xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 88abd8b5763f2e5d4b4db5c5dc1b5bb4c489698b)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <sys/proc.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
59 
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <sys/mplock2.h>
64 #include <vm/vm_page2.h>
65 
66 #include "opt_ddb.h"
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70 
71 /*
72  * Buffer queues.
73  */
74 enum bufq_type {
75 	BQUEUE_NONE,    	/* not on any queue */
76 	BQUEUE_LOCKED,  	/* locked buffers */
77 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
78 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
79 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
80 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
81 	BQUEUE_EMPTY,    	/* empty buffer headers */
82 
83 	BUFFER_QUEUES		/* number of buffer queues */
84 };
85 
86 typedef enum bufq_type bufq_type_t;
87 
88 #define BD_WAKE_SIZE	16384
89 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
90 
91 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
92 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
93 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
94 
95 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
96 
97 struct buf *buf;		/* buffer header pool */
98 
99 static void vfs_clean_pages(struct buf *bp);
100 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
101 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
102 static void vfs_vmio_release(struct buf *bp);
103 static int flushbufqueues(bufq_type_t q);
104 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
105 
106 static void bd_signal(int totalspace);
107 static void buf_daemon(void);
108 static void buf_daemon_hw(void);
109 
110 /*
111  * bogus page -- for I/O to/from partially complete buffers
112  * this is a temporary solution to the problem, but it is not
113  * really that bad.  it would be better to split the buffer
114  * for input in the case of buffers partially already in memory,
115  * but the code is intricate enough already.
116  */
117 vm_page_t bogus_page;
118 
119 /*
120  * These are all static, but make the ones we export globals so we do
121  * not need to use compiler magic.
122  */
123 int bufspace;			/* locked by buffer_map */
124 int maxbufspace;
125 static int bufmallocspace;	/* atomic ops */
126 int maxbufmallocspace, lobufspace, hibufspace;
127 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
128 static int lorunningspace;
129 static int hirunningspace;
130 static int runningbufreq;		/* locked by bufcspin */
131 static int dirtybufspace;		/* locked by bufcspin */
132 static int dirtybufcount;		/* locked by bufcspin */
133 static int dirtybufspacehw;		/* locked by bufcspin */
134 static int dirtybufcounthw;		/* locked by bufcspin */
135 static int runningbufspace;		/* locked by bufcspin */
136 static int runningbufcount;		/* locked by bufcspin */
137 int lodirtybufspace;
138 int hidirtybufspace;
139 static int getnewbufcalls;
140 static int getnewbufrestarts;
141 static int recoverbufcalls;
142 static int needsbuffer;		/* locked by bufcspin */
143 static int bd_request;		/* locked by bufcspin */
144 static int bd_request_hw;	/* locked by bufcspin */
145 static u_int bd_wake_ary[BD_WAKE_SIZE];
146 static u_int bd_wake_index;
147 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
148 static int debug_commit;
149 
150 static struct thread *bufdaemon_td;
151 static struct thread *bufdaemonhw_td;
152 static u_int lowmempgallocs;
153 static u_int lowmempgfails;
154 
155 /*
156  * Sysctls for operational control of the buffer cache.
157  */
158 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
159 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
160 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
161 	"High watermark used to trigger explicit flushing of dirty buffers");
162 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
163 	"Minimum amount of buffer space required for active I/O");
164 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
165 	"Maximum amount of buffer space to usable for active I/O");
166 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
167 	"Page allocations done during periods of very low free memory");
168 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
169 	"Page allocations which failed during periods of very low free memory");
170 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
171 	"Recycle pages to active or inactive queue transition pt 0-64");
172 /*
173  * Sysctls determining current state of the buffer cache.
174  */
175 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
176 	"Total number of buffers in buffer cache");
177 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
178 	"Pending bytes of dirty buffers (all)");
179 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
180 	"Pending bytes of dirty buffers (heavy weight)");
181 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
182 	"Pending number of dirty buffers");
183 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
184 	"Pending number of dirty buffers (heavy weight)");
185 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
186 	"I/O bytes currently in progress due to asynchronous writes");
187 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
188 	"I/O buffers currently in progress due to asynchronous writes");
189 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
190 	"Hard limit on maximum amount of memory usable for buffer space");
191 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
192 	"Soft limit on maximum amount of memory usable for buffer space");
193 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
194 	"Minimum amount of memory to reserve for system buffer space");
195 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
196 	"Amount of memory available for buffers");
197 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
198 	0, "Maximum amount of memory reserved for buffers using malloc");
199 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
200 	"Amount of memory left for buffers using malloc-scheme");
201 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
202 	"New buffer header acquisition requests");
203 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
204 	0, "New buffer header acquisition restarts");
205 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
206 	"Recover VM space in an emergency");
207 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
208 	"Buffer acquisition restarts due to fragmented buffer map");
209 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
210 	"Amount of time KVA space was deallocated in an arbitrary buffer");
211 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
212 	"Amount of time buffer re-use operations were successful");
213 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
214 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
215 	"sizeof(struct buf)");
216 
217 char *buf_wmesg = BUF_WMESG;
218 
219 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
220 #define VFS_BIO_NEED_UNUSED02	0x02
221 #define VFS_BIO_NEED_UNUSED04	0x04
222 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
223 
224 /*
225  * bufspacewakeup:
226  *
227  *	Called when buffer space is potentially available for recovery.
228  *	getnewbuf() will block on this flag when it is unable to free
229  *	sufficient buffer space.  Buffer space becomes recoverable when
230  *	bp's get placed back in the queues.
231  */
232 static __inline void
233 bufspacewakeup(void)
234 {
235 	/*
236 	 * If someone is waiting for BUF space, wake them up.  Even
237 	 * though we haven't freed the kva space yet, the waiting
238 	 * process will be able to now.
239 	 */
240 	spin_lock(&bufcspin);
241 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
242 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
243 		spin_unlock(&bufcspin);
244 		wakeup(&needsbuffer);
245 	} else {
246 		spin_unlock(&bufcspin);
247 	}
248 }
249 
250 /*
251  * runningbufwakeup:
252  *
253  *	Accounting for I/O in progress.
254  *
255  */
256 static __inline void
257 runningbufwakeup(struct buf *bp)
258 {
259 	int totalspace;
260 	int limit;
261 
262 	if ((totalspace = bp->b_runningbufspace) != 0) {
263 		spin_lock(&bufcspin);
264 		runningbufspace -= totalspace;
265 		--runningbufcount;
266 		bp->b_runningbufspace = 0;
267 
268 		/*
269 		 * see waitrunningbufspace() for limit test.
270 		 */
271 		limit = hirunningspace * 4 / 6;
272 		if (runningbufreq && runningbufspace <= limit) {
273 			runningbufreq = 0;
274 			spin_unlock(&bufcspin);
275 			wakeup(&runningbufreq);
276 		} else {
277 			spin_unlock(&bufcspin);
278 		}
279 		bd_signal(totalspace);
280 	}
281 }
282 
283 /*
284  * bufcountwakeup:
285  *
286  *	Called when a buffer has been added to one of the free queues to
287  *	account for the buffer and to wakeup anyone waiting for free buffers.
288  *	This typically occurs when large amounts of metadata are being handled
289  *	by the buffer cache ( else buffer space runs out first, usually ).
290  *
291  * MPSAFE
292  */
293 static __inline void
294 bufcountwakeup(void)
295 {
296 	spin_lock(&bufcspin);
297 	if (needsbuffer) {
298 		needsbuffer &= ~VFS_BIO_NEED_ANY;
299 		spin_unlock(&bufcspin);
300 		wakeup(&needsbuffer);
301 	} else {
302 		spin_unlock(&bufcspin);
303 	}
304 }
305 
306 /*
307  * waitrunningbufspace()
308  *
309  * Wait for the amount of running I/O to drop to hirunningspace * 4 / 6.
310  * This is the point where write bursting stops so we don't want to wait
311  * for the running amount to drop below it (at least if we still want bioq
312  * to burst writes).
313  *
314  * The caller may be using this function to block in a tight loop, we
315  * must block while runningbufspace is greater then or equal to
316  * hirunningspace * 4 / 6.
317  *
318  * And even with that it may not be enough, due to the presence of
319  * B_LOCKED dirty buffers, so also wait for at least one running buffer
320  * to complete.
321  */
322 void
323 waitrunningbufspace(void)
324 {
325 	int limit = hirunningspace * 4 / 6;
326 	int dummy;
327 
328 	spin_lock(&bufcspin);
329 	if (runningbufspace > limit) {
330 		while (runningbufspace > limit) {
331 			++runningbufreq;
332 			ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
333 		}
334 		spin_unlock(&bufcspin);
335 	} else if (runningbufspace > limit / 2) {
336 		++runningbufreq;
337 		spin_unlock(&bufcspin);
338 		tsleep(&dummy, 0, "wdrn2", 1);
339 	} else {
340 		spin_unlock(&bufcspin);
341 	}
342 }
343 
344 /*
345  * buf_dirty_count_severe:
346  *
347  *	Return true if we have too many dirty buffers.
348  */
349 int
350 buf_dirty_count_severe(void)
351 {
352 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
353 	        dirtybufcount >= nbuf / 2);
354 }
355 
356 /*
357  * Return true if the amount of running I/O is severe and BIOQ should
358  * start bursting.
359  */
360 int
361 buf_runningbufspace_severe(void)
362 {
363 	return (runningbufspace >= hirunningspace * 4 / 6);
364 }
365 
366 /*
367  * vfs_buf_test_cache:
368  *
369  * Called when a buffer is extended.  This function clears the B_CACHE
370  * bit if the newly extended portion of the buffer does not contain
371  * valid data.
372  *
373  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
374  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
375  * them while a clean buffer was present.
376  */
377 static __inline__
378 void
379 vfs_buf_test_cache(struct buf *bp,
380 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
381 		  vm_page_t m)
382 {
383 	if (bp->b_flags & B_CACHE) {
384 		int base = (foff + off) & PAGE_MASK;
385 		if (vm_page_is_valid(m, base, size) == 0)
386 			bp->b_flags &= ~B_CACHE;
387 	}
388 }
389 
390 /*
391  * bd_speedup()
392  *
393  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
394  * low water mark.
395  *
396  * MPSAFE
397  */
398 static __inline__
399 void
400 bd_speedup(void)
401 {
402 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
403 		return;
404 
405 	if (bd_request == 0 &&
406 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
407 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
408 		spin_lock(&bufcspin);
409 		bd_request = 1;
410 		spin_unlock(&bufcspin);
411 		wakeup(&bd_request);
412 	}
413 	if (bd_request_hw == 0 &&
414 	    (dirtybufspacehw > lodirtybufspace / 2 ||
415 	     dirtybufcounthw >= nbuf / 2)) {
416 		spin_lock(&bufcspin);
417 		bd_request_hw = 1;
418 		spin_unlock(&bufcspin);
419 		wakeup(&bd_request_hw);
420 	}
421 }
422 
423 /*
424  * bd_heatup()
425  *
426  *	Get the buf_daemon heated up when the number of running and dirty
427  *	buffers exceeds the mid-point.
428  *
429  *	Return the total number of dirty bytes past the second mid point
430  *	as a measure of how much excess dirty data there is in the system.
431  *
432  * MPSAFE
433  */
434 int
435 bd_heatup(void)
436 {
437 	int mid1;
438 	int mid2;
439 	int totalspace;
440 
441 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
442 
443 	totalspace = runningbufspace + dirtybufspace;
444 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
445 		bd_speedup();
446 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
447 		if (totalspace >= mid2)
448 			return(totalspace - mid2);
449 	}
450 	return(0);
451 }
452 
453 /*
454  * bd_wait()
455  *
456  *	Wait for the buffer cache to flush (totalspace) bytes worth of
457  *	buffers, then return.
458  *
459  *	Regardless this function blocks while the number of dirty buffers
460  *	exceeds hidirtybufspace.
461  *
462  * MPSAFE
463  */
464 void
465 bd_wait(int totalspace)
466 {
467 	u_int i;
468 	int count;
469 
470 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
471 		return;
472 
473 	while (totalspace > 0) {
474 		bd_heatup();
475 		if (totalspace > runningbufspace + dirtybufspace)
476 			totalspace = runningbufspace + dirtybufspace;
477 		count = totalspace / BKVASIZE;
478 		if (count >= BD_WAKE_SIZE)
479 			count = BD_WAKE_SIZE - 1;
480 
481 		spin_lock(&bufcspin);
482 		i = (bd_wake_index + count) & BD_WAKE_MASK;
483 		++bd_wake_ary[i];
484 
485 		/*
486 		 * This is not a strict interlock, so we play a bit loose
487 		 * with locking access to dirtybufspace*
488 		 */
489 		tsleep_interlock(&bd_wake_ary[i], 0);
490 		spin_unlock(&bufcspin);
491 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
492 
493 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
494 	}
495 }
496 
497 /*
498  * bd_signal()
499  *
500  *	This function is called whenever runningbufspace or dirtybufspace
501  *	is reduced.  Track threads waiting for run+dirty buffer I/O
502  *	complete.
503  *
504  * MPSAFE
505  */
506 static void
507 bd_signal(int totalspace)
508 {
509 	u_int i;
510 
511 	if (totalspace > 0) {
512 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
513 			totalspace = BKVASIZE * BD_WAKE_SIZE;
514 		spin_lock(&bufcspin);
515 		while (totalspace > 0) {
516 			i = bd_wake_index++;
517 			i &= BD_WAKE_MASK;
518 			if (bd_wake_ary[i]) {
519 				bd_wake_ary[i] = 0;
520 				spin_unlock(&bufcspin);
521 				wakeup(&bd_wake_ary[i]);
522 				spin_lock(&bufcspin);
523 			}
524 			totalspace -= BKVASIZE;
525 		}
526 		spin_unlock(&bufcspin);
527 	}
528 }
529 
530 /*
531  * BIO tracking support routines.
532  *
533  * Release a ref on a bio_track.  Wakeup requests are atomically released
534  * along with the last reference so bk_active will never wind up set to
535  * only 0x80000000.
536  *
537  * MPSAFE
538  */
539 static
540 void
541 bio_track_rel(struct bio_track *track)
542 {
543 	int	active;
544 	int	desired;
545 
546 	/*
547 	 * Shortcut
548 	 */
549 	active = track->bk_active;
550 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
551 		return;
552 
553 	/*
554 	 * Full-on.  Note that the wait flag is only atomically released on
555 	 * the 1->0 count transition.
556 	 *
557 	 * We check for a negative count transition using bit 30 since bit 31
558 	 * has a different meaning.
559 	 */
560 	for (;;) {
561 		desired = (active & 0x7FFFFFFF) - 1;
562 		if (desired)
563 			desired |= active & 0x80000000;
564 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
565 			if (desired & 0x40000000)
566 				panic("bio_track_rel: bad count: %p\n", track);
567 			if (active & 0x80000000)
568 				wakeup(track);
569 			break;
570 		}
571 		active = track->bk_active;
572 	}
573 }
574 
575 /*
576  * Wait for the tracking count to reach 0.
577  *
578  * Use atomic ops such that the wait flag is only set atomically when
579  * bk_active is non-zero.
580  *
581  * MPSAFE
582  */
583 int
584 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
585 {
586 	int	active;
587 	int	desired;
588 	int	error;
589 
590 	/*
591 	 * Shortcut
592 	 */
593 	if (track->bk_active == 0)
594 		return(0);
595 
596 	/*
597 	 * Full-on.  Note that the wait flag may only be atomically set if
598 	 * the active count is non-zero.
599 	 *
600 	 * NOTE: We cannot optimize active == desired since a wakeup could
601 	 *	 clear active prior to our tsleep_interlock().
602 	 */
603 	error = 0;
604 	while ((active = track->bk_active) != 0) {
605 		desired = active | 0x80000000;
606 		tsleep_interlock(track, slp_flags);
607 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
608 			error = tsleep(track, slp_flags | PINTERLOCKED,
609 				       "trwait", slp_timo);
610 			if (error)
611 				break;
612 		}
613 	}
614 	return (error);
615 }
616 
617 /*
618  * bufinit:
619  *
620  *	Load time initialisation of the buffer cache, called from machine
621  *	dependant initialization code.
622  */
623 void
624 bufinit(void)
625 {
626 	struct buf *bp;
627 	vm_offset_t bogus_offset;
628 	int i;
629 
630 	/* next, make a null set of free lists */
631 	for (i = 0; i < BUFFER_QUEUES; i++)
632 		TAILQ_INIT(&bufqueues[i]);
633 
634 	/* finally, initialize each buffer header and stick on empty q */
635 	for (i = 0; i < nbuf; i++) {
636 		bp = &buf[i];
637 		bzero(bp, sizeof *bp);
638 		bp->b_flags = B_INVAL;	/* we're just an empty header */
639 		bp->b_cmd = BUF_CMD_DONE;
640 		bp->b_qindex = BQUEUE_EMPTY;
641 		initbufbio(bp);
642 		xio_init(&bp->b_xio);
643 		buf_dep_init(bp);
644 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
645 	}
646 
647 	/*
648 	 * maxbufspace is the absolute maximum amount of buffer space we are
649 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
650 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
651 	 * used by most other processes.  The differential is required to
652 	 * ensure that buf_daemon is able to run when other processes might
653 	 * be blocked waiting for buffer space.
654 	 *
655 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
656 	 * this may result in KVM fragmentation which is not handled optimally
657 	 * by the system.
658 	 */
659 	maxbufspace = nbuf * BKVASIZE;
660 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
661 	lobufspace = hibufspace - MAXBSIZE;
662 
663 	lorunningspace = 512 * 1024;
664 	/* hirunningspace -- see below */
665 
666 	/*
667 	 * Limit the amount of malloc memory since it is wired permanently
668 	 * into the kernel space.  Even though this is accounted for in
669 	 * the buffer allocation, we don't want the malloced region to grow
670 	 * uncontrolled.  The malloc scheme improves memory utilization
671 	 * significantly on average (small) directories.
672 	 */
673 	maxbufmallocspace = hibufspace / 20;
674 
675 	/*
676 	 * Reduce the chance of a deadlock occuring by limiting the number
677 	 * of delayed-write dirty buffers we allow to stack up.
678 	 *
679 	 * We don't want too much actually queued to the device at once
680 	 * (XXX this needs to be per-mount!), because the buffers will
681 	 * wind up locked for a very long period of time while the I/O
682 	 * drains.
683 	 */
684 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
685 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
686 	if (hirunningspace < 1024 * 1024)
687 		hirunningspace = 1024 * 1024;
688 
689 	dirtybufspace = 0;
690 	dirtybufspacehw = 0;
691 
692 	lodirtybufspace = hidirtybufspace / 2;
693 
694 	/*
695 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
696 	 * somewhat of a hack at the moment, we really need to limit ourselves
697 	 * based on the number of bytes of I/O in-transit that were initiated
698 	 * from buf_daemon.
699 	 */
700 
701 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
702 	bogus_page = vm_page_alloc(&kernel_object,
703 				   (bogus_offset >> PAGE_SHIFT),
704 				   VM_ALLOC_NORMAL);
705 	vmstats.v_wire_count++;
706 
707 }
708 
709 /*
710  * Initialize the embedded bio structures, typically used by
711  * deprecated code which tries to allocate its own struct bufs.
712  */
713 void
714 initbufbio(struct buf *bp)
715 {
716 	bp->b_bio1.bio_buf = bp;
717 	bp->b_bio1.bio_prev = NULL;
718 	bp->b_bio1.bio_offset = NOOFFSET;
719 	bp->b_bio1.bio_next = &bp->b_bio2;
720 	bp->b_bio1.bio_done = NULL;
721 	bp->b_bio1.bio_flags = 0;
722 
723 	bp->b_bio2.bio_buf = bp;
724 	bp->b_bio2.bio_prev = &bp->b_bio1;
725 	bp->b_bio2.bio_offset = NOOFFSET;
726 	bp->b_bio2.bio_next = NULL;
727 	bp->b_bio2.bio_done = NULL;
728 	bp->b_bio2.bio_flags = 0;
729 
730 	BUF_LOCKINIT(bp);
731 }
732 
733 /*
734  * Reinitialize the embedded bio structures as well as any additional
735  * translation cache layers.
736  */
737 void
738 reinitbufbio(struct buf *bp)
739 {
740 	struct bio *bio;
741 
742 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
743 		bio->bio_done = NULL;
744 		bio->bio_offset = NOOFFSET;
745 	}
746 }
747 
748 /*
749  * Undo the effects of an initbufbio().
750  */
751 void
752 uninitbufbio(struct buf *bp)
753 {
754 	dsched_exit_buf(bp);
755 	BUF_LOCKFREE(bp);
756 }
757 
758 /*
759  * Push another BIO layer onto an existing BIO and return it.  The new
760  * BIO layer may already exist, holding cached translation data.
761  */
762 struct bio *
763 push_bio(struct bio *bio)
764 {
765 	struct bio *nbio;
766 
767 	if ((nbio = bio->bio_next) == NULL) {
768 		int index = bio - &bio->bio_buf->b_bio_array[0];
769 		if (index >= NBUF_BIO - 1) {
770 			panic("push_bio: too many layers bp %p\n",
771 				bio->bio_buf);
772 		}
773 		nbio = &bio->bio_buf->b_bio_array[index + 1];
774 		bio->bio_next = nbio;
775 		nbio->bio_prev = bio;
776 		nbio->bio_buf = bio->bio_buf;
777 		nbio->bio_offset = NOOFFSET;
778 		nbio->bio_done = NULL;
779 		nbio->bio_next = NULL;
780 	}
781 	KKASSERT(nbio->bio_done == NULL);
782 	return(nbio);
783 }
784 
785 /*
786  * Pop a BIO translation layer, returning the previous layer.  The
787  * must have been previously pushed.
788  */
789 struct bio *
790 pop_bio(struct bio *bio)
791 {
792 	return(bio->bio_prev);
793 }
794 
795 void
796 clearbiocache(struct bio *bio)
797 {
798 	while (bio) {
799 		bio->bio_offset = NOOFFSET;
800 		bio = bio->bio_next;
801 	}
802 }
803 
804 /*
805  * bfreekva:
806  *
807  *	Free the KVA allocation for buffer 'bp'.
808  *
809  *	Must be called from a critical section as this is the only locking for
810  *	buffer_map.
811  *
812  *	Since this call frees up buffer space, we call bufspacewakeup().
813  *
814  * MPALMOSTSAFE
815  */
816 static void
817 bfreekva(struct buf *bp)
818 {
819 	int count;
820 
821 	if (bp->b_kvasize) {
822 		++buffreekvacnt;
823 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
824 		vm_map_lock(&buffer_map);
825 		bufspace -= bp->b_kvasize;
826 		vm_map_delete(&buffer_map,
827 		    (vm_offset_t) bp->b_kvabase,
828 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
829 		    &count
830 		);
831 		vm_map_unlock(&buffer_map);
832 		vm_map_entry_release(count);
833 		bp->b_kvasize = 0;
834 		bp->b_kvabase = NULL;
835 		bufspacewakeup();
836 	}
837 }
838 
839 /*
840  * bremfree:
841  *
842  *	Remove the buffer from the appropriate free list.
843  */
844 static __inline void
845 _bremfree(struct buf *bp)
846 {
847 	if (bp->b_qindex != BQUEUE_NONE) {
848 		KASSERT(BUF_REFCNTNB(bp) == 1,
849 				("bremfree: bp %p not locked",bp));
850 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
851 		bp->b_qindex = BQUEUE_NONE;
852 	} else {
853 		if (BUF_REFCNTNB(bp) <= 1)
854 			panic("bremfree: removing a buffer not on a queue");
855 	}
856 }
857 
858 void
859 bremfree(struct buf *bp)
860 {
861 	spin_lock(&bufqspin);
862 	_bremfree(bp);
863 	spin_unlock(&bufqspin);
864 }
865 
866 static void
867 bremfree_locked(struct buf *bp)
868 {
869 	_bremfree(bp);
870 }
871 
872 /*
873  * bread:
874  *
875  *	Get a buffer with the specified data.  Look in the cache first.  We
876  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
877  *	is set, the buffer is valid and we do not have to do anything ( see
878  *	getblk() ).
879  *
880  * MPALMOSTSAFE
881  */
882 int
883 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
884 {
885 	struct buf *bp;
886 
887 	bp = getblk(vp, loffset, size, 0, 0);
888 	*bpp = bp;
889 
890 	/* if not found in cache, do some I/O */
891 	if ((bp->b_flags & B_CACHE) == 0) {
892 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
893 		bp->b_cmd = BUF_CMD_READ;
894 		bp->b_bio1.bio_done = biodone_sync;
895 		bp->b_bio1.bio_flags |= BIO_SYNC;
896 		vfs_busy_pages(vp, bp);
897 		vn_strategy(vp, &bp->b_bio1);
898 		return (biowait(&bp->b_bio1, "biord"));
899 	}
900 	return (0);
901 }
902 
903 /*
904  * breadn:
905  *
906  *	Operates like bread, but also starts asynchronous I/O on
907  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
908  *	to initiating I/O . If B_CACHE is set, the buffer is valid
909  *	and we do not have to do anything.
910  *
911  * MPALMOSTSAFE
912  */
913 int
914 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
915 	int *rabsize, int cnt, struct buf **bpp)
916 {
917 	struct buf *bp, *rabp;
918 	int i;
919 	int rv = 0, readwait = 0;
920 
921 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
922 
923 	/* if not found in cache, do some I/O */
924 	if ((bp->b_flags & B_CACHE) == 0) {
925 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
926 		bp->b_cmd = BUF_CMD_READ;
927 		bp->b_bio1.bio_done = biodone_sync;
928 		bp->b_bio1.bio_flags |= BIO_SYNC;
929 		vfs_busy_pages(vp, bp);
930 		vn_strategy(vp, &bp->b_bio1);
931 		++readwait;
932 	}
933 
934 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
935 		if (inmem(vp, *raoffset))
936 			continue;
937 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
938 
939 		if ((rabp->b_flags & B_CACHE) == 0) {
940 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
941 			rabp->b_cmd = BUF_CMD_READ;
942 			vfs_busy_pages(vp, rabp);
943 			BUF_KERNPROC(rabp);
944 			vn_strategy(vp, &rabp->b_bio1);
945 		} else {
946 			brelse(rabp);
947 		}
948 	}
949 	if (readwait)
950 		rv = biowait(&bp->b_bio1, "biord");
951 	return (rv);
952 }
953 
954 /*
955  * bwrite:
956  *
957  *	Synchronous write, waits for completion.
958  *
959  *	Write, release buffer on completion.  (Done by iodone
960  *	if async).  Do not bother writing anything if the buffer
961  *	is invalid.
962  *
963  *	Note that we set B_CACHE here, indicating that buffer is
964  *	fully valid and thus cacheable.  This is true even of NFS
965  *	now so we set it generally.  This could be set either here
966  *	or in biodone() since the I/O is synchronous.  We put it
967  *	here.
968  */
969 int
970 bwrite(struct buf *bp)
971 {
972 	int error;
973 
974 	if (bp->b_flags & B_INVAL) {
975 		brelse(bp);
976 		return (0);
977 	}
978 	if (BUF_REFCNTNB(bp) == 0)
979 		panic("bwrite: buffer is not busy???");
980 
981 	/* Mark the buffer clean */
982 	bundirty(bp);
983 
984 	bp->b_flags &= ~(B_ERROR | B_EINTR);
985 	bp->b_flags |= B_CACHE;
986 	bp->b_cmd = BUF_CMD_WRITE;
987 	bp->b_bio1.bio_done = biodone_sync;
988 	bp->b_bio1.bio_flags |= BIO_SYNC;
989 	vfs_busy_pages(bp->b_vp, bp);
990 
991 	/*
992 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
993 	 * valid for vnode-backed buffers.
994 	 */
995 	bsetrunningbufspace(bp, bp->b_bufsize);
996 	vn_strategy(bp->b_vp, &bp->b_bio1);
997 	error = biowait(&bp->b_bio1, "biows");
998 	brelse(bp);
999 
1000 	return (error);
1001 }
1002 
1003 /*
1004  * bawrite:
1005  *
1006  *	Asynchronous write.  Start output on a buffer, but do not wait for
1007  *	it to complete.  The buffer is released when the output completes.
1008  *
1009  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1010  *	B_INVAL buffers.  Not us.
1011  */
1012 void
1013 bawrite(struct buf *bp)
1014 {
1015 	if (bp->b_flags & B_INVAL) {
1016 		brelse(bp);
1017 		return;
1018 	}
1019 	if (BUF_REFCNTNB(bp) == 0)
1020 		panic("bwrite: buffer is not busy???");
1021 
1022 	/* Mark the buffer clean */
1023 	bundirty(bp);
1024 
1025 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1026 	bp->b_flags |= B_CACHE;
1027 	bp->b_cmd = BUF_CMD_WRITE;
1028 	KKASSERT(bp->b_bio1.bio_done == NULL);
1029 	vfs_busy_pages(bp->b_vp, bp);
1030 
1031 	/*
1032 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1033 	 * valid for vnode-backed buffers.
1034 	 */
1035 	bsetrunningbufspace(bp, bp->b_bufsize);
1036 	BUF_KERNPROC(bp);
1037 	vn_strategy(bp->b_vp, &bp->b_bio1);
1038 }
1039 
1040 /*
1041  * bowrite:
1042  *
1043  *	Ordered write.  Start output on a buffer, and flag it so that the
1044  *	device will write it in the order it was queued.  The buffer is
1045  *	released when the output completes.  bwrite() ( or the VOP routine
1046  *	anyway ) is responsible for handling B_INVAL buffers.
1047  */
1048 int
1049 bowrite(struct buf *bp)
1050 {
1051 	bp->b_flags |= B_ORDERED;
1052 	bawrite(bp);
1053 	return (0);
1054 }
1055 
1056 /*
1057  * bdwrite:
1058  *
1059  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1060  *	anything if the buffer is marked invalid.
1061  *
1062  *	Note that since the buffer must be completely valid, we can safely
1063  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1064  *	biodone() in order to prevent getblk from writing the buffer
1065  *	out synchronously.
1066  */
1067 void
1068 bdwrite(struct buf *bp)
1069 {
1070 	if (BUF_REFCNTNB(bp) == 0)
1071 		panic("bdwrite: buffer is not busy");
1072 
1073 	if (bp->b_flags & B_INVAL) {
1074 		brelse(bp);
1075 		return;
1076 	}
1077 	bdirty(bp);
1078 
1079 	if (dsched_is_clear_buf_priv(bp))
1080 		dsched_new_buf(bp);
1081 
1082 	/*
1083 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1084 	 * true even of NFS now.
1085 	 */
1086 	bp->b_flags |= B_CACHE;
1087 
1088 	/*
1089 	 * This bmap keeps the system from needing to do the bmap later,
1090 	 * perhaps when the system is attempting to do a sync.  Since it
1091 	 * is likely that the indirect block -- or whatever other datastructure
1092 	 * that the filesystem needs is still in memory now, it is a good
1093 	 * thing to do this.  Note also, that if the pageout daemon is
1094 	 * requesting a sync -- there might not be enough memory to do
1095 	 * the bmap then...  So, this is important to do.
1096 	 */
1097 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1098 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1099 			 NULL, NULL, BUF_CMD_WRITE);
1100 	}
1101 
1102 	/*
1103 	 * Because the underlying pages may still be mapped and
1104 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1105 	 * range here will be inaccurate.
1106 	 *
1107 	 * However, we must still clean the pages to satisfy the
1108 	 * vnode_pager and pageout daemon, so theythink the pages
1109 	 * have been "cleaned".  What has really occured is that
1110 	 * they've been earmarked for later writing by the buffer
1111 	 * cache.
1112 	 *
1113 	 * So we get the b_dirtyoff/end update but will not actually
1114 	 * depend on it (NFS that is) until the pages are busied for
1115 	 * writing later on.
1116 	 */
1117 	vfs_clean_pages(bp);
1118 	bqrelse(bp);
1119 
1120 	/*
1121 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1122 	 * due to the softdep code.
1123 	 */
1124 }
1125 
1126 /*
1127  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1128  * This is used by tmpfs.
1129  *
1130  * It is important for any VFS using this routine to NOT use it for
1131  * IO_SYNC or IO_ASYNC operations which occur when the system really
1132  * wants to flush VM pages to backing store.
1133  */
1134 void
1135 buwrite(struct buf *bp)
1136 {
1137 	vm_page_t m;
1138 	int i;
1139 
1140 	/*
1141 	 * Only works for VMIO buffers.  If the buffer is already
1142 	 * marked for delayed-write we can't avoid the bdwrite().
1143 	 */
1144 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1145 		bdwrite(bp);
1146 		return;
1147 	}
1148 
1149 	/*
1150 	 * Set valid & dirty.
1151 	 */
1152 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1153 		m = bp->b_xio.xio_pages[i];
1154 		vfs_dirty_one_page(bp, i, m);
1155 	}
1156 	bqrelse(bp);
1157 }
1158 
1159 /*
1160  * bdirty:
1161  *
1162  *	Turn buffer into delayed write request by marking it B_DELWRI.
1163  *	B_RELBUF and B_NOCACHE must be cleared.
1164  *
1165  *	We reassign the buffer to itself to properly update it in the
1166  *	dirty/clean lists.
1167  *
1168  *	Must be called from a critical section.
1169  *	The buffer must be on BQUEUE_NONE.
1170  */
1171 void
1172 bdirty(struct buf *bp)
1173 {
1174 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1175 	if (bp->b_flags & B_NOCACHE) {
1176 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1177 		bp->b_flags &= ~B_NOCACHE;
1178 	}
1179 	if (bp->b_flags & B_INVAL) {
1180 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1181 	}
1182 	bp->b_flags &= ~B_RELBUF;
1183 
1184 	if ((bp->b_flags & B_DELWRI) == 0) {
1185 		lwkt_gettoken(&bp->b_vp->v_token);
1186 		bp->b_flags |= B_DELWRI;
1187 		reassignbuf(bp);
1188 		lwkt_reltoken(&bp->b_vp->v_token);
1189 
1190 		spin_lock(&bufcspin);
1191 		++dirtybufcount;
1192 		dirtybufspace += bp->b_bufsize;
1193 		if (bp->b_flags & B_HEAVY) {
1194 			++dirtybufcounthw;
1195 			dirtybufspacehw += bp->b_bufsize;
1196 		}
1197 		spin_unlock(&bufcspin);
1198 
1199 		bd_heatup();
1200 	}
1201 }
1202 
1203 /*
1204  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1205  * needs to be flushed with a different buf_daemon thread to avoid
1206  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1207  */
1208 void
1209 bheavy(struct buf *bp)
1210 {
1211 	if ((bp->b_flags & B_HEAVY) == 0) {
1212 		bp->b_flags |= B_HEAVY;
1213 		if (bp->b_flags & B_DELWRI) {
1214 			spin_lock(&bufcspin);
1215 			++dirtybufcounthw;
1216 			dirtybufspacehw += bp->b_bufsize;
1217 			spin_unlock(&bufcspin);
1218 		}
1219 	}
1220 }
1221 
1222 /*
1223  * bundirty:
1224  *
1225  *	Clear B_DELWRI for buffer.
1226  *
1227  *	Must be called from a critical section.
1228  *
1229  *	The buffer is typically on BQUEUE_NONE but there is one case in
1230  *	brelse() that calls this function after placing the buffer on
1231  *	a different queue.
1232  *
1233  * MPSAFE
1234  */
1235 void
1236 bundirty(struct buf *bp)
1237 {
1238 	if (bp->b_flags & B_DELWRI) {
1239 		lwkt_gettoken(&bp->b_vp->v_token);
1240 		bp->b_flags &= ~B_DELWRI;
1241 		reassignbuf(bp);
1242 		lwkt_reltoken(&bp->b_vp->v_token);
1243 
1244 		spin_lock(&bufcspin);
1245 		--dirtybufcount;
1246 		dirtybufspace -= bp->b_bufsize;
1247 		if (bp->b_flags & B_HEAVY) {
1248 			--dirtybufcounthw;
1249 			dirtybufspacehw -= bp->b_bufsize;
1250 		}
1251 		spin_unlock(&bufcspin);
1252 
1253 		bd_signal(bp->b_bufsize);
1254 	}
1255 	/*
1256 	 * Since it is now being written, we can clear its deferred write flag.
1257 	 */
1258 	bp->b_flags &= ~B_DEFERRED;
1259 }
1260 
1261 /*
1262  * Set the b_runningbufspace field, used to track how much I/O is
1263  * in progress at any given moment.
1264  */
1265 void
1266 bsetrunningbufspace(struct buf *bp, int bytes)
1267 {
1268 	bp->b_runningbufspace = bytes;
1269 	if (bytes) {
1270 		spin_lock(&bufcspin);
1271 		runningbufspace += bytes;
1272 		++runningbufcount;
1273 		spin_unlock(&bufcspin);
1274 	}
1275 }
1276 
1277 /*
1278  * brelse:
1279  *
1280  *	Release a busy buffer and, if requested, free its resources.  The
1281  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1282  *	to be accessed later as a cache entity or reused for other purposes.
1283  *
1284  * MPALMOSTSAFE
1285  */
1286 void
1287 brelse(struct buf *bp)
1288 {
1289 #ifdef INVARIANTS
1290 	int saved_flags = bp->b_flags;
1291 #endif
1292 
1293 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1294 
1295 	/*
1296 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1297 	 * its backing store.  Clear B_DELWRI.
1298 	 *
1299 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1300 	 * to destroy the buffer and backing store and (2) when the caller
1301 	 * wants to destroy the buffer and backing store after a write
1302 	 * completes.
1303 	 */
1304 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1305 		bundirty(bp);
1306 	}
1307 
1308 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1309 		/*
1310 		 * A re-dirtied buffer is only subject to destruction
1311 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1312 		 */
1313 		/* leave buffer intact */
1314 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1315 		   (bp->b_bufsize <= 0)) {
1316 		/*
1317 		 * Either a failed read or we were asked to free or not
1318 		 * cache the buffer.  This path is reached with B_DELWRI
1319 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1320 		 * backing store destruction.
1321 		 *
1322 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1323 		 * buffer cannot be immediately freed.
1324 		 */
1325 		bp->b_flags |= B_INVAL;
1326 		if (LIST_FIRST(&bp->b_dep) != NULL)
1327 			buf_deallocate(bp);
1328 		if (bp->b_flags & B_DELWRI) {
1329 			spin_lock(&bufcspin);
1330 			--dirtybufcount;
1331 			dirtybufspace -= bp->b_bufsize;
1332 			if (bp->b_flags & B_HEAVY) {
1333 				--dirtybufcounthw;
1334 				dirtybufspacehw -= bp->b_bufsize;
1335 			}
1336 			spin_unlock(&bufcspin);
1337 
1338 			bd_signal(bp->b_bufsize);
1339 		}
1340 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1341 	}
1342 
1343 	/*
1344 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1345 	 * If vfs_vmio_release() is called with either bit set, the
1346 	 * underlying pages may wind up getting freed causing a previous
1347 	 * write (bdwrite()) to get 'lost' because pages associated with
1348 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1349 	 * B_LOCKED buffer may be mapped by the filesystem.
1350 	 *
1351 	 * If we want to release the buffer ourselves (rather then the
1352 	 * originator asking us to release it), give the originator a
1353 	 * chance to countermand the release by setting B_LOCKED.
1354 	 *
1355 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1356 	 * if B_DELWRI is set.
1357 	 *
1358 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1359 	 * on pages to return pages to the VM page queues.
1360 	 */
1361 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1362 		bp->b_flags &= ~B_RELBUF;
1363 	} else if (vm_page_count_severe()) {
1364 		if (LIST_FIRST(&bp->b_dep) != NULL)
1365 			buf_deallocate(bp);		/* can set B_LOCKED */
1366 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1367 			bp->b_flags &= ~B_RELBUF;
1368 		else
1369 			bp->b_flags |= B_RELBUF;
1370 	}
1371 
1372 	/*
1373 	 * Make sure b_cmd is clear.  It may have already been cleared by
1374 	 * biodone().
1375 	 *
1376 	 * At this point destroying the buffer is governed by the B_INVAL
1377 	 * or B_RELBUF flags.
1378 	 */
1379 	bp->b_cmd = BUF_CMD_DONE;
1380 	dsched_exit_buf(bp);
1381 
1382 	/*
1383 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1384 	 * after an I/O may have replaces some of the pages with bogus pages
1385 	 * in order to not destroy dirty pages in a fill-in read.
1386 	 *
1387 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1388 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1389 	 * B_INVAL may still be set, however.
1390 	 *
1391 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1392 	 * but not the backing store.   B_NOCACHE will destroy the backing
1393 	 * store.
1394 	 *
1395 	 * Note that dirty NFS buffers contain byte-granular write ranges
1396 	 * and should not be destroyed w/ B_INVAL even if the backing store
1397 	 * is left intact.
1398 	 */
1399 	if (bp->b_flags & B_VMIO) {
1400 		/*
1401 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1402 		 */
1403 		int i, j, resid;
1404 		vm_page_t m;
1405 		off_t foff;
1406 		vm_pindex_t poff;
1407 		vm_object_t obj;
1408 		struct vnode *vp;
1409 
1410 		vp = bp->b_vp;
1411 
1412 		/*
1413 		 * Get the base offset and length of the buffer.  Note that
1414 		 * in the VMIO case if the buffer block size is not
1415 		 * page-aligned then b_data pointer may not be page-aligned.
1416 		 * But our b_xio.xio_pages array *IS* page aligned.
1417 		 *
1418 		 * block sizes less then DEV_BSIZE (usually 512) are not
1419 		 * supported due to the page granularity bits (m->valid,
1420 		 * m->dirty, etc...).
1421 		 *
1422 		 * See man buf(9) for more information
1423 		 */
1424 
1425 		resid = bp->b_bufsize;
1426 		foff = bp->b_loffset;
1427 
1428 		lwkt_gettoken(&vm_token);
1429 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1430 			m = bp->b_xio.xio_pages[i];
1431 			vm_page_flag_clear(m, PG_ZERO);
1432 			/*
1433 			 * If we hit a bogus page, fixup *all* of them
1434 			 * now.  Note that we left these pages wired
1435 			 * when we removed them so they had better exist,
1436 			 * and they cannot be ripped out from under us so
1437 			 * no critical section protection is necessary.
1438 			 */
1439 			if (m == bogus_page) {
1440 				obj = vp->v_object;
1441 				poff = OFF_TO_IDX(bp->b_loffset);
1442 
1443 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1444 					vm_page_t mtmp;
1445 
1446 					mtmp = bp->b_xio.xio_pages[j];
1447 					if (mtmp == bogus_page) {
1448 						mtmp = vm_page_lookup(obj, poff + j);
1449 						if (!mtmp) {
1450 							panic("brelse: page missing");
1451 						}
1452 						bp->b_xio.xio_pages[j] = mtmp;
1453 					}
1454 				}
1455 				bp->b_flags &= ~B_HASBOGUS;
1456 
1457 				if ((bp->b_flags & B_INVAL) == 0) {
1458 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1459 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1460 				}
1461 				m = bp->b_xio.xio_pages[i];
1462 			}
1463 
1464 			/*
1465 			 * Invalidate the backing store if B_NOCACHE is set
1466 			 * (e.g. used with vinvalbuf()).  If this is NFS
1467 			 * we impose a requirement that the block size be
1468 			 * a multiple of PAGE_SIZE and create a temporary
1469 			 * hack to basically invalidate the whole page.  The
1470 			 * problem is that NFS uses really odd buffer sizes
1471 			 * especially when tracking piecemeal writes and
1472 			 * it also vinvalbuf()'s a lot, which would result
1473 			 * in only partial page validation and invalidation
1474 			 * here.  If the file page is mmap()'d, however,
1475 			 * all the valid bits get set so after we invalidate
1476 			 * here we would end up with weird m->valid values
1477 			 * like 0xfc.  nfs_getpages() can't handle this so
1478 			 * we clear all the valid bits for the NFS case
1479 			 * instead of just some of them.
1480 			 *
1481 			 * The real bug is the VM system having to set m->valid
1482 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1483 			 * itself is an artifact of the whole 512-byte
1484 			 * granular mess that exists to support odd block
1485 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1486 			 * A complete rewrite is required.
1487 			 *
1488 			 * XXX
1489 			 */
1490 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1491 				int poffset = foff & PAGE_MASK;
1492 				int presid;
1493 
1494 				presid = PAGE_SIZE - poffset;
1495 				if (bp->b_vp->v_tag == VT_NFS &&
1496 				    bp->b_vp->v_type == VREG) {
1497 					; /* entire page */
1498 				} else if (presid > resid) {
1499 					presid = resid;
1500 				}
1501 				KASSERT(presid >= 0, ("brelse: extra page"));
1502 				vm_page_set_invalid(m, poffset, presid);
1503 
1504 				/*
1505 				 * Also make sure any swap cache is removed
1506 				 * as it is now stale (HAMMER in particular
1507 				 * uses B_NOCACHE to deal with buffer
1508 				 * aliasing).
1509 				 */
1510 				swap_pager_unswapped(m);
1511 			}
1512 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1513 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1514 		}
1515 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1516 			vfs_vmio_release(bp);
1517 		lwkt_reltoken(&vm_token);
1518 	} else {
1519 		/*
1520 		 * Rundown for non-VMIO buffers.
1521 		 */
1522 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1523 			if (bp->b_bufsize)
1524 				allocbuf(bp, 0);
1525 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1526 			if (bp->b_vp)
1527 				brelvp(bp);
1528 		}
1529 	}
1530 
1531 	if (bp->b_qindex != BQUEUE_NONE)
1532 		panic("brelse: free buffer onto another queue???");
1533 	if (BUF_REFCNTNB(bp) > 1) {
1534 		/* Temporary panic to verify exclusive locking */
1535 		/* This panic goes away when we allow shared refs */
1536 		panic("brelse: multiple refs");
1537 		/* NOT REACHED */
1538 		return;
1539 	}
1540 
1541 	/*
1542 	 * Figure out the correct queue to place the cleaned up buffer on.
1543 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1544 	 * disassociated from their vnode.
1545 	 */
1546 	spin_lock(&bufqspin);
1547 	if (bp->b_flags & B_LOCKED) {
1548 		/*
1549 		 * Buffers that are locked are placed in the locked queue
1550 		 * immediately, regardless of their state.
1551 		 */
1552 		bp->b_qindex = BQUEUE_LOCKED;
1553 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1554 	} else if (bp->b_bufsize == 0) {
1555 		/*
1556 		 * Buffers with no memory.  Due to conditionals near the top
1557 		 * of brelse() such buffers should probably already be
1558 		 * marked B_INVAL and disassociated from their vnode.
1559 		 */
1560 		bp->b_flags |= B_INVAL;
1561 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1562 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1563 		if (bp->b_kvasize) {
1564 			bp->b_qindex = BQUEUE_EMPTYKVA;
1565 		} else {
1566 			bp->b_qindex = BQUEUE_EMPTY;
1567 		}
1568 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1569 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1570 		/*
1571 		 * Buffers with junk contents.   Again these buffers had better
1572 		 * already be disassociated from their vnode.
1573 		 */
1574 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1575 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1576 		bp->b_flags |= B_INVAL;
1577 		bp->b_qindex = BQUEUE_CLEAN;
1578 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1579 	} else {
1580 		/*
1581 		 * Remaining buffers.  These buffers are still associated with
1582 		 * their vnode.
1583 		 */
1584 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1585 		case B_DELWRI:
1586 		    bp->b_qindex = BQUEUE_DIRTY;
1587 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1588 		    break;
1589 		case B_DELWRI | B_HEAVY:
1590 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1591 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1592 				      b_freelist);
1593 		    break;
1594 		default:
1595 		    /*
1596 		     * NOTE: Buffers are always placed at the end of the
1597 		     * queue.  If B_AGE is not set the buffer will cycle
1598 		     * through the queue twice.
1599 		     */
1600 		    bp->b_qindex = BQUEUE_CLEAN;
1601 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1602 		    break;
1603 		}
1604 	}
1605 	spin_unlock(&bufqspin);
1606 
1607 	/*
1608 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1609 	 * on the correct queue.
1610 	 */
1611 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1612 		bundirty(bp);
1613 
1614 	/*
1615 	 * The bp is on an appropriate queue unless locked.  If it is not
1616 	 * locked or dirty we can wakeup threads waiting for buffer space.
1617 	 *
1618 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1619 	 * if B_INVAL is set ).
1620 	 */
1621 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1622 		bufcountwakeup();
1623 
1624 	/*
1625 	 * Something we can maybe free or reuse
1626 	 */
1627 	if (bp->b_bufsize || bp->b_kvasize)
1628 		bufspacewakeup();
1629 
1630 	/*
1631 	 * Clean up temporary flags and unlock the buffer.
1632 	 */
1633 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1634 	BUF_UNLOCK(bp);
1635 }
1636 
1637 /*
1638  * bqrelse:
1639  *
1640  *	Release a buffer back to the appropriate queue but do not try to free
1641  *	it.  The buffer is expected to be used again soon.
1642  *
1643  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1644  *	biodone() to requeue an async I/O on completion.  It is also used when
1645  *	known good buffers need to be requeued but we think we may need the data
1646  *	again soon.
1647  *
1648  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1649  *
1650  * MPSAFE
1651  */
1652 void
1653 bqrelse(struct buf *bp)
1654 {
1655 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1656 
1657 	if (bp->b_qindex != BQUEUE_NONE)
1658 		panic("bqrelse: free buffer onto another queue???");
1659 	if (BUF_REFCNTNB(bp) > 1) {
1660 		/* do not release to free list */
1661 		panic("bqrelse: multiple refs");
1662 		return;
1663 	}
1664 
1665 	buf_act_advance(bp);
1666 
1667 	spin_lock(&bufqspin);
1668 	if (bp->b_flags & B_LOCKED) {
1669 		/*
1670 		 * Locked buffers are released to the locked queue.  However,
1671 		 * if the buffer is dirty it will first go into the dirty
1672 		 * queue and later on after the I/O completes successfully it
1673 		 * will be released to the locked queue.
1674 		 */
1675 		bp->b_qindex = BQUEUE_LOCKED;
1676 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1677 	} else if (bp->b_flags & B_DELWRI) {
1678 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1679 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1680 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1681 	} else if (vm_page_count_severe()) {
1682 		/*
1683 		 * We are too low on memory, we have to try to free the
1684 		 * buffer (most importantly: the wired pages making up its
1685 		 * backing store) *now*.
1686 		 */
1687 		spin_unlock(&bufqspin);
1688 		brelse(bp);
1689 		return;
1690 	} else {
1691 		bp->b_qindex = BQUEUE_CLEAN;
1692 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1693 	}
1694 	spin_unlock(&bufqspin);
1695 
1696 	if ((bp->b_flags & B_LOCKED) == 0 &&
1697 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1698 		bufcountwakeup();
1699 	}
1700 
1701 	/*
1702 	 * Something we can maybe free or reuse.
1703 	 */
1704 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1705 		bufspacewakeup();
1706 
1707 	/*
1708 	 * Final cleanup and unlock.  Clear bits that are only used while a
1709 	 * buffer is actively locked.
1710 	 */
1711 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1712 	dsched_exit_buf(bp);
1713 	BUF_UNLOCK(bp);
1714 }
1715 
1716 /*
1717  * vfs_vmio_release:
1718  *
1719  *	Return backing pages held by the buffer 'bp' back to the VM system
1720  *	if possible.  The pages are freed if they are no longer valid or
1721  *	attempt to free if it was used for direct I/O otherwise they are
1722  *	sent to the page cache.
1723  *
1724  *	Pages that were marked busy are left alone and skipped.
1725  *
1726  *	The KVA mapping (b_data) for the underlying pages is removed by
1727  *	this function.
1728  */
1729 static void
1730 vfs_vmio_release(struct buf *bp)
1731 {
1732 	int i;
1733 	vm_page_t m;
1734 
1735 	lwkt_gettoken(&vm_token);
1736 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1737 		m = bp->b_xio.xio_pages[i];
1738 		bp->b_xio.xio_pages[i] = NULL;
1739 
1740 		/*
1741 		 * The VFS is telling us this is not a meta-data buffer
1742 		 * even if it is backed by a block device.
1743 		 */
1744 		if (bp->b_flags & B_NOTMETA)
1745 			vm_page_flag_set(m, PG_NOTMETA);
1746 
1747 		/*
1748 		 * This is a very important bit of code.  We try to track
1749 		 * VM page use whether the pages are wired into the buffer
1750 		 * cache or not.  While wired into the buffer cache the
1751 		 * bp tracks the act_count.
1752 		 *
1753 		 * We can choose to place unwired pages on the inactive
1754 		 * queue (0) or active queue (1).  If we place too many
1755 		 * on the active queue the queue will cycle the act_count
1756 		 * on pages we'd like to keep, just from single-use pages
1757 		 * (such as when doing a tar-up or file scan).
1758 		 */
1759 		if (bp->b_act_count < vm_cycle_point)
1760 			vm_page_unwire(m, 0);
1761 		else
1762 			vm_page_unwire(m, 1);
1763 
1764 		/*
1765 		 * We don't mess with busy pages, it is
1766 		 * the responsibility of the process that
1767 		 * busied the pages to deal with them.
1768 		 */
1769 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1770 			continue;
1771 
1772 		if (m->wire_count == 0) {
1773 			vm_page_flag_clear(m, PG_ZERO);
1774 			/*
1775 			 * Might as well free the page if we can and it has
1776 			 * no valid data.  We also free the page if the
1777 			 * buffer was used for direct I/O.
1778 			 */
1779 #if 0
1780 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1781 					m->hold_count == 0) {
1782 				vm_page_busy(m);
1783 				vm_page_protect(m, VM_PROT_NONE);
1784 				vm_page_free(m);
1785 			} else
1786 #endif
1787 			if (bp->b_flags & B_DIRECT) {
1788 				vm_page_try_to_free(m);
1789 			} else if (vm_page_count_severe()) {
1790 				m->act_count = bp->b_act_count;
1791 				vm_page_try_to_cache(m);
1792 			} else {
1793 				m->act_count = bp->b_act_count;
1794 			}
1795 		}
1796 	}
1797 	lwkt_reltoken(&vm_token);
1798 
1799 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1800 		     bp->b_xio.xio_npages);
1801 	if (bp->b_bufsize) {
1802 		bufspacewakeup();
1803 		bp->b_bufsize = 0;
1804 	}
1805 	bp->b_xio.xio_npages = 0;
1806 	bp->b_flags &= ~B_VMIO;
1807 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1808 	if (bp->b_vp)
1809 		brelvp(bp);
1810 }
1811 
1812 /*
1813  * vfs_bio_awrite:
1814  *
1815  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1816  *	This is much better then the old way of writing only one buffer at
1817  *	a time.  Note that we may not be presented with the buffers in the
1818  *	correct order, so we search for the cluster in both directions.
1819  *
1820  *	The buffer is locked on call.
1821  */
1822 int
1823 vfs_bio_awrite(struct buf *bp)
1824 {
1825 	int i;
1826 	int j;
1827 	off_t loffset = bp->b_loffset;
1828 	struct vnode *vp = bp->b_vp;
1829 	int nbytes;
1830 	struct buf *bpa;
1831 	int nwritten;
1832 	int size;
1833 
1834 	/*
1835 	 * right now we support clustered writing only to regular files.  If
1836 	 * we find a clusterable block we could be in the middle of a cluster
1837 	 * rather then at the beginning.
1838 	 *
1839 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1840 	 * to b_loffset.  b_bio2 contains the translated block number.
1841 	 */
1842 	if ((vp->v_type == VREG) &&
1843 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1844 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1845 
1846 		size = vp->v_mount->mnt_stat.f_iosize;
1847 
1848 		for (i = size; i < MAXPHYS; i += size) {
1849 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1850 			    BUF_REFCNT(bpa) == 0 &&
1851 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1852 			    (B_DELWRI | B_CLUSTEROK)) &&
1853 			    (bpa->b_bufsize == size)) {
1854 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1855 				    (bpa->b_bio2.bio_offset !=
1856 				     bp->b_bio2.bio_offset + i))
1857 					break;
1858 			} else {
1859 				break;
1860 			}
1861 		}
1862 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1863 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1864 			    BUF_REFCNT(bpa) == 0 &&
1865 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1866 			    (B_DELWRI | B_CLUSTEROK)) &&
1867 			    (bpa->b_bufsize == size)) {
1868 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1869 				    (bpa->b_bio2.bio_offset !=
1870 				     bp->b_bio2.bio_offset - j))
1871 					break;
1872 			} else {
1873 				break;
1874 			}
1875 		}
1876 		j -= size;
1877 		nbytes = (i + j);
1878 
1879 		/*
1880 		 * this is a possible cluster write
1881 		 */
1882 		if (nbytes != size) {
1883 			BUF_UNLOCK(bp);
1884 			nwritten = cluster_wbuild(vp, size,
1885 						  loffset - j, nbytes);
1886 			return nwritten;
1887 		}
1888 	}
1889 
1890 	/*
1891 	 * default (old) behavior, writing out only one block
1892 	 *
1893 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1894 	 */
1895 	nwritten = bp->b_bufsize;
1896 	bremfree(bp);
1897 	bawrite(bp);
1898 
1899 	return nwritten;
1900 }
1901 
1902 /*
1903  * getnewbuf:
1904  *
1905  *	Find and initialize a new buffer header, freeing up existing buffers
1906  *	in the bufqueues as necessary.  The new buffer is returned locked.
1907  *
1908  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1909  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1910  *
1911  *	We block if:
1912  *		We have insufficient buffer headers
1913  *		We have insufficient buffer space
1914  *		buffer_map is too fragmented ( space reservation fails )
1915  *		If we have to flush dirty buffers ( but we try to avoid this )
1916  *
1917  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1918  *	Instead we ask the buf daemon to do it for us.  We attempt to
1919  *	avoid piecemeal wakeups of the pageout daemon.
1920  *
1921  * MPALMOSTSAFE
1922  */
1923 static struct buf *
1924 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1925 {
1926 	struct buf *bp;
1927 	struct buf *nbp;
1928 	int defrag = 0;
1929 	int nqindex;
1930 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1931 	static int flushingbufs;
1932 
1933 	/*
1934 	 * We can't afford to block since we might be holding a vnode lock,
1935 	 * which may prevent system daemons from running.  We deal with
1936 	 * low-memory situations by proactively returning memory and running
1937 	 * async I/O rather then sync I/O.
1938 	 */
1939 
1940 	++getnewbufcalls;
1941 	--getnewbufrestarts;
1942 restart:
1943 	++getnewbufrestarts;
1944 
1945 	/*
1946 	 * Setup for scan.  If we do not have enough free buffers,
1947 	 * we setup a degenerate case that immediately fails.  Note
1948 	 * that if we are specially marked process, we are allowed to
1949 	 * dip into our reserves.
1950 	 *
1951 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1952 	 *
1953 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1954 	 * However, there are a number of cases (defragging, reusing, ...)
1955 	 * where we cannot backup.
1956 	 */
1957 	nqindex = BQUEUE_EMPTYKVA;
1958 	spin_lock(&bufqspin);
1959 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1960 
1961 	if (nbp == NULL) {
1962 		/*
1963 		 * If no EMPTYKVA buffers and we are either
1964 		 * defragging or reusing, locate a CLEAN buffer
1965 		 * to free or reuse.  If bufspace useage is low
1966 		 * skip this step so we can allocate a new buffer.
1967 		 */
1968 		if (defrag || bufspace >= lobufspace) {
1969 			nqindex = BQUEUE_CLEAN;
1970 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1971 		}
1972 
1973 		/*
1974 		 * If we could not find or were not allowed to reuse a
1975 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1976 		 * buffer.  We can only use an EMPTY buffer if allocating
1977 		 * its KVA would not otherwise run us out of buffer space.
1978 		 */
1979 		if (nbp == NULL && defrag == 0 &&
1980 		    bufspace + maxsize < hibufspace) {
1981 			nqindex = BQUEUE_EMPTY;
1982 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1983 		}
1984 	}
1985 
1986 	/*
1987 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1988 	 * depending.
1989 	 *
1990 	 * WARNING!  bufqspin is held!
1991 	 */
1992 	while ((bp = nbp) != NULL) {
1993 		int qindex = nqindex;
1994 
1995 		nbp = TAILQ_NEXT(bp, b_freelist);
1996 
1997 		/*
1998 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1999 		 * cycles through the queue twice before being selected.
2000 		 */
2001 		if (qindex == BQUEUE_CLEAN &&
2002 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2003 			bp->b_flags |= B_AGE;
2004 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
2005 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
2006 			continue;
2007 		}
2008 
2009 		/*
2010 		 * Calculate next bp ( we can only use it if we do not block
2011 		 * or do other fancy things ).
2012 		 */
2013 		if (nbp == NULL) {
2014 			switch(qindex) {
2015 			case BQUEUE_EMPTY:
2016 				nqindex = BQUEUE_EMPTYKVA;
2017 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
2018 					break;
2019 				/* fall through */
2020 			case BQUEUE_EMPTYKVA:
2021 				nqindex = BQUEUE_CLEAN;
2022 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
2023 					break;
2024 				/* fall through */
2025 			case BQUEUE_CLEAN:
2026 				/*
2027 				 * nbp is NULL.
2028 				 */
2029 				break;
2030 			}
2031 		}
2032 
2033 		/*
2034 		 * Sanity Checks
2035 		 */
2036 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2037 
2038 		/*
2039 		 * Note: we no longer distinguish between VMIO and non-VMIO
2040 		 * buffers.
2041 		 */
2042 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2043 			("delwri buffer %p found in queue %d", bp, qindex));
2044 
2045 		/*
2046 		 * Do not try to reuse a buffer with a non-zero b_refs.
2047 		 * This is an unsynchronized test.  A synchronized test
2048 		 * is also performed after we lock the buffer.
2049 		 */
2050 		if (bp->b_refs)
2051 			continue;
2052 
2053 		/*
2054 		 * If we are defragging then we need a buffer with
2055 		 * b_kvasize != 0.  XXX this situation should no longer
2056 		 * occur, if defrag is non-zero the buffer's b_kvasize
2057 		 * should also be non-zero at this point.  XXX
2058 		 */
2059 		if (defrag && bp->b_kvasize == 0) {
2060 			kprintf("Warning: defrag empty buffer %p\n", bp);
2061 			continue;
2062 		}
2063 
2064 		/*
2065 		 * Start freeing the bp.  This is somewhat involved.  nbp
2066 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2067 		 * on the clean list must be disassociated from their
2068 		 * current vnode.  Buffers on the empty[kva] lists have
2069 		 * already been disassociated.
2070 		 */
2071 
2072 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2073 			spin_unlock(&bufqspin);
2074 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2075 			goto restart;
2076 		}
2077 		if (bp->b_qindex != qindex) {
2078 			spin_unlock(&bufqspin);
2079 			kprintf("getnewbuf: warning, BUF_LOCK blocked "
2080 				"unexpectedly on buf %p index %d->%d, "
2081 				"race corrected\n",
2082 				bp, qindex, bp->b_qindex);
2083 			BUF_UNLOCK(bp);
2084 			goto restart;
2085 		}
2086 		bremfree_locked(bp);
2087 		spin_unlock(&bufqspin);
2088 
2089 		/*
2090 		 * Dependancies must be handled before we disassociate the
2091 		 * vnode.
2092 		 *
2093 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2094 		 * be immediately disassociated.  HAMMER then becomes
2095 		 * responsible for releasing the buffer.
2096 		 *
2097 		 * NOTE: bufqspin is UNLOCKED now.
2098 		 */
2099 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2100 			buf_deallocate(bp);
2101 			if (bp->b_flags & B_LOCKED) {
2102 				bqrelse(bp);
2103 				goto restart;
2104 			}
2105 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2106 		}
2107 
2108 		if (qindex == BQUEUE_CLEAN) {
2109 			if (bp->b_flags & B_VMIO)
2110 				vfs_vmio_release(bp);
2111 			if (bp->b_vp)
2112 				brelvp(bp);
2113 		}
2114 
2115 		/*
2116 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2117 		 * the scan from this point on.
2118 		 *
2119 		 * Get the rest of the buffer freed up.  b_kva* is still
2120 		 * valid after this operation.
2121 		 */
2122 
2123 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
2124 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2125 
2126 		/*
2127 		 * critical section protection is not required when
2128 		 * scrapping a buffer's contents because it is already
2129 		 * wired.
2130 		 */
2131 		if (bp->b_bufsize)
2132 			allocbuf(bp, 0);
2133 
2134 		bp->b_flags = B_BNOCLIP;
2135 		bp->b_cmd = BUF_CMD_DONE;
2136 		bp->b_vp = NULL;
2137 		bp->b_error = 0;
2138 		bp->b_resid = 0;
2139 		bp->b_bcount = 0;
2140 		bp->b_xio.xio_npages = 0;
2141 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2142 		bp->b_act_count = ACT_INIT;
2143 		reinitbufbio(bp);
2144 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2145 		buf_dep_init(bp);
2146 		if (blkflags & GETBLK_BHEAVY)
2147 			bp->b_flags |= B_HEAVY;
2148 
2149 		/*
2150 		 * If we are defragging then free the buffer.
2151 		 */
2152 		if (defrag) {
2153 			bp->b_flags |= B_INVAL;
2154 			bfreekva(bp);
2155 			brelse(bp);
2156 			defrag = 0;
2157 			goto restart;
2158 		}
2159 
2160 		/*
2161 		 * If we are overcomitted then recover the buffer and its
2162 		 * KVM space.  This occurs in rare situations when multiple
2163 		 * processes are blocked in getnewbuf() or allocbuf().
2164 		 */
2165 		if (bufspace >= hibufspace)
2166 			flushingbufs = 1;
2167 		if (flushingbufs && bp->b_kvasize != 0) {
2168 			bp->b_flags |= B_INVAL;
2169 			bfreekva(bp);
2170 			brelse(bp);
2171 			goto restart;
2172 		}
2173 		if (bufspace < lobufspace)
2174 			flushingbufs = 0;
2175 
2176 		/*
2177 		 * The brelvp() above interlocked the buffer, test b_refs
2178 		 * to determine if the buffer can be reused.  b_refs
2179 		 * interlocks lookup/blocking-lock operations and allowing
2180 		 * buffer reuse can create deadlocks depending on what
2181 		 * (vp,loffset) is assigned to the reused buffer (see getblk).
2182 		 */
2183 		if (bp->b_refs) {
2184 			bp->b_flags |= B_INVAL;
2185 			bfreekva(bp);
2186 			brelse(bp);
2187 			goto restart;
2188 		}
2189 
2190 		break;
2191 		/* NOT REACHED, bufqspin not held */
2192 	}
2193 
2194 	/*
2195 	 * If we exhausted our list, sleep as appropriate.  We may have to
2196 	 * wakeup various daemons and write out some dirty buffers.
2197 	 *
2198 	 * Generally we are sleeping due to insufficient buffer space.
2199 	 *
2200 	 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2201 	 */
2202 	if (bp == NULL) {
2203 		int flags;
2204 		char *waitmsg;
2205 
2206 		spin_unlock(&bufqspin);
2207 		if (defrag) {
2208 			flags = VFS_BIO_NEED_BUFSPACE;
2209 			waitmsg = "nbufkv";
2210 		} else if (bufspace >= hibufspace) {
2211 			waitmsg = "nbufbs";
2212 			flags = VFS_BIO_NEED_BUFSPACE;
2213 		} else {
2214 			waitmsg = "newbuf";
2215 			flags = VFS_BIO_NEED_ANY;
2216 		}
2217 
2218 		bd_speedup();	/* heeeelp */
2219 		spin_lock(&bufcspin);
2220 		needsbuffer |= flags;
2221 		while (needsbuffer & flags) {
2222 			if (ssleep(&needsbuffer, &bufcspin,
2223 				   slpflags, waitmsg, slptimeo)) {
2224 				spin_unlock(&bufcspin);
2225 				return (NULL);
2226 			}
2227 		}
2228 		spin_unlock(&bufcspin);
2229 	} else {
2230 		/*
2231 		 * We finally have a valid bp.  We aren't quite out of the
2232 		 * woods, we still have to reserve kva space.  In order
2233 		 * to keep fragmentation sane we only allocate kva in
2234 		 * BKVASIZE chunks.
2235 		 *
2236 		 * (bufqspin is not held)
2237 		 */
2238 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2239 
2240 		if (maxsize != bp->b_kvasize) {
2241 			vm_offset_t addr = 0;
2242 			int count;
2243 
2244 			bfreekva(bp);
2245 
2246 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2247 			vm_map_lock(&buffer_map);
2248 
2249 			if (vm_map_findspace(&buffer_map,
2250 				    vm_map_min(&buffer_map), maxsize,
2251 				    maxsize, 0, &addr)) {
2252 				/*
2253 				 * Uh oh.  Buffer map is too fragmented.  We
2254 				 * must defragment the map.
2255 				 */
2256 				vm_map_unlock(&buffer_map);
2257 				vm_map_entry_release(count);
2258 				++bufdefragcnt;
2259 				defrag = 1;
2260 				bp->b_flags |= B_INVAL;
2261 				brelse(bp);
2262 				goto restart;
2263 			}
2264 			if (addr) {
2265 				vm_map_insert(&buffer_map, &count,
2266 					NULL, 0,
2267 					addr, addr + maxsize,
2268 					VM_MAPTYPE_NORMAL,
2269 					VM_PROT_ALL, VM_PROT_ALL,
2270 					MAP_NOFAULT);
2271 
2272 				bp->b_kvabase = (caddr_t) addr;
2273 				bp->b_kvasize = maxsize;
2274 				bufspace += bp->b_kvasize;
2275 				++bufreusecnt;
2276 			}
2277 			vm_map_unlock(&buffer_map);
2278 			vm_map_entry_release(count);
2279 		}
2280 		bp->b_data = bp->b_kvabase;
2281 	}
2282 	return(bp);
2283 }
2284 
2285 /*
2286  * This routine is called in an emergency to recover VM pages from the
2287  * buffer cache by cashing in clean buffers.  The idea is to recover
2288  * enough pages to be able to satisfy a stuck bio_page_alloc().
2289  *
2290  * MPSAFE
2291  */
2292 static int
2293 recoverbufpages(void)
2294 {
2295 	struct buf *bp;
2296 	int bytes = 0;
2297 
2298 	++recoverbufcalls;
2299 
2300 	spin_lock(&bufqspin);
2301 	while (bytes < MAXBSIZE) {
2302 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2303 		if (bp == NULL)
2304 			break;
2305 
2306 		/*
2307 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2308 		 * cycles through the queue twice before being selected.
2309 		 */
2310 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2311 			bp->b_flags |= B_AGE;
2312 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2313 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2314 					  bp, b_freelist);
2315 			continue;
2316 		}
2317 
2318 		/*
2319 		 * Sanity Checks
2320 		 */
2321 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2322 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2323 
2324 		/*
2325 		 * Start freeing the bp.  This is somewhat involved.
2326 		 *
2327 		 * Buffers on the clean list must be disassociated from
2328 		 * their current vnode
2329 		 */
2330 
2331 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2332 			kprintf("recoverbufpages: warning, locked buf %p, "
2333 				"race corrected\n",
2334 				bp);
2335 			ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2336 			continue;
2337 		}
2338 		if (bp->b_qindex != BQUEUE_CLEAN) {
2339 			kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2340 				"unexpectedly on buf %p index %d, race "
2341 				"corrected\n",
2342 				bp, bp->b_qindex);
2343 			BUF_UNLOCK(bp);
2344 			continue;
2345 		}
2346 		bremfree_locked(bp);
2347 		spin_unlock(&bufqspin);
2348 
2349 		/*
2350 		 * Dependancies must be handled before we disassociate the
2351 		 * vnode.
2352 		 *
2353 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2354 		 * be immediately disassociated.  HAMMER then becomes
2355 		 * responsible for releasing the buffer.
2356 		 */
2357 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2358 			buf_deallocate(bp);
2359 			if (bp->b_flags & B_LOCKED) {
2360 				bqrelse(bp);
2361 				spin_lock(&bufqspin);
2362 				continue;
2363 			}
2364 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2365 		}
2366 
2367 		bytes += bp->b_bufsize;
2368 
2369 		if (bp->b_flags & B_VMIO) {
2370 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2371 			vfs_vmio_release(bp);
2372 		}
2373 		if (bp->b_vp)
2374 			brelvp(bp);
2375 
2376 		KKASSERT(bp->b_vp == NULL);
2377 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2378 
2379 		/*
2380 		 * critical section protection is not required when
2381 		 * scrapping a buffer's contents because it is already
2382 		 * wired.
2383 		 */
2384 		if (bp->b_bufsize)
2385 			allocbuf(bp, 0);
2386 
2387 		bp->b_flags = B_BNOCLIP;
2388 		bp->b_cmd = BUF_CMD_DONE;
2389 		bp->b_vp = NULL;
2390 		bp->b_error = 0;
2391 		bp->b_resid = 0;
2392 		bp->b_bcount = 0;
2393 		bp->b_xio.xio_npages = 0;
2394 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2395 		reinitbufbio(bp);
2396 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2397 		buf_dep_init(bp);
2398 		bp->b_flags |= B_INVAL;
2399 		/* bfreekva(bp); */
2400 		brelse(bp);
2401 		spin_lock(&bufqspin);
2402 	}
2403 	spin_unlock(&bufqspin);
2404 	return(bytes);
2405 }
2406 
2407 /*
2408  * buf_daemon:
2409  *
2410  *	Buffer flushing daemon.  Buffers are normally flushed by the
2411  *	update daemon but if it cannot keep up this process starts to
2412  *	take the load in an attempt to prevent getnewbuf() from blocking.
2413  *
2414  *	Once a flush is initiated it does not stop until the number
2415  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2416  *	waiting at the mid-point.
2417  */
2418 
2419 static struct kproc_desc buf_kp = {
2420 	"bufdaemon",
2421 	buf_daemon,
2422 	&bufdaemon_td
2423 };
2424 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2425 	kproc_start, &buf_kp)
2426 
2427 static struct kproc_desc bufhw_kp = {
2428 	"bufdaemon_hw",
2429 	buf_daemon_hw,
2430 	&bufdaemonhw_td
2431 };
2432 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2433 	kproc_start, &bufhw_kp)
2434 
2435 /*
2436  * MPSAFE thread
2437  */
2438 static void
2439 buf_daemon(void)
2440 {
2441 	int limit;
2442 
2443 	/*
2444 	 * This process needs to be suspended prior to shutdown sync.
2445 	 */
2446 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2447 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2448 	curthread->td_flags |= TDF_SYSTHREAD;
2449 
2450 	/*
2451 	 * This process is allowed to take the buffer cache to the limit
2452 	 */
2453 	for (;;) {
2454 		kproc_suspend_loop();
2455 
2456 		/*
2457 		 * Do the flush as long as the number of dirty buffers
2458 		 * (including those running) exceeds lodirtybufspace.
2459 		 *
2460 		 * When flushing limit running I/O to hirunningspace
2461 		 * Do the flush.  Limit the amount of in-transit I/O we
2462 		 * allow to build up, otherwise we would completely saturate
2463 		 * the I/O system.  Wakeup any waiting processes before we
2464 		 * normally would so they can run in parallel with our drain.
2465 		 *
2466 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2467 		 * but because we split the operation into two threads we
2468 		 * have to cut it in half for each thread.
2469 		 */
2470 		waitrunningbufspace();
2471 		limit = lodirtybufspace / 2;
2472 		while (runningbufspace + dirtybufspace > limit ||
2473 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2474 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2475 				break;
2476 			if (runningbufspace < hirunningspace)
2477 				continue;
2478 			waitrunningbufspace();
2479 		}
2480 
2481 		/*
2482 		 * We reached our low water mark, reset the
2483 		 * request and sleep until we are needed again.
2484 		 * The sleep is just so the suspend code works.
2485 		 */
2486 		spin_lock(&bufcspin);
2487 		if (bd_request == 0)
2488 			ssleep(&bd_request, &bufcspin, 0, "psleep", hz);
2489 		bd_request = 0;
2490 		spin_unlock(&bufcspin);
2491 	}
2492 }
2493 
2494 /*
2495  * MPSAFE thread
2496  */
2497 static void
2498 buf_daemon_hw(void)
2499 {
2500 	int limit;
2501 
2502 	/*
2503 	 * This process needs to be suspended prior to shutdown sync.
2504 	 */
2505 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2506 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2507 	curthread->td_flags |= TDF_SYSTHREAD;
2508 
2509 	/*
2510 	 * This process is allowed to take the buffer cache to the limit
2511 	 */
2512 	for (;;) {
2513 		kproc_suspend_loop();
2514 
2515 		/*
2516 		 * Do the flush.  Limit the amount of in-transit I/O we
2517 		 * allow to build up, otherwise we would completely saturate
2518 		 * the I/O system.  Wakeup any waiting processes before we
2519 		 * normally would so they can run in parallel with our drain.
2520 		 *
2521 		 * Once we decide to flush push the queued I/O up to
2522 		 * hirunningspace in order to trigger bursting by the bioq
2523 		 * subsystem.
2524 		 *
2525 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2526 		 * but because we split the operation into two threads we
2527 		 * have to cut it in half for each thread.
2528 		 */
2529 		waitrunningbufspace();
2530 		limit = lodirtybufspace / 2;
2531 		while (runningbufspace + dirtybufspacehw > limit ||
2532 		       dirtybufcounthw >= nbuf / 2) {
2533 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2534 				break;
2535 			if (runningbufspace < hirunningspace)
2536 				continue;
2537 			waitrunningbufspace();
2538 		}
2539 
2540 		/*
2541 		 * We reached our low water mark, reset the
2542 		 * request and sleep until we are needed again.
2543 		 * The sleep is just so the suspend code works.
2544 		 */
2545 		spin_lock(&bufcspin);
2546 		if (bd_request_hw == 0)
2547 			ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz);
2548 		bd_request_hw = 0;
2549 		spin_unlock(&bufcspin);
2550 	}
2551 }
2552 
2553 /*
2554  * flushbufqueues:
2555  *
2556  *	Try to flush a buffer in the dirty queue.  We must be careful to
2557  *	free up B_INVAL buffers instead of write them, which NFS is
2558  *	particularly sensitive to.
2559  *
2560  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2561  *	that we really want to try to get the buffer out and reuse it
2562  *	due to the write load on the machine.
2563  *
2564  *	We must lock the buffer in order to check its validity before we
2565  *	can mess with its contents.  bufqspin isn't enough.
2566  */
2567 static int
2568 flushbufqueues(bufq_type_t q)
2569 {
2570 	struct buf *bp;
2571 	int r = 0;
2572 	int spun;
2573 
2574 	spin_lock(&bufqspin);
2575 	spun = 1;
2576 
2577 	bp = TAILQ_FIRST(&bufqueues[q]);
2578 	while (bp) {
2579 		if ((bp->b_flags & B_DELWRI) == 0) {
2580 			kprintf("Unexpected clean buffer %p\n", bp);
2581 			bp = TAILQ_NEXT(bp, b_freelist);
2582 			continue;
2583 		}
2584 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2585 			bp = TAILQ_NEXT(bp, b_freelist);
2586 			continue;
2587 		}
2588 		KKASSERT(bp->b_qindex == q);
2589 
2590 		/*
2591 		 * Must recheck B_DELWRI after successfully locking
2592 		 * the buffer.
2593 		 */
2594 		if ((bp->b_flags & B_DELWRI) == 0) {
2595 			BUF_UNLOCK(bp);
2596 			bp = TAILQ_NEXT(bp, b_freelist);
2597 			continue;
2598 		}
2599 
2600 		if (bp->b_flags & B_INVAL) {
2601 			_bremfree(bp);
2602 			spin_unlock(&bufqspin);
2603 			spun = 0;
2604 			brelse(bp);
2605 			++r;
2606 			break;
2607 		}
2608 
2609 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2610 		    (bp->b_flags & B_DEFERRED) == 0 &&
2611 		    buf_countdeps(bp, 0)) {
2612 			TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2613 			TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2614 			bp->b_flags |= B_DEFERRED;
2615 			BUF_UNLOCK(bp);
2616 			bp = TAILQ_FIRST(&bufqueues[q]);
2617 			continue;
2618 		}
2619 
2620 		/*
2621 		 * If the buffer has a dependancy, buf_checkwrite() must
2622 		 * also return 0 for us to be able to initate the write.
2623 		 *
2624 		 * If the buffer is flagged B_ERROR it may be requeued
2625 		 * over and over again, we try to avoid a live lock.
2626 		 *
2627 		 * NOTE: buf_checkwrite is MPSAFE.
2628 		 */
2629 		spin_unlock(&bufqspin);
2630 		spun = 0;
2631 
2632 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2633 			bremfree(bp);
2634 			brelse(bp);
2635 		} else if (bp->b_flags & B_ERROR) {
2636 			tsleep(bp, 0, "bioer", 1);
2637 			bp->b_flags &= ~B_AGE;
2638 			vfs_bio_awrite(bp);
2639 		} else {
2640 			bp->b_flags |= B_AGE;
2641 			vfs_bio_awrite(bp);
2642 		}
2643 		++r;
2644 		break;
2645 	}
2646 	if (spun)
2647 		spin_unlock(&bufqspin);
2648 	return (r);
2649 }
2650 
2651 /*
2652  * inmem:
2653  *
2654  *	Returns true if no I/O is needed to access the associated VM object.
2655  *	This is like findblk except it also hunts around in the VM system for
2656  *	the data.
2657  *
2658  *	Note that we ignore vm_page_free() races from interrupts against our
2659  *	lookup, since if the caller is not protected our return value will not
2660  *	be any more valid then otherwise once we exit the critical section.
2661  */
2662 int
2663 inmem(struct vnode *vp, off_t loffset)
2664 {
2665 	vm_object_t obj;
2666 	vm_offset_t toff, tinc, size;
2667 	vm_page_t m;
2668 
2669 	if (findblk(vp, loffset, FINDBLK_TEST))
2670 		return 1;
2671 	if (vp->v_mount == NULL)
2672 		return 0;
2673 	if ((obj = vp->v_object) == NULL)
2674 		return 0;
2675 
2676 	size = PAGE_SIZE;
2677 	if (size > vp->v_mount->mnt_stat.f_iosize)
2678 		size = vp->v_mount->mnt_stat.f_iosize;
2679 
2680 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2681 		lwkt_gettoken(&vm_token);
2682 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2683 		lwkt_reltoken(&vm_token);
2684 		if (m == NULL)
2685 			return 0;
2686 		tinc = size;
2687 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2688 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2689 		if (vm_page_is_valid(m,
2690 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2691 			return 0;
2692 	}
2693 	return 1;
2694 }
2695 
2696 /*
2697  * findblk:
2698  *
2699  *	Locate and return the specified buffer.  Unless flagged otherwise,
2700  *	a locked buffer will be returned if it exists or NULL if it does not.
2701  *
2702  *	findblk()'d buffers are still on the bufqueues and if you intend
2703  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2704  *	and possibly do other stuff to it.
2705  *
2706  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2707  *			  for locking the buffer and ensuring that it remains
2708  *			  the desired buffer after locking.
2709  *
2710  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2711  *			  to acquire the lock we return NULL, even if the
2712  *			  buffer exists.
2713  *
2714  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents reuse
2715  *			  by getnewbuf() but does not prevent disassociation
2716  *			  while we are locked.  Used to avoid deadlocks
2717  *			  against random (vp,loffset)s due to reassignment.
2718  *
2719  *	(0)		- Lock the buffer blocking.
2720  *
2721  * MPSAFE
2722  */
2723 struct buf *
2724 findblk(struct vnode *vp, off_t loffset, int flags)
2725 {
2726 	struct buf *bp;
2727 	int lkflags;
2728 
2729 	lkflags = LK_EXCLUSIVE;
2730 	if (flags & FINDBLK_NBLOCK)
2731 		lkflags |= LK_NOWAIT;
2732 
2733 	for (;;) {
2734 		/*
2735 		 * Lookup.  Ref the buf while holding v_token to prevent
2736 		 * reuse (but does not prevent diassociation).
2737 		 */
2738 		lwkt_gettoken(&vp->v_token);
2739 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2740 		if (bp == NULL) {
2741 			lwkt_reltoken(&vp->v_token);
2742 			return(NULL);
2743 		}
2744 		atomic_add_int(&bp->b_refs, 1);
2745 		lwkt_reltoken(&vp->v_token);
2746 
2747 		/*
2748 		 * If testing only break and return bp, do not lock.
2749 		 */
2750 		if (flags & FINDBLK_TEST)
2751 			break;
2752 
2753 		/*
2754 		 * Lock the buffer, return an error if the lock fails.
2755 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2756 		 */
2757 		if (BUF_LOCK(bp, lkflags)) {
2758 			atomic_subtract_int(&bp->b_refs, 1);
2759 			/* bp = NULL; not needed */
2760 			return(NULL);
2761 		}
2762 
2763 		/*
2764 		 * Revalidate the locked buf before allowing it to be
2765 		 * returned.
2766 		 */
2767 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2768 			break;
2769 		atomic_subtract_int(&bp->b_refs, 1);
2770 		BUF_UNLOCK(bp);
2771 	}
2772 
2773 	/*
2774 	 * Success
2775 	 */
2776 	if ((flags & FINDBLK_REF) == 0)
2777 		atomic_subtract_int(&bp->b_refs, 1);
2778 	return(bp);
2779 }
2780 
2781 void
2782 unrefblk(struct buf *bp)
2783 {
2784 	atomic_subtract_int(&bp->b_refs, 1);
2785 }
2786 
2787 /*
2788  * getcacheblk:
2789  *
2790  *	Similar to getblk() except only returns the buffer if it is
2791  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2792  *	is returned.
2793  *
2794  *	If B_RAM is set the buffer might be just fine, but we return
2795  *	NULL anyway because we want the code to fall through to the
2796  *	cluster read.  Otherwise read-ahead breaks.
2797  */
2798 struct buf *
2799 getcacheblk(struct vnode *vp, off_t loffset)
2800 {
2801 	struct buf *bp;
2802 
2803 	bp = findblk(vp, loffset, 0);
2804 	if (bp) {
2805 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2806 			bp->b_flags &= ~B_AGE;
2807 			bremfree(bp);
2808 		} else {
2809 			BUF_UNLOCK(bp);
2810 			bp = NULL;
2811 		}
2812 	}
2813 	return (bp);
2814 }
2815 
2816 /*
2817  * getblk:
2818  *
2819  *	Get a block given a specified block and offset into a file/device.
2820  * 	B_INVAL may or may not be set on return.  The caller should clear
2821  *	B_INVAL prior to initiating a READ.
2822  *
2823  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2824  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2825  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2826  *	without doing any of those things the system will likely believe
2827  *	the buffer to be valid (especially if it is not B_VMIO), and the
2828  *	next getblk() will return the buffer with B_CACHE set.
2829  *
2830  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2831  *	an existing buffer.
2832  *
2833  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2834  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2835  *	and then cleared based on the backing VM.  If the previous buffer is
2836  *	non-0-sized but invalid, B_CACHE will be cleared.
2837  *
2838  *	If getblk() must create a new buffer, the new buffer is returned with
2839  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2840  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2841  *	backing VM.
2842  *
2843  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2844  *	B_CACHE bit is clear.
2845  *
2846  *	What this means, basically, is that the caller should use B_CACHE to
2847  *	determine whether the buffer is fully valid or not and should clear
2848  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2849  *	the buffer by loading its data area with something, the caller needs
2850  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2851  *	the caller should set B_CACHE ( as an optimization ), else the caller
2852  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2853  *	a write attempt or if it was a successfull read.  If the caller
2854  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2855  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2856  *
2857  *	getblk flags:
2858  *
2859  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2860  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2861  *
2862  * MPALMOSTSAFE
2863  */
2864 struct buf *
2865 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2866 {
2867 	struct buf *bp;
2868 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2869 	int error;
2870 	int lkflags;
2871 
2872 	if (size > MAXBSIZE)
2873 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2874 	if (vp->v_object == NULL)
2875 		panic("getblk: vnode %p has no object!", vp);
2876 
2877 loop:
2878 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2879 		/*
2880 		 * The buffer was found in the cache, but we need to lock it.
2881 		 * We must acquire a ref on the bp to prevent reuse, but
2882 		 * this will not prevent disassociation (brelvp()) so we
2883 		 * must recheck (vp,loffset) after acquiring the lock.
2884 		 *
2885 		 * Without the ref the buffer could potentially be reused
2886 		 * before we acquire the lock and create a deadlock
2887 		 * situation between the thread trying to reuse the buffer
2888 		 * and us due to the fact that we would wind up blocking
2889 		 * on a random (vp,loffset).
2890 		 */
2891 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2892 			if (blkflags & GETBLK_NOWAIT) {
2893 				unrefblk(bp);
2894 				return(NULL);
2895 			}
2896 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2897 			if (blkflags & GETBLK_PCATCH)
2898 				lkflags |= LK_PCATCH;
2899 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2900 			if (error) {
2901 				unrefblk(bp);
2902 				if (error == ENOLCK)
2903 					goto loop;
2904 				return (NULL);
2905 			}
2906 			/* buffer may have changed on us */
2907 		}
2908 		unrefblk(bp);
2909 
2910 		/*
2911 		 * Once the buffer has been locked, make sure we didn't race
2912 		 * a buffer recyclement.  Buffers that are no longer hashed
2913 		 * will have b_vp == NULL, so this takes care of that check
2914 		 * as well.
2915 		 */
2916 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2917 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2918 				"was recycled\n",
2919 				bp, vp, (long long)loffset);
2920 			BUF_UNLOCK(bp);
2921 			goto loop;
2922 		}
2923 
2924 		/*
2925 		 * If SZMATCH any pre-existing buffer must be of the requested
2926 		 * size or NULL is returned.  The caller absolutely does not
2927 		 * want getblk() to bwrite() the buffer on a size mismatch.
2928 		 */
2929 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2930 			BUF_UNLOCK(bp);
2931 			return(NULL);
2932 		}
2933 
2934 		/*
2935 		 * All vnode-based buffers must be backed by a VM object.
2936 		 */
2937 		KKASSERT(bp->b_flags & B_VMIO);
2938 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2939 		bp->b_flags &= ~B_AGE;
2940 
2941 		/*
2942 		 * Make sure that B_INVAL buffers do not have a cached
2943 		 * block number translation.
2944 		 */
2945 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2946 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2947 				" did not have cleared bio_offset cache\n",
2948 				bp, vp, (long long)loffset);
2949 			clearbiocache(&bp->b_bio2);
2950 		}
2951 
2952 		/*
2953 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2954 		 * invalid.
2955 		 */
2956 		if (bp->b_flags & B_INVAL)
2957 			bp->b_flags &= ~B_CACHE;
2958 		bremfree(bp);
2959 
2960 		/*
2961 		 * Any size inconsistancy with a dirty buffer or a buffer
2962 		 * with a softupdates dependancy must be resolved.  Resizing
2963 		 * the buffer in such circumstances can lead to problems.
2964 		 *
2965 		 * Dirty or dependant buffers are written synchronously.
2966 		 * Other types of buffers are simply released and
2967 		 * reconstituted as they may be backed by valid, dirty VM
2968 		 * pages (but not marked B_DELWRI).
2969 		 *
2970 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2971 		 * and may be left over from a prior truncation (and thus
2972 		 * no longer represent the actual EOF point), so we
2973 		 * definitely do not want to B_NOCACHE the backing store.
2974 		 */
2975 		if (size != bp->b_bcount) {
2976 			if (bp->b_flags & B_DELWRI) {
2977 				bp->b_flags |= B_RELBUF;
2978 				bwrite(bp);
2979 			} else if (LIST_FIRST(&bp->b_dep)) {
2980 				bp->b_flags |= B_RELBUF;
2981 				bwrite(bp);
2982 			} else {
2983 				bp->b_flags |= B_RELBUF;
2984 				brelse(bp);
2985 			}
2986 			goto loop;
2987 		}
2988 		KKASSERT(size <= bp->b_kvasize);
2989 		KASSERT(bp->b_loffset != NOOFFSET,
2990 			("getblk: no buffer offset"));
2991 
2992 		/*
2993 		 * A buffer with B_DELWRI set and B_CACHE clear must
2994 		 * be committed before we can return the buffer in
2995 		 * order to prevent the caller from issuing a read
2996 		 * ( due to B_CACHE not being set ) and overwriting
2997 		 * it.
2998 		 *
2999 		 * Most callers, including NFS and FFS, need this to
3000 		 * operate properly either because they assume they
3001 		 * can issue a read if B_CACHE is not set, or because
3002 		 * ( for example ) an uncached B_DELWRI might loop due
3003 		 * to softupdates re-dirtying the buffer.  In the latter
3004 		 * case, B_CACHE is set after the first write completes,
3005 		 * preventing further loops.
3006 		 *
3007 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3008 		 * above while extending the buffer, we cannot allow the
3009 		 * buffer to remain with B_CACHE set after the write
3010 		 * completes or it will represent a corrupt state.  To
3011 		 * deal with this we set B_NOCACHE to scrap the buffer
3012 		 * after the write.
3013 		 *
3014 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3015 		 *     I'm not even sure this state is still possible
3016 		 *     now that getblk() writes out any dirty buffers
3017 		 *     on size changes.
3018 		 *
3019 		 * We might be able to do something fancy, like setting
3020 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3021 		 * so the below call doesn't set B_CACHE, but that gets real
3022 		 * confusing.  This is much easier.
3023 		 */
3024 
3025 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3026 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3027 				"and CACHE clear, b_flags %08x\n",
3028 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
3029 			bp->b_flags |= B_NOCACHE;
3030 			bwrite(bp);
3031 			goto loop;
3032 		}
3033 	} else {
3034 		/*
3035 		 * Buffer is not in-core, create new buffer.  The buffer
3036 		 * returned by getnewbuf() is locked.  Note that the returned
3037 		 * buffer is also considered valid (not marked B_INVAL).
3038 		 *
3039 		 * Calculating the offset for the I/O requires figuring out
3040 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3041 		 * the mount's f_iosize otherwise.  If the vnode does not
3042 		 * have an associated mount we assume that the passed size is
3043 		 * the block size.
3044 		 *
3045 		 * Note that vn_isdisk() cannot be used here since it may
3046 		 * return a failure for numerous reasons.   Note that the
3047 		 * buffer size may be larger then the block size (the caller
3048 		 * will use block numbers with the proper multiple).  Beware
3049 		 * of using any v_* fields which are part of unions.  In
3050 		 * particular, in DragonFly the mount point overloading
3051 		 * mechanism uses the namecache only and the underlying
3052 		 * directory vnode is not a special case.
3053 		 */
3054 		int bsize, maxsize;
3055 
3056 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3057 			bsize = DEV_BSIZE;
3058 		else if (vp->v_mount)
3059 			bsize = vp->v_mount->mnt_stat.f_iosize;
3060 		else
3061 			bsize = size;
3062 
3063 		maxsize = size + (loffset & PAGE_MASK);
3064 		maxsize = imax(maxsize, bsize);
3065 
3066 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3067 		if (bp == NULL) {
3068 			if (slpflags || slptimeo)
3069 				return NULL;
3070 			goto loop;
3071 		}
3072 
3073 		/*
3074 		 * Atomically insert the buffer into the hash, so that it can
3075 		 * be found by findblk().
3076 		 *
3077 		 * If bgetvp() returns non-zero a collision occured, and the
3078 		 * bp will not be associated with the vnode.
3079 		 *
3080 		 * Make sure the translation layer has been cleared.
3081 		 */
3082 		bp->b_loffset = loffset;
3083 		bp->b_bio2.bio_offset = NOOFFSET;
3084 		/* bp->b_bio2.bio_next = NULL; */
3085 
3086 		if (bgetvp(vp, bp, size)) {
3087 			bp->b_flags |= B_INVAL;
3088 			brelse(bp);
3089 			goto loop;
3090 		}
3091 
3092 		/*
3093 		 * All vnode-based buffers must be backed by a VM object.
3094 		 */
3095 		KKASSERT(vp->v_object != NULL);
3096 		bp->b_flags |= B_VMIO;
3097 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3098 
3099 		allocbuf(bp, size);
3100 	}
3101 	KKASSERT(dsched_is_clear_buf_priv(bp));
3102 	return (bp);
3103 }
3104 
3105 /*
3106  * regetblk(bp)
3107  *
3108  * Reacquire a buffer that was previously released to the locked queue,
3109  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3110  * set B_LOCKED (which handles the acquisition race).
3111  *
3112  * To this end, either B_LOCKED must be set or the dependancy list must be
3113  * non-empty.
3114  *
3115  * MPSAFE
3116  */
3117 void
3118 regetblk(struct buf *bp)
3119 {
3120 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3121 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3122 	bremfree(bp);
3123 }
3124 
3125 /*
3126  * geteblk:
3127  *
3128  *	Get an empty, disassociated buffer of given size.  The buffer is
3129  *	initially set to B_INVAL.
3130  *
3131  *	critical section protection is not required for the allocbuf()
3132  *	call because races are impossible here.
3133  *
3134  * MPALMOSTSAFE
3135  */
3136 struct buf *
3137 geteblk(int size)
3138 {
3139 	struct buf *bp;
3140 	int maxsize;
3141 
3142 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3143 
3144 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
3145 		;
3146 	allocbuf(bp, size);
3147 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3148 	KKASSERT(dsched_is_clear_buf_priv(bp));
3149 	return (bp);
3150 }
3151 
3152 
3153 /*
3154  * allocbuf:
3155  *
3156  *	This code constitutes the buffer memory from either anonymous system
3157  *	memory (in the case of non-VMIO operations) or from an associated
3158  *	VM object (in the case of VMIO operations).  This code is able to
3159  *	resize a buffer up or down.
3160  *
3161  *	Note that this code is tricky, and has many complications to resolve
3162  *	deadlock or inconsistant data situations.  Tread lightly!!!
3163  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3164  *	the caller.  Calling this code willy nilly can result in the loss of
3165  *	data.
3166  *
3167  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3168  *	B_CACHE for the non-VMIO case.
3169  *
3170  *	This routine does not need to be called from a critical section but you
3171  *	must own the buffer.
3172  *
3173  * MPSAFE
3174  */
3175 int
3176 allocbuf(struct buf *bp, int size)
3177 {
3178 	int newbsize, mbsize;
3179 	int i;
3180 
3181 	if (BUF_REFCNT(bp) == 0)
3182 		panic("allocbuf: buffer not busy");
3183 
3184 	if (bp->b_kvasize < size)
3185 		panic("allocbuf: buffer too small");
3186 
3187 	if ((bp->b_flags & B_VMIO) == 0) {
3188 		caddr_t origbuf;
3189 		int origbufsize;
3190 		/*
3191 		 * Just get anonymous memory from the kernel.  Don't
3192 		 * mess with B_CACHE.
3193 		 */
3194 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3195 		if (bp->b_flags & B_MALLOC)
3196 			newbsize = mbsize;
3197 		else
3198 			newbsize = round_page(size);
3199 
3200 		if (newbsize < bp->b_bufsize) {
3201 			/*
3202 			 * Malloced buffers are not shrunk
3203 			 */
3204 			if (bp->b_flags & B_MALLOC) {
3205 				if (newbsize) {
3206 					bp->b_bcount = size;
3207 				} else {
3208 					kfree(bp->b_data, M_BIOBUF);
3209 					if (bp->b_bufsize) {
3210 						atomic_subtract_int(&bufmallocspace, bp->b_bufsize);
3211 						bufspacewakeup();
3212 						bp->b_bufsize = 0;
3213 					}
3214 					bp->b_data = bp->b_kvabase;
3215 					bp->b_bcount = 0;
3216 					bp->b_flags &= ~B_MALLOC;
3217 				}
3218 				return 1;
3219 			}
3220 			vm_hold_free_pages(
3221 			    bp,
3222 			    (vm_offset_t) bp->b_data + newbsize,
3223 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3224 		} else if (newbsize > bp->b_bufsize) {
3225 			/*
3226 			 * We only use malloced memory on the first allocation.
3227 			 * and revert to page-allocated memory when the buffer
3228 			 * grows.
3229 			 */
3230 			if ((bufmallocspace < maxbufmallocspace) &&
3231 				(bp->b_bufsize == 0) &&
3232 				(mbsize <= PAGE_SIZE/2)) {
3233 
3234 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3235 				bp->b_bufsize = mbsize;
3236 				bp->b_bcount = size;
3237 				bp->b_flags |= B_MALLOC;
3238 				atomic_add_int(&bufmallocspace, mbsize);
3239 				return 1;
3240 			}
3241 			origbuf = NULL;
3242 			origbufsize = 0;
3243 			/*
3244 			 * If the buffer is growing on its other-than-first
3245 			 * allocation, then we revert to the page-allocation
3246 			 * scheme.
3247 			 */
3248 			if (bp->b_flags & B_MALLOC) {
3249 				origbuf = bp->b_data;
3250 				origbufsize = bp->b_bufsize;
3251 				bp->b_data = bp->b_kvabase;
3252 				if (bp->b_bufsize) {
3253 					atomic_subtract_int(&bufmallocspace,
3254 							    bp->b_bufsize);
3255 					bufspacewakeup();
3256 					bp->b_bufsize = 0;
3257 				}
3258 				bp->b_flags &= ~B_MALLOC;
3259 				newbsize = round_page(newbsize);
3260 			}
3261 			vm_hold_load_pages(
3262 			    bp,
3263 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3264 			    (vm_offset_t) bp->b_data + newbsize);
3265 			if (origbuf) {
3266 				bcopy(origbuf, bp->b_data, origbufsize);
3267 				kfree(origbuf, M_BIOBUF);
3268 			}
3269 		}
3270 	} else {
3271 		vm_page_t m;
3272 		int desiredpages;
3273 
3274 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3275 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3276 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3277 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3278 
3279 		if (bp->b_flags & B_MALLOC)
3280 			panic("allocbuf: VMIO buffer can't be malloced");
3281 		/*
3282 		 * Set B_CACHE initially if buffer is 0 length or will become
3283 		 * 0-length.
3284 		 */
3285 		if (size == 0 || bp->b_bufsize == 0)
3286 			bp->b_flags |= B_CACHE;
3287 
3288 		if (newbsize < bp->b_bufsize) {
3289 			/*
3290 			 * DEV_BSIZE aligned new buffer size is less then the
3291 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3292 			 * if we have to remove any pages.
3293 			 */
3294 			if (desiredpages < bp->b_xio.xio_npages) {
3295 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3296 					/*
3297 					 * the page is not freed here -- it
3298 					 * is the responsibility of
3299 					 * vnode_pager_setsize
3300 					 */
3301 					m = bp->b_xio.xio_pages[i];
3302 					KASSERT(m != bogus_page,
3303 					    ("allocbuf: bogus page found"));
3304 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3305 						;
3306 
3307 					bp->b_xio.xio_pages[i] = NULL;
3308 					vm_page_unwire(m, 0);
3309 				}
3310 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3311 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3312 				bp->b_xio.xio_npages = desiredpages;
3313 			}
3314 		} else if (size > bp->b_bcount) {
3315 			/*
3316 			 * We are growing the buffer, possibly in a
3317 			 * byte-granular fashion.
3318 			 */
3319 			struct vnode *vp;
3320 			vm_object_t obj;
3321 			vm_offset_t toff;
3322 			vm_offset_t tinc;
3323 
3324 			/*
3325 			 * Step 1, bring in the VM pages from the object,
3326 			 * allocating them if necessary.  We must clear
3327 			 * B_CACHE if these pages are not valid for the
3328 			 * range covered by the buffer.
3329 			 *
3330 			 * critical section protection is required to protect
3331 			 * against interrupts unbusying and freeing pages
3332 			 * between our vm_page_lookup() and our
3333 			 * busycheck/wiring call.
3334 			 */
3335 			vp = bp->b_vp;
3336 			obj = vp->v_object;
3337 
3338 			lwkt_gettoken(&vm_token);
3339 			while (bp->b_xio.xio_npages < desiredpages) {
3340 				vm_page_t m;
3341 				vm_pindex_t pi;
3342 
3343 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3344 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3345 					/*
3346 					 * note: must allocate system pages
3347 					 * since blocking here could intefere
3348 					 * with paging I/O, no matter which
3349 					 * process we are.
3350 					 */
3351 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3352 					if (m) {
3353 						vm_page_wire(m);
3354 						vm_page_wakeup(m);
3355 						vm_page_flag_clear(m, PG_ZERO);
3356 						bp->b_flags &= ~B_CACHE;
3357 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3358 						++bp->b_xio.xio_npages;
3359 					}
3360 					continue;
3361 				}
3362 
3363 				/*
3364 				 * We found a page.  If we have to sleep on it,
3365 				 * retry because it might have gotten freed out
3366 				 * from under us.
3367 				 *
3368 				 * We can only test PG_BUSY here.  Blocking on
3369 				 * m->busy might lead to a deadlock:
3370 				 *
3371 				 *  vm_fault->getpages->cluster_read->allocbuf
3372 				 *
3373 				 */
3374 
3375 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3376 					continue;
3377 				vm_page_flag_clear(m, PG_ZERO);
3378 				vm_page_wire(m);
3379 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3380 				++bp->b_xio.xio_npages;
3381 				if (bp->b_act_count < m->act_count)
3382 					bp->b_act_count = m->act_count;
3383 			}
3384 			lwkt_reltoken(&vm_token);
3385 
3386 			/*
3387 			 * Step 2.  We've loaded the pages into the buffer,
3388 			 * we have to figure out if we can still have B_CACHE
3389 			 * set.  Note that B_CACHE is set according to the
3390 			 * byte-granular range ( bcount and size ), not the
3391 			 * aligned range ( newbsize ).
3392 			 *
3393 			 * The VM test is against m->valid, which is DEV_BSIZE
3394 			 * aligned.  Needless to say, the validity of the data
3395 			 * needs to also be DEV_BSIZE aligned.  Note that this
3396 			 * fails with NFS if the server or some other client
3397 			 * extends the file's EOF.  If our buffer is resized,
3398 			 * B_CACHE may remain set! XXX
3399 			 */
3400 
3401 			toff = bp->b_bcount;
3402 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3403 
3404 			while ((bp->b_flags & B_CACHE) && toff < size) {
3405 				vm_pindex_t pi;
3406 
3407 				if (tinc > (size - toff))
3408 					tinc = size - toff;
3409 
3410 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3411 				    PAGE_SHIFT;
3412 
3413 				vfs_buf_test_cache(
3414 				    bp,
3415 				    bp->b_loffset,
3416 				    toff,
3417 				    tinc,
3418 				    bp->b_xio.xio_pages[pi]
3419 				);
3420 				toff += tinc;
3421 				tinc = PAGE_SIZE;
3422 			}
3423 
3424 			/*
3425 			 * Step 3, fixup the KVM pmap.  Remember that
3426 			 * bp->b_data is relative to bp->b_loffset, but
3427 			 * bp->b_loffset may be offset into the first page.
3428 			 */
3429 
3430 			bp->b_data = (caddr_t)
3431 			    trunc_page((vm_offset_t)bp->b_data);
3432 			pmap_qenter(
3433 			    (vm_offset_t)bp->b_data,
3434 			    bp->b_xio.xio_pages,
3435 			    bp->b_xio.xio_npages
3436 			);
3437 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3438 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3439 		}
3440 	}
3441 
3442 	/* adjust space use on already-dirty buffer */
3443 	if (bp->b_flags & B_DELWRI) {
3444 		spin_lock(&bufcspin);
3445 		dirtybufspace += newbsize - bp->b_bufsize;
3446 		if (bp->b_flags & B_HEAVY)
3447 			dirtybufspacehw += newbsize - bp->b_bufsize;
3448 		spin_unlock(&bufcspin);
3449 	}
3450 	if (newbsize < bp->b_bufsize)
3451 		bufspacewakeup();
3452 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3453 	bp->b_bcount = size;		/* requested buffer size	*/
3454 	return 1;
3455 }
3456 
3457 /*
3458  * biowait:
3459  *
3460  *	Wait for buffer I/O completion, returning error status. B_EINTR
3461  *	is converted into an EINTR error but not cleared (since a chain
3462  *	of biowait() calls may occur).
3463  *
3464  *	On return bpdone() will have been called but the buffer will remain
3465  *	locked and will not have been brelse()'d.
3466  *
3467  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3468  *	likely still in progress on return.
3469  *
3470  *	NOTE!  This operation is on a BIO, not a BUF.
3471  *
3472  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3473  *
3474  * MPSAFE
3475  */
3476 static __inline int
3477 _biowait(struct bio *bio, const char *wmesg, int to)
3478 {
3479 	struct buf *bp = bio->bio_buf;
3480 	u_int32_t flags;
3481 	u_int32_t nflags;
3482 	int error;
3483 
3484 	KKASSERT(bio == &bp->b_bio1);
3485 	for (;;) {
3486 		flags = bio->bio_flags;
3487 		if (flags & BIO_DONE)
3488 			break;
3489 		tsleep_interlock(bio, 0);
3490 		nflags = flags | BIO_WANT;
3491 		tsleep_interlock(bio, 0);
3492 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3493 			if (wmesg)
3494 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3495 			else if (bp->b_cmd == BUF_CMD_READ)
3496 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3497 			else
3498 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3499 			if (error) {
3500 				kprintf("tsleep error biowait %d\n", error);
3501 				return (error);
3502 			}
3503 		}
3504 	}
3505 
3506 	/*
3507 	 * Finish up.
3508 	 */
3509 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3510 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3511 	if (bp->b_flags & B_EINTR)
3512 		return (EINTR);
3513 	if (bp->b_flags & B_ERROR)
3514 		return (bp->b_error ? bp->b_error : EIO);
3515 	return (0);
3516 }
3517 
3518 int
3519 biowait(struct bio *bio, const char *wmesg)
3520 {
3521 	return(_biowait(bio, wmesg, 0));
3522 }
3523 
3524 int
3525 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3526 {
3527 	return(_biowait(bio, wmesg, to));
3528 }
3529 
3530 /*
3531  * This associates a tracking count with an I/O.  vn_strategy() and
3532  * dev_dstrategy() do this automatically but there are a few cases
3533  * where a vnode or device layer is bypassed when a block translation
3534  * is cached.  In such cases bio_start_transaction() may be called on
3535  * the bypassed layers so the system gets an I/O in progress indication
3536  * for those higher layers.
3537  */
3538 void
3539 bio_start_transaction(struct bio *bio, struct bio_track *track)
3540 {
3541 	bio->bio_track = track;
3542 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3543 		dsched_new_buf(bio->bio_buf);
3544 	bio_track_ref(track);
3545 }
3546 
3547 /*
3548  * Initiate I/O on a vnode.
3549  *
3550  * SWAPCACHE OPERATION:
3551  *
3552  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3553  *	devfs also uses b_vp for fake buffers so we also have to check
3554  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3555  *	underlying block device.  The swap assignments are related to the
3556  *	buffer cache buffer's b_vp, not the passed vp.
3557  *
3558  *	The passed vp == bp->b_vp only in the case where the strategy call
3559  *	is made on the vp itself for its own buffers (a regular file or
3560  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3561  *	after translating the request to an underlying device.
3562  *
3563  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3564  *	underlying buffer cache buffers.
3565  *
3566  *	We can only deal with page-aligned buffers at the moment, because
3567  *	we can't tell what the real dirty state for pages straddling a buffer
3568  *	are.
3569  *
3570  *	In order to call swap_pager_strategy() we must provide the VM object
3571  *	and base offset for the underlying buffer cache pages so it can find
3572  *	the swap blocks.
3573  */
3574 void
3575 vn_strategy(struct vnode *vp, struct bio *bio)
3576 {
3577 	struct bio_track *track;
3578 	struct buf *bp = bio->bio_buf;
3579 
3580 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3581 
3582 	/*
3583 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3584 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3585 	 * actually occurred.
3586 	 */
3587 	bp->b_flags |= B_IODEBUG;
3588 
3589 	/*
3590 	 * Handle the swap cache intercept.
3591 	 */
3592 	if (vn_cache_strategy(vp, bio))
3593 		return;
3594 
3595 	/*
3596 	 * Otherwise do the operation through the filesystem
3597 	 */
3598         if (bp->b_cmd == BUF_CMD_READ)
3599                 track = &vp->v_track_read;
3600         else
3601                 track = &vp->v_track_write;
3602 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3603 	bio->bio_track = track;
3604 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3605 		dsched_new_buf(bio->bio_buf);
3606 	bio_track_ref(track);
3607         vop_strategy(*vp->v_ops, vp, bio);
3608 }
3609 
3610 int
3611 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3612 {
3613 	struct buf *bp = bio->bio_buf;
3614 	struct bio *nbio;
3615 	vm_object_t object;
3616 	vm_page_t m;
3617 	int i;
3618 
3619 	/*
3620 	 * Is this buffer cache buffer suitable for reading from
3621 	 * the swap cache?
3622 	 */
3623 	if (vm_swapcache_read_enable == 0 ||
3624 	    bp->b_cmd != BUF_CMD_READ ||
3625 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3626 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3627 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3628 	    (bp->b_bcount & PAGE_MASK) != 0) {
3629 		return(0);
3630 	}
3631 
3632 	/*
3633 	 * Figure out the original VM object (it will match the underlying
3634 	 * VM pages).  Note that swap cached data uses page indices relative
3635 	 * to that object, not relative to bio->bio_offset.
3636 	 */
3637 	if (bp->b_flags & B_CLUSTER)
3638 		object = vp->v_object;
3639 	else
3640 		object = bp->b_vp->v_object;
3641 
3642 	/*
3643 	 * In order to be able to use the swap cache all underlying VM
3644 	 * pages must be marked as such, and we can't have any bogus pages.
3645 	 */
3646 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3647 		m = bp->b_xio.xio_pages[i];
3648 		if ((m->flags & PG_SWAPPED) == 0)
3649 			break;
3650 		if (m == bogus_page)
3651 			break;
3652 	}
3653 
3654 	/*
3655 	 * If we are good then issue the I/O using swap_pager_strategy()
3656 	 */
3657 	if (i == bp->b_xio.xio_npages) {
3658 		m = bp->b_xio.xio_pages[0];
3659 		nbio = push_bio(bio);
3660 		nbio->bio_offset = ptoa(m->pindex);
3661 		KKASSERT(m->object == object);
3662 		swap_pager_strategy(object, nbio);
3663 		return(1);
3664 	}
3665 	return(0);
3666 }
3667 
3668 /*
3669  * bpdone:
3670  *
3671  *	Finish I/O on a buffer after all BIOs have been processed.
3672  *	Called when the bio chain is exhausted or by biowait.  If called
3673  *	by biowait, elseit is typically 0.
3674  *
3675  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3676  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3677  *	assuming B_INVAL is clear.
3678  *
3679  *	For the VMIO case, we set B_CACHE if the op was a read and no
3680  *	read error occured, or if the op was a write.  B_CACHE is never
3681  *	set if the buffer is invalid or otherwise uncacheable.
3682  *
3683  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3684  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3685  *	in the biodone routine.
3686  */
3687 void
3688 bpdone(struct buf *bp, int elseit)
3689 {
3690 	buf_cmd_t cmd;
3691 
3692 	KASSERT(BUF_REFCNTNB(bp) > 0,
3693 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3694 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3695 		("biodone: bp %p already done!", bp));
3696 
3697 	/*
3698 	 * No more BIOs are left.  All completion functions have been dealt
3699 	 * with, now we clean up the buffer.
3700 	 */
3701 	cmd = bp->b_cmd;
3702 	bp->b_cmd = BUF_CMD_DONE;
3703 
3704 	/*
3705 	 * Only reads and writes are processed past this point.
3706 	 */
3707 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3708 		if (cmd == BUF_CMD_FREEBLKS)
3709 			bp->b_flags |= B_NOCACHE;
3710 		if (elseit)
3711 			brelse(bp);
3712 		return;
3713 	}
3714 
3715 	/*
3716 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3717 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3718 	 */
3719 	if (LIST_FIRST(&bp->b_dep) != NULL)
3720 		buf_complete(bp);	/* MPSAFE */
3721 
3722 	/*
3723 	 * A failed write must re-dirty the buffer unless B_INVAL
3724 	 * was set.  Only applicable to normal buffers (with VPs).
3725 	 * vinum buffers may not have a vp.
3726 	 */
3727 	if (cmd == BUF_CMD_WRITE &&
3728 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3729 		bp->b_flags &= ~B_NOCACHE;
3730 		if (bp->b_vp)
3731 			bdirty(bp);
3732 	}
3733 
3734 	if (bp->b_flags & B_VMIO) {
3735 		int i;
3736 		vm_ooffset_t foff;
3737 		vm_page_t m;
3738 		vm_object_t obj;
3739 		int iosize;
3740 		struct vnode *vp = bp->b_vp;
3741 
3742 		obj = vp->v_object;
3743 
3744 #if defined(VFS_BIO_DEBUG)
3745 		if (vp->v_auxrefs == 0)
3746 			panic("biodone: zero vnode hold count");
3747 		if ((vp->v_flag & VOBJBUF) == 0)
3748 			panic("biodone: vnode is not setup for merged cache");
3749 #endif
3750 
3751 		foff = bp->b_loffset;
3752 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3753 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3754 
3755 #if defined(VFS_BIO_DEBUG)
3756 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3757 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3758 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3759 		}
3760 #endif
3761 
3762 		/*
3763 		 * Set B_CACHE if the op was a normal read and no error
3764 		 * occured.  B_CACHE is set for writes in the b*write()
3765 		 * routines.
3766 		 */
3767 		iosize = bp->b_bcount - bp->b_resid;
3768 		if (cmd == BUF_CMD_READ &&
3769 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3770 			bp->b_flags |= B_CACHE;
3771 		}
3772 
3773 		lwkt_gettoken(&vm_token);
3774 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3775 			int bogusflag = 0;
3776 			int resid;
3777 
3778 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3779 			if (resid > iosize)
3780 				resid = iosize;
3781 
3782 			/*
3783 			 * cleanup bogus pages, restoring the originals.  Since
3784 			 * the originals should still be wired, we don't have
3785 			 * to worry about interrupt/freeing races destroying
3786 			 * the VM object association.
3787 			 */
3788 			m = bp->b_xio.xio_pages[i];
3789 			if (m == bogus_page) {
3790 				bogusflag = 1;
3791 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3792 				if (m == NULL)
3793 					panic("biodone: page disappeared");
3794 				bp->b_xio.xio_pages[i] = m;
3795 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3796 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3797 			}
3798 #if defined(VFS_BIO_DEBUG)
3799 			if (OFF_TO_IDX(foff) != m->pindex) {
3800 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3801 					"mismatch\n",
3802 					(unsigned long)foff, (long)m->pindex);
3803 			}
3804 #endif
3805 
3806 			/*
3807 			 * In the write case, the valid and clean bits are
3808 			 * already changed correctly (see bdwrite()), so we
3809 			 * only need to do this here in the read case.
3810 			 */
3811 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3812 				vfs_clean_one_page(bp, i, m);
3813 			}
3814 			vm_page_flag_clear(m, PG_ZERO);
3815 
3816 			/*
3817 			 * when debugging new filesystems or buffer I/O
3818 			 * methods, this is the most common error that pops
3819 			 * up.  if you see this, you have not set the page
3820 			 * busy flag correctly!!!
3821 			 */
3822 			if (m->busy == 0) {
3823 				kprintf("biodone: page busy < 0, "
3824 				    "pindex: %d, foff: 0x(%x,%x), "
3825 				    "resid: %d, index: %d\n",
3826 				    (int) m->pindex, (int)(foff >> 32),
3827 						(int) foff & 0xffffffff, resid, i);
3828 				if (!vn_isdisk(vp, NULL))
3829 					kprintf(" iosize: %ld, loffset: %lld, "
3830 						"flags: 0x%08x, npages: %d\n",
3831 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3832 					    (long long)bp->b_loffset,
3833 					    bp->b_flags, bp->b_xio.xio_npages);
3834 				else
3835 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3836 					    (long long)bp->b_loffset,
3837 					    bp->b_flags, bp->b_xio.xio_npages);
3838 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3839 				    m->valid, m->dirty, m->wire_count);
3840 				panic("biodone: page busy < 0");
3841 			}
3842 			vm_page_io_finish(m);
3843 			vm_object_pip_subtract(obj, 1);
3844 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3845 			iosize -= resid;
3846 		}
3847 		bp->b_flags &= ~B_HASBOGUS;
3848 		if (obj)
3849 			vm_object_pip_wakeupn(obj, 0);
3850 		lwkt_reltoken(&vm_token);
3851 	}
3852 
3853 	/*
3854 	 * Finish up by releasing the buffer.  There are no more synchronous
3855 	 * or asynchronous completions, those were handled by bio_done
3856 	 * callbacks.
3857 	 */
3858 	if (elseit) {
3859 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3860 			brelse(bp);
3861 		else
3862 			bqrelse(bp);
3863 	}
3864 }
3865 
3866 /*
3867  * Normal biodone.
3868  */
3869 void
3870 biodone(struct bio *bio)
3871 {
3872 	struct buf *bp = bio->bio_buf;
3873 
3874 	runningbufwakeup(bp);
3875 
3876 	/*
3877 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3878 	 */
3879 	while (bio) {
3880 		biodone_t *done_func;
3881 		struct bio_track *track;
3882 
3883 		/*
3884 		 * BIO tracking.  Most but not all BIOs are tracked.
3885 		 */
3886 		if ((track = bio->bio_track) != NULL) {
3887 			bio_track_rel(track);
3888 			bio->bio_track = NULL;
3889 		}
3890 
3891 		/*
3892 		 * A bio_done function terminates the loop.  The function
3893 		 * will be responsible for any further chaining and/or
3894 		 * buffer management.
3895 		 *
3896 		 * WARNING!  The done function can deallocate the buffer!
3897 		 */
3898 		if ((done_func = bio->bio_done) != NULL) {
3899 			bio->bio_done = NULL;
3900 			done_func(bio);
3901 			return;
3902 		}
3903 		bio = bio->bio_prev;
3904 	}
3905 
3906 	/*
3907 	 * If we've run out of bio's do normal [a]synchronous completion.
3908 	 */
3909 	bpdone(bp, 1);
3910 }
3911 
3912 /*
3913  * Synchronous biodone - this terminates a synchronous BIO.
3914  *
3915  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3916  * but still locked.  The caller must brelse() the buffer after waiting
3917  * for completion.
3918  */
3919 void
3920 biodone_sync(struct bio *bio)
3921 {
3922 	struct buf *bp = bio->bio_buf;
3923 	int flags;
3924 	int nflags;
3925 
3926 	KKASSERT(bio == &bp->b_bio1);
3927 	bpdone(bp, 0);
3928 
3929 	for (;;) {
3930 		flags = bio->bio_flags;
3931 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3932 
3933 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3934 			if (flags & BIO_WANT)
3935 				wakeup(bio);
3936 			break;
3937 		}
3938 	}
3939 }
3940 
3941 /*
3942  * vfs_unbusy_pages:
3943  *
3944  *	This routine is called in lieu of iodone in the case of
3945  *	incomplete I/O.  This keeps the busy status for pages
3946  *	consistant.
3947  */
3948 void
3949 vfs_unbusy_pages(struct buf *bp)
3950 {
3951 	int i;
3952 
3953 	runningbufwakeup(bp);
3954 
3955 	lwkt_gettoken(&vm_token);
3956 	if (bp->b_flags & B_VMIO) {
3957 		struct vnode *vp = bp->b_vp;
3958 		vm_object_t obj;
3959 
3960 		obj = vp->v_object;
3961 
3962 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3963 			vm_page_t m = bp->b_xio.xio_pages[i];
3964 
3965 			/*
3966 			 * When restoring bogus changes the original pages
3967 			 * should still be wired, so we are in no danger of
3968 			 * losing the object association and do not need
3969 			 * critical section protection particularly.
3970 			 */
3971 			if (m == bogus_page) {
3972 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3973 				if (!m) {
3974 					panic("vfs_unbusy_pages: page missing");
3975 				}
3976 				bp->b_xio.xio_pages[i] = m;
3977 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3978 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3979 			}
3980 			vm_object_pip_subtract(obj, 1);
3981 			vm_page_flag_clear(m, PG_ZERO);
3982 			vm_page_io_finish(m);
3983 		}
3984 		bp->b_flags &= ~B_HASBOGUS;
3985 		vm_object_pip_wakeupn(obj, 0);
3986 	}
3987 	lwkt_reltoken(&vm_token);
3988 }
3989 
3990 /*
3991  * vfs_busy_pages:
3992  *
3993  *	This routine is called before a device strategy routine.
3994  *	It is used to tell the VM system that paging I/O is in
3995  *	progress, and treat the pages associated with the buffer
3996  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3997  *	flag is handled to make sure that the object doesn't become
3998  *	inconsistant.
3999  *
4000  *	Since I/O has not been initiated yet, certain buffer flags
4001  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4002  *	and should be ignored.
4003  *
4004  * MPSAFE
4005  */
4006 void
4007 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4008 {
4009 	int i, bogus;
4010 	struct lwp *lp = curthread->td_lwp;
4011 
4012 	/*
4013 	 * The buffer's I/O command must already be set.  If reading,
4014 	 * B_CACHE must be 0 (double check against callers only doing
4015 	 * I/O when B_CACHE is 0).
4016 	 */
4017 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4018 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4019 
4020 	if (bp->b_flags & B_VMIO) {
4021 		vm_object_t obj;
4022 
4023 		lwkt_gettoken(&vm_token);
4024 
4025 		obj = vp->v_object;
4026 		KASSERT(bp->b_loffset != NOOFFSET,
4027 			("vfs_busy_pages: no buffer offset"));
4028 
4029 		/*
4030 		 * Loop until none of the pages are busy.
4031 		 */
4032 retry:
4033 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4034 			vm_page_t m = bp->b_xio.xio_pages[i];
4035 
4036 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
4037 				goto retry;
4038 		}
4039 
4040 		/*
4041 		 * Setup for I/O, soft-busy the page right now because
4042 		 * the next loop may block.
4043 		 */
4044 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4045 			vm_page_t m = bp->b_xio.xio_pages[i];
4046 
4047 			vm_page_flag_clear(m, PG_ZERO);
4048 			if ((bp->b_flags & B_CLUSTER) == 0) {
4049 				vm_object_pip_add(obj, 1);
4050 				vm_page_io_start(m);
4051 			}
4052 		}
4053 
4054 		/*
4055 		 * Adjust protections for I/O and do bogus-page mapping.
4056 		 * Assume that vm_page_protect() can block (it can block
4057 		 * if VM_PROT_NONE, don't take any chances regardless).
4058 		 *
4059 		 * In particular note that for writes we must incorporate
4060 		 * page dirtyness from the VM system into the buffer's
4061 		 * dirty range.
4062 		 *
4063 		 * For reads we theoretically must incorporate page dirtyness
4064 		 * from the VM system to determine if the page needs bogus
4065 		 * replacement, but we shortcut the test by simply checking
4066 		 * that all m->valid bits are set, indicating that the page
4067 		 * is fully valid and does not need to be re-read.  For any
4068 		 * VM system dirtyness the page will also be fully valid
4069 		 * since it was mapped at one point.
4070 		 */
4071 		bogus = 0;
4072 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4073 			vm_page_t m = bp->b_xio.xio_pages[i];
4074 
4075 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4076 			if (bp->b_cmd == BUF_CMD_WRITE) {
4077 				/*
4078 				 * When readying a vnode-backed buffer for
4079 				 * a write we must zero-fill any invalid
4080 				 * portions of the backing VM pages, mark
4081 				 * it valid and clear related dirty bits.
4082 				 *
4083 				 * vfs_clean_one_page() incorporates any
4084 				 * VM dirtyness and updates the b_dirtyoff
4085 				 * range (after we've made the page RO).
4086 				 *
4087 				 * It is also expected that the pmap modified
4088 				 * bit has already been cleared by the
4089 				 * vm_page_protect().  We may not be able
4090 				 * to clear all dirty bits for a page if it
4091 				 * was also memory mapped (NFS).
4092 				 *
4093 				 * Finally be sure to unassign any swap-cache
4094 				 * backing store as it is now stale.
4095 				 */
4096 				vm_page_protect(m, VM_PROT_READ);
4097 				vfs_clean_one_page(bp, i, m);
4098 				swap_pager_unswapped(m);
4099 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4100 				/*
4101 				 * When readying a vnode-backed buffer for
4102 				 * read we must replace any dirty pages with
4103 				 * a bogus page so dirty data is not destroyed
4104 				 * when filling gaps.
4105 				 *
4106 				 * To avoid testing whether the page is
4107 				 * dirty we instead test that the page was
4108 				 * at some point mapped (m->valid fully
4109 				 * valid) with the understanding that
4110 				 * this also covers the dirty case.
4111 				 */
4112 				bp->b_xio.xio_pages[i] = bogus_page;
4113 				bp->b_flags |= B_HASBOGUS;
4114 				bogus++;
4115 			} else if (m->valid & m->dirty) {
4116 				/*
4117 				 * This case should not occur as partial
4118 				 * dirtyment can only happen if the buffer
4119 				 * is B_CACHE, and this code is not entered
4120 				 * if the buffer is B_CACHE.
4121 				 */
4122 				kprintf("Warning: vfs_busy_pages - page not "
4123 					"fully valid! loff=%jx bpf=%08x "
4124 					"idx=%d val=%02x dir=%02x\n",
4125 					(intmax_t)bp->b_loffset, bp->b_flags,
4126 					i, m->valid, m->dirty);
4127 				vm_page_protect(m, VM_PROT_NONE);
4128 			} else {
4129 				/*
4130 				 * The page is not valid and can be made
4131 				 * part of the read.
4132 				 */
4133 				vm_page_protect(m, VM_PROT_NONE);
4134 			}
4135 		}
4136 		if (bogus) {
4137 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4138 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4139 		}
4140 		lwkt_reltoken(&vm_token);
4141 	}
4142 
4143 	/*
4144 	 * This is the easiest place to put the process accounting for the I/O
4145 	 * for now.
4146 	 */
4147 	if (lp != NULL) {
4148 		if (bp->b_cmd == BUF_CMD_READ)
4149 			lp->lwp_ru.ru_inblock++;
4150 		else
4151 			lp->lwp_ru.ru_oublock++;
4152 	}
4153 }
4154 
4155 /*
4156  * vfs_clean_pages:
4157  *
4158  *	Tell the VM system that the pages associated with this buffer
4159  *	are clean.  This is used for delayed writes where the data is
4160  *	going to go to disk eventually without additional VM intevention.
4161  *
4162  *	Note that while we only really need to clean through to b_bcount, we
4163  *	just go ahead and clean through to b_bufsize.
4164  */
4165 static void
4166 vfs_clean_pages(struct buf *bp)
4167 {
4168 	vm_page_t m;
4169 	int i;
4170 
4171 	if ((bp->b_flags & B_VMIO) == 0)
4172 		return;
4173 
4174 	KASSERT(bp->b_loffset != NOOFFSET,
4175 		("vfs_clean_pages: no buffer offset"));
4176 
4177 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4178 		m = bp->b_xio.xio_pages[i];
4179 		vfs_clean_one_page(bp, i, m);
4180 	}
4181 }
4182 
4183 /*
4184  * vfs_clean_one_page:
4185  *
4186  *	Set the valid bits and clear the dirty bits in a page within a
4187  *	buffer.  The range is restricted to the buffer's size and the
4188  *	buffer's logical offset might index into the first page.
4189  *
4190  *	The caller has busied or soft-busied the page and it is not mapped,
4191  *	test and incorporate the dirty bits into b_dirtyoff/end before
4192  *	clearing them.  Note that we need to clear the pmap modified bits
4193  *	after determining the the page was dirty, vm_page_set_validclean()
4194  *	does not do it for us.
4195  *
4196  *	This routine is typically called after a read completes (dirty should
4197  *	be zero in that case as we are not called on bogus-replace pages),
4198  *	or before a write is initiated.
4199  */
4200 static void
4201 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4202 {
4203 	int bcount;
4204 	int xoff;
4205 	int soff;
4206 	int eoff;
4207 
4208 	/*
4209 	 * Calculate offset range within the page but relative to buffer's
4210 	 * loffset.  loffset might be offset into the first page.
4211 	 */
4212 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4213 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4214 
4215 	if (pageno == 0) {
4216 		soff = xoff;
4217 		eoff = PAGE_SIZE;
4218 	} else {
4219 		soff = (pageno << PAGE_SHIFT);
4220 		eoff = soff + PAGE_SIZE;
4221 	}
4222 	if (eoff > bcount)
4223 		eoff = bcount;
4224 	if (soff >= eoff)
4225 		return;
4226 
4227 	/*
4228 	 * Test dirty bits and adjust b_dirtyoff/end.
4229 	 *
4230 	 * If dirty pages are incorporated into the bp any prior
4231 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4232 	 * caller has not taken into account the new dirty data.
4233 	 *
4234 	 * If the page was memory mapped the dirty bits might go beyond the
4235 	 * end of the buffer, but we can't really make the assumption that
4236 	 * a file EOF straddles the buffer (even though this is the case for
4237 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4238 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4239 	 * This also saves some console spam.
4240 	 *
4241 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4242 	 * NFS can handle huge commits but not huge writes.
4243 	 */
4244 	vm_page_test_dirty(m);
4245 	if (m->dirty) {
4246 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4247 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4248 			if (debug_commit)
4249 			kprintf("Warning: vfs_clean_one_page: bp %p "
4250 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4251 				" cmd %d vd %02x/%02x x/s/e %d %d %d "
4252 				"doff/end %d %d\n",
4253 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4254 				bp->b_flags, bp->b_cmd,
4255 				m->valid, m->dirty, xoff, soff, eoff,
4256 				bp->b_dirtyoff, bp->b_dirtyend);
4257 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4258 			if (debug_commit)
4259 				print_backtrace(-1);
4260 		}
4261 		/*
4262 		 * Only clear the pmap modified bits if ALL the dirty bits
4263 		 * are set, otherwise the system might mis-clear portions
4264 		 * of a page.
4265 		 */
4266 		if (m->dirty == VM_PAGE_BITS_ALL &&
4267 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4268 			pmap_clear_modify(m);
4269 		}
4270 		if (bp->b_dirtyoff > soff - xoff)
4271 			bp->b_dirtyoff = soff - xoff;
4272 		if (bp->b_dirtyend < eoff - xoff)
4273 			bp->b_dirtyend = eoff - xoff;
4274 	}
4275 
4276 	/*
4277 	 * Set related valid bits, clear related dirty bits.
4278 	 * Does not mess with the pmap modified bit.
4279 	 *
4280 	 * WARNING!  We cannot just clear all of m->dirty here as the
4281 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4282 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4283 	 *	     The putpages code can clear m->dirty to 0.
4284 	 *
4285 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4286 	 *	     covers the same space as mapped writable pages the
4287 	 *	     buffer flush might not be able to clear all the dirty
4288 	 *	     bits and still require a putpages from the VM system
4289 	 *	     to finish it off.
4290 	 */
4291 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4292 }
4293 
4294 /*
4295  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4296  * The page data is assumed to be valid (there is no zeroing here).
4297  */
4298 static void
4299 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4300 {
4301 	int bcount;
4302 	int xoff;
4303 	int soff;
4304 	int eoff;
4305 
4306 	/*
4307 	 * Calculate offset range within the page but relative to buffer's
4308 	 * loffset.  loffset might be offset into the first page.
4309 	 */
4310 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4311 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4312 
4313 	if (pageno == 0) {
4314 		soff = xoff;
4315 		eoff = PAGE_SIZE;
4316 	} else {
4317 		soff = (pageno << PAGE_SHIFT);
4318 		eoff = soff + PAGE_SIZE;
4319 	}
4320 	if (eoff > bcount)
4321 		eoff = bcount;
4322 	if (soff >= eoff)
4323 		return;
4324 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4325 }
4326 
4327 /*
4328  * vfs_bio_clrbuf:
4329  *
4330  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4331  *	to clear B_ERROR and B_INVAL.
4332  *
4333  *	Note that while we only theoretically need to clear through b_bcount,
4334  *	we go ahead and clear through b_bufsize.
4335  */
4336 
4337 void
4338 vfs_bio_clrbuf(struct buf *bp)
4339 {
4340 	int i, mask = 0;
4341 	caddr_t sa, ea;
4342 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4343 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4344 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4345 		    (bp->b_loffset & PAGE_MASK) == 0) {
4346 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4347 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4348 				bp->b_resid = 0;
4349 				return;
4350 			}
4351 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4352 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4353 				bzero(bp->b_data, bp->b_bufsize);
4354 				bp->b_xio.xio_pages[0]->valid |= mask;
4355 				bp->b_resid = 0;
4356 				return;
4357 			}
4358 		}
4359 		sa = bp->b_data;
4360 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4361 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4362 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4363 			ea = (caddr_t)(vm_offset_t)ulmin(
4364 			    (u_long)(vm_offset_t)ea,
4365 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4366 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4367 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4368 				continue;
4369 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4370 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4371 					bzero(sa, ea - sa);
4372 				}
4373 			} else {
4374 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4375 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4376 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4377 						bzero(sa, DEV_BSIZE);
4378 				}
4379 			}
4380 			bp->b_xio.xio_pages[i]->valid |= mask;
4381 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4382 		}
4383 		bp->b_resid = 0;
4384 	} else {
4385 		clrbuf(bp);
4386 	}
4387 }
4388 
4389 /*
4390  * vm_hold_load_pages:
4391  *
4392  *	Load pages into the buffer's address space.  The pages are
4393  *	allocated from the kernel object in order to reduce interference
4394  *	with the any VM paging I/O activity.  The range of loaded
4395  *	pages will be wired.
4396  *
4397  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4398  *	retrieve the full range (to - from) of pages.
4399  *
4400  * MPSAFE
4401  */
4402 void
4403 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4404 {
4405 	vm_offset_t pg;
4406 	vm_page_t p;
4407 	int index;
4408 
4409 	to = round_page(to);
4410 	from = round_page(from);
4411 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4412 
4413 	pg = from;
4414 	while (pg < to) {
4415 		/*
4416 		 * Note: must allocate system pages since blocking here
4417 		 * could intefere with paging I/O, no matter which
4418 		 * process we are.
4419 		 */
4420 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4421 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4422 		if (p) {
4423 			vm_page_wire(p);
4424 			p->valid = VM_PAGE_BITS_ALL;
4425 			vm_page_flag_clear(p, PG_ZERO);
4426 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4427 			bp->b_xio.xio_pages[index] = p;
4428 			vm_page_wakeup(p);
4429 
4430 			pg += PAGE_SIZE;
4431 			++index;
4432 		}
4433 	}
4434 	bp->b_xio.xio_npages = index;
4435 }
4436 
4437 /*
4438  * Allocate pages for a buffer cache buffer.
4439  *
4440  * Under extremely severe memory conditions even allocating out of the
4441  * system reserve can fail.  If this occurs we must allocate out of the
4442  * interrupt reserve to avoid a deadlock with the pageout daemon.
4443  *
4444  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4445  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4446  * against the pageout daemon if pages are not freed from other sources.
4447  *
4448  * MPSAFE
4449  */
4450 static
4451 vm_page_t
4452 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4453 {
4454 	vm_page_t p;
4455 
4456 	/*
4457 	 * Try a normal allocation, allow use of system reserve.
4458 	 */
4459 	lwkt_gettoken(&vm_token);
4460 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4461 	if (p) {
4462 		lwkt_reltoken(&vm_token);
4463 		return(p);
4464 	}
4465 
4466 	/*
4467 	 * The normal allocation failed and we clearly have a page
4468 	 * deficit.  Try to reclaim some clean VM pages directly
4469 	 * from the buffer cache.
4470 	 */
4471 	vm_pageout_deficit += deficit;
4472 	recoverbufpages();
4473 
4474 	/*
4475 	 * We may have blocked, the caller will know what to do if the
4476 	 * page now exists.
4477 	 */
4478 	if (vm_page_lookup(obj, pg)) {
4479 		lwkt_reltoken(&vm_token);
4480 		return(NULL);
4481 	}
4482 
4483 	/*
4484 	 * Allocate and allow use of the interrupt reserve.
4485 	 *
4486 	 * If after all that we still can't allocate a VM page we are
4487 	 * in real trouble, but we slog on anyway hoping that the system
4488 	 * won't deadlock.
4489 	 */
4490 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4491 				   VM_ALLOC_INTERRUPT);
4492 	if (p) {
4493 		if (vm_page_count_severe()) {
4494 			++lowmempgallocs;
4495 			vm_wait(hz / 20 + 1);
4496 		}
4497 	} else {
4498 		kprintf("bio_page_alloc: Memory exhausted during bufcache "
4499 			"page allocation\n");
4500 		++lowmempgfails;
4501 		vm_wait(hz);
4502 	}
4503 	lwkt_reltoken(&vm_token);
4504 	return(p);
4505 }
4506 
4507 /*
4508  * vm_hold_free_pages:
4509  *
4510  *	Return pages associated with the buffer back to the VM system.
4511  *
4512  *	The range of pages underlying the buffer's address space will
4513  *	be unmapped and un-wired.
4514  *
4515  * MPSAFE
4516  */
4517 void
4518 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4519 {
4520 	vm_offset_t pg;
4521 	vm_page_t p;
4522 	int index, newnpages;
4523 
4524 	from = round_page(from);
4525 	to = round_page(to);
4526 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4527 	newnpages = index;
4528 
4529 	lwkt_gettoken(&vm_token);
4530 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4531 		p = bp->b_xio.xio_pages[index];
4532 		if (p && (index < bp->b_xio.xio_npages)) {
4533 			if (p->busy) {
4534 				kprintf("vm_hold_free_pages: doffset: %lld, "
4535 					"loffset: %lld\n",
4536 					(long long)bp->b_bio2.bio_offset,
4537 					(long long)bp->b_loffset);
4538 			}
4539 			bp->b_xio.xio_pages[index] = NULL;
4540 			pmap_kremove(pg);
4541 			vm_page_busy(p);
4542 			vm_page_unwire(p, 0);
4543 			vm_page_free(p);
4544 		}
4545 	}
4546 	bp->b_xio.xio_npages = newnpages;
4547 	lwkt_reltoken(&vm_token);
4548 }
4549 
4550 /*
4551  * vmapbuf:
4552  *
4553  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4554  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4555  *	initialized.
4556  */
4557 int
4558 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4559 {
4560 	caddr_t addr;
4561 	vm_offset_t va;
4562 	vm_page_t m;
4563 	int vmprot;
4564 	int error;
4565 	int pidx;
4566 	int i;
4567 
4568 	/*
4569 	 * bp had better have a command and it better be a pbuf.
4570 	 */
4571 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4572 	KKASSERT(bp->b_flags & B_PAGING);
4573 	KKASSERT(bp->b_kvabase);
4574 
4575 	if (bytes < 0)
4576 		return (-1);
4577 
4578 	/*
4579 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4580 	 */
4581 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4582 	pidx = 0;
4583 
4584 	vmprot = VM_PROT_READ;
4585 	if (bp->b_cmd == BUF_CMD_READ)
4586 		vmprot |= VM_PROT_WRITE;
4587 
4588 	while (addr < udata + bytes) {
4589 		/*
4590 		 * Do the vm_fault if needed; do the copy-on-write thing
4591 		 * when reading stuff off device into memory.
4592 		 *
4593 		 * vm_fault_page*() returns a held VM page.
4594 		 */
4595 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4596 		va = trunc_page(va);
4597 
4598 		m = vm_fault_page_quick(va, vmprot, &error);
4599 		if (m == NULL) {
4600 			for (i = 0; i < pidx; ++i) {
4601 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4602 			    bp->b_xio.xio_pages[i] = NULL;
4603 			}
4604 			return(-1);
4605 		}
4606 		bp->b_xio.xio_pages[pidx] = m;
4607 		addr += PAGE_SIZE;
4608 		++pidx;
4609 	}
4610 
4611 	/*
4612 	 * Map the page array and set the buffer fields to point to
4613 	 * the mapped data buffer.
4614 	 */
4615 	if (pidx > btoc(MAXPHYS))
4616 		panic("vmapbuf: mapped more than MAXPHYS");
4617 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4618 
4619 	bp->b_xio.xio_npages = pidx;
4620 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4621 	bp->b_bcount = bytes;
4622 	bp->b_bufsize = bytes;
4623 	return(0);
4624 }
4625 
4626 /*
4627  * vunmapbuf:
4628  *
4629  *	Free the io map PTEs associated with this IO operation.
4630  *	We also invalidate the TLB entries and restore the original b_addr.
4631  */
4632 void
4633 vunmapbuf(struct buf *bp)
4634 {
4635 	int pidx;
4636 	int npages;
4637 
4638 	KKASSERT(bp->b_flags & B_PAGING);
4639 
4640 	npages = bp->b_xio.xio_npages;
4641 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4642 	for (pidx = 0; pidx < npages; ++pidx) {
4643 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4644 		bp->b_xio.xio_pages[pidx] = NULL;
4645 	}
4646 	bp->b_xio.xio_npages = 0;
4647 	bp->b_data = bp->b_kvabase;
4648 }
4649 
4650 /*
4651  * Scan all buffers in the system and issue the callback.
4652  */
4653 int
4654 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4655 {
4656 	int count = 0;
4657 	int error;
4658 	int n;
4659 
4660 	for (n = 0; n < nbuf; ++n) {
4661 		if ((error = callback(&buf[n], info)) < 0) {
4662 			count = error;
4663 			break;
4664 		}
4665 		count += error;
4666 	}
4667 	return (count);
4668 }
4669 
4670 /*
4671  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4672  * completion to the master buffer.
4673  */
4674 static void
4675 nestiobuf_iodone(struct bio *bio)
4676 {
4677 	struct bio *mbio;
4678 	struct buf *mbp, *bp;
4679 	int error;
4680 	int donebytes;
4681 
4682 	bp = bio->bio_buf;
4683 	mbio = bio->bio_caller_info1.ptr;
4684 	mbp = mbio->bio_buf;
4685 
4686 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4687 	KKASSERT(mbp != bp);
4688 
4689 	error = bp->b_error;
4690 	if (bp->b_error == 0 &&
4691 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4692 		/*
4693 		 * Not all got transfered, raise an error. We have no way to
4694 		 * propagate these conditions to mbp.
4695 		 */
4696 		error = EIO;
4697 	}
4698 
4699 	donebytes = bp->b_bufsize;
4700 
4701 	relpbuf(bp, NULL);
4702 	nestiobuf_done(mbio, donebytes, error);
4703 }
4704 
4705 void
4706 nestiobuf_done(struct bio *mbio, int donebytes, int error)
4707 {
4708 	struct buf *mbp;
4709 
4710 	mbp = mbio->bio_buf;
4711 
4712 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4713 
4714 	/*
4715 	 * If an error occured, propagate it to the master buffer.
4716 	 *
4717 	 * Several biodone()s may wind up running concurrently so
4718 	 * use an atomic op to adjust b_flags.
4719 	 */
4720 	if (error) {
4721 		mbp->b_error = error;
4722 		atomic_set_int(&mbp->b_flags, B_ERROR);
4723 	}
4724 
4725 	/*
4726 	 * Decrement the operations in progress counter and terminate the
4727 	 * I/O if this was the last bit.
4728 	 */
4729 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4730 		mbp->b_resid = 0;
4731 		biodone(mbio);
4732 	}
4733 }
4734 
4735 /*
4736  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4737  * the mbio from being biodone()'d while we are still adding sub-bios to
4738  * it.
4739  */
4740 void
4741 nestiobuf_init(struct bio *bio)
4742 {
4743 	bio->bio_driver_info = (void *)1;
4744 }
4745 
4746 /*
4747  * The BIOs added to the nestedio have already been started, remove the
4748  * count that placeheld our mbio and biodone() it if the count would
4749  * transition to 0.
4750  */
4751 void
4752 nestiobuf_start(struct bio *mbio)
4753 {
4754 	struct buf *mbp = mbio->bio_buf;
4755 
4756 	/*
4757 	 * Decrement the operations in progress counter and terminate the
4758 	 * I/O if this was the last bit.
4759 	 */
4760 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4761 		if (mbp->b_flags & B_ERROR)
4762 			mbp->b_resid = mbp->b_bcount;
4763 		else
4764 			mbp->b_resid = 0;
4765 		biodone(mbio);
4766 	}
4767 }
4768 
4769 /*
4770  * Set an intermediate error prior to calling nestiobuf_start()
4771  */
4772 void
4773 nestiobuf_error(struct bio *mbio, int error)
4774 {
4775 	struct buf *mbp = mbio->bio_buf;
4776 
4777 	if (error) {
4778 		mbp->b_error = error;
4779 		atomic_set_int(&mbp->b_flags, B_ERROR);
4780 	}
4781 }
4782 
4783 /*
4784  * nestiobuf_add: setup a "nested" buffer.
4785  *
4786  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4787  * => 'bp' should be a buffer allocated by getiobuf.
4788  * => 'offset' is a byte offset in the master buffer.
4789  * => 'size' is a size in bytes of this nested buffer.
4790  */
4791 void
4792 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size)
4793 {
4794 	struct buf *mbp = mbio->bio_buf;
4795 	struct vnode *vp = mbp->b_vp;
4796 
4797 	KKASSERT(mbp->b_bcount >= offset + size);
4798 
4799 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4800 
4801 	/* kernel needs to own the lock for it to be released in biodone */
4802 	BUF_KERNPROC(bp);
4803 	bp->b_vp = vp;
4804 	bp->b_cmd = mbp->b_cmd;
4805 	bp->b_bio1.bio_done = nestiobuf_iodone;
4806 	bp->b_data = (char *)mbp->b_data + offset;
4807 	bp->b_resid = bp->b_bcount = size;
4808 	bp->b_bufsize = bp->b_bcount;
4809 
4810 	bp->b_bio1.bio_track = NULL;
4811 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4812 }
4813 
4814 /*
4815  * print out statistics from the current status of the buffer pool
4816  * this can be toggeled by the system control option debug.syncprt
4817  */
4818 #ifdef DEBUG
4819 void
4820 vfs_bufstats(void)
4821 {
4822         int i, j, count;
4823         struct buf *bp;
4824         struct bqueues *dp;
4825         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4826         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4827 
4828         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4829                 count = 0;
4830                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4831                         counts[j] = 0;
4832 
4833 		spin_lock(&bufqspin);
4834                 TAILQ_FOREACH(bp, dp, b_freelist) {
4835                         counts[bp->b_bufsize/PAGE_SIZE]++;
4836                         count++;
4837                 }
4838 		spin_unlock(&bufqspin);
4839 
4840                 kprintf("%s: total-%d", bname[i], count);
4841                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4842                         if (counts[j] != 0)
4843                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4844                 kprintf("\n");
4845         }
4846 }
4847 #endif
4848 
4849 #ifdef DDB
4850 
4851 DB_SHOW_COMMAND(buffer, db_show_buffer)
4852 {
4853 	/* get args */
4854 	struct buf *bp = (struct buf *)addr;
4855 
4856 	if (!have_addr) {
4857 		db_printf("usage: show buffer <addr>\n");
4858 		return;
4859 	}
4860 
4861 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4862 	db_printf("b_cmd = %d\n", bp->b_cmd);
4863 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4864 		  "b_resid = %d\n, b_data = %p, "
4865 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4866 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4867 		  bp->b_data,
4868 		  (long long)bp->b_bio2.bio_offset,
4869 		  (long long)(bp->b_bio2.bio_next ?
4870 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4871 	if (bp->b_xio.xio_npages) {
4872 		int i;
4873 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4874 			bp->b_xio.xio_npages);
4875 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4876 			vm_page_t m;
4877 			m = bp->b_xio.xio_pages[i];
4878 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4879 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4880 			if ((i + 1) < bp->b_xio.xio_npages)
4881 				db_printf(",");
4882 		}
4883 		db_printf("\n");
4884 	}
4885 }
4886 #endif /* DDB */
4887