 * 2637 * Similar to getblk() except only returns the buffer if it is 2638 * B_CACHE and requires no other manipulation. Otherwise NULL 2639 * is returned. NULL is also returned if GETBLK_NOWAIT is set 2640 * and the getblk() would block. 2641 * 2642 * If B_RAM is set the buffer might be just fine, but we return 2643 * NULL anyway because we want the code to fall through to the 2644 * cluster read to issue more read-aheads. Otherwise read-ahead breaks. 2645 * 2646 * If blksize is 0 the buffer cache buffer must already be fully 2647 * cached. 2648 * 2649 * If blksize is non-zero getblk() will be used, allowing a buffer 2650 * to be reinstantiated from its VM backing store. The buffer must 2651 * still be fully cached after reinstantiation to be returned. 2652 */ 2653 struct buf * 2654 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags) 2655 { 2656 struct buf *bp; 2657 int fndflags = 0; 2658 2659 if (blkflags & GETBLK_NOWAIT) 2660 fndflags |= FINDBLK_NBLOCK; 2661 if (blkflags & GETBLK_KVABIO) 2662 fndflags |= FINDBLK_KVABIO; 2663 2664 if (blksize) { 2665 bp = getblk(vp, loffset, blksize, blkflags, 0); 2666 if (bp) { 2667 if ((bp->b_flags & (B_INVAL | B_CACHE)) == B_CACHE) { 2668 bp->b_flags &= ~B_AGE; 2669 if (bp->b_flags & B_RAM) { 2670 bqrelse(bp); 2671 bp = NULL; 2672 } 2673 } else { 2674 brelse(bp); 2675 bp = NULL; 2676 } 2677 } 2678 } else { 2679 bp = findblk(vp, loffset, fndflags); 2680 if (bp) { 2681 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == 2682 B_CACHE) { 2683 bp->b_flags &= ~B_AGE; 2684 bremfree(bp); 2685 } else { 2686 BUF_UNLOCK(bp); 2687 bp = NULL; 2688 } 2689 } 2690 } 2691 return (bp); 2692 } 2693 2694 /* 2695 * getblk: 2696 * 2697 * Get a block given a specified block and offset into a file/device. 2698 * B_INVAL may or may not be set on return. The caller should clear 2699 * B_INVAL prior to initiating a READ. 2700 * 2701 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2702 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2703 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2704 * without doing any of those things the system will likely believe 2705 * the buffer to be valid (especially if it is not B_VMIO), and the 2706 * next getblk() will return the buffer with B_CACHE set. 2707 * 2708 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2709 * an existing buffer. 2710 * 2711 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2712 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2713 * and then cleared based on the backing VM. If the previous buffer is 2714 * non-0-sized but invalid, B_CACHE will be cleared. 2715 * 2716 * If getblk() must create a new buffer, the new buffer is returned with 2717 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2718 * case it is returned with B_INVAL clear and B_CACHE set based on the 2719 * backing VM. 2720 * 2721 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2722 * B_CACHE bit is clear. 2723 * 2724 * What this means, basically, is that the caller should use B_CACHE to 2725 * determine whether the buffer is fully valid or not and should clear 2726 * B_INVAL prior to issuing a read. If the caller intends to validate 2727 * the buffer by loading its data area with something, the caller needs 2728 * to clear B_INVAL. If the caller does this without issuing an I/O, 2729 * the caller should set B_CACHE ( as an optimization ), else the caller 2730 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2731 * a write attempt or if it was a successfull read. If the caller 2732 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2733 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2734 * 2735 * getblk flags: 2736 * 2737 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2738 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2739 */ 2740 struct buf * 2741 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2742 { 2743 struct buf *bp; 2744 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2745 int error; 2746 int lkflags; 2747 2748 if (size > MAXBSIZE) 2749 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2750 if (vp->v_object == NULL) 2751 panic("getblk: vnode %p has no object!", vp); 2752 2753 /* 2754 * NOTE: findblk does not try to resolve KVABIO in REF-only mode. 2755 * we still have to handle that ourselves. 2756 */ 2757 loop: 2758 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) { 2759 /* 2760 * The buffer was found in the cache, but we need to lock it. 2761 * We must acquire a ref on the bp to prevent reuse, but 2762 * this will not prevent disassociation (brelvp()) so we 2763 * must recheck (vp,loffset) after acquiring the lock. 2764 * 2765 * Without the ref the buffer could potentially be reused 2766 * before we acquire the lock and create a deadlock 2767 * situation between the thread trying to reuse the buffer 2768 * and us due to the fact that we would wind up blocking 2769 * on a random (vp,loffset). 2770 */ 2771 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2772 if (blkflags & GETBLK_NOWAIT) { 2773 bqdrop(bp); 2774 return(NULL); 2775 } 2776 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2777 if (blkflags & GETBLK_PCATCH) 2778 lkflags |= LK_PCATCH; 2779 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2780 if (error) { 2781 bqdrop(bp); 2782 if (error == ENOLCK) 2783 goto loop; 2784 return (NULL); 2785 } 2786 /* buffer may have changed on us */ 2787 } 2788 bqdrop(bp); 2789 2790 /* 2791 * Once the buffer has been locked, make sure we didn't race 2792 * a buffer recyclement. Buffers that are no longer hashed 2793 * will have b_vp == NULL, so this takes care of that check 2794 * as well. 2795 */ 2796 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2797 #if 0 2798 kprintf("Warning buffer %p (vp %p loffset %lld) " 2799 "was recycled\n", 2800 bp, vp, (long long)loffset); 2801 #endif 2802 BUF_UNLOCK(bp); 2803 goto loop; 2804 } 2805 2806 /* 2807 * If SZMATCH any pre-existing buffer must be of the requested 2808 * size or NULL is returned. The caller absolutely does not 2809 * want getblk() to bwrite() the buffer on a size mismatch. 2810 */ 2811 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2812 BUF_UNLOCK(bp); 2813 return(NULL); 2814 } 2815 2816 /* 2817 * All vnode-based buffers must be backed by a VM object. 2818 * 2819 * Set B_KVABIO for any incidental work, we will fix it 2820 * up later. 2821 */ 2822 KKASSERT(bp->b_flags & B_VMIO); 2823 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2824 bp->b_flags &= ~B_AGE; 2825 bp->b_flags |= B_KVABIO; 2826 2827 /* 2828 * Make sure that B_INVAL buffers do not have a cached 2829 * block number translation. 2830 */ 2831 if ((bp->b_flags & B_INVAL) && 2832 (bp->b_bio2.bio_offset != NOOFFSET)) { 2833 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 2834 " did not have cleared bio_offset cache\n", 2835 bp, vp, (long long)loffset); 2836 clearbiocache(&bp->b_bio2); 2837 } 2838 2839 /* 2840 * The buffer is locked. B_CACHE is cleared if the buffer is 2841 * invalid. 2842 * 2843 * After the bremfree(), disposals must use b[q]relse(). 2844 */ 2845 if (bp->b_flags & B_INVAL) 2846 bp->b_flags &= ~B_CACHE; 2847 bremfree(bp); 2848 2849 /* 2850 * Any size inconsistancy with a dirty buffer or a buffer 2851 * with a softupdates dependancy must be resolved. Resizing 2852 * the buffer in such circumstances can lead to problems. 2853 * 2854 * Dirty or dependant buffers are written synchronously. 2855 * Other types of buffers are simply released and 2856 * reconstituted as they may be backed by valid, dirty VM 2857 * pages (but not marked B_DELWRI). 2858 * 2859 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 2860 * and may be left over from a prior truncation (and thus 2861 * no longer represent the actual EOF point), so we 2862 * definitely do not want to B_NOCACHE the backing store. 2863 */ 2864 if (size != bp->b_bcount) { 2865 if (bp->b_flags & B_DELWRI) { 2866 bp->b_flags |= B_RELBUF; 2867 bwrite(bp); 2868 } else if (LIST_FIRST(&bp->b_dep)) { 2869 bp->b_flags |= B_RELBUF; 2870 bwrite(bp); 2871 } else { 2872 bp->b_flags |= B_RELBUF; 2873 brelse(bp); 2874 } 2875 goto loop; 2876 } 2877 KKASSERT(size <= bp->b_kvasize); 2878 KASSERT(bp->b_loffset != NOOFFSET, 2879 ("getblk: no buffer offset")); 2880 2881 /* 2882 * A buffer with B_DELWRI set and B_CACHE clear must 2883 * be committed before we can return the buffer in 2884 * order to prevent the caller from issuing a read 2885 * ( due to B_CACHE not being set ) and overwriting 2886 * it. 2887 * 2888 * Most callers, including NFS and FFS, need this to 2889 * operate properly either because they assume they 2890 * can issue a read if B_CACHE is not set, or because 2891 * ( for example ) an uncached B_DELWRI might loop due 2892 * to softupdates re-dirtying the buffer. In the latter 2893 * case, B_CACHE is set after the first write completes, 2894 * preventing further loops. 2895 * 2896 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2897 * above while extending the buffer, we cannot allow the 2898 * buffer to remain with B_CACHE set after the write 2899 * completes or it will represent a corrupt state. To 2900 * deal with this we set B_NOCACHE to scrap the buffer 2901 * after the write. 2902 * 2903 * XXX Should this be B_RELBUF instead of B_NOCACHE? 2904 * I'm not even sure this state is still possible 2905 * now that getblk() writes out any dirty buffers 2906 * on size changes. 2907 * 2908 * We might be able to do something fancy, like setting 2909 * B_CACHE in bwrite() except if B_DELWRI is already set, 2910 * so the below call doesn't set B_CACHE, but that gets real 2911 * confusing. This is much easier. 2912 */ 2913 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2914 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 2915 "and CACHE clear, b_flags %08x\n", 2916 bp, (uintmax_t)bp->b_loffset, bp->b_flags); 2917 bp->b_flags |= B_NOCACHE; 2918 bwrite(bp); 2919 goto loop; 2920 } 2921 } else { 2922 /* 2923 * Buffer is not in-core, create new buffer. The buffer 2924 * returned by getnewbuf() is locked. Note that the returned 2925 * buffer is also considered valid (not marked B_INVAL). 2926 * 2927 * Calculating the offset for the I/O requires figuring out 2928 * the block size. We use DEV_BSIZE for VBLK or VCHR and 2929 * the mount's f_iosize otherwise. If the vnode does not 2930 * have an associated mount we assume that the passed size is 2931 * the block size. 2932 * 2933 * Note that vn_isdisk() cannot be used here since it may 2934 * return a failure for numerous reasons. Note that the 2935 * buffer size may be larger then the block size (the caller 2936 * will use block numbers with the proper multiple). Beware 2937 * of using any v_* fields which are part of unions. In 2938 * particular, in DragonFly the mount point overloading 2939 * mechanism uses the namecache only and the underlying 2940 * directory vnode is not a special case. 2941 */ 2942 int bsize, maxsize; 2943 2944 if (vp->v_type == VBLK || vp->v_type == VCHR) 2945 bsize = DEV_BSIZE; 2946 else if (vp->v_mount) 2947 bsize = vp->v_mount->mnt_stat.f_iosize; 2948 else 2949 bsize = size; 2950 2951 maxsize = size + (loffset & PAGE_MASK); 2952 maxsize = imax(maxsize, bsize); 2953 2954 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 2955 if (bp == NULL) { 2956 if (slpflags || slptimeo) 2957 return NULL; 2958 goto loop; 2959 } 2960 2961 /* 2962 * Atomically insert the buffer into the hash, so that it can 2963 * be found by findblk(). 2964 * 2965 * If bgetvp() returns non-zero a collision occured, and the 2966 * bp will not be associated with the vnode. 2967 * 2968 * Make sure the translation layer has been cleared. 2969 */ 2970 bp->b_loffset = loffset; 2971 bp->b_bio2.bio_offset = NOOFFSET; 2972 /* bp->b_bio2.bio_next = NULL; */ 2973 2974 if (bgetvp(vp, bp, size)) { 2975 bp->b_flags |= B_INVAL; 2976 brelse(bp); 2977 goto loop; 2978 } 2979 2980 /* 2981 * All vnode-based buffers must be backed by a VM object. 2982 * 2983 * Set B_KVABIO for incidental work 2984 */ 2985 KKASSERT(vp->v_object != NULL); 2986 bp->b_flags |= B_VMIO | B_KVABIO; 2987 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2988 2989 allocbuf(bp, size); 2990 } 2991 2992 /* 2993 * Do the nasty smp broadcast (if the buffer needs it) when KVABIO 2994 * is not supported. 2995 */ 2996 if (bp && (blkflags & GETBLK_KVABIO) == 0) { 2997 bkvasync_all(bp); 2998 } 2999 return (bp); 3000 } 3001 3002 /* 3003 * regetblk(bp) 3004 * 3005 * Reacquire a buffer that was previously released to the locked queue, 3006 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 3007 * set B_LOCKED (which handles the acquisition race). 3008 * 3009 * To this end, either B_LOCKED must be set or the dependancy list must be 3010 * non-empty. 3011 */ 3012 void 3013 regetblk(struct buf *bp) 3014 { 3015 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 3016 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 3017 bremfree(bp); 3018 } 3019 3020 /* 3021 * allocbuf: 3022 * 3023 * This code constitutes the buffer memory from either anonymous system 3024 * memory (in the case of non-VMIO operations) or from an associated 3025 * VM object (in the case of VMIO operations). This code is able to 3026 * resize a buffer up or down. 3027 * 3028 * Note that this code is tricky, and has many complications to resolve 3029 * deadlock or inconsistant data situations. Tread lightly!!! 3030 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3031 * the caller. Calling this code willy nilly can result in the loss of 3032 * data. 3033 * 3034 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3035 * B_CACHE for the non-VMIO case. 3036 * 3037 * This routine does not need to be called from a critical section but you 3038 * must own the buffer. 3039 */ 3040 void 3041 allocbuf(struct buf *bp, int size) 3042 { 3043 vm_page_t m; 3044 int newbsize; 3045 int desiredpages; 3046 int i; 3047 3048 if (BUF_LOCKINUSE(bp) == 0) 3049 panic("allocbuf: buffer not busy"); 3050 3051 if (bp->b_kvasize < size) 3052 panic("allocbuf: buffer too small"); 3053 3054 KKASSERT(bp->b_flags & B_VMIO); 3055 3056 newbsize = roundup2(size, DEV_BSIZE); 3057 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3058 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3059 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3060 3061 /* 3062 * Set B_CACHE initially if buffer is 0 length or will become 3063 * 0-length. 3064 */ 3065 if (size == 0 || bp->b_bufsize == 0) 3066 bp->b_flags |= B_CACHE; 3067 3068 if (newbsize < bp->b_bufsize) { 3069 /* 3070 * DEV_BSIZE aligned new buffer size is less then the 3071 * DEV_BSIZE aligned existing buffer size. Figure out 3072 * if we have to remove any pages. 3073 */ 3074 if (desiredpages < bp->b_xio.xio_npages) { 3075 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3076 /* 3077 * the page is not freed here -- it 3078 * is the responsibility of 3079 * vnode_pager_setsize 3080 */ 3081 m = bp->b_xio.xio_pages[i]; 3082 KASSERT(m != bogus_page, 3083 ("allocbuf: bogus page found")); 3084 vm_page_busy_wait(m, TRUE, "biodep"); 3085 bp->b_xio.xio_pages[i] = NULL; 3086 vm_page_unwire(m, 0); 3087 vm_page_wakeup(m); 3088 } 3089 pmap_qremove_noinval((vm_offset_t) 3090 trunc_page((vm_offset_t)bp->b_data) + 3091 (desiredpages << PAGE_SHIFT), 3092 (bp->b_xio.xio_npages - desiredpages)); 3093 bp->b_xio.xio_npages = desiredpages; 3094 3095 /* 3096 * Don't bother invalidating the pmap changes 3097 * (which wastes global SMP invalidation IPIs) 3098 * when setting the size to 0. This case occurs 3099 * when called via getnewbuf() during buffer 3100 * recyclement. 3101 */ 3102 if (desiredpages == 0) { 3103 CPUMASK_ASSZERO(bp->b_cpumask); 3104 } else { 3105 bkvareset(bp); 3106 } 3107 } 3108 } else if (size > bp->b_bcount) { 3109 /* 3110 * We are growing the buffer, possibly in a 3111 * byte-granular fashion. 3112 */ 3113 struct vnode *vp; 3114 vm_object_t obj; 3115 vm_offset_t toff; 3116 vm_offset_t tinc; 3117 3118 /* 3119 * Step 1, bring in the VM pages from the object, 3120 * allocating them if necessary. We must clear 3121 * B_CACHE if these pages are not valid for the 3122 * range covered by the buffer. 3123 */ 3124 vp = bp->b_vp; 3125 obj = vp->v_object; 3126 3127 vm_object_hold(obj); 3128 while (bp->b_xio.xio_npages < desiredpages) { 3129 vm_page_t m; 3130 vm_pindex_t pi; 3131 int error; 3132 3133 pi = OFF_TO_IDX(bp->b_loffset) + 3134 bp->b_xio.xio_npages; 3135 3136 /* 3137 * Blocking on m->busy_count might lead to a 3138 * deadlock: 3139 * 3140 * vm_fault->getpages->cluster_read->allocbuf 3141 */ 3142 m = vm_page_lookup_busy_try(obj, pi, FALSE, 3143 &error); 3144 if (error) { 3145 vm_page_sleep_busy(m, FALSE, "pgtblk"); 3146 continue; 3147 } 3148 if (m == NULL) { 3149 /* 3150 * note: must allocate system pages 3151 * since blocking here could intefere 3152 * with paging I/O, no matter which 3153 * process we are. 3154 */ 3155 m = bio_page_alloc(bp, obj, pi, 3156 desiredpages - 3157 bp->b_xio.xio_npages); 3158 if (m) { 3159 vm_page_wire(m); 3160 vm_page_wakeup(m); 3161 bp->b_flags &= ~B_CACHE; 3162 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3163 ++bp->b_xio.xio_npages; 3164 } 3165 continue; 3166 } 3167 3168 /* 3169 * We found a page and were able to busy it. 3170 */ 3171 vm_page_wire(m); 3172 vm_page_wakeup(m); 3173 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3174 ++bp->b_xio.xio_npages; 3175 if (bp->b_act_count < m->act_count) 3176 bp->b_act_count = m->act_count; 3177 } 3178 vm_object_drop(obj); 3179 3180 /* 3181 * Step 2. We've loaded the pages into the buffer, 3182 * we have to figure out if we can still have B_CACHE 3183 * set. Note that B_CACHE is set according to the 3184 * byte-granular range ( bcount and size ), not the 3185 * aligned range ( newbsize ). 3186 * 3187 * The VM test is against m->valid, which is DEV_BSIZE 3188 * aligned. Needless to say, the validity of the data 3189 * needs to also be DEV_BSIZE aligned. Note that this 3190 * fails with NFS if the server or some other client 3191 * extends the file's EOF. If our buffer is resized, 3192 * B_CACHE may remain set! XXX 3193 */ 3194 3195 toff = bp->b_bcount; 3196 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3197 3198 while ((bp->b_flags & B_CACHE) && toff < size) { 3199 vm_pindex_t pi; 3200 3201 if (tinc > (size - toff)) 3202 tinc = size - toff; 3203 3204 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3205 PAGE_SHIFT; 3206 3207 vfs_buf_test_cache( 3208 bp, 3209 bp->b_loffset, 3210 toff, 3211 tinc, 3212 bp->b_xio.xio_pages[pi] 3213 ); 3214 toff += tinc; 3215 tinc = PAGE_SIZE; 3216 } 3217 3218 /* 3219 * Step 3, fixup the KVM pmap. Remember that 3220 * bp->b_data is relative to bp->b_loffset, but 3221 * bp->b_loffset may be offset into the first page. 3222 */ 3223 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data); 3224 pmap_qenter_noinval((vm_offset_t)bp->b_data, 3225 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3226 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3227 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3228 bkvareset(bp); 3229 } 3230 atomic_add_long(&bufspace, newbsize - bp->b_bufsize); 3231 3232 /* adjust space use on already-dirty buffer */ 3233 if (bp->b_flags & B_DELWRI) { 3234 /* dirtykvaspace unchanged */ 3235 atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize); 3236 if (bp->b_flags & B_HEAVY) { 3237 atomic_add_long(&dirtybufspacehw, 3238 newbsize - bp->b_bufsize); 3239 } 3240 } 3241 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3242 bp->b_bcount = size; /* requested buffer size */ 3243 bufspacewakeup(); 3244 } 3245 3246 /* 3247 * biowait: 3248 * 3249 * Wait for buffer I/O completion, returning error status. B_EINTR 3250 * is converted into an EINTR error but not cleared (since a chain 3251 * of biowait() calls may occur). 3252 * 3253 * On return bpdone() will have been called but the buffer will remain 3254 * locked and will not have been brelse()'d. 3255 * 3256 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3257 * likely still in progress on return. 3258 * 3259 * NOTE! This operation is on a BIO, not a BUF. 3260 * 3261 * NOTE! BIO_DONE is cleared by vn_strategy() 3262 */ 3263 static __inline int 3264 _biowait(struct bio *bio, const char *wmesg, int to) 3265 { 3266 struct buf *bp = bio->bio_buf; 3267 u_int32_t flags; 3268 u_int32_t nflags; 3269 int error; 3270 3271 KKASSERT(bio == &bp->b_bio1); 3272 for (;;) { 3273 flags = bio->bio_flags; 3274 if (flags & BIO_DONE) 3275 break; 3276 nflags = flags | BIO_WANT; 3277 tsleep_interlock(bio, 0); 3278 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3279 if (wmesg) 3280 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3281 else if (bp->b_cmd == BUF_CMD_READ) 3282 error = tsleep(bio, PINTERLOCKED, "biord", to); 3283 else 3284 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3285 if (error) { 3286 kprintf("tsleep error biowait %d\n", error); 3287 return (error); 3288 } 3289 } 3290 } 3291 3292 /* 3293 * Finish up. 3294 */ 3295 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3296 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3297 if (bp->b_flags & B_EINTR) 3298 return (EINTR); 3299 if (bp->b_flags & B_ERROR) 3300 return (bp->b_error ? bp->b_error : EIO); 3301 return (0); 3302 } 3303 3304 int 3305 biowait(struct bio *bio, const char *wmesg) 3306 { 3307 return(_biowait(bio, wmesg, 0)); 3308 } 3309 3310 int 3311 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3312 { 3313 return(_biowait(bio, wmesg, to)); 3314 } 3315 3316 /* 3317 * This associates a tracking count with an I/O. vn_strategy() and 3318 * dev_dstrategy() do this automatically but there are a few cases 3319 * where a vnode or device layer is bypassed when a block translation 3320 * is cached. In such cases bio_start_transaction() may be called on 3321 * the bypassed layers so the system gets an I/O in progress indication 3322 * for those higher layers. 3323 */ 3324 void 3325 bio_start_transaction(struct bio *bio, struct bio_track *track) 3326 { 3327 bio->bio_track = track; 3328 bio_track_ref(track); 3329 dsched_buf_enter(bio->bio_buf); /* might stack */ 3330 } 3331 3332 /* 3333 * Initiate I/O on a vnode. 3334 * 3335 * SWAPCACHE OPERATION: 3336 * 3337 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately 3338 * devfs also uses b_vp for fake buffers so we also have to check 3339 * that B_PAGING is 0. In this case the passed 'vp' is probably the 3340 * underlying block device. The swap assignments are related to the 3341 * buffer cache buffer's b_vp, not the passed vp. 3342 * 3343 * The passed vp == bp->b_vp only in the case where the strategy call 3344 * is made on the vp itself for its own buffers (a regular file or 3345 * block device vp). The filesystem usually then re-calls vn_strategy() 3346 * after translating the request to an underlying device. 3347 * 3348 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the 3349 * underlying buffer cache buffers. 3350 * 3351 * We can only deal with page-aligned buffers at the moment, because 3352 * we can't tell what the real dirty state for pages straddling a buffer 3353 * are. 3354 * 3355 * In order to call swap_pager_strategy() we must provide the VM object 3356 * and base offset for the underlying buffer cache pages so it can find 3357 * the swap blocks. 3358 */ 3359 void 3360 vn_strategy(struct vnode *vp, struct bio *bio) 3361 { 3362 struct bio_track *track; 3363 struct buf *bp = bio->bio_buf; 3364 3365 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3366 3367 /* 3368 * Set when an I/O is issued on the bp. Cleared by consumers 3369 * (aka HAMMER), allowing the consumer to determine if I/O had 3370 * actually occurred. 3371 */ 3372 bp->b_flags |= B_IOISSUED; 3373 3374 /* 3375 * Handle the swapcache intercept. 3376 * 3377 * NOTE: The swapcache itself always supports KVABIO and will 3378 * do the right thing if its underlying devices do not. 3379 */ 3380 if (vn_cache_strategy(vp, bio)) 3381 return; 3382 3383 /* 3384 * If the vnode does not support KVABIO and the buffer is using 3385 * KVABIO, we must synchronize b_data to all cpus before dispatching. 3386 */ 3387 if ((vp->v_flag & VKVABIO) == 0 && (bp->b_flags & B_KVABIO)) 3388 bkvasync_all(bp); 3389 3390 /* 3391 * Otherwise do the operation through the filesystem 3392 */ 3393 if (bp->b_cmd == BUF_CMD_READ) 3394 track = &vp->v_track_read; 3395 else 3396 track = &vp->v_track_write; 3397 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3398 bio->bio_track = track; 3399 bio_track_ref(track); 3400 dsched_buf_enter(bp); /* might stack */ 3401 vop_strategy(*vp->v_ops, vp, bio); 3402 } 3403 3404 /* 3405 * vn_cache_strategy() 3406 * 3407 * Returns 1 if the interrupt was successful, 0 if not. 3408 * 3409 * NOTE: This function supports the KVABIO API wherein b_data might not 3410 * be synchronized to the current cpu. 3411 */ 3412 static void vn_cache_strategy_callback(struct bio *bio); 3413 3414 int 3415 vn_cache_strategy(struct vnode *vp, struct bio *bio) 3416 { 3417 struct buf *bp = bio->bio_buf; 3418 struct bio *nbio; 3419 vm_object_t object; 3420 vm_page_t m; 3421 int i; 3422 3423 /* 3424 * Stop using swapcache if paniced, dumping, or dumped 3425 */ 3426 if (panicstr || dumping) 3427 return(0); 3428 3429 /* 3430 * Is this buffer cache buffer suitable for reading from 3431 * the swap cache? 3432 */ 3433 if (vm_swapcache_read_enable == 0 || 3434 bp->b_cmd != BUF_CMD_READ || 3435 ((bp->b_flags & B_CLUSTER) == 0 && 3436 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) || 3437 ((int)bp->b_loffset & PAGE_MASK) != 0 || 3438 (bp->b_bcount & PAGE_MASK) != 0) { 3439 return(0); 3440 } 3441 3442 /* 3443 * Figure out the original VM object (it will match the underlying 3444 * VM pages). Note that swap cached data uses page indices relative 3445 * to that object, not relative to bio->bio_offset. 3446 */ 3447 if (bp->b_flags & B_CLUSTER) 3448 object = vp->v_object; 3449 else 3450 object = bp->b_vp->v_object; 3451 3452 /* 3453 * In order to be able to use the swap cache all underlying VM 3454 * pages must be marked as such, and we can't have any bogus pages. 3455 */ 3456 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 3457 m = bp->b_xio.xio_pages[i]; 3458 if ((m->flags & PG_SWAPPED) == 0) 3459 break; 3460 if (m == bogus_page) 3461 break; 3462 } 3463 3464 /* 3465 * If we are good then issue the I/O using swap_pager_strategy(). 3466 * 3467 * We can only do this if the buffer actually supports object-backed 3468 * I/O. If it doesn't npages will be 0. 3469 */ 3470 if (i && i == bp->b_xio.xio_npages) { 3471 m = bp->b_xio.xio_pages[0]; 3472 nbio = push_bio(bio); 3473 nbio->bio_done = vn_cache_strategy_callback; 3474 nbio->bio_offset = ptoa(m->pindex); 3475 KKASSERT(m->object == object); 3476 swap_pager_strategy(object, nbio); 3477 return(1); 3478 } 3479 return(0); 3480 } 3481 3482 /* 3483 * This is a bit of a hack but since the vn_cache_strategy() function can 3484 * override a VFS's strategy function we must make sure that the bio, which 3485 * is probably bio2, doesn't leak an unexpected offset value back to the 3486 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the 3487 * bio went through its own file strategy function and the the bio2 offset 3488 * is a cached disk offset when, in fact, it isn't. 3489 */ 3490 static void 3491 vn_cache_strategy_callback(struct bio *bio) 3492 { 3493 bio->bio_offset = NOOFFSET; 3494 biodone(pop_bio(bio)); 3495 } 3496 3497 /* 3498 * bpdone: 3499 * 3500 * Finish I/O on a buffer after all BIOs have been processed. 3501 * Called when the bio chain is exhausted or by biowait. If called 3502 * by biowait, elseit is typically 0. 3503 * 3504 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3505 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3506 * assuming B_INVAL is clear. 3507 * 3508 * For the VMIO case, we set B_CACHE if the op was a read and no 3509 * read error occured, or if the op was a write. B_CACHE is never 3510 * set if the buffer is invalid or otherwise uncacheable. 3511 * 3512 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3513 * initiator to leave B_INVAL set to brelse the buffer out of existance 3514 * in the biodone routine. 3515 * 3516 * bpdone is responsible for calling bundirty() on the buffer after a 3517 * successful write. We previously did this prior to initiating the 3518 * write under the assumption that the buffer might be dirtied again 3519 * while the write was in progress, however doing it before-hand creates 3520 * a race condition prior to the call to vn_strategy() where the 3521 * filesystem may not be aware that a dirty buffer is present. 3522 * It should not be possible for the buffer or its underlying pages to 3523 * be redirtied prior to bpdone()'s unbusying of the underlying VM 3524 * pages. 3525 */ 3526 void 3527 bpdone(struct buf *bp, int elseit) 3528 { 3529 buf_cmd_t cmd; 3530 3531 KASSERT(BUF_LOCKINUSE(bp), ("bpdone: bp %p not busy", bp)); 3532 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3533 ("bpdone: bp %p already done!", bp)); 3534 3535 /* 3536 * No more BIOs are left. All completion functions have been dealt 3537 * with, now we clean up the buffer. 3538 */ 3539 cmd = bp->b_cmd; 3540 bp->b_cmd = BUF_CMD_DONE; 3541 3542 /* 3543 * Only reads and writes are processed past this point. 3544 */ 3545 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3546 if (cmd == BUF_CMD_FREEBLKS) 3547 bp->b_flags |= B_NOCACHE; 3548 if (elseit) 3549 brelse(bp); 3550 return; 3551 } 3552 3553 /* 3554 * A failed write must re-dirty the buffer unless B_INVAL 3555 * was set. 3556 * 3557 * A successful write must clear the dirty flag. This is done after 3558 * the write to ensure that the buffer remains on the vnode's dirty 3559 * list for filesystem interlocks / checks until the write is actually 3560 * complete. HAMMER2 is sensitive to this issue. 3561 * 3562 * Only applicable to normal buffers (with VPs). vinum buffers may 3563 * not have a vp. 3564 * 3565 * Must be done prior to calling buf_complete() as the callback might 3566 * re-dirty the buffer. 3567 */ 3568 if (cmd == BUF_CMD_WRITE) { 3569 if ((bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3570 bp->b_flags &= ~B_NOCACHE; 3571 if (bp->b_vp) 3572 bdirty(bp); 3573 } else { 3574 if (bp->b_vp) 3575 bundirty(bp); 3576 } 3577 } 3578 3579 /* 3580 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3581 * a lot worse. XXX - move this above the clearing of b_cmd 3582 */ 3583 if (LIST_FIRST(&bp->b_dep) != NULL) 3584 buf_complete(bp); 3585 3586 if (bp->b_flags & B_VMIO) { 3587 int i; 3588 vm_ooffset_t foff; 3589 vm_page_t m; 3590 vm_object_t obj; 3591 int iosize; 3592 struct vnode *vp = bp->b_vp; 3593 3594 obj = vp->v_object; 3595 3596 #if defined(VFS_BIO_DEBUG) 3597 if (vp->v_auxrefs == 0) 3598 panic("bpdone: zero vnode hold count"); 3599 if ((vp->v_flag & VOBJBUF) == 0) 3600 panic("bpdone: vnode is not setup for merged cache"); 3601 #endif 3602 3603 foff = bp->b_loffset; 3604 KASSERT(foff != NOOFFSET, ("bpdone: no buffer offset")); 3605 KASSERT(obj != NULL, ("bpdone: missing VM object")); 3606 3607 #if defined(VFS_BIO_DEBUG) 3608 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3609 kprintf("bpdone: paging in progress(%d) < " 3610 "bp->b_xio.xio_npages(%d)\n", 3611 obj->paging_in_progress, 3612 bp->b_xio.xio_npages); 3613 } 3614 #endif 3615 3616 /* 3617 * Set B_CACHE if the op was a normal read and no error 3618 * occured. B_CACHE is set for writes in the b*write() 3619 * routines. 3620 */ 3621 iosize = bp->b_bcount - bp->b_resid; 3622 if (cmd == BUF_CMD_READ && 3623 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3624 bp->b_flags |= B_CACHE; 3625 } 3626 3627 vm_object_hold(obj); 3628 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3629 int resid; 3630 int isbogus; 3631 3632 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3633 if (resid > iosize) 3634 resid = iosize; 3635 3636 /* 3637 * cleanup bogus pages, restoring the originals. Since 3638 * the originals should still be wired, we don't have 3639 * to worry about interrupt/freeing races destroying 3640 * the VM object association. 3641 */ 3642 m = bp->b_xio.xio_pages[i]; 3643 if (m == bogus_page) { 3644 if ((bp->b_flags & B_HASBOGUS) == 0) 3645 panic("bpdone: bp %p corrupt bogus", bp); 3646 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3647 if (m == NULL) 3648 panic("bpdone: page disappeared"); 3649 bp->b_xio.xio_pages[i] = m; 3650 isbogus = 1; 3651 } else { 3652 isbogus = 0; 3653 } 3654 #if defined(VFS_BIO_DEBUG) 3655 if (OFF_TO_IDX(foff) != m->pindex) { 3656 kprintf("bpdone: foff(%lu)/m->pindex(%ld) " 3657 "mismatch\n", 3658 (unsigned long)foff, (long)m->pindex); 3659 } 3660 #endif 3661 3662 /* 3663 * In the write case, the valid and clean bits are 3664 * already changed correctly (see bdwrite()), so we 3665 * only need to do this here in the read case. 3666 */ 3667 vm_page_busy_wait(m, FALSE, "bpdpgw"); 3668 if (cmd == BUF_CMD_READ && isbogus == 0 && resid > 0) 3669 vfs_clean_one_page(bp, i, m); 3670 3671 /* 3672 * when debugging new filesystems or buffer I/O 3673 * methods, this is the most common error that pops 3674 * up. if you see this, you have not set the page 3675 * busy flag correctly!!! 3676 */ 3677 if ((m->busy_count & PBUSY_MASK) == 0) { 3678 kprintf("bpdone: page busy < 0, " 3679 "pindex: %d, foff: 0x(%x,%x), " 3680 "resid: %d, index: %d\n", 3681 (int) m->pindex, (int)(foff >> 32), 3682 (int) foff & 0xffffffff, resid, i); 3683 if (!vn_isdisk(vp, NULL)) 3684 kprintf(" iosize: %ld, loffset: %lld, " 3685 "flags: 0x%08x, npages: %d\n", 3686 bp->b_vp->v_mount->mnt_stat.f_iosize, 3687 (long long)bp->b_loffset, 3688 bp->b_flags, bp->b_xio.xio_npages); 3689 else 3690 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3691 (long long)bp->b_loffset, 3692 bp->b_flags, bp->b_xio.xio_npages); 3693 kprintf(" valid: 0x%x, dirty: 0x%x, " 3694 "wired: %d\n", 3695 m->valid, m->dirty, 3696 m->wire_count); 3697 panic("bpdone: page busy < 0"); 3698 } 3699 vm_page_io_finish(m); 3700 vm_page_wakeup(m); 3701 vm_object_pip_wakeup(obj); 3702 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3703 iosize -= resid; 3704 } 3705 if (bp->b_flags & B_HASBOGUS) { 3706 pmap_qenter_noinval(trunc_page((vm_offset_t)bp->b_data), 3707 bp->b_xio.xio_pages, 3708 bp->b_xio.xio_npages); 3709 bp->b_flags &= ~B_HASBOGUS; 3710 bkvareset(bp); 3711 } 3712 vm_object_drop(obj); 3713 } 3714 3715 /* 3716 * Finish up by releasing the buffer. There are no more synchronous 3717 * or asynchronous completions, those were handled by bio_done 3718 * callbacks. 3719 */ 3720 if (elseit) { 3721 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3722 brelse(bp); 3723 else 3724 bqrelse(bp); 3725 } 3726 } 3727 3728 /* 3729 * Normal biodone. 3730 */ 3731 void 3732 biodone(struct bio *bio) 3733 { 3734 struct buf *bp = bio->bio_buf; 3735 3736 runningbufwakeup(bp); 3737 3738 /* 3739 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3740 */ 3741 while (bio) { 3742 biodone_t *done_func; 3743 struct bio_track *track; 3744 3745 /* 3746 * BIO tracking. Most but not all BIOs are tracked. 3747 */ 3748 if ((track = bio->bio_track) != NULL) { 3749 bio_track_rel(track); 3750 bio->bio_track = NULL; 3751 } 3752 3753 /* 3754 * A bio_done function terminates the loop. The function 3755 * will be responsible for any further chaining and/or 3756 * buffer management. 3757 * 3758 * WARNING! The done function can deallocate the buffer! 3759 */ 3760 if ((done_func = bio->bio_done) != NULL) { 3761 bio->bio_done = NULL; 3762 done_func(bio); 3763 return; 3764 } 3765 bio = bio->bio_prev; 3766 } 3767 3768 /* 3769 * If we've run out of bio's do normal [a]synchronous completion. 3770 */ 3771 bpdone(bp, 1); 3772 } 3773 3774 /* 3775 * Synchronous biodone - this terminates a synchronous BIO. 3776 * 3777 * bpdone() is called with elseit=FALSE, leaving the buffer completed 3778 * but still locked. The caller must brelse() the buffer after waiting 3779 * for completion. 3780 */ 3781 void 3782 biodone_sync(struct bio *bio) 3783 { 3784 struct buf *bp = bio->bio_buf; 3785 int flags; 3786 int nflags; 3787 3788 KKASSERT(bio == &bp->b_bio1); 3789 bpdone(bp, 0); 3790 3791 for (;;) { 3792 flags = bio->bio_flags; 3793 nflags = (flags | BIO_DONE) & ~BIO_WANT; 3794 3795 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3796 if (flags & BIO_WANT) 3797 wakeup(bio); 3798 break; 3799 } 3800 } 3801 } 3802 3803 /* 3804 * vfs_unbusy_pages: 3805 * 3806 * This routine is called in lieu of iodone in the case of 3807 * incomplete I/O. This keeps the busy status for pages 3808 * consistant. 3809 */ 3810 void 3811 vfs_unbusy_pages(struct buf *bp) 3812 { 3813 int i; 3814 3815 runningbufwakeup(bp); 3816 3817 if (bp->b_flags & B_VMIO) { 3818 struct vnode *vp = bp->b_vp; 3819 vm_object_t obj; 3820 3821 obj = vp->v_object; 3822 vm_object_hold(obj); 3823 3824 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3825 vm_page_t m = bp->b_xio.xio_pages[i]; 3826 3827 /* 3828 * When restoring bogus changes the original pages 3829 * should still be wired, so we are in no danger of 3830 * losing the object association and do not need 3831 * critical section protection particularly. 3832 */ 3833 if (m == bogus_page) { 3834 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3835 if (!m) { 3836 panic("vfs_unbusy_pages: page missing"); 3837 } 3838 bp->b_xio.xio_pages[i] = m; 3839 } 3840 vm_page_busy_wait(m, FALSE, "bpdpgw"); 3841 vm_page_io_finish(m); 3842 vm_page_wakeup(m); 3843 vm_object_pip_wakeup(obj); 3844 } 3845 if (bp->b_flags & B_HASBOGUS) { 3846 pmap_qenter_noinval(trunc_page((vm_offset_t)bp->b_data), 3847 bp->b_xio.xio_pages, 3848 bp->b_xio.xio_npages); 3849 bp->b_flags &= ~B_HASBOGUS; 3850 bkvareset(bp); 3851 } 3852 vm_object_drop(obj); 3853 } 3854 } 3855 3856 /* 3857 * vfs_busy_pages: 3858 * 3859 * This routine is called before a device strategy routine. 3860 * It is used to tell the VM system that paging I/O is in 3861 * progress, and treat the pages associated with the buffer 3862 * almost as being PBUSY_LOCKED. Also the object 'paging_in_progress' 3863 * flag is handled to make sure that the object doesn't become 3864 * inconsistant. 3865 * 3866 * Since I/O has not been initiated yet, certain buffer flags 3867 * such as B_ERROR or B_INVAL may be in an inconsistant state 3868 * and should be ignored. 3869 */ 3870 void 3871 vfs_busy_pages(struct vnode *vp, struct buf *bp) 3872 { 3873 int i, bogus; 3874 struct lwp *lp = curthread->td_lwp; 3875 3876 /* 3877 * The buffer's I/O command must already be set. If reading, 3878 * B_CACHE must be 0 (double check against callers only doing 3879 * I/O when B_CACHE is 0). 3880 */ 3881 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3882 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 3883 3884 if (bp->b_flags & B_VMIO) { 3885 vm_object_t obj; 3886 3887 obj = vp->v_object; 3888 KASSERT(bp->b_loffset != NOOFFSET, 3889 ("vfs_busy_pages: no buffer offset")); 3890 3891 /* 3892 * Busy all the pages. We have to busy them all at once 3893 * to avoid deadlocks. 3894 */ 3895 retry: 3896 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3897 vm_page_t m = bp->b_xio.xio_pages[i]; 3898 3899 if (vm_page_busy_try(m, FALSE)) { 3900 vm_page_sleep_busy(m, FALSE, "vbpage"); 3901 while (--i >= 0) 3902 vm_page_wakeup(bp->b_xio.xio_pages[i]); 3903 goto retry; 3904 } 3905 } 3906 3907 /* 3908 * Setup for I/O, soft-busy the page right now because 3909 * the next loop may block. 3910 */ 3911 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3912 vm_page_t m = bp->b_xio.xio_pages[i]; 3913 3914 if ((bp->b_flags & B_CLUSTER) == 0) { 3915 vm_object_pip_add(obj, 1); 3916 vm_page_io_start(m); 3917 } 3918 } 3919 3920 /* 3921 * Adjust protections for I/O and do bogus-page mapping. 3922 * Assume that vm_page_protect() can block (it can block 3923 * if VM_PROT_NONE, don't take any chances regardless). 3924 * 3925 * In particular note that for writes we must incorporate 3926 * page dirtyness from the VM system into the buffer's 3927 * dirty range. 3928 * 3929 * For reads we theoretically must incorporate page dirtyness 3930 * from the VM system to determine if the page needs bogus 3931 * replacement, but we shortcut the test by simply checking 3932 * that all m->valid bits are set, indicating that the page 3933 * is fully valid and does not need to be re-read. For any 3934 * VM system dirtyness the page will also be fully valid 3935 * since it was mapped at one point. 3936 */ 3937 bogus = 0; 3938 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3939 vm_page_t m = bp->b_xio.xio_pages[i]; 3940 3941 if (bp->b_cmd == BUF_CMD_WRITE) { 3942 /* 3943 * When readying a vnode-backed buffer for 3944 * a write we must zero-fill any invalid 3945 * portions of the backing VM pages, mark 3946 * it valid and clear related dirty bits. 3947 * 3948 * vfs_clean_one_page() incorporates any 3949 * VM dirtyness and updates the b_dirtyoff 3950 * range (after we've made the page RO). 3951 * 3952 * It is also expected that the pmap modified 3953 * bit has already been cleared by the 3954 * vm_page_protect(). We may not be able 3955 * to clear all dirty bits for a page if it 3956 * was also memory mapped (NFS). 3957 * 3958 * Finally be sure to unassign any swap-cache 3959 * backing store as it is now stale. 3960 */ 3961 vm_page_protect(m, VM_PROT_READ); 3962 vfs_clean_one_page(bp, i, m); 3963 swap_pager_unswapped(m); 3964 } else if (m->valid == VM_PAGE_BITS_ALL) { 3965 /* 3966 * When readying a vnode-backed buffer for 3967 * read we must replace any dirty pages with 3968 * a bogus page so dirty data is not destroyed 3969 * when filling gaps. 3970 * 3971 * To avoid testing whether the page is 3972 * dirty we instead test that the page was 3973 * at some point mapped (m->valid fully 3974 * valid) with the understanding that 3975 * this also covers the dirty case. 3976 */ 3977 bp->b_xio.xio_pages[i] = bogus_page; 3978 bp->b_flags |= B_HASBOGUS; 3979 bogus++; 3980 } else if (m->valid & m->dirty) { 3981 /* 3982 * This case should not occur as partial 3983 * dirtyment can only happen if the buffer 3984 * is B_CACHE, and this code is not entered 3985 * if the buffer is B_CACHE. 3986 */ 3987 kprintf("Warning: vfs_busy_pages - page not " 3988 "fully valid! loff=%jx bpf=%08x " 3989 "idx=%d val=%02x dir=%02x\n", 3990 (uintmax_t)bp->b_loffset, bp->b_flags, 3991 i, m->valid, m->dirty); 3992 vm_page_protect(m, VM_PROT_NONE); 3993 } else { 3994 /* 3995 * The page is not valid and can be made 3996 * part of the read. 3997 */ 3998 vm_page_protect(m, VM_PROT_NONE); 3999 } 4000 vm_page_wakeup(m); 4001 } 4002 if (bogus) { 4003 pmap_qenter_noinval(trunc_page((vm_offset_t)bp->b_data), 4004 bp->b_xio.xio_pages, 4005 bp->b_xio.xio_npages); 4006 bkvareset(bp); 4007 } 4008 } 4009 4010 /* 4011 * This is the easiest place to put the process accounting for the I/O 4012 * for now. 4013 */ 4014 if (lp != NULL) { 4015 if (bp->b_cmd == BUF_CMD_READ) 4016 lp->lwp_ru.ru_inblock++; 4017 else 4018 lp->lwp_ru.ru_oublock++; 4019 } 4020 } 4021 4022 /* 4023 * Tell the VM system that the pages associated with this buffer 4024 * are clean. This is used for delayed writes where the data is 4025 * going to go to disk eventually without additional VM intevention. 4026 * 4027 * NOTE: While we only really need to clean through to b_bcount, we 4028 * just go ahead and clean through to b_bufsize. 4029 */ 4030 static void 4031 vfs_clean_pages(struct buf *bp) 4032 { 4033 vm_page_t m; 4034 int i; 4035 4036 if ((bp->b_flags & B_VMIO) == 0) 4037 return; 4038 4039 KASSERT(bp->b_loffset != NOOFFSET, 4040 ("vfs_clean_pages: no buffer offset")); 4041 4042 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4043 m = bp->b_xio.xio_pages[i]; 4044 vfs_clean_one_page(bp, i, m); 4045 } 4046 } 4047 4048 /* 4049 * vfs_clean_one_page: 4050 * 4051 * Set the valid bits and clear the dirty bits in a page within a 4052 * buffer. The range is restricted to the buffer's size and the 4053 * buffer's logical offset might index into the first page. 4054 * 4055 * The caller has busied or soft-busied the page and it is not mapped, 4056 * test and incorporate the dirty bits into b_dirtyoff/end before 4057 * clearing them. Note that we need to clear the pmap modified bits 4058 * after determining the the page was dirty, vm_page_set_validclean() 4059 * does not do it for us. 4060 * 4061 * This routine is typically called after a read completes (dirty should 4062 * be zero in that case as we are not called on bogus-replace pages), 4063 * or before a write is initiated. 4064 */ 4065 static void 4066 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 4067 { 4068 int bcount; 4069 int xoff; 4070 int soff; 4071 int eoff; 4072 4073 /* 4074 * Calculate offset range within the page but relative to buffer's 4075 * loffset. loffset might be offset into the first page. 4076 */ 4077 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4078 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4079 4080 if (pageno == 0) { 4081 soff = xoff; 4082 eoff = PAGE_SIZE; 4083 } else { 4084 soff = (pageno << PAGE_SHIFT); 4085 eoff = soff + PAGE_SIZE; 4086 } 4087 if (eoff > bcount) 4088 eoff = bcount; 4089 if (soff >= eoff) 4090 return; 4091 4092 /* 4093 * Test dirty bits and adjust b_dirtyoff/end. 4094 * 4095 * If dirty pages are incorporated into the bp any prior 4096 * B_NEEDCOMMIT state (NFS) must be cleared because the 4097 * caller has not taken into account the new dirty data. 4098 * 4099 * If the page was memory mapped the dirty bits might go beyond the 4100 * end of the buffer, but we can't really make the assumption that 4101 * a file EOF straddles the buffer (even though this is the case for 4102 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 4103 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 4104 * This also saves some console spam. 4105 * 4106 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK, 4107 * NFS can handle huge commits but not huge writes. 4108 */ 4109 vm_page_test_dirty(m); 4110 if (m->dirty) { 4111 if ((bp->b_flags & B_NEEDCOMMIT) && 4112 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 4113 if (debug_commit) 4114 kprintf("Warning: vfs_clean_one_page: bp %p " 4115 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT" 4116 " cmd %d vd %02x/%02x x/s/e %d %d %d " 4117 "doff/end %d %d\n", 4118 bp, (uintmax_t)bp->b_loffset, bp->b_bcount, 4119 bp->b_flags, bp->b_cmd, 4120 m->valid, m->dirty, xoff, soff, eoff, 4121 bp->b_dirtyoff, bp->b_dirtyend); 4122 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 4123 if (debug_commit) 4124 print_backtrace(-1); 4125 } 4126 /* 4127 * Only clear the pmap modified bits if ALL the dirty bits 4128 * are set, otherwise the system might mis-clear portions 4129 * of a page. 4130 */ 4131 if (m->dirty == VM_PAGE_BITS_ALL && 4132 (bp->b_flags & B_NEEDCOMMIT) == 0) { 4133 pmap_clear_modify(m); 4134 } 4135 if (bp->b_dirtyoff > soff - xoff) 4136 bp->b_dirtyoff = soff - xoff; 4137 if (bp->b_dirtyend < eoff - xoff) 4138 bp->b_dirtyend = eoff - xoff; 4139 } 4140 4141 /* 4142 * Set related valid bits, clear related dirty bits. 4143 * Does not mess with the pmap modified bit. 4144 * 4145 * WARNING! We cannot just clear all of m->dirty here as the 4146 * buffer cache buffers may use a DEV_BSIZE'd aligned 4147 * block size, or have an odd size (e.g. NFS at file EOF). 4148 * The putpages code can clear m->dirty to 0. 4149 * 4150 * If a VOP_WRITE generates a buffer cache buffer which 4151 * covers the same space as mapped writable pages the 4152 * buffer flush might not be able to clear all the dirty 4153 * bits and still require a putpages from the VM system 4154 * to finish it off. 4155 * 4156 * WARNING! vm_page_set_validclean() currently assumes vm_token 4157 * is held. The page might not be busied (bdwrite() case). 4158 * XXX remove this comment once we've validated that this 4159 * is no longer an issue. 4160 */ 4161 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 4162 } 4163 4164 #if 0 4165 /* 4166 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty. 4167 * The page data is assumed to be valid (there is no zeroing here). 4168 */ 4169 static void 4170 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m) 4171 { 4172 int bcount; 4173 int xoff; 4174 int soff; 4175 int eoff; 4176 4177 /* 4178 * Calculate offset range within the page but relative to buffer's 4179 * loffset. loffset might be offset into the first page. 4180 */ 4181 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4182 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4183 4184 if (pageno == 0) { 4185 soff = xoff; 4186 eoff = PAGE_SIZE; 4187 } else { 4188 soff = (pageno << PAGE_SHIFT); 4189 eoff = soff + PAGE_SIZE; 4190 } 4191 if (eoff > bcount) 4192 eoff = bcount; 4193 if (soff >= eoff) 4194 return; 4195 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff); 4196 } 4197 #endif 4198 4199 /* 4200 * vfs_bio_clrbuf: 4201 * 4202 * Clear a buffer. This routine essentially fakes an I/O, so we need 4203 * to clear B_ERROR and B_INVAL. 4204 * 4205 * Note that while we only theoretically need to clear through b_bcount, 4206 * we go ahead and clear through b_bufsize. 4207 */ 4208 void 4209 vfs_bio_clrbuf(struct buf *bp) 4210 { 4211 int i, mask = 0; 4212 caddr_t sa, ea; 4213 KKASSERT(bp->b_flags & B_VMIO); 4214 4215 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 4216 bkvasync(bp); 4217 4218 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4219 (bp->b_loffset & PAGE_MASK) == 0) { 4220 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4221 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 4222 bp->b_resid = 0; 4223 return; 4224 } 4225 if ((bp->b_xio.xio_pages[0]->valid & mask) == 0) { 4226 bzero(bp->b_data, bp->b_bufsize); 4227 bp->b_xio.xio_pages[0]->valid |= mask; 4228 bp->b_resid = 0; 4229 return; 4230 } 4231 } 4232 sa = bp->b_data; 4233 for(i = 0; i < bp->b_xio.xio_npages; i++, sa=ea) { 4234 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 4235 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 4236 ea = (caddr_t)(vm_offset_t)ulmin( 4237 (u_long)(vm_offset_t)ea, 4238 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 4239 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4240 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 4241 continue; 4242 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 4243 bzero(sa, ea - sa); 4244 } else { 4245 for (; sa < ea; sa += DEV_BSIZE, j++) { 4246 if ((bp->b_xio.xio_pages[i]->valid & 4247 (1<<j)) == 0) { 4248 bzero(sa, DEV_BSIZE); 4249 } 4250 } 4251 } 4252 bp->b_xio.xio_pages[i]->valid |= mask; 4253 } 4254 bp->b_resid = 0; 4255 } 4256 4257 /* 4258 * Allocate a page for a buffer cache buffer. 4259 * 4260 * If NULL is returned the caller is expected to retry (typically check if 4261 * the page already exists on retry before trying to allocate one). 4262 * 4263 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This 4264 * function will use the system reserve with the hope that the page 4265 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller 4266 * is done with the buffer. 4267 * 4268 * NOTE! However, TMPFS is a special case because flushing a dirty buffer 4269 * to TMPFS doesn't clean the page. For TMPFS, only the pagedaemon 4270 * is capable of retiring pages (to swap). For TMPFS we don't dig 4271 * into the system reserve because doing so could stall out pretty 4272 * much every process running on the system. 4273 */ 4274 static 4275 vm_page_t 4276 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit) 4277 { 4278 int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK; 4279 vm_page_t p; 4280 4281 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj)); 4282 4283 /* 4284 * Try a normal allocation first. 4285 */ 4286 p = vm_page_alloc(obj, pg, vmflags); 4287 if (p) 4288 return(p); 4289 if (vm_page_lookup(obj, pg)) 4290 return(NULL); 4291 vm_pageout_deficit += deficit; 4292 4293 /* 4294 * Try again, digging into the system reserve. 4295 * 4296 * Trying to recover pages from the buffer cache here can deadlock 4297 * against other threads trying to busy underlying pages so we 4298 * depend on the code in brelse() and bqrelse() to free/cache the 4299 * underlying buffer cache pages when memory is low. 4300 */ 4301 if (curthread->td_flags & TDF_SYSTHREAD) 4302 vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT; 4303 else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS) 4304 vmflags |= 0; 4305 else 4306 vmflags |= VM_ALLOC_SYSTEM; 4307 4308 /*recoverbufpages();*/ 4309 p = vm_page_alloc(obj, pg, vmflags); 4310 if (p) 4311 return(p); 4312 if (vm_page_lookup(obj, pg)) 4313 return(NULL); 4314 4315 /* 4316 * Wait for memory to free up and try again 4317 */ 4318 if (vm_page_count_severe()) 4319 ++lowmempgallocs; 4320 vm_wait(hz / 20 + 1); 4321 4322 p = vm_page_alloc(obj, pg, vmflags); 4323 if (p) 4324 return(p); 4325 if (vm_page_lookup(obj, pg)) 4326 return(NULL); 4327 4328 /* 4329 * Ok, now we are really in trouble. 4330 */ 4331 if (bootverbose) { 4332 static struct krate biokrate = { .freq = 1 }; 4333 krateprintf(&biokrate, 4334 "Warning: bio_page_alloc: memory exhausted " 4335 "during buffer cache page allocation from %s\n", 4336 curthread->td_comm); 4337 } 4338 if (curthread->td_flags & TDF_SYSTHREAD) 4339 vm_wait(hz / 20 + 1); 4340 else 4341 vm_wait(hz / 2 + 1); 4342 return (NULL); 4343 } 4344 4345 /* 4346 * The buffer's mapping has changed. Adjust the buffer's memory 4347 * synchronization. The caller is the exclusive holder of the buffer 4348 * and has set or cleared B_KVABIO according to preference. 4349 * 4350 * WARNING! If the caller is using B_KVABIO mode, this function will 4351 * not map the data to the current cpu. The caller must also 4352 * call bkvasync(bp). 4353 */ 4354 void 4355 bkvareset(struct buf *bp) 4356 { 4357 if (bp->b_flags & B_KVABIO) { 4358 CPUMASK_ASSZERO(bp->b_cpumask); 4359 } else { 4360 CPUMASK_ORMASK(bp->b_cpumask, smp_active_mask); 4361 smp_invltlb(); 4362 cpu_invltlb(); 4363 } 4364 } 4365 4366 /* 4367 * The buffer will be used by the caller on the caller's cpu, synchronize 4368 * its data to the current cpu. Caller must control the buffer by holding 4369 * its lock, but calling cpu does not necessarily have to be the owner of 4370 * the lock (i.e. HAMMER2's concurrent I/O accessors). 4371 * 4372 * If B_KVABIO is not set, the buffer is already fully synchronized. 4373 */ 4374 void 4375 bkvasync(struct buf *bp) 4376 { 4377 int cpuid = mycpu->gd_cpuid; 4378 char *bdata; 4379 4380 if ((bp->b_flags & B_KVABIO) && 4381 CPUMASK_TESTBIT(bp->b_cpumask, cpuid) == 0) { 4382 bdata = bp->b_data; 4383 while (bdata < bp->b_data + bp->b_bufsize) { 4384 cpu_invlpg(bdata); 4385 bdata += PAGE_SIZE - 4386 ((intptr_t)bdata & PAGE_MASK); 4387 } 4388 ATOMIC_CPUMASK_ORBIT(bp->b_cpumask, cpuid); 4389 } 4390 } 4391 4392 /* 4393 * The buffer will be used by a subsystem that does not understand 4394 * the KVABIO API. Make sure its data is synchronized to all cpus. 4395 * 4396 * If B_KVABIO is not set, the buffer is already fully synchronized. 4397 * 4398 * NOTE! This is the only safe way to clear B_KVABIO on a buffer. 4399 */ 4400 void 4401 bkvasync_all(struct buf *bp) 4402 { 4403 if (debug_kvabio > 0) { 4404 --debug_kvabio; 4405 print_backtrace(10); 4406 } 4407 4408 if ((bp->b_flags & B_KVABIO) && 4409 CPUMASK_CMPMASKNEQ(bp->b_cpumask, smp_active_mask)) { 4410 smp_invltlb(); 4411 cpu_invltlb(); 4412 ATOMIC_CPUMASK_ORMASK(bp->b_cpumask, smp_active_mask); 4413 } 4414 bp->b_flags &= ~B_KVABIO; 4415 } 4416 4417 /* 4418 * Scan all buffers in the system and issue the callback. 4419 */ 4420 int 4421 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4422 { 4423 int count = 0; 4424 int error; 4425 long n; 4426 4427 for (n = 0; n < nbuf; ++n) { 4428 if ((error = callback(&buf[n], info)) < 0) { 4429 count = error; 4430 break; 4431 } 4432 count += error; 4433 } 4434 return (count); 4435 } 4436 4437 /* 4438 * nestiobuf_iodone: biodone callback for nested buffers and propagate 4439 * completion to the master buffer. 4440 */ 4441 static void 4442 nestiobuf_iodone(struct bio *bio) 4443 { 4444 struct bio *mbio; 4445 struct buf *mbp, *bp; 4446 struct devstat *stats; 4447 int error; 4448 int donebytes; 4449 4450 bp = bio->bio_buf; 4451 mbio = bio->bio_caller_info1.ptr; 4452 stats = bio->bio_caller_info2.ptr; 4453 mbp = mbio->bio_buf; 4454 4455 KKASSERT(bp->b_bcount <= bp->b_bufsize); 4456 KKASSERT(mbp != bp); 4457 4458 error = bp->b_error; 4459 if (bp->b_error == 0 && 4460 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 4461 /* 4462 * Not all got transfered, raise an error. We have no way to 4463 * propagate these conditions to mbp. 4464 */ 4465 error = EIO; 4466 } 4467 4468 donebytes = bp->b_bufsize; 4469 4470 relpbuf(bp, NULL); 4471 4472 nestiobuf_done(mbio, donebytes, error, stats); 4473 } 4474 4475 void 4476 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats) 4477 { 4478 struct buf *mbp; 4479 4480 mbp = mbio->bio_buf; 4481 4482 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0); 4483 4484 /* 4485 * If an error occured, propagate it to the master buffer. 4486 * 4487 * Several biodone()s may wind up running concurrently so 4488 * use an atomic op to adjust b_flags. 4489 */ 4490 if (error) { 4491 mbp->b_error = error; 4492 atomic_set_int(&mbp->b_flags, B_ERROR); 4493 } 4494 4495 /* 4496 * Decrement the operations in progress counter and terminate the 4497 * I/O if this was the last bit. 4498 */ 4499 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4500 mbp->b_resid = 0; 4501 if (stats) 4502 devstat_end_transaction_buf(stats, mbp); 4503 biodone(mbio); 4504 } 4505 } 4506 4507 /* 4508 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent 4509 * the mbio from being biodone()'d while we are still adding sub-bios to 4510 * it. 4511 */ 4512 void 4513 nestiobuf_init(struct bio *bio) 4514 { 4515 bio->bio_driver_info = (void *)1; 4516 } 4517 4518 /* 4519 * The BIOs added to the nestedio have already been started, remove the 4520 * count that placeheld our mbio and biodone() it if the count would 4521 * transition to 0. 4522 */ 4523 void 4524 nestiobuf_start(struct bio *mbio) 4525 { 4526 struct buf *mbp = mbio->bio_buf; 4527 4528 /* 4529 * Decrement the operations in progress counter and terminate the 4530 * I/O if this was the last bit. 4531 */ 4532 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4533 if (mbp->b_flags & B_ERROR) 4534 mbp->b_resid = mbp->b_bcount; 4535 else 4536 mbp->b_resid = 0; 4537 biodone(mbio); 4538 } 4539 } 4540 4541 /* 4542 * Set an intermediate error prior to calling nestiobuf_start() 4543 */ 4544 void 4545 nestiobuf_error(struct bio *mbio, int error) 4546 { 4547 struct buf *mbp = mbio->bio_buf; 4548 4549 if (error) { 4550 mbp->b_error = error; 4551 atomic_set_int(&mbp->b_flags, B_ERROR); 4552 } 4553 } 4554 4555 /* 4556 * nestiobuf_add: setup a "nested" buffer. 4557 * 4558 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 4559 * => 'bp' should be a buffer allocated by getiobuf. 4560 * => 'offset' is a byte offset in the master buffer. 4561 * => 'size' is a size in bytes of this nested buffer. 4562 */ 4563 void 4564 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats) 4565 { 4566 struct buf *mbp = mbio->bio_buf; 4567 struct vnode *vp = mbp->b_vp; 4568 4569 KKASSERT(mbp->b_bcount >= offset + size); 4570 4571 atomic_add_int((int *)&mbio->bio_driver_info, 1); 4572 4573 /* kernel needs to own the lock for it to be released in biodone */ 4574 BUF_KERNPROC(bp); 4575 bp->b_vp = vp; 4576 bp->b_cmd = mbp->b_cmd; 4577 bp->b_bio1.bio_done = nestiobuf_iodone; 4578 bp->b_data = (char *)mbp->b_data + offset; 4579 bp->b_resid = bp->b_bcount = size; 4580 bp->b_bufsize = bp->b_bcount; 4581 4582 bp->b_bio1.bio_track = NULL; 4583 bp->b_bio1.bio_caller_info1.ptr = mbio; 4584 bp->b_bio1.bio_caller_info2.ptr = stats; 4585 } 4586 4587 #ifdef DDB 4588 4589 DB_SHOW_COMMAND(buffer, db_show_buffer) 4590 { 4591 /* get args */ 4592 struct buf *bp = (struct buf *)addr; 4593 4594 if (!have_addr) { 4595 db_printf("usage: show buffer <addr>\n"); 4596 return; 4597 } 4598 4599 db_printf("b_flags = 0x%pb%i\n", PRINT_BUF_FLAGS, bp->b_flags); 4600 db_printf("b_cmd = %d\n", bp->b_cmd); 4601 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4602 "b_resid = %d\n, b_data = %p, " 4603 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4604 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4605 bp->b_data, 4606 (long long)bp->b_bio2.bio_offset, 4607 (long long)(bp->b_bio2.bio_next ? 4608 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4609 if (bp->b_xio.xio_npages) { 4610 int i; 4611 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4612 bp->b_xio.xio_npages); 4613 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4614 vm_page_t m; 4615 m = bp->b_xio.xio_pages[i]; 4616 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4617 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4618 if ((i + 1) < bp->b_xio.xio_npages) 4619 db_printf(","); 4620 } 4621 db_printf("\n"); 4622 } 4623 } 4624 #endif /* DDB */ 4625