xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 65c62024e97be0964ff6de261081aec59a904f78)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
61 
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Buffer queues.
69  */
70 enum bufq_type {
71 	BQUEUE_NONE,    	/* not on any queue */
72 	BQUEUE_LOCKED,  	/* locked buffers */
73 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
74 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
75 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
76 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
77 	BQUEUE_EMPTY,    	/* empty buffer headers */
78 
79 	BUFFER_QUEUES		/* number of buffer queues */
80 };
81 
82 typedef enum bufq_type bufq_type_t;
83 
84 #define BD_WAKE_SIZE	128
85 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
86 
87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
88 struct spinlock	bufspin = SPINLOCK_INITIALIZER(&bufspin);
89 
90 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
91 
92 struct buf *buf;		/* buffer header pool */
93 
94 static void vfs_clean_pages(struct buf *bp);
95 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
96 static void vfs_vmio_release(struct buf *bp);
97 static int flushbufqueues(bufq_type_t q);
98 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
99 
100 static void bd_signal(int totalspace);
101 static void buf_daemon(void);
102 static void buf_daemon_hw(void);
103 
104 /*
105  * bogus page -- for I/O to/from partially complete buffers
106  * this is a temporary solution to the problem, but it is not
107  * really that bad.  it would be better to split the buffer
108  * for input in the case of buffers partially already in memory,
109  * but the code is intricate enough already.
110  */
111 vm_page_t bogus_page;
112 
113 /*
114  * These are all static, but make the ones we export globals so we do
115  * not need to use compiler magic.
116  */
117 int bufspace, maxbufspace,
118 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
119 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
120 static int lorunningspace, hirunningspace, runningbufreq;
121 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
122 int dirtybufcount, dirtybufcounthw;
123 int runningbufspace, runningbufcount;
124 static int getnewbufcalls;
125 static int getnewbufrestarts;
126 static int recoverbufcalls;
127 static int needsbuffer;		/* locked by needsbuffer_spin */
128 static int bd_request;		/* locked by needsbuffer_spin */
129 static int bd_request_hw;	/* locked by needsbuffer_spin */
130 static u_int bd_wake_ary[BD_WAKE_SIZE];
131 static u_int bd_wake_index;
132 static struct spinlock needsbuffer_spin;
133 
134 static struct thread *bufdaemon_td;
135 static struct thread *bufdaemonhw_td;
136 
137 
138 /*
139  * Sysctls for operational control of the buffer cache.
140  */
141 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
142 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
143 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
144 	"High watermark used to trigger explicit flushing of dirty buffers");
145 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
146 	"Minimum amount of buffer space required for active I/O");
147 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
148 	"Maximum amount of buffer space to usable for active I/O");
149 /*
150  * Sysctls determining current state of the buffer cache.
151  */
152 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
153 	"Total number of buffers in buffer cache");
154 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
155 	"Pending bytes of dirty buffers (all)");
156 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
157 	"Pending bytes of dirty buffers (heavy weight)");
158 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
159 	"Pending number of dirty buffers");
160 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
161 	"Pending number of dirty buffers (heavy weight)");
162 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
163 	"I/O bytes currently in progress due to asynchronous writes");
164 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
165 	"I/O buffers currently in progress due to asynchronous writes");
166 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
167 	"Hard limit on maximum amount of memory usable for buffer space");
168 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
169 	"Soft limit on maximum amount of memory usable for buffer space");
170 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
171 	"Minimum amount of memory to reserve for system buffer space");
172 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
173 	"Amount of memory available for buffers");
174 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
175 	0, "Maximum amount of memory reserved for buffers using malloc");
176 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
177 	"Amount of memory left for buffers using malloc-scheme");
178 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
179 	"New buffer header acquisition requests");
180 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
181 	0, "New buffer header acquisition restarts");
182 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
183 	"Recover VM space in an emergency");
184 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
185 	"Buffer acquisition restarts due to fragmented buffer map");
186 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
187 	"Amount of time KVA space was deallocated in an arbitrary buffer");
188 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
189 	"Amount of time buffer re-use operations were successful");
190 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
191 	"sizeof(struct buf)");
192 
193 char *buf_wmesg = BUF_WMESG;
194 
195 extern int vm_swap_size;
196 
197 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
198 #define VFS_BIO_NEED_UNUSED02	0x02
199 #define VFS_BIO_NEED_UNUSED04	0x04
200 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
201 
202 /*
203  * bufspacewakeup:
204  *
205  *	Called when buffer space is potentially available for recovery.
206  *	getnewbuf() will block on this flag when it is unable to free
207  *	sufficient buffer space.  Buffer space becomes recoverable when
208  *	bp's get placed back in the queues.
209  */
210 
211 static __inline void
212 bufspacewakeup(void)
213 {
214 	/*
215 	 * If someone is waiting for BUF space, wake them up.  Even
216 	 * though we haven't freed the kva space yet, the waiting
217 	 * process will be able to now.
218 	 */
219 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
220 		spin_lock_wr(&needsbuffer_spin);
221 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
222 		spin_unlock_wr(&needsbuffer_spin);
223 		wakeup(&needsbuffer);
224 	}
225 }
226 
227 /*
228  * runningbufwakeup:
229  *
230  *	Accounting for I/O in progress.
231  *
232  */
233 static __inline void
234 runningbufwakeup(struct buf *bp)
235 {
236 	int totalspace;
237 	int limit;
238 
239 	if ((totalspace = bp->b_runningbufspace) != 0) {
240 		atomic_subtract_int(&runningbufspace, totalspace);
241 		atomic_subtract_int(&runningbufcount, 1);
242 		bp->b_runningbufspace = 0;
243 
244 		/*
245 		 * see waitrunningbufspace() for limit test.
246 		 */
247 		limit = hirunningspace * 2 / 3;
248 		if (runningbufreq && runningbufspace <= limit) {
249 			runningbufreq = 0;
250 			wakeup(&runningbufreq);
251 		}
252 		bd_signal(totalspace);
253 	}
254 }
255 
256 /*
257  * bufcountwakeup:
258  *
259  *	Called when a buffer has been added to one of the free queues to
260  *	account for the buffer and to wakeup anyone waiting for free buffers.
261  *	This typically occurs when large amounts of metadata are being handled
262  *	by the buffer cache ( else buffer space runs out first, usually ).
263  *
264  * MPSAFE
265  */
266 static __inline void
267 bufcountwakeup(void)
268 {
269 	if (needsbuffer) {
270 		spin_lock_wr(&needsbuffer_spin);
271 		needsbuffer &= ~VFS_BIO_NEED_ANY;
272 		spin_unlock_wr(&needsbuffer_spin);
273 		wakeup(&needsbuffer);
274 	}
275 }
276 
277 /*
278  * waitrunningbufspace()
279  *
280  * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3.
281  * This is the point where write bursting stops so we don't want to wait
282  * for the running amount to drop below it (at least if we still want bioq
283  * to burst writes).
284  *
285  * The caller may be using this function to block in a tight loop, we
286  * must block while runningbufspace is greater then or equal to
287  * hirunningspace * 2 / 3.
288  *
289  * And even with that it may not be enough, due to the presence of
290  * B_LOCKED dirty buffers, so also wait for at least one running buffer
291  * to complete.
292  */
293 static __inline void
294 waitrunningbufspace(void)
295 {
296 	int limit = hirunningspace * 2 / 3;
297 
298 	crit_enter();
299 	if (runningbufspace > limit) {
300 		while (runningbufspace > limit) {
301 			++runningbufreq;
302 			tsleep(&runningbufreq, 0, "wdrn1", 0);
303 		}
304 	} else if (runningbufspace) {
305 		++runningbufreq;
306 		tsleep(&runningbufreq, 0, "wdrn2", 1);
307 	}
308 	crit_exit();
309 }
310 
311 /*
312  * buf_dirty_count_severe:
313  *
314  *	Return true if we have too many dirty buffers.
315  */
316 int
317 buf_dirty_count_severe(void)
318 {
319 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
320 	        dirtybufcount >= nbuf / 2);
321 }
322 
323 /*
324  * Return true if the amount of running I/O is severe and BIOQ should
325  * start bursting.
326  */
327 int
328 buf_runningbufspace_severe(void)
329 {
330 	return (runningbufspace >= hirunningspace * 2 / 3);
331 }
332 
333 /*
334  * vfs_buf_test_cache:
335  *
336  * Called when a buffer is extended.  This function clears the B_CACHE
337  * bit if the newly extended portion of the buffer does not contain
338  * valid data.
339  *
340  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
341  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
342  * them while a clean buffer was present.
343  */
344 static __inline__
345 void
346 vfs_buf_test_cache(struct buf *bp,
347 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
348 		  vm_page_t m)
349 {
350 	if (bp->b_flags & B_CACHE) {
351 		int base = (foff + off) & PAGE_MASK;
352 		if (vm_page_is_valid(m, base, size) == 0)
353 			bp->b_flags &= ~B_CACHE;
354 	}
355 }
356 
357 /*
358  * bd_speedup()
359  *
360  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
361  * low water mark.
362  *
363  * MPSAFE
364  */
365 static __inline__
366 void
367 bd_speedup(void)
368 {
369 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
370 		return;
371 
372 	if (bd_request == 0 &&
373 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
374 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
375 		spin_lock_wr(&needsbuffer_spin);
376 		bd_request = 1;
377 		spin_unlock_wr(&needsbuffer_spin);
378 		wakeup(&bd_request);
379 	}
380 	if (bd_request_hw == 0 &&
381 	    (dirtybufspacehw > lodirtybufspace / 2 ||
382 	     dirtybufcounthw >= nbuf / 2)) {
383 		spin_lock_wr(&needsbuffer_spin);
384 		bd_request_hw = 1;
385 		spin_unlock_wr(&needsbuffer_spin);
386 		wakeup(&bd_request_hw);
387 	}
388 }
389 
390 /*
391  * bd_heatup()
392  *
393  *	Get the buf_daemon heated up when the number of running and dirty
394  *	buffers exceeds the mid-point.
395  *
396  * MPSAFE
397  */
398 int
399 bd_heatup(void)
400 {
401 	int mid1;
402 	int mid2;
403 	int totalspace;
404 
405 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
406 
407 	totalspace = runningbufspace + dirtybufspace;
408 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
409 		bd_speedup();
410 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
411 		if (totalspace >= mid2)
412 			return(totalspace - mid2);
413 	}
414 	return(0);
415 }
416 
417 /*
418  * bd_wait()
419  *
420  *	Wait for the buffer cache to flush (totalspace) bytes worth of
421  *	buffers, then return.
422  *
423  *	Regardless this function blocks while the number of dirty buffers
424  *	exceeds hidirtybufspace.
425  *
426  * MPSAFE
427  */
428 void
429 bd_wait(int totalspace)
430 {
431 	u_int i;
432 	int count;
433 
434 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
435 		return;
436 
437 	while (totalspace > 0) {
438 		bd_heatup();
439 		if (totalspace > runningbufspace + dirtybufspace)
440 			totalspace = runningbufspace + dirtybufspace;
441 		count = totalspace / BKVASIZE;
442 		if (count >= BD_WAKE_SIZE)
443 			count = BD_WAKE_SIZE - 1;
444 
445 		spin_lock_wr(&needsbuffer_spin);
446 		i = (bd_wake_index + count) & BD_WAKE_MASK;
447 		++bd_wake_ary[i];
448 		tsleep_interlock(&bd_wake_ary[i], 0);
449 		spin_unlock_wr(&needsbuffer_spin);
450 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
451 
452 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
453 	}
454 }
455 
456 /*
457  * bd_signal()
458  *
459  *	This function is called whenever runningbufspace or dirtybufspace
460  *	is reduced.  Track threads waiting for run+dirty buffer I/O
461  *	complete.
462  *
463  * MPSAFE
464  */
465 static void
466 bd_signal(int totalspace)
467 {
468 	u_int i;
469 
470 	if (totalspace > 0) {
471 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
472 			totalspace = BKVASIZE * BD_WAKE_SIZE;
473 		spin_lock_wr(&needsbuffer_spin);
474 		while (totalspace > 0) {
475 			i = bd_wake_index++;
476 			i &= BD_WAKE_MASK;
477 			if (bd_wake_ary[i]) {
478 				bd_wake_ary[i] = 0;
479 				spin_unlock_wr(&needsbuffer_spin);
480 				wakeup(&bd_wake_ary[i]);
481 				spin_lock_wr(&needsbuffer_spin);
482 			}
483 			totalspace -= BKVASIZE;
484 		}
485 		spin_unlock_wr(&needsbuffer_spin);
486 	}
487 }
488 
489 /*
490  * BIO tracking support routines.
491  *
492  * Release a ref on a bio_track.  Wakeup requests are atomically released
493  * along with the last reference so bk_active will never wind up set to
494  * only 0x80000000.
495  *
496  * MPSAFE
497  */
498 static
499 void
500 bio_track_rel(struct bio_track *track)
501 {
502 	int	active;
503 	int	desired;
504 
505 	/*
506 	 * Shortcut
507 	 */
508 	active = track->bk_active;
509 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
510 		return;
511 
512 	/*
513 	 * Full-on.  Note that the wait flag is only atomically released on
514 	 * the 1->0 count transition.
515 	 *
516 	 * We check for a negative count transition using bit 30 since bit 31
517 	 * has a different meaning.
518 	 */
519 	for (;;) {
520 		desired = (active & 0x7FFFFFFF) - 1;
521 		if (desired)
522 			desired |= active & 0x80000000;
523 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
524 			if (desired & 0x40000000)
525 				panic("bio_track_rel: bad count: %p\n", track);
526 			if (active & 0x80000000)
527 				wakeup(track);
528 			break;
529 		}
530 		active = track->bk_active;
531 	}
532 }
533 
534 /*
535  * Wait for the tracking count to reach 0.
536  *
537  * Use atomic ops such that the wait flag is only set atomically when
538  * bk_active is non-zero.
539  *
540  * MPSAFE
541  */
542 int
543 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
544 {
545 	int	active;
546 	int	desired;
547 	int	error;
548 
549 	/*
550 	 * Shortcut
551 	 */
552 	if (track->bk_active == 0)
553 		return(0);
554 
555 	/*
556 	 * Full-on.  Note that the wait flag may only be atomically set if
557 	 * the active count is non-zero.
558 	 */
559 	error = 0;
560 	while ((active = track->bk_active) != 0) {
561 		desired = active | 0x80000000;
562 		tsleep_interlock(track, slp_flags);
563 		if (active == desired ||
564 		    atomic_cmpset_int(&track->bk_active, active, desired)) {
565 			error = tsleep(track, slp_flags | PINTERLOCKED,
566 				       "iowait", slp_timo);
567 			if (error)
568 				break;
569 		}
570 	}
571 	return (error);
572 }
573 
574 /*
575  * bufinit:
576  *
577  *	Load time initialisation of the buffer cache, called from machine
578  *	dependant initialization code.
579  */
580 void
581 bufinit(void)
582 {
583 	struct buf *bp;
584 	vm_offset_t bogus_offset;
585 	int i;
586 
587 	spin_init(&needsbuffer_spin);
588 
589 	/* next, make a null set of free lists */
590 	for (i = 0; i < BUFFER_QUEUES; i++)
591 		TAILQ_INIT(&bufqueues[i]);
592 
593 	/* finally, initialize each buffer header and stick on empty q */
594 	for (i = 0; i < nbuf; i++) {
595 		bp = &buf[i];
596 		bzero(bp, sizeof *bp);
597 		bp->b_flags = B_INVAL;	/* we're just an empty header */
598 		bp->b_cmd = BUF_CMD_DONE;
599 		bp->b_qindex = BQUEUE_EMPTY;
600 		initbufbio(bp);
601 		xio_init(&bp->b_xio);
602 		buf_dep_init(bp);
603 		BUF_LOCKINIT(bp);
604 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
605 	}
606 
607 	/*
608 	 * maxbufspace is the absolute maximum amount of buffer space we are
609 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
610 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
611 	 * used by most other processes.  The differential is required to
612 	 * ensure that buf_daemon is able to run when other processes might
613 	 * be blocked waiting for buffer space.
614 	 *
615 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
616 	 * this may result in KVM fragmentation which is not handled optimally
617 	 * by the system.
618 	 */
619 	maxbufspace = nbuf * BKVASIZE;
620 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
621 	lobufspace = hibufspace - MAXBSIZE;
622 
623 	lorunningspace = 512 * 1024;
624 	/* hirunningspace -- see below */
625 
626 	/*
627 	 * Limit the amount of malloc memory since it is wired permanently
628 	 * into the kernel space.  Even though this is accounted for in
629 	 * the buffer allocation, we don't want the malloced region to grow
630 	 * uncontrolled.  The malloc scheme improves memory utilization
631 	 * significantly on average (small) directories.
632 	 */
633 	maxbufmallocspace = hibufspace / 20;
634 
635 	/*
636 	 * Reduce the chance of a deadlock occuring by limiting the number
637 	 * of delayed-write dirty buffers we allow to stack up.
638 	 *
639 	 * We don't want too much actually queued to the device at once
640 	 * (XXX this needs to be per-mount!), because the buffers will
641 	 * wind up locked for a very long period of time while the I/O
642 	 * drains.
643 	 */
644 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
645 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
646 	if (hirunningspace < 1024 * 1024)
647 		hirunningspace = 1024 * 1024;
648 
649 	dirtybufspace = 0;
650 	dirtybufspacehw = 0;
651 
652 	lodirtybufspace = hidirtybufspace / 2;
653 
654 	/*
655 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
656 	 * somewhat of a hack at the moment, we really need to limit ourselves
657 	 * based on the number of bytes of I/O in-transit that were initiated
658 	 * from buf_daemon.
659 	 */
660 
661 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
662 	bogus_page = vm_page_alloc(&kernel_object,
663 				   (bogus_offset >> PAGE_SHIFT),
664 				   VM_ALLOC_NORMAL);
665 	vmstats.v_wire_count++;
666 
667 }
668 
669 /*
670  * Initialize the embedded bio structures
671  */
672 void
673 initbufbio(struct buf *bp)
674 {
675 	bp->b_bio1.bio_buf = bp;
676 	bp->b_bio1.bio_prev = NULL;
677 	bp->b_bio1.bio_offset = NOOFFSET;
678 	bp->b_bio1.bio_next = &bp->b_bio2;
679 	bp->b_bio1.bio_done = NULL;
680 	bp->b_bio1.bio_flags = 0;
681 
682 	bp->b_bio2.bio_buf = bp;
683 	bp->b_bio2.bio_prev = &bp->b_bio1;
684 	bp->b_bio2.bio_offset = NOOFFSET;
685 	bp->b_bio2.bio_next = NULL;
686 	bp->b_bio2.bio_done = NULL;
687 	bp->b_bio2.bio_flags = 0;
688 }
689 
690 /*
691  * Reinitialize the embedded bio structures as well as any additional
692  * translation cache layers.
693  */
694 void
695 reinitbufbio(struct buf *bp)
696 {
697 	struct bio *bio;
698 
699 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
700 		bio->bio_done = NULL;
701 		bio->bio_offset = NOOFFSET;
702 	}
703 }
704 
705 /*
706  * Push another BIO layer onto an existing BIO and return it.  The new
707  * BIO layer may already exist, holding cached translation data.
708  */
709 struct bio *
710 push_bio(struct bio *bio)
711 {
712 	struct bio *nbio;
713 
714 	if ((nbio = bio->bio_next) == NULL) {
715 		int index = bio - &bio->bio_buf->b_bio_array[0];
716 		if (index >= NBUF_BIO - 1) {
717 			panic("push_bio: too many layers bp %p\n",
718 				bio->bio_buf);
719 		}
720 		nbio = &bio->bio_buf->b_bio_array[index + 1];
721 		bio->bio_next = nbio;
722 		nbio->bio_prev = bio;
723 		nbio->bio_buf = bio->bio_buf;
724 		nbio->bio_offset = NOOFFSET;
725 		nbio->bio_done = NULL;
726 		nbio->bio_next = NULL;
727 	}
728 	KKASSERT(nbio->bio_done == NULL);
729 	return(nbio);
730 }
731 
732 /*
733  * Pop a BIO translation layer, returning the previous layer.  The
734  * must have been previously pushed.
735  */
736 struct bio *
737 pop_bio(struct bio *bio)
738 {
739 	return(bio->bio_prev);
740 }
741 
742 void
743 clearbiocache(struct bio *bio)
744 {
745 	while (bio) {
746 		bio->bio_offset = NOOFFSET;
747 		bio = bio->bio_next;
748 	}
749 }
750 
751 /*
752  * bfreekva:
753  *
754  *	Free the KVA allocation for buffer 'bp'.
755  *
756  *	Must be called from a critical section as this is the only locking for
757  *	buffer_map.
758  *
759  *	Since this call frees up buffer space, we call bufspacewakeup().
760  *
761  * MPALMOSTSAFE
762  */
763 static void
764 bfreekva(struct buf *bp)
765 {
766 	int count;
767 
768 	if (bp->b_kvasize) {
769 		get_mplock();
770 		++buffreekvacnt;
771 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
772 		vm_map_lock(&buffer_map);
773 		bufspace -= bp->b_kvasize;
774 		vm_map_delete(&buffer_map,
775 		    (vm_offset_t) bp->b_kvabase,
776 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
777 		    &count
778 		);
779 		vm_map_unlock(&buffer_map);
780 		vm_map_entry_release(count);
781 		bp->b_kvasize = 0;
782 		bufspacewakeup();
783 		rel_mplock();
784 	}
785 }
786 
787 /*
788  * bremfree:
789  *
790  *	Remove the buffer from the appropriate free list.
791  */
792 static __inline void
793 _bremfree(struct buf *bp)
794 {
795 	if (bp->b_qindex != BQUEUE_NONE) {
796 		KASSERT(BUF_REFCNTNB(bp) == 1,
797 				("bremfree: bp %p not locked",bp));
798 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
799 		bp->b_qindex = BQUEUE_NONE;
800 	} else {
801 		if (BUF_REFCNTNB(bp) <= 1)
802 			panic("bremfree: removing a buffer not on a queue");
803 	}
804 }
805 
806 void
807 bremfree(struct buf *bp)
808 {
809 	spin_lock_wr(&bufspin);
810 	_bremfree(bp);
811 	spin_unlock_wr(&bufspin);
812 }
813 
814 static void
815 bremfree_locked(struct buf *bp)
816 {
817 	_bremfree(bp);
818 }
819 
820 /*
821  * bread:
822  *
823  *	Get a buffer with the specified data.  Look in the cache first.  We
824  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
825  *	is set, the buffer is valid and we do not have to do anything ( see
826  *	getblk() ).
827  *
828  * MPALMOSTSAFE
829  */
830 int
831 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
832 {
833 	struct buf *bp;
834 
835 	bp = getblk(vp, loffset, size, 0, 0);
836 	*bpp = bp;
837 
838 	/* if not found in cache, do some I/O */
839 	if ((bp->b_flags & B_CACHE) == 0) {
840 		get_mplock();
841 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
842 		bp->b_cmd = BUF_CMD_READ;
843 		bp->b_bio1.bio_done = biodone_sync;
844 		bp->b_bio1.bio_flags |= BIO_SYNC;
845 		vfs_busy_pages(vp, bp);
846 		vn_strategy(vp, &bp->b_bio1);
847 		rel_mplock();
848 		return (biowait(&bp->b_bio1, "biord"));
849 	}
850 	return (0);
851 }
852 
853 /*
854  * breadn:
855  *
856  *	Operates like bread, but also starts asynchronous I/O on
857  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
858  *	to initiating I/O . If B_CACHE is set, the buffer is valid
859  *	and we do not have to do anything.
860  *
861  * MPALMOSTSAFE
862  */
863 int
864 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
865 	int *rabsize, int cnt, struct buf **bpp)
866 {
867 	struct buf *bp, *rabp;
868 	int i;
869 	int rv = 0, readwait = 0;
870 
871 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
872 
873 	/* if not found in cache, do some I/O */
874 	if ((bp->b_flags & B_CACHE) == 0) {
875 		get_mplock();
876 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
877 		bp->b_cmd = BUF_CMD_READ;
878 		bp->b_bio1.bio_done = biodone_sync;
879 		bp->b_bio1.bio_flags |= BIO_SYNC;
880 		vfs_busy_pages(vp, bp);
881 		vn_strategy(vp, &bp->b_bio1);
882 		++readwait;
883 		rel_mplock();
884 	}
885 
886 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
887 		if (inmem(vp, *raoffset))
888 			continue;
889 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
890 
891 		if ((rabp->b_flags & B_CACHE) == 0) {
892 			get_mplock();
893 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
894 			rabp->b_cmd = BUF_CMD_READ;
895 			vfs_busy_pages(vp, rabp);
896 			BUF_KERNPROC(rabp);
897 			vn_strategy(vp, &rabp->b_bio1);
898 			rel_mplock();
899 		} else {
900 			brelse(rabp);
901 		}
902 	}
903 	if (readwait)
904 		rv = biowait(&bp->b_bio1, "biord");
905 	return (rv);
906 }
907 
908 /*
909  * bwrite:
910  *
911  *	Synchronous write, waits for completion.
912  *
913  *	Write, release buffer on completion.  (Done by iodone
914  *	if async).  Do not bother writing anything if the buffer
915  *	is invalid.
916  *
917  *	Note that we set B_CACHE here, indicating that buffer is
918  *	fully valid and thus cacheable.  This is true even of NFS
919  *	now so we set it generally.  This could be set either here
920  *	or in biodone() since the I/O is synchronous.  We put it
921  *	here.
922  */
923 int
924 bwrite(struct buf *bp)
925 {
926 	int error;
927 
928 	if (bp->b_flags & B_INVAL) {
929 		brelse(bp);
930 		return (0);
931 	}
932 	if (BUF_REFCNTNB(bp) == 0)
933 		panic("bwrite: buffer is not busy???");
934 
935 	/* Mark the buffer clean */
936 	bundirty(bp);
937 
938 	bp->b_flags &= ~(B_ERROR | B_EINTR);
939 	bp->b_flags |= B_CACHE;
940 	bp->b_cmd = BUF_CMD_WRITE;
941 	bp->b_bio1.bio_done = biodone_sync;
942 	bp->b_bio1.bio_flags |= BIO_SYNC;
943 	vfs_busy_pages(bp->b_vp, bp);
944 
945 	/*
946 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
947 	 * valid for vnode-backed buffers.
948 	 */
949 	bp->b_runningbufspace = bp->b_bufsize;
950 	if (bp->b_runningbufspace) {
951 		runningbufspace += bp->b_runningbufspace;
952 		++runningbufcount;
953 	}
954 
955 	vn_strategy(bp->b_vp, &bp->b_bio1);
956 	error = biowait(&bp->b_bio1, "biows");
957 	brelse(bp);
958 	return (error);
959 }
960 
961 /*
962  * bawrite:
963  *
964  *	Asynchronous write.  Start output on a buffer, but do not wait for
965  *	it to complete.  The buffer is released when the output completes.
966  *
967  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
968  *	B_INVAL buffers.  Not us.
969  */
970 void
971 bawrite(struct buf *bp)
972 {
973 	if (bp->b_flags & B_INVAL) {
974 		brelse(bp);
975 		return;
976 	}
977 	if (BUF_REFCNTNB(bp) == 0)
978 		panic("bwrite: buffer is not busy???");
979 
980 	/* Mark the buffer clean */
981 	bundirty(bp);
982 
983 	bp->b_flags &= ~(B_ERROR | B_EINTR);
984 	bp->b_flags |= B_CACHE;
985 	bp->b_cmd = BUF_CMD_WRITE;
986 	KKASSERT(bp->b_bio1.bio_done == NULL);
987 	vfs_busy_pages(bp->b_vp, bp);
988 
989 	/*
990 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
991 	 * valid for vnode-backed buffers.
992 	 */
993 	bp->b_runningbufspace = bp->b_bufsize;
994 	if (bp->b_runningbufspace) {
995 		runningbufspace += bp->b_runningbufspace;
996 		++runningbufcount;
997 	}
998 
999 	BUF_KERNPROC(bp);
1000 	vn_strategy(bp->b_vp, &bp->b_bio1);
1001 }
1002 
1003 /*
1004  * bowrite:
1005  *
1006  *	Ordered write.  Start output on a buffer, and flag it so that the
1007  *	device will write it in the order it was queued.  The buffer is
1008  *	released when the output completes.  bwrite() ( or the VOP routine
1009  *	anyway ) is responsible for handling B_INVAL buffers.
1010  */
1011 int
1012 bowrite(struct buf *bp)
1013 {
1014 	bp->b_flags |= B_ORDERED;
1015 	bawrite(bp);
1016 	return (0);
1017 }
1018 
1019 /*
1020  * bdwrite:
1021  *
1022  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1023  *	anything if the buffer is marked invalid.
1024  *
1025  *	Note that since the buffer must be completely valid, we can safely
1026  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1027  *	biodone() in order to prevent getblk from writing the buffer
1028  *	out synchronously.
1029  */
1030 void
1031 bdwrite(struct buf *bp)
1032 {
1033 	if (BUF_REFCNTNB(bp) == 0)
1034 		panic("bdwrite: buffer is not busy");
1035 
1036 	if (bp->b_flags & B_INVAL) {
1037 		brelse(bp);
1038 		return;
1039 	}
1040 	bdirty(bp);
1041 
1042 	/*
1043 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1044 	 * true even of NFS now.
1045 	 */
1046 	bp->b_flags |= B_CACHE;
1047 
1048 	/*
1049 	 * This bmap keeps the system from needing to do the bmap later,
1050 	 * perhaps when the system is attempting to do a sync.  Since it
1051 	 * is likely that the indirect block -- or whatever other datastructure
1052 	 * that the filesystem needs is still in memory now, it is a good
1053 	 * thing to do this.  Note also, that if the pageout daemon is
1054 	 * requesting a sync -- there might not be enough memory to do
1055 	 * the bmap then...  So, this is important to do.
1056 	 */
1057 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1058 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1059 			 NULL, NULL, BUF_CMD_WRITE);
1060 	}
1061 
1062 	/*
1063 	 * Because the underlying pages may still be mapped and
1064 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1065 	 * range here will be inaccurate.
1066 	 *
1067 	 * However, we must still clean the pages to satisfy the
1068 	 * vnode_pager and pageout daemon, so theythink the pages
1069 	 * have been "cleaned".  What has really occured is that
1070 	 * they've been earmarked for later writing by the buffer
1071 	 * cache.
1072 	 *
1073 	 * So we get the b_dirtyoff/end update but will not actually
1074 	 * depend on it (NFS that is) until the pages are busied for
1075 	 * writing later on.
1076 	 */
1077 	vfs_clean_pages(bp);
1078 	bqrelse(bp);
1079 
1080 	/*
1081 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1082 	 * due to the softdep code.
1083 	 */
1084 }
1085 
1086 /*
1087  * bdirty:
1088  *
1089  *	Turn buffer into delayed write request by marking it B_DELWRI.
1090  *	B_RELBUF and B_NOCACHE must be cleared.
1091  *
1092  *	We reassign the buffer to itself to properly update it in the
1093  *	dirty/clean lists.
1094  *
1095  *	Must be called from a critical section.
1096  *	The buffer must be on BQUEUE_NONE.
1097  */
1098 void
1099 bdirty(struct buf *bp)
1100 {
1101 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1102 	if (bp->b_flags & B_NOCACHE) {
1103 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1104 		bp->b_flags &= ~B_NOCACHE;
1105 	}
1106 	if (bp->b_flags & B_INVAL) {
1107 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1108 	}
1109 	bp->b_flags &= ~B_RELBUF;
1110 
1111 	if ((bp->b_flags & B_DELWRI) == 0) {
1112 		bp->b_flags |= B_DELWRI;
1113 		reassignbuf(bp);
1114 		atomic_add_int(&dirtybufcount, 1);
1115 		dirtybufspace += bp->b_bufsize;
1116 		if (bp->b_flags & B_HEAVY) {
1117 			atomic_add_int(&dirtybufcounthw, 1);
1118 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1119 		}
1120 		bd_heatup();
1121 	}
1122 }
1123 
1124 /*
1125  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1126  * needs to be flushed with a different buf_daemon thread to avoid
1127  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1128  */
1129 void
1130 bheavy(struct buf *bp)
1131 {
1132 	if ((bp->b_flags & B_HEAVY) == 0) {
1133 		bp->b_flags |= B_HEAVY;
1134 		if (bp->b_flags & B_DELWRI) {
1135 			atomic_add_int(&dirtybufcounthw, 1);
1136 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1137 		}
1138 	}
1139 }
1140 
1141 /*
1142  * bundirty:
1143  *
1144  *	Clear B_DELWRI for buffer.
1145  *
1146  *	Must be called from a critical section.
1147  *
1148  *	The buffer is typically on BQUEUE_NONE but there is one case in
1149  *	brelse() that calls this function after placing the buffer on
1150  *	a different queue.
1151  *
1152  * MPSAFE
1153  */
1154 void
1155 bundirty(struct buf *bp)
1156 {
1157 	if (bp->b_flags & B_DELWRI) {
1158 		bp->b_flags &= ~B_DELWRI;
1159 		reassignbuf(bp);
1160 		atomic_subtract_int(&dirtybufcount, 1);
1161 		atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1162 		if (bp->b_flags & B_HEAVY) {
1163 			atomic_subtract_int(&dirtybufcounthw, 1);
1164 			atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1165 		}
1166 		bd_signal(bp->b_bufsize);
1167 	}
1168 	/*
1169 	 * Since it is now being written, we can clear its deferred write flag.
1170 	 */
1171 	bp->b_flags &= ~B_DEFERRED;
1172 }
1173 
1174 /*
1175  * brelse:
1176  *
1177  *	Release a busy buffer and, if requested, free its resources.  The
1178  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1179  *	to be accessed later as a cache entity or reused for other purposes.
1180  *
1181  * MPALMOSTSAFE
1182  */
1183 void
1184 brelse(struct buf *bp)
1185 {
1186 #ifdef INVARIANTS
1187 	int saved_flags = bp->b_flags;
1188 #endif
1189 
1190 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1191 
1192 	/*
1193 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1194 	 * its backing store.  Clear B_DELWRI.
1195 	 *
1196 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1197 	 * to destroy the buffer and backing store and (2) when the caller
1198 	 * wants to destroy the buffer and backing store after a write
1199 	 * completes.
1200 	 */
1201 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1202 		bundirty(bp);
1203 	}
1204 
1205 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1206 		/*
1207 		 * A re-dirtied buffer is only subject to destruction
1208 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1209 		 */
1210 		/* leave buffer intact */
1211 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1212 		   (bp->b_bufsize <= 0)) {
1213 		/*
1214 		 * Either a failed read or we were asked to free or not
1215 		 * cache the buffer.  This path is reached with B_DELWRI
1216 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1217 		 * backing store destruction.
1218 		 *
1219 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1220 		 * buffer cannot be immediately freed.
1221 		 */
1222 		bp->b_flags |= B_INVAL;
1223 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1224 			get_mplock();
1225 			buf_deallocate(bp);
1226 			rel_mplock();
1227 		}
1228 		if (bp->b_flags & B_DELWRI) {
1229 			atomic_subtract_int(&dirtybufcount, 1);
1230 			atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1231 			if (bp->b_flags & B_HEAVY) {
1232 				atomic_subtract_int(&dirtybufcounthw, 1);
1233 				atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1234 			}
1235 			bd_signal(bp->b_bufsize);
1236 		}
1237 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1238 	}
1239 
1240 	/*
1241 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1242 	 * If vfs_vmio_release() is called with either bit set, the
1243 	 * underlying pages may wind up getting freed causing a previous
1244 	 * write (bdwrite()) to get 'lost' because pages associated with
1245 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1246 	 * B_LOCKED buffer may be mapped by the filesystem.
1247 	 *
1248 	 * If we want to release the buffer ourselves (rather then the
1249 	 * originator asking us to release it), give the originator a
1250 	 * chance to countermand the release by setting B_LOCKED.
1251 	 *
1252 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1253 	 * if B_DELWRI is set.
1254 	 *
1255 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1256 	 * on pages to return pages to the VM page queues.
1257 	 */
1258 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1259 		bp->b_flags &= ~B_RELBUF;
1260 	} else if (vm_page_count_severe()) {
1261 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1262 			get_mplock();
1263 			buf_deallocate(bp);		/* can set B_LOCKED */
1264 			rel_mplock();
1265 		}
1266 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1267 			bp->b_flags &= ~B_RELBUF;
1268 		else
1269 			bp->b_flags |= B_RELBUF;
1270 	}
1271 
1272 	/*
1273 	 * Make sure b_cmd is clear.  It may have already been cleared by
1274 	 * biodone().
1275 	 *
1276 	 * At this point destroying the buffer is governed by the B_INVAL
1277 	 * or B_RELBUF flags.
1278 	 */
1279 	bp->b_cmd = BUF_CMD_DONE;
1280 
1281 	/*
1282 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1283 	 * after an I/O may have replaces some of the pages with bogus pages
1284 	 * in order to not destroy dirty pages in a fill-in read.
1285 	 *
1286 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1287 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1288 	 * B_INVAL may still be set, however.
1289 	 *
1290 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1291 	 * but not the backing store.   B_NOCACHE will destroy the backing
1292 	 * store.
1293 	 *
1294 	 * Note that dirty NFS buffers contain byte-granular write ranges
1295 	 * and should not be destroyed w/ B_INVAL even if the backing store
1296 	 * is left intact.
1297 	 */
1298 	if (bp->b_flags & B_VMIO) {
1299 		/*
1300 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1301 		 */
1302 		int i, j, resid;
1303 		vm_page_t m;
1304 		off_t foff;
1305 		vm_pindex_t poff;
1306 		vm_object_t obj;
1307 		struct vnode *vp;
1308 
1309 		vp = bp->b_vp;
1310 
1311 		/*
1312 		 * Get the base offset and length of the buffer.  Note that
1313 		 * in the VMIO case if the buffer block size is not
1314 		 * page-aligned then b_data pointer may not be page-aligned.
1315 		 * But our b_xio.xio_pages array *IS* page aligned.
1316 		 *
1317 		 * block sizes less then DEV_BSIZE (usually 512) are not
1318 		 * supported due to the page granularity bits (m->valid,
1319 		 * m->dirty, etc...).
1320 		 *
1321 		 * See man buf(9) for more information
1322 		 */
1323 
1324 		resid = bp->b_bufsize;
1325 		foff = bp->b_loffset;
1326 
1327 		get_mplock();
1328 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1329 			m = bp->b_xio.xio_pages[i];
1330 			vm_page_flag_clear(m, PG_ZERO);
1331 			/*
1332 			 * If we hit a bogus page, fixup *all* of them
1333 			 * now.  Note that we left these pages wired
1334 			 * when we removed them so they had better exist,
1335 			 * and they cannot be ripped out from under us so
1336 			 * no critical section protection is necessary.
1337 			 */
1338 			if (m == bogus_page) {
1339 				obj = vp->v_object;
1340 				poff = OFF_TO_IDX(bp->b_loffset);
1341 
1342 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1343 					vm_page_t mtmp;
1344 
1345 					mtmp = bp->b_xio.xio_pages[j];
1346 					if (mtmp == bogus_page) {
1347 						mtmp = vm_page_lookup(obj, poff + j);
1348 						if (!mtmp) {
1349 							panic("brelse: page missing");
1350 						}
1351 						bp->b_xio.xio_pages[j] = mtmp;
1352 					}
1353 				}
1354 
1355 				if ((bp->b_flags & B_INVAL) == 0) {
1356 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1357 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1358 				}
1359 				m = bp->b_xio.xio_pages[i];
1360 			}
1361 
1362 			/*
1363 			 * Invalidate the backing store if B_NOCACHE is set
1364 			 * (e.g. used with vinvalbuf()).  If this is NFS
1365 			 * we impose a requirement that the block size be
1366 			 * a multiple of PAGE_SIZE and create a temporary
1367 			 * hack to basically invalidate the whole page.  The
1368 			 * problem is that NFS uses really odd buffer sizes
1369 			 * especially when tracking piecemeal writes and
1370 			 * it also vinvalbuf()'s a lot, which would result
1371 			 * in only partial page validation and invalidation
1372 			 * here.  If the file page is mmap()'d, however,
1373 			 * all the valid bits get set so after we invalidate
1374 			 * here we would end up with weird m->valid values
1375 			 * like 0xfc.  nfs_getpages() can't handle this so
1376 			 * we clear all the valid bits for the NFS case
1377 			 * instead of just some of them.
1378 			 *
1379 			 * The real bug is the VM system having to set m->valid
1380 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1381 			 * itself is an artifact of the whole 512-byte
1382 			 * granular mess that exists to support odd block
1383 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1384 			 * A complete rewrite is required.
1385 			 *
1386 			 * XXX
1387 			 */
1388 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1389 				int poffset = foff & PAGE_MASK;
1390 				int presid;
1391 
1392 				presid = PAGE_SIZE - poffset;
1393 				if (bp->b_vp->v_tag == VT_NFS &&
1394 				    bp->b_vp->v_type == VREG) {
1395 					; /* entire page */
1396 				} else if (presid > resid) {
1397 					presid = resid;
1398 				}
1399 				KASSERT(presid >= 0, ("brelse: extra page"));
1400 				vm_page_set_invalid(m, poffset, presid);
1401 			}
1402 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1403 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1404 		}
1405 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1406 			vfs_vmio_release(bp);
1407 		rel_mplock();
1408 	} else {
1409 		/*
1410 		 * Rundown for non-VMIO buffers.
1411 		 */
1412 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1413 			get_mplock();
1414 			if (bp->b_bufsize)
1415 				allocbuf(bp, 0);
1416 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1417 			if (bp->b_vp)
1418 				brelvp(bp);
1419 			rel_mplock();
1420 		}
1421 	}
1422 
1423 	if (bp->b_qindex != BQUEUE_NONE)
1424 		panic("brelse: free buffer onto another queue???");
1425 	if (BUF_REFCNTNB(bp) > 1) {
1426 		/* Temporary panic to verify exclusive locking */
1427 		/* This panic goes away when we allow shared refs */
1428 		panic("brelse: multiple refs");
1429 		/* NOT REACHED */
1430 		return;
1431 	}
1432 
1433 	/*
1434 	 * Figure out the correct queue to place the cleaned up buffer on.
1435 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1436 	 * disassociated from their vnode.
1437 	 */
1438 	spin_lock_wr(&bufspin);
1439 	if (bp->b_flags & B_LOCKED) {
1440 		/*
1441 		 * Buffers that are locked are placed in the locked queue
1442 		 * immediately, regardless of their state.
1443 		 */
1444 		bp->b_qindex = BQUEUE_LOCKED;
1445 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1446 	} else if (bp->b_bufsize == 0) {
1447 		/*
1448 		 * Buffers with no memory.  Due to conditionals near the top
1449 		 * of brelse() such buffers should probably already be
1450 		 * marked B_INVAL and disassociated from their vnode.
1451 		 */
1452 		bp->b_flags |= B_INVAL;
1453 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1454 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1455 		if (bp->b_kvasize) {
1456 			bp->b_qindex = BQUEUE_EMPTYKVA;
1457 		} else {
1458 			bp->b_qindex = BQUEUE_EMPTY;
1459 		}
1460 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1461 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1462 		/*
1463 		 * Buffers with junk contents.   Again these buffers had better
1464 		 * already be disassociated from their vnode.
1465 		 */
1466 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1467 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1468 		bp->b_flags |= B_INVAL;
1469 		bp->b_qindex = BQUEUE_CLEAN;
1470 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1471 	} else {
1472 		/*
1473 		 * Remaining buffers.  These buffers are still associated with
1474 		 * their vnode.
1475 		 */
1476 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1477 		case B_DELWRI:
1478 		    bp->b_qindex = BQUEUE_DIRTY;
1479 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1480 		    break;
1481 		case B_DELWRI | B_HEAVY:
1482 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1483 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1484 				      b_freelist);
1485 		    break;
1486 		default:
1487 		    /*
1488 		     * NOTE: Buffers are always placed at the end of the
1489 		     * queue.  If B_AGE is not set the buffer will cycle
1490 		     * through the queue twice.
1491 		     */
1492 		    bp->b_qindex = BQUEUE_CLEAN;
1493 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1494 		    break;
1495 		}
1496 	}
1497 	spin_unlock_wr(&bufspin);
1498 
1499 	/*
1500 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1501 	 * on the correct queue.
1502 	 */
1503 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1504 		bundirty(bp);
1505 
1506 	/*
1507 	 * The bp is on an appropriate queue unless locked.  If it is not
1508 	 * locked or dirty we can wakeup threads waiting for buffer space.
1509 	 *
1510 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1511 	 * if B_INVAL is set ).
1512 	 */
1513 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1514 		bufcountwakeup();
1515 
1516 	/*
1517 	 * Something we can maybe free or reuse
1518 	 */
1519 	if (bp->b_bufsize || bp->b_kvasize)
1520 		bufspacewakeup();
1521 
1522 	/*
1523 	 * Clean up temporary flags and unlock the buffer.
1524 	 */
1525 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1526 	BUF_UNLOCK(bp);
1527 }
1528 
1529 /*
1530  * bqrelse:
1531  *
1532  *	Release a buffer back to the appropriate queue but do not try to free
1533  *	it.  The buffer is expected to be used again soon.
1534  *
1535  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1536  *	biodone() to requeue an async I/O on completion.  It is also used when
1537  *	known good buffers need to be requeued but we think we may need the data
1538  *	again soon.
1539  *
1540  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1541  *
1542  * MPSAFE
1543  */
1544 void
1545 bqrelse(struct buf *bp)
1546 {
1547 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1548 
1549 	if (bp->b_qindex != BQUEUE_NONE)
1550 		panic("bqrelse: free buffer onto another queue???");
1551 	if (BUF_REFCNTNB(bp) > 1) {
1552 		/* do not release to free list */
1553 		panic("bqrelse: multiple refs");
1554 		return;
1555 	}
1556 
1557 	spin_lock_wr(&bufspin);
1558 	if (bp->b_flags & B_LOCKED) {
1559 		/*
1560 		 * Locked buffers are released to the locked queue.  However,
1561 		 * if the buffer is dirty it will first go into the dirty
1562 		 * queue and later on after the I/O completes successfully it
1563 		 * will be released to the locked queue.
1564 		 */
1565 		bp->b_qindex = BQUEUE_LOCKED;
1566 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1567 	} else if (bp->b_flags & B_DELWRI) {
1568 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1569 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1570 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1571 	} else if (vm_page_count_severe()) {
1572 		/*
1573 		 * We are too low on memory, we have to try to free the
1574 		 * buffer (most importantly: the wired pages making up its
1575 		 * backing store) *now*.
1576 		 */
1577 		spin_unlock_wr(&bufspin);
1578 		brelse(bp);
1579 		return;
1580 	} else {
1581 		bp->b_qindex = BQUEUE_CLEAN;
1582 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1583 	}
1584 	spin_unlock_wr(&bufspin);
1585 
1586 	if ((bp->b_flags & B_LOCKED) == 0 &&
1587 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1588 		bufcountwakeup();
1589 	}
1590 
1591 	/*
1592 	 * Something we can maybe free or reuse.
1593 	 */
1594 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1595 		bufspacewakeup();
1596 
1597 	/*
1598 	 * Final cleanup and unlock.  Clear bits that are only used while a
1599 	 * buffer is actively locked.
1600 	 */
1601 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1602 	BUF_UNLOCK(bp);
1603 }
1604 
1605 /*
1606  * vfs_vmio_release:
1607  *
1608  *	Return backing pages held by the buffer 'bp' back to the VM system
1609  *	if possible.  The pages are freed if they are no longer valid or
1610  *	attempt to free if it was used for direct I/O otherwise they are
1611  *	sent to the page cache.
1612  *
1613  *	Pages that were marked busy are left alone and skipped.
1614  *
1615  *	The KVA mapping (b_data) for the underlying pages is removed by
1616  *	this function.
1617  */
1618 static void
1619 vfs_vmio_release(struct buf *bp)
1620 {
1621 	int i;
1622 	vm_page_t m;
1623 
1624 	crit_enter();
1625 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1626 		m = bp->b_xio.xio_pages[i];
1627 		bp->b_xio.xio_pages[i] = NULL;
1628 		/*
1629 		 * In order to keep page LRU ordering consistent, put
1630 		 * everything on the inactive queue.
1631 		 */
1632 		vm_page_unwire(m, 0);
1633 		/*
1634 		 * We don't mess with busy pages, it is
1635 		 * the responsibility of the process that
1636 		 * busied the pages to deal with them.
1637 		 */
1638 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1639 			continue;
1640 
1641 		if (m->wire_count == 0) {
1642 			vm_page_flag_clear(m, PG_ZERO);
1643 			/*
1644 			 * Might as well free the page if we can and it has
1645 			 * no valid data.  We also free the page if the
1646 			 * buffer was used for direct I/O.
1647 			 */
1648 #if 0
1649 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1650 					m->hold_count == 0) {
1651 				vm_page_busy(m);
1652 				vm_page_protect(m, VM_PROT_NONE);
1653 				vm_page_free(m);
1654 			} else
1655 #endif
1656 			if (bp->b_flags & B_DIRECT) {
1657 				vm_page_try_to_free(m);
1658 			} else if (vm_page_count_severe()) {
1659 				vm_page_try_to_cache(m);
1660 			}
1661 		}
1662 	}
1663 	crit_exit();
1664 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1665 	if (bp->b_bufsize) {
1666 		bufspacewakeup();
1667 		bp->b_bufsize = 0;
1668 	}
1669 	bp->b_xio.xio_npages = 0;
1670 	bp->b_flags &= ~B_VMIO;
1671 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1672 	if (bp->b_vp) {
1673 		get_mplock();
1674 		brelvp(bp);
1675 		rel_mplock();
1676 	}
1677 }
1678 
1679 /*
1680  * vfs_bio_awrite:
1681  *
1682  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1683  *	This is much better then the old way of writing only one buffer at
1684  *	a time.  Note that we may not be presented with the buffers in the
1685  *	correct order, so we search for the cluster in both directions.
1686  *
1687  *	The buffer is locked on call.
1688  */
1689 int
1690 vfs_bio_awrite(struct buf *bp)
1691 {
1692 	int i;
1693 	int j;
1694 	off_t loffset = bp->b_loffset;
1695 	struct vnode *vp = bp->b_vp;
1696 	int nbytes;
1697 	struct buf *bpa;
1698 	int nwritten;
1699 	int size;
1700 
1701 	/*
1702 	 * right now we support clustered writing only to regular files.  If
1703 	 * we find a clusterable block we could be in the middle of a cluster
1704 	 * rather then at the beginning.
1705 	 *
1706 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1707 	 * to b_loffset.  b_bio2 contains the translated block number.
1708 	 */
1709 	if ((vp->v_type == VREG) &&
1710 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1711 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1712 
1713 		size = vp->v_mount->mnt_stat.f_iosize;
1714 
1715 		for (i = size; i < MAXPHYS; i += size) {
1716 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1717 			    BUF_REFCNT(bpa) == 0 &&
1718 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1719 			    (B_DELWRI | B_CLUSTEROK)) &&
1720 			    (bpa->b_bufsize == size)) {
1721 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1722 				    (bpa->b_bio2.bio_offset !=
1723 				     bp->b_bio2.bio_offset + i))
1724 					break;
1725 			} else {
1726 				break;
1727 			}
1728 		}
1729 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1730 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1731 			    BUF_REFCNT(bpa) == 0 &&
1732 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1733 			    (B_DELWRI | B_CLUSTEROK)) &&
1734 			    (bpa->b_bufsize == size)) {
1735 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1736 				    (bpa->b_bio2.bio_offset !=
1737 				     bp->b_bio2.bio_offset - j))
1738 					break;
1739 			} else {
1740 				break;
1741 			}
1742 		}
1743 		j -= size;
1744 		nbytes = (i + j);
1745 
1746 		/*
1747 		 * this is a possible cluster write
1748 		 */
1749 		if (nbytes != size) {
1750 			BUF_UNLOCK(bp);
1751 			nwritten = cluster_wbuild(vp, size,
1752 						  loffset - j, nbytes);
1753 			return nwritten;
1754 		}
1755 	}
1756 
1757 	/*
1758 	 * default (old) behavior, writing out only one block
1759 	 *
1760 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1761 	 */
1762 	nwritten = bp->b_bufsize;
1763 	bremfree(bp);
1764 	bawrite(bp);
1765 
1766 	return nwritten;
1767 }
1768 
1769 /*
1770  * getnewbuf:
1771  *
1772  *	Find and initialize a new buffer header, freeing up existing buffers
1773  *	in the bufqueues as necessary.  The new buffer is returned locked.
1774  *
1775  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1776  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1777  *
1778  *	We block if:
1779  *		We have insufficient buffer headers
1780  *		We have insufficient buffer space
1781  *		buffer_map is too fragmented ( space reservation fails )
1782  *		If we have to flush dirty buffers ( but we try to avoid this )
1783  *
1784  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1785  *	Instead we ask the buf daemon to do it for us.  We attempt to
1786  *	avoid piecemeal wakeups of the pageout daemon.
1787  *
1788  * MPALMOSTSAFE
1789  */
1790 static struct buf *
1791 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1792 {
1793 	struct buf *bp;
1794 	struct buf *nbp;
1795 	int defrag = 0;
1796 	int nqindex;
1797 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1798 	static int flushingbufs;
1799 
1800 	/*
1801 	 * We can't afford to block since we might be holding a vnode lock,
1802 	 * which may prevent system daemons from running.  We deal with
1803 	 * low-memory situations by proactively returning memory and running
1804 	 * async I/O rather then sync I/O.
1805 	 */
1806 
1807 	++getnewbufcalls;
1808 	--getnewbufrestarts;
1809 restart:
1810 	++getnewbufrestarts;
1811 
1812 	/*
1813 	 * Setup for scan.  If we do not have enough free buffers,
1814 	 * we setup a degenerate case that immediately fails.  Note
1815 	 * that if we are specially marked process, we are allowed to
1816 	 * dip into our reserves.
1817 	 *
1818 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1819 	 *
1820 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1821 	 * However, there are a number of cases (defragging, reusing, ...)
1822 	 * where we cannot backup.
1823 	 */
1824 	nqindex = BQUEUE_EMPTYKVA;
1825 	spin_lock_wr(&bufspin);
1826 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1827 
1828 	if (nbp == NULL) {
1829 		/*
1830 		 * If no EMPTYKVA buffers and we are either
1831 		 * defragging or reusing, locate a CLEAN buffer
1832 		 * to free or reuse.  If bufspace useage is low
1833 		 * skip this step so we can allocate a new buffer.
1834 		 */
1835 		if (defrag || bufspace >= lobufspace) {
1836 			nqindex = BQUEUE_CLEAN;
1837 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1838 		}
1839 
1840 		/*
1841 		 * If we could not find or were not allowed to reuse a
1842 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1843 		 * buffer.  We can only use an EMPTY buffer if allocating
1844 		 * its KVA would not otherwise run us out of buffer space.
1845 		 */
1846 		if (nbp == NULL && defrag == 0 &&
1847 		    bufspace + maxsize < hibufspace) {
1848 			nqindex = BQUEUE_EMPTY;
1849 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1850 		}
1851 	}
1852 
1853 	/*
1854 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1855 	 * depending.
1856 	 *
1857 	 * WARNING!  bufspin is held!
1858 	 */
1859 	while ((bp = nbp) != NULL) {
1860 		int qindex = nqindex;
1861 
1862 		nbp = TAILQ_NEXT(bp, b_freelist);
1863 
1864 		/*
1865 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1866 		 * cycles through the queue twice before being selected.
1867 		 */
1868 		if (qindex == BQUEUE_CLEAN &&
1869 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1870 			bp->b_flags |= B_AGE;
1871 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1872 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1873 			continue;
1874 		}
1875 
1876 		/*
1877 		 * Calculate next bp ( we can only use it if we do not block
1878 		 * or do other fancy things ).
1879 		 */
1880 		if (nbp == NULL) {
1881 			switch(qindex) {
1882 			case BQUEUE_EMPTY:
1883 				nqindex = BQUEUE_EMPTYKVA;
1884 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1885 					break;
1886 				/* fall through */
1887 			case BQUEUE_EMPTYKVA:
1888 				nqindex = BQUEUE_CLEAN;
1889 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1890 					break;
1891 				/* fall through */
1892 			case BQUEUE_CLEAN:
1893 				/*
1894 				 * nbp is NULL.
1895 				 */
1896 				break;
1897 			}
1898 		}
1899 
1900 		/*
1901 		 * Sanity Checks
1902 		 */
1903 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1904 
1905 		/*
1906 		 * Note: we no longer distinguish between VMIO and non-VMIO
1907 		 * buffers.
1908 		 */
1909 
1910 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1911 
1912 		/*
1913 		 * If we are defragging then we need a buffer with
1914 		 * b_kvasize != 0.  XXX this situation should no longer
1915 		 * occur, if defrag is non-zero the buffer's b_kvasize
1916 		 * should also be non-zero at this point.  XXX
1917 		 */
1918 		if (defrag && bp->b_kvasize == 0) {
1919 			kprintf("Warning: defrag empty buffer %p\n", bp);
1920 			continue;
1921 		}
1922 
1923 		/*
1924 		 * Start freeing the bp.  This is somewhat involved.  nbp
1925 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1926 		 * on the clean list must be disassociated from their
1927 		 * current vnode.  Buffers on the empty[kva] lists have
1928 		 * already been disassociated.
1929 		 */
1930 
1931 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1932 			spin_unlock_wr(&bufspin);
1933 			kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1934 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1935 			goto restart;
1936 		}
1937 		if (bp->b_qindex != qindex) {
1938 			spin_unlock_wr(&bufspin);
1939 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1940 			BUF_UNLOCK(bp);
1941 			goto restart;
1942 		}
1943 		bremfree_locked(bp);
1944 		spin_unlock_wr(&bufspin);
1945 
1946 		/*
1947 		 * Dependancies must be handled before we disassociate the
1948 		 * vnode.
1949 		 *
1950 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1951 		 * be immediately disassociated.  HAMMER then becomes
1952 		 * responsible for releasing the buffer.
1953 		 *
1954 		 * NOTE: bufspin is UNLOCKED now.
1955 		 */
1956 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1957 			get_mplock();
1958 			buf_deallocate(bp);
1959 			rel_mplock();
1960 			if (bp->b_flags & B_LOCKED) {
1961 				bqrelse(bp);
1962 				goto restart;
1963 			}
1964 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1965 		}
1966 
1967 		if (qindex == BQUEUE_CLEAN) {
1968 			get_mplock();
1969 			if (bp->b_flags & B_VMIO) {
1970 				get_mplock();
1971 				vfs_vmio_release(bp);
1972 				rel_mplock();
1973 			}
1974 			if (bp->b_vp)
1975 				brelvp(bp);
1976 			rel_mplock();
1977 		}
1978 
1979 		/*
1980 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1981 		 * the scan from this point on.
1982 		 *
1983 		 * Get the rest of the buffer freed up.  b_kva* is still
1984 		 * valid after this operation.
1985 		 */
1986 
1987 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1988 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1989 
1990 		/*
1991 		 * critical section protection is not required when
1992 		 * scrapping a buffer's contents because it is already
1993 		 * wired.
1994 		 */
1995 		if (bp->b_bufsize) {
1996 			get_mplock();
1997 			allocbuf(bp, 0);
1998 			rel_mplock();
1999 		}
2000 
2001 		bp->b_flags = B_BNOCLIP;
2002 		bp->b_cmd = BUF_CMD_DONE;
2003 		bp->b_vp = NULL;
2004 		bp->b_error = 0;
2005 		bp->b_resid = 0;
2006 		bp->b_bcount = 0;
2007 		bp->b_xio.xio_npages = 0;
2008 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2009 		reinitbufbio(bp);
2010 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2011 		buf_dep_init(bp);
2012 		if (blkflags & GETBLK_BHEAVY)
2013 			bp->b_flags |= B_HEAVY;
2014 
2015 		/*
2016 		 * If we are defragging then free the buffer.
2017 		 */
2018 		if (defrag) {
2019 			bp->b_flags |= B_INVAL;
2020 			bfreekva(bp);
2021 			brelse(bp);
2022 			defrag = 0;
2023 			goto restart;
2024 		}
2025 
2026 		/*
2027 		 * If we are overcomitted then recover the buffer and its
2028 		 * KVM space.  This occurs in rare situations when multiple
2029 		 * processes are blocked in getnewbuf() or allocbuf().
2030 		 */
2031 		if (bufspace >= hibufspace)
2032 			flushingbufs = 1;
2033 		if (flushingbufs && bp->b_kvasize != 0) {
2034 			bp->b_flags |= B_INVAL;
2035 			bfreekva(bp);
2036 			brelse(bp);
2037 			goto restart;
2038 		}
2039 		if (bufspace < lobufspace)
2040 			flushingbufs = 0;
2041 		break;
2042 		/* NOT REACHED, bufspin not held */
2043 	}
2044 
2045 	/*
2046 	 * If we exhausted our list, sleep as appropriate.  We may have to
2047 	 * wakeup various daemons and write out some dirty buffers.
2048 	 *
2049 	 * Generally we are sleeping due to insufficient buffer space.
2050 	 *
2051 	 * NOTE: bufspin is held if bp is NULL, else it is not held.
2052 	 */
2053 	if (bp == NULL) {
2054 		int flags;
2055 		char *waitmsg;
2056 
2057 		spin_unlock_wr(&bufspin);
2058 		if (defrag) {
2059 			flags = VFS_BIO_NEED_BUFSPACE;
2060 			waitmsg = "nbufkv";
2061 		} else if (bufspace >= hibufspace) {
2062 			waitmsg = "nbufbs";
2063 			flags = VFS_BIO_NEED_BUFSPACE;
2064 		} else {
2065 			waitmsg = "newbuf";
2066 			flags = VFS_BIO_NEED_ANY;
2067 		}
2068 
2069 		needsbuffer |= flags;
2070 		bd_speedup();	/* heeeelp */
2071 		while (needsbuffer & flags) {
2072 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2073 				return (NULL);
2074 		}
2075 	} else {
2076 		/*
2077 		 * We finally have a valid bp.  We aren't quite out of the
2078 		 * woods, we still have to reserve kva space.  In order
2079 		 * to keep fragmentation sane we only allocate kva in
2080 		 * BKVASIZE chunks.
2081 		 *
2082 		 * (bufspin is not held)
2083 		 */
2084 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2085 
2086 		if (maxsize != bp->b_kvasize) {
2087 			vm_offset_t addr = 0;
2088 			int count;
2089 
2090 			bfreekva(bp);
2091 
2092 			get_mplock();
2093 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2094 			vm_map_lock(&buffer_map);
2095 
2096 			if (vm_map_findspace(&buffer_map,
2097 				    vm_map_min(&buffer_map), maxsize,
2098 				    maxsize, 0, &addr)) {
2099 				/*
2100 				 * Uh oh.  Buffer map is too fragmented.  We
2101 				 * must defragment the map.
2102 				 */
2103 				vm_map_unlock(&buffer_map);
2104 				vm_map_entry_release(count);
2105 				++bufdefragcnt;
2106 				defrag = 1;
2107 				bp->b_flags |= B_INVAL;
2108 				rel_mplock();
2109 				brelse(bp);
2110 				goto restart;
2111 			}
2112 			if (addr) {
2113 				vm_map_insert(&buffer_map, &count,
2114 					NULL, 0,
2115 					addr, addr + maxsize,
2116 					VM_MAPTYPE_NORMAL,
2117 					VM_PROT_ALL, VM_PROT_ALL,
2118 					MAP_NOFAULT);
2119 
2120 				bp->b_kvabase = (caddr_t) addr;
2121 				bp->b_kvasize = maxsize;
2122 				bufspace += bp->b_kvasize;
2123 				++bufreusecnt;
2124 			}
2125 			vm_map_unlock(&buffer_map);
2126 			vm_map_entry_release(count);
2127 			rel_mplock();
2128 		}
2129 		bp->b_data = bp->b_kvabase;
2130 	}
2131 	return(bp);
2132 }
2133 
2134 /*
2135  * This routine is called in an emergency to recover VM pages from the
2136  * buffer cache by cashing in clean buffers.  The idea is to recover
2137  * enough pages to be able to satisfy a stuck bio_page_alloc().
2138  */
2139 static int
2140 recoverbufpages(void)
2141 {
2142 	struct buf *bp;
2143 	int bytes = 0;
2144 
2145 	++recoverbufcalls;
2146 
2147 	spin_lock_wr(&bufspin);
2148 	while (bytes < MAXBSIZE) {
2149 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2150 		if (bp == NULL)
2151 			break;
2152 
2153 		/*
2154 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2155 		 * cycles through the queue twice before being selected.
2156 		 */
2157 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2158 			bp->b_flags |= B_AGE;
2159 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2160 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2161 					  bp, b_freelist);
2162 			continue;
2163 		}
2164 
2165 		/*
2166 		 * Sanity Checks
2167 		 */
2168 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2169 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2170 
2171 		/*
2172 		 * Start freeing the bp.  This is somewhat involved.
2173 		 *
2174 		 * Buffers on the clean list must be disassociated from
2175 		 * their current vnode
2176 		 */
2177 
2178 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2179 			kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2180 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2181 			continue;
2182 		}
2183 		if (bp->b_qindex != BQUEUE_CLEAN) {
2184 			kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2185 			BUF_UNLOCK(bp);
2186 			continue;
2187 		}
2188 		bremfree_locked(bp);
2189 		spin_unlock_wr(&bufspin);
2190 
2191 		/*
2192 		 * Dependancies must be handled before we disassociate the
2193 		 * vnode.
2194 		 *
2195 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2196 		 * be immediately disassociated.  HAMMER then becomes
2197 		 * responsible for releasing the buffer.
2198 		 */
2199 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2200 			buf_deallocate(bp);
2201 			if (bp->b_flags & B_LOCKED) {
2202 				bqrelse(bp);
2203 				spin_lock_wr(&bufspin);
2204 				continue;
2205 			}
2206 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2207 		}
2208 
2209 		bytes += bp->b_bufsize;
2210 
2211 		get_mplock();
2212 		if (bp->b_flags & B_VMIO) {
2213 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2214 			vfs_vmio_release(bp);
2215 		}
2216 		if (bp->b_vp)
2217 			brelvp(bp);
2218 
2219 		KKASSERT(bp->b_vp == NULL);
2220 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2221 
2222 		/*
2223 		 * critical section protection is not required when
2224 		 * scrapping a buffer's contents because it is already
2225 		 * wired.
2226 		 */
2227 		if (bp->b_bufsize)
2228 			allocbuf(bp, 0);
2229 		rel_mplock();
2230 
2231 		bp->b_flags = B_BNOCLIP;
2232 		bp->b_cmd = BUF_CMD_DONE;
2233 		bp->b_vp = NULL;
2234 		bp->b_error = 0;
2235 		bp->b_resid = 0;
2236 		bp->b_bcount = 0;
2237 		bp->b_xio.xio_npages = 0;
2238 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2239 		reinitbufbio(bp);
2240 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2241 		buf_dep_init(bp);
2242 		bp->b_flags |= B_INVAL;
2243 		/* bfreekva(bp); */
2244 		brelse(bp);
2245 		spin_lock_wr(&bufspin);
2246 	}
2247 	spin_unlock_wr(&bufspin);
2248 	return(bytes);
2249 }
2250 
2251 /*
2252  * buf_daemon:
2253  *
2254  *	Buffer flushing daemon.  Buffers are normally flushed by the
2255  *	update daemon but if it cannot keep up this process starts to
2256  *	take the load in an attempt to prevent getnewbuf() from blocking.
2257  *
2258  *	Once a flush is initiated it does not stop until the number
2259  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2260  *	waiting at the mid-point.
2261  */
2262 
2263 static struct kproc_desc buf_kp = {
2264 	"bufdaemon",
2265 	buf_daemon,
2266 	&bufdaemon_td
2267 };
2268 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2269 	kproc_start, &buf_kp)
2270 
2271 static struct kproc_desc bufhw_kp = {
2272 	"bufdaemon_hw",
2273 	buf_daemon_hw,
2274 	&bufdaemonhw_td
2275 };
2276 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2277 	kproc_start, &bufhw_kp)
2278 
2279 static void
2280 buf_daemon(void)
2281 {
2282 	int limit;
2283 
2284 	/*
2285 	 * This process needs to be suspended prior to shutdown sync.
2286 	 */
2287 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2288 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2289 	curthread->td_flags |= TDF_SYSTHREAD;
2290 
2291 	/*
2292 	 * This process is allowed to take the buffer cache to the limit
2293 	 */
2294 	crit_enter();
2295 
2296 	for (;;) {
2297 		kproc_suspend_loop();
2298 
2299 		/*
2300 		 * Do the flush as long as the number of dirty buffers
2301 		 * (including those running) exceeds lodirtybufspace.
2302 		 *
2303 		 * When flushing limit running I/O to hirunningspace
2304 		 * Do the flush.  Limit the amount of in-transit I/O we
2305 		 * allow to build up, otherwise we would completely saturate
2306 		 * the I/O system.  Wakeup any waiting processes before we
2307 		 * normally would so they can run in parallel with our drain.
2308 		 *
2309 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2310 		 * but because we split the operation into two threads we
2311 		 * have to cut it in half for each thread.
2312 		 */
2313 		waitrunningbufspace();
2314 		limit = lodirtybufspace / 2;
2315 		while (runningbufspace + dirtybufspace > limit ||
2316 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2317 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2318 				break;
2319 			if (runningbufspace < hirunningspace)
2320 				continue;
2321 			waitrunningbufspace();
2322 		}
2323 
2324 		/*
2325 		 * We reached our low water mark, reset the
2326 		 * request and sleep until we are needed again.
2327 		 * The sleep is just so the suspend code works.
2328 		 */
2329 		spin_lock_wr(&needsbuffer_spin);
2330 		if (bd_request == 0) {
2331 			ssleep(&bd_request, &needsbuffer_spin, 0,
2332 			       "psleep", hz);
2333 		}
2334 		bd_request = 0;
2335 		spin_unlock_wr(&needsbuffer_spin);
2336 	}
2337 }
2338 
2339 static void
2340 buf_daemon_hw(void)
2341 {
2342 	int limit;
2343 
2344 	/*
2345 	 * This process needs to be suspended prior to shutdown sync.
2346 	 */
2347 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2348 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2349 	curthread->td_flags |= TDF_SYSTHREAD;
2350 
2351 	/*
2352 	 * This process is allowed to take the buffer cache to the limit
2353 	 */
2354 	crit_enter();
2355 
2356 	for (;;) {
2357 		kproc_suspend_loop();
2358 
2359 		/*
2360 		 * Do the flush.  Limit the amount of in-transit I/O we
2361 		 * allow to build up, otherwise we would completely saturate
2362 		 * the I/O system.  Wakeup any waiting processes before we
2363 		 * normally would so they can run in parallel with our drain.
2364 		 *
2365 		 * Once we decide to flush push the queued I/O up to
2366 		 * hirunningspace in order to trigger bursting by the bioq
2367 		 * subsystem.
2368 		 *
2369 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2370 		 * but because we split the operation into two threads we
2371 		 * have to cut it in half for each thread.
2372 		 */
2373 		waitrunningbufspace();
2374 		limit = lodirtybufspace / 2;
2375 		while (runningbufspace + dirtybufspacehw > limit ||
2376 		       dirtybufcounthw >= nbuf / 2) {
2377 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2378 				break;
2379 			if (runningbufspace < hirunningspace)
2380 				continue;
2381 			waitrunningbufspace();
2382 		}
2383 
2384 		/*
2385 		 * We reached our low water mark, reset the
2386 		 * request and sleep until we are needed again.
2387 		 * The sleep is just so the suspend code works.
2388 		 */
2389 		spin_lock_wr(&needsbuffer_spin);
2390 		if (bd_request_hw == 0) {
2391 			ssleep(&bd_request_hw, &needsbuffer_spin, 0,
2392 			       "psleep", hz);
2393 		}
2394 		bd_request_hw = 0;
2395 		spin_unlock_wr(&needsbuffer_spin);
2396 	}
2397 }
2398 
2399 /*
2400  * flushbufqueues:
2401  *
2402  *	Try to flush a buffer in the dirty queue.  We must be careful to
2403  *	free up B_INVAL buffers instead of write them, which NFS is
2404  *	particularly sensitive to.
2405  *
2406  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2407  *	that we really want to try to get the buffer out and reuse it
2408  *	due to the write load on the machine.
2409  */
2410 static int
2411 flushbufqueues(bufq_type_t q)
2412 {
2413 	struct buf *bp;
2414 	int r = 0;
2415 	int spun;
2416 
2417 	spin_lock_wr(&bufspin);
2418 	spun = 1;
2419 
2420 	bp = TAILQ_FIRST(&bufqueues[q]);
2421 	while (bp) {
2422 		KASSERT((bp->b_flags & B_DELWRI),
2423 			("unexpected clean buffer %p", bp));
2424 
2425 		if (bp->b_flags & B_DELWRI) {
2426 			if (bp->b_flags & B_INVAL) {
2427 				spin_unlock_wr(&bufspin);
2428 				spun = 0;
2429 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2430 					panic("flushbufqueues: locked buf");
2431 				bremfree(bp);
2432 				brelse(bp);
2433 				++r;
2434 				break;
2435 			}
2436 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2437 			    (bp->b_flags & B_DEFERRED) == 0 &&
2438 			    buf_countdeps(bp, 0)) {
2439 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2440 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2441 						  b_freelist);
2442 				bp->b_flags |= B_DEFERRED;
2443 				bp = TAILQ_FIRST(&bufqueues[q]);
2444 				continue;
2445 			}
2446 
2447 			/*
2448 			 * Only write it out if we can successfully lock
2449 			 * it.  If the buffer has a dependancy,
2450 			 * buf_checkwrite must also return 0 for us to
2451 			 * be able to initate the write.
2452 			 *
2453 			 * If the buffer is flagged B_ERROR it may be
2454 			 * requeued over and over again, we try to
2455 			 * avoid a live lock.
2456 			 */
2457 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2458 				spin_unlock_wr(&bufspin);
2459 				spun = 0;
2460 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2461 				    buf_checkwrite(bp)) {
2462 					bremfree(bp);
2463 					brelse(bp);
2464 				} else if (bp->b_flags & B_ERROR) {
2465 					tsleep(bp, 0, "bioer", 1);
2466 					bp->b_flags &= ~B_AGE;
2467 					vfs_bio_awrite(bp);
2468 				} else {
2469 					bp->b_flags |= B_AGE;
2470 					vfs_bio_awrite(bp);
2471 				}
2472 				++r;
2473 				break;
2474 			}
2475 		}
2476 		bp = TAILQ_NEXT(bp, b_freelist);
2477 	}
2478 	if (spun)
2479 		spin_unlock_wr(&bufspin);
2480 	return (r);
2481 }
2482 
2483 /*
2484  * inmem:
2485  *
2486  *	Returns true if no I/O is needed to access the associated VM object.
2487  *	This is like findblk except it also hunts around in the VM system for
2488  *	the data.
2489  *
2490  *	Note that we ignore vm_page_free() races from interrupts against our
2491  *	lookup, since if the caller is not protected our return value will not
2492  *	be any more valid then otherwise once we exit the critical section.
2493  */
2494 int
2495 inmem(struct vnode *vp, off_t loffset)
2496 {
2497 	vm_object_t obj;
2498 	vm_offset_t toff, tinc, size;
2499 	vm_page_t m;
2500 
2501 	if (findblk(vp, loffset, FINDBLK_TEST))
2502 		return 1;
2503 	if (vp->v_mount == NULL)
2504 		return 0;
2505 	if ((obj = vp->v_object) == NULL)
2506 		return 0;
2507 
2508 	size = PAGE_SIZE;
2509 	if (size > vp->v_mount->mnt_stat.f_iosize)
2510 		size = vp->v_mount->mnt_stat.f_iosize;
2511 
2512 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2513 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2514 		if (m == NULL)
2515 			return 0;
2516 		tinc = size;
2517 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2518 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2519 		if (vm_page_is_valid(m,
2520 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2521 			return 0;
2522 	}
2523 	return 1;
2524 }
2525 
2526 /*
2527  * findblk:
2528  *
2529  *	Locate and return the specified buffer.  Unless flagged otherwise,
2530  *	a locked buffer will be returned if it exists or NULL if it does not.
2531  *
2532  *	findblk()'d buffers are still on the bufqueues and if you intend
2533  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2534  *	and possibly do other stuff to it.
2535  *
2536  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2537  *			  for locking the buffer and ensuring that it remains
2538  *			  the desired buffer after locking.
2539  *
2540  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2541  *			  to acquire the lock we return NULL, even if the
2542  *			  buffer exists.
2543  *
2544  *	(0)		- Lock the buffer blocking.
2545  *
2546  * MPSAFE
2547  */
2548 struct buf *
2549 findblk(struct vnode *vp, off_t loffset, int flags)
2550 {
2551 	lwkt_tokref vlock;
2552 	struct buf *bp;
2553 	int lkflags;
2554 
2555 	lkflags = LK_EXCLUSIVE;
2556 	if (flags & FINDBLK_NBLOCK)
2557 		lkflags |= LK_NOWAIT;
2558 
2559 	for (;;) {
2560 		lwkt_gettoken(&vlock, &vp->v_token);
2561 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2562 		lwkt_reltoken(&vlock);
2563 		if (bp == NULL || (flags & FINDBLK_TEST))
2564 			break;
2565 		if (BUF_LOCK(bp, lkflags)) {
2566 			bp = NULL;
2567 			break;
2568 		}
2569 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2570 			break;
2571 		BUF_UNLOCK(bp);
2572 	}
2573 	return(bp);
2574 }
2575 
2576 /*
2577  * getcacheblk:
2578  *
2579  *	Similar to getblk() except only returns the buffer if it is
2580  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2581  *	is returned.
2582  *
2583  *	If B_RAM is set the buffer might be just fine, but we return
2584  *	NULL anyway because we want the code to fall through to the
2585  *	cluster read.  Otherwise read-ahead breaks.
2586  */
2587 struct buf *
2588 getcacheblk(struct vnode *vp, off_t loffset)
2589 {
2590 	struct buf *bp;
2591 
2592 	bp = findblk(vp, loffset, 0);
2593 	if (bp) {
2594 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2595 			bp->b_flags &= ~B_AGE;
2596 			bremfree(bp);
2597 		} else {
2598 			BUF_UNLOCK(bp);
2599 			bp = NULL;
2600 		}
2601 	}
2602 	return (bp);
2603 }
2604 
2605 /*
2606  * getblk:
2607  *
2608  *	Get a block given a specified block and offset into a file/device.
2609  * 	B_INVAL may or may not be set on return.  The caller should clear
2610  *	B_INVAL prior to initiating a READ.
2611  *
2612  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2613  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2614  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2615  *	without doing any of those things the system will likely believe
2616  *	the buffer to be valid (especially if it is not B_VMIO), and the
2617  *	next getblk() will return the buffer with B_CACHE set.
2618  *
2619  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2620  *	an existing buffer.
2621  *
2622  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2623  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2624  *	and then cleared based on the backing VM.  If the previous buffer is
2625  *	non-0-sized but invalid, B_CACHE will be cleared.
2626  *
2627  *	If getblk() must create a new buffer, the new buffer is returned with
2628  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2629  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2630  *	backing VM.
2631  *
2632  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2633  *	B_CACHE bit is clear.
2634  *
2635  *	What this means, basically, is that the caller should use B_CACHE to
2636  *	determine whether the buffer is fully valid or not and should clear
2637  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2638  *	the buffer by loading its data area with something, the caller needs
2639  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2640  *	the caller should set B_CACHE ( as an optimization ), else the caller
2641  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2642  *	a write attempt or if it was a successfull read.  If the caller
2643  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2644  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2645  *
2646  *	getblk flags:
2647  *
2648  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2649  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2650  *
2651  * MPALMOSTSAFE
2652  */
2653 struct buf *
2654 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2655 {
2656 	struct buf *bp;
2657 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2658 	int error;
2659 	int lkflags;
2660 
2661 	if (size > MAXBSIZE)
2662 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2663 	if (vp->v_object == NULL)
2664 		panic("getblk: vnode %p has no object!", vp);
2665 
2666 loop:
2667 	if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2668 		/*
2669 		 * The buffer was found in the cache, but we need to lock it.
2670 		 * Even with LK_NOWAIT the lockmgr may break our critical
2671 		 * section, so double-check the validity of the buffer
2672 		 * once the lock has been obtained.
2673 		 */
2674 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2675 			if (blkflags & GETBLK_NOWAIT)
2676 				return(NULL);
2677 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2678 			if (blkflags & GETBLK_PCATCH)
2679 				lkflags |= LK_PCATCH;
2680 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2681 			if (error) {
2682 				if (error == ENOLCK)
2683 					goto loop;
2684 				return (NULL);
2685 			}
2686 			/* buffer may have changed on us */
2687 		}
2688 
2689 		/*
2690 		 * Once the buffer has been locked, make sure we didn't race
2691 		 * a buffer recyclement.  Buffers that are no longer hashed
2692 		 * will have b_vp == NULL, so this takes care of that check
2693 		 * as well.
2694 		 */
2695 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2696 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2697 				"was recycled\n",
2698 				bp, vp, (long long)loffset);
2699 			BUF_UNLOCK(bp);
2700 			goto loop;
2701 		}
2702 
2703 		/*
2704 		 * If SZMATCH any pre-existing buffer must be of the requested
2705 		 * size or NULL is returned.  The caller absolutely does not
2706 		 * want getblk() to bwrite() the buffer on a size mismatch.
2707 		 */
2708 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2709 			BUF_UNLOCK(bp);
2710 			return(NULL);
2711 		}
2712 
2713 		/*
2714 		 * All vnode-based buffers must be backed by a VM object.
2715 		 */
2716 		KKASSERT(bp->b_flags & B_VMIO);
2717 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2718 		bp->b_flags &= ~B_AGE;
2719 
2720 		/*
2721 		 * Make sure that B_INVAL buffers do not have a cached
2722 		 * block number translation.
2723 		 */
2724 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2725 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2726 				" did not have cleared bio_offset cache\n",
2727 				bp, vp, (long long)loffset);
2728 			clearbiocache(&bp->b_bio2);
2729 		}
2730 
2731 		/*
2732 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2733 		 * invalid.
2734 		 */
2735 		if (bp->b_flags & B_INVAL)
2736 			bp->b_flags &= ~B_CACHE;
2737 		bremfree(bp);
2738 
2739 		/*
2740 		 * Any size inconsistancy with a dirty buffer or a buffer
2741 		 * with a softupdates dependancy must be resolved.  Resizing
2742 		 * the buffer in such circumstances can lead to problems.
2743 		 *
2744 		 * Dirty or dependant buffers are written synchronously.
2745 		 * Other types of buffers are simply released and
2746 		 * reconstituted as they may be backed by valid, dirty VM
2747 		 * pages (but not marked B_DELWRI).
2748 		 *
2749 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2750 		 * and may be left over from a prior truncation (and thus
2751 		 * no longer represent the actual EOF point), so we
2752 		 * definitely do not want to B_NOCACHE the backing store.
2753 		 */
2754 		if (size != bp->b_bcount) {
2755 			get_mplock();
2756 			if (bp->b_flags & B_DELWRI) {
2757 				bp->b_flags |= B_RELBUF;
2758 				bwrite(bp);
2759 			} else if (LIST_FIRST(&bp->b_dep)) {
2760 				bp->b_flags |= B_RELBUF;
2761 				bwrite(bp);
2762 			} else {
2763 				bp->b_flags |= B_RELBUF;
2764 				brelse(bp);
2765 			}
2766 			rel_mplock();
2767 			goto loop;
2768 		}
2769 		KKASSERT(size <= bp->b_kvasize);
2770 		KASSERT(bp->b_loffset != NOOFFSET,
2771 			("getblk: no buffer offset"));
2772 
2773 		/*
2774 		 * A buffer with B_DELWRI set and B_CACHE clear must
2775 		 * be committed before we can return the buffer in
2776 		 * order to prevent the caller from issuing a read
2777 		 * ( due to B_CACHE not being set ) and overwriting
2778 		 * it.
2779 		 *
2780 		 * Most callers, including NFS and FFS, need this to
2781 		 * operate properly either because they assume they
2782 		 * can issue a read if B_CACHE is not set, or because
2783 		 * ( for example ) an uncached B_DELWRI might loop due
2784 		 * to softupdates re-dirtying the buffer.  In the latter
2785 		 * case, B_CACHE is set after the first write completes,
2786 		 * preventing further loops.
2787 		 *
2788 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2789 		 * above while extending the buffer, we cannot allow the
2790 		 * buffer to remain with B_CACHE set after the write
2791 		 * completes or it will represent a corrupt state.  To
2792 		 * deal with this we set B_NOCACHE to scrap the buffer
2793 		 * after the write.
2794 		 *
2795 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2796 		 *     I'm not even sure this state is still possible
2797 		 *     now that getblk() writes out any dirty buffers
2798 		 *     on size changes.
2799 		 *
2800 		 * We might be able to do something fancy, like setting
2801 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2802 		 * so the below call doesn't set B_CACHE, but that gets real
2803 		 * confusing.  This is much easier.
2804 		 */
2805 
2806 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2807 			get_mplock();
2808 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2809 				"and CACHE clear, b_flags %08x\n",
2810 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
2811 			bp->b_flags |= B_NOCACHE;
2812 			bwrite(bp);
2813 			rel_mplock();
2814 			goto loop;
2815 		}
2816 	} else {
2817 		/*
2818 		 * Buffer is not in-core, create new buffer.  The buffer
2819 		 * returned by getnewbuf() is locked.  Note that the returned
2820 		 * buffer is also considered valid (not marked B_INVAL).
2821 		 *
2822 		 * Calculating the offset for the I/O requires figuring out
2823 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2824 		 * the mount's f_iosize otherwise.  If the vnode does not
2825 		 * have an associated mount we assume that the passed size is
2826 		 * the block size.
2827 		 *
2828 		 * Note that vn_isdisk() cannot be used here since it may
2829 		 * return a failure for numerous reasons.   Note that the
2830 		 * buffer size may be larger then the block size (the caller
2831 		 * will use block numbers with the proper multiple).  Beware
2832 		 * of using any v_* fields which are part of unions.  In
2833 		 * particular, in DragonFly the mount point overloading
2834 		 * mechanism uses the namecache only and the underlying
2835 		 * directory vnode is not a special case.
2836 		 */
2837 		int bsize, maxsize;
2838 
2839 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2840 			bsize = DEV_BSIZE;
2841 		else if (vp->v_mount)
2842 			bsize = vp->v_mount->mnt_stat.f_iosize;
2843 		else
2844 			bsize = size;
2845 
2846 		maxsize = size + (loffset & PAGE_MASK);
2847 		maxsize = imax(maxsize, bsize);
2848 
2849 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2850 		if (bp == NULL) {
2851 			if (slpflags || slptimeo)
2852 				return NULL;
2853 			goto loop;
2854 		}
2855 
2856 		/*
2857 		 * Atomically insert the buffer into the hash, so that it can
2858 		 * be found by findblk().
2859 		 *
2860 		 * If bgetvp() returns non-zero a collision occured, and the
2861 		 * bp will not be associated with the vnode.
2862 		 *
2863 		 * Make sure the translation layer has been cleared.
2864 		 */
2865 		bp->b_loffset = loffset;
2866 		bp->b_bio2.bio_offset = NOOFFSET;
2867 		/* bp->b_bio2.bio_next = NULL; */
2868 
2869 		if (bgetvp(vp, bp)) {
2870 			bp->b_flags |= B_INVAL;
2871 			brelse(bp);
2872 			goto loop;
2873 		}
2874 
2875 		/*
2876 		 * All vnode-based buffers must be backed by a VM object.
2877 		 */
2878 		KKASSERT(vp->v_object != NULL);
2879 		bp->b_flags |= B_VMIO;
2880 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2881 
2882 		get_mplock();
2883 		allocbuf(bp, size);
2884 		rel_mplock();
2885 	}
2886 	return (bp);
2887 }
2888 
2889 /*
2890  * regetblk(bp)
2891  *
2892  * Reacquire a buffer that was previously released to the locked queue,
2893  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2894  * set B_LOCKED (which handles the acquisition race).
2895  *
2896  * To this end, either B_LOCKED must be set or the dependancy list must be
2897  * non-empty.
2898  *
2899  * MPSAFE
2900  */
2901 void
2902 regetblk(struct buf *bp)
2903 {
2904 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2905 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2906 	bremfree(bp);
2907 }
2908 
2909 /*
2910  * geteblk:
2911  *
2912  *	Get an empty, disassociated buffer of given size.  The buffer is
2913  *	initially set to B_INVAL.
2914  *
2915  *	critical section protection is not required for the allocbuf()
2916  *	call because races are impossible here.
2917  *
2918  * MPALMOSTSAFE
2919  */
2920 struct buf *
2921 geteblk(int size)
2922 {
2923 	struct buf *bp;
2924 	int maxsize;
2925 
2926 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2927 
2928 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2929 		;
2930 	get_mplock();
2931 	allocbuf(bp, size);
2932 	rel_mplock();
2933 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2934 	return (bp);
2935 }
2936 
2937 
2938 /*
2939  * allocbuf:
2940  *
2941  *	This code constitutes the buffer memory from either anonymous system
2942  *	memory (in the case of non-VMIO operations) or from an associated
2943  *	VM object (in the case of VMIO operations).  This code is able to
2944  *	resize a buffer up or down.
2945  *
2946  *	Note that this code is tricky, and has many complications to resolve
2947  *	deadlock or inconsistant data situations.  Tread lightly!!!
2948  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2949  *	the caller.  Calling this code willy nilly can result in the loss of data.
2950  *
2951  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2952  *	B_CACHE for the non-VMIO case.
2953  *
2954  *	This routine does not need to be called from a critical section but you
2955  *	must own the buffer.
2956  *
2957  * NOTMPSAFE
2958  */
2959 int
2960 allocbuf(struct buf *bp, int size)
2961 {
2962 	int newbsize, mbsize;
2963 	int i;
2964 
2965 	if (BUF_REFCNT(bp) == 0)
2966 		panic("allocbuf: buffer not busy");
2967 
2968 	if (bp->b_kvasize < size)
2969 		panic("allocbuf: buffer too small");
2970 
2971 	if ((bp->b_flags & B_VMIO) == 0) {
2972 		caddr_t origbuf;
2973 		int origbufsize;
2974 		/*
2975 		 * Just get anonymous memory from the kernel.  Don't
2976 		 * mess with B_CACHE.
2977 		 */
2978 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2979 		if (bp->b_flags & B_MALLOC)
2980 			newbsize = mbsize;
2981 		else
2982 			newbsize = round_page(size);
2983 
2984 		if (newbsize < bp->b_bufsize) {
2985 			/*
2986 			 * Malloced buffers are not shrunk
2987 			 */
2988 			if (bp->b_flags & B_MALLOC) {
2989 				if (newbsize) {
2990 					bp->b_bcount = size;
2991 				} else {
2992 					kfree(bp->b_data, M_BIOBUF);
2993 					if (bp->b_bufsize) {
2994 						bufmallocspace -= bp->b_bufsize;
2995 						bufspacewakeup();
2996 						bp->b_bufsize = 0;
2997 					}
2998 					bp->b_data = bp->b_kvabase;
2999 					bp->b_bcount = 0;
3000 					bp->b_flags &= ~B_MALLOC;
3001 				}
3002 				return 1;
3003 			}
3004 			vm_hold_free_pages(
3005 			    bp,
3006 			    (vm_offset_t) bp->b_data + newbsize,
3007 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3008 		} else if (newbsize > bp->b_bufsize) {
3009 			/*
3010 			 * We only use malloced memory on the first allocation.
3011 			 * and revert to page-allocated memory when the buffer
3012 			 * grows.
3013 			 */
3014 			if ((bufmallocspace < maxbufmallocspace) &&
3015 				(bp->b_bufsize == 0) &&
3016 				(mbsize <= PAGE_SIZE/2)) {
3017 
3018 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3019 				bp->b_bufsize = mbsize;
3020 				bp->b_bcount = size;
3021 				bp->b_flags |= B_MALLOC;
3022 				bufmallocspace += mbsize;
3023 				return 1;
3024 			}
3025 			origbuf = NULL;
3026 			origbufsize = 0;
3027 			/*
3028 			 * If the buffer is growing on its other-than-first
3029 			 * allocation, then we revert to the page-allocation
3030 			 * scheme.
3031 			 */
3032 			if (bp->b_flags & B_MALLOC) {
3033 				origbuf = bp->b_data;
3034 				origbufsize = bp->b_bufsize;
3035 				bp->b_data = bp->b_kvabase;
3036 				if (bp->b_bufsize) {
3037 					bufmallocspace -= bp->b_bufsize;
3038 					bufspacewakeup();
3039 					bp->b_bufsize = 0;
3040 				}
3041 				bp->b_flags &= ~B_MALLOC;
3042 				newbsize = round_page(newbsize);
3043 			}
3044 			vm_hold_load_pages(
3045 			    bp,
3046 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3047 			    (vm_offset_t) bp->b_data + newbsize);
3048 			if (origbuf) {
3049 				bcopy(origbuf, bp->b_data, origbufsize);
3050 				kfree(origbuf, M_BIOBUF);
3051 			}
3052 		}
3053 	} else {
3054 		vm_page_t m;
3055 		int desiredpages;
3056 
3057 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3058 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3059 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3060 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3061 
3062 		if (bp->b_flags & B_MALLOC)
3063 			panic("allocbuf: VMIO buffer can't be malloced");
3064 		/*
3065 		 * Set B_CACHE initially if buffer is 0 length or will become
3066 		 * 0-length.
3067 		 */
3068 		if (size == 0 || bp->b_bufsize == 0)
3069 			bp->b_flags |= B_CACHE;
3070 
3071 		if (newbsize < bp->b_bufsize) {
3072 			/*
3073 			 * DEV_BSIZE aligned new buffer size is less then the
3074 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3075 			 * if we have to remove any pages.
3076 			 */
3077 			if (desiredpages < bp->b_xio.xio_npages) {
3078 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3079 					/*
3080 					 * the page is not freed here -- it
3081 					 * is the responsibility of
3082 					 * vnode_pager_setsize
3083 					 */
3084 					m = bp->b_xio.xio_pages[i];
3085 					KASSERT(m != bogus_page,
3086 					    ("allocbuf: bogus page found"));
3087 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3088 						;
3089 
3090 					bp->b_xio.xio_pages[i] = NULL;
3091 					vm_page_unwire(m, 0);
3092 				}
3093 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3094 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3095 				bp->b_xio.xio_npages = desiredpages;
3096 			}
3097 		} else if (size > bp->b_bcount) {
3098 			/*
3099 			 * We are growing the buffer, possibly in a
3100 			 * byte-granular fashion.
3101 			 */
3102 			struct vnode *vp;
3103 			vm_object_t obj;
3104 			vm_offset_t toff;
3105 			vm_offset_t tinc;
3106 
3107 			/*
3108 			 * Step 1, bring in the VM pages from the object,
3109 			 * allocating them if necessary.  We must clear
3110 			 * B_CACHE if these pages are not valid for the
3111 			 * range covered by the buffer.
3112 			 *
3113 			 * critical section protection is required to protect
3114 			 * against interrupts unbusying and freeing pages
3115 			 * between our vm_page_lookup() and our
3116 			 * busycheck/wiring call.
3117 			 */
3118 			vp = bp->b_vp;
3119 			obj = vp->v_object;
3120 
3121 			crit_enter();
3122 			while (bp->b_xio.xio_npages < desiredpages) {
3123 				vm_page_t m;
3124 				vm_pindex_t pi;
3125 
3126 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3127 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3128 					/*
3129 					 * note: must allocate system pages
3130 					 * since blocking here could intefere
3131 					 * with paging I/O, no matter which
3132 					 * process we are.
3133 					 */
3134 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3135 					if (m) {
3136 						vm_page_wire(m);
3137 						vm_page_wakeup(m);
3138 						bp->b_flags &= ~B_CACHE;
3139 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3140 						++bp->b_xio.xio_npages;
3141 					}
3142 					continue;
3143 				}
3144 
3145 				/*
3146 				 * We found a page.  If we have to sleep on it,
3147 				 * retry because it might have gotten freed out
3148 				 * from under us.
3149 				 *
3150 				 * We can only test PG_BUSY here.  Blocking on
3151 				 * m->busy might lead to a deadlock:
3152 				 *
3153 				 *  vm_fault->getpages->cluster_read->allocbuf
3154 				 *
3155 				 */
3156 
3157 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3158 					continue;
3159 				vm_page_flag_clear(m, PG_ZERO);
3160 				vm_page_wire(m);
3161 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3162 				++bp->b_xio.xio_npages;
3163 			}
3164 			crit_exit();
3165 
3166 			/*
3167 			 * Step 2.  We've loaded the pages into the buffer,
3168 			 * we have to figure out if we can still have B_CACHE
3169 			 * set.  Note that B_CACHE is set according to the
3170 			 * byte-granular range ( bcount and size ), not the
3171 			 * aligned range ( newbsize ).
3172 			 *
3173 			 * The VM test is against m->valid, which is DEV_BSIZE
3174 			 * aligned.  Needless to say, the validity of the data
3175 			 * needs to also be DEV_BSIZE aligned.  Note that this
3176 			 * fails with NFS if the server or some other client
3177 			 * extends the file's EOF.  If our buffer is resized,
3178 			 * B_CACHE may remain set! XXX
3179 			 */
3180 
3181 			toff = bp->b_bcount;
3182 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3183 
3184 			while ((bp->b_flags & B_CACHE) && toff < size) {
3185 				vm_pindex_t pi;
3186 
3187 				if (tinc > (size - toff))
3188 					tinc = size - toff;
3189 
3190 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3191 				    PAGE_SHIFT;
3192 
3193 				vfs_buf_test_cache(
3194 				    bp,
3195 				    bp->b_loffset,
3196 				    toff,
3197 				    tinc,
3198 				    bp->b_xio.xio_pages[pi]
3199 				);
3200 				toff += tinc;
3201 				tinc = PAGE_SIZE;
3202 			}
3203 
3204 			/*
3205 			 * Step 3, fixup the KVM pmap.  Remember that
3206 			 * bp->b_data is relative to bp->b_loffset, but
3207 			 * bp->b_loffset may be offset into the first page.
3208 			 */
3209 
3210 			bp->b_data = (caddr_t)
3211 			    trunc_page((vm_offset_t)bp->b_data);
3212 			pmap_qenter(
3213 			    (vm_offset_t)bp->b_data,
3214 			    bp->b_xio.xio_pages,
3215 			    bp->b_xio.xio_npages
3216 			);
3217 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3218 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3219 		}
3220 	}
3221 
3222 	/* adjust space use on already-dirty buffer */
3223 	if (bp->b_flags & B_DELWRI) {
3224 		dirtybufspace += newbsize - bp->b_bufsize;
3225 		if (bp->b_flags & B_HEAVY)
3226 			dirtybufspacehw += newbsize - bp->b_bufsize;
3227 	}
3228 	if (newbsize < bp->b_bufsize)
3229 		bufspacewakeup();
3230 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3231 	bp->b_bcount = size;		/* requested buffer size	*/
3232 	return 1;
3233 }
3234 
3235 /*
3236  * biowait:
3237  *
3238  *	Wait for buffer I/O completion, returning error status. B_EINTR
3239  *	is converted into an EINTR error but not cleared (since a chain
3240  *	of biowait() calls may occur).
3241  *
3242  *	On return bpdone() will have been called but the buffer will remain
3243  *	locked and will not have been brelse()'d.
3244  *
3245  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3246  *	likely still in progress on return.
3247  *
3248  *	NOTE!  This operation is on a BIO, not a BUF.
3249  *
3250  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3251  *
3252  * MPSAFE
3253  */
3254 static __inline int
3255 _biowait(struct bio *bio, const char *wmesg, int to)
3256 {
3257 	struct buf *bp = bio->bio_buf;
3258 	u_int32_t flags;
3259 	u_int32_t nflags;
3260 	int error;
3261 
3262 	KKASSERT(bio == &bp->b_bio1);
3263 	for (;;) {
3264 		flags = bio->bio_flags;
3265 		if (flags & BIO_DONE)
3266 			break;
3267 		tsleep_interlock(bio, 0);
3268 		nflags = flags | BIO_WANT;
3269 		tsleep_interlock(bio, 0);
3270 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3271 			if (wmesg)
3272 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3273 			else if (bp->b_cmd == BUF_CMD_READ)
3274 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3275 			else
3276 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3277 			if (error) {
3278 				kprintf("tsleep error biowait %d\n", error);
3279 				return (error);
3280 			}
3281 			break;
3282 		}
3283 	}
3284 
3285 	/*
3286 	 * Finish up.
3287 	 */
3288 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3289 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3290 	if (bp->b_flags & B_EINTR)
3291 		return (EINTR);
3292 	if (bp->b_flags & B_ERROR)
3293 		return (bp->b_error ? bp->b_error : EIO);
3294 	return (0);
3295 }
3296 
3297 int
3298 biowait(struct bio *bio, const char *wmesg)
3299 {
3300 	return(_biowait(bio, wmesg, 0));
3301 }
3302 
3303 int
3304 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3305 {
3306 	return(_biowait(bio, wmesg, to));
3307 }
3308 
3309 /*
3310  * This associates a tracking count with an I/O.  vn_strategy() and
3311  * dev_dstrategy() do this automatically but there are a few cases
3312  * where a vnode or device layer is bypassed when a block translation
3313  * is cached.  In such cases bio_start_transaction() may be called on
3314  * the bypassed layers so the system gets an I/O in progress indication
3315  * for those higher layers.
3316  */
3317 void
3318 bio_start_transaction(struct bio *bio, struct bio_track *track)
3319 {
3320 	bio->bio_track = track;
3321 	bio_track_ref(track);
3322 }
3323 
3324 /*
3325  * Initiate I/O on a vnode.
3326  */
3327 void
3328 vn_strategy(struct vnode *vp, struct bio *bio)
3329 {
3330 	struct bio_track *track;
3331 
3332 	KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
3333         if (bio->bio_buf->b_cmd == BUF_CMD_READ)
3334                 track = &vp->v_track_read;
3335         else
3336                 track = &vp->v_track_write;
3337 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3338 	bio->bio_track = track;
3339 	bio_track_ref(track);
3340         vop_strategy(*vp->v_ops, vp, bio);
3341 }
3342 
3343 /*
3344  * bpdone:
3345  *
3346  *	Finish I/O on a buffer after all BIOs have been processed.
3347  *	Called when the bio chain is exhausted or by biowait.  If called
3348  *	by biowait, elseit is typically 0.
3349  *
3350  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3351  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3352  *	assuming B_INVAL is clear.
3353  *
3354  *	For the VMIO case, we set B_CACHE if the op was a read and no
3355  *	read error occured, or if the op was a write.  B_CACHE is never
3356  *	set if the buffer is invalid or otherwise uncacheable.
3357  *
3358  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3359  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3360  *	in the biodone routine.
3361  */
3362 void
3363 bpdone(struct buf *bp, int elseit)
3364 {
3365 	buf_cmd_t cmd;
3366 
3367 	KASSERT(BUF_REFCNTNB(bp) > 0,
3368 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3369 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3370 		("biodone: bp %p already done!", bp));
3371 
3372 	/*
3373 	 * No more BIOs are left.  All completion functions have been dealt
3374 	 * with, now we clean up the buffer.
3375 	 */
3376 	cmd = bp->b_cmd;
3377 	bp->b_cmd = BUF_CMD_DONE;
3378 
3379 	/*
3380 	 * Only reads and writes are processed past this point.
3381 	 */
3382 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3383 		if (cmd == BUF_CMD_FREEBLKS)
3384 			bp->b_flags |= B_NOCACHE;
3385 		if (elseit)
3386 			brelse(bp);
3387 		return;
3388 	}
3389 
3390 	/*
3391 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3392 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3393 	 */
3394 	if (LIST_FIRST(&bp->b_dep) != NULL)
3395 		buf_complete(bp);
3396 
3397 	/*
3398 	 * A failed write must re-dirty the buffer unless B_INVAL
3399 	 * was set.  Only applicable to normal buffers (with VPs).
3400 	 * vinum buffers may not have a vp.
3401 	 */
3402 	if (cmd == BUF_CMD_WRITE &&
3403 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3404 		bp->b_flags &= ~B_NOCACHE;
3405 		if (bp->b_vp)
3406 			bdirty(bp);
3407 	}
3408 
3409 	if (bp->b_flags & B_VMIO) {
3410 		int i;
3411 		vm_ooffset_t foff;
3412 		vm_page_t m;
3413 		vm_object_t obj;
3414 		int iosize;
3415 		struct vnode *vp = bp->b_vp;
3416 
3417 		obj = vp->v_object;
3418 
3419 #if defined(VFS_BIO_DEBUG)
3420 		if (vp->v_auxrefs == 0)
3421 			panic("biodone: zero vnode hold count");
3422 		if ((vp->v_flag & VOBJBUF) == 0)
3423 			panic("biodone: vnode is not setup for merged cache");
3424 #endif
3425 
3426 		foff = bp->b_loffset;
3427 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3428 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3429 
3430 #if defined(VFS_BIO_DEBUG)
3431 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3432 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3433 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3434 		}
3435 #endif
3436 
3437 		/*
3438 		 * Set B_CACHE if the op was a normal read and no error
3439 		 * occured.  B_CACHE is set for writes in the b*write()
3440 		 * routines.
3441 		 */
3442 		iosize = bp->b_bcount - bp->b_resid;
3443 		if (cmd == BUF_CMD_READ &&
3444 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3445 			bp->b_flags |= B_CACHE;
3446 		}
3447 
3448 		crit_enter();
3449 		get_mplock();
3450 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3451 			int bogusflag = 0;
3452 			int resid;
3453 
3454 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3455 			if (resid > iosize)
3456 				resid = iosize;
3457 
3458 			/*
3459 			 * cleanup bogus pages, restoring the originals.  Since
3460 			 * the originals should still be wired, we don't have
3461 			 * to worry about interrupt/freeing races destroying
3462 			 * the VM object association.
3463 			 */
3464 			m = bp->b_xio.xio_pages[i];
3465 			if (m == bogus_page) {
3466 				bogusflag = 1;
3467 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3468 				if (m == NULL)
3469 					panic("biodone: page disappeared");
3470 				bp->b_xio.xio_pages[i] = m;
3471 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3472 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3473 			}
3474 #if defined(VFS_BIO_DEBUG)
3475 			if (OFF_TO_IDX(foff) != m->pindex) {
3476 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3477 					"mismatch\n",
3478 					(unsigned long)foff, (long)m->pindex);
3479 			}
3480 #endif
3481 
3482 			/*
3483 			 * In the write case, the valid and clean bits are
3484 			 * already changed correctly (see bdwrite()), so we
3485 			 * only need to do this here in the read case.
3486 			 */
3487 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3488 				vfs_clean_one_page(bp, i, m);
3489 			}
3490 			vm_page_flag_clear(m, PG_ZERO);
3491 
3492 			/*
3493 			 * when debugging new filesystems or buffer I/O
3494 			 * methods, this is the most common error that pops
3495 			 * up.  if you see this, you have not set the page
3496 			 * busy flag correctly!!!
3497 			 */
3498 			if (m->busy == 0) {
3499 				kprintf("biodone: page busy < 0, "
3500 				    "pindex: %d, foff: 0x(%x,%x), "
3501 				    "resid: %d, index: %d\n",
3502 				    (int) m->pindex, (int)(foff >> 32),
3503 						(int) foff & 0xffffffff, resid, i);
3504 				if (!vn_isdisk(vp, NULL))
3505 					kprintf(" iosize: %ld, loffset: %lld, "
3506 						"flags: 0x%08x, npages: %d\n",
3507 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3508 					    (long long)bp->b_loffset,
3509 					    bp->b_flags, bp->b_xio.xio_npages);
3510 				else
3511 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3512 					    (long long)bp->b_loffset,
3513 					    bp->b_flags, bp->b_xio.xio_npages);
3514 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3515 				    m->valid, m->dirty, m->wire_count);
3516 				panic("biodone: page busy < 0");
3517 			}
3518 			vm_page_io_finish(m);
3519 			vm_object_pip_subtract(obj, 1);
3520 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3521 			iosize -= resid;
3522 		}
3523 		if (obj)
3524 			vm_object_pip_wakeupn(obj, 0);
3525 		rel_mplock();
3526 		crit_exit();
3527 	}
3528 
3529 	/*
3530 	 * Finish up by releasing the buffer.  There are no more synchronous
3531 	 * or asynchronous completions, those were handled by bio_done
3532 	 * callbacks.
3533 	 */
3534 	if (elseit) {
3535 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3536 			brelse(bp);
3537 		else
3538 			bqrelse(bp);
3539 	}
3540 }
3541 
3542 /*
3543  * Normal biodone.
3544  */
3545 void
3546 biodone(struct bio *bio)
3547 {
3548 	struct buf *bp = bio->bio_buf;
3549 
3550 	runningbufwakeup(bp);
3551 
3552 	/*
3553 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3554 	 */
3555 	while (bio) {
3556 		biodone_t *done_func;
3557 		struct bio_track *track;
3558 
3559 		/*
3560 		 * BIO tracking.  Most but not all BIOs are tracked.
3561 		 */
3562 		if ((track = bio->bio_track) != NULL) {
3563 			bio_track_rel(track);
3564 			bio->bio_track = NULL;
3565 		}
3566 
3567 		/*
3568 		 * A bio_done function terminates the loop.  The function
3569 		 * will be responsible for any further chaining and/or
3570 		 * buffer management.
3571 		 *
3572 		 * WARNING!  The done function can deallocate the buffer!
3573 		 */
3574 		if ((done_func = bio->bio_done) != NULL) {
3575 			bio->bio_done = NULL;
3576 			done_func(bio);
3577 			return;
3578 		}
3579 		bio = bio->bio_prev;
3580 	}
3581 
3582 	/*
3583 	 * If we've run out of bio's do normal [a]synchronous completion.
3584 	 */
3585 	bpdone(bp, 1);
3586 }
3587 
3588 /*
3589  * Synchronous biodone - this terminates a synchronous BIO.
3590  *
3591  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3592  * but still locked.  The caller must brelse() the buffer after waiting
3593  * for completion.
3594  */
3595 void
3596 biodone_sync(struct bio *bio)
3597 {
3598 	struct buf *bp = bio->bio_buf;
3599 	int flags;
3600 	int nflags;
3601 
3602 	KKASSERT(bio == &bp->b_bio1);
3603 	bpdone(bp, 0);
3604 
3605 	for (;;) {
3606 		flags = bio->bio_flags;
3607 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3608 
3609 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3610 			if (flags & BIO_WANT)
3611 				wakeup(bio);
3612 			break;
3613 		}
3614 	}
3615 }
3616 
3617 /*
3618  * vfs_unbusy_pages:
3619  *
3620  *	This routine is called in lieu of iodone in the case of
3621  *	incomplete I/O.  This keeps the busy status for pages
3622  *	consistant.
3623  */
3624 void
3625 vfs_unbusy_pages(struct buf *bp)
3626 {
3627 	int i;
3628 
3629 	runningbufwakeup(bp);
3630 	if (bp->b_flags & B_VMIO) {
3631 		struct vnode *vp = bp->b_vp;
3632 		vm_object_t obj;
3633 
3634 		obj = vp->v_object;
3635 
3636 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3637 			vm_page_t m = bp->b_xio.xio_pages[i];
3638 
3639 			/*
3640 			 * When restoring bogus changes the original pages
3641 			 * should still be wired, so we are in no danger of
3642 			 * losing the object association and do not need
3643 			 * critical section protection particularly.
3644 			 */
3645 			if (m == bogus_page) {
3646 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3647 				if (!m) {
3648 					panic("vfs_unbusy_pages: page missing");
3649 				}
3650 				bp->b_xio.xio_pages[i] = m;
3651 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3652 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3653 			}
3654 			vm_object_pip_subtract(obj, 1);
3655 			vm_page_flag_clear(m, PG_ZERO);
3656 			vm_page_io_finish(m);
3657 		}
3658 		vm_object_pip_wakeupn(obj, 0);
3659 	}
3660 }
3661 
3662 /*
3663  * vfs_busy_pages:
3664  *
3665  *	This routine is called before a device strategy routine.
3666  *	It is used to tell the VM system that paging I/O is in
3667  *	progress, and treat the pages associated with the buffer
3668  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3669  *	flag is handled to make sure that the object doesn't become
3670  *	inconsistant.
3671  *
3672  *	Since I/O has not been initiated yet, certain buffer flags
3673  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3674  *	and should be ignored.
3675  */
3676 void
3677 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3678 {
3679 	int i, bogus;
3680 	struct lwp *lp = curthread->td_lwp;
3681 
3682 	/*
3683 	 * The buffer's I/O command must already be set.  If reading,
3684 	 * B_CACHE must be 0 (double check against callers only doing
3685 	 * I/O when B_CACHE is 0).
3686 	 */
3687 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3688 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3689 
3690 	if (bp->b_flags & B_VMIO) {
3691 		vm_object_t obj;
3692 
3693 		obj = vp->v_object;
3694 		KASSERT(bp->b_loffset != NOOFFSET,
3695 			("vfs_busy_pages: no buffer offset"));
3696 
3697 		/*
3698 		 * Loop until none of the pages are busy.
3699 		 */
3700 retry:
3701 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3702 			vm_page_t m = bp->b_xio.xio_pages[i];
3703 
3704 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3705 				goto retry;
3706 		}
3707 
3708 		/*
3709 		 * Setup for I/O, soft-busy the page right now because
3710 		 * the next loop may block.
3711 		 */
3712 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3713 			vm_page_t m = bp->b_xio.xio_pages[i];
3714 
3715 			vm_page_flag_clear(m, PG_ZERO);
3716 			if ((bp->b_flags & B_CLUSTER) == 0) {
3717 				vm_object_pip_add(obj, 1);
3718 				vm_page_io_start(m);
3719 			}
3720 		}
3721 
3722 		/*
3723 		 * Adjust protections for I/O and do bogus-page mapping.
3724 		 * Assume that vm_page_protect() can block (it can block
3725 		 * if VM_PROT_NONE, don't take any chances regardless).
3726 		 *
3727 		 * In particularly note that for writes we must incorporate
3728 		 * page dirtyness from the VM system into the buffer's
3729 		 * dirty range.
3730 		 *
3731 		 * For reads we theoretically must incorporate page dirtyness
3732 		 * from the VM system to determine if the page needs bogus
3733 		 * replacement, but we shortcut the test by simply checking
3734 		 * that all m->valid bits are set, indicating that the page
3735 		 * is fully valid and does not need to be re-read.  For any
3736 		 * VM system dirtyness the page will also be fully valid
3737 		 * since it was mapped at one point.
3738 		 */
3739 		bogus = 0;
3740 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3741 			vm_page_t m = bp->b_xio.xio_pages[i];
3742 
3743 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
3744 			if (bp->b_cmd == BUF_CMD_WRITE) {
3745 				/*
3746 				 * When readying a vnode-backed buffer for
3747 				 * a write we must zero-fill any invalid
3748 				 * portions of the backing VM pages, mark
3749 				 * it valid and clear related dirty bits.
3750 				 *
3751 				 * vfs_clean_one_page() incorporates any
3752 				 * VM dirtyness and updates the b_dirtyoff
3753 				 * range (after we've made the page RO).
3754 				 *
3755 				 * It is also expected that the pmap modified
3756 				 * bit has already been cleared by the
3757 				 * vm_page_protect().  We may not be able
3758 				 * to clear all dirty bits for a page if it
3759 				 * was also memory mapped (NFS).
3760 				 */
3761 				vm_page_protect(m, VM_PROT_READ);
3762 				vfs_clean_one_page(bp, i, m);
3763 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3764 				/*
3765 				 * When readying a vnode-backed buffer for
3766 				 * read we must replace any dirty pages with
3767 				 * a bogus page so dirty data is not destroyed
3768 				 * when filling gaps.
3769 				 *
3770 				 * To avoid testing whether the page is
3771 				 * dirty we instead test that the page was
3772 				 * at some point mapped (m->valid fully
3773 				 * valid) with the understanding that
3774 				 * this also covers the dirty case.
3775 				 */
3776 				bp->b_xio.xio_pages[i] = bogus_page;
3777 				bogus++;
3778 			} else if (m->valid & m->dirty) {
3779 				/*
3780 				 * This case should not occur as partial
3781 				 * dirtyment can only happen if the buffer
3782 				 * is B_CACHE, and this code is not entered
3783 				 * if the buffer is B_CACHE.
3784 				 */
3785 				kprintf("Warning: vfs_busy_pages - page not "
3786 					"fully valid! loff=%jx bpf=%08x "
3787 					"idx=%d val=%02x dir=%02x\n",
3788 					(intmax_t)bp->b_loffset, bp->b_flags,
3789 					i, m->valid, m->dirty);
3790 				vm_page_protect(m, VM_PROT_NONE);
3791 			} else {
3792 				/*
3793 				 * The page is not valid and can be made
3794 				 * part of the read.
3795 				 */
3796 				vm_page_protect(m, VM_PROT_NONE);
3797 			}
3798 		}
3799 		if (bogus) {
3800 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3801 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3802 		}
3803 	}
3804 
3805 	/*
3806 	 * This is the easiest place to put the process accounting for the I/O
3807 	 * for now.
3808 	 */
3809 	if (lp != NULL) {
3810 		if (bp->b_cmd == BUF_CMD_READ)
3811 			lp->lwp_ru.ru_inblock++;
3812 		else
3813 			lp->lwp_ru.ru_oublock++;
3814 	}
3815 }
3816 
3817 /*
3818  * vfs_clean_pages:
3819  *
3820  *	Tell the VM system that the pages associated with this buffer
3821  *	are clean.  This is used for delayed writes where the data is
3822  *	going to go to disk eventually without additional VM intevention.
3823  *
3824  *	Note that while we only really need to clean through to b_bcount, we
3825  *	just go ahead and clean through to b_bufsize.
3826  */
3827 static void
3828 vfs_clean_pages(struct buf *bp)
3829 {
3830 	vm_page_t m;
3831 	int i;
3832 
3833 	if ((bp->b_flags & B_VMIO) == 0)
3834 		return;
3835 
3836 	KASSERT(bp->b_loffset != NOOFFSET,
3837 		("vfs_clean_pages: no buffer offset"));
3838 
3839 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
3840 		m = bp->b_xio.xio_pages[i];
3841 		vfs_clean_one_page(bp, i, m);
3842 	}
3843 }
3844 
3845 /*
3846  * vfs_clean_one_page:
3847  *
3848  *	Set the valid bits and clear the dirty bits in a page within a
3849  *	buffer.  The range is restricted to the buffer's size and the
3850  *	buffer's logical offset might index into the first page.
3851  *
3852  *	The caller has busied or soft-busied the page and it is not mapped,
3853  *	test and incorporate the dirty bits into b_dirtyoff/end before
3854  *	clearing them.  Note that we need to clear the pmap modified bits
3855  *	after determining the the page was dirty, vm_page_set_validclean()
3856  *	does not do it for us.
3857  *
3858  *	This routine is typically called after a read completes (dirty should
3859  *	be zero in that case as we are not called on bogus-replace pages),
3860  *	or before a write is initiated.
3861  */
3862 static void
3863 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
3864 {
3865 	int bcount;
3866 	int xoff;
3867 	int soff;
3868 	int eoff;
3869 
3870 	/*
3871 	 * Calculate offset range within the page but relative to buffer's
3872 	 * loffset.  loffset might be offset into the first page.
3873 	 */
3874 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
3875 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
3876 
3877 	if (pageno == 0) {
3878 		soff = xoff;
3879 		eoff = PAGE_SIZE;
3880 	} else {
3881 		soff = (pageno << PAGE_SHIFT);
3882 		eoff = soff + PAGE_SIZE;
3883 	}
3884 	if (eoff > bcount)
3885 		eoff = bcount;
3886 	if (soff >= eoff)
3887 		return;
3888 
3889 	/*
3890 	 * Test dirty bits and adjust b_dirtyoff/end.
3891 	 *
3892 	 * If dirty pages are incorporated into the bp any prior
3893 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
3894 	 * caller has not taken into account the new dirty data.
3895 	 *
3896 	 * If the page was memory mapped the dirty bits might go beyond the
3897 	 * end of the buffer, but we can't really make the assumption that
3898 	 * a file EOF straddles the buffer (even though this is the case for
3899 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
3900 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
3901 	 * This also saves some console spam.
3902 	 */
3903 	vm_page_test_dirty(m);
3904 	if (m->dirty) {
3905 		pmap_clear_modify(m);
3906 		if ((bp->b_flags & B_NEEDCOMMIT) &&
3907 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
3908 			kprintf("Warning: vfs_clean_one_page: bp %p "
3909 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT\n",
3910 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
3911 				bp->b_flags);
3912 			bp->b_flags &= ~B_NEEDCOMMIT;
3913 		}
3914 		if (bp->b_dirtyoff > soff - xoff)
3915 			bp->b_dirtyoff = soff - xoff;
3916 		if (bp->b_dirtyend < eoff - xoff)
3917 			bp->b_dirtyend = eoff - xoff;
3918 	}
3919 
3920 	/*
3921 	 * Set related valid bits, clear related dirty bits.
3922 	 * Does not mess with the pmap modified bit.
3923 	 *
3924 	 * WARNING!  We cannot just clear all of m->dirty here as the
3925 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
3926 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
3927 	 *	     The putpages code can clear m->dirty to 0.
3928 	 *
3929 	 *	     If a VOP_WRITE generates a buffer cache buffer which
3930 	 *	     covers the same space as mapped writable pages the
3931 	 *	     buffer flush might not be able to clear all the dirty
3932 	 *	     bits and still require a putpages from the VM system
3933 	 *	     to finish it off.
3934 	 */
3935 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
3936 }
3937 
3938 /*
3939  * vfs_bio_clrbuf:
3940  *
3941  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3942  *	to clear B_ERROR and B_INVAL.
3943  *
3944  *	Note that while we only theoretically need to clear through b_bcount,
3945  *	we go ahead and clear through b_bufsize.
3946  */
3947 
3948 void
3949 vfs_bio_clrbuf(struct buf *bp)
3950 {
3951 	int i, mask = 0;
3952 	caddr_t sa, ea;
3953 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3954 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
3955 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3956 		    (bp->b_loffset & PAGE_MASK) == 0) {
3957 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3958 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3959 				bp->b_resid = 0;
3960 				return;
3961 			}
3962 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3963 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3964 				bzero(bp->b_data, bp->b_bufsize);
3965 				bp->b_xio.xio_pages[0]->valid |= mask;
3966 				bp->b_resid = 0;
3967 				return;
3968 			}
3969 		}
3970 		sa = bp->b_data;
3971 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3972 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3973 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3974 			ea = (caddr_t)(vm_offset_t)ulmin(
3975 			    (u_long)(vm_offset_t)ea,
3976 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3977 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3978 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3979 				continue;
3980 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3981 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3982 					bzero(sa, ea - sa);
3983 				}
3984 			} else {
3985 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3986 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3987 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3988 						bzero(sa, DEV_BSIZE);
3989 				}
3990 			}
3991 			bp->b_xio.xio_pages[i]->valid |= mask;
3992 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3993 		}
3994 		bp->b_resid = 0;
3995 	} else {
3996 		clrbuf(bp);
3997 	}
3998 }
3999 
4000 /*
4001  * vm_hold_load_pages:
4002  *
4003  *	Load pages into the buffer's address space.  The pages are
4004  *	allocated from the kernel object in order to reduce interference
4005  *	with the any VM paging I/O activity.  The range of loaded
4006  *	pages will be wired.
4007  *
4008  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4009  *	retrieve the full range (to - from) of pages.
4010  *
4011  */
4012 void
4013 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4014 {
4015 	vm_offset_t pg;
4016 	vm_page_t p;
4017 	int index;
4018 
4019 	to = round_page(to);
4020 	from = round_page(from);
4021 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4022 
4023 	pg = from;
4024 	while (pg < to) {
4025 		/*
4026 		 * Note: must allocate system pages since blocking here
4027 		 * could intefere with paging I/O, no matter which
4028 		 * process we are.
4029 		 */
4030 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4031 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4032 		if (p) {
4033 			vm_page_wire(p);
4034 			p->valid = VM_PAGE_BITS_ALL;
4035 			vm_page_flag_clear(p, PG_ZERO);
4036 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4037 			bp->b_xio.xio_pages[index] = p;
4038 			vm_page_wakeup(p);
4039 
4040 			pg += PAGE_SIZE;
4041 			++index;
4042 		}
4043 	}
4044 	bp->b_xio.xio_npages = index;
4045 }
4046 
4047 /*
4048  * Allocate pages for a buffer cache buffer.
4049  *
4050  * Under extremely severe memory conditions even allocating out of the
4051  * system reserve can fail.  If this occurs we must allocate out of the
4052  * interrupt reserve to avoid a deadlock with the pageout daemon.
4053  *
4054  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4055  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4056  * against the pageout daemon if pages are not freed from other sources.
4057  */
4058 static
4059 vm_page_t
4060 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4061 {
4062 	vm_page_t p;
4063 
4064 	/*
4065 	 * Try a normal allocation, allow use of system reserve.
4066 	 */
4067 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4068 	if (p)
4069 		return(p);
4070 
4071 	/*
4072 	 * The normal allocation failed and we clearly have a page
4073 	 * deficit.  Try to reclaim some clean VM pages directly
4074 	 * from the buffer cache.
4075 	 */
4076 	vm_pageout_deficit += deficit;
4077 	recoverbufpages();
4078 
4079 	/*
4080 	 * We may have blocked, the caller will know what to do if the
4081 	 * page now exists.
4082 	 */
4083 	if (vm_page_lookup(obj, pg))
4084 		return(NULL);
4085 
4086 	/*
4087 	 * Allocate and allow use of the interrupt reserve.
4088 	 *
4089 	 * If after all that we still can't allocate a VM page we are
4090 	 * in real trouble, but we slog on anyway hoping that the system
4091 	 * won't deadlock.
4092 	 */
4093 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4094 				   VM_ALLOC_INTERRUPT);
4095 	if (p) {
4096 		if (vm_page_count_severe()) {
4097 			kprintf("bio_page_alloc: WARNING emergency page "
4098 				"allocation\n");
4099 			vm_wait(hz / 20);
4100 		}
4101 	} else {
4102 		kprintf("bio_page_alloc: WARNING emergency page "
4103 			"allocation failed\n");
4104 		vm_wait(hz * 5);
4105 	}
4106 	return(p);
4107 }
4108 
4109 /*
4110  * vm_hold_free_pages:
4111  *
4112  *	Return pages associated with the buffer back to the VM system.
4113  *
4114  *	The range of pages underlying the buffer's address space will
4115  *	be unmapped and un-wired.
4116  */
4117 void
4118 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4119 {
4120 	vm_offset_t pg;
4121 	vm_page_t p;
4122 	int index, newnpages;
4123 
4124 	from = round_page(from);
4125 	to = round_page(to);
4126 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4127 
4128 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4129 		p = bp->b_xio.xio_pages[index];
4130 		if (p && (index < bp->b_xio.xio_npages)) {
4131 			if (p->busy) {
4132 				kprintf("vm_hold_free_pages: doffset: %lld, "
4133 					"loffset: %lld\n",
4134 					(long long)bp->b_bio2.bio_offset,
4135 					(long long)bp->b_loffset);
4136 			}
4137 			bp->b_xio.xio_pages[index] = NULL;
4138 			pmap_kremove(pg);
4139 			vm_page_busy(p);
4140 			vm_page_unwire(p, 0);
4141 			vm_page_free(p);
4142 		}
4143 	}
4144 	bp->b_xio.xio_npages = newnpages;
4145 }
4146 
4147 /*
4148  * vmapbuf:
4149  *
4150  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4151  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4152  *	initialized.
4153  */
4154 int
4155 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4156 {
4157 	caddr_t addr;
4158 	vm_offset_t va;
4159 	vm_page_t m;
4160 	int vmprot;
4161 	int error;
4162 	int pidx;
4163 	int i;
4164 
4165 	/*
4166 	 * bp had better have a command and it better be a pbuf.
4167 	 */
4168 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4169 	KKASSERT(bp->b_flags & B_PAGING);
4170 
4171 	if (bytes < 0)
4172 		return (-1);
4173 
4174 	/*
4175 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4176 	 */
4177 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4178 	pidx = 0;
4179 
4180 	vmprot = VM_PROT_READ;
4181 	if (bp->b_cmd == BUF_CMD_READ)
4182 		vmprot |= VM_PROT_WRITE;
4183 
4184 	while (addr < udata + bytes) {
4185 		/*
4186 		 * Do the vm_fault if needed; do the copy-on-write thing
4187 		 * when reading stuff off device into memory.
4188 		 *
4189 		 * vm_fault_page*() returns a held VM page.
4190 		 */
4191 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4192 		va = trunc_page(va);
4193 
4194 		m = vm_fault_page_quick(va, vmprot, &error);
4195 		if (m == NULL) {
4196 			for (i = 0; i < pidx; ++i) {
4197 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4198 			    bp->b_xio.xio_pages[i] = NULL;
4199 			}
4200 			return(-1);
4201 		}
4202 		bp->b_xio.xio_pages[pidx] = m;
4203 		addr += PAGE_SIZE;
4204 		++pidx;
4205 	}
4206 
4207 	/*
4208 	 * Map the page array and set the buffer fields to point to
4209 	 * the mapped data buffer.
4210 	 */
4211 	if (pidx > btoc(MAXPHYS))
4212 		panic("vmapbuf: mapped more than MAXPHYS");
4213 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4214 
4215 	bp->b_xio.xio_npages = pidx;
4216 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4217 	bp->b_bcount = bytes;
4218 	bp->b_bufsize = bytes;
4219 	return(0);
4220 }
4221 
4222 /*
4223  * vunmapbuf:
4224  *
4225  *	Free the io map PTEs associated with this IO operation.
4226  *	We also invalidate the TLB entries and restore the original b_addr.
4227  */
4228 void
4229 vunmapbuf(struct buf *bp)
4230 {
4231 	int pidx;
4232 	int npages;
4233 
4234 	KKASSERT(bp->b_flags & B_PAGING);
4235 
4236 	npages = bp->b_xio.xio_npages;
4237 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4238 	for (pidx = 0; pidx < npages; ++pidx) {
4239 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4240 		bp->b_xio.xio_pages[pidx] = NULL;
4241 	}
4242 	bp->b_xio.xio_npages = 0;
4243 	bp->b_data = bp->b_kvabase;
4244 }
4245 
4246 /*
4247  * Scan all buffers in the system and issue the callback.
4248  */
4249 int
4250 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4251 {
4252 	int count = 0;
4253 	int error;
4254 	int n;
4255 
4256 	for (n = 0; n < nbuf; ++n) {
4257 		if ((error = callback(&buf[n], info)) < 0) {
4258 			count = error;
4259 			break;
4260 		}
4261 		count += error;
4262 	}
4263 	return (count);
4264 }
4265 
4266 /*
4267  * print out statistics from the current status of the buffer pool
4268  * this can be toggeled by the system control option debug.syncprt
4269  */
4270 #ifdef DEBUG
4271 void
4272 vfs_bufstats(void)
4273 {
4274         int i, j, count;
4275         struct buf *bp;
4276         struct bqueues *dp;
4277         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4278         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4279 
4280         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4281                 count = 0;
4282                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4283                         counts[j] = 0;
4284 		crit_enter();
4285                 TAILQ_FOREACH(bp, dp, b_freelist) {
4286                         counts[bp->b_bufsize/PAGE_SIZE]++;
4287                         count++;
4288                 }
4289 		crit_exit();
4290                 kprintf("%s: total-%d", bname[i], count);
4291                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4292                         if (counts[j] != 0)
4293                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4294                 kprintf("\n");
4295         }
4296 }
4297 #endif
4298 
4299 #ifdef DDB
4300 
4301 DB_SHOW_COMMAND(buffer, db_show_buffer)
4302 {
4303 	/* get args */
4304 	struct buf *bp = (struct buf *)addr;
4305 
4306 	if (!have_addr) {
4307 		db_printf("usage: show buffer <addr>\n");
4308 		return;
4309 	}
4310 
4311 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4312 	db_printf("b_cmd = %d\n", bp->b_cmd);
4313 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4314 		  "b_resid = %d\n, b_data = %p, "
4315 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4316 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4317 		  bp->b_data,
4318 		  (long long)bp->b_bio2.bio_offset,
4319 		  (long long)(bp->b_bio2.bio_next ?
4320 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4321 	if (bp->b_xio.xio_npages) {
4322 		int i;
4323 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4324 			bp->b_xio.xio_npages);
4325 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4326 			vm_page_t m;
4327 			m = bp->b_xio.xio_pages[i];
4328 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4329 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4330 			if ((i + 1) < bp->b_xio.xio_npages)
4331 				db_printf(",");
4332 		}
4333 		db_printf("\n");
4334 	}
4335 }
4336 #endif /* DDB */
4337