1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/proc.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 #include <sys/buf2.h> 58 #include <sys/thread2.h> 59 #include <sys/spinlock2.h> 60 #include <sys/mplock2.h> 61 #include <vm/vm_page2.h> 62 63 #include "opt_ddb.h" 64 #ifdef DDB 65 #include <ddb/ddb.h> 66 #endif 67 68 /* 69 * Buffer queues. 70 */ 71 enum bufq_type { 72 BQUEUE_NONE, /* not on any queue */ 73 BQUEUE_LOCKED, /* locked buffers */ 74 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 75 BQUEUE_DIRTY, /* B_DELWRI buffers */ 76 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 77 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 78 BQUEUE_EMPTY, /* empty buffer headers */ 79 80 BUFFER_QUEUES /* number of buffer queues */ 81 }; 82 83 typedef enum bufq_type bufq_type_t; 84 85 #define BD_WAKE_SIZE 16384 86 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 87 88 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 89 struct spinlock bufspin = SPINLOCK_INITIALIZER(&bufspin); 90 91 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 92 93 struct buf *buf; /* buffer header pool */ 94 95 static void vfs_clean_pages(struct buf *bp); 96 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 97 static void vfs_vmio_release(struct buf *bp); 98 static int flushbufqueues(bufq_type_t q); 99 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 100 101 static void bd_signal(int totalspace); 102 static void buf_daemon(void); 103 static void buf_daemon_hw(void); 104 105 /* 106 * bogus page -- for I/O to/from partially complete buffers 107 * this is a temporary solution to the problem, but it is not 108 * really that bad. it would be better to split the buffer 109 * for input in the case of buffers partially already in memory, 110 * but the code is intricate enough already. 111 */ 112 vm_page_t bogus_page; 113 114 /* 115 * These are all static, but make the ones we export globals so we do 116 * not need to use compiler magic. 117 */ 118 int bufspace, maxbufspace, 119 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 120 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 121 static int lorunningspace, hirunningspace, runningbufreq; 122 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace; 123 int dirtybufcount, dirtybufcounthw; 124 int runningbufspace, runningbufcount; 125 static int getnewbufcalls; 126 static int getnewbufrestarts; 127 static int recoverbufcalls; 128 static int needsbuffer; /* locked by needsbuffer_spin */ 129 static int bd_request; /* locked by needsbuffer_spin */ 130 static int bd_request_hw; /* locked by needsbuffer_spin */ 131 static u_int bd_wake_ary[BD_WAKE_SIZE]; 132 static u_int bd_wake_index; 133 static u_int vm_cycle_point = ACT_INIT + ACT_ADVANCE * 6; 134 static struct spinlock needsbuffer_spin; 135 136 static struct thread *bufdaemon_td; 137 static struct thread *bufdaemonhw_td; 138 139 140 /* 141 * Sysctls for operational control of the buffer cache. 142 */ 143 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 144 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 145 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 146 "High watermark used to trigger explicit flushing of dirty buffers"); 147 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 148 "Minimum amount of buffer space required for active I/O"); 149 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 150 "Maximum amount of buffer space to usable for active I/O"); 151 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0, 152 "Recycle pages to active or inactive queue transition pt 0-64"); 153 /* 154 * Sysctls determining current state of the buffer cache. 155 */ 156 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 157 "Total number of buffers in buffer cache"); 158 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 159 "Pending bytes of dirty buffers (all)"); 160 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 161 "Pending bytes of dirty buffers (heavy weight)"); 162 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 163 "Pending number of dirty buffers"); 164 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 165 "Pending number of dirty buffers (heavy weight)"); 166 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 167 "I/O bytes currently in progress due to asynchronous writes"); 168 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 169 "I/O buffers currently in progress due to asynchronous writes"); 170 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 171 "Hard limit on maximum amount of memory usable for buffer space"); 172 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 173 "Soft limit on maximum amount of memory usable for buffer space"); 174 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 175 "Minimum amount of memory to reserve for system buffer space"); 176 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 177 "Amount of memory available for buffers"); 178 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 179 0, "Maximum amount of memory reserved for buffers using malloc"); 180 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 181 "Amount of memory left for buffers using malloc-scheme"); 182 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 183 "New buffer header acquisition requests"); 184 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 185 0, "New buffer header acquisition restarts"); 186 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 187 "Recover VM space in an emergency"); 188 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 189 "Buffer acquisition restarts due to fragmented buffer map"); 190 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 191 "Amount of time KVA space was deallocated in an arbitrary buffer"); 192 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 193 "Amount of time buffer re-use operations were successful"); 194 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 195 "sizeof(struct buf)"); 196 197 char *buf_wmesg = BUF_WMESG; 198 199 extern int vm_swap_size; 200 201 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 202 #define VFS_BIO_NEED_UNUSED02 0x02 203 #define VFS_BIO_NEED_UNUSED04 0x04 204 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 205 206 /* 207 * bufspacewakeup: 208 * 209 * Called when buffer space is potentially available for recovery. 210 * getnewbuf() will block on this flag when it is unable to free 211 * sufficient buffer space. Buffer space becomes recoverable when 212 * bp's get placed back in the queues. 213 */ 214 215 static __inline void 216 bufspacewakeup(void) 217 { 218 /* 219 * If someone is waiting for BUF space, wake them up. Even 220 * though we haven't freed the kva space yet, the waiting 221 * process will be able to now. 222 */ 223 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 224 spin_lock_wr(&needsbuffer_spin); 225 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 226 spin_unlock_wr(&needsbuffer_spin); 227 wakeup(&needsbuffer); 228 } 229 } 230 231 /* 232 * runningbufwakeup: 233 * 234 * Accounting for I/O in progress. 235 * 236 */ 237 static __inline void 238 runningbufwakeup(struct buf *bp) 239 { 240 int totalspace; 241 int limit; 242 243 if ((totalspace = bp->b_runningbufspace) != 0) { 244 atomic_subtract_int(&runningbufspace, totalspace); 245 atomic_subtract_int(&runningbufcount, 1); 246 bp->b_runningbufspace = 0; 247 248 /* 249 * see waitrunningbufspace() for limit test. 250 */ 251 limit = hirunningspace * 2 / 3; 252 if (runningbufreq && runningbufspace <= limit) { 253 runningbufreq = 0; 254 wakeup(&runningbufreq); 255 } 256 bd_signal(totalspace); 257 } 258 } 259 260 /* 261 * bufcountwakeup: 262 * 263 * Called when a buffer has been added to one of the free queues to 264 * account for the buffer and to wakeup anyone waiting for free buffers. 265 * This typically occurs when large amounts of metadata are being handled 266 * by the buffer cache ( else buffer space runs out first, usually ). 267 * 268 * MPSAFE 269 */ 270 static __inline void 271 bufcountwakeup(void) 272 { 273 if (needsbuffer) { 274 spin_lock_wr(&needsbuffer_spin); 275 needsbuffer &= ~VFS_BIO_NEED_ANY; 276 spin_unlock_wr(&needsbuffer_spin); 277 wakeup(&needsbuffer); 278 } 279 } 280 281 /* 282 * waitrunningbufspace() 283 * 284 * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3. 285 * This is the point where write bursting stops so we don't want to wait 286 * for the running amount to drop below it (at least if we still want bioq 287 * to burst writes). 288 * 289 * The caller may be using this function to block in a tight loop, we 290 * must block while runningbufspace is greater then or equal to 291 * hirunningspace * 2 / 3. 292 * 293 * And even with that it may not be enough, due to the presence of 294 * B_LOCKED dirty buffers, so also wait for at least one running buffer 295 * to complete. 296 */ 297 static __inline void 298 waitrunningbufspace(void) 299 { 300 int limit = hirunningspace * 2 / 3; 301 302 crit_enter(); 303 if (runningbufspace > limit) { 304 while (runningbufspace > limit) { 305 ++runningbufreq; 306 tsleep(&runningbufreq, 0, "wdrn1", 0); 307 } 308 } else if (runningbufspace) { 309 ++runningbufreq; 310 tsleep(&runningbufreq, 0, "wdrn2", 1); 311 } 312 crit_exit(); 313 } 314 315 /* 316 * buf_dirty_count_severe: 317 * 318 * Return true if we have too many dirty buffers. 319 */ 320 int 321 buf_dirty_count_severe(void) 322 { 323 return (runningbufspace + dirtybufspace >= hidirtybufspace || 324 dirtybufcount >= nbuf / 2); 325 } 326 327 /* 328 * Return true if the amount of running I/O is severe and BIOQ should 329 * start bursting. 330 */ 331 int 332 buf_runningbufspace_severe(void) 333 { 334 return (runningbufspace >= hirunningspace * 2 / 3); 335 } 336 337 /* 338 * vfs_buf_test_cache: 339 * 340 * Called when a buffer is extended. This function clears the B_CACHE 341 * bit if the newly extended portion of the buffer does not contain 342 * valid data. 343 * 344 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 345 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 346 * them while a clean buffer was present. 347 */ 348 static __inline__ 349 void 350 vfs_buf_test_cache(struct buf *bp, 351 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 352 vm_page_t m) 353 { 354 if (bp->b_flags & B_CACHE) { 355 int base = (foff + off) & PAGE_MASK; 356 if (vm_page_is_valid(m, base, size) == 0) 357 bp->b_flags &= ~B_CACHE; 358 } 359 } 360 361 /* 362 * bd_speedup() 363 * 364 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 365 * low water mark. 366 * 367 * MPSAFE 368 */ 369 static __inline__ 370 void 371 bd_speedup(void) 372 { 373 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 374 return; 375 376 if (bd_request == 0 && 377 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 378 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 379 spin_lock_wr(&needsbuffer_spin); 380 bd_request = 1; 381 spin_unlock_wr(&needsbuffer_spin); 382 wakeup(&bd_request); 383 } 384 if (bd_request_hw == 0 && 385 (dirtybufspacehw > lodirtybufspace / 2 || 386 dirtybufcounthw >= nbuf / 2)) { 387 spin_lock_wr(&needsbuffer_spin); 388 bd_request_hw = 1; 389 spin_unlock_wr(&needsbuffer_spin); 390 wakeup(&bd_request_hw); 391 } 392 } 393 394 /* 395 * bd_heatup() 396 * 397 * Get the buf_daemon heated up when the number of running and dirty 398 * buffers exceeds the mid-point. 399 * 400 * Return the total number of dirty bytes past the second mid point 401 * as a measure of how much excess dirty data there is in the system. 402 * 403 * MPSAFE 404 */ 405 int 406 bd_heatup(void) 407 { 408 int mid1; 409 int mid2; 410 int totalspace; 411 412 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 413 414 totalspace = runningbufspace + dirtybufspace; 415 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 416 bd_speedup(); 417 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 418 if (totalspace >= mid2) 419 return(totalspace - mid2); 420 } 421 return(0); 422 } 423 424 /* 425 * bd_wait() 426 * 427 * Wait for the buffer cache to flush (totalspace) bytes worth of 428 * buffers, then return. 429 * 430 * Regardless this function blocks while the number of dirty buffers 431 * exceeds hidirtybufspace. 432 * 433 * MPSAFE 434 */ 435 void 436 bd_wait(int totalspace) 437 { 438 u_int i; 439 int count; 440 441 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 442 return; 443 444 while (totalspace > 0) { 445 bd_heatup(); 446 if (totalspace > runningbufspace + dirtybufspace) 447 totalspace = runningbufspace + dirtybufspace; 448 count = totalspace / BKVASIZE; 449 if (count >= BD_WAKE_SIZE) 450 count = BD_WAKE_SIZE - 1; 451 452 spin_lock_wr(&needsbuffer_spin); 453 i = (bd_wake_index + count) & BD_WAKE_MASK; 454 ++bd_wake_ary[i]; 455 tsleep_interlock(&bd_wake_ary[i], 0); 456 spin_unlock_wr(&needsbuffer_spin); 457 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 458 459 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 460 } 461 } 462 463 /* 464 * bd_signal() 465 * 466 * This function is called whenever runningbufspace or dirtybufspace 467 * is reduced. Track threads waiting for run+dirty buffer I/O 468 * complete. 469 * 470 * MPSAFE 471 */ 472 static void 473 bd_signal(int totalspace) 474 { 475 u_int i; 476 477 if (totalspace > 0) { 478 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 479 totalspace = BKVASIZE * BD_WAKE_SIZE; 480 spin_lock_wr(&needsbuffer_spin); 481 while (totalspace > 0) { 482 i = bd_wake_index++; 483 i &= BD_WAKE_MASK; 484 if (bd_wake_ary[i]) { 485 bd_wake_ary[i] = 0; 486 spin_unlock_wr(&needsbuffer_spin); 487 wakeup(&bd_wake_ary[i]); 488 spin_lock_wr(&needsbuffer_spin); 489 } 490 totalspace -= BKVASIZE; 491 } 492 spin_unlock_wr(&needsbuffer_spin); 493 } 494 } 495 496 /* 497 * BIO tracking support routines. 498 * 499 * Release a ref on a bio_track. Wakeup requests are atomically released 500 * along with the last reference so bk_active will never wind up set to 501 * only 0x80000000. 502 * 503 * MPSAFE 504 */ 505 static 506 void 507 bio_track_rel(struct bio_track *track) 508 { 509 int active; 510 int desired; 511 512 /* 513 * Shortcut 514 */ 515 active = track->bk_active; 516 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 517 return; 518 519 /* 520 * Full-on. Note that the wait flag is only atomically released on 521 * the 1->0 count transition. 522 * 523 * We check for a negative count transition using bit 30 since bit 31 524 * has a different meaning. 525 */ 526 for (;;) { 527 desired = (active & 0x7FFFFFFF) - 1; 528 if (desired) 529 desired |= active & 0x80000000; 530 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 531 if (desired & 0x40000000) 532 panic("bio_track_rel: bad count: %p\n", track); 533 if (active & 0x80000000) 534 wakeup(track); 535 break; 536 } 537 active = track->bk_active; 538 } 539 } 540 541 /* 542 * Wait for the tracking count to reach 0. 543 * 544 * Use atomic ops such that the wait flag is only set atomically when 545 * bk_active is non-zero. 546 * 547 * MPSAFE 548 */ 549 int 550 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 551 { 552 int active; 553 int desired; 554 int error; 555 556 /* 557 * Shortcut 558 */ 559 if (track->bk_active == 0) 560 return(0); 561 562 /* 563 * Full-on. Note that the wait flag may only be atomically set if 564 * the active count is non-zero. 565 */ 566 error = 0; 567 while ((active = track->bk_active) != 0) { 568 desired = active | 0x80000000; 569 tsleep_interlock(track, slp_flags); 570 if (active == desired || 571 atomic_cmpset_int(&track->bk_active, active, desired)) { 572 error = tsleep(track, slp_flags | PINTERLOCKED, 573 "iowait", slp_timo); 574 if (error) 575 break; 576 } 577 } 578 return (error); 579 } 580 581 /* 582 * bufinit: 583 * 584 * Load time initialisation of the buffer cache, called from machine 585 * dependant initialization code. 586 */ 587 void 588 bufinit(void) 589 { 590 struct buf *bp; 591 vm_offset_t bogus_offset; 592 int i; 593 594 spin_init(&needsbuffer_spin); 595 596 /* next, make a null set of free lists */ 597 for (i = 0; i < BUFFER_QUEUES; i++) 598 TAILQ_INIT(&bufqueues[i]); 599 600 /* finally, initialize each buffer header and stick on empty q */ 601 for (i = 0; i < nbuf; i++) { 602 bp = &buf[i]; 603 bzero(bp, sizeof *bp); 604 bp->b_flags = B_INVAL; /* we're just an empty header */ 605 bp->b_cmd = BUF_CMD_DONE; 606 bp->b_qindex = BQUEUE_EMPTY; 607 initbufbio(bp); 608 xio_init(&bp->b_xio); 609 buf_dep_init(bp); 610 BUF_LOCKINIT(bp); 611 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 612 } 613 614 /* 615 * maxbufspace is the absolute maximum amount of buffer space we are 616 * allowed to reserve in KVM and in real terms. The absolute maximum 617 * is nominally used by buf_daemon. hibufspace is the nominal maximum 618 * used by most other processes. The differential is required to 619 * ensure that buf_daemon is able to run when other processes might 620 * be blocked waiting for buffer space. 621 * 622 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 623 * this may result in KVM fragmentation which is not handled optimally 624 * by the system. 625 */ 626 maxbufspace = nbuf * BKVASIZE; 627 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 628 lobufspace = hibufspace - MAXBSIZE; 629 630 lorunningspace = 512 * 1024; 631 /* hirunningspace -- see below */ 632 633 /* 634 * Limit the amount of malloc memory since it is wired permanently 635 * into the kernel space. Even though this is accounted for in 636 * the buffer allocation, we don't want the malloced region to grow 637 * uncontrolled. The malloc scheme improves memory utilization 638 * significantly on average (small) directories. 639 */ 640 maxbufmallocspace = hibufspace / 20; 641 642 /* 643 * Reduce the chance of a deadlock occuring by limiting the number 644 * of delayed-write dirty buffers we allow to stack up. 645 * 646 * We don't want too much actually queued to the device at once 647 * (XXX this needs to be per-mount!), because the buffers will 648 * wind up locked for a very long period of time while the I/O 649 * drains. 650 */ 651 hidirtybufspace = hibufspace / 2; /* dirty + running */ 652 hirunningspace = hibufspace / 16; /* locked & queued to device */ 653 if (hirunningspace < 1024 * 1024) 654 hirunningspace = 1024 * 1024; 655 656 dirtybufspace = 0; 657 dirtybufspacehw = 0; 658 659 lodirtybufspace = hidirtybufspace / 2; 660 661 /* 662 * Maximum number of async ops initiated per buf_daemon loop. This is 663 * somewhat of a hack at the moment, we really need to limit ourselves 664 * based on the number of bytes of I/O in-transit that were initiated 665 * from buf_daemon. 666 */ 667 668 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 669 bogus_page = vm_page_alloc(&kernel_object, 670 (bogus_offset >> PAGE_SHIFT), 671 VM_ALLOC_NORMAL); 672 vmstats.v_wire_count++; 673 674 } 675 676 /* 677 * Initialize the embedded bio structures 678 */ 679 void 680 initbufbio(struct buf *bp) 681 { 682 bp->b_bio1.bio_buf = bp; 683 bp->b_bio1.bio_prev = NULL; 684 bp->b_bio1.bio_offset = NOOFFSET; 685 bp->b_bio1.bio_next = &bp->b_bio2; 686 bp->b_bio1.bio_done = NULL; 687 bp->b_bio1.bio_flags = 0; 688 689 bp->b_bio2.bio_buf = bp; 690 bp->b_bio2.bio_prev = &bp->b_bio1; 691 bp->b_bio2.bio_offset = NOOFFSET; 692 bp->b_bio2.bio_next = NULL; 693 bp->b_bio2.bio_done = NULL; 694 bp->b_bio2.bio_flags = 0; 695 } 696 697 /* 698 * Reinitialize the embedded bio structures as well as any additional 699 * translation cache layers. 700 */ 701 void 702 reinitbufbio(struct buf *bp) 703 { 704 struct bio *bio; 705 706 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 707 bio->bio_done = NULL; 708 bio->bio_offset = NOOFFSET; 709 } 710 } 711 712 /* 713 * Push another BIO layer onto an existing BIO and return it. The new 714 * BIO layer may already exist, holding cached translation data. 715 */ 716 struct bio * 717 push_bio(struct bio *bio) 718 { 719 struct bio *nbio; 720 721 if ((nbio = bio->bio_next) == NULL) { 722 int index = bio - &bio->bio_buf->b_bio_array[0]; 723 if (index >= NBUF_BIO - 1) { 724 panic("push_bio: too many layers bp %p\n", 725 bio->bio_buf); 726 } 727 nbio = &bio->bio_buf->b_bio_array[index + 1]; 728 bio->bio_next = nbio; 729 nbio->bio_prev = bio; 730 nbio->bio_buf = bio->bio_buf; 731 nbio->bio_offset = NOOFFSET; 732 nbio->bio_done = NULL; 733 nbio->bio_next = NULL; 734 } 735 KKASSERT(nbio->bio_done == NULL); 736 return(nbio); 737 } 738 739 /* 740 * Pop a BIO translation layer, returning the previous layer. The 741 * must have been previously pushed. 742 */ 743 struct bio * 744 pop_bio(struct bio *bio) 745 { 746 return(bio->bio_prev); 747 } 748 749 void 750 clearbiocache(struct bio *bio) 751 { 752 while (bio) { 753 bio->bio_offset = NOOFFSET; 754 bio = bio->bio_next; 755 } 756 } 757 758 /* 759 * bfreekva: 760 * 761 * Free the KVA allocation for buffer 'bp'. 762 * 763 * Must be called from a critical section as this is the only locking for 764 * buffer_map. 765 * 766 * Since this call frees up buffer space, we call bufspacewakeup(). 767 * 768 * MPALMOSTSAFE 769 */ 770 static void 771 bfreekva(struct buf *bp) 772 { 773 int count; 774 775 if (bp->b_kvasize) { 776 get_mplock(); 777 ++buffreekvacnt; 778 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 779 vm_map_lock(&buffer_map); 780 bufspace -= bp->b_kvasize; 781 vm_map_delete(&buffer_map, 782 (vm_offset_t) bp->b_kvabase, 783 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 784 &count 785 ); 786 vm_map_unlock(&buffer_map); 787 vm_map_entry_release(count); 788 bp->b_kvasize = 0; 789 bufspacewakeup(); 790 rel_mplock(); 791 } 792 } 793 794 /* 795 * bremfree: 796 * 797 * Remove the buffer from the appropriate free list. 798 */ 799 static __inline void 800 _bremfree(struct buf *bp) 801 { 802 if (bp->b_qindex != BQUEUE_NONE) { 803 KASSERT(BUF_REFCNTNB(bp) == 1, 804 ("bremfree: bp %p not locked",bp)); 805 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 806 bp->b_qindex = BQUEUE_NONE; 807 } else { 808 if (BUF_REFCNTNB(bp) <= 1) 809 panic("bremfree: removing a buffer not on a queue"); 810 } 811 } 812 813 void 814 bremfree(struct buf *bp) 815 { 816 spin_lock_wr(&bufspin); 817 _bremfree(bp); 818 spin_unlock_wr(&bufspin); 819 } 820 821 static void 822 bremfree_locked(struct buf *bp) 823 { 824 _bremfree(bp); 825 } 826 827 /* 828 * bread: 829 * 830 * Get a buffer with the specified data. Look in the cache first. We 831 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 832 * is set, the buffer is valid and we do not have to do anything ( see 833 * getblk() ). 834 * 835 * MPALMOSTSAFE 836 */ 837 int 838 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 839 { 840 struct buf *bp; 841 842 bp = getblk(vp, loffset, size, 0, 0); 843 *bpp = bp; 844 845 /* if not found in cache, do some I/O */ 846 if ((bp->b_flags & B_CACHE) == 0) { 847 get_mplock(); 848 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 849 bp->b_cmd = BUF_CMD_READ; 850 bp->b_bio1.bio_done = biodone_sync; 851 bp->b_bio1.bio_flags |= BIO_SYNC; 852 vfs_busy_pages(vp, bp); 853 vn_strategy(vp, &bp->b_bio1); 854 rel_mplock(); 855 return (biowait(&bp->b_bio1, "biord")); 856 } 857 return (0); 858 } 859 860 /* 861 * breadn: 862 * 863 * Operates like bread, but also starts asynchronous I/O on 864 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 865 * to initiating I/O . If B_CACHE is set, the buffer is valid 866 * and we do not have to do anything. 867 * 868 * MPALMOSTSAFE 869 */ 870 int 871 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 872 int *rabsize, int cnt, struct buf **bpp) 873 { 874 struct buf *bp, *rabp; 875 int i; 876 int rv = 0, readwait = 0; 877 878 *bpp = bp = getblk(vp, loffset, size, 0, 0); 879 880 /* if not found in cache, do some I/O */ 881 if ((bp->b_flags & B_CACHE) == 0) { 882 get_mplock(); 883 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 884 bp->b_cmd = BUF_CMD_READ; 885 bp->b_bio1.bio_done = biodone_sync; 886 bp->b_bio1.bio_flags |= BIO_SYNC; 887 vfs_busy_pages(vp, bp); 888 vn_strategy(vp, &bp->b_bio1); 889 ++readwait; 890 rel_mplock(); 891 } 892 893 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 894 if (inmem(vp, *raoffset)) 895 continue; 896 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 897 898 if ((rabp->b_flags & B_CACHE) == 0) { 899 get_mplock(); 900 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 901 rabp->b_cmd = BUF_CMD_READ; 902 vfs_busy_pages(vp, rabp); 903 BUF_KERNPROC(rabp); 904 vn_strategy(vp, &rabp->b_bio1); 905 rel_mplock(); 906 } else { 907 brelse(rabp); 908 } 909 } 910 if (readwait) 911 rv = biowait(&bp->b_bio1, "biord"); 912 return (rv); 913 } 914 915 /* 916 * bwrite: 917 * 918 * Synchronous write, waits for completion. 919 * 920 * Write, release buffer on completion. (Done by iodone 921 * if async). Do not bother writing anything if the buffer 922 * is invalid. 923 * 924 * Note that we set B_CACHE here, indicating that buffer is 925 * fully valid and thus cacheable. This is true even of NFS 926 * now so we set it generally. This could be set either here 927 * or in biodone() since the I/O is synchronous. We put it 928 * here. 929 */ 930 int 931 bwrite(struct buf *bp) 932 { 933 int error; 934 935 if (bp->b_flags & B_INVAL) { 936 brelse(bp); 937 return (0); 938 } 939 if (BUF_REFCNTNB(bp) == 0) 940 panic("bwrite: buffer is not busy???"); 941 942 /* Mark the buffer clean */ 943 bundirty(bp); 944 945 bp->b_flags &= ~(B_ERROR | B_EINTR); 946 bp->b_flags |= B_CACHE; 947 bp->b_cmd = BUF_CMD_WRITE; 948 bp->b_bio1.bio_done = biodone_sync; 949 bp->b_bio1.bio_flags |= BIO_SYNC; 950 vfs_busy_pages(bp->b_vp, bp); 951 952 /* 953 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 954 * valid for vnode-backed buffers. 955 */ 956 bp->b_runningbufspace = bp->b_bufsize; 957 if (bp->b_runningbufspace) { 958 runningbufspace += bp->b_runningbufspace; 959 ++runningbufcount; 960 } 961 962 vn_strategy(bp->b_vp, &bp->b_bio1); 963 error = biowait(&bp->b_bio1, "biows"); 964 brelse(bp); 965 return (error); 966 } 967 968 /* 969 * bawrite: 970 * 971 * Asynchronous write. Start output on a buffer, but do not wait for 972 * it to complete. The buffer is released when the output completes. 973 * 974 * bwrite() ( or the VOP routine anyway ) is responsible for handling 975 * B_INVAL buffers. Not us. 976 */ 977 void 978 bawrite(struct buf *bp) 979 { 980 if (bp->b_flags & B_INVAL) { 981 brelse(bp); 982 return; 983 } 984 if (BUF_REFCNTNB(bp) == 0) 985 panic("bwrite: buffer is not busy???"); 986 987 /* Mark the buffer clean */ 988 bundirty(bp); 989 990 bp->b_flags &= ~(B_ERROR | B_EINTR); 991 bp->b_flags |= B_CACHE; 992 bp->b_cmd = BUF_CMD_WRITE; 993 KKASSERT(bp->b_bio1.bio_done == NULL); 994 vfs_busy_pages(bp->b_vp, bp); 995 996 /* 997 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 998 * valid for vnode-backed buffers. 999 */ 1000 bp->b_runningbufspace = bp->b_bufsize; 1001 if (bp->b_runningbufspace) { 1002 runningbufspace += bp->b_runningbufspace; 1003 ++runningbufcount; 1004 } 1005 1006 BUF_KERNPROC(bp); 1007 vn_strategy(bp->b_vp, &bp->b_bio1); 1008 } 1009 1010 /* 1011 * bowrite: 1012 * 1013 * Ordered write. Start output on a buffer, and flag it so that the 1014 * device will write it in the order it was queued. The buffer is 1015 * released when the output completes. bwrite() ( or the VOP routine 1016 * anyway ) is responsible for handling B_INVAL buffers. 1017 */ 1018 int 1019 bowrite(struct buf *bp) 1020 { 1021 bp->b_flags |= B_ORDERED; 1022 bawrite(bp); 1023 return (0); 1024 } 1025 1026 /* 1027 * bdwrite: 1028 * 1029 * Delayed write. (Buffer is marked dirty). Do not bother writing 1030 * anything if the buffer is marked invalid. 1031 * 1032 * Note that since the buffer must be completely valid, we can safely 1033 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1034 * biodone() in order to prevent getblk from writing the buffer 1035 * out synchronously. 1036 */ 1037 void 1038 bdwrite(struct buf *bp) 1039 { 1040 if (BUF_REFCNTNB(bp) == 0) 1041 panic("bdwrite: buffer is not busy"); 1042 1043 if (bp->b_flags & B_INVAL) { 1044 brelse(bp); 1045 return; 1046 } 1047 bdirty(bp); 1048 1049 /* 1050 * Set B_CACHE, indicating that the buffer is fully valid. This is 1051 * true even of NFS now. 1052 */ 1053 bp->b_flags |= B_CACHE; 1054 1055 /* 1056 * This bmap keeps the system from needing to do the bmap later, 1057 * perhaps when the system is attempting to do a sync. Since it 1058 * is likely that the indirect block -- or whatever other datastructure 1059 * that the filesystem needs is still in memory now, it is a good 1060 * thing to do this. Note also, that if the pageout daemon is 1061 * requesting a sync -- there might not be enough memory to do 1062 * the bmap then... So, this is important to do. 1063 */ 1064 if (bp->b_bio2.bio_offset == NOOFFSET) { 1065 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1066 NULL, NULL, BUF_CMD_WRITE); 1067 } 1068 1069 /* 1070 * Because the underlying pages may still be mapped and 1071 * writable trying to set the dirty buffer (b_dirtyoff/end) 1072 * range here will be inaccurate. 1073 * 1074 * However, we must still clean the pages to satisfy the 1075 * vnode_pager and pageout daemon, so theythink the pages 1076 * have been "cleaned". What has really occured is that 1077 * they've been earmarked for later writing by the buffer 1078 * cache. 1079 * 1080 * So we get the b_dirtyoff/end update but will not actually 1081 * depend on it (NFS that is) until the pages are busied for 1082 * writing later on. 1083 */ 1084 vfs_clean_pages(bp); 1085 bqrelse(bp); 1086 1087 /* 1088 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1089 * due to the softdep code. 1090 */ 1091 } 1092 1093 /* 1094 * bdirty: 1095 * 1096 * Turn buffer into delayed write request by marking it B_DELWRI. 1097 * B_RELBUF and B_NOCACHE must be cleared. 1098 * 1099 * We reassign the buffer to itself to properly update it in the 1100 * dirty/clean lists. 1101 * 1102 * Must be called from a critical section. 1103 * The buffer must be on BQUEUE_NONE. 1104 */ 1105 void 1106 bdirty(struct buf *bp) 1107 { 1108 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1109 if (bp->b_flags & B_NOCACHE) { 1110 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1111 bp->b_flags &= ~B_NOCACHE; 1112 } 1113 if (bp->b_flags & B_INVAL) { 1114 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1115 } 1116 bp->b_flags &= ~B_RELBUF; 1117 1118 if ((bp->b_flags & B_DELWRI) == 0) { 1119 bp->b_flags |= B_DELWRI; 1120 reassignbuf(bp); 1121 atomic_add_int(&dirtybufcount, 1); 1122 dirtybufspace += bp->b_bufsize; 1123 if (bp->b_flags & B_HEAVY) { 1124 atomic_add_int(&dirtybufcounthw, 1); 1125 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1126 } 1127 bd_heatup(); 1128 } 1129 } 1130 1131 /* 1132 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1133 * needs to be flushed with a different buf_daemon thread to avoid 1134 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1135 */ 1136 void 1137 bheavy(struct buf *bp) 1138 { 1139 if ((bp->b_flags & B_HEAVY) == 0) { 1140 bp->b_flags |= B_HEAVY; 1141 if (bp->b_flags & B_DELWRI) { 1142 atomic_add_int(&dirtybufcounthw, 1); 1143 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1144 } 1145 } 1146 } 1147 1148 /* 1149 * bundirty: 1150 * 1151 * Clear B_DELWRI for buffer. 1152 * 1153 * Must be called from a critical section. 1154 * 1155 * The buffer is typically on BQUEUE_NONE but there is one case in 1156 * brelse() that calls this function after placing the buffer on 1157 * a different queue. 1158 * 1159 * MPSAFE 1160 */ 1161 void 1162 bundirty(struct buf *bp) 1163 { 1164 if (bp->b_flags & B_DELWRI) { 1165 bp->b_flags &= ~B_DELWRI; 1166 reassignbuf(bp); 1167 atomic_subtract_int(&dirtybufcount, 1); 1168 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1169 if (bp->b_flags & B_HEAVY) { 1170 atomic_subtract_int(&dirtybufcounthw, 1); 1171 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1172 } 1173 bd_signal(bp->b_bufsize); 1174 } 1175 /* 1176 * Since it is now being written, we can clear its deferred write flag. 1177 */ 1178 bp->b_flags &= ~B_DEFERRED; 1179 } 1180 1181 /* 1182 * brelse: 1183 * 1184 * Release a busy buffer and, if requested, free its resources. The 1185 * buffer will be stashed in the appropriate bufqueue[] allowing it 1186 * to be accessed later as a cache entity or reused for other purposes. 1187 * 1188 * MPALMOSTSAFE 1189 */ 1190 void 1191 brelse(struct buf *bp) 1192 { 1193 #ifdef INVARIANTS 1194 int saved_flags = bp->b_flags; 1195 #endif 1196 1197 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1198 1199 /* 1200 * If B_NOCACHE is set we are being asked to destroy the buffer and 1201 * its backing store. Clear B_DELWRI. 1202 * 1203 * B_NOCACHE is set in two cases: (1) when the caller really wants 1204 * to destroy the buffer and backing store and (2) when the caller 1205 * wants to destroy the buffer and backing store after a write 1206 * completes. 1207 */ 1208 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1209 bundirty(bp); 1210 } 1211 1212 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1213 /* 1214 * A re-dirtied buffer is only subject to destruction 1215 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1216 */ 1217 /* leave buffer intact */ 1218 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1219 (bp->b_bufsize <= 0)) { 1220 /* 1221 * Either a failed read or we were asked to free or not 1222 * cache the buffer. This path is reached with B_DELWRI 1223 * set only if B_INVAL is already set. B_NOCACHE governs 1224 * backing store destruction. 1225 * 1226 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1227 * buffer cannot be immediately freed. 1228 */ 1229 bp->b_flags |= B_INVAL; 1230 if (LIST_FIRST(&bp->b_dep) != NULL) { 1231 get_mplock(); 1232 buf_deallocate(bp); 1233 rel_mplock(); 1234 } 1235 if (bp->b_flags & B_DELWRI) { 1236 atomic_subtract_int(&dirtybufcount, 1); 1237 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1238 if (bp->b_flags & B_HEAVY) { 1239 atomic_subtract_int(&dirtybufcounthw, 1); 1240 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1241 } 1242 bd_signal(bp->b_bufsize); 1243 } 1244 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1245 } 1246 1247 /* 1248 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1249 * If vfs_vmio_release() is called with either bit set, the 1250 * underlying pages may wind up getting freed causing a previous 1251 * write (bdwrite()) to get 'lost' because pages associated with 1252 * a B_DELWRI bp are marked clean. Pages associated with a 1253 * B_LOCKED buffer may be mapped by the filesystem. 1254 * 1255 * If we want to release the buffer ourselves (rather then the 1256 * originator asking us to release it), give the originator a 1257 * chance to countermand the release by setting B_LOCKED. 1258 * 1259 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1260 * if B_DELWRI is set. 1261 * 1262 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1263 * on pages to return pages to the VM page queues. 1264 */ 1265 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1266 bp->b_flags &= ~B_RELBUF; 1267 } else if (vm_page_count_severe()) { 1268 if (LIST_FIRST(&bp->b_dep) != NULL) { 1269 get_mplock(); 1270 buf_deallocate(bp); /* can set B_LOCKED */ 1271 rel_mplock(); 1272 } 1273 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1274 bp->b_flags &= ~B_RELBUF; 1275 else 1276 bp->b_flags |= B_RELBUF; 1277 } 1278 1279 /* 1280 * Make sure b_cmd is clear. It may have already been cleared by 1281 * biodone(). 1282 * 1283 * At this point destroying the buffer is governed by the B_INVAL 1284 * or B_RELBUF flags. 1285 */ 1286 bp->b_cmd = BUF_CMD_DONE; 1287 1288 /* 1289 * VMIO buffer rundown. Make sure the VM page array is restored 1290 * after an I/O may have replaces some of the pages with bogus pages 1291 * in order to not destroy dirty pages in a fill-in read. 1292 * 1293 * Note that due to the code above, if a buffer is marked B_DELWRI 1294 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1295 * B_INVAL may still be set, however. 1296 * 1297 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1298 * but not the backing store. B_NOCACHE will destroy the backing 1299 * store. 1300 * 1301 * Note that dirty NFS buffers contain byte-granular write ranges 1302 * and should not be destroyed w/ B_INVAL even if the backing store 1303 * is left intact. 1304 */ 1305 if (bp->b_flags & B_VMIO) { 1306 /* 1307 * Rundown for VMIO buffers which are not dirty NFS buffers. 1308 */ 1309 int i, j, resid; 1310 vm_page_t m; 1311 off_t foff; 1312 vm_pindex_t poff; 1313 vm_object_t obj; 1314 struct vnode *vp; 1315 1316 vp = bp->b_vp; 1317 1318 /* 1319 * Get the base offset and length of the buffer. Note that 1320 * in the VMIO case if the buffer block size is not 1321 * page-aligned then b_data pointer may not be page-aligned. 1322 * But our b_xio.xio_pages array *IS* page aligned. 1323 * 1324 * block sizes less then DEV_BSIZE (usually 512) are not 1325 * supported due to the page granularity bits (m->valid, 1326 * m->dirty, etc...). 1327 * 1328 * See man buf(9) for more information 1329 */ 1330 1331 resid = bp->b_bufsize; 1332 foff = bp->b_loffset; 1333 1334 get_mplock(); 1335 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1336 m = bp->b_xio.xio_pages[i]; 1337 vm_page_flag_clear(m, PG_ZERO); 1338 /* 1339 * If we hit a bogus page, fixup *all* of them 1340 * now. Note that we left these pages wired 1341 * when we removed them so they had better exist, 1342 * and they cannot be ripped out from under us so 1343 * no critical section protection is necessary. 1344 */ 1345 if (m == bogus_page) { 1346 obj = vp->v_object; 1347 poff = OFF_TO_IDX(bp->b_loffset); 1348 1349 for (j = i; j < bp->b_xio.xio_npages; j++) { 1350 vm_page_t mtmp; 1351 1352 mtmp = bp->b_xio.xio_pages[j]; 1353 if (mtmp == bogus_page) { 1354 mtmp = vm_page_lookup(obj, poff + j); 1355 if (!mtmp) { 1356 panic("brelse: page missing"); 1357 } 1358 bp->b_xio.xio_pages[j] = mtmp; 1359 } 1360 } 1361 1362 if ((bp->b_flags & B_INVAL) == 0) { 1363 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1364 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1365 } 1366 m = bp->b_xio.xio_pages[i]; 1367 } 1368 1369 /* 1370 * Invalidate the backing store if B_NOCACHE is set 1371 * (e.g. used with vinvalbuf()). If this is NFS 1372 * we impose a requirement that the block size be 1373 * a multiple of PAGE_SIZE and create a temporary 1374 * hack to basically invalidate the whole page. The 1375 * problem is that NFS uses really odd buffer sizes 1376 * especially when tracking piecemeal writes and 1377 * it also vinvalbuf()'s a lot, which would result 1378 * in only partial page validation and invalidation 1379 * here. If the file page is mmap()'d, however, 1380 * all the valid bits get set so after we invalidate 1381 * here we would end up with weird m->valid values 1382 * like 0xfc. nfs_getpages() can't handle this so 1383 * we clear all the valid bits for the NFS case 1384 * instead of just some of them. 1385 * 1386 * The real bug is the VM system having to set m->valid 1387 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1388 * itself is an artifact of the whole 512-byte 1389 * granular mess that exists to support odd block 1390 * sizes and UFS meta-data block sizes (e.g. 6144). 1391 * A complete rewrite is required. 1392 * 1393 * XXX 1394 */ 1395 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1396 int poffset = foff & PAGE_MASK; 1397 int presid; 1398 1399 presid = PAGE_SIZE - poffset; 1400 if (bp->b_vp->v_tag == VT_NFS && 1401 bp->b_vp->v_type == VREG) { 1402 ; /* entire page */ 1403 } else if (presid > resid) { 1404 presid = resid; 1405 } 1406 KASSERT(presid >= 0, ("brelse: extra page")); 1407 vm_page_set_invalid(m, poffset, presid); 1408 } 1409 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1410 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1411 } 1412 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1413 vfs_vmio_release(bp); 1414 rel_mplock(); 1415 } else { 1416 /* 1417 * Rundown for non-VMIO buffers. 1418 */ 1419 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1420 get_mplock(); 1421 if (bp->b_bufsize) 1422 allocbuf(bp, 0); 1423 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1424 if (bp->b_vp) 1425 brelvp(bp); 1426 rel_mplock(); 1427 } 1428 } 1429 1430 if (bp->b_qindex != BQUEUE_NONE) 1431 panic("brelse: free buffer onto another queue???"); 1432 if (BUF_REFCNTNB(bp) > 1) { 1433 /* Temporary panic to verify exclusive locking */ 1434 /* This panic goes away when we allow shared refs */ 1435 panic("brelse: multiple refs"); 1436 /* NOT REACHED */ 1437 return; 1438 } 1439 1440 /* 1441 * Figure out the correct queue to place the cleaned up buffer on. 1442 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1443 * disassociated from their vnode. 1444 */ 1445 spin_lock_wr(&bufspin); 1446 if (bp->b_flags & B_LOCKED) { 1447 /* 1448 * Buffers that are locked are placed in the locked queue 1449 * immediately, regardless of their state. 1450 */ 1451 bp->b_qindex = BQUEUE_LOCKED; 1452 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1453 } else if (bp->b_bufsize == 0) { 1454 /* 1455 * Buffers with no memory. Due to conditionals near the top 1456 * of brelse() such buffers should probably already be 1457 * marked B_INVAL and disassociated from their vnode. 1458 */ 1459 bp->b_flags |= B_INVAL; 1460 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1461 KKASSERT((bp->b_flags & B_HASHED) == 0); 1462 if (bp->b_kvasize) { 1463 bp->b_qindex = BQUEUE_EMPTYKVA; 1464 } else { 1465 bp->b_qindex = BQUEUE_EMPTY; 1466 } 1467 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1468 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1469 /* 1470 * Buffers with junk contents. Again these buffers had better 1471 * already be disassociated from their vnode. 1472 */ 1473 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1474 KKASSERT((bp->b_flags & B_HASHED) == 0); 1475 bp->b_flags |= B_INVAL; 1476 bp->b_qindex = BQUEUE_CLEAN; 1477 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1478 } else { 1479 /* 1480 * Remaining buffers. These buffers are still associated with 1481 * their vnode. 1482 */ 1483 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1484 case B_DELWRI: 1485 bp->b_qindex = BQUEUE_DIRTY; 1486 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1487 break; 1488 case B_DELWRI | B_HEAVY: 1489 bp->b_qindex = BQUEUE_DIRTY_HW; 1490 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1491 b_freelist); 1492 break; 1493 default: 1494 /* 1495 * NOTE: Buffers are always placed at the end of the 1496 * queue. If B_AGE is not set the buffer will cycle 1497 * through the queue twice. 1498 */ 1499 bp->b_qindex = BQUEUE_CLEAN; 1500 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1501 break; 1502 } 1503 } 1504 spin_unlock_wr(&bufspin); 1505 1506 /* 1507 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1508 * on the correct queue. 1509 */ 1510 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1511 bundirty(bp); 1512 1513 /* 1514 * The bp is on an appropriate queue unless locked. If it is not 1515 * locked or dirty we can wakeup threads waiting for buffer space. 1516 * 1517 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1518 * if B_INVAL is set ). 1519 */ 1520 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1521 bufcountwakeup(); 1522 1523 /* 1524 * Something we can maybe free or reuse 1525 */ 1526 if (bp->b_bufsize || bp->b_kvasize) 1527 bufspacewakeup(); 1528 1529 /* 1530 * Clean up temporary flags and unlock the buffer. 1531 */ 1532 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1533 BUF_UNLOCK(bp); 1534 } 1535 1536 /* 1537 * bqrelse: 1538 * 1539 * Release a buffer back to the appropriate queue but do not try to free 1540 * it. The buffer is expected to be used again soon. 1541 * 1542 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1543 * biodone() to requeue an async I/O on completion. It is also used when 1544 * known good buffers need to be requeued but we think we may need the data 1545 * again soon. 1546 * 1547 * XXX we should be able to leave the B_RELBUF hint set on completion. 1548 * 1549 * MPSAFE 1550 */ 1551 void 1552 bqrelse(struct buf *bp) 1553 { 1554 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1555 1556 if (bp->b_qindex != BQUEUE_NONE) 1557 panic("bqrelse: free buffer onto another queue???"); 1558 if (BUF_REFCNTNB(bp) > 1) { 1559 /* do not release to free list */ 1560 panic("bqrelse: multiple refs"); 1561 return; 1562 } 1563 1564 buf_act_advance(bp); 1565 1566 spin_lock_wr(&bufspin); 1567 if (bp->b_flags & B_LOCKED) { 1568 /* 1569 * Locked buffers are released to the locked queue. However, 1570 * if the buffer is dirty it will first go into the dirty 1571 * queue and later on after the I/O completes successfully it 1572 * will be released to the locked queue. 1573 */ 1574 bp->b_qindex = BQUEUE_LOCKED; 1575 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1576 } else if (bp->b_flags & B_DELWRI) { 1577 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1578 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1579 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1580 } else if (vm_page_count_severe()) { 1581 /* 1582 * We are too low on memory, we have to try to free the 1583 * buffer (most importantly: the wired pages making up its 1584 * backing store) *now*. 1585 */ 1586 spin_unlock_wr(&bufspin); 1587 brelse(bp); 1588 return; 1589 } else { 1590 bp->b_qindex = BQUEUE_CLEAN; 1591 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1592 } 1593 spin_unlock_wr(&bufspin); 1594 1595 if ((bp->b_flags & B_LOCKED) == 0 && 1596 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1597 bufcountwakeup(); 1598 } 1599 1600 /* 1601 * Something we can maybe free or reuse. 1602 */ 1603 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1604 bufspacewakeup(); 1605 1606 /* 1607 * Final cleanup and unlock. Clear bits that are only used while a 1608 * buffer is actively locked. 1609 */ 1610 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1611 BUF_UNLOCK(bp); 1612 } 1613 1614 /* 1615 * vfs_vmio_release: 1616 * 1617 * Return backing pages held by the buffer 'bp' back to the VM system 1618 * if possible. The pages are freed if they are no longer valid or 1619 * attempt to free if it was used for direct I/O otherwise they are 1620 * sent to the page cache. 1621 * 1622 * Pages that were marked busy are left alone and skipped. 1623 * 1624 * The KVA mapping (b_data) for the underlying pages is removed by 1625 * this function. 1626 */ 1627 static void 1628 vfs_vmio_release(struct buf *bp) 1629 { 1630 int i; 1631 vm_page_t m; 1632 1633 crit_enter(); 1634 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1635 m = bp->b_xio.xio_pages[i]; 1636 bp->b_xio.xio_pages[i] = NULL; 1637 1638 /* 1639 * This is a very important bit of code. We try to track 1640 * VM page use whether the pages are wired into the buffer 1641 * cache or not. While wired into the buffer cache the 1642 * bp tracks the act_count. 1643 * 1644 * We can choose to place unwired pages on the inactive 1645 * queue (0) or active queue (1). If we place too many 1646 * on the active queue the queue will cycle the act_count 1647 * on pages we'd like to keep, just from single-use pages 1648 * (such as when doing a tar-up or file scan). 1649 */ 1650 if (bp->b_act_count < vm_cycle_point) 1651 vm_page_unwire(m, 0); 1652 else 1653 vm_page_unwire(m, 1); 1654 1655 /* 1656 * We don't mess with busy pages, it is 1657 * the responsibility of the process that 1658 * busied the pages to deal with them. 1659 */ 1660 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1661 continue; 1662 1663 if (m->wire_count == 0) { 1664 vm_page_flag_clear(m, PG_ZERO); 1665 /* 1666 * Might as well free the page if we can and it has 1667 * no valid data. We also free the page if the 1668 * buffer was used for direct I/O. 1669 */ 1670 #if 0 1671 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1672 m->hold_count == 0) { 1673 vm_page_busy(m); 1674 vm_page_protect(m, VM_PROT_NONE); 1675 vm_page_free(m); 1676 } else 1677 #endif 1678 if (bp->b_flags & B_DIRECT) { 1679 vm_page_try_to_free(m); 1680 } else if (vm_page_count_severe()) { 1681 m->act_count = bp->b_act_count; 1682 vm_page_try_to_cache(m); 1683 } else { 1684 m->act_count = bp->b_act_count; 1685 } 1686 } 1687 } 1688 crit_exit(); 1689 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages); 1690 if (bp->b_bufsize) { 1691 bufspacewakeup(); 1692 bp->b_bufsize = 0; 1693 } 1694 bp->b_xio.xio_npages = 0; 1695 bp->b_flags &= ~B_VMIO; 1696 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1697 if (bp->b_vp) { 1698 get_mplock(); 1699 brelvp(bp); 1700 rel_mplock(); 1701 } 1702 } 1703 1704 /* 1705 * vfs_bio_awrite: 1706 * 1707 * Implement clustered async writes for clearing out B_DELWRI buffers. 1708 * This is much better then the old way of writing only one buffer at 1709 * a time. Note that we may not be presented with the buffers in the 1710 * correct order, so we search for the cluster in both directions. 1711 * 1712 * The buffer is locked on call. 1713 */ 1714 int 1715 vfs_bio_awrite(struct buf *bp) 1716 { 1717 int i; 1718 int j; 1719 off_t loffset = bp->b_loffset; 1720 struct vnode *vp = bp->b_vp; 1721 int nbytes; 1722 struct buf *bpa; 1723 int nwritten; 1724 int size; 1725 1726 /* 1727 * right now we support clustered writing only to regular files. If 1728 * we find a clusterable block we could be in the middle of a cluster 1729 * rather then at the beginning. 1730 * 1731 * NOTE: b_bio1 contains the logical loffset and is aliased 1732 * to b_loffset. b_bio2 contains the translated block number. 1733 */ 1734 if ((vp->v_type == VREG) && 1735 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1736 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1737 1738 size = vp->v_mount->mnt_stat.f_iosize; 1739 1740 for (i = size; i < MAXPHYS; i += size) { 1741 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1742 BUF_REFCNT(bpa) == 0 && 1743 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1744 (B_DELWRI | B_CLUSTEROK)) && 1745 (bpa->b_bufsize == size)) { 1746 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1747 (bpa->b_bio2.bio_offset != 1748 bp->b_bio2.bio_offset + i)) 1749 break; 1750 } else { 1751 break; 1752 } 1753 } 1754 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1755 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1756 BUF_REFCNT(bpa) == 0 && 1757 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1758 (B_DELWRI | B_CLUSTEROK)) && 1759 (bpa->b_bufsize == size)) { 1760 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1761 (bpa->b_bio2.bio_offset != 1762 bp->b_bio2.bio_offset - j)) 1763 break; 1764 } else { 1765 break; 1766 } 1767 } 1768 j -= size; 1769 nbytes = (i + j); 1770 1771 /* 1772 * this is a possible cluster write 1773 */ 1774 if (nbytes != size) { 1775 BUF_UNLOCK(bp); 1776 nwritten = cluster_wbuild(vp, size, 1777 loffset - j, nbytes); 1778 return nwritten; 1779 } 1780 } 1781 1782 /* 1783 * default (old) behavior, writing out only one block 1784 * 1785 * XXX returns b_bufsize instead of b_bcount for nwritten? 1786 */ 1787 nwritten = bp->b_bufsize; 1788 bremfree(bp); 1789 bawrite(bp); 1790 1791 return nwritten; 1792 } 1793 1794 /* 1795 * getnewbuf: 1796 * 1797 * Find and initialize a new buffer header, freeing up existing buffers 1798 * in the bufqueues as necessary. The new buffer is returned locked. 1799 * 1800 * Important: B_INVAL is not set. If the caller wishes to throw the 1801 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1802 * 1803 * We block if: 1804 * We have insufficient buffer headers 1805 * We have insufficient buffer space 1806 * buffer_map is too fragmented ( space reservation fails ) 1807 * If we have to flush dirty buffers ( but we try to avoid this ) 1808 * 1809 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1810 * Instead we ask the buf daemon to do it for us. We attempt to 1811 * avoid piecemeal wakeups of the pageout daemon. 1812 * 1813 * MPALMOSTSAFE 1814 */ 1815 static struct buf * 1816 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1817 { 1818 struct buf *bp; 1819 struct buf *nbp; 1820 int defrag = 0; 1821 int nqindex; 1822 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1823 static int flushingbufs; 1824 1825 /* 1826 * We can't afford to block since we might be holding a vnode lock, 1827 * which may prevent system daemons from running. We deal with 1828 * low-memory situations by proactively returning memory and running 1829 * async I/O rather then sync I/O. 1830 */ 1831 1832 ++getnewbufcalls; 1833 --getnewbufrestarts; 1834 restart: 1835 ++getnewbufrestarts; 1836 1837 /* 1838 * Setup for scan. If we do not have enough free buffers, 1839 * we setup a degenerate case that immediately fails. Note 1840 * that if we are specially marked process, we are allowed to 1841 * dip into our reserves. 1842 * 1843 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1844 * 1845 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1846 * However, there are a number of cases (defragging, reusing, ...) 1847 * where we cannot backup. 1848 */ 1849 nqindex = BQUEUE_EMPTYKVA; 1850 spin_lock_wr(&bufspin); 1851 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1852 1853 if (nbp == NULL) { 1854 /* 1855 * If no EMPTYKVA buffers and we are either 1856 * defragging or reusing, locate a CLEAN buffer 1857 * to free or reuse. If bufspace useage is low 1858 * skip this step so we can allocate a new buffer. 1859 */ 1860 if (defrag || bufspace >= lobufspace) { 1861 nqindex = BQUEUE_CLEAN; 1862 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1863 } 1864 1865 /* 1866 * If we could not find or were not allowed to reuse a 1867 * CLEAN buffer, check to see if it is ok to use an EMPTY 1868 * buffer. We can only use an EMPTY buffer if allocating 1869 * its KVA would not otherwise run us out of buffer space. 1870 */ 1871 if (nbp == NULL && defrag == 0 && 1872 bufspace + maxsize < hibufspace) { 1873 nqindex = BQUEUE_EMPTY; 1874 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1875 } 1876 } 1877 1878 /* 1879 * Run scan, possibly freeing data and/or kva mappings on the fly 1880 * depending. 1881 * 1882 * WARNING! bufspin is held! 1883 */ 1884 while ((bp = nbp) != NULL) { 1885 int qindex = nqindex; 1886 1887 nbp = TAILQ_NEXT(bp, b_freelist); 1888 1889 /* 1890 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1891 * cycles through the queue twice before being selected. 1892 */ 1893 if (qindex == BQUEUE_CLEAN && 1894 (bp->b_flags & B_AGE) == 0 && nbp) { 1895 bp->b_flags |= B_AGE; 1896 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 1897 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 1898 continue; 1899 } 1900 1901 /* 1902 * Calculate next bp ( we can only use it if we do not block 1903 * or do other fancy things ). 1904 */ 1905 if (nbp == NULL) { 1906 switch(qindex) { 1907 case BQUEUE_EMPTY: 1908 nqindex = BQUEUE_EMPTYKVA; 1909 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 1910 break; 1911 /* fall through */ 1912 case BQUEUE_EMPTYKVA: 1913 nqindex = BQUEUE_CLEAN; 1914 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 1915 break; 1916 /* fall through */ 1917 case BQUEUE_CLEAN: 1918 /* 1919 * nbp is NULL. 1920 */ 1921 break; 1922 } 1923 } 1924 1925 /* 1926 * Sanity Checks 1927 */ 1928 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 1929 1930 /* 1931 * Note: we no longer distinguish between VMIO and non-VMIO 1932 * buffers. 1933 */ 1934 1935 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1936 1937 /* 1938 * If we are defragging then we need a buffer with 1939 * b_kvasize != 0. XXX this situation should no longer 1940 * occur, if defrag is non-zero the buffer's b_kvasize 1941 * should also be non-zero at this point. XXX 1942 */ 1943 if (defrag && bp->b_kvasize == 0) { 1944 kprintf("Warning: defrag empty buffer %p\n", bp); 1945 continue; 1946 } 1947 1948 /* 1949 * Start freeing the bp. This is somewhat involved. nbp 1950 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 1951 * on the clean list must be disassociated from their 1952 * current vnode. Buffers on the empty[kva] lists have 1953 * already been disassociated. 1954 */ 1955 1956 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1957 spin_unlock_wr(&bufspin); 1958 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp); 1959 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 1960 goto restart; 1961 } 1962 if (bp->b_qindex != qindex) { 1963 spin_unlock_wr(&bufspin); 1964 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex); 1965 BUF_UNLOCK(bp); 1966 goto restart; 1967 } 1968 bremfree_locked(bp); 1969 spin_unlock_wr(&bufspin); 1970 1971 /* 1972 * Dependancies must be handled before we disassociate the 1973 * vnode. 1974 * 1975 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 1976 * be immediately disassociated. HAMMER then becomes 1977 * responsible for releasing the buffer. 1978 * 1979 * NOTE: bufspin is UNLOCKED now. 1980 */ 1981 if (LIST_FIRST(&bp->b_dep) != NULL) { 1982 get_mplock(); 1983 buf_deallocate(bp); 1984 rel_mplock(); 1985 if (bp->b_flags & B_LOCKED) { 1986 bqrelse(bp); 1987 goto restart; 1988 } 1989 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 1990 } 1991 1992 if (qindex == BQUEUE_CLEAN) { 1993 get_mplock(); 1994 if (bp->b_flags & B_VMIO) { 1995 get_mplock(); 1996 vfs_vmio_release(bp); 1997 rel_mplock(); 1998 } 1999 if (bp->b_vp) 2000 brelvp(bp); 2001 rel_mplock(); 2002 } 2003 2004 /* 2005 * NOTE: nbp is now entirely invalid. We can only restart 2006 * the scan from this point on. 2007 * 2008 * Get the rest of the buffer freed up. b_kva* is still 2009 * valid after this operation. 2010 */ 2011 2012 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 2013 KKASSERT((bp->b_flags & B_HASHED) == 0); 2014 2015 /* 2016 * critical section protection is not required when 2017 * scrapping a buffer's contents because it is already 2018 * wired. 2019 */ 2020 if (bp->b_bufsize) { 2021 get_mplock(); 2022 allocbuf(bp, 0); 2023 rel_mplock(); 2024 } 2025 2026 bp->b_flags = B_BNOCLIP; 2027 bp->b_cmd = BUF_CMD_DONE; 2028 bp->b_vp = NULL; 2029 bp->b_error = 0; 2030 bp->b_resid = 0; 2031 bp->b_bcount = 0; 2032 bp->b_xio.xio_npages = 0; 2033 bp->b_dirtyoff = bp->b_dirtyend = 0; 2034 bp->b_act_count = ACT_INIT; 2035 reinitbufbio(bp); 2036 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2037 buf_dep_init(bp); 2038 if (blkflags & GETBLK_BHEAVY) 2039 bp->b_flags |= B_HEAVY; 2040 2041 /* 2042 * If we are defragging then free the buffer. 2043 */ 2044 if (defrag) { 2045 bp->b_flags |= B_INVAL; 2046 bfreekva(bp); 2047 brelse(bp); 2048 defrag = 0; 2049 goto restart; 2050 } 2051 2052 /* 2053 * If we are overcomitted then recover the buffer and its 2054 * KVM space. This occurs in rare situations when multiple 2055 * processes are blocked in getnewbuf() or allocbuf(). 2056 */ 2057 if (bufspace >= hibufspace) 2058 flushingbufs = 1; 2059 if (flushingbufs && bp->b_kvasize != 0) { 2060 bp->b_flags |= B_INVAL; 2061 bfreekva(bp); 2062 brelse(bp); 2063 goto restart; 2064 } 2065 if (bufspace < lobufspace) 2066 flushingbufs = 0; 2067 break; 2068 /* NOT REACHED, bufspin not held */ 2069 } 2070 2071 /* 2072 * If we exhausted our list, sleep as appropriate. We may have to 2073 * wakeup various daemons and write out some dirty buffers. 2074 * 2075 * Generally we are sleeping due to insufficient buffer space. 2076 * 2077 * NOTE: bufspin is held if bp is NULL, else it is not held. 2078 */ 2079 if (bp == NULL) { 2080 int flags; 2081 char *waitmsg; 2082 2083 spin_unlock_wr(&bufspin); 2084 if (defrag) { 2085 flags = VFS_BIO_NEED_BUFSPACE; 2086 waitmsg = "nbufkv"; 2087 } else if (bufspace >= hibufspace) { 2088 waitmsg = "nbufbs"; 2089 flags = VFS_BIO_NEED_BUFSPACE; 2090 } else { 2091 waitmsg = "newbuf"; 2092 flags = VFS_BIO_NEED_ANY; 2093 } 2094 2095 needsbuffer |= flags; 2096 bd_speedup(); /* heeeelp */ 2097 while (needsbuffer & flags) { 2098 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo)) 2099 return (NULL); 2100 } 2101 } else { 2102 /* 2103 * We finally have a valid bp. We aren't quite out of the 2104 * woods, we still have to reserve kva space. In order 2105 * to keep fragmentation sane we only allocate kva in 2106 * BKVASIZE chunks. 2107 * 2108 * (bufspin is not held) 2109 */ 2110 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2111 2112 if (maxsize != bp->b_kvasize) { 2113 vm_offset_t addr = 0; 2114 int count; 2115 2116 bfreekva(bp); 2117 2118 get_mplock(); 2119 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2120 vm_map_lock(&buffer_map); 2121 2122 if (vm_map_findspace(&buffer_map, 2123 vm_map_min(&buffer_map), maxsize, 2124 maxsize, 0, &addr)) { 2125 /* 2126 * Uh oh. Buffer map is too fragmented. We 2127 * must defragment the map. 2128 */ 2129 vm_map_unlock(&buffer_map); 2130 vm_map_entry_release(count); 2131 ++bufdefragcnt; 2132 defrag = 1; 2133 bp->b_flags |= B_INVAL; 2134 rel_mplock(); 2135 brelse(bp); 2136 goto restart; 2137 } 2138 if (addr) { 2139 vm_map_insert(&buffer_map, &count, 2140 NULL, 0, 2141 addr, addr + maxsize, 2142 VM_MAPTYPE_NORMAL, 2143 VM_PROT_ALL, VM_PROT_ALL, 2144 MAP_NOFAULT); 2145 2146 bp->b_kvabase = (caddr_t) addr; 2147 bp->b_kvasize = maxsize; 2148 bufspace += bp->b_kvasize; 2149 ++bufreusecnt; 2150 } 2151 vm_map_unlock(&buffer_map); 2152 vm_map_entry_release(count); 2153 rel_mplock(); 2154 } 2155 bp->b_data = bp->b_kvabase; 2156 } 2157 return(bp); 2158 } 2159 2160 /* 2161 * This routine is called in an emergency to recover VM pages from the 2162 * buffer cache by cashing in clean buffers. The idea is to recover 2163 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2164 */ 2165 static int 2166 recoverbufpages(void) 2167 { 2168 struct buf *bp; 2169 int bytes = 0; 2170 2171 ++recoverbufcalls; 2172 2173 spin_lock_wr(&bufspin); 2174 while (bytes < MAXBSIZE) { 2175 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2176 if (bp == NULL) 2177 break; 2178 2179 /* 2180 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2181 * cycles through the queue twice before being selected. 2182 */ 2183 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2184 bp->b_flags |= B_AGE; 2185 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2186 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2187 bp, b_freelist); 2188 continue; 2189 } 2190 2191 /* 2192 * Sanity Checks 2193 */ 2194 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2195 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2196 2197 /* 2198 * Start freeing the bp. This is somewhat involved. 2199 * 2200 * Buffers on the clean list must be disassociated from 2201 * their current vnode 2202 */ 2203 2204 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2205 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp); 2206 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2207 continue; 2208 } 2209 if (bp->b_qindex != BQUEUE_CLEAN) { 2210 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex); 2211 BUF_UNLOCK(bp); 2212 continue; 2213 } 2214 bremfree_locked(bp); 2215 spin_unlock_wr(&bufspin); 2216 2217 /* 2218 * Dependancies must be handled before we disassociate the 2219 * vnode. 2220 * 2221 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2222 * be immediately disassociated. HAMMER then becomes 2223 * responsible for releasing the buffer. 2224 */ 2225 if (LIST_FIRST(&bp->b_dep) != NULL) { 2226 buf_deallocate(bp); 2227 if (bp->b_flags & B_LOCKED) { 2228 bqrelse(bp); 2229 spin_lock_wr(&bufspin); 2230 continue; 2231 } 2232 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2233 } 2234 2235 bytes += bp->b_bufsize; 2236 2237 get_mplock(); 2238 if (bp->b_flags & B_VMIO) { 2239 bp->b_flags |= B_DIRECT; /* try to free pages */ 2240 vfs_vmio_release(bp); 2241 } 2242 if (bp->b_vp) 2243 brelvp(bp); 2244 2245 KKASSERT(bp->b_vp == NULL); 2246 KKASSERT((bp->b_flags & B_HASHED) == 0); 2247 2248 /* 2249 * critical section protection is not required when 2250 * scrapping a buffer's contents because it is already 2251 * wired. 2252 */ 2253 if (bp->b_bufsize) 2254 allocbuf(bp, 0); 2255 rel_mplock(); 2256 2257 bp->b_flags = B_BNOCLIP; 2258 bp->b_cmd = BUF_CMD_DONE; 2259 bp->b_vp = NULL; 2260 bp->b_error = 0; 2261 bp->b_resid = 0; 2262 bp->b_bcount = 0; 2263 bp->b_xio.xio_npages = 0; 2264 bp->b_dirtyoff = bp->b_dirtyend = 0; 2265 reinitbufbio(bp); 2266 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2267 buf_dep_init(bp); 2268 bp->b_flags |= B_INVAL; 2269 /* bfreekva(bp); */ 2270 brelse(bp); 2271 spin_lock_wr(&bufspin); 2272 } 2273 spin_unlock_wr(&bufspin); 2274 return(bytes); 2275 } 2276 2277 /* 2278 * buf_daemon: 2279 * 2280 * Buffer flushing daemon. Buffers are normally flushed by the 2281 * update daemon but if it cannot keep up this process starts to 2282 * take the load in an attempt to prevent getnewbuf() from blocking. 2283 * 2284 * Once a flush is initiated it does not stop until the number 2285 * of buffers falls below lodirtybuffers, but we will wake up anyone 2286 * waiting at the mid-point. 2287 */ 2288 2289 static struct kproc_desc buf_kp = { 2290 "bufdaemon", 2291 buf_daemon, 2292 &bufdaemon_td 2293 }; 2294 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2295 kproc_start, &buf_kp) 2296 2297 static struct kproc_desc bufhw_kp = { 2298 "bufdaemon_hw", 2299 buf_daemon_hw, 2300 &bufdaemonhw_td 2301 }; 2302 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2303 kproc_start, &bufhw_kp) 2304 2305 static void 2306 buf_daemon(void) 2307 { 2308 int limit; 2309 2310 /* 2311 * This process needs to be suspended prior to shutdown sync. 2312 */ 2313 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2314 bufdaemon_td, SHUTDOWN_PRI_LAST); 2315 curthread->td_flags |= TDF_SYSTHREAD; 2316 2317 /* 2318 * This process is allowed to take the buffer cache to the limit 2319 */ 2320 crit_enter(); 2321 2322 for (;;) { 2323 kproc_suspend_loop(); 2324 2325 /* 2326 * Do the flush as long as the number of dirty buffers 2327 * (including those running) exceeds lodirtybufspace. 2328 * 2329 * When flushing limit running I/O to hirunningspace 2330 * Do the flush. Limit the amount of in-transit I/O we 2331 * allow to build up, otherwise we would completely saturate 2332 * the I/O system. Wakeup any waiting processes before we 2333 * normally would so they can run in parallel with our drain. 2334 * 2335 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2336 * but because we split the operation into two threads we 2337 * have to cut it in half for each thread. 2338 */ 2339 waitrunningbufspace(); 2340 limit = lodirtybufspace / 2; 2341 while (runningbufspace + dirtybufspace > limit || 2342 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2343 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2344 break; 2345 if (runningbufspace < hirunningspace) 2346 continue; 2347 waitrunningbufspace(); 2348 } 2349 2350 /* 2351 * We reached our low water mark, reset the 2352 * request and sleep until we are needed again. 2353 * The sleep is just so the suspend code works. 2354 */ 2355 spin_lock_wr(&needsbuffer_spin); 2356 if (bd_request == 0) { 2357 ssleep(&bd_request, &needsbuffer_spin, 0, 2358 "psleep", hz); 2359 } 2360 bd_request = 0; 2361 spin_unlock_wr(&needsbuffer_spin); 2362 } 2363 } 2364 2365 static void 2366 buf_daemon_hw(void) 2367 { 2368 int limit; 2369 2370 /* 2371 * This process needs to be suspended prior to shutdown sync. 2372 */ 2373 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2374 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2375 curthread->td_flags |= TDF_SYSTHREAD; 2376 2377 /* 2378 * This process is allowed to take the buffer cache to the limit 2379 */ 2380 crit_enter(); 2381 2382 for (;;) { 2383 kproc_suspend_loop(); 2384 2385 /* 2386 * Do the flush. Limit the amount of in-transit I/O we 2387 * allow to build up, otherwise we would completely saturate 2388 * the I/O system. Wakeup any waiting processes before we 2389 * normally would so they can run in parallel with our drain. 2390 * 2391 * Once we decide to flush push the queued I/O up to 2392 * hirunningspace in order to trigger bursting by the bioq 2393 * subsystem. 2394 * 2395 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2396 * but because we split the operation into two threads we 2397 * have to cut it in half for each thread. 2398 */ 2399 waitrunningbufspace(); 2400 limit = lodirtybufspace / 2; 2401 while (runningbufspace + dirtybufspacehw > limit || 2402 dirtybufcounthw >= nbuf / 2) { 2403 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2404 break; 2405 if (runningbufspace < hirunningspace) 2406 continue; 2407 waitrunningbufspace(); 2408 } 2409 2410 /* 2411 * We reached our low water mark, reset the 2412 * request and sleep until we are needed again. 2413 * The sleep is just so the suspend code works. 2414 */ 2415 spin_lock_wr(&needsbuffer_spin); 2416 if (bd_request_hw == 0) { 2417 ssleep(&bd_request_hw, &needsbuffer_spin, 0, 2418 "psleep", hz); 2419 } 2420 bd_request_hw = 0; 2421 spin_unlock_wr(&needsbuffer_spin); 2422 } 2423 } 2424 2425 /* 2426 * flushbufqueues: 2427 * 2428 * Try to flush a buffer in the dirty queue. We must be careful to 2429 * free up B_INVAL buffers instead of write them, which NFS is 2430 * particularly sensitive to. 2431 * 2432 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2433 * that we really want to try to get the buffer out and reuse it 2434 * due to the write load on the machine. 2435 */ 2436 static int 2437 flushbufqueues(bufq_type_t q) 2438 { 2439 struct buf *bp; 2440 int r = 0; 2441 int spun; 2442 2443 spin_lock_wr(&bufspin); 2444 spun = 1; 2445 2446 bp = TAILQ_FIRST(&bufqueues[q]); 2447 while (bp) { 2448 KASSERT((bp->b_flags & B_DELWRI), 2449 ("unexpected clean buffer %p", bp)); 2450 2451 if (bp->b_flags & B_DELWRI) { 2452 if (bp->b_flags & B_INVAL) { 2453 spin_unlock_wr(&bufspin); 2454 spun = 0; 2455 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 2456 panic("flushbufqueues: locked buf"); 2457 bremfree(bp); 2458 brelse(bp); 2459 ++r; 2460 break; 2461 } 2462 if (LIST_FIRST(&bp->b_dep) != NULL && 2463 (bp->b_flags & B_DEFERRED) == 0 && 2464 buf_countdeps(bp, 0)) { 2465 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2466 TAILQ_INSERT_TAIL(&bufqueues[q], bp, 2467 b_freelist); 2468 bp->b_flags |= B_DEFERRED; 2469 bp = TAILQ_FIRST(&bufqueues[q]); 2470 continue; 2471 } 2472 2473 /* 2474 * Only write it out if we can successfully lock 2475 * it. If the buffer has a dependancy, 2476 * buf_checkwrite must also return 0 for us to 2477 * be able to initate the write. 2478 * 2479 * If the buffer is flagged B_ERROR it may be 2480 * requeued over and over again, we try to 2481 * avoid a live lock. 2482 */ 2483 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 2484 spin_unlock_wr(&bufspin); 2485 spun = 0; 2486 if (LIST_FIRST(&bp->b_dep) != NULL && 2487 buf_checkwrite(bp)) { 2488 bremfree(bp); 2489 brelse(bp); 2490 } else if (bp->b_flags & B_ERROR) { 2491 tsleep(bp, 0, "bioer", 1); 2492 bp->b_flags &= ~B_AGE; 2493 vfs_bio_awrite(bp); 2494 } else { 2495 bp->b_flags |= B_AGE; 2496 vfs_bio_awrite(bp); 2497 } 2498 ++r; 2499 break; 2500 } 2501 } 2502 bp = TAILQ_NEXT(bp, b_freelist); 2503 } 2504 if (spun) 2505 spin_unlock_wr(&bufspin); 2506 return (r); 2507 } 2508 2509 /* 2510 * inmem: 2511 * 2512 * Returns true if no I/O is needed to access the associated VM object. 2513 * This is like findblk except it also hunts around in the VM system for 2514 * the data. 2515 * 2516 * Note that we ignore vm_page_free() races from interrupts against our 2517 * lookup, since if the caller is not protected our return value will not 2518 * be any more valid then otherwise once we exit the critical section. 2519 */ 2520 int 2521 inmem(struct vnode *vp, off_t loffset) 2522 { 2523 vm_object_t obj; 2524 vm_offset_t toff, tinc, size; 2525 vm_page_t m; 2526 2527 if (findblk(vp, loffset, FINDBLK_TEST)) 2528 return 1; 2529 if (vp->v_mount == NULL) 2530 return 0; 2531 if ((obj = vp->v_object) == NULL) 2532 return 0; 2533 2534 size = PAGE_SIZE; 2535 if (size > vp->v_mount->mnt_stat.f_iosize) 2536 size = vp->v_mount->mnt_stat.f_iosize; 2537 2538 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2539 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2540 if (m == NULL) 2541 return 0; 2542 tinc = size; 2543 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2544 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2545 if (vm_page_is_valid(m, 2546 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2547 return 0; 2548 } 2549 return 1; 2550 } 2551 2552 /* 2553 * findblk: 2554 * 2555 * Locate and return the specified buffer. Unless flagged otherwise, 2556 * a locked buffer will be returned if it exists or NULL if it does not. 2557 * 2558 * findblk()'d buffers are still on the bufqueues and if you intend 2559 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2560 * and possibly do other stuff to it. 2561 * 2562 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2563 * for locking the buffer and ensuring that it remains 2564 * the desired buffer after locking. 2565 * 2566 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2567 * to acquire the lock we return NULL, even if the 2568 * buffer exists. 2569 * 2570 * (0) - Lock the buffer blocking. 2571 * 2572 * MPSAFE 2573 */ 2574 struct buf * 2575 findblk(struct vnode *vp, off_t loffset, int flags) 2576 { 2577 lwkt_tokref vlock; 2578 struct buf *bp; 2579 int lkflags; 2580 2581 lkflags = LK_EXCLUSIVE; 2582 if (flags & FINDBLK_NBLOCK) 2583 lkflags |= LK_NOWAIT; 2584 2585 for (;;) { 2586 lwkt_gettoken(&vlock, &vp->v_token); 2587 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2588 lwkt_reltoken(&vlock); 2589 if (bp == NULL || (flags & FINDBLK_TEST)) 2590 break; 2591 if (BUF_LOCK(bp, lkflags)) { 2592 bp = NULL; 2593 break; 2594 } 2595 if (bp->b_vp == vp && bp->b_loffset == loffset) 2596 break; 2597 BUF_UNLOCK(bp); 2598 } 2599 return(bp); 2600 } 2601 2602 /* 2603 * getcacheblk: 2604 * 2605 * Similar to getblk() except only returns the buffer if it is 2606 * B_CACHE and requires no other manipulation. Otherwise NULL 2607 * is returned. 2608 * 2609 * If B_RAM is set the buffer might be just fine, but we return 2610 * NULL anyway because we want the code to fall through to the 2611 * cluster read. Otherwise read-ahead breaks. 2612 */ 2613 struct buf * 2614 getcacheblk(struct vnode *vp, off_t loffset) 2615 { 2616 struct buf *bp; 2617 2618 bp = findblk(vp, loffset, 0); 2619 if (bp) { 2620 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) { 2621 bp->b_flags &= ~B_AGE; 2622 bremfree(bp); 2623 } else { 2624 BUF_UNLOCK(bp); 2625 bp = NULL; 2626 } 2627 } 2628 return (bp); 2629 } 2630 2631 /* 2632 * getblk: 2633 * 2634 * Get a block given a specified block and offset into a file/device. 2635 * B_INVAL may or may not be set on return. The caller should clear 2636 * B_INVAL prior to initiating a READ. 2637 * 2638 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2639 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2640 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2641 * without doing any of those things the system will likely believe 2642 * the buffer to be valid (especially if it is not B_VMIO), and the 2643 * next getblk() will return the buffer with B_CACHE set. 2644 * 2645 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2646 * an existing buffer. 2647 * 2648 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2649 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2650 * and then cleared based on the backing VM. If the previous buffer is 2651 * non-0-sized but invalid, B_CACHE will be cleared. 2652 * 2653 * If getblk() must create a new buffer, the new buffer is returned with 2654 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2655 * case it is returned with B_INVAL clear and B_CACHE set based on the 2656 * backing VM. 2657 * 2658 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2659 * B_CACHE bit is clear. 2660 * 2661 * What this means, basically, is that the caller should use B_CACHE to 2662 * determine whether the buffer is fully valid or not and should clear 2663 * B_INVAL prior to issuing a read. If the caller intends to validate 2664 * the buffer by loading its data area with something, the caller needs 2665 * to clear B_INVAL. If the caller does this without issuing an I/O, 2666 * the caller should set B_CACHE ( as an optimization ), else the caller 2667 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2668 * a write attempt or if it was a successfull read. If the caller 2669 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2670 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2671 * 2672 * getblk flags: 2673 * 2674 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2675 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2676 * 2677 * MPALMOSTSAFE 2678 */ 2679 struct buf * 2680 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2681 { 2682 struct buf *bp; 2683 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2684 int error; 2685 int lkflags; 2686 2687 if (size > MAXBSIZE) 2688 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2689 if (vp->v_object == NULL) 2690 panic("getblk: vnode %p has no object!", vp); 2691 2692 loop: 2693 if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) { 2694 /* 2695 * The buffer was found in the cache, but we need to lock it. 2696 * Even with LK_NOWAIT the lockmgr may break our critical 2697 * section, so double-check the validity of the buffer 2698 * once the lock has been obtained. 2699 */ 2700 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2701 if (blkflags & GETBLK_NOWAIT) 2702 return(NULL); 2703 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2704 if (blkflags & GETBLK_PCATCH) 2705 lkflags |= LK_PCATCH; 2706 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2707 if (error) { 2708 if (error == ENOLCK) 2709 goto loop; 2710 return (NULL); 2711 } 2712 /* buffer may have changed on us */ 2713 } 2714 2715 /* 2716 * Once the buffer has been locked, make sure we didn't race 2717 * a buffer recyclement. Buffers that are no longer hashed 2718 * will have b_vp == NULL, so this takes care of that check 2719 * as well. 2720 */ 2721 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2722 kprintf("Warning buffer %p (vp %p loffset %lld) " 2723 "was recycled\n", 2724 bp, vp, (long long)loffset); 2725 BUF_UNLOCK(bp); 2726 goto loop; 2727 } 2728 2729 /* 2730 * If SZMATCH any pre-existing buffer must be of the requested 2731 * size or NULL is returned. The caller absolutely does not 2732 * want getblk() to bwrite() the buffer on a size mismatch. 2733 */ 2734 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2735 BUF_UNLOCK(bp); 2736 return(NULL); 2737 } 2738 2739 /* 2740 * All vnode-based buffers must be backed by a VM object. 2741 */ 2742 KKASSERT(bp->b_flags & B_VMIO); 2743 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2744 bp->b_flags &= ~B_AGE; 2745 2746 /* 2747 * Make sure that B_INVAL buffers do not have a cached 2748 * block number translation. 2749 */ 2750 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2751 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 2752 " did not have cleared bio_offset cache\n", 2753 bp, vp, (long long)loffset); 2754 clearbiocache(&bp->b_bio2); 2755 } 2756 2757 /* 2758 * The buffer is locked. B_CACHE is cleared if the buffer is 2759 * invalid. 2760 */ 2761 if (bp->b_flags & B_INVAL) 2762 bp->b_flags &= ~B_CACHE; 2763 bremfree(bp); 2764 2765 /* 2766 * Any size inconsistancy with a dirty buffer or a buffer 2767 * with a softupdates dependancy must be resolved. Resizing 2768 * the buffer in such circumstances can lead to problems. 2769 * 2770 * Dirty or dependant buffers are written synchronously. 2771 * Other types of buffers are simply released and 2772 * reconstituted as they may be backed by valid, dirty VM 2773 * pages (but not marked B_DELWRI). 2774 * 2775 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 2776 * and may be left over from a prior truncation (and thus 2777 * no longer represent the actual EOF point), so we 2778 * definitely do not want to B_NOCACHE the backing store. 2779 */ 2780 if (size != bp->b_bcount) { 2781 get_mplock(); 2782 if (bp->b_flags & B_DELWRI) { 2783 bp->b_flags |= B_RELBUF; 2784 bwrite(bp); 2785 } else if (LIST_FIRST(&bp->b_dep)) { 2786 bp->b_flags |= B_RELBUF; 2787 bwrite(bp); 2788 } else { 2789 bp->b_flags |= B_RELBUF; 2790 brelse(bp); 2791 } 2792 rel_mplock(); 2793 goto loop; 2794 } 2795 KKASSERT(size <= bp->b_kvasize); 2796 KASSERT(bp->b_loffset != NOOFFSET, 2797 ("getblk: no buffer offset")); 2798 2799 /* 2800 * A buffer with B_DELWRI set and B_CACHE clear must 2801 * be committed before we can return the buffer in 2802 * order to prevent the caller from issuing a read 2803 * ( due to B_CACHE not being set ) and overwriting 2804 * it. 2805 * 2806 * Most callers, including NFS and FFS, need this to 2807 * operate properly either because they assume they 2808 * can issue a read if B_CACHE is not set, or because 2809 * ( for example ) an uncached B_DELWRI might loop due 2810 * to softupdates re-dirtying the buffer. In the latter 2811 * case, B_CACHE is set after the first write completes, 2812 * preventing further loops. 2813 * 2814 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2815 * above while extending the buffer, we cannot allow the 2816 * buffer to remain with B_CACHE set after the write 2817 * completes or it will represent a corrupt state. To 2818 * deal with this we set B_NOCACHE to scrap the buffer 2819 * after the write. 2820 * 2821 * XXX Should this be B_RELBUF instead of B_NOCACHE? 2822 * I'm not even sure this state is still possible 2823 * now that getblk() writes out any dirty buffers 2824 * on size changes. 2825 * 2826 * We might be able to do something fancy, like setting 2827 * B_CACHE in bwrite() except if B_DELWRI is already set, 2828 * so the below call doesn't set B_CACHE, but that gets real 2829 * confusing. This is much easier. 2830 */ 2831 2832 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2833 get_mplock(); 2834 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 2835 "and CACHE clear, b_flags %08x\n", 2836 bp, (intmax_t)bp->b_loffset, bp->b_flags); 2837 bp->b_flags |= B_NOCACHE; 2838 bwrite(bp); 2839 rel_mplock(); 2840 goto loop; 2841 } 2842 } else { 2843 /* 2844 * Buffer is not in-core, create new buffer. The buffer 2845 * returned by getnewbuf() is locked. Note that the returned 2846 * buffer is also considered valid (not marked B_INVAL). 2847 * 2848 * Calculating the offset for the I/O requires figuring out 2849 * the block size. We use DEV_BSIZE for VBLK or VCHR and 2850 * the mount's f_iosize otherwise. If the vnode does not 2851 * have an associated mount we assume that the passed size is 2852 * the block size. 2853 * 2854 * Note that vn_isdisk() cannot be used here since it may 2855 * return a failure for numerous reasons. Note that the 2856 * buffer size may be larger then the block size (the caller 2857 * will use block numbers with the proper multiple). Beware 2858 * of using any v_* fields which are part of unions. In 2859 * particular, in DragonFly the mount point overloading 2860 * mechanism uses the namecache only and the underlying 2861 * directory vnode is not a special case. 2862 */ 2863 int bsize, maxsize; 2864 2865 if (vp->v_type == VBLK || vp->v_type == VCHR) 2866 bsize = DEV_BSIZE; 2867 else if (vp->v_mount) 2868 bsize = vp->v_mount->mnt_stat.f_iosize; 2869 else 2870 bsize = size; 2871 2872 maxsize = size + (loffset & PAGE_MASK); 2873 maxsize = imax(maxsize, bsize); 2874 2875 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 2876 if (bp == NULL) { 2877 if (slpflags || slptimeo) 2878 return NULL; 2879 goto loop; 2880 } 2881 2882 /* 2883 * Atomically insert the buffer into the hash, so that it can 2884 * be found by findblk(). 2885 * 2886 * If bgetvp() returns non-zero a collision occured, and the 2887 * bp will not be associated with the vnode. 2888 * 2889 * Make sure the translation layer has been cleared. 2890 */ 2891 bp->b_loffset = loffset; 2892 bp->b_bio2.bio_offset = NOOFFSET; 2893 /* bp->b_bio2.bio_next = NULL; */ 2894 2895 if (bgetvp(vp, bp)) { 2896 bp->b_flags |= B_INVAL; 2897 brelse(bp); 2898 goto loop; 2899 } 2900 2901 /* 2902 * All vnode-based buffers must be backed by a VM object. 2903 */ 2904 KKASSERT(vp->v_object != NULL); 2905 bp->b_flags |= B_VMIO; 2906 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2907 2908 get_mplock(); 2909 allocbuf(bp, size); 2910 rel_mplock(); 2911 } 2912 return (bp); 2913 } 2914 2915 /* 2916 * regetblk(bp) 2917 * 2918 * Reacquire a buffer that was previously released to the locked queue, 2919 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 2920 * set B_LOCKED (which handles the acquisition race). 2921 * 2922 * To this end, either B_LOCKED must be set or the dependancy list must be 2923 * non-empty. 2924 * 2925 * MPSAFE 2926 */ 2927 void 2928 regetblk(struct buf *bp) 2929 { 2930 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 2931 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 2932 bremfree(bp); 2933 } 2934 2935 /* 2936 * geteblk: 2937 * 2938 * Get an empty, disassociated buffer of given size. The buffer is 2939 * initially set to B_INVAL. 2940 * 2941 * critical section protection is not required for the allocbuf() 2942 * call because races are impossible here. 2943 * 2944 * MPALMOSTSAFE 2945 */ 2946 struct buf * 2947 geteblk(int size) 2948 { 2949 struct buf *bp; 2950 int maxsize; 2951 2952 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2953 2954 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2955 ; 2956 get_mplock(); 2957 allocbuf(bp, size); 2958 rel_mplock(); 2959 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2960 return (bp); 2961 } 2962 2963 2964 /* 2965 * allocbuf: 2966 * 2967 * This code constitutes the buffer memory from either anonymous system 2968 * memory (in the case of non-VMIO operations) or from an associated 2969 * VM object (in the case of VMIO operations). This code is able to 2970 * resize a buffer up or down. 2971 * 2972 * Note that this code is tricky, and has many complications to resolve 2973 * deadlock or inconsistant data situations. Tread lightly!!! 2974 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2975 * the caller. Calling this code willy nilly can result in the loss of data. 2976 * 2977 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2978 * B_CACHE for the non-VMIO case. 2979 * 2980 * This routine does not need to be called from a critical section but you 2981 * must own the buffer. 2982 * 2983 * NOTMPSAFE 2984 */ 2985 int 2986 allocbuf(struct buf *bp, int size) 2987 { 2988 int newbsize, mbsize; 2989 int i; 2990 2991 if (BUF_REFCNT(bp) == 0) 2992 panic("allocbuf: buffer not busy"); 2993 2994 if (bp->b_kvasize < size) 2995 panic("allocbuf: buffer too small"); 2996 2997 if ((bp->b_flags & B_VMIO) == 0) { 2998 caddr_t origbuf; 2999 int origbufsize; 3000 /* 3001 * Just get anonymous memory from the kernel. Don't 3002 * mess with B_CACHE. 3003 */ 3004 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3005 if (bp->b_flags & B_MALLOC) 3006 newbsize = mbsize; 3007 else 3008 newbsize = round_page(size); 3009 3010 if (newbsize < bp->b_bufsize) { 3011 /* 3012 * Malloced buffers are not shrunk 3013 */ 3014 if (bp->b_flags & B_MALLOC) { 3015 if (newbsize) { 3016 bp->b_bcount = size; 3017 } else { 3018 kfree(bp->b_data, M_BIOBUF); 3019 if (bp->b_bufsize) { 3020 bufmallocspace -= bp->b_bufsize; 3021 bufspacewakeup(); 3022 bp->b_bufsize = 0; 3023 } 3024 bp->b_data = bp->b_kvabase; 3025 bp->b_bcount = 0; 3026 bp->b_flags &= ~B_MALLOC; 3027 } 3028 return 1; 3029 } 3030 vm_hold_free_pages( 3031 bp, 3032 (vm_offset_t) bp->b_data + newbsize, 3033 (vm_offset_t) bp->b_data + bp->b_bufsize); 3034 } else if (newbsize > bp->b_bufsize) { 3035 /* 3036 * We only use malloced memory on the first allocation. 3037 * and revert to page-allocated memory when the buffer 3038 * grows. 3039 */ 3040 if ((bufmallocspace < maxbufmallocspace) && 3041 (bp->b_bufsize == 0) && 3042 (mbsize <= PAGE_SIZE/2)) { 3043 3044 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3045 bp->b_bufsize = mbsize; 3046 bp->b_bcount = size; 3047 bp->b_flags |= B_MALLOC; 3048 bufmallocspace += mbsize; 3049 return 1; 3050 } 3051 origbuf = NULL; 3052 origbufsize = 0; 3053 /* 3054 * If the buffer is growing on its other-than-first 3055 * allocation, then we revert to the page-allocation 3056 * scheme. 3057 */ 3058 if (bp->b_flags & B_MALLOC) { 3059 origbuf = bp->b_data; 3060 origbufsize = bp->b_bufsize; 3061 bp->b_data = bp->b_kvabase; 3062 if (bp->b_bufsize) { 3063 bufmallocspace -= bp->b_bufsize; 3064 bufspacewakeup(); 3065 bp->b_bufsize = 0; 3066 } 3067 bp->b_flags &= ~B_MALLOC; 3068 newbsize = round_page(newbsize); 3069 } 3070 vm_hold_load_pages( 3071 bp, 3072 (vm_offset_t) bp->b_data + bp->b_bufsize, 3073 (vm_offset_t) bp->b_data + newbsize); 3074 if (origbuf) { 3075 bcopy(origbuf, bp->b_data, origbufsize); 3076 kfree(origbuf, M_BIOBUF); 3077 } 3078 } 3079 } else { 3080 vm_page_t m; 3081 int desiredpages; 3082 3083 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3084 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3085 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3086 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3087 3088 if (bp->b_flags & B_MALLOC) 3089 panic("allocbuf: VMIO buffer can't be malloced"); 3090 /* 3091 * Set B_CACHE initially if buffer is 0 length or will become 3092 * 0-length. 3093 */ 3094 if (size == 0 || bp->b_bufsize == 0) 3095 bp->b_flags |= B_CACHE; 3096 3097 if (newbsize < bp->b_bufsize) { 3098 /* 3099 * DEV_BSIZE aligned new buffer size is less then the 3100 * DEV_BSIZE aligned existing buffer size. Figure out 3101 * if we have to remove any pages. 3102 */ 3103 if (desiredpages < bp->b_xio.xio_npages) { 3104 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3105 /* 3106 * the page is not freed here -- it 3107 * is the responsibility of 3108 * vnode_pager_setsize 3109 */ 3110 m = bp->b_xio.xio_pages[i]; 3111 KASSERT(m != bogus_page, 3112 ("allocbuf: bogus page found")); 3113 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3114 ; 3115 3116 bp->b_xio.xio_pages[i] = NULL; 3117 vm_page_unwire(m, 0); 3118 } 3119 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3120 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3121 bp->b_xio.xio_npages = desiredpages; 3122 } 3123 } else if (size > bp->b_bcount) { 3124 /* 3125 * We are growing the buffer, possibly in a 3126 * byte-granular fashion. 3127 */ 3128 struct vnode *vp; 3129 vm_object_t obj; 3130 vm_offset_t toff; 3131 vm_offset_t tinc; 3132 3133 /* 3134 * Step 1, bring in the VM pages from the object, 3135 * allocating them if necessary. We must clear 3136 * B_CACHE if these pages are not valid for the 3137 * range covered by the buffer. 3138 * 3139 * critical section protection is required to protect 3140 * against interrupts unbusying and freeing pages 3141 * between our vm_page_lookup() and our 3142 * busycheck/wiring call. 3143 */ 3144 vp = bp->b_vp; 3145 obj = vp->v_object; 3146 3147 crit_enter(); 3148 while (bp->b_xio.xio_npages < desiredpages) { 3149 vm_page_t m; 3150 vm_pindex_t pi; 3151 3152 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3153 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3154 /* 3155 * note: must allocate system pages 3156 * since blocking here could intefere 3157 * with paging I/O, no matter which 3158 * process we are. 3159 */ 3160 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3161 if (m) { 3162 vm_page_wire(m); 3163 vm_page_wakeup(m); 3164 bp->b_flags &= ~B_CACHE; 3165 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3166 ++bp->b_xio.xio_npages; 3167 } 3168 continue; 3169 } 3170 3171 /* 3172 * We found a page. If we have to sleep on it, 3173 * retry because it might have gotten freed out 3174 * from under us. 3175 * 3176 * We can only test PG_BUSY here. Blocking on 3177 * m->busy might lead to a deadlock: 3178 * 3179 * vm_fault->getpages->cluster_read->allocbuf 3180 * 3181 */ 3182 3183 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3184 continue; 3185 vm_page_flag_clear(m, PG_ZERO); 3186 vm_page_wire(m); 3187 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3188 ++bp->b_xio.xio_npages; 3189 if (bp->b_act_count < m->act_count) 3190 bp->b_act_count = m->act_count; 3191 } 3192 crit_exit(); 3193 3194 /* 3195 * Step 2. We've loaded the pages into the buffer, 3196 * we have to figure out if we can still have B_CACHE 3197 * set. Note that B_CACHE is set according to the 3198 * byte-granular range ( bcount and size ), not the 3199 * aligned range ( newbsize ). 3200 * 3201 * The VM test is against m->valid, which is DEV_BSIZE 3202 * aligned. Needless to say, the validity of the data 3203 * needs to also be DEV_BSIZE aligned. Note that this 3204 * fails with NFS if the server or some other client 3205 * extends the file's EOF. If our buffer is resized, 3206 * B_CACHE may remain set! XXX 3207 */ 3208 3209 toff = bp->b_bcount; 3210 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3211 3212 while ((bp->b_flags & B_CACHE) && toff < size) { 3213 vm_pindex_t pi; 3214 3215 if (tinc > (size - toff)) 3216 tinc = size - toff; 3217 3218 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3219 PAGE_SHIFT; 3220 3221 vfs_buf_test_cache( 3222 bp, 3223 bp->b_loffset, 3224 toff, 3225 tinc, 3226 bp->b_xio.xio_pages[pi] 3227 ); 3228 toff += tinc; 3229 tinc = PAGE_SIZE; 3230 } 3231 3232 /* 3233 * Step 3, fixup the KVM pmap. Remember that 3234 * bp->b_data is relative to bp->b_loffset, but 3235 * bp->b_loffset may be offset into the first page. 3236 */ 3237 3238 bp->b_data = (caddr_t) 3239 trunc_page((vm_offset_t)bp->b_data); 3240 pmap_qenter( 3241 (vm_offset_t)bp->b_data, 3242 bp->b_xio.xio_pages, 3243 bp->b_xio.xio_npages 3244 ); 3245 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3246 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3247 } 3248 } 3249 3250 /* adjust space use on already-dirty buffer */ 3251 if (bp->b_flags & B_DELWRI) { 3252 dirtybufspace += newbsize - bp->b_bufsize; 3253 if (bp->b_flags & B_HEAVY) 3254 dirtybufspacehw += newbsize - bp->b_bufsize; 3255 } 3256 if (newbsize < bp->b_bufsize) 3257 bufspacewakeup(); 3258 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3259 bp->b_bcount = size; /* requested buffer size */ 3260 return 1; 3261 } 3262 3263 /* 3264 * biowait: 3265 * 3266 * Wait for buffer I/O completion, returning error status. B_EINTR 3267 * is converted into an EINTR error but not cleared (since a chain 3268 * of biowait() calls may occur). 3269 * 3270 * On return bpdone() will have been called but the buffer will remain 3271 * locked and will not have been brelse()'d. 3272 * 3273 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3274 * likely still in progress on return. 3275 * 3276 * NOTE! This operation is on a BIO, not a BUF. 3277 * 3278 * NOTE! BIO_DONE is cleared by vn_strategy() 3279 * 3280 * MPSAFE 3281 */ 3282 static __inline int 3283 _biowait(struct bio *bio, const char *wmesg, int to) 3284 { 3285 struct buf *bp = bio->bio_buf; 3286 u_int32_t flags; 3287 u_int32_t nflags; 3288 int error; 3289 3290 KKASSERT(bio == &bp->b_bio1); 3291 for (;;) { 3292 flags = bio->bio_flags; 3293 if (flags & BIO_DONE) 3294 break; 3295 tsleep_interlock(bio, 0); 3296 nflags = flags | BIO_WANT; 3297 tsleep_interlock(bio, 0); 3298 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3299 if (wmesg) 3300 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3301 else if (bp->b_cmd == BUF_CMD_READ) 3302 error = tsleep(bio, PINTERLOCKED, "biord", to); 3303 else 3304 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3305 if (error) { 3306 kprintf("tsleep error biowait %d\n", error); 3307 return (error); 3308 } 3309 break; 3310 } 3311 } 3312 3313 /* 3314 * Finish up. 3315 */ 3316 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3317 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3318 if (bp->b_flags & B_EINTR) 3319 return (EINTR); 3320 if (bp->b_flags & B_ERROR) 3321 return (bp->b_error ? bp->b_error : EIO); 3322 return (0); 3323 } 3324 3325 int 3326 biowait(struct bio *bio, const char *wmesg) 3327 { 3328 return(_biowait(bio, wmesg, 0)); 3329 } 3330 3331 int 3332 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3333 { 3334 return(_biowait(bio, wmesg, to)); 3335 } 3336 3337 /* 3338 * This associates a tracking count with an I/O. vn_strategy() and 3339 * dev_dstrategy() do this automatically but there are a few cases 3340 * where a vnode or device layer is bypassed when a block translation 3341 * is cached. In such cases bio_start_transaction() may be called on 3342 * the bypassed layers so the system gets an I/O in progress indication 3343 * for those higher layers. 3344 */ 3345 void 3346 bio_start_transaction(struct bio *bio, struct bio_track *track) 3347 { 3348 bio->bio_track = track; 3349 bio_track_ref(track); 3350 } 3351 3352 /* 3353 * Initiate I/O on a vnode. 3354 */ 3355 void 3356 vn_strategy(struct vnode *vp, struct bio *bio) 3357 { 3358 struct bio_track *track; 3359 3360 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE); 3361 if (bio->bio_buf->b_cmd == BUF_CMD_READ) 3362 track = &vp->v_track_read; 3363 else 3364 track = &vp->v_track_write; 3365 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3366 bio->bio_track = track; 3367 bio_track_ref(track); 3368 vop_strategy(*vp->v_ops, vp, bio); 3369 } 3370 3371 /* 3372 * bpdone: 3373 * 3374 * Finish I/O on a buffer after all BIOs have been processed. 3375 * Called when the bio chain is exhausted or by biowait. If called 3376 * by biowait, elseit is typically 0. 3377 * 3378 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3379 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3380 * assuming B_INVAL is clear. 3381 * 3382 * For the VMIO case, we set B_CACHE if the op was a read and no 3383 * read error occured, or if the op was a write. B_CACHE is never 3384 * set if the buffer is invalid or otherwise uncacheable. 3385 * 3386 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3387 * initiator to leave B_INVAL set to brelse the buffer out of existance 3388 * in the biodone routine. 3389 */ 3390 void 3391 bpdone(struct buf *bp, int elseit) 3392 { 3393 buf_cmd_t cmd; 3394 3395 KASSERT(BUF_REFCNTNB(bp) > 0, 3396 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3397 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3398 ("biodone: bp %p already done!", bp)); 3399 3400 /* 3401 * No more BIOs are left. All completion functions have been dealt 3402 * with, now we clean up the buffer. 3403 */ 3404 cmd = bp->b_cmd; 3405 bp->b_cmd = BUF_CMD_DONE; 3406 3407 /* 3408 * Only reads and writes are processed past this point. 3409 */ 3410 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3411 if (cmd == BUF_CMD_FREEBLKS) 3412 bp->b_flags |= B_NOCACHE; 3413 if (elseit) 3414 brelse(bp); 3415 return; 3416 } 3417 3418 /* 3419 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3420 * a lot worse. XXX - move this above the clearing of b_cmd 3421 */ 3422 if (LIST_FIRST(&bp->b_dep) != NULL) 3423 buf_complete(bp); 3424 3425 /* 3426 * A failed write must re-dirty the buffer unless B_INVAL 3427 * was set. Only applicable to normal buffers (with VPs). 3428 * vinum buffers may not have a vp. 3429 */ 3430 if (cmd == BUF_CMD_WRITE && 3431 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3432 bp->b_flags &= ~B_NOCACHE; 3433 if (bp->b_vp) 3434 bdirty(bp); 3435 } 3436 3437 if (bp->b_flags & B_VMIO) { 3438 int i; 3439 vm_ooffset_t foff; 3440 vm_page_t m; 3441 vm_object_t obj; 3442 int iosize; 3443 struct vnode *vp = bp->b_vp; 3444 3445 obj = vp->v_object; 3446 3447 #if defined(VFS_BIO_DEBUG) 3448 if (vp->v_auxrefs == 0) 3449 panic("biodone: zero vnode hold count"); 3450 if ((vp->v_flag & VOBJBUF) == 0) 3451 panic("biodone: vnode is not setup for merged cache"); 3452 #endif 3453 3454 foff = bp->b_loffset; 3455 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3456 KASSERT(obj != NULL, ("biodone: missing VM object")); 3457 3458 #if defined(VFS_BIO_DEBUG) 3459 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3460 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3461 obj->paging_in_progress, bp->b_xio.xio_npages); 3462 } 3463 #endif 3464 3465 /* 3466 * Set B_CACHE if the op was a normal read and no error 3467 * occured. B_CACHE is set for writes in the b*write() 3468 * routines. 3469 */ 3470 iosize = bp->b_bcount - bp->b_resid; 3471 if (cmd == BUF_CMD_READ && 3472 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3473 bp->b_flags |= B_CACHE; 3474 } 3475 3476 crit_enter(); 3477 get_mplock(); 3478 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3479 int bogusflag = 0; 3480 int resid; 3481 3482 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3483 if (resid > iosize) 3484 resid = iosize; 3485 3486 /* 3487 * cleanup bogus pages, restoring the originals. Since 3488 * the originals should still be wired, we don't have 3489 * to worry about interrupt/freeing races destroying 3490 * the VM object association. 3491 */ 3492 m = bp->b_xio.xio_pages[i]; 3493 if (m == bogus_page) { 3494 bogusflag = 1; 3495 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3496 if (m == NULL) 3497 panic("biodone: page disappeared"); 3498 bp->b_xio.xio_pages[i] = m; 3499 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3500 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3501 } 3502 #if defined(VFS_BIO_DEBUG) 3503 if (OFF_TO_IDX(foff) != m->pindex) { 3504 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3505 "mismatch\n", 3506 (unsigned long)foff, (long)m->pindex); 3507 } 3508 #endif 3509 3510 /* 3511 * In the write case, the valid and clean bits are 3512 * already changed correctly (see bdwrite()), so we 3513 * only need to do this here in the read case. 3514 */ 3515 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3516 vfs_clean_one_page(bp, i, m); 3517 } 3518 vm_page_flag_clear(m, PG_ZERO); 3519 3520 /* 3521 * when debugging new filesystems or buffer I/O 3522 * methods, this is the most common error that pops 3523 * up. if you see this, you have not set the page 3524 * busy flag correctly!!! 3525 */ 3526 if (m->busy == 0) { 3527 kprintf("biodone: page busy < 0, " 3528 "pindex: %d, foff: 0x(%x,%x), " 3529 "resid: %d, index: %d\n", 3530 (int) m->pindex, (int)(foff >> 32), 3531 (int) foff & 0xffffffff, resid, i); 3532 if (!vn_isdisk(vp, NULL)) 3533 kprintf(" iosize: %ld, loffset: %lld, " 3534 "flags: 0x%08x, npages: %d\n", 3535 bp->b_vp->v_mount->mnt_stat.f_iosize, 3536 (long long)bp->b_loffset, 3537 bp->b_flags, bp->b_xio.xio_npages); 3538 else 3539 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3540 (long long)bp->b_loffset, 3541 bp->b_flags, bp->b_xio.xio_npages); 3542 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3543 m->valid, m->dirty, m->wire_count); 3544 panic("biodone: page busy < 0"); 3545 } 3546 vm_page_io_finish(m); 3547 vm_object_pip_subtract(obj, 1); 3548 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3549 iosize -= resid; 3550 } 3551 if (obj) 3552 vm_object_pip_wakeupn(obj, 0); 3553 rel_mplock(); 3554 crit_exit(); 3555 } 3556 3557 /* 3558 * Finish up by releasing the buffer. There are no more synchronous 3559 * or asynchronous completions, those were handled by bio_done 3560 * callbacks. 3561 */ 3562 if (elseit) { 3563 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3564 brelse(bp); 3565 else 3566 bqrelse(bp); 3567 } 3568 } 3569 3570 /* 3571 * Normal biodone. 3572 */ 3573 void 3574 biodone(struct bio *bio) 3575 { 3576 struct buf *bp = bio->bio_buf; 3577 3578 runningbufwakeup(bp); 3579 3580 /* 3581 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3582 */ 3583 while (bio) { 3584 biodone_t *done_func; 3585 struct bio_track *track; 3586 3587 /* 3588 * BIO tracking. Most but not all BIOs are tracked. 3589 */ 3590 if ((track = bio->bio_track) != NULL) { 3591 bio_track_rel(track); 3592 bio->bio_track = NULL; 3593 } 3594 3595 /* 3596 * A bio_done function terminates the loop. The function 3597 * will be responsible for any further chaining and/or 3598 * buffer management. 3599 * 3600 * WARNING! The done function can deallocate the buffer! 3601 */ 3602 if ((done_func = bio->bio_done) != NULL) { 3603 bio->bio_done = NULL; 3604 done_func(bio); 3605 return; 3606 } 3607 bio = bio->bio_prev; 3608 } 3609 3610 /* 3611 * If we've run out of bio's do normal [a]synchronous completion. 3612 */ 3613 bpdone(bp, 1); 3614 } 3615 3616 /* 3617 * Synchronous biodone - this terminates a synchronous BIO. 3618 * 3619 * bpdone() is called with elseit=FALSE, leaving the buffer completed 3620 * but still locked. The caller must brelse() the buffer after waiting 3621 * for completion. 3622 */ 3623 void 3624 biodone_sync(struct bio *bio) 3625 { 3626 struct buf *bp = bio->bio_buf; 3627 int flags; 3628 int nflags; 3629 3630 KKASSERT(bio == &bp->b_bio1); 3631 bpdone(bp, 0); 3632 3633 for (;;) { 3634 flags = bio->bio_flags; 3635 nflags = (flags | BIO_DONE) & ~BIO_WANT; 3636 3637 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3638 if (flags & BIO_WANT) 3639 wakeup(bio); 3640 break; 3641 } 3642 } 3643 } 3644 3645 /* 3646 * vfs_unbusy_pages: 3647 * 3648 * This routine is called in lieu of iodone in the case of 3649 * incomplete I/O. This keeps the busy status for pages 3650 * consistant. 3651 */ 3652 void 3653 vfs_unbusy_pages(struct buf *bp) 3654 { 3655 int i; 3656 3657 runningbufwakeup(bp); 3658 if (bp->b_flags & B_VMIO) { 3659 struct vnode *vp = bp->b_vp; 3660 vm_object_t obj; 3661 3662 obj = vp->v_object; 3663 3664 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3665 vm_page_t m = bp->b_xio.xio_pages[i]; 3666 3667 /* 3668 * When restoring bogus changes the original pages 3669 * should still be wired, so we are in no danger of 3670 * losing the object association and do not need 3671 * critical section protection particularly. 3672 */ 3673 if (m == bogus_page) { 3674 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3675 if (!m) { 3676 panic("vfs_unbusy_pages: page missing"); 3677 } 3678 bp->b_xio.xio_pages[i] = m; 3679 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3680 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3681 } 3682 vm_object_pip_subtract(obj, 1); 3683 vm_page_flag_clear(m, PG_ZERO); 3684 vm_page_io_finish(m); 3685 } 3686 vm_object_pip_wakeupn(obj, 0); 3687 } 3688 } 3689 3690 /* 3691 * vfs_busy_pages: 3692 * 3693 * This routine is called before a device strategy routine. 3694 * It is used to tell the VM system that paging I/O is in 3695 * progress, and treat the pages associated with the buffer 3696 * almost as being PG_BUSY. Also the object 'paging_in_progress' 3697 * flag is handled to make sure that the object doesn't become 3698 * inconsistant. 3699 * 3700 * Since I/O has not been initiated yet, certain buffer flags 3701 * such as B_ERROR or B_INVAL may be in an inconsistant state 3702 * and should be ignored. 3703 */ 3704 void 3705 vfs_busy_pages(struct vnode *vp, struct buf *bp) 3706 { 3707 int i, bogus; 3708 struct lwp *lp = curthread->td_lwp; 3709 3710 /* 3711 * The buffer's I/O command must already be set. If reading, 3712 * B_CACHE must be 0 (double check against callers only doing 3713 * I/O when B_CACHE is 0). 3714 */ 3715 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3716 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 3717 3718 if (bp->b_flags & B_VMIO) { 3719 vm_object_t obj; 3720 3721 obj = vp->v_object; 3722 KASSERT(bp->b_loffset != NOOFFSET, 3723 ("vfs_busy_pages: no buffer offset")); 3724 3725 /* 3726 * Loop until none of the pages are busy. 3727 */ 3728 retry: 3729 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3730 vm_page_t m = bp->b_xio.xio_pages[i]; 3731 3732 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3733 goto retry; 3734 } 3735 3736 /* 3737 * Setup for I/O, soft-busy the page right now because 3738 * the next loop may block. 3739 */ 3740 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3741 vm_page_t m = bp->b_xio.xio_pages[i]; 3742 3743 vm_page_flag_clear(m, PG_ZERO); 3744 if ((bp->b_flags & B_CLUSTER) == 0) { 3745 vm_object_pip_add(obj, 1); 3746 vm_page_io_start(m); 3747 } 3748 } 3749 3750 /* 3751 * Adjust protections for I/O and do bogus-page mapping. 3752 * Assume that vm_page_protect() can block (it can block 3753 * if VM_PROT_NONE, don't take any chances regardless). 3754 * 3755 * In particularly note that for writes we must incorporate 3756 * page dirtyness from the VM system into the buffer's 3757 * dirty range. 3758 * 3759 * For reads we theoretically must incorporate page dirtyness 3760 * from the VM system to determine if the page needs bogus 3761 * replacement, but we shortcut the test by simply checking 3762 * that all m->valid bits are set, indicating that the page 3763 * is fully valid and does not need to be re-read. For any 3764 * VM system dirtyness the page will also be fully valid 3765 * since it was mapped at one point. 3766 */ 3767 bogus = 0; 3768 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3769 vm_page_t m = bp->b_xio.xio_pages[i]; 3770 3771 vm_page_flag_clear(m, PG_ZERO); /* XXX */ 3772 if (bp->b_cmd == BUF_CMD_WRITE) { 3773 /* 3774 * When readying a vnode-backed buffer for 3775 * a write we must zero-fill any invalid 3776 * portions of the backing VM pages, mark 3777 * it valid and clear related dirty bits. 3778 * 3779 * vfs_clean_one_page() incorporates any 3780 * VM dirtyness and updates the b_dirtyoff 3781 * range (after we've made the page RO). 3782 * 3783 * It is also expected that the pmap modified 3784 * bit has already been cleared by the 3785 * vm_page_protect(). We may not be able 3786 * to clear all dirty bits for a page if it 3787 * was also memory mapped (NFS). 3788 */ 3789 vm_page_protect(m, VM_PROT_READ); 3790 vfs_clean_one_page(bp, i, m); 3791 } else if (m->valid == VM_PAGE_BITS_ALL) { 3792 /* 3793 * When readying a vnode-backed buffer for 3794 * read we must replace any dirty pages with 3795 * a bogus page so dirty data is not destroyed 3796 * when filling gaps. 3797 * 3798 * To avoid testing whether the page is 3799 * dirty we instead test that the page was 3800 * at some point mapped (m->valid fully 3801 * valid) with the understanding that 3802 * this also covers the dirty case. 3803 */ 3804 bp->b_xio.xio_pages[i] = bogus_page; 3805 bogus++; 3806 } else if (m->valid & m->dirty) { 3807 /* 3808 * This case should not occur as partial 3809 * dirtyment can only happen if the buffer 3810 * is B_CACHE, and this code is not entered 3811 * if the buffer is B_CACHE. 3812 */ 3813 kprintf("Warning: vfs_busy_pages - page not " 3814 "fully valid! loff=%jx bpf=%08x " 3815 "idx=%d val=%02x dir=%02x\n", 3816 (intmax_t)bp->b_loffset, bp->b_flags, 3817 i, m->valid, m->dirty); 3818 vm_page_protect(m, VM_PROT_NONE); 3819 } else { 3820 /* 3821 * The page is not valid and can be made 3822 * part of the read. 3823 */ 3824 vm_page_protect(m, VM_PROT_NONE); 3825 } 3826 } 3827 if (bogus) { 3828 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3829 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3830 } 3831 } 3832 3833 /* 3834 * This is the easiest place to put the process accounting for the I/O 3835 * for now. 3836 */ 3837 if (lp != NULL) { 3838 if (bp->b_cmd == BUF_CMD_READ) 3839 lp->lwp_ru.ru_inblock++; 3840 else 3841 lp->lwp_ru.ru_oublock++; 3842 } 3843 } 3844 3845 /* 3846 * vfs_clean_pages: 3847 * 3848 * Tell the VM system that the pages associated with this buffer 3849 * are clean. This is used for delayed writes where the data is 3850 * going to go to disk eventually without additional VM intevention. 3851 * 3852 * Note that while we only really need to clean through to b_bcount, we 3853 * just go ahead and clean through to b_bufsize. 3854 */ 3855 static void 3856 vfs_clean_pages(struct buf *bp) 3857 { 3858 vm_page_t m; 3859 int i; 3860 3861 if ((bp->b_flags & B_VMIO) == 0) 3862 return; 3863 3864 KASSERT(bp->b_loffset != NOOFFSET, 3865 ("vfs_clean_pages: no buffer offset")); 3866 3867 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3868 m = bp->b_xio.xio_pages[i]; 3869 vfs_clean_one_page(bp, i, m); 3870 } 3871 } 3872 3873 /* 3874 * vfs_clean_one_page: 3875 * 3876 * Set the valid bits and clear the dirty bits in a page within a 3877 * buffer. The range is restricted to the buffer's size and the 3878 * buffer's logical offset might index into the first page. 3879 * 3880 * The caller has busied or soft-busied the page and it is not mapped, 3881 * test and incorporate the dirty bits into b_dirtyoff/end before 3882 * clearing them. Note that we need to clear the pmap modified bits 3883 * after determining the the page was dirty, vm_page_set_validclean() 3884 * does not do it for us. 3885 * 3886 * This routine is typically called after a read completes (dirty should 3887 * be zero in that case as we are not called on bogus-replace pages), 3888 * or before a write is initiated. 3889 */ 3890 static void 3891 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 3892 { 3893 int bcount; 3894 int xoff; 3895 int soff; 3896 int eoff; 3897 3898 /* 3899 * Calculate offset range within the page but relative to buffer's 3900 * loffset. loffset might be offset into the first page. 3901 */ 3902 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 3903 bcount = bp->b_bcount + xoff; /* offset adjusted */ 3904 3905 if (pageno == 0) { 3906 soff = xoff; 3907 eoff = PAGE_SIZE; 3908 } else { 3909 soff = (pageno << PAGE_SHIFT); 3910 eoff = soff + PAGE_SIZE; 3911 } 3912 if (eoff > bcount) 3913 eoff = bcount; 3914 if (soff >= eoff) 3915 return; 3916 3917 /* 3918 * Test dirty bits and adjust b_dirtyoff/end. 3919 * 3920 * If dirty pages are incorporated into the bp any prior 3921 * B_NEEDCOMMIT state (NFS) must be cleared because the 3922 * caller has not taken into account the new dirty data. 3923 * 3924 * If the page was memory mapped the dirty bits might go beyond the 3925 * end of the buffer, but we can't really make the assumption that 3926 * a file EOF straddles the buffer (even though this is the case for 3927 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 3928 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 3929 * This also saves some console spam. 3930 */ 3931 vm_page_test_dirty(m); 3932 if (m->dirty) { 3933 pmap_clear_modify(m); 3934 if ((bp->b_flags & B_NEEDCOMMIT) && 3935 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 3936 kprintf("Warning: vfs_clean_one_page: bp %p " 3937 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT\n", 3938 bp, (intmax_t)bp->b_loffset, bp->b_bcount, 3939 bp->b_flags); 3940 bp->b_flags &= ~B_NEEDCOMMIT; 3941 } 3942 if (bp->b_dirtyoff > soff - xoff) 3943 bp->b_dirtyoff = soff - xoff; 3944 if (bp->b_dirtyend < eoff - xoff) 3945 bp->b_dirtyend = eoff - xoff; 3946 } 3947 3948 /* 3949 * Set related valid bits, clear related dirty bits. 3950 * Does not mess with the pmap modified bit. 3951 * 3952 * WARNING! We cannot just clear all of m->dirty here as the 3953 * buffer cache buffers may use a DEV_BSIZE'd aligned 3954 * block size, or have an odd size (e.g. NFS at file EOF). 3955 * The putpages code can clear m->dirty to 0. 3956 * 3957 * If a VOP_WRITE generates a buffer cache buffer which 3958 * covers the same space as mapped writable pages the 3959 * buffer flush might not be able to clear all the dirty 3960 * bits and still require a putpages from the VM system 3961 * to finish it off. 3962 */ 3963 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 3964 } 3965 3966 /* 3967 * vfs_bio_clrbuf: 3968 * 3969 * Clear a buffer. This routine essentially fakes an I/O, so we need 3970 * to clear B_ERROR and B_INVAL. 3971 * 3972 * Note that while we only theoretically need to clear through b_bcount, 3973 * we go ahead and clear through b_bufsize. 3974 */ 3975 3976 void 3977 vfs_bio_clrbuf(struct buf *bp) 3978 { 3979 int i, mask = 0; 3980 caddr_t sa, ea; 3981 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3982 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 3983 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3984 (bp->b_loffset & PAGE_MASK) == 0) { 3985 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3986 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 3987 bp->b_resid = 0; 3988 return; 3989 } 3990 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 3991 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 3992 bzero(bp->b_data, bp->b_bufsize); 3993 bp->b_xio.xio_pages[0]->valid |= mask; 3994 bp->b_resid = 0; 3995 return; 3996 } 3997 } 3998 sa = bp->b_data; 3999 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 4000 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 4001 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 4002 ea = (caddr_t)(vm_offset_t)ulmin( 4003 (u_long)(vm_offset_t)ea, 4004 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 4005 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4006 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 4007 continue; 4008 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 4009 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 4010 bzero(sa, ea - sa); 4011 } 4012 } else { 4013 for (; sa < ea; sa += DEV_BSIZE, j++) { 4014 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 4015 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 4016 bzero(sa, DEV_BSIZE); 4017 } 4018 } 4019 bp->b_xio.xio_pages[i]->valid |= mask; 4020 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 4021 } 4022 bp->b_resid = 0; 4023 } else { 4024 clrbuf(bp); 4025 } 4026 } 4027 4028 /* 4029 * vm_hold_load_pages: 4030 * 4031 * Load pages into the buffer's address space. The pages are 4032 * allocated from the kernel object in order to reduce interference 4033 * with the any VM paging I/O activity. The range of loaded 4034 * pages will be wired. 4035 * 4036 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4037 * retrieve the full range (to - from) of pages. 4038 * 4039 */ 4040 void 4041 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4042 { 4043 vm_offset_t pg; 4044 vm_page_t p; 4045 int index; 4046 4047 to = round_page(to); 4048 from = round_page(from); 4049 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4050 4051 pg = from; 4052 while (pg < to) { 4053 /* 4054 * Note: must allocate system pages since blocking here 4055 * could intefere with paging I/O, no matter which 4056 * process we are. 4057 */ 4058 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4059 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4060 if (p) { 4061 vm_page_wire(p); 4062 p->valid = VM_PAGE_BITS_ALL; 4063 vm_page_flag_clear(p, PG_ZERO); 4064 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4065 bp->b_xio.xio_pages[index] = p; 4066 vm_page_wakeup(p); 4067 4068 pg += PAGE_SIZE; 4069 ++index; 4070 } 4071 } 4072 bp->b_xio.xio_npages = index; 4073 } 4074 4075 /* 4076 * Allocate pages for a buffer cache buffer. 4077 * 4078 * Under extremely severe memory conditions even allocating out of the 4079 * system reserve can fail. If this occurs we must allocate out of the 4080 * interrupt reserve to avoid a deadlock with the pageout daemon. 4081 * 4082 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 4083 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 4084 * against the pageout daemon if pages are not freed from other sources. 4085 */ 4086 static 4087 vm_page_t 4088 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4089 { 4090 vm_page_t p; 4091 4092 /* 4093 * Try a normal allocation, allow use of system reserve. 4094 */ 4095 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 4096 if (p) 4097 return(p); 4098 4099 /* 4100 * The normal allocation failed and we clearly have a page 4101 * deficit. Try to reclaim some clean VM pages directly 4102 * from the buffer cache. 4103 */ 4104 vm_pageout_deficit += deficit; 4105 recoverbufpages(); 4106 4107 /* 4108 * We may have blocked, the caller will know what to do if the 4109 * page now exists. 4110 */ 4111 if (vm_page_lookup(obj, pg)) 4112 return(NULL); 4113 4114 /* 4115 * Allocate and allow use of the interrupt reserve. 4116 * 4117 * If after all that we still can't allocate a VM page we are 4118 * in real trouble, but we slog on anyway hoping that the system 4119 * won't deadlock. 4120 */ 4121 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 4122 VM_ALLOC_INTERRUPT); 4123 if (p) { 4124 if (vm_page_count_severe()) { 4125 kprintf("bio_page_alloc: WARNING emergency page " 4126 "allocation\n"); 4127 vm_wait(hz / 20); 4128 } 4129 } else { 4130 kprintf("bio_page_alloc: WARNING emergency page " 4131 "allocation failed\n"); 4132 vm_wait(hz * 5); 4133 } 4134 return(p); 4135 } 4136 4137 /* 4138 * vm_hold_free_pages: 4139 * 4140 * Return pages associated with the buffer back to the VM system. 4141 * 4142 * The range of pages underlying the buffer's address space will 4143 * be unmapped and un-wired. 4144 */ 4145 void 4146 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4147 { 4148 vm_offset_t pg; 4149 vm_page_t p; 4150 int index, newnpages; 4151 4152 from = round_page(from); 4153 to = round_page(to); 4154 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4155 4156 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4157 p = bp->b_xio.xio_pages[index]; 4158 if (p && (index < bp->b_xio.xio_npages)) { 4159 if (p->busy) { 4160 kprintf("vm_hold_free_pages: doffset: %lld, " 4161 "loffset: %lld\n", 4162 (long long)bp->b_bio2.bio_offset, 4163 (long long)bp->b_loffset); 4164 } 4165 bp->b_xio.xio_pages[index] = NULL; 4166 pmap_kremove(pg); 4167 vm_page_busy(p); 4168 vm_page_unwire(p, 0); 4169 vm_page_free(p); 4170 } 4171 } 4172 bp->b_xio.xio_npages = newnpages; 4173 } 4174 4175 /* 4176 * vmapbuf: 4177 * 4178 * Map a user buffer into KVM via a pbuf. On return the buffer's 4179 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4180 * initialized. 4181 */ 4182 int 4183 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4184 { 4185 caddr_t addr; 4186 vm_offset_t va; 4187 vm_page_t m; 4188 int vmprot; 4189 int error; 4190 int pidx; 4191 int i; 4192 4193 /* 4194 * bp had better have a command and it better be a pbuf. 4195 */ 4196 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4197 KKASSERT(bp->b_flags & B_PAGING); 4198 4199 if (bytes < 0) 4200 return (-1); 4201 4202 /* 4203 * Map the user data into KVM. Mappings have to be page-aligned. 4204 */ 4205 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4206 pidx = 0; 4207 4208 vmprot = VM_PROT_READ; 4209 if (bp->b_cmd == BUF_CMD_READ) 4210 vmprot |= VM_PROT_WRITE; 4211 4212 while (addr < udata + bytes) { 4213 /* 4214 * Do the vm_fault if needed; do the copy-on-write thing 4215 * when reading stuff off device into memory. 4216 * 4217 * vm_fault_page*() returns a held VM page. 4218 */ 4219 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4220 va = trunc_page(va); 4221 4222 m = vm_fault_page_quick(va, vmprot, &error); 4223 if (m == NULL) { 4224 for (i = 0; i < pidx; ++i) { 4225 vm_page_unhold(bp->b_xio.xio_pages[i]); 4226 bp->b_xio.xio_pages[i] = NULL; 4227 } 4228 return(-1); 4229 } 4230 bp->b_xio.xio_pages[pidx] = m; 4231 addr += PAGE_SIZE; 4232 ++pidx; 4233 } 4234 4235 /* 4236 * Map the page array and set the buffer fields to point to 4237 * the mapped data buffer. 4238 */ 4239 if (pidx > btoc(MAXPHYS)) 4240 panic("vmapbuf: mapped more than MAXPHYS"); 4241 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4242 4243 bp->b_xio.xio_npages = pidx; 4244 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4245 bp->b_bcount = bytes; 4246 bp->b_bufsize = bytes; 4247 return(0); 4248 } 4249 4250 /* 4251 * vunmapbuf: 4252 * 4253 * Free the io map PTEs associated with this IO operation. 4254 * We also invalidate the TLB entries and restore the original b_addr. 4255 */ 4256 void 4257 vunmapbuf(struct buf *bp) 4258 { 4259 int pidx; 4260 int npages; 4261 4262 KKASSERT(bp->b_flags & B_PAGING); 4263 4264 npages = bp->b_xio.xio_npages; 4265 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4266 for (pidx = 0; pidx < npages; ++pidx) { 4267 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4268 bp->b_xio.xio_pages[pidx] = NULL; 4269 } 4270 bp->b_xio.xio_npages = 0; 4271 bp->b_data = bp->b_kvabase; 4272 } 4273 4274 /* 4275 * Scan all buffers in the system and issue the callback. 4276 */ 4277 int 4278 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4279 { 4280 int count = 0; 4281 int error; 4282 int n; 4283 4284 for (n = 0; n < nbuf; ++n) { 4285 if ((error = callback(&buf[n], info)) < 0) { 4286 count = error; 4287 break; 4288 } 4289 count += error; 4290 } 4291 return (count); 4292 } 4293 4294 /* 4295 * print out statistics from the current status of the buffer pool 4296 * this can be toggeled by the system control option debug.syncprt 4297 */ 4298 #ifdef DEBUG 4299 void 4300 vfs_bufstats(void) 4301 { 4302 int i, j, count; 4303 struct buf *bp; 4304 struct bqueues *dp; 4305 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4306 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4307 4308 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4309 count = 0; 4310 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4311 counts[j] = 0; 4312 crit_enter(); 4313 TAILQ_FOREACH(bp, dp, b_freelist) { 4314 counts[bp->b_bufsize/PAGE_SIZE]++; 4315 count++; 4316 } 4317 crit_exit(); 4318 kprintf("%s: total-%d", bname[i], count); 4319 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4320 if (counts[j] != 0) 4321 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4322 kprintf("\n"); 4323 } 4324 } 4325 #endif 4326 4327 #ifdef DDB 4328 4329 DB_SHOW_COMMAND(buffer, db_show_buffer) 4330 { 4331 /* get args */ 4332 struct buf *bp = (struct buf *)addr; 4333 4334 if (!have_addr) { 4335 db_printf("usage: show buffer <addr>\n"); 4336 return; 4337 } 4338 4339 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4340 db_printf("b_cmd = %d\n", bp->b_cmd); 4341 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4342 "b_resid = %d\n, b_data = %p, " 4343 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4344 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4345 bp->b_data, 4346 (long long)bp->b_bio2.bio_offset, 4347 (long long)(bp->b_bio2.bio_next ? 4348 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4349 if (bp->b_xio.xio_npages) { 4350 int i; 4351 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4352 bp->b_xio.xio_npages); 4353 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4354 vm_page_t m; 4355 m = bp->b_xio.xio_pages[i]; 4356 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4357 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4358 if ((i + 1) < bp->b_xio.xio_npages) 4359 db_printf(","); 4360 } 4361 db_printf("\n"); 4362 } 4363 } 4364 #endif /* DDB */ 4365