xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 6693db176654a0f25095ec64d0a74d58dcf0e47e)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/mplock2.h>
61 #include <vm/vm_page2.h>
62 
63 #include "opt_ddb.h"
64 #ifdef DDB
65 #include <ddb/ddb.h>
66 #endif
67 
68 /*
69  * Buffer queues.
70  */
71 enum bufq_type {
72 	BQUEUE_NONE,    	/* not on any queue */
73 	BQUEUE_LOCKED,  	/* locked buffers */
74 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
75 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
76 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
77 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
78 	BQUEUE_EMPTY,    	/* empty buffer headers */
79 
80 	BUFFER_QUEUES		/* number of buffer queues */
81 };
82 
83 typedef enum bufq_type bufq_type_t;
84 
85 #define BD_WAKE_SIZE	16384
86 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
87 
88 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
89 struct spinlock	bufspin = SPINLOCK_INITIALIZER(&bufspin);
90 
91 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
92 
93 struct buf *buf;		/* buffer header pool */
94 
95 static void vfs_clean_pages(struct buf *bp);
96 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
97 static void vfs_vmio_release(struct buf *bp);
98 static int flushbufqueues(bufq_type_t q);
99 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
100 
101 static void bd_signal(int totalspace);
102 static void buf_daemon(void);
103 static void buf_daemon_hw(void);
104 
105 /*
106  * bogus page -- for I/O to/from partially complete buffers
107  * this is a temporary solution to the problem, but it is not
108  * really that bad.  it would be better to split the buffer
109  * for input in the case of buffers partially already in memory,
110  * but the code is intricate enough already.
111  */
112 vm_page_t bogus_page;
113 
114 /*
115  * These are all static, but make the ones we export globals so we do
116  * not need to use compiler magic.
117  */
118 int bufspace, maxbufspace,
119 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
120 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
121 static int lorunningspace, hirunningspace, runningbufreq;
122 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
123 int dirtybufcount, dirtybufcounthw;
124 int runningbufspace, runningbufcount;
125 static int getnewbufcalls;
126 static int getnewbufrestarts;
127 static int recoverbufcalls;
128 static int needsbuffer;		/* locked by needsbuffer_spin */
129 static int bd_request;		/* locked by needsbuffer_spin */
130 static int bd_request_hw;	/* locked by needsbuffer_spin */
131 static u_int bd_wake_ary[BD_WAKE_SIZE];
132 static u_int bd_wake_index;
133 static u_int vm_cycle_point = ACT_INIT + ACT_ADVANCE * 6;
134 static struct spinlock needsbuffer_spin;
135 
136 static struct thread *bufdaemon_td;
137 static struct thread *bufdaemonhw_td;
138 
139 
140 /*
141  * Sysctls for operational control of the buffer cache.
142  */
143 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
144 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
145 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
146 	"High watermark used to trigger explicit flushing of dirty buffers");
147 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
148 	"Minimum amount of buffer space required for active I/O");
149 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
150 	"Maximum amount of buffer space to usable for active I/O");
151 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
152 	"Recycle pages to active or inactive queue transition pt 0-64");
153 /*
154  * Sysctls determining current state of the buffer cache.
155  */
156 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
157 	"Total number of buffers in buffer cache");
158 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
159 	"Pending bytes of dirty buffers (all)");
160 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
161 	"Pending bytes of dirty buffers (heavy weight)");
162 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
163 	"Pending number of dirty buffers");
164 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
165 	"Pending number of dirty buffers (heavy weight)");
166 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
167 	"I/O bytes currently in progress due to asynchronous writes");
168 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
169 	"I/O buffers currently in progress due to asynchronous writes");
170 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
171 	"Hard limit on maximum amount of memory usable for buffer space");
172 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
173 	"Soft limit on maximum amount of memory usable for buffer space");
174 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
175 	"Minimum amount of memory to reserve for system buffer space");
176 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
177 	"Amount of memory available for buffers");
178 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
179 	0, "Maximum amount of memory reserved for buffers using malloc");
180 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
181 	"Amount of memory left for buffers using malloc-scheme");
182 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
183 	"New buffer header acquisition requests");
184 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
185 	0, "New buffer header acquisition restarts");
186 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
187 	"Recover VM space in an emergency");
188 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
189 	"Buffer acquisition restarts due to fragmented buffer map");
190 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
191 	"Amount of time KVA space was deallocated in an arbitrary buffer");
192 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
193 	"Amount of time buffer re-use operations were successful");
194 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
195 	"sizeof(struct buf)");
196 
197 char *buf_wmesg = BUF_WMESG;
198 
199 extern int vm_swap_size;
200 
201 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
202 #define VFS_BIO_NEED_UNUSED02	0x02
203 #define VFS_BIO_NEED_UNUSED04	0x04
204 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
205 
206 /*
207  * bufspacewakeup:
208  *
209  *	Called when buffer space is potentially available for recovery.
210  *	getnewbuf() will block on this flag when it is unable to free
211  *	sufficient buffer space.  Buffer space becomes recoverable when
212  *	bp's get placed back in the queues.
213  */
214 
215 static __inline void
216 bufspacewakeup(void)
217 {
218 	/*
219 	 * If someone is waiting for BUF space, wake them up.  Even
220 	 * though we haven't freed the kva space yet, the waiting
221 	 * process will be able to now.
222 	 */
223 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
224 		spin_lock_wr(&needsbuffer_spin);
225 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
226 		spin_unlock_wr(&needsbuffer_spin);
227 		wakeup(&needsbuffer);
228 	}
229 }
230 
231 /*
232  * runningbufwakeup:
233  *
234  *	Accounting for I/O in progress.
235  *
236  */
237 static __inline void
238 runningbufwakeup(struct buf *bp)
239 {
240 	int totalspace;
241 	int limit;
242 
243 	if ((totalspace = bp->b_runningbufspace) != 0) {
244 		atomic_subtract_int(&runningbufspace, totalspace);
245 		atomic_subtract_int(&runningbufcount, 1);
246 		bp->b_runningbufspace = 0;
247 
248 		/*
249 		 * see waitrunningbufspace() for limit test.
250 		 */
251 		limit = hirunningspace * 2 / 3;
252 		if (runningbufreq && runningbufspace <= limit) {
253 			runningbufreq = 0;
254 			wakeup(&runningbufreq);
255 		}
256 		bd_signal(totalspace);
257 	}
258 }
259 
260 /*
261  * bufcountwakeup:
262  *
263  *	Called when a buffer has been added to one of the free queues to
264  *	account for the buffer and to wakeup anyone waiting for free buffers.
265  *	This typically occurs when large amounts of metadata are being handled
266  *	by the buffer cache ( else buffer space runs out first, usually ).
267  *
268  * MPSAFE
269  */
270 static __inline void
271 bufcountwakeup(void)
272 {
273 	if (needsbuffer) {
274 		spin_lock_wr(&needsbuffer_spin);
275 		needsbuffer &= ~VFS_BIO_NEED_ANY;
276 		spin_unlock_wr(&needsbuffer_spin);
277 		wakeup(&needsbuffer);
278 	}
279 }
280 
281 /*
282  * waitrunningbufspace()
283  *
284  * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3.
285  * This is the point where write bursting stops so we don't want to wait
286  * for the running amount to drop below it (at least if we still want bioq
287  * to burst writes).
288  *
289  * The caller may be using this function to block in a tight loop, we
290  * must block while runningbufspace is greater then or equal to
291  * hirunningspace * 2 / 3.
292  *
293  * And even with that it may not be enough, due to the presence of
294  * B_LOCKED dirty buffers, so also wait for at least one running buffer
295  * to complete.
296  */
297 static __inline void
298 waitrunningbufspace(void)
299 {
300 	int limit = hirunningspace * 2 / 3;
301 
302 	crit_enter();
303 	if (runningbufspace > limit) {
304 		while (runningbufspace > limit) {
305 			++runningbufreq;
306 			tsleep(&runningbufreq, 0, "wdrn1", 0);
307 		}
308 	} else if (runningbufspace) {
309 		++runningbufreq;
310 		tsleep(&runningbufreq, 0, "wdrn2", 1);
311 	}
312 	crit_exit();
313 }
314 
315 /*
316  * buf_dirty_count_severe:
317  *
318  *	Return true if we have too many dirty buffers.
319  */
320 int
321 buf_dirty_count_severe(void)
322 {
323 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
324 	        dirtybufcount >= nbuf / 2);
325 }
326 
327 /*
328  * Return true if the amount of running I/O is severe and BIOQ should
329  * start bursting.
330  */
331 int
332 buf_runningbufspace_severe(void)
333 {
334 	return (runningbufspace >= hirunningspace * 2 / 3);
335 }
336 
337 /*
338  * vfs_buf_test_cache:
339  *
340  * Called when a buffer is extended.  This function clears the B_CACHE
341  * bit if the newly extended portion of the buffer does not contain
342  * valid data.
343  *
344  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
345  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
346  * them while a clean buffer was present.
347  */
348 static __inline__
349 void
350 vfs_buf_test_cache(struct buf *bp,
351 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
352 		  vm_page_t m)
353 {
354 	if (bp->b_flags & B_CACHE) {
355 		int base = (foff + off) & PAGE_MASK;
356 		if (vm_page_is_valid(m, base, size) == 0)
357 			bp->b_flags &= ~B_CACHE;
358 	}
359 }
360 
361 /*
362  * bd_speedup()
363  *
364  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
365  * low water mark.
366  *
367  * MPSAFE
368  */
369 static __inline__
370 void
371 bd_speedup(void)
372 {
373 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
374 		return;
375 
376 	if (bd_request == 0 &&
377 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
378 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
379 		spin_lock_wr(&needsbuffer_spin);
380 		bd_request = 1;
381 		spin_unlock_wr(&needsbuffer_spin);
382 		wakeup(&bd_request);
383 	}
384 	if (bd_request_hw == 0 &&
385 	    (dirtybufspacehw > lodirtybufspace / 2 ||
386 	     dirtybufcounthw >= nbuf / 2)) {
387 		spin_lock_wr(&needsbuffer_spin);
388 		bd_request_hw = 1;
389 		spin_unlock_wr(&needsbuffer_spin);
390 		wakeup(&bd_request_hw);
391 	}
392 }
393 
394 /*
395  * bd_heatup()
396  *
397  *	Get the buf_daemon heated up when the number of running and dirty
398  *	buffers exceeds the mid-point.
399  *
400  *	Return the total number of dirty bytes past the second mid point
401  *	as a measure of how much excess dirty data there is in the system.
402  *
403  * MPSAFE
404  */
405 int
406 bd_heatup(void)
407 {
408 	int mid1;
409 	int mid2;
410 	int totalspace;
411 
412 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
413 
414 	totalspace = runningbufspace + dirtybufspace;
415 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
416 		bd_speedup();
417 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
418 		if (totalspace >= mid2)
419 			return(totalspace - mid2);
420 	}
421 	return(0);
422 }
423 
424 /*
425  * bd_wait()
426  *
427  *	Wait for the buffer cache to flush (totalspace) bytes worth of
428  *	buffers, then return.
429  *
430  *	Regardless this function blocks while the number of dirty buffers
431  *	exceeds hidirtybufspace.
432  *
433  * MPSAFE
434  */
435 void
436 bd_wait(int totalspace)
437 {
438 	u_int i;
439 	int count;
440 
441 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
442 		return;
443 
444 	while (totalspace > 0) {
445 		bd_heatup();
446 		if (totalspace > runningbufspace + dirtybufspace)
447 			totalspace = runningbufspace + dirtybufspace;
448 		count = totalspace / BKVASIZE;
449 		if (count >= BD_WAKE_SIZE)
450 			count = BD_WAKE_SIZE - 1;
451 
452 		spin_lock_wr(&needsbuffer_spin);
453 		i = (bd_wake_index + count) & BD_WAKE_MASK;
454 		++bd_wake_ary[i];
455 		tsleep_interlock(&bd_wake_ary[i], 0);
456 		spin_unlock_wr(&needsbuffer_spin);
457 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
458 
459 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
460 	}
461 }
462 
463 /*
464  * bd_signal()
465  *
466  *	This function is called whenever runningbufspace or dirtybufspace
467  *	is reduced.  Track threads waiting for run+dirty buffer I/O
468  *	complete.
469  *
470  * MPSAFE
471  */
472 static void
473 bd_signal(int totalspace)
474 {
475 	u_int i;
476 
477 	if (totalspace > 0) {
478 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
479 			totalspace = BKVASIZE * BD_WAKE_SIZE;
480 		spin_lock_wr(&needsbuffer_spin);
481 		while (totalspace > 0) {
482 			i = bd_wake_index++;
483 			i &= BD_WAKE_MASK;
484 			if (bd_wake_ary[i]) {
485 				bd_wake_ary[i] = 0;
486 				spin_unlock_wr(&needsbuffer_spin);
487 				wakeup(&bd_wake_ary[i]);
488 				spin_lock_wr(&needsbuffer_spin);
489 			}
490 			totalspace -= BKVASIZE;
491 		}
492 		spin_unlock_wr(&needsbuffer_spin);
493 	}
494 }
495 
496 /*
497  * BIO tracking support routines.
498  *
499  * Release a ref on a bio_track.  Wakeup requests are atomically released
500  * along with the last reference so bk_active will never wind up set to
501  * only 0x80000000.
502  *
503  * MPSAFE
504  */
505 static
506 void
507 bio_track_rel(struct bio_track *track)
508 {
509 	int	active;
510 	int	desired;
511 
512 	/*
513 	 * Shortcut
514 	 */
515 	active = track->bk_active;
516 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
517 		return;
518 
519 	/*
520 	 * Full-on.  Note that the wait flag is only atomically released on
521 	 * the 1->0 count transition.
522 	 *
523 	 * We check for a negative count transition using bit 30 since bit 31
524 	 * has a different meaning.
525 	 */
526 	for (;;) {
527 		desired = (active & 0x7FFFFFFF) - 1;
528 		if (desired)
529 			desired |= active & 0x80000000;
530 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
531 			if (desired & 0x40000000)
532 				panic("bio_track_rel: bad count: %p\n", track);
533 			if (active & 0x80000000)
534 				wakeup(track);
535 			break;
536 		}
537 		active = track->bk_active;
538 	}
539 }
540 
541 /*
542  * Wait for the tracking count to reach 0.
543  *
544  * Use atomic ops such that the wait flag is only set atomically when
545  * bk_active is non-zero.
546  *
547  * MPSAFE
548  */
549 int
550 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
551 {
552 	int	active;
553 	int	desired;
554 	int	error;
555 
556 	/*
557 	 * Shortcut
558 	 */
559 	if (track->bk_active == 0)
560 		return(0);
561 
562 	/*
563 	 * Full-on.  Note that the wait flag may only be atomically set if
564 	 * the active count is non-zero.
565 	 */
566 	error = 0;
567 	while ((active = track->bk_active) != 0) {
568 		desired = active | 0x80000000;
569 		tsleep_interlock(track, slp_flags);
570 		if (active == desired ||
571 		    atomic_cmpset_int(&track->bk_active, active, desired)) {
572 			error = tsleep(track, slp_flags | PINTERLOCKED,
573 				       "iowait", slp_timo);
574 			if (error)
575 				break;
576 		}
577 	}
578 	return (error);
579 }
580 
581 /*
582  * bufinit:
583  *
584  *	Load time initialisation of the buffer cache, called from machine
585  *	dependant initialization code.
586  */
587 void
588 bufinit(void)
589 {
590 	struct buf *bp;
591 	vm_offset_t bogus_offset;
592 	int i;
593 
594 	spin_init(&needsbuffer_spin);
595 
596 	/* next, make a null set of free lists */
597 	for (i = 0; i < BUFFER_QUEUES; i++)
598 		TAILQ_INIT(&bufqueues[i]);
599 
600 	/* finally, initialize each buffer header and stick on empty q */
601 	for (i = 0; i < nbuf; i++) {
602 		bp = &buf[i];
603 		bzero(bp, sizeof *bp);
604 		bp->b_flags = B_INVAL;	/* we're just an empty header */
605 		bp->b_cmd = BUF_CMD_DONE;
606 		bp->b_qindex = BQUEUE_EMPTY;
607 		initbufbio(bp);
608 		xio_init(&bp->b_xio);
609 		buf_dep_init(bp);
610 		BUF_LOCKINIT(bp);
611 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
612 	}
613 
614 	/*
615 	 * maxbufspace is the absolute maximum amount of buffer space we are
616 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
617 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
618 	 * used by most other processes.  The differential is required to
619 	 * ensure that buf_daemon is able to run when other processes might
620 	 * be blocked waiting for buffer space.
621 	 *
622 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
623 	 * this may result in KVM fragmentation which is not handled optimally
624 	 * by the system.
625 	 */
626 	maxbufspace = nbuf * BKVASIZE;
627 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
628 	lobufspace = hibufspace - MAXBSIZE;
629 
630 	lorunningspace = 512 * 1024;
631 	/* hirunningspace -- see below */
632 
633 	/*
634 	 * Limit the amount of malloc memory since it is wired permanently
635 	 * into the kernel space.  Even though this is accounted for in
636 	 * the buffer allocation, we don't want the malloced region to grow
637 	 * uncontrolled.  The malloc scheme improves memory utilization
638 	 * significantly on average (small) directories.
639 	 */
640 	maxbufmallocspace = hibufspace / 20;
641 
642 	/*
643 	 * Reduce the chance of a deadlock occuring by limiting the number
644 	 * of delayed-write dirty buffers we allow to stack up.
645 	 *
646 	 * We don't want too much actually queued to the device at once
647 	 * (XXX this needs to be per-mount!), because the buffers will
648 	 * wind up locked for a very long period of time while the I/O
649 	 * drains.
650 	 */
651 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
652 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
653 	if (hirunningspace < 1024 * 1024)
654 		hirunningspace = 1024 * 1024;
655 
656 	dirtybufspace = 0;
657 	dirtybufspacehw = 0;
658 
659 	lodirtybufspace = hidirtybufspace / 2;
660 
661 	/*
662 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
663 	 * somewhat of a hack at the moment, we really need to limit ourselves
664 	 * based on the number of bytes of I/O in-transit that were initiated
665 	 * from buf_daemon.
666 	 */
667 
668 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
669 	bogus_page = vm_page_alloc(&kernel_object,
670 				   (bogus_offset >> PAGE_SHIFT),
671 				   VM_ALLOC_NORMAL);
672 	vmstats.v_wire_count++;
673 
674 }
675 
676 /*
677  * Initialize the embedded bio structures
678  */
679 void
680 initbufbio(struct buf *bp)
681 {
682 	bp->b_bio1.bio_buf = bp;
683 	bp->b_bio1.bio_prev = NULL;
684 	bp->b_bio1.bio_offset = NOOFFSET;
685 	bp->b_bio1.bio_next = &bp->b_bio2;
686 	bp->b_bio1.bio_done = NULL;
687 	bp->b_bio1.bio_flags = 0;
688 
689 	bp->b_bio2.bio_buf = bp;
690 	bp->b_bio2.bio_prev = &bp->b_bio1;
691 	bp->b_bio2.bio_offset = NOOFFSET;
692 	bp->b_bio2.bio_next = NULL;
693 	bp->b_bio2.bio_done = NULL;
694 	bp->b_bio2.bio_flags = 0;
695 }
696 
697 /*
698  * Reinitialize the embedded bio structures as well as any additional
699  * translation cache layers.
700  */
701 void
702 reinitbufbio(struct buf *bp)
703 {
704 	struct bio *bio;
705 
706 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
707 		bio->bio_done = NULL;
708 		bio->bio_offset = NOOFFSET;
709 	}
710 }
711 
712 /*
713  * Push another BIO layer onto an existing BIO and return it.  The new
714  * BIO layer may already exist, holding cached translation data.
715  */
716 struct bio *
717 push_bio(struct bio *bio)
718 {
719 	struct bio *nbio;
720 
721 	if ((nbio = bio->bio_next) == NULL) {
722 		int index = bio - &bio->bio_buf->b_bio_array[0];
723 		if (index >= NBUF_BIO - 1) {
724 			panic("push_bio: too many layers bp %p\n",
725 				bio->bio_buf);
726 		}
727 		nbio = &bio->bio_buf->b_bio_array[index + 1];
728 		bio->bio_next = nbio;
729 		nbio->bio_prev = bio;
730 		nbio->bio_buf = bio->bio_buf;
731 		nbio->bio_offset = NOOFFSET;
732 		nbio->bio_done = NULL;
733 		nbio->bio_next = NULL;
734 	}
735 	KKASSERT(nbio->bio_done == NULL);
736 	return(nbio);
737 }
738 
739 /*
740  * Pop a BIO translation layer, returning the previous layer.  The
741  * must have been previously pushed.
742  */
743 struct bio *
744 pop_bio(struct bio *bio)
745 {
746 	return(bio->bio_prev);
747 }
748 
749 void
750 clearbiocache(struct bio *bio)
751 {
752 	while (bio) {
753 		bio->bio_offset = NOOFFSET;
754 		bio = bio->bio_next;
755 	}
756 }
757 
758 /*
759  * bfreekva:
760  *
761  *	Free the KVA allocation for buffer 'bp'.
762  *
763  *	Must be called from a critical section as this is the only locking for
764  *	buffer_map.
765  *
766  *	Since this call frees up buffer space, we call bufspacewakeup().
767  *
768  * MPALMOSTSAFE
769  */
770 static void
771 bfreekva(struct buf *bp)
772 {
773 	int count;
774 
775 	if (bp->b_kvasize) {
776 		get_mplock();
777 		++buffreekvacnt;
778 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
779 		vm_map_lock(&buffer_map);
780 		bufspace -= bp->b_kvasize;
781 		vm_map_delete(&buffer_map,
782 		    (vm_offset_t) bp->b_kvabase,
783 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
784 		    &count
785 		);
786 		vm_map_unlock(&buffer_map);
787 		vm_map_entry_release(count);
788 		bp->b_kvasize = 0;
789 		bufspacewakeup();
790 		rel_mplock();
791 	}
792 }
793 
794 /*
795  * bremfree:
796  *
797  *	Remove the buffer from the appropriate free list.
798  */
799 static __inline void
800 _bremfree(struct buf *bp)
801 {
802 	if (bp->b_qindex != BQUEUE_NONE) {
803 		KASSERT(BUF_REFCNTNB(bp) == 1,
804 				("bremfree: bp %p not locked",bp));
805 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
806 		bp->b_qindex = BQUEUE_NONE;
807 	} else {
808 		if (BUF_REFCNTNB(bp) <= 1)
809 			panic("bremfree: removing a buffer not on a queue");
810 	}
811 }
812 
813 void
814 bremfree(struct buf *bp)
815 {
816 	spin_lock_wr(&bufspin);
817 	_bremfree(bp);
818 	spin_unlock_wr(&bufspin);
819 }
820 
821 static void
822 bremfree_locked(struct buf *bp)
823 {
824 	_bremfree(bp);
825 }
826 
827 /*
828  * bread:
829  *
830  *	Get a buffer with the specified data.  Look in the cache first.  We
831  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
832  *	is set, the buffer is valid and we do not have to do anything ( see
833  *	getblk() ).
834  *
835  * MPALMOSTSAFE
836  */
837 int
838 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
839 {
840 	struct buf *bp;
841 
842 	bp = getblk(vp, loffset, size, 0, 0);
843 	*bpp = bp;
844 
845 	/* if not found in cache, do some I/O */
846 	if ((bp->b_flags & B_CACHE) == 0) {
847 		get_mplock();
848 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
849 		bp->b_cmd = BUF_CMD_READ;
850 		bp->b_bio1.bio_done = biodone_sync;
851 		bp->b_bio1.bio_flags |= BIO_SYNC;
852 		vfs_busy_pages(vp, bp);
853 		vn_strategy(vp, &bp->b_bio1);
854 		rel_mplock();
855 		return (biowait(&bp->b_bio1, "biord"));
856 	}
857 	return (0);
858 }
859 
860 /*
861  * breadn:
862  *
863  *	Operates like bread, but also starts asynchronous I/O on
864  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
865  *	to initiating I/O . If B_CACHE is set, the buffer is valid
866  *	and we do not have to do anything.
867  *
868  * MPALMOSTSAFE
869  */
870 int
871 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
872 	int *rabsize, int cnt, struct buf **bpp)
873 {
874 	struct buf *bp, *rabp;
875 	int i;
876 	int rv = 0, readwait = 0;
877 
878 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
879 
880 	/* if not found in cache, do some I/O */
881 	if ((bp->b_flags & B_CACHE) == 0) {
882 		get_mplock();
883 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
884 		bp->b_cmd = BUF_CMD_READ;
885 		bp->b_bio1.bio_done = biodone_sync;
886 		bp->b_bio1.bio_flags |= BIO_SYNC;
887 		vfs_busy_pages(vp, bp);
888 		vn_strategy(vp, &bp->b_bio1);
889 		++readwait;
890 		rel_mplock();
891 	}
892 
893 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
894 		if (inmem(vp, *raoffset))
895 			continue;
896 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
897 
898 		if ((rabp->b_flags & B_CACHE) == 0) {
899 			get_mplock();
900 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
901 			rabp->b_cmd = BUF_CMD_READ;
902 			vfs_busy_pages(vp, rabp);
903 			BUF_KERNPROC(rabp);
904 			vn_strategy(vp, &rabp->b_bio1);
905 			rel_mplock();
906 		} else {
907 			brelse(rabp);
908 		}
909 	}
910 	if (readwait)
911 		rv = biowait(&bp->b_bio1, "biord");
912 	return (rv);
913 }
914 
915 /*
916  * bwrite:
917  *
918  *	Synchronous write, waits for completion.
919  *
920  *	Write, release buffer on completion.  (Done by iodone
921  *	if async).  Do not bother writing anything if the buffer
922  *	is invalid.
923  *
924  *	Note that we set B_CACHE here, indicating that buffer is
925  *	fully valid and thus cacheable.  This is true even of NFS
926  *	now so we set it generally.  This could be set either here
927  *	or in biodone() since the I/O is synchronous.  We put it
928  *	here.
929  */
930 int
931 bwrite(struct buf *bp)
932 {
933 	int error;
934 
935 	if (bp->b_flags & B_INVAL) {
936 		brelse(bp);
937 		return (0);
938 	}
939 	if (BUF_REFCNTNB(bp) == 0)
940 		panic("bwrite: buffer is not busy???");
941 
942 	/* Mark the buffer clean */
943 	bundirty(bp);
944 
945 	bp->b_flags &= ~(B_ERROR | B_EINTR);
946 	bp->b_flags |= B_CACHE;
947 	bp->b_cmd = BUF_CMD_WRITE;
948 	bp->b_bio1.bio_done = biodone_sync;
949 	bp->b_bio1.bio_flags |= BIO_SYNC;
950 	vfs_busy_pages(bp->b_vp, bp);
951 
952 	/*
953 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
954 	 * valid for vnode-backed buffers.
955 	 */
956 	bp->b_runningbufspace = bp->b_bufsize;
957 	if (bp->b_runningbufspace) {
958 		runningbufspace += bp->b_runningbufspace;
959 		++runningbufcount;
960 	}
961 
962 	vn_strategy(bp->b_vp, &bp->b_bio1);
963 	error = biowait(&bp->b_bio1, "biows");
964 	brelse(bp);
965 	return (error);
966 }
967 
968 /*
969  * bawrite:
970  *
971  *	Asynchronous write.  Start output on a buffer, but do not wait for
972  *	it to complete.  The buffer is released when the output completes.
973  *
974  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
975  *	B_INVAL buffers.  Not us.
976  */
977 void
978 bawrite(struct buf *bp)
979 {
980 	if (bp->b_flags & B_INVAL) {
981 		brelse(bp);
982 		return;
983 	}
984 	if (BUF_REFCNTNB(bp) == 0)
985 		panic("bwrite: buffer is not busy???");
986 
987 	/* Mark the buffer clean */
988 	bundirty(bp);
989 
990 	bp->b_flags &= ~(B_ERROR | B_EINTR);
991 	bp->b_flags |= B_CACHE;
992 	bp->b_cmd = BUF_CMD_WRITE;
993 	KKASSERT(bp->b_bio1.bio_done == NULL);
994 	vfs_busy_pages(bp->b_vp, bp);
995 
996 	/*
997 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
998 	 * valid for vnode-backed buffers.
999 	 */
1000 	bp->b_runningbufspace = bp->b_bufsize;
1001 	if (bp->b_runningbufspace) {
1002 		runningbufspace += bp->b_runningbufspace;
1003 		++runningbufcount;
1004 	}
1005 
1006 	BUF_KERNPROC(bp);
1007 	vn_strategy(bp->b_vp, &bp->b_bio1);
1008 }
1009 
1010 /*
1011  * bowrite:
1012  *
1013  *	Ordered write.  Start output on a buffer, and flag it so that the
1014  *	device will write it in the order it was queued.  The buffer is
1015  *	released when the output completes.  bwrite() ( or the VOP routine
1016  *	anyway ) is responsible for handling B_INVAL buffers.
1017  */
1018 int
1019 bowrite(struct buf *bp)
1020 {
1021 	bp->b_flags |= B_ORDERED;
1022 	bawrite(bp);
1023 	return (0);
1024 }
1025 
1026 /*
1027  * bdwrite:
1028  *
1029  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1030  *	anything if the buffer is marked invalid.
1031  *
1032  *	Note that since the buffer must be completely valid, we can safely
1033  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1034  *	biodone() in order to prevent getblk from writing the buffer
1035  *	out synchronously.
1036  */
1037 void
1038 bdwrite(struct buf *bp)
1039 {
1040 	if (BUF_REFCNTNB(bp) == 0)
1041 		panic("bdwrite: buffer is not busy");
1042 
1043 	if (bp->b_flags & B_INVAL) {
1044 		brelse(bp);
1045 		return;
1046 	}
1047 	bdirty(bp);
1048 
1049 	/*
1050 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1051 	 * true even of NFS now.
1052 	 */
1053 	bp->b_flags |= B_CACHE;
1054 
1055 	/*
1056 	 * This bmap keeps the system from needing to do the bmap later,
1057 	 * perhaps when the system is attempting to do a sync.  Since it
1058 	 * is likely that the indirect block -- or whatever other datastructure
1059 	 * that the filesystem needs is still in memory now, it is a good
1060 	 * thing to do this.  Note also, that if the pageout daemon is
1061 	 * requesting a sync -- there might not be enough memory to do
1062 	 * the bmap then...  So, this is important to do.
1063 	 */
1064 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1065 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1066 			 NULL, NULL, BUF_CMD_WRITE);
1067 	}
1068 
1069 	/*
1070 	 * Because the underlying pages may still be mapped and
1071 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1072 	 * range here will be inaccurate.
1073 	 *
1074 	 * However, we must still clean the pages to satisfy the
1075 	 * vnode_pager and pageout daemon, so theythink the pages
1076 	 * have been "cleaned".  What has really occured is that
1077 	 * they've been earmarked for later writing by the buffer
1078 	 * cache.
1079 	 *
1080 	 * So we get the b_dirtyoff/end update but will not actually
1081 	 * depend on it (NFS that is) until the pages are busied for
1082 	 * writing later on.
1083 	 */
1084 	vfs_clean_pages(bp);
1085 	bqrelse(bp);
1086 
1087 	/*
1088 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1089 	 * due to the softdep code.
1090 	 */
1091 }
1092 
1093 /*
1094  * bdirty:
1095  *
1096  *	Turn buffer into delayed write request by marking it B_DELWRI.
1097  *	B_RELBUF and B_NOCACHE must be cleared.
1098  *
1099  *	We reassign the buffer to itself to properly update it in the
1100  *	dirty/clean lists.
1101  *
1102  *	Must be called from a critical section.
1103  *	The buffer must be on BQUEUE_NONE.
1104  */
1105 void
1106 bdirty(struct buf *bp)
1107 {
1108 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1109 	if (bp->b_flags & B_NOCACHE) {
1110 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1111 		bp->b_flags &= ~B_NOCACHE;
1112 	}
1113 	if (bp->b_flags & B_INVAL) {
1114 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1115 	}
1116 	bp->b_flags &= ~B_RELBUF;
1117 
1118 	if ((bp->b_flags & B_DELWRI) == 0) {
1119 		bp->b_flags |= B_DELWRI;
1120 		reassignbuf(bp);
1121 		atomic_add_int(&dirtybufcount, 1);
1122 		dirtybufspace += bp->b_bufsize;
1123 		if (bp->b_flags & B_HEAVY) {
1124 			atomic_add_int(&dirtybufcounthw, 1);
1125 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1126 		}
1127 		bd_heatup();
1128 	}
1129 }
1130 
1131 /*
1132  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1133  * needs to be flushed with a different buf_daemon thread to avoid
1134  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1135  */
1136 void
1137 bheavy(struct buf *bp)
1138 {
1139 	if ((bp->b_flags & B_HEAVY) == 0) {
1140 		bp->b_flags |= B_HEAVY;
1141 		if (bp->b_flags & B_DELWRI) {
1142 			atomic_add_int(&dirtybufcounthw, 1);
1143 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1144 		}
1145 	}
1146 }
1147 
1148 /*
1149  * bundirty:
1150  *
1151  *	Clear B_DELWRI for buffer.
1152  *
1153  *	Must be called from a critical section.
1154  *
1155  *	The buffer is typically on BQUEUE_NONE but there is one case in
1156  *	brelse() that calls this function after placing the buffer on
1157  *	a different queue.
1158  *
1159  * MPSAFE
1160  */
1161 void
1162 bundirty(struct buf *bp)
1163 {
1164 	if (bp->b_flags & B_DELWRI) {
1165 		bp->b_flags &= ~B_DELWRI;
1166 		reassignbuf(bp);
1167 		atomic_subtract_int(&dirtybufcount, 1);
1168 		atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1169 		if (bp->b_flags & B_HEAVY) {
1170 			atomic_subtract_int(&dirtybufcounthw, 1);
1171 			atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1172 		}
1173 		bd_signal(bp->b_bufsize);
1174 	}
1175 	/*
1176 	 * Since it is now being written, we can clear its deferred write flag.
1177 	 */
1178 	bp->b_flags &= ~B_DEFERRED;
1179 }
1180 
1181 /*
1182  * brelse:
1183  *
1184  *	Release a busy buffer and, if requested, free its resources.  The
1185  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1186  *	to be accessed later as a cache entity or reused for other purposes.
1187  *
1188  * MPALMOSTSAFE
1189  */
1190 void
1191 brelse(struct buf *bp)
1192 {
1193 #ifdef INVARIANTS
1194 	int saved_flags = bp->b_flags;
1195 #endif
1196 
1197 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1198 
1199 	/*
1200 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1201 	 * its backing store.  Clear B_DELWRI.
1202 	 *
1203 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1204 	 * to destroy the buffer and backing store and (2) when the caller
1205 	 * wants to destroy the buffer and backing store after a write
1206 	 * completes.
1207 	 */
1208 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1209 		bundirty(bp);
1210 	}
1211 
1212 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1213 		/*
1214 		 * A re-dirtied buffer is only subject to destruction
1215 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1216 		 */
1217 		/* leave buffer intact */
1218 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1219 		   (bp->b_bufsize <= 0)) {
1220 		/*
1221 		 * Either a failed read or we were asked to free or not
1222 		 * cache the buffer.  This path is reached with B_DELWRI
1223 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1224 		 * backing store destruction.
1225 		 *
1226 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1227 		 * buffer cannot be immediately freed.
1228 		 */
1229 		bp->b_flags |= B_INVAL;
1230 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1231 			get_mplock();
1232 			buf_deallocate(bp);
1233 			rel_mplock();
1234 		}
1235 		if (bp->b_flags & B_DELWRI) {
1236 			atomic_subtract_int(&dirtybufcount, 1);
1237 			atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1238 			if (bp->b_flags & B_HEAVY) {
1239 				atomic_subtract_int(&dirtybufcounthw, 1);
1240 				atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1241 			}
1242 			bd_signal(bp->b_bufsize);
1243 		}
1244 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1245 	}
1246 
1247 	/*
1248 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1249 	 * If vfs_vmio_release() is called with either bit set, the
1250 	 * underlying pages may wind up getting freed causing a previous
1251 	 * write (bdwrite()) to get 'lost' because pages associated with
1252 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1253 	 * B_LOCKED buffer may be mapped by the filesystem.
1254 	 *
1255 	 * If we want to release the buffer ourselves (rather then the
1256 	 * originator asking us to release it), give the originator a
1257 	 * chance to countermand the release by setting B_LOCKED.
1258 	 *
1259 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1260 	 * if B_DELWRI is set.
1261 	 *
1262 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1263 	 * on pages to return pages to the VM page queues.
1264 	 */
1265 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1266 		bp->b_flags &= ~B_RELBUF;
1267 	} else if (vm_page_count_severe()) {
1268 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1269 			get_mplock();
1270 			buf_deallocate(bp);		/* can set B_LOCKED */
1271 			rel_mplock();
1272 		}
1273 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1274 			bp->b_flags &= ~B_RELBUF;
1275 		else
1276 			bp->b_flags |= B_RELBUF;
1277 	}
1278 
1279 	/*
1280 	 * Make sure b_cmd is clear.  It may have already been cleared by
1281 	 * biodone().
1282 	 *
1283 	 * At this point destroying the buffer is governed by the B_INVAL
1284 	 * or B_RELBUF flags.
1285 	 */
1286 	bp->b_cmd = BUF_CMD_DONE;
1287 
1288 	/*
1289 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1290 	 * after an I/O may have replaces some of the pages with bogus pages
1291 	 * in order to not destroy dirty pages in a fill-in read.
1292 	 *
1293 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1294 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1295 	 * B_INVAL may still be set, however.
1296 	 *
1297 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1298 	 * but not the backing store.   B_NOCACHE will destroy the backing
1299 	 * store.
1300 	 *
1301 	 * Note that dirty NFS buffers contain byte-granular write ranges
1302 	 * and should not be destroyed w/ B_INVAL even if the backing store
1303 	 * is left intact.
1304 	 */
1305 	if (bp->b_flags & B_VMIO) {
1306 		/*
1307 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1308 		 */
1309 		int i, j, resid;
1310 		vm_page_t m;
1311 		off_t foff;
1312 		vm_pindex_t poff;
1313 		vm_object_t obj;
1314 		struct vnode *vp;
1315 
1316 		vp = bp->b_vp;
1317 
1318 		/*
1319 		 * Get the base offset and length of the buffer.  Note that
1320 		 * in the VMIO case if the buffer block size is not
1321 		 * page-aligned then b_data pointer may not be page-aligned.
1322 		 * But our b_xio.xio_pages array *IS* page aligned.
1323 		 *
1324 		 * block sizes less then DEV_BSIZE (usually 512) are not
1325 		 * supported due to the page granularity bits (m->valid,
1326 		 * m->dirty, etc...).
1327 		 *
1328 		 * See man buf(9) for more information
1329 		 */
1330 
1331 		resid = bp->b_bufsize;
1332 		foff = bp->b_loffset;
1333 
1334 		get_mplock();
1335 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1336 			m = bp->b_xio.xio_pages[i];
1337 			vm_page_flag_clear(m, PG_ZERO);
1338 			/*
1339 			 * If we hit a bogus page, fixup *all* of them
1340 			 * now.  Note that we left these pages wired
1341 			 * when we removed them so they had better exist,
1342 			 * and they cannot be ripped out from under us so
1343 			 * no critical section protection is necessary.
1344 			 */
1345 			if (m == bogus_page) {
1346 				obj = vp->v_object;
1347 				poff = OFF_TO_IDX(bp->b_loffset);
1348 
1349 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1350 					vm_page_t mtmp;
1351 
1352 					mtmp = bp->b_xio.xio_pages[j];
1353 					if (mtmp == bogus_page) {
1354 						mtmp = vm_page_lookup(obj, poff + j);
1355 						if (!mtmp) {
1356 							panic("brelse: page missing");
1357 						}
1358 						bp->b_xio.xio_pages[j] = mtmp;
1359 					}
1360 				}
1361 
1362 				if ((bp->b_flags & B_INVAL) == 0) {
1363 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1364 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1365 				}
1366 				m = bp->b_xio.xio_pages[i];
1367 			}
1368 
1369 			/*
1370 			 * Invalidate the backing store if B_NOCACHE is set
1371 			 * (e.g. used with vinvalbuf()).  If this is NFS
1372 			 * we impose a requirement that the block size be
1373 			 * a multiple of PAGE_SIZE and create a temporary
1374 			 * hack to basically invalidate the whole page.  The
1375 			 * problem is that NFS uses really odd buffer sizes
1376 			 * especially when tracking piecemeal writes and
1377 			 * it also vinvalbuf()'s a lot, which would result
1378 			 * in only partial page validation and invalidation
1379 			 * here.  If the file page is mmap()'d, however,
1380 			 * all the valid bits get set so after we invalidate
1381 			 * here we would end up with weird m->valid values
1382 			 * like 0xfc.  nfs_getpages() can't handle this so
1383 			 * we clear all the valid bits for the NFS case
1384 			 * instead of just some of them.
1385 			 *
1386 			 * The real bug is the VM system having to set m->valid
1387 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1388 			 * itself is an artifact of the whole 512-byte
1389 			 * granular mess that exists to support odd block
1390 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1391 			 * A complete rewrite is required.
1392 			 *
1393 			 * XXX
1394 			 */
1395 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1396 				int poffset = foff & PAGE_MASK;
1397 				int presid;
1398 
1399 				presid = PAGE_SIZE - poffset;
1400 				if (bp->b_vp->v_tag == VT_NFS &&
1401 				    bp->b_vp->v_type == VREG) {
1402 					; /* entire page */
1403 				} else if (presid > resid) {
1404 					presid = resid;
1405 				}
1406 				KASSERT(presid >= 0, ("brelse: extra page"));
1407 				vm_page_set_invalid(m, poffset, presid);
1408 			}
1409 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1410 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1411 		}
1412 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1413 			vfs_vmio_release(bp);
1414 		rel_mplock();
1415 	} else {
1416 		/*
1417 		 * Rundown for non-VMIO buffers.
1418 		 */
1419 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1420 			get_mplock();
1421 			if (bp->b_bufsize)
1422 				allocbuf(bp, 0);
1423 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1424 			if (bp->b_vp)
1425 				brelvp(bp);
1426 			rel_mplock();
1427 		}
1428 	}
1429 
1430 	if (bp->b_qindex != BQUEUE_NONE)
1431 		panic("brelse: free buffer onto another queue???");
1432 	if (BUF_REFCNTNB(bp) > 1) {
1433 		/* Temporary panic to verify exclusive locking */
1434 		/* This panic goes away when we allow shared refs */
1435 		panic("brelse: multiple refs");
1436 		/* NOT REACHED */
1437 		return;
1438 	}
1439 
1440 	/*
1441 	 * Figure out the correct queue to place the cleaned up buffer on.
1442 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1443 	 * disassociated from their vnode.
1444 	 */
1445 	spin_lock_wr(&bufspin);
1446 	if (bp->b_flags & B_LOCKED) {
1447 		/*
1448 		 * Buffers that are locked are placed in the locked queue
1449 		 * immediately, regardless of their state.
1450 		 */
1451 		bp->b_qindex = BQUEUE_LOCKED;
1452 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1453 	} else if (bp->b_bufsize == 0) {
1454 		/*
1455 		 * Buffers with no memory.  Due to conditionals near the top
1456 		 * of brelse() such buffers should probably already be
1457 		 * marked B_INVAL and disassociated from their vnode.
1458 		 */
1459 		bp->b_flags |= B_INVAL;
1460 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1461 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1462 		if (bp->b_kvasize) {
1463 			bp->b_qindex = BQUEUE_EMPTYKVA;
1464 		} else {
1465 			bp->b_qindex = BQUEUE_EMPTY;
1466 		}
1467 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1468 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1469 		/*
1470 		 * Buffers with junk contents.   Again these buffers had better
1471 		 * already be disassociated from their vnode.
1472 		 */
1473 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1474 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1475 		bp->b_flags |= B_INVAL;
1476 		bp->b_qindex = BQUEUE_CLEAN;
1477 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1478 	} else {
1479 		/*
1480 		 * Remaining buffers.  These buffers are still associated with
1481 		 * their vnode.
1482 		 */
1483 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1484 		case B_DELWRI:
1485 		    bp->b_qindex = BQUEUE_DIRTY;
1486 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1487 		    break;
1488 		case B_DELWRI | B_HEAVY:
1489 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1490 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1491 				      b_freelist);
1492 		    break;
1493 		default:
1494 		    /*
1495 		     * NOTE: Buffers are always placed at the end of the
1496 		     * queue.  If B_AGE is not set the buffer will cycle
1497 		     * through the queue twice.
1498 		     */
1499 		    bp->b_qindex = BQUEUE_CLEAN;
1500 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1501 		    break;
1502 		}
1503 	}
1504 	spin_unlock_wr(&bufspin);
1505 
1506 	/*
1507 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1508 	 * on the correct queue.
1509 	 */
1510 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1511 		bundirty(bp);
1512 
1513 	/*
1514 	 * The bp is on an appropriate queue unless locked.  If it is not
1515 	 * locked or dirty we can wakeup threads waiting for buffer space.
1516 	 *
1517 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1518 	 * if B_INVAL is set ).
1519 	 */
1520 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1521 		bufcountwakeup();
1522 
1523 	/*
1524 	 * Something we can maybe free or reuse
1525 	 */
1526 	if (bp->b_bufsize || bp->b_kvasize)
1527 		bufspacewakeup();
1528 
1529 	/*
1530 	 * Clean up temporary flags and unlock the buffer.
1531 	 */
1532 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1533 	BUF_UNLOCK(bp);
1534 }
1535 
1536 /*
1537  * bqrelse:
1538  *
1539  *	Release a buffer back to the appropriate queue but do not try to free
1540  *	it.  The buffer is expected to be used again soon.
1541  *
1542  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1543  *	biodone() to requeue an async I/O on completion.  It is also used when
1544  *	known good buffers need to be requeued but we think we may need the data
1545  *	again soon.
1546  *
1547  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1548  *
1549  * MPSAFE
1550  */
1551 void
1552 bqrelse(struct buf *bp)
1553 {
1554 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1555 
1556 	if (bp->b_qindex != BQUEUE_NONE)
1557 		panic("bqrelse: free buffer onto another queue???");
1558 	if (BUF_REFCNTNB(bp) > 1) {
1559 		/* do not release to free list */
1560 		panic("bqrelse: multiple refs");
1561 		return;
1562 	}
1563 
1564 	buf_act_advance(bp);
1565 
1566 	spin_lock_wr(&bufspin);
1567 	if (bp->b_flags & B_LOCKED) {
1568 		/*
1569 		 * Locked buffers are released to the locked queue.  However,
1570 		 * if the buffer is dirty it will first go into the dirty
1571 		 * queue and later on after the I/O completes successfully it
1572 		 * will be released to the locked queue.
1573 		 */
1574 		bp->b_qindex = BQUEUE_LOCKED;
1575 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1576 	} else if (bp->b_flags & B_DELWRI) {
1577 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1578 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1579 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1580 	} else if (vm_page_count_severe()) {
1581 		/*
1582 		 * We are too low on memory, we have to try to free the
1583 		 * buffer (most importantly: the wired pages making up its
1584 		 * backing store) *now*.
1585 		 */
1586 		spin_unlock_wr(&bufspin);
1587 		brelse(bp);
1588 		return;
1589 	} else {
1590 		bp->b_qindex = BQUEUE_CLEAN;
1591 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1592 	}
1593 	spin_unlock_wr(&bufspin);
1594 
1595 	if ((bp->b_flags & B_LOCKED) == 0 &&
1596 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1597 		bufcountwakeup();
1598 	}
1599 
1600 	/*
1601 	 * Something we can maybe free or reuse.
1602 	 */
1603 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1604 		bufspacewakeup();
1605 
1606 	/*
1607 	 * Final cleanup and unlock.  Clear bits that are only used while a
1608 	 * buffer is actively locked.
1609 	 */
1610 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1611 	BUF_UNLOCK(bp);
1612 }
1613 
1614 /*
1615  * vfs_vmio_release:
1616  *
1617  *	Return backing pages held by the buffer 'bp' back to the VM system
1618  *	if possible.  The pages are freed if they are no longer valid or
1619  *	attempt to free if it was used for direct I/O otherwise they are
1620  *	sent to the page cache.
1621  *
1622  *	Pages that were marked busy are left alone and skipped.
1623  *
1624  *	The KVA mapping (b_data) for the underlying pages is removed by
1625  *	this function.
1626  */
1627 static void
1628 vfs_vmio_release(struct buf *bp)
1629 {
1630 	int i;
1631 	vm_page_t m;
1632 
1633 	crit_enter();
1634 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1635 		m = bp->b_xio.xio_pages[i];
1636 		bp->b_xio.xio_pages[i] = NULL;
1637 
1638 		/*
1639 		 * This is a very important bit of code.  We try to track
1640 		 * VM page use whether the pages are wired into the buffer
1641 		 * cache or not.  While wired into the buffer cache the
1642 		 * bp tracks the act_count.
1643 		 *
1644 		 * We can choose to place unwired pages on the inactive
1645 		 * queue (0) or active queue (1).  If we place too many
1646 		 * on the active queue the queue will cycle the act_count
1647 		 * on pages we'd like to keep, just from single-use pages
1648 		 * (such as when doing a tar-up or file scan).
1649 		 */
1650 		if (bp->b_act_count < vm_cycle_point)
1651 			vm_page_unwire(m, 0);
1652 		else
1653 			vm_page_unwire(m, 1);
1654 
1655 		/*
1656 		 * We don't mess with busy pages, it is
1657 		 * the responsibility of the process that
1658 		 * busied the pages to deal with them.
1659 		 */
1660 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1661 			continue;
1662 
1663 		if (m->wire_count == 0) {
1664 			vm_page_flag_clear(m, PG_ZERO);
1665 			/*
1666 			 * Might as well free the page if we can and it has
1667 			 * no valid data.  We also free the page if the
1668 			 * buffer was used for direct I/O.
1669 			 */
1670 #if 0
1671 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1672 					m->hold_count == 0) {
1673 				vm_page_busy(m);
1674 				vm_page_protect(m, VM_PROT_NONE);
1675 				vm_page_free(m);
1676 			} else
1677 #endif
1678 			if (bp->b_flags & B_DIRECT) {
1679 				vm_page_try_to_free(m);
1680 			} else if (vm_page_count_severe()) {
1681 				m->act_count = bp->b_act_count;
1682 				vm_page_try_to_cache(m);
1683 			} else {
1684 				m->act_count = bp->b_act_count;
1685 			}
1686 		}
1687 	}
1688 	crit_exit();
1689 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1690 	if (bp->b_bufsize) {
1691 		bufspacewakeup();
1692 		bp->b_bufsize = 0;
1693 	}
1694 	bp->b_xio.xio_npages = 0;
1695 	bp->b_flags &= ~B_VMIO;
1696 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1697 	if (bp->b_vp) {
1698 		get_mplock();
1699 		brelvp(bp);
1700 		rel_mplock();
1701 	}
1702 }
1703 
1704 /*
1705  * vfs_bio_awrite:
1706  *
1707  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1708  *	This is much better then the old way of writing only one buffer at
1709  *	a time.  Note that we may not be presented with the buffers in the
1710  *	correct order, so we search for the cluster in both directions.
1711  *
1712  *	The buffer is locked on call.
1713  */
1714 int
1715 vfs_bio_awrite(struct buf *bp)
1716 {
1717 	int i;
1718 	int j;
1719 	off_t loffset = bp->b_loffset;
1720 	struct vnode *vp = bp->b_vp;
1721 	int nbytes;
1722 	struct buf *bpa;
1723 	int nwritten;
1724 	int size;
1725 
1726 	/*
1727 	 * right now we support clustered writing only to regular files.  If
1728 	 * we find a clusterable block we could be in the middle of a cluster
1729 	 * rather then at the beginning.
1730 	 *
1731 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1732 	 * to b_loffset.  b_bio2 contains the translated block number.
1733 	 */
1734 	if ((vp->v_type == VREG) &&
1735 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1736 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1737 
1738 		size = vp->v_mount->mnt_stat.f_iosize;
1739 
1740 		for (i = size; i < MAXPHYS; i += size) {
1741 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1742 			    BUF_REFCNT(bpa) == 0 &&
1743 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1744 			    (B_DELWRI | B_CLUSTEROK)) &&
1745 			    (bpa->b_bufsize == size)) {
1746 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1747 				    (bpa->b_bio2.bio_offset !=
1748 				     bp->b_bio2.bio_offset + i))
1749 					break;
1750 			} else {
1751 				break;
1752 			}
1753 		}
1754 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1755 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1756 			    BUF_REFCNT(bpa) == 0 &&
1757 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1758 			    (B_DELWRI | B_CLUSTEROK)) &&
1759 			    (bpa->b_bufsize == size)) {
1760 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1761 				    (bpa->b_bio2.bio_offset !=
1762 				     bp->b_bio2.bio_offset - j))
1763 					break;
1764 			} else {
1765 				break;
1766 			}
1767 		}
1768 		j -= size;
1769 		nbytes = (i + j);
1770 
1771 		/*
1772 		 * this is a possible cluster write
1773 		 */
1774 		if (nbytes != size) {
1775 			BUF_UNLOCK(bp);
1776 			nwritten = cluster_wbuild(vp, size,
1777 						  loffset - j, nbytes);
1778 			return nwritten;
1779 		}
1780 	}
1781 
1782 	/*
1783 	 * default (old) behavior, writing out only one block
1784 	 *
1785 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1786 	 */
1787 	nwritten = bp->b_bufsize;
1788 	bremfree(bp);
1789 	bawrite(bp);
1790 
1791 	return nwritten;
1792 }
1793 
1794 /*
1795  * getnewbuf:
1796  *
1797  *	Find and initialize a new buffer header, freeing up existing buffers
1798  *	in the bufqueues as necessary.  The new buffer is returned locked.
1799  *
1800  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1801  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1802  *
1803  *	We block if:
1804  *		We have insufficient buffer headers
1805  *		We have insufficient buffer space
1806  *		buffer_map is too fragmented ( space reservation fails )
1807  *		If we have to flush dirty buffers ( but we try to avoid this )
1808  *
1809  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1810  *	Instead we ask the buf daemon to do it for us.  We attempt to
1811  *	avoid piecemeal wakeups of the pageout daemon.
1812  *
1813  * MPALMOSTSAFE
1814  */
1815 static struct buf *
1816 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1817 {
1818 	struct buf *bp;
1819 	struct buf *nbp;
1820 	int defrag = 0;
1821 	int nqindex;
1822 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1823 	static int flushingbufs;
1824 
1825 	/*
1826 	 * We can't afford to block since we might be holding a vnode lock,
1827 	 * which may prevent system daemons from running.  We deal with
1828 	 * low-memory situations by proactively returning memory and running
1829 	 * async I/O rather then sync I/O.
1830 	 */
1831 
1832 	++getnewbufcalls;
1833 	--getnewbufrestarts;
1834 restart:
1835 	++getnewbufrestarts;
1836 
1837 	/*
1838 	 * Setup for scan.  If we do not have enough free buffers,
1839 	 * we setup a degenerate case that immediately fails.  Note
1840 	 * that if we are specially marked process, we are allowed to
1841 	 * dip into our reserves.
1842 	 *
1843 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1844 	 *
1845 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1846 	 * However, there are a number of cases (defragging, reusing, ...)
1847 	 * where we cannot backup.
1848 	 */
1849 	nqindex = BQUEUE_EMPTYKVA;
1850 	spin_lock_wr(&bufspin);
1851 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1852 
1853 	if (nbp == NULL) {
1854 		/*
1855 		 * If no EMPTYKVA buffers and we are either
1856 		 * defragging or reusing, locate a CLEAN buffer
1857 		 * to free or reuse.  If bufspace useage is low
1858 		 * skip this step so we can allocate a new buffer.
1859 		 */
1860 		if (defrag || bufspace >= lobufspace) {
1861 			nqindex = BQUEUE_CLEAN;
1862 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1863 		}
1864 
1865 		/*
1866 		 * If we could not find or were not allowed to reuse a
1867 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1868 		 * buffer.  We can only use an EMPTY buffer if allocating
1869 		 * its KVA would not otherwise run us out of buffer space.
1870 		 */
1871 		if (nbp == NULL && defrag == 0 &&
1872 		    bufspace + maxsize < hibufspace) {
1873 			nqindex = BQUEUE_EMPTY;
1874 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1875 		}
1876 	}
1877 
1878 	/*
1879 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1880 	 * depending.
1881 	 *
1882 	 * WARNING!  bufspin is held!
1883 	 */
1884 	while ((bp = nbp) != NULL) {
1885 		int qindex = nqindex;
1886 
1887 		nbp = TAILQ_NEXT(bp, b_freelist);
1888 
1889 		/*
1890 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1891 		 * cycles through the queue twice before being selected.
1892 		 */
1893 		if (qindex == BQUEUE_CLEAN &&
1894 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1895 			bp->b_flags |= B_AGE;
1896 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1897 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1898 			continue;
1899 		}
1900 
1901 		/*
1902 		 * Calculate next bp ( we can only use it if we do not block
1903 		 * or do other fancy things ).
1904 		 */
1905 		if (nbp == NULL) {
1906 			switch(qindex) {
1907 			case BQUEUE_EMPTY:
1908 				nqindex = BQUEUE_EMPTYKVA;
1909 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1910 					break;
1911 				/* fall through */
1912 			case BQUEUE_EMPTYKVA:
1913 				nqindex = BQUEUE_CLEAN;
1914 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1915 					break;
1916 				/* fall through */
1917 			case BQUEUE_CLEAN:
1918 				/*
1919 				 * nbp is NULL.
1920 				 */
1921 				break;
1922 			}
1923 		}
1924 
1925 		/*
1926 		 * Sanity Checks
1927 		 */
1928 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1929 
1930 		/*
1931 		 * Note: we no longer distinguish between VMIO and non-VMIO
1932 		 * buffers.
1933 		 */
1934 
1935 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1936 
1937 		/*
1938 		 * If we are defragging then we need a buffer with
1939 		 * b_kvasize != 0.  XXX this situation should no longer
1940 		 * occur, if defrag is non-zero the buffer's b_kvasize
1941 		 * should also be non-zero at this point.  XXX
1942 		 */
1943 		if (defrag && bp->b_kvasize == 0) {
1944 			kprintf("Warning: defrag empty buffer %p\n", bp);
1945 			continue;
1946 		}
1947 
1948 		/*
1949 		 * Start freeing the bp.  This is somewhat involved.  nbp
1950 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1951 		 * on the clean list must be disassociated from their
1952 		 * current vnode.  Buffers on the empty[kva] lists have
1953 		 * already been disassociated.
1954 		 */
1955 
1956 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1957 			spin_unlock_wr(&bufspin);
1958 			kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1959 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1960 			goto restart;
1961 		}
1962 		if (bp->b_qindex != qindex) {
1963 			spin_unlock_wr(&bufspin);
1964 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1965 			BUF_UNLOCK(bp);
1966 			goto restart;
1967 		}
1968 		bremfree_locked(bp);
1969 		spin_unlock_wr(&bufspin);
1970 
1971 		/*
1972 		 * Dependancies must be handled before we disassociate the
1973 		 * vnode.
1974 		 *
1975 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1976 		 * be immediately disassociated.  HAMMER then becomes
1977 		 * responsible for releasing the buffer.
1978 		 *
1979 		 * NOTE: bufspin is UNLOCKED now.
1980 		 */
1981 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1982 			get_mplock();
1983 			buf_deallocate(bp);
1984 			rel_mplock();
1985 			if (bp->b_flags & B_LOCKED) {
1986 				bqrelse(bp);
1987 				goto restart;
1988 			}
1989 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1990 		}
1991 
1992 		if (qindex == BQUEUE_CLEAN) {
1993 			get_mplock();
1994 			if (bp->b_flags & B_VMIO) {
1995 				get_mplock();
1996 				vfs_vmio_release(bp);
1997 				rel_mplock();
1998 			}
1999 			if (bp->b_vp)
2000 				brelvp(bp);
2001 			rel_mplock();
2002 		}
2003 
2004 		/*
2005 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2006 		 * the scan from this point on.
2007 		 *
2008 		 * Get the rest of the buffer freed up.  b_kva* is still
2009 		 * valid after this operation.
2010 		 */
2011 
2012 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
2013 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2014 
2015 		/*
2016 		 * critical section protection is not required when
2017 		 * scrapping a buffer's contents because it is already
2018 		 * wired.
2019 		 */
2020 		if (bp->b_bufsize) {
2021 			get_mplock();
2022 			allocbuf(bp, 0);
2023 			rel_mplock();
2024 		}
2025 
2026 		bp->b_flags = B_BNOCLIP;
2027 		bp->b_cmd = BUF_CMD_DONE;
2028 		bp->b_vp = NULL;
2029 		bp->b_error = 0;
2030 		bp->b_resid = 0;
2031 		bp->b_bcount = 0;
2032 		bp->b_xio.xio_npages = 0;
2033 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2034 		bp->b_act_count = ACT_INIT;
2035 		reinitbufbio(bp);
2036 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2037 		buf_dep_init(bp);
2038 		if (blkflags & GETBLK_BHEAVY)
2039 			bp->b_flags |= B_HEAVY;
2040 
2041 		/*
2042 		 * If we are defragging then free the buffer.
2043 		 */
2044 		if (defrag) {
2045 			bp->b_flags |= B_INVAL;
2046 			bfreekva(bp);
2047 			brelse(bp);
2048 			defrag = 0;
2049 			goto restart;
2050 		}
2051 
2052 		/*
2053 		 * If we are overcomitted then recover the buffer and its
2054 		 * KVM space.  This occurs in rare situations when multiple
2055 		 * processes are blocked in getnewbuf() or allocbuf().
2056 		 */
2057 		if (bufspace >= hibufspace)
2058 			flushingbufs = 1;
2059 		if (flushingbufs && bp->b_kvasize != 0) {
2060 			bp->b_flags |= B_INVAL;
2061 			bfreekva(bp);
2062 			brelse(bp);
2063 			goto restart;
2064 		}
2065 		if (bufspace < lobufspace)
2066 			flushingbufs = 0;
2067 		break;
2068 		/* NOT REACHED, bufspin not held */
2069 	}
2070 
2071 	/*
2072 	 * If we exhausted our list, sleep as appropriate.  We may have to
2073 	 * wakeup various daemons and write out some dirty buffers.
2074 	 *
2075 	 * Generally we are sleeping due to insufficient buffer space.
2076 	 *
2077 	 * NOTE: bufspin is held if bp is NULL, else it is not held.
2078 	 */
2079 	if (bp == NULL) {
2080 		int flags;
2081 		char *waitmsg;
2082 
2083 		spin_unlock_wr(&bufspin);
2084 		if (defrag) {
2085 			flags = VFS_BIO_NEED_BUFSPACE;
2086 			waitmsg = "nbufkv";
2087 		} else if (bufspace >= hibufspace) {
2088 			waitmsg = "nbufbs";
2089 			flags = VFS_BIO_NEED_BUFSPACE;
2090 		} else {
2091 			waitmsg = "newbuf";
2092 			flags = VFS_BIO_NEED_ANY;
2093 		}
2094 
2095 		needsbuffer |= flags;
2096 		bd_speedup();	/* heeeelp */
2097 		while (needsbuffer & flags) {
2098 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2099 				return (NULL);
2100 		}
2101 	} else {
2102 		/*
2103 		 * We finally have a valid bp.  We aren't quite out of the
2104 		 * woods, we still have to reserve kva space.  In order
2105 		 * to keep fragmentation sane we only allocate kva in
2106 		 * BKVASIZE chunks.
2107 		 *
2108 		 * (bufspin is not held)
2109 		 */
2110 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2111 
2112 		if (maxsize != bp->b_kvasize) {
2113 			vm_offset_t addr = 0;
2114 			int count;
2115 
2116 			bfreekva(bp);
2117 
2118 			get_mplock();
2119 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2120 			vm_map_lock(&buffer_map);
2121 
2122 			if (vm_map_findspace(&buffer_map,
2123 				    vm_map_min(&buffer_map), maxsize,
2124 				    maxsize, 0, &addr)) {
2125 				/*
2126 				 * Uh oh.  Buffer map is too fragmented.  We
2127 				 * must defragment the map.
2128 				 */
2129 				vm_map_unlock(&buffer_map);
2130 				vm_map_entry_release(count);
2131 				++bufdefragcnt;
2132 				defrag = 1;
2133 				bp->b_flags |= B_INVAL;
2134 				rel_mplock();
2135 				brelse(bp);
2136 				goto restart;
2137 			}
2138 			if (addr) {
2139 				vm_map_insert(&buffer_map, &count,
2140 					NULL, 0,
2141 					addr, addr + maxsize,
2142 					VM_MAPTYPE_NORMAL,
2143 					VM_PROT_ALL, VM_PROT_ALL,
2144 					MAP_NOFAULT);
2145 
2146 				bp->b_kvabase = (caddr_t) addr;
2147 				bp->b_kvasize = maxsize;
2148 				bufspace += bp->b_kvasize;
2149 				++bufreusecnt;
2150 			}
2151 			vm_map_unlock(&buffer_map);
2152 			vm_map_entry_release(count);
2153 			rel_mplock();
2154 		}
2155 		bp->b_data = bp->b_kvabase;
2156 	}
2157 	return(bp);
2158 }
2159 
2160 /*
2161  * This routine is called in an emergency to recover VM pages from the
2162  * buffer cache by cashing in clean buffers.  The idea is to recover
2163  * enough pages to be able to satisfy a stuck bio_page_alloc().
2164  */
2165 static int
2166 recoverbufpages(void)
2167 {
2168 	struct buf *bp;
2169 	int bytes = 0;
2170 
2171 	++recoverbufcalls;
2172 
2173 	spin_lock_wr(&bufspin);
2174 	while (bytes < MAXBSIZE) {
2175 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2176 		if (bp == NULL)
2177 			break;
2178 
2179 		/*
2180 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2181 		 * cycles through the queue twice before being selected.
2182 		 */
2183 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2184 			bp->b_flags |= B_AGE;
2185 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2186 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2187 					  bp, b_freelist);
2188 			continue;
2189 		}
2190 
2191 		/*
2192 		 * Sanity Checks
2193 		 */
2194 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2195 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2196 
2197 		/*
2198 		 * Start freeing the bp.  This is somewhat involved.
2199 		 *
2200 		 * Buffers on the clean list must be disassociated from
2201 		 * their current vnode
2202 		 */
2203 
2204 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2205 			kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2206 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2207 			continue;
2208 		}
2209 		if (bp->b_qindex != BQUEUE_CLEAN) {
2210 			kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2211 			BUF_UNLOCK(bp);
2212 			continue;
2213 		}
2214 		bremfree_locked(bp);
2215 		spin_unlock_wr(&bufspin);
2216 
2217 		/*
2218 		 * Dependancies must be handled before we disassociate the
2219 		 * vnode.
2220 		 *
2221 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2222 		 * be immediately disassociated.  HAMMER then becomes
2223 		 * responsible for releasing the buffer.
2224 		 */
2225 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2226 			buf_deallocate(bp);
2227 			if (bp->b_flags & B_LOCKED) {
2228 				bqrelse(bp);
2229 				spin_lock_wr(&bufspin);
2230 				continue;
2231 			}
2232 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2233 		}
2234 
2235 		bytes += bp->b_bufsize;
2236 
2237 		get_mplock();
2238 		if (bp->b_flags & B_VMIO) {
2239 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2240 			vfs_vmio_release(bp);
2241 		}
2242 		if (bp->b_vp)
2243 			brelvp(bp);
2244 
2245 		KKASSERT(bp->b_vp == NULL);
2246 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2247 
2248 		/*
2249 		 * critical section protection is not required when
2250 		 * scrapping a buffer's contents because it is already
2251 		 * wired.
2252 		 */
2253 		if (bp->b_bufsize)
2254 			allocbuf(bp, 0);
2255 		rel_mplock();
2256 
2257 		bp->b_flags = B_BNOCLIP;
2258 		bp->b_cmd = BUF_CMD_DONE;
2259 		bp->b_vp = NULL;
2260 		bp->b_error = 0;
2261 		bp->b_resid = 0;
2262 		bp->b_bcount = 0;
2263 		bp->b_xio.xio_npages = 0;
2264 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2265 		reinitbufbio(bp);
2266 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2267 		buf_dep_init(bp);
2268 		bp->b_flags |= B_INVAL;
2269 		/* bfreekva(bp); */
2270 		brelse(bp);
2271 		spin_lock_wr(&bufspin);
2272 	}
2273 	spin_unlock_wr(&bufspin);
2274 	return(bytes);
2275 }
2276 
2277 /*
2278  * buf_daemon:
2279  *
2280  *	Buffer flushing daemon.  Buffers are normally flushed by the
2281  *	update daemon but if it cannot keep up this process starts to
2282  *	take the load in an attempt to prevent getnewbuf() from blocking.
2283  *
2284  *	Once a flush is initiated it does not stop until the number
2285  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2286  *	waiting at the mid-point.
2287  */
2288 
2289 static struct kproc_desc buf_kp = {
2290 	"bufdaemon",
2291 	buf_daemon,
2292 	&bufdaemon_td
2293 };
2294 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2295 	kproc_start, &buf_kp)
2296 
2297 static struct kproc_desc bufhw_kp = {
2298 	"bufdaemon_hw",
2299 	buf_daemon_hw,
2300 	&bufdaemonhw_td
2301 };
2302 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2303 	kproc_start, &bufhw_kp)
2304 
2305 static void
2306 buf_daemon(void)
2307 {
2308 	int limit;
2309 
2310 	/*
2311 	 * This process needs to be suspended prior to shutdown sync.
2312 	 */
2313 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2314 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2315 	curthread->td_flags |= TDF_SYSTHREAD;
2316 
2317 	/*
2318 	 * This process is allowed to take the buffer cache to the limit
2319 	 */
2320 	crit_enter();
2321 
2322 	for (;;) {
2323 		kproc_suspend_loop();
2324 
2325 		/*
2326 		 * Do the flush as long as the number of dirty buffers
2327 		 * (including those running) exceeds lodirtybufspace.
2328 		 *
2329 		 * When flushing limit running I/O to hirunningspace
2330 		 * Do the flush.  Limit the amount of in-transit I/O we
2331 		 * allow to build up, otherwise we would completely saturate
2332 		 * the I/O system.  Wakeup any waiting processes before we
2333 		 * normally would so they can run in parallel with our drain.
2334 		 *
2335 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2336 		 * but because we split the operation into two threads we
2337 		 * have to cut it in half for each thread.
2338 		 */
2339 		waitrunningbufspace();
2340 		limit = lodirtybufspace / 2;
2341 		while (runningbufspace + dirtybufspace > limit ||
2342 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2343 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2344 				break;
2345 			if (runningbufspace < hirunningspace)
2346 				continue;
2347 			waitrunningbufspace();
2348 		}
2349 
2350 		/*
2351 		 * We reached our low water mark, reset the
2352 		 * request and sleep until we are needed again.
2353 		 * The sleep is just so the suspend code works.
2354 		 */
2355 		spin_lock_wr(&needsbuffer_spin);
2356 		if (bd_request == 0) {
2357 			ssleep(&bd_request, &needsbuffer_spin, 0,
2358 			       "psleep", hz);
2359 		}
2360 		bd_request = 0;
2361 		spin_unlock_wr(&needsbuffer_spin);
2362 	}
2363 }
2364 
2365 static void
2366 buf_daemon_hw(void)
2367 {
2368 	int limit;
2369 
2370 	/*
2371 	 * This process needs to be suspended prior to shutdown sync.
2372 	 */
2373 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2374 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2375 	curthread->td_flags |= TDF_SYSTHREAD;
2376 
2377 	/*
2378 	 * This process is allowed to take the buffer cache to the limit
2379 	 */
2380 	crit_enter();
2381 
2382 	for (;;) {
2383 		kproc_suspend_loop();
2384 
2385 		/*
2386 		 * Do the flush.  Limit the amount of in-transit I/O we
2387 		 * allow to build up, otherwise we would completely saturate
2388 		 * the I/O system.  Wakeup any waiting processes before we
2389 		 * normally would so they can run in parallel with our drain.
2390 		 *
2391 		 * Once we decide to flush push the queued I/O up to
2392 		 * hirunningspace in order to trigger bursting by the bioq
2393 		 * subsystem.
2394 		 *
2395 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2396 		 * but because we split the operation into two threads we
2397 		 * have to cut it in half for each thread.
2398 		 */
2399 		waitrunningbufspace();
2400 		limit = lodirtybufspace / 2;
2401 		while (runningbufspace + dirtybufspacehw > limit ||
2402 		       dirtybufcounthw >= nbuf / 2) {
2403 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2404 				break;
2405 			if (runningbufspace < hirunningspace)
2406 				continue;
2407 			waitrunningbufspace();
2408 		}
2409 
2410 		/*
2411 		 * We reached our low water mark, reset the
2412 		 * request and sleep until we are needed again.
2413 		 * The sleep is just so the suspend code works.
2414 		 */
2415 		spin_lock_wr(&needsbuffer_spin);
2416 		if (bd_request_hw == 0) {
2417 			ssleep(&bd_request_hw, &needsbuffer_spin, 0,
2418 			       "psleep", hz);
2419 		}
2420 		bd_request_hw = 0;
2421 		spin_unlock_wr(&needsbuffer_spin);
2422 	}
2423 }
2424 
2425 /*
2426  * flushbufqueues:
2427  *
2428  *	Try to flush a buffer in the dirty queue.  We must be careful to
2429  *	free up B_INVAL buffers instead of write them, which NFS is
2430  *	particularly sensitive to.
2431  *
2432  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2433  *	that we really want to try to get the buffer out and reuse it
2434  *	due to the write load on the machine.
2435  */
2436 static int
2437 flushbufqueues(bufq_type_t q)
2438 {
2439 	struct buf *bp;
2440 	int r = 0;
2441 	int spun;
2442 
2443 	spin_lock_wr(&bufspin);
2444 	spun = 1;
2445 
2446 	bp = TAILQ_FIRST(&bufqueues[q]);
2447 	while (bp) {
2448 		KASSERT((bp->b_flags & B_DELWRI),
2449 			("unexpected clean buffer %p", bp));
2450 
2451 		if (bp->b_flags & B_DELWRI) {
2452 			if (bp->b_flags & B_INVAL) {
2453 				spin_unlock_wr(&bufspin);
2454 				spun = 0;
2455 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2456 					panic("flushbufqueues: locked buf");
2457 				bremfree(bp);
2458 				brelse(bp);
2459 				++r;
2460 				break;
2461 			}
2462 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2463 			    (bp->b_flags & B_DEFERRED) == 0 &&
2464 			    buf_countdeps(bp, 0)) {
2465 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2466 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2467 						  b_freelist);
2468 				bp->b_flags |= B_DEFERRED;
2469 				bp = TAILQ_FIRST(&bufqueues[q]);
2470 				continue;
2471 			}
2472 
2473 			/*
2474 			 * Only write it out if we can successfully lock
2475 			 * it.  If the buffer has a dependancy,
2476 			 * buf_checkwrite must also return 0 for us to
2477 			 * be able to initate the write.
2478 			 *
2479 			 * If the buffer is flagged B_ERROR it may be
2480 			 * requeued over and over again, we try to
2481 			 * avoid a live lock.
2482 			 */
2483 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2484 				spin_unlock_wr(&bufspin);
2485 				spun = 0;
2486 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2487 				    buf_checkwrite(bp)) {
2488 					bremfree(bp);
2489 					brelse(bp);
2490 				} else if (bp->b_flags & B_ERROR) {
2491 					tsleep(bp, 0, "bioer", 1);
2492 					bp->b_flags &= ~B_AGE;
2493 					vfs_bio_awrite(bp);
2494 				} else {
2495 					bp->b_flags |= B_AGE;
2496 					vfs_bio_awrite(bp);
2497 				}
2498 				++r;
2499 				break;
2500 			}
2501 		}
2502 		bp = TAILQ_NEXT(bp, b_freelist);
2503 	}
2504 	if (spun)
2505 		spin_unlock_wr(&bufspin);
2506 	return (r);
2507 }
2508 
2509 /*
2510  * inmem:
2511  *
2512  *	Returns true if no I/O is needed to access the associated VM object.
2513  *	This is like findblk except it also hunts around in the VM system for
2514  *	the data.
2515  *
2516  *	Note that we ignore vm_page_free() races from interrupts against our
2517  *	lookup, since if the caller is not protected our return value will not
2518  *	be any more valid then otherwise once we exit the critical section.
2519  */
2520 int
2521 inmem(struct vnode *vp, off_t loffset)
2522 {
2523 	vm_object_t obj;
2524 	vm_offset_t toff, tinc, size;
2525 	vm_page_t m;
2526 
2527 	if (findblk(vp, loffset, FINDBLK_TEST))
2528 		return 1;
2529 	if (vp->v_mount == NULL)
2530 		return 0;
2531 	if ((obj = vp->v_object) == NULL)
2532 		return 0;
2533 
2534 	size = PAGE_SIZE;
2535 	if (size > vp->v_mount->mnt_stat.f_iosize)
2536 		size = vp->v_mount->mnt_stat.f_iosize;
2537 
2538 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2539 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2540 		if (m == NULL)
2541 			return 0;
2542 		tinc = size;
2543 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2544 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2545 		if (vm_page_is_valid(m,
2546 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2547 			return 0;
2548 	}
2549 	return 1;
2550 }
2551 
2552 /*
2553  * findblk:
2554  *
2555  *	Locate and return the specified buffer.  Unless flagged otherwise,
2556  *	a locked buffer will be returned if it exists or NULL if it does not.
2557  *
2558  *	findblk()'d buffers are still on the bufqueues and if you intend
2559  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2560  *	and possibly do other stuff to it.
2561  *
2562  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2563  *			  for locking the buffer and ensuring that it remains
2564  *			  the desired buffer after locking.
2565  *
2566  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2567  *			  to acquire the lock we return NULL, even if the
2568  *			  buffer exists.
2569  *
2570  *	(0)		- Lock the buffer blocking.
2571  *
2572  * MPSAFE
2573  */
2574 struct buf *
2575 findblk(struct vnode *vp, off_t loffset, int flags)
2576 {
2577 	lwkt_tokref vlock;
2578 	struct buf *bp;
2579 	int lkflags;
2580 
2581 	lkflags = LK_EXCLUSIVE;
2582 	if (flags & FINDBLK_NBLOCK)
2583 		lkflags |= LK_NOWAIT;
2584 
2585 	for (;;) {
2586 		lwkt_gettoken(&vlock, &vp->v_token);
2587 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2588 		lwkt_reltoken(&vlock);
2589 		if (bp == NULL || (flags & FINDBLK_TEST))
2590 			break;
2591 		if (BUF_LOCK(bp, lkflags)) {
2592 			bp = NULL;
2593 			break;
2594 		}
2595 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2596 			break;
2597 		BUF_UNLOCK(bp);
2598 	}
2599 	return(bp);
2600 }
2601 
2602 /*
2603  * getcacheblk:
2604  *
2605  *	Similar to getblk() except only returns the buffer if it is
2606  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2607  *	is returned.
2608  *
2609  *	If B_RAM is set the buffer might be just fine, but we return
2610  *	NULL anyway because we want the code to fall through to the
2611  *	cluster read.  Otherwise read-ahead breaks.
2612  */
2613 struct buf *
2614 getcacheblk(struct vnode *vp, off_t loffset)
2615 {
2616 	struct buf *bp;
2617 
2618 	bp = findblk(vp, loffset, 0);
2619 	if (bp) {
2620 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2621 			bp->b_flags &= ~B_AGE;
2622 			bremfree(bp);
2623 		} else {
2624 			BUF_UNLOCK(bp);
2625 			bp = NULL;
2626 		}
2627 	}
2628 	return (bp);
2629 }
2630 
2631 /*
2632  * getblk:
2633  *
2634  *	Get a block given a specified block and offset into a file/device.
2635  * 	B_INVAL may or may not be set on return.  The caller should clear
2636  *	B_INVAL prior to initiating a READ.
2637  *
2638  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2639  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2640  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2641  *	without doing any of those things the system will likely believe
2642  *	the buffer to be valid (especially if it is not B_VMIO), and the
2643  *	next getblk() will return the buffer with B_CACHE set.
2644  *
2645  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2646  *	an existing buffer.
2647  *
2648  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2649  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2650  *	and then cleared based on the backing VM.  If the previous buffer is
2651  *	non-0-sized but invalid, B_CACHE will be cleared.
2652  *
2653  *	If getblk() must create a new buffer, the new buffer is returned with
2654  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2655  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2656  *	backing VM.
2657  *
2658  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2659  *	B_CACHE bit is clear.
2660  *
2661  *	What this means, basically, is that the caller should use B_CACHE to
2662  *	determine whether the buffer is fully valid or not and should clear
2663  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2664  *	the buffer by loading its data area with something, the caller needs
2665  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2666  *	the caller should set B_CACHE ( as an optimization ), else the caller
2667  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2668  *	a write attempt or if it was a successfull read.  If the caller
2669  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2670  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2671  *
2672  *	getblk flags:
2673  *
2674  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2675  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2676  *
2677  * MPALMOSTSAFE
2678  */
2679 struct buf *
2680 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2681 {
2682 	struct buf *bp;
2683 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2684 	int error;
2685 	int lkflags;
2686 
2687 	if (size > MAXBSIZE)
2688 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2689 	if (vp->v_object == NULL)
2690 		panic("getblk: vnode %p has no object!", vp);
2691 
2692 loop:
2693 	if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2694 		/*
2695 		 * The buffer was found in the cache, but we need to lock it.
2696 		 * Even with LK_NOWAIT the lockmgr may break our critical
2697 		 * section, so double-check the validity of the buffer
2698 		 * once the lock has been obtained.
2699 		 */
2700 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2701 			if (blkflags & GETBLK_NOWAIT)
2702 				return(NULL);
2703 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2704 			if (blkflags & GETBLK_PCATCH)
2705 				lkflags |= LK_PCATCH;
2706 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2707 			if (error) {
2708 				if (error == ENOLCK)
2709 					goto loop;
2710 				return (NULL);
2711 			}
2712 			/* buffer may have changed on us */
2713 		}
2714 
2715 		/*
2716 		 * Once the buffer has been locked, make sure we didn't race
2717 		 * a buffer recyclement.  Buffers that are no longer hashed
2718 		 * will have b_vp == NULL, so this takes care of that check
2719 		 * as well.
2720 		 */
2721 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2722 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2723 				"was recycled\n",
2724 				bp, vp, (long long)loffset);
2725 			BUF_UNLOCK(bp);
2726 			goto loop;
2727 		}
2728 
2729 		/*
2730 		 * If SZMATCH any pre-existing buffer must be of the requested
2731 		 * size or NULL is returned.  The caller absolutely does not
2732 		 * want getblk() to bwrite() the buffer on a size mismatch.
2733 		 */
2734 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2735 			BUF_UNLOCK(bp);
2736 			return(NULL);
2737 		}
2738 
2739 		/*
2740 		 * All vnode-based buffers must be backed by a VM object.
2741 		 */
2742 		KKASSERT(bp->b_flags & B_VMIO);
2743 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2744 		bp->b_flags &= ~B_AGE;
2745 
2746 		/*
2747 		 * Make sure that B_INVAL buffers do not have a cached
2748 		 * block number translation.
2749 		 */
2750 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2751 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2752 				" did not have cleared bio_offset cache\n",
2753 				bp, vp, (long long)loffset);
2754 			clearbiocache(&bp->b_bio2);
2755 		}
2756 
2757 		/*
2758 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2759 		 * invalid.
2760 		 */
2761 		if (bp->b_flags & B_INVAL)
2762 			bp->b_flags &= ~B_CACHE;
2763 		bremfree(bp);
2764 
2765 		/*
2766 		 * Any size inconsistancy with a dirty buffer or a buffer
2767 		 * with a softupdates dependancy must be resolved.  Resizing
2768 		 * the buffer in such circumstances can lead to problems.
2769 		 *
2770 		 * Dirty or dependant buffers are written synchronously.
2771 		 * Other types of buffers are simply released and
2772 		 * reconstituted as they may be backed by valid, dirty VM
2773 		 * pages (but not marked B_DELWRI).
2774 		 *
2775 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2776 		 * and may be left over from a prior truncation (and thus
2777 		 * no longer represent the actual EOF point), so we
2778 		 * definitely do not want to B_NOCACHE the backing store.
2779 		 */
2780 		if (size != bp->b_bcount) {
2781 			get_mplock();
2782 			if (bp->b_flags & B_DELWRI) {
2783 				bp->b_flags |= B_RELBUF;
2784 				bwrite(bp);
2785 			} else if (LIST_FIRST(&bp->b_dep)) {
2786 				bp->b_flags |= B_RELBUF;
2787 				bwrite(bp);
2788 			} else {
2789 				bp->b_flags |= B_RELBUF;
2790 				brelse(bp);
2791 			}
2792 			rel_mplock();
2793 			goto loop;
2794 		}
2795 		KKASSERT(size <= bp->b_kvasize);
2796 		KASSERT(bp->b_loffset != NOOFFSET,
2797 			("getblk: no buffer offset"));
2798 
2799 		/*
2800 		 * A buffer with B_DELWRI set and B_CACHE clear must
2801 		 * be committed before we can return the buffer in
2802 		 * order to prevent the caller from issuing a read
2803 		 * ( due to B_CACHE not being set ) and overwriting
2804 		 * it.
2805 		 *
2806 		 * Most callers, including NFS and FFS, need this to
2807 		 * operate properly either because they assume they
2808 		 * can issue a read if B_CACHE is not set, or because
2809 		 * ( for example ) an uncached B_DELWRI might loop due
2810 		 * to softupdates re-dirtying the buffer.  In the latter
2811 		 * case, B_CACHE is set after the first write completes,
2812 		 * preventing further loops.
2813 		 *
2814 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2815 		 * above while extending the buffer, we cannot allow the
2816 		 * buffer to remain with B_CACHE set after the write
2817 		 * completes or it will represent a corrupt state.  To
2818 		 * deal with this we set B_NOCACHE to scrap the buffer
2819 		 * after the write.
2820 		 *
2821 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2822 		 *     I'm not even sure this state is still possible
2823 		 *     now that getblk() writes out any dirty buffers
2824 		 *     on size changes.
2825 		 *
2826 		 * We might be able to do something fancy, like setting
2827 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2828 		 * so the below call doesn't set B_CACHE, but that gets real
2829 		 * confusing.  This is much easier.
2830 		 */
2831 
2832 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2833 			get_mplock();
2834 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2835 				"and CACHE clear, b_flags %08x\n",
2836 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
2837 			bp->b_flags |= B_NOCACHE;
2838 			bwrite(bp);
2839 			rel_mplock();
2840 			goto loop;
2841 		}
2842 	} else {
2843 		/*
2844 		 * Buffer is not in-core, create new buffer.  The buffer
2845 		 * returned by getnewbuf() is locked.  Note that the returned
2846 		 * buffer is also considered valid (not marked B_INVAL).
2847 		 *
2848 		 * Calculating the offset for the I/O requires figuring out
2849 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2850 		 * the mount's f_iosize otherwise.  If the vnode does not
2851 		 * have an associated mount we assume that the passed size is
2852 		 * the block size.
2853 		 *
2854 		 * Note that vn_isdisk() cannot be used here since it may
2855 		 * return a failure for numerous reasons.   Note that the
2856 		 * buffer size may be larger then the block size (the caller
2857 		 * will use block numbers with the proper multiple).  Beware
2858 		 * of using any v_* fields which are part of unions.  In
2859 		 * particular, in DragonFly the mount point overloading
2860 		 * mechanism uses the namecache only and the underlying
2861 		 * directory vnode is not a special case.
2862 		 */
2863 		int bsize, maxsize;
2864 
2865 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2866 			bsize = DEV_BSIZE;
2867 		else if (vp->v_mount)
2868 			bsize = vp->v_mount->mnt_stat.f_iosize;
2869 		else
2870 			bsize = size;
2871 
2872 		maxsize = size + (loffset & PAGE_MASK);
2873 		maxsize = imax(maxsize, bsize);
2874 
2875 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2876 		if (bp == NULL) {
2877 			if (slpflags || slptimeo)
2878 				return NULL;
2879 			goto loop;
2880 		}
2881 
2882 		/*
2883 		 * Atomically insert the buffer into the hash, so that it can
2884 		 * be found by findblk().
2885 		 *
2886 		 * If bgetvp() returns non-zero a collision occured, and the
2887 		 * bp will not be associated with the vnode.
2888 		 *
2889 		 * Make sure the translation layer has been cleared.
2890 		 */
2891 		bp->b_loffset = loffset;
2892 		bp->b_bio2.bio_offset = NOOFFSET;
2893 		/* bp->b_bio2.bio_next = NULL; */
2894 
2895 		if (bgetvp(vp, bp)) {
2896 			bp->b_flags |= B_INVAL;
2897 			brelse(bp);
2898 			goto loop;
2899 		}
2900 
2901 		/*
2902 		 * All vnode-based buffers must be backed by a VM object.
2903 		 */
2904 		KKASSERT(vp->v_object != NULL);
2905 		bp->b_flags |= B_VMIO;
2906 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2907 
2908 		get_mplock();
2909 		allocbuf(bp, size);
2910 		rel_mplock();
2911 	}
2912 	return (bp);
2913 }
2914 
2915 /*
2916  * regetblk(bp)
2917  *
2918  * Reacquire a buffer that was previously released to the locked queue,
2919  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2920  * set B_LOCKED (which handles the acquisition race).
2921  *
2922  * To this end, either B_LOCKED must be set or the dependancy list must be
2923  * non-empty.
2924  *
2925  * MPSAFE
2926  */
2927 void
2928 regetblk(struct buf *bp)
2929 {
2930 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2931 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2932 	bremfree(bp);
2933 }
2934 
2935 /*
2936  * geteblk:
2937  *
2938  *	Get an empty, disassociated buffer of given size.  The buffer is
2939  *	initially set to B_INVAL.
2940  *
2941  *	critical section protection is not required for the allocbuf()
2942  *	call because races are impossible here.
2943  *
2944  * MPALMOSTSAFE
2945  */
2946 struct buf *
2947 geteblk(int size)
2948 {
2949 	struct buf *bp;
2950 	int maxsize;
2951 
2952 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2953 
2954 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2955 		;
2956 	get_mplock();
2957 	allocbuf(bp, size);
2958 	rel_mplock();
2959 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2960 	return (bp);
2961 }
2962 
2963 
2964 /*
2965  * allocbuf:
2966  *
2967  *	This code constitutes the buffer memory from either anonymous system
2968  *	memory (in the case of non-VMIO operations) or from an associated
2969  *	VM object (in the case of VMIO operations).  This code is able to
2970  *	resize a buffer up or down.
2971  *
2972  *	Note that this code is tricky, and has many complications to resolve
2973  *	deadlock or inconsistant data situations.  Tread lightly!!!
2974  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2975  *	the caller.  Calling this code willy nilly can result in the loss of data.
2976  *
2977  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2978  *	B_CACHE for the non-VMIO case.
2979  *
2980  *	This routine does not need to be called from a critical section but you
2981  *	must own the buffer.
2982  *
2983  * NOTMPSAFE
2984  */
2985 int
2986 allocbuf(struct buf *bp, int size)
2987 {
2988 	int newbsize, mbsize;
2989 	int i;
2990 
2991 	if (BUF_REFCNT(bp) == 0)
2992 		panic("allocbuf: buffer not busy");
2993 
2994 	if (bp->b_kvasize < size)
2995 		panic("allocbuf: buffer too small");
2996 
2997 	if ((bp->b_flags & B_VMIO) == 0) {
2998 		caddr_t origbuf;
2999 		int origbufsize;
3000 		/*
3001 		 * Just get anonymous memory from the kernel.  Don't
3002 		 * mess with B_CACHE.
3003 		 */
3004 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3005 		if (bp->b_flags & B_MALLOC)
3006 			newbsize = mbsize;
3007 		else
3008 			newbsize = round_page(size);
3009 
3010 		if (newbsize < bp->b_bufsize) {
3011 			/*
3012 			 * Malloced buffers are not shrunk
3013 			 */
3014 			if (bp->b_flags & B_MALLOC) {
3015 				if (newbsize) {
3016 					bp->b_bcount = size;
3017 				} else {
3018 					kfree(bp->b_data, M_BIOBUF);
3019 					if (bp->b_bufsize) {
3020 						bufmallocspace -= bp->b_bufsize;
3021 						bufspacewakeup();
3022 						bp->b_bufsize = 0;
3023 					}
3024 					bp->b_data = bp->b_kvabase;
3025 					bp->b_bcount = 0;
3026 					bp->b_flags &= ~B_MALLOC;
3027 				}
3028 				return 1;
3029 			}
3030 			vm_hold_free_pages(
3031 			    bp,
3032 			    (vm_offset_t) bp->b_data + newbsize,
3033 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3034 		} else if (newbsize > bp->b_bufsize) {
3035 			/*
3036 			 * We only use malloced memory on the first allocation.
3037 			 * and revert to page-allocated memory when the buffer
3038 			 * grows.
3039 			 */
3040 			if ((bufmallocspace < maxbufmallocspace) &&
3041 				(bp->b_bufsize == 0) &&
3042 				(mbsize <= PAGE_SIZE/2)) {
3043 
3044 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3045 				bp->b_bufsize = mbsize;
3046 				bp->b_bcount = size;
3047 				bp->b_flags |= B_MALLOC;
3048 				bufmallocspace += mbsize;
3049 				return 1;
3050 			}
3051 			origbuf = NULL;
3052 			origbufsize = 0;
3053 			/*
3054 			 * If the buffer is growing on its other-than-first
3055 			 * allocation, then we revert to the page-allocation
3056 			 * scheme.
3057 			 */
3058 			if (bp->b_flags & B_MALLOC) {
3059 				origbuf = bp->b_data;
3060 				origbufsize = bp->b_bufsize;
3061 				bp->b_data = bp->b_kvabase;
3062 				if (bp->b_bufsize) {
3063 					bufmallocspace -= bp->b_bufsize;
3064 					bufspacewakeup();
3065 					bp->b_bufsize = 0;
3066 				}
3067 				bp->b_flags &= ~B_MALLOC;
3068 				newbsize = round_page(newbsize);
3069 			}
3070 			vm_hold_load_pages(
3071 			    bp,
3072 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3073 			    (vm_offset_t) bp->b_data + newbsize);
3074 			if (origbuf) {
3075 				bcopy(origbuf, bp->b_data, origbufsize);
3076 				kfree(origbuf, M_BIOBUF);
3077 			}
3078 		}
3079 	} else {
3080 		vm_page_t m;
3081 		int desiredpages;
3082 
3083 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3084 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3085 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3086 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3087 
3088 		if (bp->b_flags & B_MALLOC)
3089 			panic("allocbuf: VMIO buffer can't be malloced");
3090 		/*
3091 		 * Set B_CACHE initially if buffer is 0 length or will become
3092 		 * 0-length.
3093 		 */
3094 		if (size == 0 || bp->b_bufsize == 0)
3095 			bp->b_flags |= B_CACHE;
3096 
3097 		if (newbsize < bp->b_bufsize) {
3098 			/*
3099 			 * DEV_BSIZE aligned new buffer size is less then the
3100 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3101 			 * if we have to remove any pages.
3102 			 */
3103 			if (desiredpages < bp->b_xio.xio_npages) {
3104 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3105 					/*
3106 					 * the page is not freed here -- it
3107 					 * is the responsibility of
3108 					 * vnode_pager_setsize
3109 					 */
3110 					m = bp->b_xio.xio_pages[i];
3111 					KASSERT(m != bogus_page,
3112 					    ("allocbuf: bogus page found"));
3113 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3114 						;
3115 
3116 					bp->b_xio.xio_pages[i] = NULL;
3117 					vm_page_unwire(m, 0);
3118 				}
3119 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3120 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3121 				bp->b_xio.xio_npages = desiredpages;
3122 			}
3123 		} else if (size > bp->b_bcount) {
3124 			/*
3125 			 * We are growing the buffer, possibly in a
3126 			 * byte-granular fashion.
3127 			 */
3128 			struct vnode *vp;
3129 			vm_object_t obj;
3130 			vm_offset_t toff;
3131 			vm_offset_t tinc;
3132 
3133 			/*
3134 			 * Step 1, bring in the VM pages from the object,
3135 			 * allocating them if necessary.  We must clear
3136 			 * B_CACHE if these pages are not valid for the
3137 			 * range covered by the buffer.
3138 			 *
3139 			 * critical section protection is required to protect
3140 			 * against interrupts unbusying and freeing pages
3141 			 * between our vm_page_lookup() and our
3142 			 * busycheck/wiring call.
3143 			 */
3144 			vp = bp->b_vp;
3145 			obj = vp->v_object;
3146 
3147 			crit_enter();
3148 			while (bp->b_xio.xio_npages < desiredpages) {
3149 				vm_page_t m;
3150 				vm_pindex_t pi;
3151 
3152 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3153 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3154 					/*
3155 					 * note: must allocate system pages
3156 					 * since blocking here could intefere
3157 					 * with paging I/O, no matter which
3158 					 * process we are.
3159 					 */
3160 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3161 					if (m) {
3162 						vm_page_wire(m);
3163 						vm_page_wakeup(m);
3164 						bp->b_flags &= ~B_CACHE;
3165 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3166 						++bp->b_xio.xio_npages;
3167 					}
3168 					continue;
3169 				}
3170 
3171 				/*
3172 				 * We found a page.  If we have to sleep on it,
3173 				 * retry because it might have gotten freed out
3174 				 * from under us.
3175 				 *
3176 				 * We can only test PG_BUSY here.  Blocking on
3177 				 * m->busy might lead to a deadlock:
3178 				 *
3179 				 *  vm_fault->getpages->cluster_read->allocbuf
3180 				 *
3181 				 */
3182 
3183 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3184 					continue;
3185 				vm_page_flag_clear(m, PG_ZERO);
3186 				vm_page_wire(m);
3187 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3188 				++bp->b_xio.xio_npages;
3189 				if (bp->b_act_count < m->act_count)
3190 					bp->b_act_count = m->act_count;
3191 			}
3192 			crit_exit();
3193 
3194 			/*
3195 			 * Step 2.  We've loaded the pages into the buffer,
3196 			 * we have to figure out if we can still have B_CACHE
3197 			 * set.  Note that B_CACHE is set according to the
3198 			 * byte-granular range ( bcount and size ), not the
3199 			 * aligned range ( newbsize ).
3200 			 *
3201 			 * The VM test is against m->valid, which is DEV_BSIZE
3202 			 * aligned.  Needless to say, the validity of the data
3203 			 * needs to also be DEV_BSIZE aligned.  Note that this
3204 			 * fails with NFS if the server or some other client
3205 			 * extends the file's EOF.  If our buffer is resized,
3206 			 * B_CACHE may remain set! XXX
3207 			 */
3208 
3209 			toff = bp->b_bcount;
3210 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3211 
3212 			while ((bp->b_flags & B_CACHE) && toff < size) {
3213 				vm_pindex_t pi;
3214 
3215 				if (tinc > (size - toff))
3216 					tinc = size - toff;
3217 
3218 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3219 				    PAGE_SHIFT;
3220 
3221 				vfs_buf_test_cache(
3222 				    bp,
3223 				    bp->b_loffset,
3224 				    toff,
3225 				    tinc,
3226 				    bp->b_xio.xio_pages[pi]
3227 				);
3228 				toff += tinc;
3229 				tinc = PAGE_SIZE;
3230 			}
3231 
3232 			/*
3233 			 * Step 3, fixup the KVM pmap.  Remember that
3234 			 * bp->b_data is relative to bp->b_loffset, but
3235 			 * bp->b_loffset may be offset into the first page.
3236 			 */
3237 
3238 			bp->b_data = (caddr_t)
3239 			    trunc_page((vm_offset_t)bp->b_data);
3240 			pmap_qenter(
3241 			    (vm_offset_t)bp->b_data,
3242 			    bp->b_xio.xio_pages,
3243 			    bp->b_xio.xio_npages
3244 			);
3245 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3246 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3247 		}
3248 	}
3249 
3250 	/* adjust space use on already-dirty buffer */
3251 	if (bp->b_flags & B_DELWRI) {
3252 		dirtybufspace += newbsize - bp->b_bufsize;
3253 		if (bp->b_flags & B_HEAVY)
3254 			dirtybufspacehw += newbsize - bp->b_bufsize;
3255 	}
3256 	if (newbsize < bp->b_bufsize)
3257 		bufspacewakeup();
3258 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3259 	bp->b_bcount = size;		/* requested buffer size	*/
3260 	return 1;
3261 }
3262 
3263 /*
3264  * biowait:
3265  *
3266  *	Wait for buffer I/O completion, returning error status. B_EINTR
3267  *	is converted into an EINTR error but not cleared (since a chain
3268  *	of biowait() calls may occur).
3269  *
3270  *	On return bpdone() will have been called but the buffer will remain
3271  *	locked and will not have been brelse()'d.
3272  *
3273  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3274  *	likely still in progress on return.
3275  *
3276  *	NOTE!  This operation is on a BIO, not a BUF.
3277  *
3278  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3279  *
3280  * MPSAFE
3281  */
3282 static __inline int
3283 _biowait(struct bio *bio, const char *wmesg, int to)
3284 {
3285 	struct buf *bp = bio->bio_buf;
3286 	u_int32_t flags;
3287 	u_int32_t nflags;
3288 	int error;
3289 
3290 	KKASSERT(bio == &bp->b_bio1);
3291 	for (;;) {
3292 		flags = bio->bio_flags;
3293 		if (flags & BIO_DONE)
3294 			break;
3295 		tsleep_interlock(bio, 0);
3296 		nflags = flags | BIO_WANT;
3297 		tsleep_interlock(bio, 0);
3298 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3299 			if (wmesg)
3300 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3301 			else if (bp->b_cmd == BUF_CMD_READ)
3302 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3303 			else
3304 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3305 			if (error) {
3306 				kprintf("tsleep error biowait %d\n", error);
3307 				return (error);
3308 			}
3309 			break;
3310 		}
3311 	}
3312 
3313 	/*
3314 	 * Finish up.
3315 	 */
3316 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3317 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3318 	if (bp->b_flags & B_EINTR)
3319 		return (EINTR);
3320 	if (bp->b_flags & B_ERROR)
3321 		return (bp->b_error ? bp->b_error : EIO);
3322 	return (0);
3323 }
3324 
3325 int
3326 biowait(struct bio *bio, const char *wmesg)
3327 {
3328 	return(_biowait(bio, wmesg, 0));
3329 }
3330 
3331 int
3332 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3333 {
3334 	return(_biowait(bio, wmesg, to));
3335 }
3336 
3337 /*
3338  * This associates a tracking count with an I/O.  vn_strategy() and
3339  * dev_dstrategy() do this automatically but there are a few cases
3340  * where a vnode or device layer is bypassed when a block translation
3341  * is cached.  In such cases bio_start_transaction() may be called on
3342  * the bypassed layers so the system gets an I/O in progress indication
3343  * for those higher layers.
3344  */
3345 void
3346 bio_start_transaction(struct bio *bio, struct bio_track *track)
3347 {
3348 	bio->bio_track = track;
3349 	bio_track_ref(track);
3350 }
3351 
3352 /*
3353  * Initiate I/O on a vnode.
3354  */
3355 void
3356 vn_strategy(struct vnode *vp, struct bio *bio)
3357 {
3358 	struct bio_track *track;
3359 
3360 	KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
3361         if (bio->bio_buf->b_cmd == BUF_CMD_READ)
3362                 track = &vp->v_track_read;
3363         else
3364                 track = &vp->v_track_write;
3365 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3366 	bio->bio_track = track;
3367 	bio_track_ref(track);
3368         vop_strategy(*vp->v_ops, vp, bio);
3369 }
3370 
3371 /*
3372  * bpdone:
3373  *
3374  *	Finish I/O on a buffer after all BIOs have been processed.
3375  *	Called when the bio chain is exhausted or by biowait.  If called
3376  *	by biowait, elseit is typically 0.
3377  *
3378  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3379  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3380  *	assuming B_INVAL is clear.
3381  *
3382  *	For the VMIO case, we set B_CACHE if the op was a read and no
3383  *	read error occured, or if the op was a write.  B_CACHE is never
3384  *	set if the buffer is invalid or otherwise uncacheable.
3385  *
3386  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3387  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3388  *	in the biodone routine.
3389  */
3390 void
3391 bpdone(struct buf *bp, int elseit)
3392 {
3393 	buf_cmd_t cmd;
3394 
3395 	KASSERT(BUF_REFCNTNB(bp) > 0,
3396 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3397 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3398 		("biodone: bp %p already done!", bp));
3399 
3400 	/*
3401 	 * No more BIOs are left.  All completion functions have been dealt
3402 	 * with, now we clean up the buffer.
3403 	 */
3404 	cmd = bp->b_cmd;
3405 	bp->b_cmd = BUF_CMD_DONE;
3406 
3407 	/*
3408 	 * Only reads and writes are processed past this point.
3409 	 */
3410 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3411 		if (cmd == BUF_CMD_FREEBLKS)
3412 			bp->b_flags |= B_NOCACHE;
3413 		if (elseit)
3414 			brelse(bp);
3415 		return;
3416 	}
3417 
3418 	/*
3419 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3420 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3421 	 */
3422 	if (LIST_FIRST(&bp->b_dep) != NULL)
3423 		buf_complete(bp);
3424 
3425 	/*
3426 	 * A failed write must re-dirty the buffer unless B_INVAL
3427 	 * was set.  Only applicable to normal buffers (with VPs).
3428 	 * vinum buffers may not have a vp.
3429 	 */
3430 	if (cmd == BUF_CMD_WRITE &&
3431 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3432 		bp->b_flags &= ~B_NOCACHE;
3433 		if (bp->b_vp)
3434 			bdirty(bp);
3435 	}
3436 
3437 	if (bp->b_flags & B_VMIO) {
3438 		int i;
3439 		vm_ooffset_t foff;
3440 		vm_page_t m;
3441 		vm_object_t obj;
3442 		int iosize;
3443 		struct vnode *vp = bp->b_vp;
3444 
3445 		obj = vp->v_object;
3446 
3447 #if defined(VFS_BIO_DEBUG)
3448 		if (vp->v_auxrefs == 0)
3449 			panic("biodone: zero vnode hold count");
3450 		if ((vp->v_flag & VOBJBUF) == 0)
3451 			panic("biodone: vnode is not setup for merged cache");
3452 #endif
3453 
3454 		foff = bp->b_loffset;
3455 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3456 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3457 
3458 #if defined(VFS_BIO_DEBUG)
3459 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3460 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3461 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3462 		}
3463 #endif
3464 
3465 		/*
3466 		 * Set B_CACHE if the op was a normal read and no error
3467 		 * occured.  B_CACHE is set for writes in the b*write()
3468 		 * routines.
3469 		 */
3470 		iosize = bp->b_bcount - bp->b_resid;
3471 		if (cmd == BUF_CMD_READ &&
3472 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3473 			bp->b_flags |= B_CACHE;
3474 		}
3475 
3476 		crit_enter();
3477 		get_mplock();
3478 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3479 			int bogusflag = 0;
3480 			int resid;
3481 
3482 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3483 			if (resid > iosize)
3484 				resid = iosize;
3485 
3486 			/*
3487 			 * cleanup bogus pages, restoring the originals.  Since
3488 			 * the originals should still be wired, we don't have
3489 			 * to worry about interrupt/freeing races destroying
3490 			 * the VM object association.
3491 			 */
3492 			m = bp->b_xio.xio_pages[i];
3493 			if (m == bogus_page) {
3494 				bogusflag = 1;
3495 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3496 				if (m == NULL)
3497 					panic("biodone: page disappeared");
3498 				bp->b_xio.xio_pages[i] = m;
3499 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3500 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3501 			}
3502 #if defined(VFS_BIO_DEBUG)
3503 			if (OFF_TO_IDX(foff) != m->pindex) {
3504 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3505 					"mismatch\n",
3506 					(unsigned long)foff, (long)m->pindex);
3507 			}
3508 #endif
3509 
3510 			/*
3511 			 * In the write case, the valid and clean bits are
3512 			 * already changed correctly (see bdwrite()), so we
3513 			 * only need to do this here in the read case.
3514 			 */
3515 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3516 				vfs_clean_one_page(bp, i, m);
3517 			}
3518 			vm_page_flag_clear(m, PG_ZERO);
3519 
3520 			/*
3521 			 * when debugging new filesystems or buffer I/O
3522 			 * methods, this is the most common error that pops
3523 			 * up.  if you see this, you have not set the page
3524 			 * busy flag correctly!!!
3525 			 */
3526 			if (m->busy == 0) {
3527 				kprintf("biodone: page busy < 0, "
3528 				    "pindex: %d, foff: 0x(%x,%x), "
3529 				    "resid: %d, index: %d\n",
3530 				    (int) m->pindex, (int)(foff >> 32),
3531 						(int) foff & 0xffffffff, resid, i);
3532 				if (!vn_isdisk(vp, NULL))
3533 					kprintf(" iosize: %ld, loffset: %lld, "
3534 						"flags: 0x%08x, npages: %d\n",
3535 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3536 					    (long long)bp->b_loffset,
3537 					    bp->b_flags, bp->b_xio.xio_npages);
3538 				else
3539 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3540 					    (long long)bp->b_loffset,
3541 					    bp->b_flags, bp->b_xio.xio_npages);
3542 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3543 				    m->valid, m->dirty, m->wire_count);
3544 				panic("biodone: page busy < 0");
3545 			}
3546 			vm_page_io_finish(m);
3547 			vm_object_pip_subtract(obj, 1);
3548 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3549 			iosize -= resid;
3550 		}
3551 		if (obj)
3552 			vm_object_pip_wakeupn(obj, 0);
3553 		rel_mplock();
3554 		crit_exit();
3555 	}
3556 
3557 	/*
3558 	 * Finish up by releasing the buffer.  There are no more synchronous
3559 	 * or asynchronous completions, those were handled by bio_done
3560 	 * callbacks.
3561 	 */
3562 	if (elseit) {
3563 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3564 			brelse(bp);
3565 		else
3566 			bqrelse(bp);
3567 	}
3568 }
3569 
3570 /*
3571  * Normal biodone.
3572  */
3573 void
3574 biodone(struct bio *bio)
3575 {
3576 	struct buf *bp = bio->bio_buf;
3577 
3578 	runningbufwakeup(bp);
3579 
3580 	/*
3581 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3582 	 */
3583 	while (bio) {
3584 		biodone_t *done_func;
3585 		struct bio_track *track;
3586 
3587 		/*
3588 		 * BIO tracking.  Most but not all BIOs are tracked.
3589 		 */
3590 		if ((track = bio->bio_track) != NULL) {
3591 			bio_track_rel(track);
3592 			bio->bio_track = NULL;
3593 		}
3594 
3595 		/*
3596 		 * A bio_done function terminates the loop.  The function
3597 		 * will be responsible for any further chaining and/or
3598 		 * buffer management.
3599 		 *
3600 		 * WARNING!  The done function can deallocate the buffer!
3601 		 */
3602 		if ((done_func = bio->bio_done) != NULL) {
3603 			bio->bio_done = NULL;
3604 			done_func(bio);
3605 			return;
3606 		}
3607 		bio = bio->bio_prev;
3608 	}
3609 
3610 	/*
3611 	 * If we've run out of bio's do normal [a]synchronous completion.
3612 	 */
3613 	bpdone(bp, 1);
3614 }
3615 
3616 /*
3617  * Synchronous biodone - this terminates a synchronous BIO.
3618  *
3619  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3620  * but still locked.  The caller must brelse() the buffer after waiting
3621  * for completion.
3622  */
3623 void
3624 biodone_sync(struct bio *bio)
3625 {
3626 	struct buf *bp = bio->bio_buf;
3627 	int flags;
3628 	int nflags;
3629 
3630 	KKASSERT(bio == &bp->b_bio1);
3631 	bpdone(bp, 0);
3632 
3633 	for (;;) {
3634 		flags = bio->bio_flags;
3635 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3636 
3637 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3638 			if (flags & BIO_WANT)
3639 				wakeup(bio);
3640 			break;
3641 		}
3642 	}
3643 }
3644 
3645 /*
3646  * vfs_unbusy_pages:
3647  *
3648  *	This routine is called in lieu of iodone in the case of
3649  *	incomplete I/O.  This keeps the busy status for pages
3650  *	consistant.
3651  */
3652 void
3653 vfs_unbusy_pages(struct buf *bp)
3654 {
3655 	int i;
3656 
3657 	runningbufwakeup(bp);
3658 	if (bp->b_flags & B_VMIO) {
3659 		struct vnode *vp = bp->b_vp;
3660 		vm_object_t obj;
3661 
3662 		obj = vp->v_object;
3663 
3664 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3665 			vm_page_t m = bp->b_xio.xio_pages[i];
3666 
3667 			/*
3668 			 * When restoring bogus changes the original pages
3669 			 * should still be wired, so we are in no danger of
3670 			 * losing the object association and do not need
3671 			 * critical section protection particularly.
3672 			 */
3673 			if (m == bogus_page) {
3674 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3675 				if (!m) {
3676 					panic("vfs_unbusy_pages: page missing");
3677 				}
3678 				bp->b_xio.xio_pages[i] = m;
3679 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3680 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3681 			}
3682 			vm_object_pip_subtract(obj, 1);
3683 			vm_page_flag_clear(m, PG_ZERO);
3684 			vm_page_io_finish(m);
3685 		}
3686 		vm_object_pip_wakeupn(obj, 0);
3687 	}
3688 }
3689 
3690 /*
3691  * vfs_busy_pages:
3692  *
3693  *	This routine is called before a device strategy routine.
3694  *	It is used to tell the VM system that paging I/O is in
3695  *	progress, and treat the pages associated with the buffer
3696  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3697  *	flag is handled to make sure that the object doesn't become
3698  *	inconsistant.
3699  *
3700  *	Since I/O has not been initiated yet, certain buffer flags
3701  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3702  *	and should be ignored.
3703  */
3704 void
3705 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3706 {
3707 	int i, bogus;
3708 	struct lwp *lp = curthread->td_lwp;
3709 
3710 	/*
3711 	 * The buffer's I/O command must already be set.  If reading,
3712 	 * B_CACHE must be 0 (double check against callers only doing
3713 	 * I/O when B_CACHE is 0).
3714 	 */
3715 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3716 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3717 
3718 	if (bp->b_flags & B_VMIO) {
3719 		vm_object_t obj;
3720 
3721 		obj = vp->v_object;
3722 		KASSERT(bp->b_loffset != NOOFFSET,
3723 			("vfs_busy_pages: no buffer offset"));
3724 
3725 		/*
3726 		 * Loop until none of the pages are busy.
3727 		 */
3728 retry:
3729 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3730 			vm_page_t m = bp->b_xio.xio_pages[i];
3731 
3732 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3733 				goto retry;
3734 		}
3735 
3736 		/*
3737 		 * Setup for I/O, soft-busy the page right now because
3738 		 * the next loop may block.
3739 		 */
3740 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3741 			vm_page_t m = bp->b_xio.xio_pages[i];
3742 
3743 			vm_page_flag_clear(m, PG_ZERO);
3744 			if ((bp->b_flags & B_CLUSTER) == 0) {
3745 				vm_object_pip_add(obj, 1);
3746 				vm_page_io_start(m);
3747 			}
3748 		}
3749 
3750 		/*
3751 		 * Adjust protections for I/O and do bogus-page mapping.
3752 		 * Assume that vm_page_protect() can block (it can block
3753 		 * if VM_PROT_NONE, don't take any chances regardless).
3754 		 *
3755 		 * In particularly note that for writes we must incorporate
3756 		 * page dirtyness from the VM system into the buffer's
3757 		 * dirty range.
3758 		 *
3759 		 * For reads we theoretically must incorporate page dirtyness
3760 		 * from the VM system to determine if the page needs bogus
3761 		 * replacement, but we shortcut the test by simply checking
3762 		 * that all m->valid bits are set, indicating that the page
3763 		 * is fully valid and does not need to be re-read.  For any
3764 		 * VM system dirtyness the page will also be fully valid
3765 		 * since it was mapped at one point.
3766 		 */
3767 		bogus = 0;
3768 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3769 			vm_page_t m = bp->b_xio.xio_pages[i];
3770 
3771 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
3772 			if (bp->b_cmd == BUF_CMD_WRITE) {
3773 				/*
3774 				 * When readying a vnode-backed buffer for
3775 				 * a write we must zero-fill any invalid
3776 				 * portions of the backing VM pages, mark
3777 				 * it valid and clear related dirty bits.
3778 				 *
3779 				 * vfs_clean_one_page() incorporates any
3780 				 * VM dirtyness and updates the b_dirtyoff
3781 				 * range (after we've made the page RO).
3782 				 *
3783 				 * It is also expected that the pmap modified
3784 				 * bit has already been cleared by the
3785 				 * vm_page_protect().  We may not be able
3786 				 * to clear all dirty bits for a page if it
3787 				 * was also memory mapped (NFS).
3788 				 */
3789 				vm_page_protect(m, VM_PROT_READ);
3790 				vfs_clean_one_page(bp, i, m);
3791 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3792 				/*
3793 				 * When readying a vnode-backed buffer for
3794 				 * read we must replace any dirty pages with
3795 				 * a bogus page so dirty data is not destroyed
3796 				 * when filling gaps.
3797 				 *
3798 				 * To avoid testing whether the page is
3799 				 * dirty we instead test that the page was
3800 				 * at some point mapped (m->valid fully
3801 				 * valid) with the understanding that
3802 				 * this also covers the dirty case.
3803 				 */
3804 				bp->b_xio.xio_pages[i] = bogus_page;
3805 				bogus++;
3806 			} else if (m->valid & m->dirty) {
3807 				/*
3808 				 * This case should not occur as partial
3809 				 * dirtyment can only happen if the buffer
3810 				 * is B_CACHE, and this code is not entered
3811 				 * if the buffer is B_CACHE.
3812 				 */
3813 				kprintf("Warning: vfs_busy_pages - page not "
3814 					"fully valid! loff=%jx bpf=%08x "
3815 					"idx=%d val=%02x dir=%02x\n",
3816 					(intmax_t)bp->b_loffset, bp->b_flags,
3817 					i, m->valid, m->dirty);
3818 				vm_page_protect(m, VM_PROT_NONE);
3819 			} else {
3820 				/*
3821 				 * The page is not valid and can be made
3822 				 * part of the read.
3823 				 */
3824 				vm_page_protect(m, VM_PROT_NONE);
3825 			}
3826 		}
3827 		if (bogus) {
3828 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3829 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3830 		}
3831 	}
3832 
3833 	/*
3834 	 * This is the easiest place to put the process accounting for the I/O
3835 	 * for now.
3836 	 */
3837 	if (lp != NULL) {
3838 		if (bp->b_cmd == BUF_CMD_READ)
3839 			lp->lwp_ru.ru_inblock++;
3840 		else
3841 			lp->lwp_ru.ru_oublock++;
3842 	}
3843 }
3844 
3845 /*
3846  * vfs_clean_pages:
3847  *
3848  *	Tell the VM system that the pages associated with this buffer
3849  *	are clean.  This is used for delayed writes where the data is
3850  *	going to go to disk eventually without additional VM intevention.
3851  *
3852  *	Note that while we only really need to clean through to b_bcount, we
3853  *	just go ahead and clean through to b_bufsize.
3854  */
3855 static void
3856 vfs_clean_pages(struct buf *bp)
3857 {
3858 	vm_page_t m;
3859 	int i;
3860 
3861 	if ((bp->b_flags & B_VMIO) == 0)
3862 		return;
3863 
3864 	KASSERT(bp->b_loffset != NOOFFSET,
3865 		("vfs_clean_pages: no buffer offset"));
3866 
3867 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
3868 		m = bp->b_xio.xio_pages[i];
3869 		vfs_clean_one_page(bp, i, m);
3870 	}
3871 }
3872 
3873 /*
3874  * vfs_clean_one_page:
3875  *
3876  *	Set the valid bits and clear the dirty bits in a page within a
3877  *	buffer.  The range is restricted to the buffer's size and the
3878  *	buffer's logical offset might index into the first page.
3879  *
3880  *	The caller has busied or soft-busied the page and it is not mapped,
3881  *	test and incorporate the dirty bits into b_dirtyoff/end before
3882  *	clearing them.  Note that we need to clear the pmap modified bits
3883  *	after determining the the page was dirty, vm_page_set_validclean()
3884  *	does not do it for us.
3885  *
3886  *	This routine is typically called after a read completes (dirty should
3887  *	be zero in that case as we are not called on bogus-replace pages),
3888  *	or before a write is initiated.
3889  */
3890 static void
3891 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
3892 {
3893 	int bcount;
3894 	int xoff;
3895 	int soff;
3896 	int eoff;
3897 
3898 	/*
3899 	 * Calculate offset range within the page but relative to buffer's
3900 	 * loffset.  loffset might be offset into the first page.
3901 	 */
3902 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
3903 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
3904 
3905 	if (pageno == 0) {
3906 		soff = xoff;
3907 		eoff = PAGE_SIZE;
3908 	} else {
3909 		soff = (pageno << PAGE_SHIFT);
3910 		eoff = soff + PAGE_SIZE;
3911 	}
3912 	if (eoff > bcount)
3913 		eoff = bcount;
3914 	if (soff >= eoff)
3915 		return;
3916 
3917 	/*
3918 	 * Test dirty bits and adjust b_dirtyoff/end.
3919 	 *
3920 	 * If dirty pages are incorporated into the bp any prior
3921 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
3922 	 * caller has not taken into account the new dirty data.
3923 	 *
3924 	 * If the page was memory mapped the dirty bits might go beyond the
3925 	 * end of the buffer, but we can't really make the assumption that
3926 	 * a file EOF straddles the buffer (even though this is the case for
3927 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
3928 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
3929 	 * This also saves some console spam.
3930 	 */
3931 	vm_page_test_dirty(m);
3932 	if (m->dirty) {
3933 		pmap_clear_modify(m);
3934 		if ((bp->b_flags & B_NEEDCOMMIT) &&
3935 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
3936 			kprintf("Warning: vfs_clean_one_page: bp %p "
3937 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT\n",
3938 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
3939 				bp->b_flags);
3940 			bp->b_flags &= ~B_NEEDCOMMIT;
3941 		}
3942 		if (bp->b_dirtyoff > soff - xoff)
3943 			bp->b_dirtyoff = soff - xoff;
3944 		if (bp->b_dirtyend < eoff - xoff)
3945 			bp->b_dirtyend = eoff - xoff;
3946 	}
3947 
3948 	/*
3949 	 * Set related valid bits, clear related dirty bits.
3950 	 * Does not mess with the pmap modified bit.
3951 	 *
3952 	 * WARNING!  We cannot just clear all of m->dirty here as the
3953 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
3954 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
3955 	 *	     The putpages code can clear m->dirty to 0.
3956 	 *
3957 	 *	     If a VOP_WRITE generates a buffer cache buffer which
3958 	 *	     covers the same space as mapped writable pages the
3959 	 *	     buffer flush might not be able to clear all the dirty
3960 	 *	     bits and still require a putpages from the VM system
3961 	 *	     to finish it off.
3962 	 */
3963 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
3964 }
3965 
3966 /*
3967  * vfs_bio_clrbuf:
3968  *
3969  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3970  *	to clear B_ERROR and B_INVAL.
3971  *
3972  *	Note that while we only theoretically need to clear through b_bcount,
3973  *	we go ahead and clear through b_bufsize.
3974  */
3975 
3976 void
3977 vfs_bio_clrbuf(struct buf *bp)
3978 {
3979 	int i, mask = 0;
3980 	caddr_t sa, ea;
3981 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3982 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
3983 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3984 		    (bp->b_loffset & PAGE_MASK) == 0) {
3985 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3986 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3987 				bp->b_resid = 0;
3988 				return;
3989 			}
3990 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3991 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3992 				bzero(bp->b_data, bp->b_bufsize);
3993 				bp->b_xio.xio_pages[0]->valid |= mask;
3994 				bp->b_resid = 0;
3995 				return;
3996 			}
3997 		}
3998 		sa = bp->b_data;
3999 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4000 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4001 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4002 			ea = (caddr_t)(vm_offset_t)ulmin(
4003 			    (u_long)(vm_offset_t)ea,
4004 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4005 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4006 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4007 				continue;
4008 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4009 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4010 					bzero(sa, ea - sa);
4011 				}
4012 			} else {
4013 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4014 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4015 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4016 						bzero(sa, DEV_BSIZE);
4017 				}
4018 			}
4019 			bp->b_xio.xio_pages[i]->valid |= mask;
4020 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4021 		}
4022 		bp->b_resid = 0;
4023 	} else {
4024 		clrbuf(bp);
4025 	}
4026 }
4027 
4028 /*
4029  * vm_hold_load_pages:
4030  *
4031  *	Load pages into the buffer's address space.  The pages are
4032  *	allocated from the kernel object in order to reduce interference
4033  *	with the any VM paging I/O activity.  The range of loaded
4034  *	pages will be wired.
4035  *
4036  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4037  *	retrieve the full range (to - from) of pages.
4038  *
4039  */
4040 void
4041 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4042 {
4043 	vm_offset_t pg;
4044 	vm_page_t p;
4045 	int index;
4046 
4047 	to = round_page(to);
4048 	from = round_page(from);
4049 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4050 
4051 	pg = from;
4052 	while (pg < to) {
4053 		/*
4054 		 * Note: must allocate system pages since blocking here
4055 		 * could intefere with paging I/O, no matter which
4056 		 * process we are.
4057 		 */
4058 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4059 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4060 		if (p) {
4061 			vm_page_wire(p);
4062 			p->valid = VM_PAGE_BITS_ALL;
4063 			vm_page_flag_clear(p, PG_ZERO);
4064 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4065 			bp->b_xio.xio_pages[index] = p;
4066 			vm_page_wakeup(p);
4067 
4068 			pg += PAGE_SIZE;
4069 			++index;
4070 		}
4071 	}
4072 	bp->b_xio.xio_npages = index;
4073 }
4074 
4075 /*
4076  * Allocate pages for a buffer cache buffer.
4077  *
4078  * Under extremely severe memory conditions even allocating out of the
4079  * system reserve can fail.  If this occurs we must allocate out of the
4080  * interrupt reserve to avoid a deadlock with the pageout daemon.
4081  *
4082  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4083  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4084  * against the pageout daemon if pages are not freed from other sources.
4085  */
4086 static
4087 vm_page_t
4088 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4089 {
4090 	vm_page_t p;
4091 
4092 	/*
4093 	 * Try a normal allocation, allow use of system reserve.
4094 	 */
4095 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4096 	if (p)
4097 		return(p);
4098 
4099 	/*
4100 	 * The normal allocation failed and we clearly have a page
4101 	 * deficit.  Try to reclaim some clean VM pages directly
4102 	 * from the buffer cache.
4103 	 */
4104 	vm_pageout_deficit += deficit;
4105 	recoverbufpages();
4106 
4107 	/*
4108 	 * We may have blocked, the caller will know what to do if the
4109 	 * page now exists.
4110 	 */
4111 	if (vm_page_lookup(obj, pg))
4112 		return(NULL);
4113 
4114 	/*
4115 	 * Allocate and allow use of the interrupt reserve.
4116 	 *
4117 	 * If after all that we still can't allocate a VM page we are
4118 	 * in real trouble, but we slog on anyway hoping that the system
4119 	 * won't deadlock.
4120 	 */
4121 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4122 				   VM_ALLOC_INTERRUPT);
4123 	if (p) {
4124 		if (vm_page_count_severe()) {
4125 			kprintf("bio_page_alloc: WARNING emergency page "
4126 				"allocation\n");
4127 			vm_wait(hz / 20);
4128 		}
4129 	} else {
4130 		kprintf("bio_page_alloc: WARNING emergency page "
4131 			"allocation failed\n");
4132 		vm_wait(hz * 5);
4133 	}
4134 	return(p);
4135 }
4136 
4137 /*
4138  * vm_hold_free_pages:
4139  *
4140  *	Return pages associated with the buffer back to the VM system.
4141  *
4142  *	The range of pages underlying the buffer's address space will
4143  *	be unmapped and un-wired.
4144  */
4145 void
4146 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4147 {
4148 	vm_offset_t pg;
4149 	vm_page_t p;
4150 	int index, newnpages;
4151 
4152 	from = round_page(from);
4153 	to = round_page(to);
4154 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4155 
4156 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4157 		p = bp->b_xio.xio_pages[index];
4158 		if (p && (index < bp->b_xio.xio_npages)) {
4159 			if (p->busy) {
4160 				kprintf("vm_hold_free_pages: doffset: %lld, "
4161 					"loffset: %lld\n",
4162 					(long long)bp->b_bio2.bio_offset,
4163 					(long long)bp->b_loffset);
4164 			}
4165 			bp->b_xio.xio_pages[index] = NULL;
4166 			pmap_kremove(pg);
4167 			vm_page_busy(p);
4168 			vm_page_unwire(p, 0);
4169 			vm_page_free(p);
4170 		}
4171 	}
4172 	bp->b_xio.xio_npages = newnpages;
4173 }
4174 
4175 /*
4176  * vmapbuf:
4177  *
4178  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4179  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4180  *	initialized.
4181  */
4182 int
4183 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4184 {
4185 	caddr_t addr;
4186 	vm_offset_t va;
4187 	vm_page_t m;
4188 	int vmprot;
4189 	int error;
4190 	int pidx;
4191 	int i;
4192 
4193 	/*
4194 	 * bp had better have a command and it better be a pbuf.
4195 	 */
4196 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4197 	KKASSERT(bp->b_flags & B_PAGING);
4198 
4199 	if (bytes < 0)
4200 		return (-1);
4201 
4202 	/*
4203 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4204 	 */
4205 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4206 	pidx = 0;
4207 
4208 	vmprot = VM_PROT_READ;
4209 	if (bp->b_cmd == BUF_CMD_READ)
4210 		vmprot |= VM_PROT_WRITE;
4211 
4212 	while (addr < udata + bytes) {
4213 		/*
4214 		 * Do the vm_fault if needed; do the copy-on-write thing
4215 		 * when reading stuff off device into memory.
4216 		 *
4217 		 * vm_fault_page*() returns a held VM page.
4218 		 */
4219 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4220 		va = trunc_page(va);
4221 
4222 		m = vm_fault_page_quick(va, vmprot, &error);
4223 		if (m == NULL) {
4224 			for (i = 0; i < pidx; ++i) {
4225 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4226 			    bp->b_xio.xio_pages[i] = NULL;
4227 			}
4228 			return(-1);
4229 		}
4230 		bp->b_xio.xio_pages[pidx] = m;
4231 		addr += PAGE_SIZE;
4232 		++pidx;
4233 	}
4234 
4235 	/*
4236 	 * Map the page array and set the buffer fields to point to
4237 	 * the mapped data buffer.
4238 	 */
4239 	if (pidx > btoc(MAXPHYS))
4240 		panic("vmapbuf: mapped more than MAXPHYS");
4241 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4242 
4243 	bp->b_xio.xio_npages = pidx;
4244 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4245 	bp->b_bcount = bytes;
4246 	bp->b_bufsize = bytes;
4247 	return(0);
4248 }
4249 
4250 /*
4251  * vunmapbuf:
4252  *
4253  *	Free the io map PTEs associated with this IO operation.
4254  *	We also invalidate the TLB entries and restore the original b_addr.
4255  */
4256 void
4257 vunmapbuf(struct buf *bp)
4258 {
4259 	int pidx;
4260 	int npages;
4261 
4262 	KKASSERT(bp->b_flags & B_PAGING);
4263 
4264 	npages = bp->b_xio.xio_npages;
4265 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4266 	for (pidx = 0; pidx < npages; ++pidx) {
4267 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4268 		bp->b_xio.xio_pages[pidx] = NULL;
4269 	}
4270 	bp->b_xio.xio_npages = 0;
4271 	bp->b_data = bp->b_kvabase;
4272 }
4273 
4274 /*
4275  * Scan all buffers in the system and issue the callback.
4276  */
4277 int
4278 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4279 {
4280 	int count = 0;
4281 	int error;
4282 	int n;
4283 
4284 	for (n = 0; n < nbuf; ++n) {
4285 		if ((error = callback(&buf[n], info)) < 0) {
4286 			count = error;
4287 			break;
4288 		}
4289 		count += error;
4290 	}
4291 	return (count);
4292 }
4293 
4294 /*
4295  * print out statistics from the current status of the buffer pool
4296  * this can be toggeled by the system control option debug.syncprt
4297  */
4298 #ifdef DEBUG
4299 void
4300 vfs_bufstats(void)
4301 {
4302         int i, j, count;
4303         struct buf *bp;
4304         struct bqueues *dp;
4305         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4306         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4307 
4308         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4309                 count = 0;
4310                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4311                         counts[j] = 0;
4312 		crit_enter();
4313                 TAILQ_FOREACH(bp, dp, b_freelist) {
4314                         counts[bp->b_bufsize/PAGE_SIZE]++;
4315                         count++;
4316                 }
4317 		crit_exit();
4318                 kprintf("%s: total-%d", bname[i], count);
4319                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4320                         if (counts[j] != 0)
4321                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4322                 kprintf("\n");
4323         }
4324 }
4325 #endif
4326 
4327 #ifdef DDB
4328 
4329 DB_SHOW_COMMAND(buffer, db_show_buffer)
4330 {
4331 	/* get args */
4332 	struct buf *bp = (struct buf *)addr;
4333 
4334 	if (!have_addr) {
4335 		db_printf("usage: show buffer <addr>\n");
4336 		return;
4337 	}
4338 
4339 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4340 	db_printf("b_cmd = %d\n", bp->b_cmd);
4341 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4342 		  "b_resid = %d\n, b_data = %p, "
4343 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4344 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4345 		  bp->b_data,
4346 		  (long long)bp->b_bio2.bio_offset,
4347 		  (long long)(bp->b_bio2.bio_next ?
4348 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4349 	if (bp->b_xio.xio_npages) {
4350 		int i;
4351 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4352 			bp->b_xio.xio_npages);
4353 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4354 			vm_page_t m;
4355 			m = bp->b_xio.xio_pages[i];
4356 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4357 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4358 			if ((i + 1) < bp->b_xio.xio_npages)
4359 				db_printf(",");
4360 		}
4361 		db_printf("\n");
4362 	}
4363 }
4364 #endif /* DDB */
4365