xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 6cd3f461c47d5790c5a686a3af8afebd5f1a85fc)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.38 2005/07/28 18:15:09 dillon Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <vm/vm_page2.h>
60 
61 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
62 
63 struct	bio_ops bioops;		/* I/O operation notification */
64 
65 struct buf *buf;		/* buffer header pool */
66 struct swqueue bswlist;
67 
68 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
69 		vm_offset_t to);
70 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
71 		vm_offset_t to);
72 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
73 			       int pageno, vm_page_t m);
74 static void vfs_clean_pages(struct buf * bp);
75 static void vfs_setdirty(struct buf *bp);
76 static void vfs_vmio_release(struct buf *bp);
77 #if 0
78 static void vfs_backgroundwritedone(struct buf *bp);
79 #endif
80 static int flushbufqueues(void);
81 
82 static int bd_request;
83 
84 static void buf_daemon (void);
85 /*
86  * bogus page -- for I/O to/from partially complete buffers
87  * this is a temporary solution to the problem, but it is not
88  * really that bad.  it would be better to split the buffer
89  * for input in the case of buffers partially already in memory,
90  * but the code is intricate enough already.
91  */
92 vm_page_t bogus_page;
93 int vmiodirenable = TRUE;
94 int runningbufspace;
95 struct lwkt_token buftimetoken;  /* Interlock on setting prio and timo */
96 
97 static vm_offset_t bogus_offset;
98 
99 static int bufspace, maxbufspace,
100 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
101 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
102 static int needsbuffer;
103 static int lorunningspace, hirunningspace, runningbufreq;
104 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
105 static int numfreebuffers, lofreebuffers, hifreebuffers;
106 static int getnewbufcalls;
107 static int getnewbufrestarts;
108 
109 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
110 	&numdirtybuffers, 0, "");
111 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
112 	&lodirtybuffers, 0, "");
113 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
114 	&hidirtybuffers, 0, "");
115 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
116 	&numfreebuffers, 0, "");
117 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
118 	&lofreebuffers, 0, "");
119 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
120 	&hifreebuffers, 0, "");
121 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
122 	&runningbufspace, 0, "");
123 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
124 	&lorunningspace, 0, "");
125 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
126 	&hirunningspace, 0, "");
127 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
128 	&maxbufspace, 0, "");
129 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
130 	&hibufspace, 0, "");
131 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
132 	&lobufspace, 0, "");
133 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
134 	&bufspace, 0, "");
135 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
136 	&maxbufmallocspace, 0, "");
137 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
138 	&bufmallocspace, 0, "");
139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
140 	&getnewbufcalls, 0, "");
141 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
142 	&getnewbufrestarts, 0, "");
143 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
144 	&vmiodirenable, 0, "");
145 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
146 	&bufdefragcnt, 0, "");
147 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
148 	&buffreekvacnt, 0, "");
149 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
150 	&bufreusecnt, 0, "");
151 
152 #if 0
153 /*
154  * Disable background writes for now.  There appear to be races in the
155  * flags tests and locking operations as well as races in the completion
156  * code modifying the original bp (origbp) without holding a lock, assuming
157  * critical section protection when there might not be critical section
158  * protection.
159  *
160  * XXX disable also because the RB tree can't handle multiple blocks with
161  * the same lblkno.
162  */
163 static int dobkgrdwrite = 0;
164 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
165 	"Do background writes (honoring the BV_BKGRDWRITE flag)?");
166 #endif
167 
168 static int bufhashmask;
169 static int bufhashshift;
170 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
171 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
172 char *buf_wmesg = BUF_WMESG;
173 
174 extern int vm_swap_size;
175 
176 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
177 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
178 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
179 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
180 
181 /*
182  * Buffer hash table code.  Note that the logical block scans linearly, which
183  * gives us some L1 cache locality.
184  */
185 
186 static __inline
187 struct bufhashhdr *
188 bufhash(struct vnode *vnp, daddr_t bn)
189 {
190 	u_int64_t hashkey64;
191 	int hashkey;
192 
193 	/*
194 	 * A variation on the Fibonacci hash that Knuth credits to
195 	 * R. W. Floyd, see Knuth's _Art of Computer Programming,
196 	 * Volume 3 / Sorting and Searching_
197 	 *
198          * We reduce the argument to 32 bits before doing the hash to
199 	 * avoid the need for a slow 64x64 multiply on 32 bit platforms.
200 	 *
201 	 * sizeof(struct vnode) is 168 on i386, so toss some of the lower
202 	 * bits of the vnode address to reduce the key range, which
203 	 * improves the distribution of keys across buckets.
204 	 *
205 	 * The file system cylinder group blocks are very heavily
206 	 * used.  They are located at invervals of fbg, which is
207 	 * on the order of 89 to 94 * 2^10, depending on other
208 	 * filesystem parameters, for a 16k block size.  Smaller block
209 	 * sizes will reduce fpg approximately proportionally.  This
210 	 * will cause the cylinder group index to be hashed using the
211 	 * lower bits of the hash multiplier, which will not distribute
212 	 * the keys as uniformly in a classic Fibonacci hash where a
213 	 * relatively small number of the upper bits of the result
214 	 * are used.  Using 2^16 as a close-enough approximation to
215 	 * fpg, split the hash multiplier in half, with the upper 16
216 	 * bits being the inverse of the golden ratio, and the lower
217 	 * 16 bits being a fraction between 1/3 and 3/7 (closer to
218 	 * 3/7 in this case), that gives good experimental results.
219 	 */
220 	hashkey64 = ((u_int64_t)(uintptr_t)vnp >> 3) + (u_int64_t)bn;
221 	hashkey = (((u_int32_t)(hashkey64 + (hashkey64 >> 32)) * 0x9E376DB1u) >>
222 	    bufhashshift) & bufhashmask;
223 	return(&bufhashtbl[hashkey]);
224 }
225 
226 /*
227  *	numdirtywakeup:
228  *
229  *	If someone is blocked due to there being too many dirty buffers,
230  *	and numdirtybuffers is now reasonable, wake them up.
231  */
232 
233 static __inline void
234 numdirtywakeup(int level)
235 {
236 	if (numdirtybuffers <= level) {
237 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
238 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
239 			wakeup(&needsbuffer);
240 		}
241 	}
242 }
243 
244 /*
245  *	bufspacewakeup:
246  *
247  *	Called when buffer space is potentially available for recovery.
248  *	getnewbuf() will block on this flag when it is unable to free
249  *	sufficient buffer space.  Buffer space becomes recoverable when
250  *	bp's get placed back in the queues.
251  */
252 
253 static __inline void
254 bufspacewakeup(void)
255 {
256 	/*
257 	 * If someone is waiting for BUF space, wake them up.  Even
258 	 * though we haven't freed the kva space yet, the waiting
259 	 * process will be able to now.
260 	 */
261 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
262 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
263 		wakeup(&needsbuffer);
264 	}
265 }
266 
267 /*
268  * runningbufwakeup() - in-progress I/O accounting.
269  *
270  */
271 static __inline void
272 runningbufwakeup(struct buf *bp)
273 {
274 	if (bp->b_runningbufspace) {
275 		runningbufspace -= bp->b_runningbufspace;
276 		bp->b_runningbufspace = 0;
277 		if (runningbufreq && runningbufspace <= lorunningspace) {
278 			runningbufreq = 0;
279 			wakeup(&runningbufreq);
280 		}
281 	}
282 }
283 
284 /*
285  *	bufcountwakeup:
286  *
287  *	Called when a buffer has been added to one of the free queues to
288  *	account for the buffer and to wakeup anyone waiting for free buffers.
289  *	This typically occurs when large amounts of metadata are being handled
290  *	by the buffer cache ( else buffer space runs out first, usually ).
291  */
292 
293 static __inline void
294 bufcountwakeup(void)
295 {
296 	++numfreebuffers;
297 	if (needsbuffer) {
298 		needsbuffer &= ~VFS_BIO_NEED_ANY;
299 		if (numfreebuffers >= hifreebuffers)
300 			needsbuffer &= ~VFS_BIO_NEED_FREE;
301 		wakeup(&needsbuffer);
302 	}
303 }
304 
305 /*
306  *	waitrunningbufspace()
307  *
308  *	runningbufspace is a measure of the amount of I/O currently
309  *	running.  This routine is used in async-write situations to
310  *	prevent creating huge backups of pending writes to a device.
311  *	Only asynchronous writes are governed by this function.
312  *
313  *	Reads will adjust runningbufspace, but will not block based on it.
314  *	The read load has a side effect of reducing the allowed write load.
315  *
316  *	This does NOT turn an async write into a sync write.  It waits
317  *	for earlier writes to complete and generally returns before the
318  *	caller's write has reached the device.
319  */
320 static __inline void
321 waitrunningbufspace(void)
322 {
323 	if (runningbufspace > hirunningspace) {
324 		crit_enter();
325 		while (runningbufspace > hirunningspace) {
326 			++runningbufreq;
327 			tsleep(&runningbufreq, 0, "wdrain", 0);
328 		}
329 		crit_exit();
330 	}
331 }
332 
333 /*
334  *	vfs_buf_test_cache:
335  *
336  *	Called when a buffer is extended.  This function clears the B_CACHE
337  *	bit if the newly extended portion of the buffer does not contain
338  *	valid data.
339  */
340 static __inline__
341 void
342 vfs_buf_test_cache(struct buf *bp,
343 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
344 		  vm_page_t m)
345 {
346 	if (bp->b_flags & B_CACHE) {
347 		int base = (foff + off) & PAGE_MASK;
348 		if (vm_page_is_valid(m, base, size) == 0)
349 			bp->b_flags &= ~B_CACHE;
350 	}
351 }
352 
353 static __inline__
354 void
355 bd_wakeup(int dirtybuflevel)
356 {
357 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
358 		bd_request = 1;
359 		wakeup(&bd_request);
360 	}
361 }
362 
363 /*
364  * bd_speedup - speedup the buffer cache flushing code
365  */
366 
367 static __inline__
368 void
369 bd_speedup(void)
370 {
371 	bd_wakeup(1);
372 }
373 
374 /*
375  * Initialize buffer headers and related structures.
376  */
377 
378 caddr_t
379 bufhashinit(caddr_t vaddr)
380 {
381 	/* first, make a null hash table */
382 	bufhashshift = 29;
383 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
384 		bufhashshift--;
385 	bufhashtbl = (void *)vaddr;
386 	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
387 	--bufhashmask;
388 	return(vaddr);
389 }
390 
391 void
392 bufinit(void)
393 {
394 	struct buf *bp;
395 	int i;
396 
397 	TAILQ_INIT(&bswlist);
398 	LIST_INIT(&invalhash);
399 	lwkt_token_init(&buftimetoken);
400 
401 	for (i = 0; i <= bufhashmask; i++)
402 		LIST_INIT(&bufhashtbl[i]);
403 
404 	/* next, make a null set of free lists */
405 	for (i = 0; i < BUFFER_QUEUES; i++)
406 		TAILQ_INIT(&bufqueues[i]);
407 
408 	/* finally, initialize each buffer header and stick on empty q */
409 	for (i = 0; i < nbuf; i++) {
410 		bp = &buf[i];
411 		bzero(bp, sizeof *bp);
412 		bp->b_flags = B_INVAL;	/* we're just an empty header */
413 		bp->b_dev = NODEV;
414 		bp->b_qindex = QUEUE_EMPTY;
415 		bp->b_xflags = 0;
416 		xio_init(&bp->b_xio);
417 		LIST_INIT(&bp->b_dep);
418 		BUF_LOCKINIT(bp);
419 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
420 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
421 	}
422 
423 	/*
424 	 * maxbufspace is the absolute maximum amount of buffer space we are
425 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
426 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
427 	 * used by most other processes.  The differential is required to
428 	 * ensure that buf_daemon is able to run when other processes might
429 	 * be blocked waiting for buffer space.
430 	 *
431 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
432 	 * this may result in KVM fragmentation which is not handled optimally
433 	 * by the system.
434 	 */
435 	maxbufspace = nbuf * BKVASIZE;
436 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
437 	lobufspace = hibufspace - MAXBSIZE;
438 
439 	lorunningspace = 512 * 1024;
440 	hirunningspace = 1024 * 1024;
441 
442 /*
443  * Limit the amount of malloc memory since it is wired permanently into
444  * the kernel space.  Even though this is accounted for in the buffer
445  * allocation, we don't want the malloced region to grow uncontrolled.
446  * The malloc scheme improves memory utilization significantly on average
447  * (small) directories.
448  */
449 	maxbufmallocspace = hibufspace / 20;
450 
451 /*
452  * Reduce the chance of a deadlock occuring by limiting the number
453  * of delayed-write dirty buffers we allow to stack up.
454  */
455 	hidirtybuffers = nbuf / 4 + 20;
456 	numdirtybuffers = 0;
457 /*
458  * To support extreme low-memory systems, make sure hidirtybuffers cannot
459  * eat up all available buffer space.  This occurs when our minimum cannot
460  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
461  * BKVASIZE'd (8K) buffers.
462  */
463 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
464 		hidirtybuffers >>= 1;
465 	}
466 	lodirtybuffers = hidirtybuffers / 2;
467 
468 /*
469  * Try to keep the number of free buffers in the specified range,
470  * and give special processes (e.g. like buf_daemon) access to an
471  * emergency reserve.
472  */
473 	lofreebuffers = nbuf / 18 + 5;
474 	hifreebuffers = 2 * lofreebuffers;
475 	numfreebuffers = nbuf;
476 
477 /*
478  * Maximum number of async ops initiated per buf_daemon loop.  This is
479  * somewhat of a hack at the moment, we really need to limit ourselves
480  * based on the number of bytes of I/O in-transit that were initiated
481  * from buf_daemon.
482  */
483 
484 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
485 	bogus_page = vm_page_alloc(kernel_object,
486 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
487 			VM_ALLOC_NORMAL);
488 	vmstats.v_wire_count++;
489 
490 }
491 
492 /*
493  * bfreekva() - free the kva allocation for a buffer.
494  *
495  *	Must be called from a critical section as this is the only locking for
496  *	buffer_map.
497  *
498  *	Since this call frees up buffer space, we call bufspacewakeup().
499  */
500 static void
501 bfreekva(struct buf * bp)
502 {
503 	int count;
504 
505 	if (bp->b_kvasize) {
506 		++buffreekvacnt;
507 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
508 		vm_map_lock(buffer_map);
509 		bufspace -= bp->b_kvasize;
510 		vm_map_delete(buffer_map,
511 		    (vm_offset_t) bp->b_kvabase,
512 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
513 		    &count
514 		);
515 		vm_map_unlock(buffer_map);
516 		vm_map_entry_release(count);
517 		bp->b_kvasize = 0;
518 		bufspacewakeup();
519 	}
520 }
521 
522 /*
523  *	bremfree:
524  *
525  *	Remove the buffer from the appropriate free list.
526  */
527 void
528 bremfree(struct buf * bp)
529 {
530 	int old_qindex;
531 
532 	crit_enter();
533 	old_qindex = bp->b_qindex;
534 
535 	if (bp->b_qindex != QUEUE_NONE) {
536 		KASSERT(BUF_REFCNTNB(bp) == 1,
537 				("bremfree: bp %p not locked",bp));
538 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
539 		bp->b_qindex = QUEUE_NONE;
540 	} else {
541 		if (BUF_REFCNTNB(bp) <= 1)
542 			panic("bremfree: removing a buffer not on a queue");
543 	}
544 
545 	/*
546 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
547 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
548 	 * the buffer was free and we must decrement numfreebuffers.
549 	 */
550 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
551 		switch(old_qindex) {
552 		case QUEUE_DIRTY:
553 		case QUEUE_CLEAN:
554 		case QUEUE_EMPTY:
555 		case QUEUE_EMPTYKVA:
556 			--numfreebuffers;
557 			break;
558 		default:
559 			break;
560 		}
561 	}
562 	crit_exit();
563 }
564 
565 
566 /*
567  * Get a buffer with the specified data.  Look in the cache first.  We
568  * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
569  * is set, the buffer is valid and we do not have to do anything ( see
570  * getblk() ).
571  */
572 int
573 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp)
574 {
575 	struct buf *bp;
576 
577 	bp = getblk(vp, blkno, size, 0, 0);
578 	*bpp = bp;
579 
580 	/* if not found in cache, do some I/O */
581 	if ((bp->b_flags & B_CACHE) == 0) {
582 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
583 		bp->b_flags |= B_READ;
584 		bp->b_flags &= ~(B_ERROR | B_INVAL);
585 		vfs_busy_pages(bp, 0);
586 		VOP_STRATEGY(vp, bp);
587 		return (biowait(bp));
588 	}
589 	return (0);
590 }
591 
592 /*
593  * Operates like bread, but also starts asynchronous I/O on
594  * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
595  * to initiating I/O . If B_CACHE is set, the buffer is valid
596  * and we do not have to do anything.
597  */
598 int
599 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno,
600 	int *rabsize, int cnt, struct buf ** bpp)
601 {
602 	struct buf *bp, *rabp;
603 	int i;
604 	int rv = 0, readwait = 0;
605 
606 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
607 
608 	/* if not found in cache, do some I/O */
609 	if ((bp->b_flags & B_CACHE) == 0) {
610 		bp->b_flags |= B_READ;
611 		bp->b_flags &= ~(B_ERROR | B_INVAL);
612 		vfs_busy_pages(bp, 0);
613 		VOP_STRATEGY(vp, bp);
614 		++readwait;
615 	}
616 
617 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
618 		if (inmem(vp, *rablkno))
619 			continue;
620 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
621 
622 		if ((rabp->b_flags & B_CACHE) == 0) {
623 			rabp->b_flags |= B_READ | B_ASYNC;
624 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
625 			vfs_busy_pages(rabp, 0);
626 			BUF_KERNPROC(rabp);
627 			VOP_STRATEGY(vp, rabp);
628 		} else {
629 			brelse(rabp);
630 		}
631 	}
632 
633 	if (readwait) {
634 		rv = biowait(bp);
635 	}
636 	return (rv);
637 }
638 
639 /*
640  * Write, release buffer on completion.  (Done by iodone
641  * if async).  Do not bother writing anything if the buffer
642  * is invalid.
643  *
644  * Note that we set B_CACHE here, indicating that buffer is
645  * fully valid and thus cacheable.  This is true even of NFS
646  * now so we set it generally.  This could be set either here
647  * or in biodone() since the I/O is synchronous.  We put it
648  * here.
649  */
650 int
651 bwrite(struct buf * bp)
652 {
653 	int oldflags;
654 #if 0
655 	struct buf *newbp;
656 #endif
657 
658 	if (bp->b_flags & B_INVAL) {
659 		brelse(bp);
660 		return (0);
661 	}
662 
663 	oldflags = bp->b_flags;
664 
665 	if (BUF_REFCNTNB(bp) == 0)
666 		panic("bwrite: buffer is not busy???");
667 	crit_enter();
668 	/*
669 	 * If a background write is already in progress, delay
670 	 * writing this block if it is asynchronous. Otherwise
671 	 * wait for the background write to complete.
672 	 */
673 	if (bp->b_xflags & BX_BKGRDINPROG) {
674 		if (bp->b_flags & B_ASYNC) {
675 			crit_exit();
676 			bdwrite(bp);
677 			return (0);
678 		}
679 		bp->b_xflags |= BX_BKGRDWAIT;
680 		tsleep(&bp->b_xflags, 0, "biord", 0);
681 		if (bp->b_xflags & BX_BKGRDINPROG)
682 			panic("bwrite: still writing");
683 	}
684 
685 	/* Mark the buffer clean */
686 	bundirty(bp);
687 
688 #if 0
689 	/*
690 	 * If this buffer is marked for background writing and we
691 	 * do not have to wait for it, make a copy and write the
692 	 * copy so as to leave this buffer ready for further use.
693 	 *
694 	 * This optimization eats a lot of memory.  If we have a page
695 	 * or buffer shortfull we can't do it.
696 	 *
697 	 * XXX DISABLED!  This had to be removed to support the RB_TREE
698 	 * work and, really, this isn't the best place to do this sort
699 	 * of thing anyway.  We really need a device copy-on-write feature.
700 	 */
701 	if (dobkgrdwrite &&
702 	    (bp->b_xflags & BX_BKGRDWRITE) &&
703 	    (bp->b_flags & B_ASYNC) &&
704 	    !vm_page_count_severe() &&
705 	    !buf_dirty_count_severe()) {
706 		if (bp->b_flags & B_CALL)
707 			panic("bwrite: need chained iodone");
708 
709 		/* get a new block */
710 		newbp = geteblk(bp->b_bufsize);
711 
712 		/* set it to be identical to the old block */
713 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
714 		newbp->b_lblkno = bp->b_lblkno;
715 		newbp->b_blkno = bp->b_blkno;
716 		newbp->b_offset = bp->b_offset;
717 		newbp->b_iodone = vfs_backgroundwritedone;
718 		newbp->b_flags |= B_ASYNC | B_CALL;
719 		newbp->b_flags &= ~B_INVAL;
720 		bgetvp(bp->b_vp, newbp);
721 
722 		/* move over the dependencies */
723 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
724 			(*bioops.io_movedeps)(bp, newbp);
725 
726 		/*
727 		 * Initiate write on the copy, release the original to
728 		 * the B_LOCKED queue so that it cannot go away until
729 		 * the background write completes. If not locked it could go
730 		 * away and then be reconstituted while it was being written.
731 		 * If the reconstituted buffer were written, we could end up
732 		 * with two background copies being written at the same time.
733 		 */
734 		bp->b_xflags |= BX_BKGRDINPROG;
735 		bp->b_flags |= B_LOCKED;
736 		bqrelse(bp);
737 		bp = newbp;
738 	}
739 #endif
740 
741 	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
742 	bp->b_flags |= B_CACHE;
743 
744 	bp->b_vp->v_numoutput++;
745 	vfs_busy_pages(bp, 1);
746 
747 	/*
748 	 * Normal bwrites pipeline writes
749 	 */
750 	bp->b_runningbufspace = bp->b_bufsize;
751 	runningbufspace += bp->b_runningbufspace;
752 
753 	crit_exit();
754 	if (oldflags & B_ASYNC)
755 		BUF_KERNPROC(bp);
756 	VOP_STRATEGY(bp->b_vp, bp);
757 
758 	if ((oldflags & B_ASYNC) == 0) {
759 		int rtval = biowait(bp);
760 		brelse(bp);
761 		return (rtval);
762 	} else if ((oldflags & B_NOWDRAIN) == 0) {
763 		/*
764 		 * don't allow the async write to saturate the I/O
765 		 * system.  Deadlocks can occur only if a device strategy
766 		 * routine (like in VN) turns around and issues another
767 		 * high-level write, in which case B_NOWDRAIN is expected
768 		 * to be set.   Otherwise we will not deadlock here because
769 		 * we are blocking waiting for I/O that is already in-progress
770 		 * to complete.
771 		 */
772 		waitrunningbufspace();
773 	}
774 
775 	return (0);
776 }
777 
778 #if 0
779 /*
780  * Complete a background write started from bwrite.
781  */
782 static void
783 vfs_backgroundwritedone(struct buf *bp)
784 {
785 	struct buf *origbp;
786 
787 	/*
788 	 * Find the original buffer that we are writing.
789 	 */
790 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
791 		panic("backgroundwritedone: lost buffer");
792 	/*
793 	 * Process dependencies then return any unfinished ones.
794 	 */
795 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
796 		(*bioops.io_complete)(bp);
797 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
798 		(*bioops.io_movedeps)(bp, origbp);
799 	/*
800 	 * Clear the BX_BKGRDINPROG flag in the original buffer
801 	 * and awaken it if it is waiting for the write to complete.
802 	 * If BX_BKGRDINPROG is not set in the original buffer it must
803 	 * have been released and re-instantiated - which is not legal.
804 	 */
805 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
806 	origbp->b_xflags &= ~BX_BKGRDINPROG;
807 	if (origbp->b_xflags & BX_BKGRDWAIT) {
808 		origbp->b_xflags &= ~BX_BKGRDWAIT;
809 		wakeup(&origbp->b_xflags);
810 	}
811 	/*
812 	 * Clear the B_LOCKED flag and remove it from the locked
813 	 * queue if it currently resides there.
814 	 */
815 	origbp->b_flags &= ~B_LOCKED;
816 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
817 		bremfree(origbp);
818 		bqrelse(origbp);
819 	}
820 	/*
821 	 * This buffer is marked B_NOCACHE, so when it is released
822 	 * by biodone, it will be tossed. We mark it with B_READ
823 	 * to avoid biodone doing a second vwakeup.
824 	 */
825 	bp->b_flags |= B_NOCACHE | B_READ;
826 	bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE);
827 	bp->b_iodone = 0;
828 	biodone(bp);
829 }
830 #endif
831 
832 /*
833  * Delayed write. (Buffer is marked dirty).  Do not bother writing
834  * anything if the buffer is marked invalid.
835  *
836  * Note that since the buffer must be completely valid, we can safely
837  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
838  * biodone() in order to prevent getblk from writing the buffer
839  * out synchronously.
840  */
841 void
842 bdwrite(struct buf *bp)
843 {
844 	if (BUF_REFCNTNB(bp) == 0)
845 		panic("bdwrite: buffer is not busy");
846 
847 	if (bp->b_flags & B_INVAL) {
848 		brelse(bp);
849 		return;
850 	}
851 	bdirty(bp);
852 
853 	/*
854 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
855 	 * true even of NFS now.
856 	 */
857 	bp->b_flags |= B_CACHE;
858 
859 	/*
860 	 * This bmap keeps the system from needing to do the bmap later,
861 	 * perhaps when the system is attempting to do a sync.  Since it
862 	 * is likely that the indirect block -- or whatever other datastructure
863 	 * that the filesystem needs is still in memory now, it is a good
864 	 * thing to do this.  Note also, that if the pageout daemon is
865 	 * requesting a sync -- there might not be enough memory to do
866 	 * the bmap then...  So, this is important to do.
867 	 */
868 	if (bp->b_lblkno == bp->b_blkno) {
869 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
870 	}
871 
872 	/*
873 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
874 	 */
875 	vfs_setdirty(bp);
876 
877 	/*
878 	 * We need to do this here to satisfy the vnode_pager and the
879 	 * pageout daemon, so that it thinks that the pages have been
880 	 * "cleaned".  Note that since the pages are in a delayed write
881 	 * buffer -- the VFS layer "will" see that the pages get written
882 	 * out on the next sync, or perhaps the cluster will be completed.
883 	 */
884 	vfs_clean_pages(bp);
885 	bqrelse(bp);
886 
887 	/*
888 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
889 	 * buffers (midpoint between our recovery point and our stall
890 	 * point).
891 	 */
892 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
893 
894 	/*
895 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
896 	 * due to the softdep code.
897 	 */
898 }
899 
900 /*
901  *	bdirty:
902  *
903  *	Turn buffer into delayed write request.  We must clear B_READ and
904  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
905  *	itself to properly update it in the dirty/clean lists.  We mark it
906  *	B_DONE to ensure that any asynchronization of the buffer properly
907  *	clears B_DONE ( else a panic will occur later ).
908  *
909  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
910  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
911  *	should only be called if the buffer is known-good.
912  *
913  *	Since the buffer is not on a queue, we do not update the numfreebuffers
914  *	count.
915  *
916  *	Must be called from a critical section.
917  *	The buffer must be on QUEUE_NONE.
918  */
919 void
920 bdirty(struct buf *bp)
921 {
922 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
923 	bp->b_flags &= ~(B_READ|B_RELBUF);
924 
925 	if ((bp->b_flags & B_DELWRI) == 0) {
926 		bp->b_flags |= B_DONE | B_DELWRI;
927 		reassignbuf(bp, bp->b_vp);
928 		++numdirtybuffers;
929 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
930 	}
931 }
932 
933 /*
934  *	bundirty:
935  *
936  *	Clear B_DELWRI for buffer.
937  *
938  *	Since the buffer is not on a queue, we do not update the numfreebuffers
939  *	count.
940  *
941  *	Must be called from a critical section.
942  *
943  *	The buffer is typically on QUEUE_NONE but there is one case in
944  *	brelse() that calls this function after placing the buffer on
945  *	a different queue.
946  */
947 
948 void
949 bundirty(struct buf *bp)
950 {
951 	if (bp->b_flags & B_DELWRI) {
952 		bp->b_flags &= ~B_DELWRI;
953 		reassignbuf(bp, bp->b_vp);
954 		--numdirtybuffers;
955 		numdirtywakeup(lodirtybuffers);
956 	}
957 	/*
958 	 * Since it is now being written, we can clear its deferred write flag.
959 	 */
960 	bp->b_flags &= ~B_DEFERRED;
961 }
962 
963 /*
964  *	bawrite:
965  *
966  *	Asynchronous write.  Start output on a buffer, but do not wait for
967  *	it to complete.  The buffer is released when the output completes.
968  *
969  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
970  *	B_INVAL buffers.  Not us.
971  */
972 void
973 bawrite(struct buf * bp)
974 {
975 	bp->b_flags |= B_ASYNC;
976 	(void) VOP_BWRITE(bp->b_vp, bp);
977 }
978 
979 /*
980  *	bowrite:
981  *
982  *	Ordered write.  Start output on a buffer, and flag it so that the
983  *	device will write it in the order it was queued.  The buffer is
984  *	released when the output completes.  bwrite() ( or the VOP routine
985  *	anyway ) is responsible for handling B_INVAL buffers.
986  */
987 int
988 bowrite(struct buf * bp)
989 {
990 	bp->b_flags |= B_ORDERED | B_ASYNC;
991 	return (VOP_BWRITE(bp->b_vp, bp));
992 }
993 
994 /*
995  *	bwillwrite:
996  *
997  *	Called prior to the locking of any vnodes when we are expecting to
998  *	write.  We do not want to starve the buffer cache with too many
999  *	dirty buffers so we block here.  By blocking prior to the locking
1000  *	of any vnodes we attempt to avoid the situation where a locked vnode
1001  *	prevents the various system daemons from flushing related buffers.
1002  */
1003 
1004 void
1005 bwillwrite(void)
1006 {
1007 	if (numdirtybuffers >= hidirtybuffers) {
1008 		crit_enter();
1009 		while (numdirtybuffers >= hidirtybuffers) {
1010 			bd_wakeup(1);
1011 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1012 			tsleep(&needsbuffer, 0, "flswai", 0);
1013 		}
1014 		crit_exit();
1015 	}
1016 }
1017 
1018 /*
1019  * Return true if we have too many dirty buffers.
1020  */
1021 int
1022 buf_dirty_count_severe(void)
1023 {
1024 	return(numdirtybuffers >= hidirtybuffers);
1025 }
1026 
1027 /*
1028  *	brelse:
1029  *
1030  *	Release a busy buffer and, if requested, free its resources.  The
1031  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1032  *	to be accessed later as a cache entity or reused for other purposes.
1033  */
1034 void
1035 brelse(struct buf * bp)
1036 {
1037 #ifdef INVARIANTS
1038 	int saved_flags = bp->b_flags;
1039 #endif
1040 
1041 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1042 
1043 	crit_enter();
1044 
1045 	if (bp->b_flags & B_LOCKED)
1046 		bp->b_flags &= ~B_ERROR;
1047 
1048 	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
1049 		/*
1050 		 * Failed write, redirty.  Must clear B_ERROR to prevent
1051 		 * pages from being scrapped.  If B_INVAL is set then
1052 		 * this case is not run and the next case is run to
1053 		 * destroy the buffer.  B_INVAL can occur if the buffer
1054 		 * is outside the range supported by the underlying device.
1055 		 */
1056 		bp->b_flags &= ~B_ERROR;
1057 		bdirty(bp);
1058 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
1059 	    (bp->b_bufsize <= 0)) {
1060 		/*
1061 		 * Either a failed I/O or we were asked to free or not
1062 		 * cache the buffer.
1063 		 */
1064 		bp->b_flags |= B_INVAL;
1065 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1066 			(*bioops.io_deallocate)(bp);
1067 		if (bp->b_flags & B_DELWRI) {
1068 			--numdirtybuffers;
1069 			numdirtywakeup(lodirtybuffers);
1070 		}
1071 		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
1072 	}
1073 
1074 	/*
1075 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1076 	 * is called with B_DELWRI set, the underlying pages may wind up
1077 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1078 	 * because pages associated with a B_DELWRI bp are marked clean.
1079 	 *
1080 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1081 	 * if B_DELWRI is set.
1082 	 *
1083 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1084 	 * on pages to return pages to the VM page queues.
1085 	 */
1086 	if (bp->b_flags & B_DELWRI)
1087 		bp->b_flags &= ~B_RELBUF;
1088 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1089 		bp->b_flags |= B_RELBUF;
1090 
1091 	/*
1092 	 * At this point destroying the buffer is governed by the B_INVAL
1093 	 * or B_RELBUF flags.
1094 	 */
1095 
1096 	/*
1097 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1098 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1099 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1100 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1101 	 *
1102 	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1103 	 * invalidated.  B_ERROR cannot be set for a failed write unless the
1104 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1105 	 *
1106 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1107 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1108 	 * the commit state and we cannot afford to lose the buffer. If the
1109 	 * buffer has a background write in progress, we need to keep it
1110 	 * around to prevent it from being reconstituted and starting a second
1111 	 * background write.
1112 	 */
1113 	if ((bp->b_flags & B_VMIO)
1114 	    && !(bp->b_vp->v_tag == VT_NFS &&
1115 		 !vn_isdisk(bp->b_vp, NULL) &&
1116 		 (bp->b_flags & B_DELWRI))
1117 	    ) {
1118 		/*
1119 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1120 		 */
1121 		int i, j, resid;
1122 		vm_page_t m;
1123 		off_t foff;
1124 		vm_pindex_t poff;
1125 		vm_object_t obj;
1126 		struct vnode *vp;
1127 
1128 		vp = bp->b_vp;
1129 
1130 		/*
1131 		 * Get the base offset and length of the buffer.  Note that
1132 		 * in the VMIO case if the buffer block size is not
1133 		 * page-aligned then b_data pointer may not be page-aligned.
1134 		 * But our b_xio.xio_pages array *IS* page aligned.
1135 		 *
1136 		 * block sizes less then DEV_BSIZE (usually 512) are not
1137 		 * supported due to the page granularity bits (m->valid,
1138 		 * m->dirty, etc...).
1139 		 *
1140 		 * See man buf(9) for more information
1141 		 */
1142 
1143 		resid = bp->b_bufsize;
1144 		foff = bp->b_offset;
1145 
1146 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1147 			m = bp->b_xio.xio_pages[i];
1148 			vm_page_flag_clear(m, PG_ZERO);
1149 			/*
1150 			 * If we hit a bogus page, fixup *all* of them
1151 			 * now.  Note that we left these pages wired
1152 			 * when we removed them so they had better exist,
1153 			 * and they cannot be ripped out from under us so
1154 			 * no critical section protection is necessary.
1155 			 */
1156 			if (m == bogus_page) {
1157 				VOP_GETVOBJECT(vp, &obj);
1158 				poff = OFF_TO_IDX(bp->b_offset);
1159 
1160 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1161 					vm_page_t mtmp;
1162 
1163 					mtmp = bp->b_xio.xio_pages[j];
1164 					if (mtmp == bogus_page) {
1165 						mtmp = vm_page_lookup(obj, poff + j);
1166 						if (!mtmp) {
1167 							panic("brelse: page missing");
1168 						}
1169 						bp->b_xio.xio_pages[j] = mtmp;
1170 					}
1171 				}
1172 
1173 				if ((bp->b_flags & B_INVAL) == 0) {
1174 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1175 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1176 				}
1177 				m = bp->b_xio.xio_pages[i];
1178 			}
1179 
1180 			/*
1181 			 * Invalidate the backing store if B_NOCACHE is set
1182 			 * (e.g. used with vinvalbuf()).  If this is NFS
1183 			 * we impose a requirement that the block size be
1184 			 * a multiple of PAGE_SIZE and create a temporary
1185 			 * hack to basically invalidate the whole page.  The
1186 			 * problem is that NFS uses really odd buffer sizes
1187 			 * especially when tracking piecemeal writes and
1188 			 * it also vinvalbuf()'s a lot, which would result
1189 			 * in only partial page validation and invalidation
1190 			 * here.  If the file page is mmap()'d, however,
1191 			 * all the valid bits get set so after we invalidate
1192 			 * here we would end up with weird m->valid values
1193 			 * like 0xfc.  nfs_getpages() can't handle this so
1194 			 * we clear all the valid bits for the NFS case
1195 			 * instead of just some of them.
1196 			 *
1197 			 * The real bug is the VM system having to set m->valid
1198 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1199 			 * itself is an artifact of the whole 512-byte
1200 			 * granular mess that exists to support odd block
1201 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1202 			 * A complete rewrite is required.
1203 			 */
1204 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1205 				int poffset = foff & PAGE_MASK;
1206 				int presid;
1207 
1208 				presid = PAGE_SIZE - poffset;
1209 				if (bp->b_vp->v_tag == VT_NFS &&
1210 				    bp->b_vp->v_type == VREG) {
1211 					; /* entire page */
1212 				} else if (presid > resid) {
1213 					presid = resid;
1214 				}
1215 				KASSERT(presid >= 0, ("brelse: extra page"));
1216 				vm_page_set_invalid(m, poffset, presid);
1217 			}
1218 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1219 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1220 		}
1221 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1222 			vfs_vmio_release(bp);
1223 	} else if (bp->b_flags & B_VMIO) {
1224 		/*
1225 		 * Rundown for VMIO buffers which are dirty NFS buffers.  Such
1226 		 * buffers contain tracking ranges for NFS and cannot normally
1227 		 * be released.  Due to the dirty check above this series of
1228 		 * conditionals, B_RELBUF probably will never be set in this
1229 		 * codepath.
1230 		 */
1231 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1232 			vfs_vmio_release(bp);
1233 	} else {
1234 		/*
1235 		 * Rundown for non-VMIO buffers.
1236 		 */
1237 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1238 #if 0
1239 			if (bp->b_vp)
1240 				printf("brelse bp %p %08x/%08lx: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1241 #endif
1242 			if (bp->b_bufsize)
1243 				allocbuf(bp, 0);
1244 			if (bp->b_vp)
1245 				brelvp(bp);
1246 		}
1247 	}
1248 
1249 	if (bp->b_qindex != QUEUE_NONE)
1250 		panic("brelse: free buffer onto another queue???");
1251 	if (BUF_REFCNTNB(bp) > 1) {
1252 		/* Temporary panic to verify exclusive locking */
1253 		/* This panic goes away when we allow shared refs */
1254 		panic("brelse: multiple refs");
1255 		/* do not release to free list */
1256 		BUF_UNLOCK(bp);
1257 		crit_exit();
1258 		return;
1259 	}
1260 
1261 	/*
1262 	 * Figure out the correct queue to place the cleaned up buffer on.
1263 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1264 	 * disassociated from their vnode.
1265 	 */
1266 
1267 	if (bp->b_bufsize == 0) {
1268 		/*
1269 		 * Buffers with no memory.  Due to conditionals near the top
1270 		 * of brelse() such buffers should probably already be
1271 		 * marked B_INVAL and disassociated from their vnode.
1272 		 */
1273 		bp->b_flags |= B_INVAL;
1274 		bp->b_xflags &= ~BX_BKGRDWRITE;
1275 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08lx vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1276 		if (bp->b_xflags & BX_BKGRDINPROG)
1277 			panic("losing buffer 1");
1278 		if (bp->b_kvasize) {
1279 			bp->b_qindex = QUEUE_EMPTYKVA;
1280 		} else {
1281 			bp->b_qindex = QUEUE_EMPTY;
1282 		}
1283 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1284 		LIST_REMOVE(bp, b_hash);
1285 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1286 		bp->b_dev = NODEV;
1287 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1288 		/*
1289 		 * Buffers with junk contents.   Again these buffers had better
1290 		 * already be disassociated from their vnode.
1291 		 */
1292 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08lx vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1293 		bp->b_flags |= B_INVAL;
1294 		bp->b_xflags &= ~BX_BKGRDWRITE;
1295 		if (bp->b_xflags & BX_BKGRDINPROG)
1296 			panic("losing buffer 2");
1297 		bp->b_qindex = QUEUE_CLEAN;
1298 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1299 		LIST_REMOVE(bp, b_hash);
1300 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1301 		bp->b_dev = NODEV;
1302 	} else if (bp->b_flags & B_LOCKED) {
1303 		/*
1304 		 * Buffers that are locked.
1305 		 */
1306 		bp->b_qindex = QUEUE_LOCKED;
1307 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1308 	} else {
1309 		/*
1310 		 * Remaining buffers.  These buffers are still associated with
1311 		 * their vnode.
1312 		 */
1313 		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1314 		case B_DELWRI | B_AGE:
1315 		    bp->b_qindex = QUEUE_DIRTY;
1316 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1317 		    break;
1318 		case B_DELWRI:
1319 		    bp->b_qindex = QUEUE_DIRTY;
1320 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1321 		    break;
1322 		case B_AGE:
1323 		    bp->b_qindex = QUEUE_CLEAN;
1324 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1325 		    break;
1326 		default:
1327 		    bp->b_qindex = QUEUE_CLEAN;
1328 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1329 		    break;
1330 		}
1331 	}
1332 
1333 	/*
1334 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1335 	 * on the correct queue.
1336 	 */
1337 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1338 		bundirty(bp);
1339 
1340 	/*
1341 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1342 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1343 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1344 	 * if B_INVAL is set ).
1345 	 */
1346 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1347 		bufcountwakeup();
1348 
1349 	/*
1350 	 * Something we can maybe free or reuse
1351 	 */
1352 	if (bp->b_bufsize || bp->b_kvasize)
1353 		bufspacewakeup();
1354 
1355 	/* unlock */
1356 	BUF_UNLOCK(bp);
1357 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1358 			B_DIRECT | B_NOWDRAIN);
1359 	crit_exit();
1360 }
1361 
1362 /*
1363  * Release a buffer back to the appropriate queue but do not try to free
1364  * it.  The buffer is expected to be used again soon.
1365  *
1366  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1367  * biodone() to requeue an async I/O on completion.  It is also used when
1368  * known good buffers need to be requeued but we think we may need the data
1369  * again soon.
1370  *
1371  * XXX we should be able to leave the B_RELBUF hint set on completion.
1372  */
1373 void
1374 bqrelse(struct buf * bp)
1375 {
1376 	crit_enter();
1377 
1378 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1379 
1380 	if (bp->b_qindex != QUEUE_NONE)
1381 		panic("bqrelse: free buffer onto another queue???");
1382 	if (BUF_REFCNTNB(bp) > 1) {
1383 		/* do not release to free list */
1384 		panic("bqrelse: multiple refs");
1385 		BUF_UNLOCK(bp);
1386 		crit_exit();
1387 		return;
1388 	}
1389 	if (bp->b_flags & B_LOCKED) {
1390 		bp->b_flags &= ~B_ERROR;
1391 		bp->b_qindex = QUEUE_LOCKED;
1392 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1393 		/* buffers with stale but valid contents */
1394 	} else if (bp->b_flags & B_DELWRI) {
1395 		bp->b_qindex = QUEUE_DIRTY;
1396 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1397 	} else if (vm_page_count_severe()) {
1398 		/*
1399 		 * We are too low on memory, we have to try to free the
1400 		 * buffer (most importantly: the wired pages making up its
1401 		 * backing store) *now*.
1402 		 */
1403 		crit_exit();
1404 		brelse(bp);
1405 		return;
1406 	} else {
1407 		bp->b_qindex = QUEUE_CLEAN;
1408 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1409 	}
1410 
1411 	if ((bp->b_flags & B_LOCKED) == 0 &&
1412 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1413 		bufcountwakeup();
1414 	}
1415 
1416 	/*
1417 	 * Something we can maybe free or reuse.
1418 	 */
1419 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1420 		bufspacewakeup();
1421 
1422 	/*
1423 	 * Final cleanup and unlock.  Clear bits that are only used while a
1424 	 * buffer is actively locked.
1425 	 */
1426 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1427 	BUF_UNLOCK(bp);
1428 	crit_exit();
1429 }
1430 
1431 static void
1432 vfs_vmio_release(struct buf *bp)
1433 {
1434 	int i;
1435 	vm_page_t m;
1436 
1437 	crit_enter();
1438 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1439 		m = bp->b_xio.xio_pages[i];
1440 		bp->b_xio.xio_pages[i] = NULL;
1441 		/*
1442 		 * In order to keep page LRU ordering consistent, put
1443 		 * everything on the inactive queue.
1444 		 */
1445 		vm_page_unwire(m, 0);
1446 		/*
1447 		 * We don't mess with busy pages, it is
1448 		 * the responsibility of the process that
1449 		 * busied the pages to deal with them.
1450 		 */
1451 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1452 			continue;
1453 
1454 		if (m->wire_count == 0) {
1455 			vm_page_flag_clear(m, PG_ZERO);
1456 			/*
1457 			 * Might as well free the page if we can and it has
1458 			 * no valid data.  We also free the page if the
1459 			 * buffer was used for direct I/O.
1460 			 */
1461 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1462 				vm_page_busy(m);
1463 				vm_page_protect(m, VM_PROT_NONE);
1464 				vm_page_free(m);
1465 			} else if (bp->b_flags & B_DIRECT) {
1466 				vm_page_try_to_free(m);
1467 			} else if (vm_page_count_severe()) {
1468 				vm_page_try_to_cache(m);
1469 			}
1470 		}
1471 	}
1472 	crit_exit();
1473 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1474 	if (bp->b_bufsize) {
1475 		bufspacewakeup();
1476 		bp->b_bufsize = 0;
1477 	}
1478 	bp->b_xio.xio_npages = 0;
1479 	bp->b_flags &= ~B_VMIO;
1480 	if (bp->b_vp)
1481 		brelvp(bp);
1482 }
1483 
1484 /*
1485  * Check to see if a block is currently memory resident.
1486  */
1487 struct buf *
1488 gbincore(struct vnode * vp, daddr_t blkno)
1489 {
1490 	struct buf *bp;
1491 	struct bufhashhdr *bh;
1492 
1493 	bh = bufhash(vp, blkno);
1494 	LIST_FOREACH(bp, bh, b_hash) {
1495 		if (bp->b_vp == vp && bp->b_lblkno == blkno)
1496 			break;
1497 	}
1498 	return (bp);
1499 }
1500 
1501 /*
1502  *	vfs_bio_awrite:
1503  *
1504  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1505  *	This is much better then the old way of writing only one buffer at
1506  *	a time.  Note that we may not be presented with the buffers in the
1507  *	correct order, so we search for the cluster in both directions.
1508  */
1509 int
1510 vfs_bio_awrite(struct buf * bp)
1511 {
1512 	int i;
1513 	int j;
1514 	daddr_t lblkno = bp->b_lblkno;
1515 	struct vnode *vp = bp->b_vp;
1516 	int ncl;
1517 	struct buf *bpa;
1518 	int nwritten;
1519 	int size;
1520 	int maxcl;
1521 
1522 	crit_enter();
1523 	/*
1524 	 * right now we support clustered writing only to regular files.  If
1525 	 * we find a clusterable block we could be in the middle of a cluster
1526 	 * rather then at the beginning.
1527 	 */
1528 	if ((vp->v_type == VREG) &&
1529 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1530 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1531 
1532 		size = vp->v_mount->mnt_stat.f_iosize;
1533 		maxcl = MAXPHYS / size;
1534 
1535 		for (i = 1; i < maxcl; i++) {
1536 			if ((bpa = gbincore(vp, lblkno + i)) &&
1537 			    BUF_REFCNT(bpa) == 0 &&
1538 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1539 			    (B_DELWRI | B_CLUSTEROK)) &&
1540 			    (bpa->b_bufsize == size)) {
1541 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1542 				    (bpa->b_blkno !=
1543 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1544 					break;
1545 			} else {
1546 				break;
1547 			}
1548 		}
1549 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1550 			if ((bpa = gbincore(vp, lblkno - j)) &&
1551 			    BUF_REFCNT(bpa) == 0 &&
1552 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1553 			    (B_DELWRI | B_CLUSTEROK)) &&
1554 			    (bpa->b_bufsize == size)) {
1555 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1556 				    (bpa->b_blkno !=
1557 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1558 					break;
1559 			} else {
1560 				break;
1561 			}
1562 		}
1563 		--j;
1564 		ncl = i + j;
1565 		/*
1566 		 * this is a possible cluster write
1567 		 */
1568 		if (ncl != 1) {
1569 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1570 			crit_exit();
1571 			return nwritten;
1572 		}
1573 	}
1574 
1575 	BUF_LOCK(bp, LK_EXCLUSIVE);
1576 	bremfree(bp);
1577 	bp->b_flags |= B_ASYNC;
1578 
1579 	crit_exit();
1580 	/*
1581 	 * default (old) behavior, writing out only one block
1582 	 *
1583 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1584 	 */
1585 	nwritten = bp->b_bufsize;
1586 	(void) VOP_BWRITE(bp->b_vp, bp);
1587 
1588 	return nwritten;
1589 }
1590 
1591 /*
1592  *	getnewbuf:
1593  *
1594  *	Find and initialize a new buffer header, freeing up existing buffers
1595  *	in the bufqueues as necessary.  The new buffer is returned locked.
1596  *
1597  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1598  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1599  *
1600  *	We block if:
1601  *		We have insufficient buffer headers
1602  *		We have insufficient buffer space
1603  *		buffer_map is too fragmented ( space reservation fails )
1604  *		If we have to flush dirty buffers ( but we try to avoid this )
1605  *
1606  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1607  *	Instead we ask the buf daemon to do it for us.  We attempt to
1608  *	avoid piecemeal wakeups of the pageout daemon.
1609  */
1610 
1611 static struct buf *
1612 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1613 {
1614 	struct buf *bp;
1615 	struct buf *nbp;
1616 	int defrag = 0;
1617 	int nqindex;
1618 	static int flushingbufs;
1619 
1620 	/*
1621 	 * We can't afford to block since we might be holding a vnode lock,
1622 	 * which may prevent system daemons from running.  We deal with
1623 	 * low-memory situations by proactively returning memory and running
1624 	 * async I/O rather then sync I/O.
1625 	 */
1626 
1627 	++getnewbufcalls;
1628 	--getnewbufrestarts;
1629 restart:
1630 	++getnewbufrestarts;
1631 
1632 	/*
1633 	 * Setup for scan.  If we do not have enough free buffers,
1634 	 * we setup a degenerate case that immediately fails.  Note
1635 	 * that if we are specially marked process, we are allowed to
1636 	 * dip into our reserves.
1637 	 *
1638 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1639 	 *
1640 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1641 	 * However, there are a number of cases (defragging, reusing, ...)
1642 	 * where we cannot backup.
1643 	 */
1644 	nqindex = QUEUE_EMPTYKVA;
1645 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1646 
1647 	if (nbp == NULL) {
1648 		/*
1649 		 * If no EMPTYKVA buffers and we are either
1650 		 * defragging or reusing, locate a CLEAN buffer
1651 		 * to free or reuse.  If bufspace useage is low
1652 		 * skip this step so we can allocate a new buffer.
1653 		 */
1654 		if (defrag || bufspace >= lobufspace) {
1655 			nqindex = QUEUE_CLEAN;
1656 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1657 		}
1658 
1659 		/*
1660 		 * If we could not find or were not allowed to reuse a
1661 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1662 		 * buffer.  We can only use an EMPTY buffer if allocating
1663 		 * its KVA would not otherwise run us out of buffer space.
1664 		 */
1665 		if (nbp == NULL && defrag == 0 &&
1666 		    bufspace + maxsize < hibufspace) {
1667 			nqindex = QUEUE_EMPTY;
1668 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1669 		}
1670 	}
1671 
1672 	/*
1673 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1674 	 * depending.
1675 	 */
1676 
1677 	while ((bp = nbp) != NULL) {
1678 		int qindex = nqindex;
1679 
1680 		/*
1681 		 * Calculate next bp ( we can only use it if we do not block
1682 		 * or do other fancy things ).
1683 		 */
1684 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1685 			switch(qindex) {
1686 			case QUEUE_EMPTY:
1687 				nqindex = QUEUE_EMPTYKVA;
1688 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1689 					break;
1690 				/* fall through */
1691 			case QUEUE_EMPTYKVA:
1692 				nqindex = QUEUE_CLEAN;
1693 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1694 					break;
1695 				/* fall through */
1696 			case QUEUE_CLEAN:
1697 				/*
1698 				 * nbp is NULL.
1699 				 */
1700 				break;
1701 			}
1702 		}
1703 
1704 		/*
1705 		 * Sanity Checks
1706 		 */
1707 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1708 
1709 		/*
1710 		 * Note: we no longer distinguish between VMIO and non-VMIO
1711 		 * buffers.
1712 		 */
1713 
1714 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1715 
1716 		/*
1717 		 * If we are defragging then we need a buffer with
1718 		 * b_kvasize != 0.  XXX this situation should no longer
1719 		 * occur, if defrag is non-zero the buffer's b_kvasize
1720 		 * should also be non-zero at this point.  XXX
1721 		 */
1722 		if (defrag && bp->b_kvasize == 0) {
1723 			printf("Warning: defrag empty buffer %p\n", bp);
1724 			continue;
1725 		}
1726 
1727 		/*
1728 		 * Start freeing the bp.  This is somewhat involved.  nbp
1729 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.  Buffers
1730 		 * on the clean list must be disassociated from their
1731 		 * current vnode.  Buffers on the empty[kva] lists have
1732 		 * already been disassociated.
1733 		 */
1734 
1735 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1736 			panic("getnewbuf: locked buf");
1737 		bremfree(bp);
1738 
1739 		if (qindex == QUEUE_CLEAN) {
1740 			if (bp->b_flags & B_VMIO) {
1741 				bp->b_flags &= ~B_ASYNC;
1742 				vfs_vmio_release(bp);
1743 			}
1744 			if (bp->b_vp)
1745 				brelvp(bp);
1746 		}
1747 
1748 		/*
1749 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1750 		 * the scan from this point on.
1751 		 *
1752 		 * Get the rest of the buffer freed up.  b_kva* is still
1753 		 * valid after this operation.
1754 		 */
1755 
1756 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08lx vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1757 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1758 			(*bioops.io_deallocate)(bp);
1759 		if (bp->b_xflags & BX_BKGRDINPROG)
1760 			panic("losing buffer 3");
1761 		LIST_REMOVE(bp, b_hash);
1762 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1763 
1764 		/*
1765 		 * critical section protection is not required when
1766 		 * scrapping a buffer's contents because it is already
1767 		 * wired.
1768 		 */
1769 		if (bp->b_bufsize)
1770 			allocbuf(bp, 0);
1771 
1772 		bp->b_flags = 0;
1773 		bp->b_xflags = 0;
1774 		bp->b_dev = NODEV;
1775 		bp->b_vp = NULL;
1776 		bp->b_blkno = bp->b_lblkno = 0;
1777 		bp->b_offset = NOOFFSET;
1778 		bp->b_iodone = 0;
1779 		bp->b_error = 0;
1780 		bp->b_resid = 0;
1781 		bp->b_bcount = 0;
1782 		bp->b_xio.xio_npages = 0;
1783 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1784 
1785 		LIST_INIT(&bp->b_dep);
1786 
1787 		/*
1788 		 * If we are defragging then free the buffer.
1789 		 */
1790 		if (defrag) {
1791 			bp->b_flags |= B_INVAL;
1792 			bfreekva(bp);
1793 			brelse(bp);
1794 			defrag = 0;
1795 			goto restart;
1796 		}
1797 
1798 		/*
1799 		 * If we are overcomitted then recover the buffer and its
1800 		 * KVM space.  This occurs in rare situations when multiple
1801 		 * processes are blocked in getnewbuf() or allocbuf().
1802 		 */
1803 		if (bufspace >= hibufspace)
1804 			flushingbufs = 1;
1805 		if (flushingbufs && bp->b_kvasize != 0) {
1806 			bp->b_flags |= B_INVAL;
1807 			bfreekva(bp);
1808 			brelse(bp);
1809 			goto restart;
1810 		}
1811 		if (bufspace < lobufspace)
1812 			flushingbufs = 0;
1813 		break;
1814 	}
1815 
1816 	/*
1817 	 * If we exhausted our list, sleep as appropriate.  We may have to
1818 	 * wakeup various daemons and write out some dirty buffers.
1819 	 *
1820 	 * Generally we are sleeping due to insufficient buffer space.
1821 	 */
1822 
1823 	if (bp == NULL) {
1824 		int flags;
1825 		char *waitmsg;
1826 
1827 		if (defrag) {
1828 			flags = VFS_BIO_NEED_BUFSPACE;
1829 			waitmsg = "nbufkv";
1830 		} else if (bufspace >= hibufspace) {
1831 			waitmsg = "nbufbs";
1832 			flags = VFS_BIO_NEED_BUFSPACE;
1833 		} else {
1834 			waitmsg = "newbuf";
1835 			flags = VFS_BIO_NEED_ANY;
1836 		}
1837 
1838 		bd_speedup();	/* heeeelp */
1839 
1840 		needsbuffer |= flags;
1841 		while (needsbuffer & flags) {
1842 			if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1843 				return (NULL);
1844 		}
1845 	} else {
1846 		/*
1847 		 * We finally have a valid bp.  We aren't quite out of the
1848 		 * woods, we still have to reserve kva space.  In order
1849 		 * to keep fragmentation sane we only allocate kva in
1850 		 * BKVASIZE chunks.
1851 		 */
1852 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1853 
1854 		if (maxsize != bp->b_kvasize) {
1855 			vm_offset_t addr = 0;
1856 			int count;
1857 
1858 			bfreekva(bp);
1859 
1860 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1861 			vm_map_lock(buffer_map);
1862 
1863 			if (vm_map_findspace(buffer_map,
1864 				    vm_map_min(buffer_map), maxsize,
1865 				    maxsize, &addr)) {
1866 				/*
1867 				 * Uh oh.  Buffer map is to fragmented.  We
1868 				 * must defragment the map.
1869 				 */
1870 				vm_map_unlock(buffer_map);
1871 				vm_map_entry_release(count);
1872 				++bufdefragcnt;
1873 				defrag = 1;
1874 				bp->b_flags |= B_INVAL;
1875 				brelse(bp);
1876 				goto restart;
1877 			}
1878 			if (addr) {
1879 				vm_map_insert(buffer_map, &count,
1880 					NULL, 0,
1881 					addr, addr + maxsize,
1882 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1883 
1884 				bp->b_kvabase = (caddr_t) addr;
1885 				bp->b_kvasize = maxsize;
1886 				bufspace += bp->b_kvasize;
1887 				++bufreusecnt;
1888 			}
1889 			vm_map_unlock(buffer_map);
1890 			vm_map_entry_release(count);
1891 		}
1892 		bp->b_data = bp->b_kvabase;
1893 	}
1894 	return(bp);
1895 }
1896 
1897 /*
1898  *	buf_daemon:
1899  *
1900  *	buffer flushing daemon.  Buffers are normally flushed by the
1901  *	update daemon but if it cannot keep up this process starts to
1902  *	take the load in an attempt to prevent getnewbuf() from blocking.
1903  */
1904 
1905 static struct thread *bufdaemonthread;
1906 
1907 static struct kproc_desc buf_kp = {
1908 	"bufdaemon",
1909 	buf_daemon,
1910 	&bufdaemonthread
1911 };
1912 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1913 
1914 static void
1915 buf_daemon()
1916 {
1917 	/*
1918 	 * This process needs to be suspended prior to shutdown sync.
1919 	 */
1920 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1921 	    bufdaemonthread, SHUTDOWN_PRI_LAST);
1922 
1923 	/*
1924 	 * This process is allowed to take the buffer cache to the limit
1925 	 */
1926 	crit_enter();
1927 
1928 	for (;;) {
1929 		kproc_suspend_loop();
1930 
1931 		/*
1932 		 * Do the flush.  Limit the amount of in-transit I/O we
1933 		 * allow to build up, otherwise we would completely saturate
1934 		 * the I/O system.  Wakeup any waiting processes before we
1935 		 * normally would so they can run in parallel with our drain.
1936 		 */
1937 		while (numdirtybuffers > lodirtybuffers) {
1938 			if (flushbufqueues() == 0)
1939 				break;
1940 			waitrunningbufspace();
1941 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1942 		}
1943 
1944 		/*
1945 		 * Only clear bd_request if we have reached our low water
1946 		 * mark.  The buf_daemon normally waits 5 seconds and
1947 		 * then incrementally flushes any dirty buffers that have
1948 		 * built up, within reason.
1949 		 *
1950 		 * If we were unable to hit our low water mark and couldn't
1951 		 * find any flushable buffers, we sleep half a second.
1952 		 * Otherwise we loop immediately.
1953 		 */
1954 		if (numdirtybuffers <= lodirtybuffers) {
1955 			/*
1956 			 * We reached our low water mark, reset the
1957 			 * request and sleep until we are needed again.
1958 			 * The sleep is just so the suspend code works.
1959 			 */
1960 			bd_request = 0;
1961 			tsleep(&bd_request, 0, "psleep", hz);
1962 		} else {
1963 			/*
1964 			 * We couldn't find any flushable dirty buffers but
1965 			 * still have too many dirty buffers, we
1966 			 * have to sleep and try again.  (rare)
1967 			 */
1968 			tsleep(&bd_request, 0, "qsleep", hz / 2);
1969 		}
1970 	}
1971 }
1972 
1973 /*
1974  *	flushbufqueues:
1975  *
1976  *	Try to flush a buffer in the dirty queue.  We must be careful to
1977  *	free up B_INVAL buffers instead of write them, which NFS is
1978  *	particularly sensitive to.
1979  */
1980 
1981 static int
1982 flushbufqueues(void)
1983 {
1984 	struct buf *bp;
1985 	int r = 0;
1986 
1987 	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1988 
1989 	while (bp) {
1990 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1991 		if ((bp->b_flags & B_DELWRI) != 0 &&
1992 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1993 			if (bp->b_flags & B_INVAL) {
1994 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1995 					panic("flushbufqueues: locked buf");
1996 				bremfree(bp);
1997 				brelse(bp);
1998 				++r;
1999 				break;
2000 			}
2001 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2002 			    bioops.io_countdeps &&
2003 			    (bp->b_flags & B_DEFERRED) == 0 &&
2004 			    (*bioops.io_countdeps)(bp, 0)) {
2005 				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
2006 				    bp, b_freelist);
2007 				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
2008 				    bp, b_freelist);
2009 				bp->b_flags |= B_DEFERRED;
2010 				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2011 				continue;
2012 			}
2013 			vfs_bio_awrite(bp);
2014 			++r;
2015 			break;
2016 		}
2017 		bp = TAILQ_NEXT(bp, b_freelist);
2018 	}
2019 	return (r);
2020 }
2021 
2022 /*
2023  * Check to see if a block is currently memory resident.
2024  */
2025 struct buf *
2026 incore(struct vnode * vp, daddr_t blkno)
2027 {
2028 	struct buf *bp;
2029 
2030 	crit_enter();
2031 	bp = gbincore(vp, blkno);
2032 	crit_exit();
2033 	return (bp);
2034 }
2035 
2036 /*
2037  * Returns true if no I/O is needed to access the associated VM object.
2038  * This is like incore except it also hunts around in the VM system for
2039  * the data.
2040  *
2041  * Note that we ignore vm_page_free() races from interrupts against our
2042  * lookup, since if the caller is not protected our return value will not
2043  * be any more valid then otherwise once we exit the critical section.
2044  */
2045 int
2046 inmem(struct vnode * vp, daddr_t blkno)
2047 {
2048 	vm_object_t obj;
2049 	vm_offset_t toff, tinc, size;
2050 	vm_page_t m;
2051 	vm_ooffset_t off;
2052 
2053 	if (incore(vp, blkno))
2054 		return 1;
2055 	if (vp->v_mount == NULL)
2056 		return 0;
2057 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2058  		return 0;
2059 
2060 	size = PAGE_SIZE;
2061 	if (size > vp->v_mount->mnt_stat.f_iosize)
2062 		size = vp->v_mount->mnt_stat.f_iosize;
2063 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2064 
2065 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2066 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2067 		if (!m)
2068 			return 0;
2069 		tinc = size;
2070 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2071 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2072 		if (vm_page_is_valid(m,
2073 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2074 			return 0;
2075 	}
2076 	return 1;
2077 }
2078 
2079 /*
2080  *	vfs_setdirty:
2081  *
2082  *	Sets the dirty range for a buffer based on the status of the dirty
2083  *	bits in the pages comprising the buffer.
2084  *
2085  *	The range is limited to the size of the buffer.
2086  *
2087  *	This routine is primarily used by NFS, but is generalized for the
2088  *	B_VMIO case.
2089  */
2090 static void
2091 vfs_setdirty(struct buf *bp)
2092 {
2093 	int i;
2094 	vm_object_t object;
2095 
2096 	/*
2097 	 * Degenerate case - empty buffer
2098 	 */
2099 
2100 	if (bp->b_bufsize == 0)
2101 		return;
2102 
2103 	/*
2104 	 * We qualify the scan for modified pages on whether the
2105 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2106 	 * is not cleared simply by protecting pages off.
2107 	 */
2108 
2109 	if ((bp->b_flags & B_VMIO) == 0)
2110 		return;
2111 
2112 	object = bp->b_xio.xio_pages[0]->object;
2113 
2114 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2115 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2116 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2117 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2118 
2119 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2120 		vm_offset_t boffset;
2121 		vm_offset_t eoffset;
2122 
2123 		/*
2124 		 * test the pages to see if they have been modified directly
2125 		 * by users through the VM system.
2126 		 */
2127 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2128 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2129 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2130 		}
2131 
2132 		/*
2133 		 * Calculate the encompassing dirty range, boffset and eoffset,
2134 		 * (eoffset - boffset) bytes.
2135 		 */
2136 
2137 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2138 			if (bp->b_xio.xio_pages[i]->dirty)
2139 				break;
2140 		}
2141 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2142 
2143 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2144 			if (bp->b_xio.xio_pages[i]->dirty) {
2145 				break;
2146 			}
2147 		}
2148 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2149 
2150 		/*
2151 		 * Fit it to the buffer.
2152 		 */
2153 
2154 		if (eoffset > bp->b_bcount)
2155 			eoffset = bp->b_bcount;
2156 
2157 		/*
2158 		 * If we have a good dirty range, merge with the existing
2159 		 * dirty range.
2160 		 */
2161 
2162 		if (boffset < eoffset) {
2163 			if (bp->b_dirtyoff > boffset)
2164 				bp->b_dirtyoff = boffset;
2165 			if (bp->b_dirtyend < eoffset)
2166 				bp->b_dirtyend = eoffset;
2167 		}
2168 	}
2169 }
2170 
2171 /*
2172  *	getblk:
2173  *
2174  *	Get a block given a specified block and offset into a file/device.
2175  *	The buffers B_DONE bit will be cleared on return, making it almost
2176  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2177  *	return.  The caller should clear B_INVAL prior to initiating a
2178  *	READ.
2179  *
2180  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2181  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2182  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2183  *	without doing any of those things the system will likely believe
2184  *	the buffer to be valid (especially if it is not B_VMIO), and the
2185  *	next getblk() will return the buffer with B_CACHE set.
2186  *
2187  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2188  *	an existing buffer.
2189  *
2190  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2191  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2192  *	and then cleared based on the backing VM.  If the previous buffer is
2193  *	non-0-sized but invalid, B_CACHE will be cleared.
2194  *
2195  *	If getblk() must create a new buffer, the new buffer is returned with
2196  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2197  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2198  *	backing VM.
2199  *
2200  *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2201  *	B_CACHE bit is clear.
2202  *
2203  *	What this means, basically, is that the caller should use B_CACHE to
2204  *	determine whether the buffer is fully valid or not and should clear
2205  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2206  *	the buffer by loading its data area with something, the caller needs
2207  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2208  *	the caller should set B_CACHE ( as an optimization ), else the caller
2209  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2210  *	a write attempt or if it was a successfull read.  If the caller
2211  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2212  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2213  */
2214 struct buf *
2215 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2216 {
2217 	struct buf *bp;
2218 	struct bufhashhdr *bh;
2219 
2220 	if (size > MAXBSIZE)
2221 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2222 
2223 	crit_enter();
2224 loop:
2225 	/*
2226 	 * Block if we are low on buffers.   Certain processes are allowed
2227 	 * to completely exhaust the buffer cache.
2228          *
2229          * If this check ever becomes a bottleneck it may be better to
2230          * move it into the else, when gbincore() fails.  At the moment
2231          * it isn't a problem.
2232 	 *
2233 	 * XXX remove, we cannot afford to block anywhere if holding a vnode
2234 	 * lock in low-memory situation, so take it to the max.
2235          */
2236 	if (numfreebuffers == 0) {
2237 		if (!curproc)
2238 			return NULL;
2239 		needsbuffer |= VFS_BIO_NEED_ANY;
2240 		tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2241 	}
2242 
2243 	if ((bp = gbincore(vp, blkno))) {
2244 		/*
2245 		 * Buffer is in-core.  If the buffer is not busy, it must
2246 		 * be on a queue.
2247 		 */
2248 
2249 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2250 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2251 			    "getblk", slpflag, slptimeo) == ENOLCK)
2252 				goto loop;
2253 			crit_exit();
2254 			return (struct buf *) NULL;
2255 		}
2256 
2257 		/*
2258 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2259 		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2260 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2261 		 * backing VM cache.
2262 		 */
2263 		if (bp->b_flags & B_INVAL)
2264 			bp->b_flags &= ~B_CACHE;
2265 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2266 			bp->b_flags |= B_CACHE;
2267 		bremfree(bp);
2268 
2269 		/*
2270 		 * check for size inconsistancies for non-VMIO case.
2271 		 */
2272 
2273 		if (bp->b_bcount != size) {
2274 			if ((bp->b_flags & B_VMIO) == 0 ||
2275 			    (size > bp->b_kvasize)) {
2276 				if (bp->b_flags & B_DELWRI) {
2277 					bp->b_flags |= B_NOCACHE;
2278 					VOP_BWRITE(bp->b_vp, bp);
2279 				} else {
2280 					if ((bp->b_flags & B_VMIO) &&
2281 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2282 						bp->b_flags |= B_RELBUF;
2283 						brelse(bp);
2284 					} else {
2285 						bp->b_flags |= B_NOCACHE;
2286 						VOP_BWRITE(bp->b_vp, bp);
2287 					}
2288 				}
2289 				goto loop;
2290 			}
2291 		}
2292 
2293 		/*
2294 		 * If the size is inconsistant in the VMIO case, we can resize
2295 		 * the buffer.  This might lead to B_CACHE getting set or
2296 		 * cleared.  If the size has not changed, B_CACHE remains
2297 		 * unchanged from its previous state.
2298 		 */
2299 
2300 		if (bp->b_bcount != size)
2301 			allocbuf(bp, size);
2302 
2303 		KASSERT(bp->b_offset != NOOFFSET,
2304 		    ("getblk: no buffer offset"));
2305 
2306 		/*
2307 		 * A buffer with B_DELWRI set and B_CACHE clear must
2308 		 * be committed before we can return the buffer in
2309 		 * order to prevent the caller from issuing a read
2310 		 * ( due to B_CACHE not being set ) and overwriting
2311 		 * it.
2312 		 *
2313 		 * Most callers, including NFS and FFS, need this to
2314 		 * operate properly either because they assume they
2315 		 * can issue a read if B_CACHE is not set, or because
2316 		 * ( for example ) an uncached B_DELWRI might loop due
2317 		 * to softupdates re-dirtying the buffer.  In the latter
2318 		 * case, B_CACHE is set after the first write completes,
2319 		 * preventing further loops.
2320 		 *
2321 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2322 		 * above while extending the buffer, we cannot allow the
2323 		 * buffer to remain with B_CACHE set after the write
2324 		 * completes or it will represent a corrupt state.  To
2325 		 * deal with this we set B_NOCACHE to scrap the buffer
2326 		 * after the write.
2327 		 *
2328 		 * We might be able to do something fancy, like setting
2329 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2330 		 * so the below call doesn't set B_CACHE, but that gets real
2331 		 * confusing.  This is much easier.
2332 		 */
2333 
2334 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2335 			bp->b_flags |= B_NOCACHE;
2336 			VOP_BWRITE(bp->b_vp, bp);
2337 			goto loop;
2338 		}
2339 
2340 		crit_exit();
2341 		bp->b_flags &= ~B_DONE;
2342 	} else {
2343 		/*
2344 		 * Buffer is not in-core, create new buffer.  The buffer
2345 		 * returned by getnewbuf() is locked.  Note that the returned
2346 		 * buffer is also considered valid (not marked B_INVAL).
2347 		 *
2348 		 * Calculating the offset for the I/O requires figuring out
2349 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2350 		 * the mount's f_iosize otherwise.  If the vnode does not
2351 		 * have an associated mount we assume that the passed size is
2352 		 * the block size.
2353 		 *
2354 		 * Note that vn_isdisk() cannot be used here since it may
2355 		 * return a failure for numerous reasons.   Note that the
2356 		 * buffer size may be larger then the block size (the caller
2357 		 * will use block numbers with the proper multiple).  Beware
2358 		 * of using any v_* fields which are part of unions.  In
2359 		 * particular, in DragonFly the mount point overloading
2360 		 * mechanism is such that the underlying directory (with a
2361 		 * non-NULL v_mountedhere) is not a special case.
2362 		 */
2363 		int bsize, maxsize, vmio;
2364 		off_t offset;
2365 
2366 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2367 			bsize = DEV_BSIZE;
2368 		else if (vp->v_mount)
2369 			bsize = vp->v_mount->mnt_stat.f_iosize;
2370 		else
2371 			bsize = size;
2372 
2373 		offset = (off_t)blkno * bsize;
2374 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2375 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2376 		maxsize = imax(maxsize, bsize);
2377 
2378 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2379 			if (slpflag || slptimeo) {
2380 				crit_exit();
2381 				return NULL;
2382 			}
2383 			goto loop;
2384 		}
2385 
2386 		/*
2387 		 * This code is used to make sure that a buffer is not
2388 		 * created while the getnewbuf routine is blocked.
2389 		 * This can be a problem whether the vnode is locked or not.
2390 		 * If the buffer is created out from under us, we have to
2391 		 * throw away the one we just created.  There is now window
2392 		 * race because we are safely running in a critical section
2393 		 * from the point of the duplicate buffer creation through
2394 		 * to here, and we've locked the buffer.
2395 		 */
2396 		if (gbincore(vp, blkno)) {
2397 			bp->b_flags |= B_INVAL;
2398 			brelse(bp);
2399 			goto loop;
2400 		}
2401 
2402 		/*
2403 		 * Insert the buffer into the hash, so that it can
2404 		 * be found by incore.  bgetvp() and bufhash()
2405 		 * must be synchronized with each other.
2406 		 */
2407 		bp->b_blkno = bp->b_lblkno = blkno;
2408 		bp->b_offset = offset;
2409 
2410 		bgetvp(vp, bp);
2411 		LIST_REMOVE(bp, b_hash);
2412 		bh = bufhash(vp, blkno);
2413 		LIST_INSERT_HEAD(bh, bp, b_hash);
2414 
2415 		/*
2416 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2417 		 * buffer size starts out as 0, B_CACHE will be set by
2418 		 * allocbuf() for the VMIO case prior to it testing the
2419 		 * backing store for validity.
2420 		 */
2421 
2422 		if (vmio) {
2423 			bp->b_flags |= B_VMIO;
2424 #if defined(VFS_BIO_DEBUG)
2425 			if (vn_canvmio(vp) != TRUE)
2426 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2427 #endif
2428 		} else {
2429 			bp->b_flags &= ~B_VMIO;
2430 		}
2431 
2432 		allocbuf(bp, size);
2433 
2434 		crit_exit();
2435 		bp->b_flags &= ~B_DONE;
2436 	}
2437 	return (bp);
2438 }
2439 
2440 /*
2441  * Get an empty, disassociated buffer of given size.  The buffer is initially
2442  * set to B_INVAL.
2443  *
2444  * critical section protection is not required for the allocbuf() call
2445  * because races are impossible here.
2446  */
2447 struct buf *
2448 geteblk(int size)
2449 {
2450 	struct buf *bp;
2451 	int maxsize;
2452 
2453 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2454 
2455 	crit_enter();
2456 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2457 		;
2458 	crit_exit();
2459 	allocbuf(bp, size);
2460 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2461 	return (bp);
2462 }
2463 
2464 
2465 /*
2466  * This code constitutes the buffer memory from either anonymous system
2467  * memory (in the case of non-VMIO operations) or from an associated
2468  * VM object (in the case of VMIO operations).  This code is able to
2469  * resize a buffer up or down.
2470  *
2471  * Note that this code is tricky, and has many complications to resolve
2472  * deadlock or inconsistant data situations.  Tread lightly!!!
2473  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2474  * the caller.  Calling this code willy nilly can result in the loss of data.
2475  *
2476  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2477  * B_CACHE for the non-VMIO case.
2478  *
2479  * This routine does not need to be called from a critical section but you
2480  * must own the buffer.
2481  */
2482 int
2483 allocbuf(struct buf *bp, int size)
2484 {
2485 	int newbsize, mbsize;
2486 	int i;
2487 
2488 	if (BUF_REFCNT(bp) == 0)
2489 		panic("allocbuf: buffer not busy");
2490 
2491 	if (bp->b_kvasize < size)
2492 		panic("allocbuf: buffer too small");
2493 
2494 	if ((bp->b_flags & B_VMIO) == 0) {
2495 		caddr_t origbuf;
2496 		int origbufsize;
2497 		/*
2498 		 * Just get anonymous memory from the kernel.  Don't
2499 		 * mess with B_CACHE.
2500 		 */
2501 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2502 #if !defined(NO_B_MALLOC)
2503 		if (bp->b_flags & B_MALLOC)
2504 			newbsize = mbsize;
2505 		else
2506 #endif
2507 			newbsize = round_page(size);
2508 
2509 		if (newbsize < bp->b_bufsize) {
2510 #if !defined(NO_B_MALLOC)
2511 			/*
2512 			 * malloced buffers are not shrunk
2513 			 */
2514 			if (bp->b_flags & B_MALLOC) {
2515 				if (newbsize) {
2516 					bp->b_bcount = size;
2517 				} else {
2518 					free(bp->b_data, M_BIOBUF);
2519 					if (bp->b_bufsize) {
2520 						bufmallocspace -= bp->b_bufsize;
2521 						bufspacewakeup();
2522 						bp->b_bufsize = 0;
2523 					}
2524 					bp->b_data = bp->b_kvabase;
2525 					bp->b_bcount = 0;
2526 					bp->b_flags &= ~B_MALLOC;
2527 				}
2528 				return 1;
2529 			}
2530 #endif
2531 			vm_hold_free_pages(
2532 			    bp,
2533 			    (vm_offset_t) bp->b_data + newbsize,
2534 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2535 		} else if (newbsize > bp->b_bufsize) {
2536 #if !defined(NO_B_MALLOC)
2537 			/*
2538 			 * We only use malloced memory on the first allocation.
2539 			 * and revert to page-allocated memory when the buffer
2540 			 * grows.
2541 			 */
2542 			if ( (bufmallocspace < maxbufmallocspace) &&
2543 				(bp->b_bufsize == 0) &&
2544 				(mbsize <= PAGE_SIZE/2)) {
2545 
2546 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2547 				bp->b_bufsize = mbsize;
2548 				bp->b_bcount = size;
2549 				bp->b_flags |= B_MALLOC;
2550 				bufmallocspace += mbsize;
2551 				return 1;
2552 			}
2553 #endif
2554 			origbuf = NULL;
2555 			origbufsize = 0;
2556 #if !defined(NO_B_MALLOC)
2557 			/*
2558 			 * If the buffer is growing on its other-than-first allocation,
2559 			 * then we revert to the page-allocation scheme.
2560 			 */
2561 			if (bp->b_flags & B_MALLOC) {
2562 				origbuf = bp->b_data;
2563 				origbufsize = bp->b_bufsize;
2564 				bp->b_data = bp->b_kvabase;
2565 				if (bp->b_bufsize) {
2566 					bufmallocspace -= bp->b_bufsize;
2567 					bufspacewakeup();
2568 					bp->b_bufsize = 0;
2569 				}
2570 				bp->b_flags &= ~B_MALLOC;
2571 				newbsize = round_page(newbsize);
2572 			}
2573 #endif
2574 			vm_hold_load_pages(
2575 			    bp,
2576 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2577 			    (vm_offset_t) bp->b_data + newbsize);
2578 #if !defined(NO_B_MALLOC)
2579 			if (origbuf) {
2580 				bcopy(origbuf, bp->b_data, origbufsize);
2581 				free(origbuf, M_BIOBUF);
2582 			}
2583 #endif
2584 		}
2585 	} else {
2586 		vm_page_t m;
2587 		int desiredpages;
2588 
2589 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2590 		desiredpages = (size == 0) ? 0 :
2591 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2592 
2593 #if !defined(NO_B_MALLOC)
2594 		if (bp->b_flags & B_MALLOC)
2595 			panic("allocbuf: VMIO buffer can't be malloced");
2596 #endif
2597 		/*
2598 		 * Set B_CACHE initially if buffer is 0 length or will become
2599 		 * 0-length.
2600 		 */
2601 		if (size == 0 || bp->b_bufsize == 0)
2602 			bp->b_flags |= B_CACHE;
2603 
2604 		if (newbsize < bp->b_bufsize) {
2605 			/*
2606 			 * DEV_BSIZE aligned new buffer size is less then the
2607 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2608 			 * if we have to remove any pages.
2609 			 */
2610 			if (desiredpages < bp->b_xio.xio_npages) {
2611 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2612 					/*
2613 					 * the page is not freed here -- it
2614 					 * is the responsibility of
2615 					 * vnode_pager_setsize
2616 					 */
2617 					m = bp->b_xio.xio_pages[i];
2618 					KASSERT(m != bogus_page,
2619 					    ("allocbuf: bogus page found"));
2620 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2621 						;
2622 
2623 					bp->b_xio.xio_pages[i] = NULL;
2624 					vm_page_unwire(m, 0);
2625 				}
2626 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2627 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2628 				bp->b_xio.xio_npages = desiredpages;
2629 			}
2630 		} else if (size > bp->b_bcount) {
2631 			/*
2632 			 * We are growing the buffer, possibly in a
2633 			 * byte-granular fashion.
2634 			 */
2635 			struct vnode *vp;
2636 			vm_object_t obj;
2637 			vm_offset_t toff;
2638 			vm_offset_t tinc;
2639 
2640 			/*
2641 			 * Step 1, bring in the VM pages from the object,
2642 			 * allocating them if necessary.  We must clear
2643 			 * B_CACHE if these pages are not valid for the
2644 			 * range covered by the buffer.
2645 			 *
2646 			 * critical section protection is required to protect
2647 			 * against interrupts unbusying and freeing pages
2648 			 * between our vm_page_lookup() and our
2649 			 * busycheck/wiring call.
2650 			 */
2651 			vp = bp->b_vp;
2652 			VOP_GETVOBJECT(vp, &obj);
2653 
2654 			crit_enter();
2655 			while (bp->b_xio.xio_npages < desiredpages) {
2656 				vm_page_t m;
2657 				vm_pindex_t pi;
2658 
2659 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_xio.xio_npages;
2660 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2661 					/*
2662 					 * note: must allocate system pages
2663 					 * since blocking here could intefere
2664 					 * with paging I/O, no matter which
2665 					 * process we are.
2666 					 */
2667 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2668 					if (m == NULL) {
2669 						vm_wait();
2670 						vm_pageout_deficit += desiredpages -
2671 							bp->b_xio.xio_npages;
2672 					} else {
2673 						vm_page_wire(m);
2674 						vm_page_wakeup(m);
2675 						bp->b_flags &= ~B_CACHE;
2676 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2677 						++bp->b_xio.xio_npages;
2678 					}
2679 					continue;
2680 				}
2681 
2682 				/*
2683 				 * We found a page.  If we have to sleep on it,
2684 				 * retry because it might have gotten freed out
2685 				 * from under us.
2686 				 *
2687 				 * We can only test PG_BUSY here.  Blocking on
2688 				 * m->busy might lead to a deadlock:
2689 				 *
2690 				 *  vm_fault->getpages->cluster_read->allocbuf
2691 				 *
2692 				 */
2693 
2694 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2695 					continue;
2696 
2697 				/*
2698 				 * We have a good page.  Should we wakeup the
2699 				 * page daemon?
2700 				 */
2701 				if ((curthread != pagethread) &&
2702 				    ((m->queue - m->pc) == PQ_CACHE) &&
2703 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2704 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2705 					pagedaemon_wakeup();
2706 				}
2707 				vm_page_flag_clear(m, PG_ZERO);
2708 				vm_page_wire(m);
2709 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2710 				++bp->b_xio.xio_npages;
2711 			}
2712 			crit_exit();
2713 
2714 			/*
2715 			 * Step 2.  We've loaded the pages into the buffer,
2716 			 * we have to figure out if we can still have B_CACHE
2717 			 * set.  Note that B_CACHE is set according to the
2718 			 * byte-granular range ( bcount and size ), new the
2719 			 * aligned range ( newbsize ).
2720 			 *
2721 			 * The VM test is against m->valid, which is DEV_BSIZE
2722 			 * aligned.  Needless to say, the validity of the data
2723 			 * needs to also be DEV_BSIZE aligned.  Note that this
2724 			 * fails with NFS if the server or some other client
2725 			 * extends the file's EOF.  If our buffer is resized,
2726 			 * B_CACHE may remain set! XXX
2727 			 */
2728 
2729 			toff = bp->b_bcount;
2730 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2731 
2732 			while ((bp->b_flags & B_CACHE) && toff < size) {
2733 				vm_pindex_t pi;
2734 
2735 				if (tinc > (size - toff))
2736 					tinc = size - toff;
2737 
2738 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2739 				    PAGE_SHIFT;
2740 
2741 				vfs_buf_test_cache(
2742 				    bp,
2743 				    bp->b_offset,
2744 				    toff,
2745 				    tinc,
2746 				    bp->b_xio.xio_pages[pi]
2747 				);
2748 				toff += tinc;
2749 				tinc = PAGE_SIZE;
2750 			}
2751 
2752 			/*
2753 			 * Step 3, fixup the KVM pmap.  Remember that
2754 			 * bp->b_data is relative to bp->b_offset, but
2755 			 * bp->b_offset may be offset into the first page.
2756 			 */
2757 
2758 			bp->b_data = (caddr_t)
2759 			    trunc_page((vm_offset_t)bp->b_data);
2760 			pmap_qenter(
2761 			    (vm_offset_t)bp->b_data,
2762 			    bp->b_xio.xio_pages,
2763 			    bp->b_xio.xio_npages
2764 			);
2765 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2766 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2767 		}
2768 	}
2769 	if (newbsize < bp->b_bufsize)
2770 		bufspacewakeup();
2771 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2772 	bp->b_bcount = size;		/* requested buffer size	*/
2773 	return 1;
2774 }
2775 
2776 /*
2777  *	biowait:
2778  *
2779  *	Wait for buffer I/O completion, returning error status.  The buffer
2780  *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2781  *	error and cleared.
2782  */
2783 int
2784 biowait(struct buf * bp)
2785 {
2786 	crit_enter();
2787 	while ((bp->b_flags & B_DONE) == 0) {
2788 #if defined(NO_SCHEDULE_MODS)
2789 		tsleep(bp, 0, "biowait", 0);
2790 #else
2791 		if (bp->b_flags & B_READ)
2792 			tsleep(bp, 0, "biord", 0);
2793 		else
2794 			tsleep(bp, 0, "biowr", 0);
2795 #endif
2796 	}
2797 	crit_exit();
2798 	if (bp->b_flags & B_EINTR) {
2799 		bp->b_flags &= ~B_EINTR;
2800 		return (EINTR);
2801 	}
2802 	if (bp->b_flags & B_ERROR) {
2803 		return (bp->b_error ? bp->b_error : EIO);
2804 	} else {
2805 		return (0);
2806 	}
2807 }
2808 
2809 /*
2810  *	biodone:
2811  *
2812  *	Finish I/O on a buffer, optionally calling a completion function.
2813  *	This is usually called from an interrupt so process blocking is
2814  *	not allowed.
2815  *
2816  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2817  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2818  *	assuming B_INVAL is clear.
2819  *
2820  *	For the VMIO case, we set B_CACHE if the op was a read and no
2821  *	read error occured, or if the op was a write.  B_CACHE is never
2822  *	set if the buffer is invalid or otherwise uncacheable.
2823  *
2824  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2825  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2826  *	in the biodone routine.
2827  *
2828  *	b_dev is required to be reinitialized prior to the top level strategy
2829  *	call in a device stack.  To avoid improper reuse, biodone() sets
2830  *	b_dev to NODEV.
2831  */
2832 void
2833 biodone(struct buf *bp)
2834 {
2835 	int error;
2836 
2837 	crit_enter();
2838 
2839 	KASSERT(BUF_REFCNTNB(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2840 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2841 
2842 	bp->b_flags |= B_DONE;
2843 	bp->b_dev = NODEV;
2844 	runningbufwakeup(bp);
2845 
2846 	if (bp->b_flags & B_FREEBUF) {
2847 		brelse(bp);
2848 		crit_exit();
2849 		return;
2850 	}
2851 
2852 	if ((bp->b_flags & B_READ) == 0) {
2853 		vwakeup(bp);
2854 	}
2855 
2856 	/* call optional completion function if requested */
2857 	if (bp->b_flags & B_CALL) {
2858 		bp->b_flags &= ~B_CALL;
2859 		(*bp->b_iodone) (bp);
2860 		crit_exit();
2861 		return;
2862 	}
2863 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2864 		(*bioops.io_complete)(bp);
2865 
2866 	if (bp->b_flags & B_VMIO) {
2867 		int i;
2868 		vm_ooffset_t foff;
2869 		vm_page_t m;
2870 		vm_object_t obj;
2871 		int iosize;
2872 		struct vnode *vp = bp->b_vp;
2873 
2874 		error = VOP_GETVOBJECT(vp, &obj);
2875 
2876 #if defined(VFS_BIO_DEBUG)
2877 		if (vp->v_holdcnt == 0) {
2878 			panic("biodone: zero vnode hold count");
2879 		}
2880 
2881 		if (error) {
2882 			panic("biodone: missing VM object");
2883 		}
2884 
2885 		if ((vp->v_flag & VOBJBUF) == 0) {
2886 			panic("biodone: vnode is not setup for merged cache");
2887 		}
2888 #endif
2889 
2890 		foff = bp->b_offset;
2891 		KASSERT(bp->b_offset != NOOFFSET,
2892 		    ("biodone: no buffer offset"));
2893 
2894 		if (error) {
2895 			panic("biodone: no object");
2896 		}
2897 #if defined(VFS_BIO_DEBUG)
2898 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2899 			printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2900 			    obj->paging_in_progress, bp->b_xio.xio_npages);
2901 		}
2902 #endif
2903 
2904 		/*
2905 		 * Set B_CACHE if the op was a normal read and no error
2906 		 * occured.  B_CACHE is set for writes in the b*write()
2907 		 * routines.
2908 		 */
2909 		iosize = bp->b_bcount - bp->b_resid;
2910 		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2911 			bp->b_flags |= B_CACHE;
2912 		}
2913 
2914 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2915 			int bogusflag = 0;
2916 			int resid;
2917 
2918 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2919 			if (resid > iosize)
2920 				resid = iosize;
2921 
2922 			/*
2923 			 * cleanup bogus pages, restoring the originals.  Since
2924 			 * the originals should still be wired, we don't have
2925 			 * to worry about interrupt/freeing races destroying
2926 			 * the VM object association.
2927 			 */
2928 			m = bp->b_xio.xio_pages[i];
2929 			if (m == bogus_page) {
2930 				bogusflag = 1;
2931 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2932 				if (m == NULL)
2933 					panic("biodone: page disappeared");
2934 				bp->b_xio.xio_pages[i] = m;
2935 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2936 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2937 			}
2938 #if defined(VFS_BIO_DEBUG)
2939 			if (OFF_TO_IDX(foff) != m->pindex) {
2940 				printf(
2941 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2942 				    (unsigned long)foff, m->pindex);
2943 			}
2944 #endif
2945 
2946 			/*
2947 			 * In the write case, the valid and clean bits are
2948 			 * already changed correctly ( see bdwrite() ), so we
2949 			 * only need to do this here in the read case.
2950 			 */
2951 			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2952 				vfs_page_set_valid(bp, foff, i, m);
2953 			}
2954 			vm_page_flag_clear(m, PG_ZERO);
2955 
2956 			/*
2957 			 * when debugging new filesystems or buffer I/O methods, this
2958 			 * is the most common error that pops up.  if you see this, you
2959 			 * have not set the page busy flag correctly!!!
2960 			 */
2961 			if (m->busy == 0) {
2962 				printf("biodone: page busy < 0, "
2963 				    "pindex: %d, foff: 0x(%x,%x), "
2964 				    "resid: %d, index: %d\n",
2965 				    (int) m->pindex, (int)(foff >> 32),
2966 						(int) foff & 0xffffffff, resid, i);
2967 				if (!vn_isdisk(vp, NULL))
2968 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2969 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2970 					    (int) bp->b_lblkno,
2971 					    bp->b_flags, bp->b_xio.xio_npages);
2972 				else
2973 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2974 					    (int) bp->b_lblkno,
2975 					    bp->b_flags, bp->b_xio.xio_npages);
2976 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2977 				    m->valid, m->dirty, m->wire_count);
2978 				panic("biodone: page busy < 0");
2979 			}
2980 			vm_page_io_finish(m);
2981 			vm_object_pip_subtract(obj, 1);
2982 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2983 			iosize -= resid;
2984 		}
2985 		if (obj)
2986 			vm_object_pip_wakeupn(obj, 0);
2987 	}
2988 
2989 	/*
2990 	 * For asynchronous completions, release the buffer now. The brelse
2991 	 * will do a wakeup there if necessary - so no need to do a wakeup
2992 	 * here in the async case. The sync case always needs to do a wakeup.
2993 	 */
2994 
2995 	if (bp->b_flags & B_ASYNC) {
2996 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2997 			brelse(bp);
2998 		else
2999 			bqrelse(bp);
3000 	} else {
3001 		wakeup(bp);
3002 	}
3003 	crit_exit();
3004 }
3005 
3006 /*
3007  * This routine is called in lieu of iodone in the case of
3008  * incomplete I/O.  This keeps the busy status for pages
3009  * consistant.
3010  */
3011 void
3012 vfs_unbusy_pages(struct buf *bp)
3013 {
3014 	int i;
3015 
3016 	runningbufwakeup(bp);
3017 	if (bp->b_flags & B_VMIO) {
3018 		struct vnode *vp = bp->b_vp;
3019 		vm_object_t obj;
3020 
3021 		VOP_GETVOBJECT(vp, &obj);
3022 
3023 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3024 			vm_page_t m = bp->b_xio.xio_pages[i];
3025 
3026 			/*
3027 			 * When restoring bogus changes the original pages
3028 			 * should still be wired, so we are in no danger of
3029 			 * losing the object association and do not need
3030 			 * critical section protection particularly.
3031 			 */
3032 			if (m == bogus_page) {
3033 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3034 				if (!m) {
3035 					panic("vfs_unbusy_pages: page missing");
3036 				}
3037 				bp->b_xio.xio_pages[i] = m;
3038 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3039 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3040 			}
3041 			vm_object_pip_subtract(obj, 1);
3042 			vm_page_flag_clear(m, PG_ZERO);
3043 			vm_page_io_finish(m);
3044 		}
3045 		vm_object_pip_wakeupn(obj, 0);
3046 	}
3047 }
3048 
3049 /*
3050  * vfs_page_set_valid:
3051  *
3052  *	Set the valid bits in a page based on the supplied offset.   The
3053  *	range is restricted to the buffer's size.
3054  *
3055  *	This routine is typically called after a read completes.
3056  */
3057 static void
3058 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3059 {
3060 	vm_ooffset_t soff, eoff;
3061 
3062 	/*
3063 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3064 	 * page boundry or cross the end of the buffer.  The end of the
3065 	 * buffer, in this case, is our file EOF, not the allocation size
3066 	 * of the buffer.
3067 	 */
3068 	soff = off;
3069 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3070 	if (eoff > bp->b_offset + bp->b_bcount)
3071 		eoff = bp->b_offset + bp->b_bcount;
3072 
3073 	/*
3074 	 * Set valid range.  This is typically the entire buffer and thus the
3075 	 * entire page.
3076 	 */
3077 	if (eoff > soff) {
3078 		vm_page_set_validclean(
3079 		    m,
3080 		   (vm_offset_t) (soff & PAGE_MASK),
3081 		   (vm_offset_t) (eoff - soff)
3082 		);
3083 	}
3084 }
3085 
3086 /*
3087  * This routine is called before a device strategy routine.
3088  * It is used to tell the VM system that paging I/O is in
3089  * progress, and treat the pages associated with the buffer
3090  * almost as being PG_BUSY.  Also the object paging_in_progress
3091  * flag is handled to make sure that the object doesn't become
3092  * inconsistant.
3093  *
3094  * Since I/O has not been initiated yet, certain buffer flags
3095  * such as B_ERROR or B_INVAL may be in an inconsistant state
3096  * and should be ignored.
3097  */
3098 void
3099 vfs_busy_pages(struct buf *bp, int clear_modify)
3100 {
3101 	int i, bogus;
3102 
3103 	if (bp->b_flags & B_VMIO) {
3104 		struct vnode *vp = bp->b_vp;
3105 		vm_object_t obj;
3106 		vm_ooffset_t foff;
3107 
3108 		VOP_GETVOBJECT(vp, &obj);
3109 		foff = bp->b_offset;
3110 		KASSERT(bp->b_offset != NOOFFSET,
3111 		    ("vfs_busy_pages: no buffer offset"));
3112 		vfs_setdirty(bp);
3113 
3114 retry:
3115 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3116 			vm_page_t m = bp->b_xio.xio_pages[i];
3117 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3118 				goto retry;
3119 		}
3120 
3121 		bogus = 0;
3122 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3123 			vm_page_t m = bp->b_xio.xio_pages[i];
3124 
3125 			vm_page_flag_clear(m, PG_ZERO);
3126 			if ((bp->b_flags & B_CLUSTER) == 0) {
3127 				vm_object_pip_add(obj, 1);
3128 				vm_page_io_start(m);
3129 			}
3130 
3131 			/*
3132 			 * When readying a buffer for a read ( i.e
3133 			 * clear_modify == 0 ), it is important to do
3134 			 * bogus_page replacement for valid pages in
3135 			 * partially instantiated buffers.  Partially
3136 			 * instantiated buffers can, in turn, occur when
3137 			 * reconstituting a buffer from its VM backing store
3138 			 * base.  We only have to do this if B_CACHE is
3139 			 * clear ( which causes the I/O to occur in the
3140 			 * first place ).  The replacement prevents the read
3141 			 * I/O from overwriting potentially dirty VM-backed
3142 			 * pages.  XXX bogus page replacement is, uh, bogus.
3143 			 * It may not work properly with small-block devices.
3144 			 * We need to find a better way.
3145 			 */
3146 
3147 			vm_page_protect(m, VM_PROT_NONE);
3148 			if (clear_modify)
3149 				vfs_page_set_valid(bp, foff, i, m);
3150 			else if (m->valid == VM_PAGE_BITS_ALL &&
3151 				(bp->b_flags & B_CACHE) == 0) {
3152 				bp->b_xio.xio_pages[i] = bogus_page;
3153 				bogus++;
3154 			}
3155 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3156 		}
3157 		if (bogus)
3158 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3159 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3160 	}
3161 
3162 	/*
3163 	 * This is the easiest place to put the process accounting for the I/O
3164 	 * for now.
3165 	 */
3166 	{
3167 		struct proc *p;
3168 
3169 		if ((p = curthread->td_proc) != NULL) {
3170 			if (bp->b_flags & B_READ)
3171 				p->p_stats->p_ru.ru_inblock++;
3172 			else
3173 				p->p_stats->p_ru.ru_oublock++;
3174 		}
3175 	}
3176 }
3177 
3178 /*
3179  * Tell the VM system that the pages associated with this buffer
3180  * are clean.  This is used for delayed writes where the data is
3181  * going to go to disk eventually without additional VM intevention.
3182  *
3183  * Note that while we only really need to clean through to b_bcount, we
3184  * just go ahead and clean through to b_bufsize.
3185  */
3186 static void
3187 vfs_clean_pages(struct buf *bp)
3188 {
3189 	int i;
3190 
3191 	if (bp->b_flags & B_VMIO) {
3192 		vm_ooffset_t foff;
3193 
3194 		foff = bp->b_offset;
3195 		KASSERT(bp->b_offset != NOOFFSET,
3196 		    ("vfs_clean_pages: no buffer offset"));
3197 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3198 			vm_page_t m = bp->b_xio.xio_pages[i];
3199 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3200 			vm_ooffset_t eoff = noff;
3201 
3202 			if (eoff > bp->b_offset + bp->b_bufsize)
3203 				eoff = bp->b_offset + bp->b_bufsize;
3204 			vfs_page_set_valid(bp, foff, i, m);
3205 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3206 			foff = noff;
3207 		}
3208 	}
3209 }
3210 
3211 /*
3212  *	vfs_bio_set_validclean:
3213  *
3214  *	Set the range within the buffer to valid and clean.  The range is
3215  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3216  *	itself may be offset from the beginning of the first page.
3217  */
3218 
3219 void
3220 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3221 {
3222 	if (bp->b_flags & B_VMIO) {
3223 		int i;
3224 		int n;
3225 
3226 		/*
3227 		 * Fixup base to be relative to beginning of first page.
3228 		 * Set initial n to be the maximum number of bytes in the
3229 		 * first page that can be validated.
3230 		 */
3231 
3232 		base += (bp->b_offset & PAGE_MASK);
3233 		n = PAGE_SIZE - (base & PAGE_MASK);
3234 
3235 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3236 			vm_page_t m = bp->b_xio.xio_pages[i];
3237 
3238 			if (n > size)
3239 				n = size;
3240 
3241 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3242 			base += n;
3243 			size -= n;
3244 			n = PAGE_SIZE;
3245 		}
3246 	}
3247 }
3248 
3249 /*
3250  *	vfs_bio_clrbuf:
3251  *
3252  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3253  *	to clear B_ERROR and B_INVAL.
3254  *
3255  *	Note that while we only theoretically need to clear through b_bcount,
3256  *	we go ahead and clear through b_bufsize.
3257  */
3258 
3259 void
3260 vfs_bio_clrbuf(struct buf *bp)
3261 {
3262 	int i, mask = 0;
3263 	caddr_t sa, ea;
3264 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3265 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3266 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3267 		    (bp->b_offset & PAGE_MASK) == 0) {
3268 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3269 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3270 				bp->b_resid = 0;
3271 				return;
3272 			}
3273 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3274 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3275 				bzero(bp->b_data, bp->b_bufsize);
3276 				bp->b_xio.xio_pages[0]->valid |= mask;
3277 				bp->b_resid = 0;
3278 				return;
3279 			}
3280 		}
3281 		ea = sa = bp->b_data;
3282 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3283 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3284 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3285 			ea = (caddr_t)(vm_offset_t)ulmin(
3286 			    (u_long)(vm_offset_t)ea,
3287 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3288 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3289 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3290 				continue;
3291 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3292 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3293 					bzero(sa, ea - sa);
3294 				}
3295 			} else {
3296 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3297 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3298 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3299 						bzero(sa, DEV_BSIZE);
3300 				}
3301 			}
3302 			bp->b_xio.xio_pages[i]->valid |= mask;
3303 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3304 		}
3305 		bp->b_resid = 0;
3306 	} else {
3307 		clrbuf(bp);
3308 	}
3309 }
3310 
3311 /*
3312  * vm_hold_load_pages and vm_hold_unload pages get pages into
3313  * a buffers address space.  The pages are anonymous and are
3314  * not associated with a file object.
3315  */
3316 void
3317 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3318 {
3319 	vm_offset_t pg;
3320 	vm_page_t p;
3321 	int index;
3322 
3323 	to = round_page(to);
3324 	from = round_page(from);
3325 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3326 
3327 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3328 
3329 tryagain:
3330 
3331 		/*
3332 		 * note: must allocate system pages since blocking here
3333 		 * could intefere with paging I/O, no matter which
3334 		 * process we are.
3335 		 */
3336 		p = vm_page_alloc(kernel_object,
3337 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3338 			VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3339 		if (!p) {
3340 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3341 			vm_wait();
3342 			goto tryagain;
3343 		}
3344 		vm_page_wire(p);
3345 		p->valid = VM_PAGE_BITS_ALL;
3346 		vm_page_flag_clear(p, PG_ZERO);
3347 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3348 		bp->b_xio.xio_pages[index] = p;
3349 		vm_page_wakeup(p);
3350 	}
3351 	bp->b_xio.xio_npages = index;
3352 }
3353 
3354 void
3355 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3356 {
3357 	vm_offset_t pg;
3358 	vm_page_t p;
3359 	int index, newnpages;
3360 
3361 	from = round_page(from);
3362 	to = round_page(to);
3363 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3364 
3365 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3366 		p = bp->b_xio.xio_pages[index];
3367 		if (p && (index < bp->b_xio.xio_npages)) {
3368 			if (p->busy) {
3369 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3370 					bp->b_blkno, bp->b_lblkno);
3371 			}
3372 			bp->b_xio.xio_pages[index] = NULL;
3373 			pmap_kremove(pg);
3374 			vm_page_busy(p);
3375 			vm_page_unwire(p, 0);
3376 			vm_page_free(p);
3377 		}
3378 	}
3379 	bp->b_xio.xio_npages = newnpages;
3380 }
3381 
3382 /*
3383  * Map an IO request into kernel virtual address space.
3384  *
3385  * All requests are (re)mapped into kernel VA space.
3386  * Notice that we use b_bufsize for the size of the buffer
3387  * to be mapped.  b_bcount might be modified by the driver.
3388  */
3389 int
3390 vmapbuf(struct buf *bp)
3391 {
3392 	caddr_t addr, v, kva;
3393 	vm_paddr_t pa;
3394 	int pidx;
3395 	int i;
3396 	struct vm_page *m;
3397 
3398 	if ((bp->b_flags & B_PHYS) == 0)
3399 		panic("vmapbuf");
3400 	if (bp->b_bufsize < 0)
3401 		return (-1);
3402 	for (v = bp->b_saveaddr,
3403 		     addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3404 		     pidx = 0;
3405 	     addr < bp->b_data + bp->b_bufsize;
3406 	     addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3407 		/*
3408 		 * Do the vm_fault if needed; do the copy-on-write thing
3409 		 * when reading stuff off device into memory.
3410 		 */
3411 retry:
3412 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3413 			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3414 		if (i < 0) {
3415 			for (i = 0; i < pidx; ++i) {
3416 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3417 			    bp->b_xio.xio_pages[i] = NULL;
3418 			}
3419 			return(-1);
3420 		}
3421 
3422 		/*
3423 		 * WARNING!  If sparc support is MFCd in the future this will
3424 		 * have to be changed from pmap_kextract() to pmap_extract()
3425 		 * ala -current.
3426 		 */
3427 #ifdef __sparc64__
3428 #error "If MFCing sparc support use pmap_extract"
3429 #endif
3430 		pa = pmap_kextract((vm_offset_t)addr);
3431 		if (pa == 0) {
3432 			printf("vmapbuf: warning, race against user address during I/O");
3433 			goto retry;
3434 		}
3435 		m = PHYS_TO_VM_PAGE(pa);
3436 		vm_page_hold(m);
3437 		bp->b_xio.xio_pages[pidx] = m;
3438 	}
3439 	if (pidx > btoc(MAXPHYS))
3440 		panic("vmapbuf: mapped more than MAXPHYS");
3441 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx);
3442 
3443 	kva = bp->b_saveaddr;
3444 	bp->b_xio.xio_npages = pidx;
3445 	bp->b_saveaddr = bp->b_data;
3446 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3447 	return(0);
3448 }
3449 
3450 /*
3451  * Free the io map PTEs associated with this IO operation.
3452  * We also invalidate the TLB entries and restore the original b_addr.
3453  */
3454 void
3455 vunmapbuf(struct buf *bp)
3456 {
3457 	int pidx;
3458 	int npages;
3459 	vm_page_t *m;
3460 
3461 	if ((bp->b_flags & B_PHYS) == 0)
3462 		panic("vunmapbuf");
3463 
3464 	npages = bp->b_xio.xio_npages;
3465 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3466 		     npages);
3467 	m = bp->b_xio.xio_pages;
3468 	for (pidx = 0; pidx < npages; pidx++)
3469 		vm_page_unhold(*m++);
3470 
3471 	bp->b_data = bp->b_saveaddr;
3472 }
3473 
3474 #include "opt_ddb.h"
3475 #ifdef DDB
3476 #include <ddb/ddb.h>
3477 
3478 DB_SHOW_COMMAND(buffer, db_show_buffer)
3479 {
3480 	/* get args */
3481 	struct buf *bp = (struct buf *)addr;
3482 
3483 	if (!have_addr) {
3484 		db_printf("usage: show buffer <addr>\n");
3485 		return;
3486 	}
3487 
3488 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3489 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3490 		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3491 		  "b_blkno = %d, b_pblkno = %d\n",
3492 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3493 		  major(bp->b_dev), minor(bp->b_dev),
3494 		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3495 	if (bp->b_xio.xio_npages) {
3496 		int i;
3497 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3498 			bp->b_xio.xio_npages);
3499 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3500 			vm_page_t m;
3501 			m = bp->b_xio.xio_pages[i];
3502 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3503 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3504 			if ((i + 1) < bp->b_xio.xio_npages)
3505 				db_printf(",");
3506 		}
3507 		db_printf("\n");
3508 	}
3509 }
3510 #endif /* DDB */
3511