1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/proc.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 #include <sys/buf2.h> 58 #include <sys/thread2.h> 59 #include <sys/spinlock2.h> 60 #include <vm/vm_page2.h> 61 62 #include "opt_ddb.h" 63 #ifdef DDB 64 #include <ddb/ddb.h> 65 #endif 66 67 /* 68 * Buffer queues. 69 */ 70 enum bufq_type { 71 BQUEUE_NONE, /* not on any queue */ 72 BQUEUE_LOCKED, /* locked buffers */ 73 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 74 BQUEUE_DIRTY, /* B_DELWRI buffers */ 75 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 76 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 77 BQUEUE_EMPTY, /* empty buffer headers */ 78 79 BUFFER_QUEUES /* number of buffer queues */ 80 }; 81 82 typedef enum bufq_type bufq_type_t; 83 84 #define BD_WAKE_SIZE 128 85 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 86 87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 88 struct spinlock bufspin = SPINLOCK_INITIALIZER(&bufspin); 89 90 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 91 92 struct buf *buf; /* buffer header pool */ 93 94 static void vfs_clean_pages(struct buf *bp); 95 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 96 static void vfs_vmio_release(struct buf *bp); 97 static int flushbufqueues(bufq_type_t q); 98 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 99 100 static void bd_signal(int totalspace); 101 static void buf_daemon(void); 102 static void buf_daemon_hw(void); 103 104 /* 105 * bogus page -- for I/O to/from partially complete buffers 106 * this is a temporary solution to the problem, but it is not 107 * really that bad. it would be better to split the buffer 108 * for input in the case of buffers partially already in memory, 109 * but the code is intricate enough already. 110 */ 111 vm_page_t bogus_page; 112 113 /* 114 * These are all static, but make the ones we export globals so we do 115 * not need to use compiler magic. 116 */ 117 int bufspace, maxbufspace, 118 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 119 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 120 static int lorunningspace, hirunningspace, runningbufreq; 121 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace; 122 int dirtybufcount, dirtybufcounthw; 123 int runningbufspace, runningbufcount; 124 static int getnewbufcalls; 125 static int getnewbufrestarts; 126 static int recoverbufcalls; 127 static int needsbuffer; /* locked by needsbuffer_spin */ 128 static int bd_request; /* locked by needsbuffer_spin */ 129 static int bd_request_hw; /* locked by needsbuffer_spin */ 130 static u_int bd_wake_ary[BD_WAKE_SIZE]; 131 static u_int bd_wake_index; 132 static struct spinlock needsbuffer_spin; 133 134 static struct thread *bufdaemon_td; 135 static struct thread *bufdaemonhw_td; 136 137 138 /* 139 * Sysctls for operational control of the buffer cache. 140 */ 141 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 142 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 143 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 144 "High watermark used to trigger explicit flushing of dirty buffers"); 145 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 146 "Minimum amount of buffer space required for active I/O"); 147 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 148 "Maximum amount of buffer space to usable for active I/O"); 149 /* 150 * Sysctls determining current state of the buffer cache. 151 */ 152 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 153 "Total number of buffers in buffer cache"); 154 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 155 "Pending bytes of dirty buffers (all)"); 156 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 157 "Pending bytes of dirty buffers (heavy weight)"); 158 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 159 "Pending number of dirty buffers"); 160 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 161 "Pending number of dirty buffers (heavy weight)"); 162 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 163 "I/O bytes currently in progress due to asynchronous writes"); 164 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 165 "I/O buffers currently in progress due to asynchronous writes"); 166 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 167 "Hard limit on maximum amount of memory usable for buffer space"); 168 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 169 "Soft limit on maximum amount of memory usable for buffer space"); 170 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 171 "Minimum amount of memory to reserve for system buffer space"); 172 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 173 "Amount of memory available for buffers"); 174 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 175 0, "Maximum amount of memory reserved for buffers using malloc"); 176 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 177 "Amount of memory left for buffers using malloc-scheme"); 178 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 179 "New buffer header acquisition requests"); 180 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 181 0, "New buffer header acquisition restarts"); 182 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 183 "Recover VM space in an emergency"); 184 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 185 "Buffer acquisition restarts due to fragmented buffer map"); 186 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 187 "Amount of time KVA space was deallocated in an arbitrary buffer"); 188 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 189 "Amount of time buffer re-use operations were successful"); 190 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 191 "sizeof(struct buf)"); 192 193 char *buf_wmesg = BUF_WMESG; 194 195 extern int vm_swap_size; 196 197 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 198 #define VFS_BIO_NEED_UNUSED02 0x02 199 #define VFS_BIO_NEED_UNUSED04 0x04 200 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 201 202 /* 203 * bufspacewakeup: 204 * 205 * Called when buffer space is potentially available for recovery. 206 * getnewbuf() will block on this flag when it is unable to free 207 * sufficient buffer space. Buffer space becomes recoverable when 208 * bp's get placed back in the queues. 209 */ 210 211 static __inline void 212 bufspacewakeup(void) 213 { 214 /* 215 * If someone is waiting for BUF space, wake them up. Even 216 * though we haven't freed the kva space yet, the waiting 217 * process will be able to now. 218 */ 219 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 220 spin_lock_wr(&needsbuffer_spin); 221 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 222 spin_unlock_wr(&needsbuffer_spin); 223 wakeup(&needsbuffer); 224 } 225 } 226 227 /* 228 * runningbufwakeup: 229 * 230 * Accounting for I/O in progress. 231 * 232 */ 233 static __inline void 234 runningbufwakeup(struct buf *bp) 235 { 236 int totalspace; 237 int limit; 238 239 if ((totalspace = bp->b_runningbufspace) != 0) { 240 atomic_subtract_int(&runningbufspace, totalspace); 241 atomic_subtract_int(&runningbufcount, 1); 242 bp->b_runningbufspace = 0; 243 244 /* 245 * see waitrunningbufspace() for limit test. 246 */ 247 limit = hirunningspace * 2 / 3; 248 if (runningbufreq && runningbufspace <= limit) { 249 runningbufreq = 0; 250 wakeup(&runningbufreq); 251 } 252 bd_signal(totalspace); 253 } 254 } 255 256 /* 257 * bufcountwakeup: 258 * 259 * Called when a buffer has been added to one of the free queues to 260 * account for the buffer and to wakeup anyone waiting for free buffers. 261 * This typically occurs when large amounts of metadata are being handled 262 * by the buffer cache ( else buffer space runs out first, usually ). 263 * 264 * MPSAFE 265 */ 266 static __inline void 267 bufcountwakeup(void) 268 { 269 if (needsbuffer) { 270 spin_lock_wr(&needsbuffer_spin); 271 needsbuffer &= ~VFS_BIO_NEED_ANY; 272 spin_unlock_wr(&needsbuffer_spin); 273 wakeup(&needsbuffer); 274 } 275 } 276 277 /* 278 * waitrunningbufspace() 279 * 280 * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3. 281 * This is the point where write bursting stops so we don't want to wait 282 * for the running amount to drop below it (at least if we still want bioq 283 * to burst writes). 284 * 285 * The caller may be using this function to block in a tight loop, we 286 * must block while runningbufspace is greater then or equal to 287 * hirunningspace * 2 / 3. 288 * 289 * And even with that it may not be enough, due to the presence of 290 * B_LOCKED dirty buffers, so also wait for at least one running buffer 291 * to complete. 292 */ 293 static __inline void 294 waitrunningbufspace(void) 295 { 296 int limit = hirunningspace * 2 / 3; 297 298 crit_enter(); 299 if (runningbufspace > limit) { 300 while (runningbufspace > limit) { 301 ++runningbufreq; 302 tsleep(&runningbufreq, 0, "wdrn1", 0); 303 } 304 } else if (runningbufspace) { 305 ++runningbufreq; 306 tsleep(&runningbufreq, 0, "wdrn2", 1); 307 } 308 crit_exit(); 309 } 310 311 /* 312 * buf_dirty_count_severe: 313 * 314 * Return true if we have too many dirty buffers. 315 */ 316 int 317 buf_dirty_count_severe(void) 318 { 319 return (runningbufspace + dirtybufspace >= hidirtybufspace || 320 dirtybufcount >= nbuf / 2); 321 } 322 323 /* 324 * Return true if the amount of running I/O is severe and BIOQ should 325 * start bursting. 326 */ 327 int 328 buf_runningbufspace_severe(void) 329 { 330 return (runningbufspace >= hirunningspace * 2 / 3); 331 } 332 333 /* 334 * vfs_buf_test_cache: 335 * 336 * Called when a buffer is extended. This function clears the B_CACHE 337 * bit if the newly extended portion of the buffer does not contain 338 * valid data. 339 * 340 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 341 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 342 * them while a clean buffer was present. 343 */ 344 static __inline__ 345 void 346 vfs_buf_test_cache(struct buf *bp, 347 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 348 vm_page_t m) 349 { 350 if (bp->b_flags & B_CACHE) { 351 int base = (foff + off) & PAGE_MASK; 352 if (vm_page_is_valid(m, base, size) == 0) 353 bp->b_flags &= ~B_CACHE; 354 } 355 } 356 357 /* 358 * bd_speedup() 359 * 360 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 361 * low water mark. 362 * 363 * MPSAFE 364 */ 365 static __inline__ 366 void 367 bd_speedup(void) 368 { 369 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 370 return; 371 372 if (bd_request == 0 && 373 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 374 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 375 spin_lock_wr(&needsbuffer_spin); 376 bd_request = 1; 377 spin_unlock_wr(&needsbuffer_spin); 378 wakeup(&bd_request); 379 } 380 if (bd_request_hw == 0 && 381 (dirtybufspacehw > lodirtybufspace / 2 || 382 dirtybufcounthw >= nbuf / 2)) { 383 spin_lock_wr(&needsbuffer_spin); 384 bd_request_hw = 1; 385 spin_unlock_wr(&needsbuffer_spin); 386 wakeup(&bd_request_hw); 387 } 388 } 389 390 /* 391 * bd_heatup() 392 * 393 * Get the buf_daemon heated up when the number of running and dirty 394 * buffers exceeds the mid-point. 395 * 396 * MPSAFE 397 */ 398 int 399 bd_heatup(void) 400 { 401 int mid1; 402 int mid2; 403 int totalspace; 404 405 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 406 407 totalspace = runningbufspace + dirtybufspace; 408 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 409 bd_speedup(); 410 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 411 if (totalspace >= mid2) 412 return(totalspace - mid2); 413 } 414 return(0); 415 } 416 417 /* 418 * bd_wait() 419 * 420 * Wait for the buffer cache to flush (totalspace) bytes worth of 421 * buffers, then return. 422 * 423 * Regardless this function blocks while the number of dirty buffers 424 * exceeds hidirtybufspace. 425 * 426 * MPSAFE 427 */ 428 void 429 bd_wait(int totalspace) 430 { 431 u_int i; 432 int count; 433 434 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 435 return; 436 437 while (totalspace > 0) { 438 bd_heatup(); 439 if (totalspace > runningbufspace + dirtybufspace) 440 totalspace = runningbufspace + dirtybufspace; 441 count = totalspace / BKVASIZE; 442 if (count >= BD_WAKE_SIZE) 443 count = BD_WAKE_SIZE - 1; 444 445 spin_lock_wr(&needsbuffer_spin); 446 i = (bd_wake_index + count) & BD_WAKE_MASK; 447 ++bd_wake_ary[i]; 448 tsleep_interlock(&bd_wake_ary[i], 0); 449 spin_unlock_wr(&needsbuffer_spin); 450 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 451 452 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 453 } 454 } 455 456 /* 457 * bd_signal() 458 * 459 * This function is called whenever runningbufspace or dirtybufspace 460 * is reduced. Track threads waiting for run+dirty buffer I/O 461 * complete. 462 * 463 * MPSAFE 464 */ 465 static void 466 bd_signal(int totalspace) 467 { 468 u_int i; 469 470 if (totalspace > 0) { 471 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 472 totalspace = BKVASIZE * BD_WAKE_SIZE; 473 spin_lock_wr(&needsbuffer_spin); 474 while (totalspace > 0) { 475 i = bd_wake_index++; 476 i &= BD_WAKE_MASK; 477 if (bd_wake_ary[i]) { 478 bd_wake_ary[i] = 0; 479 spin_unlock_wr(&needsbuffer_spin); 480 wakeup(&bd_wake_ary[i]); 481 spin_lock_wr(&needsbuffer_spin); 482 } 483 totalspace -= BKVASIZE; 484 } 485 spin_unlock_wr(&needsbuffer_spin); 486 } 487 } 488 489 /* 490 * BIO tracking support routines. 491 * 492 * Release a ref on a bio_track. Wakeup requests are atomically released 493 * along with the last reference so bk_active will never wind up set to 494 * only 0x80000000. 495 * 496 * MPSAFE 497 */ 498 static 499 void 500 bio_track_rel(struct bio_track *track) 501 { 502 int active; 503 int desired; 504 505 /* 506 * Shortcut 507 */ 508 active = track->bk_active; 509 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 510 return; 511 512 /* 513 * Full-on. Note that the wait flag is only atomically released on 514 * the 1->0 count transition. 515 * 516 * We check for a negative count transition using bit 30 since bit 31 517 * has a different meaning. 518 */ 519 for (;;) { 520 desired = (active & 0x7FFFFFFF) - 1; 521 if (desired) 522 desired |= active & 0x80000000; 523 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 524 if (desired & 0x40000000) 525 panic("bio_track_rel: bad count: %p\n", track); 526 if (active & 0x80000000) 527 wakeup(track); 528 break; 529 } 530 active = track->bk_active; 531 } 532 } 533 534 /* 535 * Wait for the tracking count to reach 0. 536 * 537 * Use atomic ops such that the wait flag is only set atomically when 538 * bk_active is non-zero. 539 * 540 * MPSAFE 541 */ 542 int 543 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 544 { 545 int active; 546 int desired; 547 int error; 548 549 /* 550 * Shortcut 551 */ 552 if (track->bk_active == 0) 553 return(0); 554 555 /* 556 * Full-on. Note that the wait flag may only be atomically set if 557 * the active count is non-zero. 558 */ 559 error = 0; 560 while ((active = track->bk_active) != 0) { 561 desired = active | 0x80000000; 562 tsleep_interlock(track, slp_flags); 563 if (active == desired || 564 atomic_cmpset_int(&track->bk_active, active, desired)) { 565 error = tsleep(track, slp_flags | PINTERLOCKED, 566 "iowait", slp_timo); 567 if (error) 568 break; 569 } 570 } 571 return (error); 572 } 573 574 /* 575 * bufinit: 576 * 577 * Load time initialisation of the buffer cache, called from machine 578 * dependant initialization code. 579 */ 580 void 581 bufinit(void) 582 { 583 struct buf *bp; 584 vm_offset_t bogus_offset; 585 int i; 586 587 spin_init(&needsbuffer_spin); 588 589 /* next, make a null set of free lists */ 590 for (i = 0; i < BUFFER_QUEUES; i++) 591 TAILQ_INIT(&bufqueues[i]); 592 593 /* finally, initialize each buffer header and stick on empty q */ 594 for (i = 0; i < nbuf; i++) { 595 bp = &buf[i]; 596 bzero(bp, sizeof *bp); 597 bp->b_flags = B_INVAL; /* we're just an empty header */ 598 bp->b_cmd = BUF_CMD_DONE; 599 bp->b_qindex = BQUEUE_EMPTY; 600 initbufbio(bp); 601 xio_init(&bp->b_xio); 602 buf_dep_init(bp); 603 BUF_LOCKINIT(bp); 604 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 605 } 606 607 /* 608 * maxbufspace is the absolute maximum amount of buffer space we are 609 * allowed to reserve in KVM and in real terms. The absolute maximum 610 * is nominally used by buf_daemon. hibufspace is the nominal maximum 611 * used by most other processes. The differential is required to 612 * ensure that buf_daemon is able to run when other processes might 613 * be blocked waiting for buffer space. 614 * 615 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 616 * this may result in KVM fragmentation which is not handled optimally 617 * by the system. 618 */ 619 maxbufspace = nbuf * BKVASIZE; 620 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 621 lobufspace = hibufspace - MAXBSIZE; 622 623 lorunningspace = 512 * 1024; 624 /* hirunningspace -- see below */ 625 626 /* 627 * Limit the amount of malloc memory since it is wired permanently 628 * into the kernel space. Even though this is accounted for in 629 * the buffer allocation, we don't want the malloced region to grow 630 * uncontrolled. The malloc scheme improves memory utilization 631 * significantly on average (small) directories. 632 */ 633 maxbufmallocspace = hibufspace / 20; 634 635 /* 636 * Reduce the chance of a deadlock occuring by limiting the number 637 * of delayed-write dirty buffers we allow to stack up. 638 * 639 * We don't want too much actually queued to the device at once 640 * (XXX this needs to be per-mount!), because the buffers will 641 * wind up locked for a very long period of time while the I/O 642 * drains. 643 */ 644 hidirtybufspace = hibufspace / 2; /* dirty + running */ 645 hirunningspace = hibufspace / 16; /* locked & queued to device */ 646 if (hirunningspace < 1024 * 1024) 647 hirunningspace = 1024 * 1024; 648 649 dirtybufspace = 0; 650 dirtybufspacehw = 0; 651 652 lodirtybufspace = hidirtybufspace / 2; 653 654 /* 655 * Maximum number of async ops initiated per buf_daemon loop. This is 656 * somewhat of a hack at the moment, we really need to limit ourselves 657 * based on the number of bytes of I/O in-transit that were initiated 658 * from buf_daemon. 659 */ 660 661 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 662 bogus_page = vm_page_alloc(&kernel_object, 663 (bogus_offset >> PAGE_SHIFT), 664 VM_ALLOC_NORMAL); 665 vmstats.v_wire_count++; 666 667 } 668 669 /* 670 * Initialize the embedded bio structures 671 */ 672 void 673 initbufbio(struct buf *bp) 674 { 675 bp->b_bio1.bio_buf = bp; 676 bp->b_bio1.bio_prev = NULL; 677 bp->b_bio1.bio_offset = NOOFFSET; 678 bp->b_bio1.bio_next = &bp->b_bio2; 679 bp->b_bio1.bio_done = NULL; 680 bp->b_bio1.bio_flags = 0; 681 682 bp->b_bio2.bio_buf = bp; 683 bp->b_bio2.bio_prev = &bp->b_bio1; 684 bp->b_bio2.bio_offset = NOOFFSET; 685 bp->b_bio2.bio_next = NULL; 686 bp->b_bio2.bio_done = NULL; 687 bp->b_bio2.bio_flags = 0; 688 } 689 690 /* 691 * Reinitialize the embedded bio structures as well as any additional 692 * translation cache layers. 693 */ 694 void 695 reinitbufbio(struct buf *bp) 696 { 697 struct bio *bio; 698 699 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 700 bio->bio_done = NULL; 701 bio->bio_offset = NOOFFSET; 702 } 703 } 704 705 /* 706 * Push another BIO layer onto an existing BIO and return it. The new 707 * BIO layer may already exist, holding cached translation data. 708 */ 709 struct bio * 710 push_bio(struct bio *bio) 711 { 712 struct bio *nbio; 713 714 if ((nbio = bio->bio_next) == NULL) { 715 int index = bio - &bio->bio_buf->b_bio_array[0]; 716 if (index >= NBUF_BIO - 1) { 717 panic("push_bio: too many layers bp %p\n", 718 bio->bio_buf); 719 } 720 nbio = &bio->bio_buf->b_bio_array[index + 1]; 721 bio->bio_next = nbio; 722 nbio->bio_prev = bio; 723 nbio->bio_buf = bio->bio_buf; 724 nbio->bio_offset = NOOFFSET; 725 nbio->bio_done = NULL; 726 nbio->bio_next = NULL; 727 } 728 KKASSERT(nbio->bio_done == NULL); 729 return(nbio); 730 } 731 732 /* 733 * Pop a BIO translation layer, returning the previous layer. The 734 * must have been previously pushed. 735 */ 736 struct bio * 737 pop_bio(struct bio *bio) 738 { 739 return(bio->bio_prev); 740 } 741 742 void 743 clearbiocache(struct bio *bio) 744 { 745 while (bio) { 746 bio->bio_offset = NOOFFSET; 747 bio = bio->bio_next; 748 } 749 } 750 751 /* 752 * bfreekva: 753 * 754 * Free the KVA allocation for buffer 'bp'. 755 * 756 * Must be called from a critical section as this is the only locking for 757 * buffer_map. 758 * 759 * Since this call frees up buffer space, we call bufspacewakeup(). 760 * 761 * MPALMOSTSAFE 762 */ 763 static void 764 bfreekva(struct buf *bp) 765 { 766 int count; 767 768 if (bp->b_kvasize) { 769 get_mplock(); 770 ++buffreekvacnt; 771 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 772 vm_map_lock(&buffer_map); 773 bufspace -= bp->b_kvasize; 774 vm_map_delete(&buffer_map, 775 (vm_offset_t) bp->b_kvabase, 776 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 777 &count 778 ); 779 vm_map_unlock(&buffer_map); 780 vm_map_entry_release(count); 781 bp->b_kvasize = 0; 782 bufspacewakeup(); 783 rel_mplock(); 784 } 785 } 786 787 /* 788 * bremfree: 789 * 790 * Remove the buffer from the appropriate free list. 791 */ 792 static __inline void 793 _bremfree(struct buf *bp) 794 { 795 if (bp->b_qindex != BQUEUE_NONE) { 796 KASSERT(BUF_REFCNTNB(bp) == 1, 797 ("bremfree: bp %p not locked",bp)); 798 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 799 bp->b_qindex = BQUEUE_NONE; 800 } else { 801 if (BUF_REFCNTNB(bp) <= 1) 802 panic("bremfree: removing a buffer not on a queue"); 803 } 804 } 805 806 void 807 bremfree(struct buf *bp) 808 { 809 spin_lock_wr(&bufspin); 810 _bremfree(bp); 811 spin_unlock_wr(&bufspin); 812 } 813 814 static void 815 bremfree_locked(struct buf *bp) 816 { 817 _bremfree(bp); 818 } 819 820 /* 821 * bread: 822 * 823 * Get a buffer with the specified data. Look in the cache first. We 824 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 825 * is set, the buffer is valid and we do not have to do anything ( see 826 * getblk() ). 827 * 828 * MPALMOSTSAFE 829 */ 830 int 831 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 832 { 833 struct buf *bp; 834 835 bp = getblk(vp, loffset, size, 0, 0); 836 *bpp = bp; 837 838 /* if not found in cache, do some I/O */ 839 if ((bp->b_flags & B_CACHE) == 0) { 840 get_mplock(); 841 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 842 bp->b_cmd = BUF_CMD_READ; 843 bp->b_bio1.bio_done = biodone_sync; 844 bp->b_bio1.bio_flags |= BIO_SYNC; 845 vfs_busy_pages(vp, bp); 846 vn_strategy(vp, &bp->b_bio1); 847 rel_mplock(); 848 return (biowait(&bp->b_bio1, "biord")); 849 } 850 return (0); 851 } 852 853 /* 854 * breadn: 855 * 856 * Operates like bread, but also starts asynchronous I/O on 857 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 858 * to initiating I/O . If B_CACHE is set, the buffer is valid 859 * and we do not have to do anything. 860 * 861 * MPALMOSTSAFE 862 */ 863 int 864 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 865 int *rabsize, int cnt, struct buf **bpp) 866 { 867 struct buf *bp, *rabp; 868 int i; 869 int rv = 0, readwait = 0; 870 871 *bpp = bp = getblk(vp, loffset, size, 0, 0); 872 873 /* if not found in cache, do some I/O */ 874 if ((bp->b_flags & B_CACHE) == 0) { 875 get_mplock(); 876 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 877 bp->b_cmd = BUF_CMD_READ; 878 bp->b_bio1.bio_done = biodone_sync; 879 bp->b_bio1.bio_flags |= BIO_SYNC; 880 vfs_busy_pages(vp, bp); 881 vn_strategy(vp, &bp->b_bio1); 882 ++readwait; 883 rel_mplock(); 884 } 885 886 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 887 if (inmem(vp, *raoffset)) 888 continue; 889 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 890 891 if ((rabp->b_flags & B_CACHE) == 0) { 892 get_mplock(); 893 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 894 rabp->b_cmd = BUF_CMD_READ; 895 vfs_busy_pages(vp, rabp); 896 BUF_KERNPROC(rabp); 897 vn_strategy(vp, &rabp->b_bio1); 898 rel_mplock(); 899 } else { 900 brelse(rabp); 901 } 902 } 903 if (readwait) 904 rv = biowait(&bp->b_bio1, "biord"); 905 return (rv); 906 } 907 908 /* 909 * bwrite: 910 * 911 * Synchronous write, waits for completion. 912 * 913 * Write, release buffer on completion. (Done by iodone 914 * if async). Do not bother writing anything if the buffer 915 * is invalid. 916 * 917 * Note that we set B_CACHE here, indicating that buffer is 918 * fully valid and thus cacheable. This is true even of NFS 919 * now so we set it generally. This could be set either here 920 * or in biodone() since the I/O is synchronous. We put it 921 * here. 922 */ 923 int 924 bwrite(struct buf *bp) 925 { 926 int error; 927 928 if (bp->b_flags & B_INVAL) { 929 brelse(bp); 930 return (0); 931 } 932 if (BUF_REFCNTNB(bp) == 0) 933 panic("bwrite: buffer is not busy???"); 934 935 /* Mark the buffer clean */ 936 bundirty(bp); 937 938 bp->b_flags &= ~(B_ERROR | B_EINTR); 939 bp->b_flags |= B_CACHE; 940 bp->b_cmd = BUF_CMD_WRITE; 941 bp->b_bio1.bio_done = biodone_sync; 942 bp->b_bio1.bio_flags |= BIO_SYNC; 943 vfs_busy_pages(bp->b_vp, bp); 944 945 /* 946 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 947 * valid for vnode-backed buffers. 948 */ 949 bp->b_runningbufspace = bp->b_bufsize; 950 if (bp->b_runningbufspace) { 951 runningbufspace += bp->b_runningbufspace; 952 ++runningbufcount; 953 } 954 955 vn_strategy(bp->b_vp, &bp->b_bio1); 956 error = biowait(&bp->b_bio1, "biows"); 957 brelse(bp); 958 return (error); 959 } 960 961 /* 962 * bawrite: 963 * 964 * Asynchronous write. Start output on a buffer, but do not wait for 965 * it to complete. The buffer is released when the output completes. 966 * 967 * bwrite() ( or the VOP routine anyway ) is responsible for handling 968 * B_INVAL buffers. Not us. 969 */ 970 void 971 bawrite(struct buf *bp) 972 { 973 if (bp->b_flags & B_INVAL) { 974 brelse(bp); 975 return; 976 } 977 if (BUF_REFCNTNB(bp) == 0) 978 panic("bwrite: buffer is not busy???"); 979 980 /* Mark the buffer clean */ 981 bundirty(bp); 982 983 bp->b_flags &= ~(B_ERROR | B_EINTR); 984 bp->b_flags |= B_CACHE; 985 bp->b_cmd = BUF_CMD_WRITE; 986 KKASSERT(bp->b_bio1.bio_done == NULL); 987 vfs_busy_pages(bp->b_vp, bp); 988 989 /* 990 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 991 * valid for vnode-backed buffers. 992 */ 993 bp->b_runningbufspace = bp->b_bufsize; 994 if (bp->b_runningbufspace) { 995 runningbufspace += bp->b_runningbufspace; 996 ++runningbufcount; 997 } 998 999 BUF_KERNPROC(bp); 1000 vn_strategy(bp->b_vp, &bp->b_bio1); 1001 } 1002 1003 /* 1004 * bowrite: 1005 * 1006 * Ordered write. Start output on a buffer, and flag it so that the 1007 * device will write it in the order it was queued. The buffer is 1008 * released when the output completes. bwrite() ( or the VOP routine 1009 * anyway ) is responsible for handling B_INVAL buffers. 1010 */ 1011 int 1012 bowrite(struct buf *bp) 1013 { 1014 bp->b_flags |= B_ORDERED; 1015 bawrite(bp); 1016 return (0); 1017 } 1018 1019 /* 1020 * bdwrite: 1021 * 1022 * Delayed write. (Buffer is marked dirty). Do not bother writing 1023 * anything if the buffer is marked invalid. 1024 * 1025 * Note that since the buffer must be completely valid, we can safely 1026 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1027 * biodone() in order to prevent getblk from writing the buffer 1028 * out synchronously. 1029 */ 1030 void 1031 bdwrite(struct buf *bp) 1032 { 1033 if (BUF_REFCNTNB(bp) == 0) 1034 panic("bdwrite: buffer is not busy"); 1035 1036 if (bp->b_flags & B_INVAL) { 1037 brelse(bp); 1038 return; 1039 } 1040 bdirty(bp); 1041 1042 /* 1043 * Set B_CACHE, indicating that the buffer is fully valid. This is 1044 * true even of NFS now. 1045 */ 1046 bp->b_flags |= B_CACHE; 1047 1048 /* 1049 * This bmap keeps the system from needing to do the bmap later, 1050 * perhaps when the system is attempting to do a sync. Since it 1051 * is likely that the indirect block -- or whatever other datastructure 1052 * that the filesystem needs is still in memory now, it is a good 1053 * thing to do this. Note also, that if the pageout daemon is 1054 * requesting a sync -- there might not be enough memory to do 1055 * the bmap then... So, this is important to do. 1056 */ 1057 if (bp->b_bio2.bio_offset == NOOFFSET) { 1058 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1059 NULL, NULL, BUF_CMD_WRITE); 1060 } 1061 1062 /* 1063 * Because the underlying pages may still be mapped and 1064 * writable trying to set the dirty buffer (b_dirtyoff/end) 1065 * range here will be inaccurate. 1066 * 1067 * However, we must still clean the pages to satisfy the 1068 * vnode_pager and pageout daemon, so theythink the pages 1069 * have been "cleaned". What has really occured is that 1070 * they've been earmarked for later writing by the buffer 1071 * cache. 1072 * 1073 * So we get the b_dirtyoff/end update but will not actually 1074 * depend on it (NFS that is) until the pages are busied for 1075 * writing later on. 1076 */ 1077 vfs_clean_pages(bp); 1078 bqrelse(bp); 1079 1080 /* 1081 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1082 * due to the softdep code. 1083 */ 1084 } 1085 1086 /* 1087 * bdirty: 1088 * 1089 * Turn buffer into delayed write request by marking it B_DELWRI. 1090 * B_RELBUF and B_NOCACHE must be cleared. 1091 * 1092 * We reassign the buffer to itself to properly update it in the 1093 * dirty/clean lists. 1094 * 1095 * Must be called from a critical section. 1096 * The buffer must be on BQUEUE_NONE. 1097 */ 1098 void 1099 bdirty(struct buf *bp) 1100 { 1101 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1102 if (bp->b_flags & B_NOCACHE) { 1103 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1104 bp->b_flags &= ~B_NOCACHE; 1105 } 1106 if (bp->b_flags & B_INVAL) { 1107 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1108 } 1109 bp->b_flags &= ~B_RELBUF; 1110 1111 if ((bp->b_flags & B_DELWRI) == 0) { 1112 bp->b_flags |= B_DELWRI; 1113 reassignbuf(bp); 1114 atomic_add_int(&dirtybufcount, 1); 1115 dirtybufspace += bp->b_bufsize; 1116 if (bp->b_flags & B_HEAVY) { 1117 atomic_add_int(&dirtybufcounthw, 1); 1118 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1119 } 1120 bd_heatup(); 1121 } 1122 } 1123 1124 /* 1125 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1126 * needs to be flushed with a different buf_daemon thread to avoid 1127 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1128 */ 1129 void 1130 bheavy(struct buf *bp) 1131 { 1132 if ((bp->b_flags & B_HEAVY) == 0) { 1133 bp->b_flags |= B_HEAVY; 1134 if (bp->b_flags & B_DELWRI) { 1135 atomic_add_int(&dirtybufcounthw, 1); 1136 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1137 } 1138 } 1139 } 1140 1141 /* 1142 * bundirty: 1143 * 1144 * Clear B_DELWRI for buffer. 1145 * 1146 * Must be called from a critical section. 1147 * 1148 * The buffer is typically on BQUEUE_NONE but there is one case in 1149 * brelse() that calls this function after placing the buffer on 1150 * a different queue. 1151 * 1152 * MPSAFE 1153 */ 1154 void 1155 bundirty(struct buf *bp) 1156 { 1157 if (bp->b_flags & B_DELWRI) { 1158 bp->b_flags &= ~B_DELWRI; 1159 reassignbuf(bp); 1160 atomic_subtract_int(&dirtybufcount, 1); 1161 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1162 if (bp->b_flags & B_HEAVY) { 1163 atomic_subtract_int(&dirtybufcounthw, 1); 1164 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1165 } 1166 bd_signal(bp->b_bufsize); 1167 } 1168 /* 1169 * Since it is now being written, we can clear its deferred write flag. 1170 */ 1171 bp->b_flags &= ~B_DEFERRED; 1172 } 1173 1174 /* 1175 * brelse: 1176 * 1177 * Release a busy buffer and, if requested, free its resources. The 1178 * buffer will be stashed in the appropriate bufqueue[] allowing it 1179 * to be accessed later as a cache entity or reused for other purposes. 1180 * 1181 * MPALMOSTSAFE 1182 */ 1183 void 1184 brelse(struct buf *bp) 1185 { 1186 #ifdef INVARIANTS 1187 int saved_flags = bp->b_flags; 1188 #endif 1189 1190 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1191 1192 /* 1193 * If B_NOCACHE is set we are being asked to destroy the buffer and 1194 * its backing store. Clear B_DELWRI. 1195 * 1196 * B_NOCACHE is set in two cases: (1) when the caller really wants 1197 * to destroy the buffer and backing store and (2) when the caller 1198 * wants to destroy the buffer and backing store after a write 1199 * completes. 1200 */ 1201 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1202 bundirty(bp); 1203 } 1204 1205 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1206 /* 1207 * A re-dirtied buffer is only subject to destruction 1208 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1209 */ 1210 /* leave buffer intact */ 1211 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1212 (bp->b_bufsize <= 0)) { 1213 /* 1214 * Either a failed read or we were asked to free or not 1215 * cache the buffer. This path is reached with B_DELWRI 1216 * set only if B_INVAL is already set. B_NOCACHE governs 1217 * backing store destruction. 1218 * 1219 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1220 * buffer cannot be immediately freed. 1221 */ 1222 bp->b_flags |= B_INVAL; 1223 if (LIST_FIRST(&bp->b_dep) != NULL) { 1224 get_mplock(); 1225 buf_deallocate(bp); 1226 rel_mplock(); 1227 } 1228 if (bp->b_flags & B_DELWRI) { 1229 atomic_subtract_int(&dirtybufcount, 1); 1230 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1231 if (bp->b_flags & B_HEAVY) { 1232 atomic_subtract_int(&dirtybufcounthw, 1); 1233 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1234 } 1235 bd_signal(bp->b_bufsize); 1236 } 1237 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1238 } 1239 1240 /* 1241 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1242 * If vfs_vmio_release() is called with either bit set, the 1243 * underlying pages may wind up getting freed causing a previous 1244 * write (bdwrite()) to get 'lost' because pages associated with 1245 * a B_DELWRI bp are marked clean. Pages associated with a 1246 * B_LOCKED buffer may be mapped by the filesystem. 1247 * 1248 * If we want to release the buffer ourselves (rather then the 1249 * originator asking us to release it), give the originator a 1250 * chance to countermand the release by setting B_LOCKED. 1251 * 1252 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1253 * if B_DELWRI is set. 1254 * 1255 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1256 * on pages to return pages to the VM page queues. 1257 */ 1258 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1259 bp->b_flags &= ~B_RELBUF; 1260 } else if (vm_page_count_severe()) { 1261 if (LIST_FIRST(&bp->b_dep) != NULL) { 1262 get_mplock(); 1263 buf_deallocate(bp); /* can set B_LOCKED */ 1264 rel_mplock(); 1265 } 1266 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1267 bp->b_flags &= ~B_RELBUF; 1268 else 1269 bp->b_flags |= B_RELBUF; 1270 } 1271 1272 /* 1273 * Make sure b_cmd is clear. It may have already been cleared by 1274 * biodone(). 1275 * 1276 * At this point destroying the buffer is governed by the B_INVAL 1277 * or B_RELBUF flags. 1278 */ 1279 bp->b_cmd = BUF_CMD_DONE; 1280 1281 /* 1282 * VMIO buffer rundown. Make sure the VM page array is restored 1283 * after an I/O may have replaces some of the pages with bogus pages 1284 * in order to not destroy dirty pages in a fill-in read. 1285 * 1286 * Note that due to the code above, if a buffer is marked B_DELWRI 1287 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1288 * B_INVAL may still be set, however. 1289 * 1290 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1291 * but not the backing store. B_NOCACHE will destroy the backing 1292 * store. 1293 * 1294 * Note that dirty NFS buffers contain byte-granular write ranges 1295 * and should not be destroyed w/ B_INVAL even if the backing store 1296 * is left intact. 1297 */ 1298 if (bp->b_flags & B_VMIO) { 1299 /* 1300 * Rundown for VMIO buffers which are not dirty NFS buffers. 1301 */ 1302 int i, j, resid; 1303 vm_page_t m; 1304 off_t foff; 1305 vm_pindex_t poff; 1306 vm_object_t obj; 1307 struct vnode *vp; 1308 1309 vp = bp->b_vp; 1310 1311 /* 1312 * Get the base offset and length of the buffer. Note that 1313 * in the VMIO case if the buffer block size is not 1314 * page-aligned then b_data pointer may not be page-aligned. 1315 * But our b_xio.xio_pages array *IS* page aligned. 1316 * 1317 * block sizes less then DEV_BSIZE (usually 512) are not 1318 * supported due to the page granularity bits (m->valid, 1319 * m->dirty, etc...). 1320 * 1321 * See man buf(9) for more information 1322 */ 1323 1324 resid = bp->b_bufsize; 1325 foff = bp->b_loffset; 1326 1327 get_mplock(); 1328 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1329 m = bp->b_xio.xio_pages[i]; 1330 vm_page_flag_clear(m, PG_ZERO); 1331 /* 1332 * If we hit a bogus page, fixup *all* of them 1333 * now. Note that we left these pages wired 1334 * when we removed them so they had better exist, 1335 * and they cannot be ripped out from under us so 1336 * no critical section protection is necessary. 1337 */ 1338 if (m == bogus_page) { 1339 obj = vp->v_object; 1340 poff = OFF_TO_IDX(bp->b_loffset); 1341 1342 for (j = i; j < bp->b_xio.xio_npages; j++) { 1343 vm_page_t mtmp; 1344 1345 mtmp = bp->b_xio.xio_pages[j]; 1346 if (mtmp == bogus_page) { 1347 mtmp = vm_page_lookup(obj, poff + j); 1348 if (!mtmp) { 1349 panic("brelse: page missing"); 1350 } 1351 bp->b_xio.xio_pages[j] = mtmp; 1352 } 1353 } 1354 1355 if ((bp->b_flags & B_INVAL) == 0) { 1356 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1357 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1358 } 1359 m = bp->b_xio.xio_pages[i]; 1360 } 1361 1362 /* 1363 * Invalidate the backing store if B_NOCACHE is set 1364 * (e.g. used with vinvalbuf()). If this is NFS 1365 * we impose a requirement that the block size be 1366 * a multiple of PAGE_SIZE and create a temporary 1367 * hack to basically invalidate the whole page. The 1368 * problem is that NFS uses really odd buffer sizes 1369 * especially when tracking piecemeal writes and 1370 * it also vinvalbuf()'s a lot, which would result 1371 * in only partial page validation and invalidation 1372 * here. If the file page is mmap()'d, however, 1373 * all the valid bits get set so after we invalidate 1374 * here we would end up with weird m->valid values 1375 * like 0xfc. nfs_getpages() can't handle this so 1376 * we clear all the valid bits for the NFS case 1377 * instead of just some of them. 1378 * 1379 * The real bug is the VM system having to set m->valid 1380 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1381 * itself is an artifact of the whole 512-byte 1382 * granular mess that exists to support odd block 1383 * sizes and UFS meta-data block sizes (e.g. 6144). 1384 * A complete rewrite is required. 1385 * 1386 * XXX 1387 */ 1388 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1389 int poffset = foff & PAGE_MASK; 1390 int presid; 1391 1392 presid = PAGE_SIZE - poffset; 1393 if (bp->b_vp->v_tag == VT_NFS && 1394 bp->b_vp->v_type == VREG) { 1395 ; /* entire page */ 1396 } else if (presid > resid) { 1397 presid = resid; 1398 } 1399 KASSERT(presid >= 0, ("brelse: extra page")); 1400 vm_page_set_invalid(m, poffset, presid); 1401 } 1402 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1403 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1404 } 1405 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1406 vfs_vmio_release(bp); 1407 rel_mplock(); 1408 } else { 1409 /* 1410 * Rundown for non-VMIO buffers. 1411 */ 1412 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1413 get_mplock(); 1414 if (bp->b_bufsize) 1415 allocbuf(bp, 0); 1416 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1417 if (bp->b_vp) 1418 brelvp(bp); 1419 rel_mplock(); 1420 } 1421 } 1422 1423 if (bp->b_qindex != BQUEUE_NONE) 1424 panic("brelse: free buffer onto another queue???"); 1425 if (BUF_REFCNTNB(bp) > 1) { 1426 /* Temporary panic to verify exclusive locking */ 1427 /* This panic goes away when we allow shared refs */ 1428 panic("brelse: multiple refs"); 1429 /* NOT REACHED */ 1430 return; 1431 } 1432 1433 /* 1434 * Figure out the correct queue to place the cleaned up buffer on. 1435 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1436 * disassociated from their vnode. 1437 */ 1438 spin_lock_wr(&bufspin); 1439 if (bp->b_flags & B_LOCKED) { 1440 /* 1441 * Buffers that are locked are placed in the locked queue 1442 * immediately, regardless of their state. 1443 */ 1444 bp->b_qindex = BQUEUE_LOCKED; 1445 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1446 } else if (bp->b_bufsize == 0) { 1447 /* 1448 * Buffers with no memory. Due to conditionals near the top 1449 * of brelse() such buffers should probably already be 1450 * marked B_INVAL and disassociated from their vnode. 1451 */ 1452 bp->b_flags |= B_INVAL; 1453 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1454 KKASSERT((bp->b_flags & B_HASHED) == 0); 1455 if (bp->b_kvasize) { 1456 bp->b_qindex = BQUEUE_EMPTYKVA; 1457 } else { 1458 bp->b_qindex = BQUEUE_EMPTY; 1459 } 1460 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1461 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1462 /* 1463 * Buffers with junk contents. Again these buffers had better 1464 * already be disassociated from their vnode. 1465 */ 1466 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1467 KKASSERT((bp->b_flags & B_HASHED) == 0); 1468 bp->b_flags |= B_INVAL; 1469 bp->b_qindex = BQUEUE_CLEAN; 1470 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1471 } else { 1472 /* 1473 * Remaining buffers. These buffers are still associated with 1474 * their vnode. 1475 */ 1476 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1477 case B_DELWRI: 1478 bp->b_qindex = BQUEUE_DIRTY; 1479 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1480 break; 1481 case B_DELWRI | B_HEAVY: 1482 bp->b_qindex = BQUEUE_DIRTY_HW; 1483 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1484 b_freelist); 1485 break; 1486 default: 1487 /* 1488 * NOTE: Buffers are always placed at the end of the 1489 * queue. If B_AGE is not set the buffer will cycle 1490 * through the queue twice. 1491 */ 1492 bp->b_qindex = BQUEUE_CLEAN; 1493 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1494 break; 1495 } 1496 } 1497 spin_unlock_wr(&bufspin); 1498 1499 /* 1500 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1501 * on the correct queue. 1502 */ 1503 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1504 bundirty(bp); 1505 1506 /* 1507 * The bp is on an appropriate queue unless locked. If it is not 1508 * locked or dirty we can wakeup threads waiting for buffer space. 1509 * 1510 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1511 * if B_INVAL is set ). 1512 */ 1513 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1514 bufcountwakeup(); 1515 1516 /* 1517 * Something we can maybe free or reuse 1518 */ 1519 if (bp->b_bufsize || bp->b_kvasize) 1520 bufspacewakeup(); 1521 1522 /* 1523 * Clean up temporary flags and unlock the buffer. 1524 */ 1525 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1526 BUF_UNLOCK(bp); 1527 } 1528 1529 /* 1530 * bqrelse: 1531 * 1532 * Release a buffer back to the appropriate queue but do not try to free 1533 * it. The buffer is expected to be used again soon. 1534 * 1535 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1536 * biodone() to requeue an async I/O on completion. It is also used when 1537 * known good buffers need to be requeued but we think we may need the data 1538 * again soon. 1539 * 1540 * XXX we should be able to leave the B_RELBUF hint set on completion. 1541 * 1542 * MPSAFE 1543 */ 1544 void 1545 bqrelse(struct buf *bp) 1546 { 1547 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1548 1549 if (bp->b_qindex != BQUEUE_NONE) 1550 panic("bqrelse: free buffer onto another queue???"); 1551 if (BUF_REFCNTNB(bp) > 1) { 1552 /* do not release to free list */ 1553 panic("bqrelse: multiple refs"); 1554 return; 1555 } 1556 1557 spin_lock_wr(&bufspin); 1558 if (bp->b_flags & B_LOCKED) { 1559 /* 1560 * Locked buffers are released to the locked queue. However, 1561 * if the buffer is dirty it will first go into the dirty 1562 * queue and later on after the I/O completes successfully it 1563 * will be released to the locked queue. 1564 */ 1565 bp->b_qindex = BQUEUE_LOCKED; 1566 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1567 } else if (bp->b_flags & B_DELWRI) { 1568 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1569 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1570 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1571 } else if (vm_page_count_severe()) { 1572 /* 1573 * We are too low on memory, we have to try to free the 1574 * buffer (most importantly: the wired pages making up its 1575 * backing store) *now*. 1576 */ 1577 spin_unlock_wr(&bufspin); 1578 brelse(bp); 1579 return; 1580 } else { 1581 bp->b_qindex = BQUEUE_CLEAN; 1582 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1583 } 1584 spin_unlock_wr(&bufspin); 1585 1586 if ((bp->b_flags & B_LOCKED) == 0 && 1587 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1588 bufcountwakeup(); 1589 } 1590 1591 /* 1592 * Something we can maybe free or reuse. 1593 */ 1594 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1595 bufspacewakeup(); 1596 1597 /* 1598 * Final cleanup and unlock. Clear bits that are only used while a 1599 * buffer is actively locked. 1600 */ 1601 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1602 BUF_UNLOCK(bp); 1603 } 1604 1605 /* 1606 * vfs_vmio_release: 1607 * 1608 * Return backing pages held by the buffer 'bp' back to the VM system 1609 * if possible. The pages are freed if they are no longer valid or 1610 * attempt to free if it was used for direct I/O otherwise they are 1611 * sent to the page cache. 1612 * 1613 * Pages that were marked busy are left alone and skipped. 1614 * 1615 * The KVA mapping (b_data) for the underlying pages is removed by 1616 * this function. 1617 */ 1618 static void 1619 vfs_vmio_release(struct buf *bp) 1620 { 1621 int i; 1622 vm_page_t m; 1623 1624 crit_enter(); 1625 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1626 m = bp->b_xio.xio_pages[i]; 1627 bp->b_xio.xio_pages[i] = NULL; 1628 /* 1629 * In order to keep page LRU ordering consistent, put 1630 * everything on the inactive queue. 1631 */ 1632 vm_page_unwire(m, 0); 1633 /* 1634 * We don't mess with busy pages, it is 1635 * the responsibility of the process that 1636 * busied the pages to deal with them. 1637 */ 1638 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1639 continue; 1640 1641 if (m->wire_count == 0) { 1642 vm_page_flag_clear(m, PG_ZERO); 1643 /* 1644 * Might as well free the page if we can and it has 1645 * no valid data. We also free the page if the 1646 * buffer was used for direct I/O. 1647 */ 1648 #if 0 1649 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1650 m->hold_count == 0) { 1651 vm_page_busy(m); 1652 vm_page_protect(m, VM_PROT_NONE); 1653 vm_page_free(m); 1654 } else 1655 #endif 1656 if (bp->b_flags & B_DIRECT) { 1657 vm_page_try_to_free(m); 1658 } else if (vm_page_count_severe()) { 1659 vm_page_try_to_cache(m); 1660 } 1661 } 1662 } 1663 crit_exit(); 1664 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages); 1665 if (bp->b_bufsize) { 1666 bufspacewakeup(); 1667 bp->b_bufsize = 0; 1668 } 1669 bp->b_xio.xio_npages = 0; 1670 bp->b_flags &= ~B_VMIO; 1671 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1672 if (bp->b_vp) { 1673 get_mplock(); 1674 brelvp(bp); 1675 rel_mplock(); 1676 } 1677 } 1678 1679 /* 1680 * vfs_bio_awrite: 1681 * 1682 * Implement clustered async writes for clearing out B_DELWRI buffers. 1683 * This is much better then the old way of writing only one buffer at 1684 * a time. Note that we may not be presented with the buffers in the 1685 * correct order, so we search for the cluster in both directions. 1686 * 1687 * The buffer is locked on call. 1688 */ 1689 int 1690 vfs_bio_awrite(struct buf *bp) 1691 { 1692 int i; 1693 int j; 1694 off_t loffset = bp->b_loffset; 1695 struct vnode *vp = bp->b_vp; 1696 int nbytes; 1697 struct buf *bpa; 1698 int nwritten; 1699 int size; 1700 1701 /* 1702 * right now we support clustered writing only to regular files. If 1703 * we find a clusterable block we could be in the middle of a cluster 1704 * rather then at the beginning. 1705 * 1706 * NOTE: b_bio1 contains the logical loffset and is aliased 1707 * to b_loffset. b_bio2 contains the translated block number. 1708 */ 1709 if ((vp->v_type == VREG) && 1710 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1711 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1712 1713 size = vp->v_mount->mnt_stat.f_iosize; 1714 1715 for (i = size; i < MAXPHYS; i += size) { 1716 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1717 BUF_REFCNT(bpa) == 0 && 1718 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1719 (B_DELWRI | B_CLUSTEROK)) && 1720 (bpa->b_bufsize == size)) { 1721 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1722 (bpa->b_bio2.bio_offset != 1723 bp->b_bio2.bio_offset + i)) 1724 break; 1725 } else { 1726 break; 1727 } 1728 } 1729 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1730 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1731 BUF_REFCNT(bpa) == 0 && 1732 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1733 (B_DELWRI | B_CLUSTEROK)) && 1734 (bpa->b_bufsize == size)) { 1735 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1736 (bpa->b_bio2.bio_offset != 1737 bp->b_bio2.bio_offset - j)) 1738 break; 1739 } else { 1740 break; 1741 } 1742 } 1743 j -= size; 1744 nbytes = (i + j); 1745 1746 /* 1747 * this is a possible cluster write 1748 */ 1749 if (nbytes != size) { 1750 BUF_UNLOCK(bp); 1751 nwritten = cluster_wbuild(vp, size, 1752 loffset - j, nbytes); 1753 return nwritten; 1754 } 1755 } 1756 1757 /* 1758 * default (old) behavior, writing out only one block 1759 * 1760 * XXX returns b_bufsize instead of b_bcount for nwritten? 1761 */ 1762 nwritten = bp->b_bufsize; 1763 bremfree(bp); 1764 bawrite(bp); 1765 1766 return nwritten; 1767 } 1768 1769 /* 1770 * getnewbuf: 1771 * 1772 * Find and initialize a new buffer header, freeing up existing buffers 1773 * in the bufqueues as necessary. The new buffer is returned locked. 1774 * 1775 * Important: B_INVAL is not set. If the caller wishes to throw the 1776 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1777 * 1778 * We block if: 1779 * We have insufficient buffer headers 1780 * We have insufficient buffer space 1781 * buffer_map is too fragmented ( space reservation fails ) 1782 * If we have to flush dirty buffers ( but we try to avoid this ) 1783 * 1784 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1785 * Instead we ask the buf daemon to do it for us. We attempt to 1786 * avoid piecemeal wakeups of the pageout daemon. 1787 * 1788 * MPALMOSTSAFE 1789 */ 1790 static struct buf * 1791 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1792 { 1793 struct buf *bp; 1794 struct buf *nbp; 1795 int defrag = 0; 1796 int nqindex; 1797 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1798 static int flushingbufs; 1799 1800 /* 1801 * We can't afford to block since we might be holding a vnode lock, 1802 * which may prevent system daemons from running. We deal with 1803 * low-memory situations by proactively returning memory and running 1804 * async I/O rather then sync I/O. 1805 */ 1806 1807 ++getnewbufcalls; 1808 --getnewbufrestarts; 1809 restart: 1810 ++getnewbufrestarts; 1811 1812 /* 1813 * Setup for scan. If we do not have enough free buffers, 1814 * we setup a degenerate case that immediately fails. Note 1815 * that if we are specially marked process, we are allowed to 1816 * dip into our reserves. 1817 * 1818 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1819 * 1820 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1821 * However, there are a number of cases (defragging, reusing, ...) 1822 * where we cannot backup. 1823 */ 1824 nqindex = BQUEUE_EMPTYKVA; 1825 spin_lock_wr(&bufspin); 1826 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1827 1828 if (nbp == NULL) { 1829 /* 1830 * If no EMPTYKVA buffers and we are either 1831 * defragging or reusing, locate a CLEAN buffer 1832 * to free or reuse. If bufspace useage is low 1833 * skip this step so we can allocate a new buffer. 1834 */ 1835 if (defrag || bufspace >= lobufspace) { 1836 nqindex = BQUEUE_CLEAN; 1837 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1838 } 1839 1840 /* 1841 * If we could not find or were not allowed to reuse a 1842 * CLEAN buffer, check to see if it is ok to use an EMPTY 1843 * buffer. We can only use an EMPTY buffer if allocating 1844 * its KVA would not otherwise run us out of buffer space. 1845 */ 1846 if (nbp == NULL && defrag == 0 && 1847 bufspace + maxsize < hibufspace) { 1848 nqindex = BQUEUE_EMPTY; 1849 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1850 } 1851 } 1852 1853 /* 1854 * Run scan, possibly freeing data and/or kva mappings on the fly 1855 * depending. 1856 * 1857 * WARNING! bufspin is held! 1858 */ 1859 while ((bp = nbp) != NULL) { 1860 int qindex = nqindex; 1861 1862 nbp = TAILQ_NEXT(bp, b_freelist); 1863 1864 /* 1865 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1866 * cycles through the queue twice before being selected. 1867 */ 1868 if (qindex == BQUEUE_CLEAN && 1869 (bp->b_flags & B_AGE) == 0 && nbp) { 1870 bp->b_flags |= B_AGE; 1871 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 1872 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 1873 continue; 1874 } 1875 1876 /* 1877 * Calculate next bp ( we can only use it if we do not block 1878 * or do other fancy things ). 1879 */ 1880 if (nbp == NULL) { 1881 switch(qindex) { 1882 case BQUEUE_EMPTY: 1883 nqindex = BQUEUE_EMPTYKVA; 1884 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 1885 break; 1886 /* fall through */ 1887 case BQUEUE_EMPTYKVA: 1888 nqindex = BQUEUE_CLEAN; 1889 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 1890 break; 1891 /* fall through */ 1892 case BQUEUE_CLEAN: 1893 /* 1894 * nbp is NULL. 1895 */ 1896 break; 1897 } 1898 } 1899 1900 /* 1901 * Sanity Checks 1902 */ 1903 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 1904 1905 /* 1906 * Note: we no longer distinguish between VMIO and non-VMIO 1907 * buffers. 1908 */ 1909 1910 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1911 1912 /* 1913 * If we are defragging then we need a buffer with 1914 * b_kvasize != 0. XXX this situation should no longer 1915 * occur, if defrag is non-zero the buffer's b_kvasize 1916 * should also be non-zero at this point. XXX 1917 */ 1918 if (defrag && bp->b_kvasize == 0) { 1919 kprintf("Warning: defrag empty buffer %p\n", bp); 1920 continue; 1921 } 1922 1923 /* 1924 * Start freeing the bp. This is somewhat involved. nbp 1925 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 1926 * on the clean list must be disassociated from their 1927 * current vnode. Buffers on the empty[kva] lists have 1928 * already been disassociated. 1929 */ 1930 1931 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1932 spin_unlock_wr(&bufspin); 1933 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp); 1934 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 1935 goto restart; 1936 } 1937 if (bp->b_qindex != qindex) { 1938 spin_unlock_wr(&bufspin); 1939 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex); 1940 BUF_UNLOCK(bp); 1941 goto restart; 1942 } 1943 bremfree_locked(bp); 1944 spin_unlock_wr(&bufspin); 1945 1946 /* 1947 * Dependancies must be handled before we disassociate the 1948 * vnode. 1949 * 1950 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 1951 * be immediately disassociated. HAMMER then becomes 1952 * responsible for releasing the buffer. 1953 * 1954 * NOTE: bufspin is UNLOCKED now. 1955 */ 1956 if (LIST_FIRST(&bp->b_dep) != NULL) { 1957 get_mplock(); 1958 buf_deallocate(bp); 1959 rel_mplock(); 1960 if (bp->b_flags & B_LOCKED) { 1961 bqrelse(bp); 1962 goto restart; 1963 } 1964 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 1965 } 1966 1967 if (qindex == BQUEUE_CLEAN) { 1968 get_mplock(); 1969 if (bp->b_flags & B_VMIO) { 1970 get_mplock(); 1971 vfs_vmio_release(bp); 1972 rel_mplock(); 1973 } 1974 if (bp->b_vp) 1975 brelvp(bp); 1976 rel_mplock(); 1977 } 1978 1979 /* 1980 * NOTE: nbp is now entirely invalid. We can only restart 1981 * the scan from this point on. 1982 * 1983 * Get the rest of the buffer freed up. b_kva* is still 1984 * valid after this operation. 1985 */ 1986 1987 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 1988 KKASSERT((bp->b_flags & B_HASHED) == 0); 1989 1990 /* 1991 * critical section protection is not required when 1992 * scrapping a buffer's contents because it is already 1993 * wired. 1994 */ 1995 if (bp->b_bufsize) { 1996 get_mplock(); 1997 allocbuf(bp, 0); 1998 rel_mplock(); 1999 } 2000 2001 bp->b_flags = B_BNOCLIP; 2002 bp->b_cmd = BUF_CMD_DONE; 2003 bp->b_vp = NULL; 2004 bp->b_error = 0; 2005 bp->b_resid = 0; 2006 bp->b_bcount = 0; 2007 bp->b_xio.xio_npages = 0; 2008 bp->b_dirtyoff = bp->b_dirtyend = 0; 2009 reinitbufbio(bp); 2010 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2011 buf_dep_init(bp); 2012 if (blkflags & GETBLK_BHEAVY) 2013 bp->b_flags |= B_HEAVY; 2014 2015 /* 2016 * If we are defragging then free the buffer. 2017 */ 2018 if (defrag) { 2019 bp->b_flags |= B_INVAL; 2020 bfreekva(bp); 2021 brelse(bp); 2022 defrag = 0; 2023 goto restart; 2024 } 2025 2026 /* 2027 * If we are overcomitted then recover the buffer and its 2028 * KVM space. This occurs in rare situations when multiple 2029 * processes are blocked in getnewbuf() or allocbuf(). 2030 */ 2031 if (bufspace >= hibufspace) 2032 flushingbufs = 1; 2033 if (flushingbufs && bp->b_kvasize != 0) { 2034 bp->b_flags |= B_INVAL; 2035 bfreekva(bp); 2036 brelse(bp); 2037 goto restart; 2038 } 2039 if (bufspace < lobufspace) 2040 flushingbufs = 0; 2041 break; 2042 /* NOT REACHED, bufspin not held */ 2043 } 2044 2045 /* 2046 * If we exhausted our list, sleep as appropriate. We may have to 2047 * wakeup various daemons and write out some dirty buffers. 2048 * 2049 * Generally we are sleeping due to insufficient buffer space. 2050 * 2051 * NOTE: bufspin is held if bp is NULL, else it is not held. 2052 */ 2053 if (bp == NULL) { 2054 int flags; 2055 char *waitmsg; 2056 2057 spin_unlock_wr(&bufspin); 2058 if (defrag) { 2059 flags = VFS_BIO_NEED_BUFSPACE; 2060 waitmsg = "nbufkv"; 2061 } else if (bufspace >= hibufspace) { 2062 waitmsg = "nbufbs"; 2063 flags = VFS_BIO_NEED_BUFSPACE; 2064 } else { 2065 waitmsg = "newbuf"; 2066 flags = VFS_BIO_NEED_ANY; 2067 } 2068 2069 needsbuffer |= flags; 2070 bd_speedup(); /* heeeelp */ 2071 while (needsbuffer & flags) { 2072 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo)) 2073 return (NULL); 2074 } 2075 } else { 2076 /* 2077 * We finally have a valid bp. We aren't quite out of the 2078 * woods, we still have to reserve kva space. In order 2079 * to keep fragmentation sane we only allocate kva in 2080 * BKVASIZE chunks. 2081 * 2082 * (bufspin is not held) 2083 */ 2084 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2085 2086 if (maxsize != bp->b_kvasize) { 2087 vm_offset_t addr = 0; 2088 int count; 2089 2090 bfreekva(bp); 2091 2092 get_mplock(); 2093 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2094 vm_map_lock(&buffer_map); 2095 2096 if (vm_map_findspace(&buffer_map, 2097 vm_map_min(&buffer_map), maxsize, 2098 maxsize, 0, &addr)) { 2099 /* 2100 * Uh oh. Buffer map is too fragmented. We 2101 * must defragment the map. 2102 */ 2103 vm_map_unlock(&buffer_map); 2104 vm_map_entry_release(count); 2105 ++bufdefragcnt; 2106 defrag = 1; 2107 bp->b_flags |= B_INVAL; 2108 rel_mplock(); 2109 brelse(bp); 2110 goto restart; 2111 } 2112 if (addr) { 2113 vm_map_insert(&buffer_map, &count, 2114 NULL, 0, 2115 addr, addr + maxsize, 2116 VM_MAPTYPE_NORMAL, 2117 VM_PROT_ALL, VM_PROT_ALL, 2118 MAP_NOFAULT); 2119 2120 bp->b_kvabase = (caddr_t) addr; 2121 bp->b_kvasize = maxsize; 2122 bufspace += bp->b_kvasize; 2123 ++bufreusecnt; 2124 } 2125 vm_map_unlock(&buffer_map); 2126 vm_map_entry_release(count); 2127 rel_mplock(); 2128 } 2129 bp->b_data = bp->b_kvabase; 2130 } 2131 return(bp); 2132 } 2133 2134 /* 2135 * This routine is called in an emergency to recover VM pages from the 2136 * buffer cache by cashing in clean buffers. The idea is to recover 2137 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2138 */ 2139 static int 2140 recoverbufpages(void) 2141 { 2142 struct buf *bp; 2143 int bytes = 0; 2144 2145 ++recoverbufcalls; 2146 2147 spin_lock_wr(&bufspin); 2148 while (bytes < MAXBSIZE) { 2149 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2150 if (bp == NULL) 2151 break; 2152 2153 /* 2154 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2155 * cycles through the queue twice before being selected. 2156 */ 2157 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2158 bp->b_flags |= B_AGE; 2159 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2160 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2161 bp, b_freelist); 2162 continue; 2163 } 2164 2165 /* 2166 * Sanity Checks 2167 */ 2168 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2169 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2170 2171 /* 2172 * Start freeing the bp. This is somewhat involved. 2173 * 2174 * Buffers on the clean list must be disassociated from 2175 * their current vnode 2176 */ 2177 2178 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2179 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp); 2180 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2181 continue; 2182 } 2183 if (bp->b_qindex != BQUEUE_CLEAN) { 2184 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex); 2185 BUF_UNLOCK(bp); 2186 continue; 2187 } 2188 bremfree_locked(bp); 2189 spin_unlock_wr(&bufspin); 2190 2191 /* 2192 * Dependancies must be handled before we disassociate the 2193 * vnode. 2194 * 2195 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2196 * be immediately disassociated. HAMMER then becomes 2197 * responsible for releasing the buffer. 2198 */ 2199 if (LIST_FIRST(&bp->b_dep) != NULL) { 2200 buf_deallocate(bp); 2201 if (bp->b_flags & B_LOCKED) { 2202 bqrelse(bp); 2203 spin_lock_wr(&bufspin); 2204 continue; 2205 } 2206 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2207 } 2208 2209 bytes += bp->b_bufsize; 2210 2211 get_mplock(); 2212 if (bp->b_flags & B_VMIO) { 2213 bp->b_flags |= B_DIRECT; /* try to free pages */ 2214 vfs_vmio_release(bp); 2215 } 2216 if (bp->b_vp) 2217 brelvp(bp); 2218 2219 KKASSERT(bp->b_vp == NULL); 2220 KKASSERT((bp->b_flags & B_HASHED) == 0); 2221 2222 /* 2223 * critical section protection is not required when 2224 * scrapping a buffer's contents because it is already 2225 * wired. 2226 */ 2227 if (bp->b_bufsize) 2228 allocbuf(bp, 0); 2229 rel_mplock(); 2230 2231 bp->b_flags = B_BNOCLIP; 2232 bp->b_cmd = BUF_CMD_DONE; 2233 bp->b_vp = NULL; 2234 bp->b_error = 0; 2235 bp->b_resid = 0; 2236 bp->b_bcount = 0; 2237 bp->b_xio.xio_npages = 0; 2238 bp->b_dirtyoff = bp->b_dirtyend = 0; 2239 reinitbufbio(bp); 2240 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2241 buf_dep_init(bp); 2242 bp->b_flags |= B_INVAL; 2243 /* bfreekva(bp); */ 2244 brelse(bp); 2245 spin_lock_wr(&bufspin); 2246 } 2247 spin_unlock_wr(&bufspin); 2248 return(bytes); 2249 } 2250 2251 /* 2252 * buf_daemon: 2253 * 2254 * Buffer flushing daemon. Buffers are normally flushed by the 2255 * update daemon but if it cannot keep up this process starts to 2256 * take the load in an attempt to prevent getnewbuf() from blocking. 2257 * 2258 * Once a flush is initiated it does not stop until the number 2259 * of buffers falls below lodirtybuffers, but we will wake up anyone 2260 * waiting at the mid-point. 2261 */ 2262 2263 static struct kproc_desc buf_kp = { 2264 "bufdaemon", 2265 buf_daemon, 2266 &bufdaemon_td 2267 }; 2268 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2269 kproc_start, &buf_kp) 2270 2271 static struct kproc_desc bufhw_kp = { 2272 "bufdaemon_hw", 2273 buf_daemon_hw, 2274 &bufdaemonhw_td 2275 }; 2276 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2277 kproc_start, &bufhw_kp) 2278 2279 static void 2280 buf_daemon(void) 2281 { 2282 int limit; 2283 2284 /* 2285 * This process needs to be suspended prior to shutdown sync. 2286 */ 2287 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2288 bufdaemon_td, SHUTDOWN_PRI_LAST); 2289 curthread->td_flags |= TDF_SYSTHREAD; 2290 2291 /* 2292 * This process is allowed to take the buffer cache to the limit 2293 */ 2294 crit_enter(); 2295 2296 for (;;) { 2297 kproc_suspend_loop(); 2298 2299 /* 2300 * Do the flush as long as the number of dirty buffers 2301 * (including those running) exceeds lodirtybufspace. 2302 * 2303 * When flushing limit running I/O to hirunningspace 2304 * Do the flush. Limit the amount of in-transit I/O we 2305 * allow to build up, otherwise we would completely saturate 2306 * the I/O system. Wakeup any waiting processes before we 2307 * normally would so they can run in parallel with our drain. 2308 * 2309 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2310 * but because we split the operation into two threads we 2311 * have to cut it in half for each thread. 2312 */ 2313 waitrunningbufspace(); 2314 limit = lodirtybufspace / 2; 2315 while (runningbufspace + dirtybufspace > limit || 2316 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2317 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2318 break; 2319 if (runningbufspace < hirunningspace) 2320 continue; 2321 waitrunningbufspace(); 2322 } 2323 2324 /* 2325 * We reached our low water mark, reset the 2326 * request and sleep until we are needed again. 2327 * The sleep is just so the suspend code works. 2328 */ 2329 spin_lock_wr(&needsbuffer_spin); 2330 if (bd_request == 0) { 2331 ssleep(&bd_request, &needsbuffer_spin, 0, 2332 "psleep", hz); 2333 } 2334 bd_request = 0; 2335 spin_unlock_wr(&needsbuffer_spin); 2336 } 2337 } 2338 2339 static void 2340 buf_daemon_hw(void) 2341 { 2342 int limit; 2343 2344 /* 2345 * This process needs to be suspended prior to shutdown sync. 2346 */ 2347 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2348 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2349 curthread->td_flags |= TDF_SYSTHREAD; 2350 2351 /* 2352 * This process is allowed to take the buffer cache to the limit 2353 */ 2354 crit_enter(); 2355 2356 for (;;) { 2357 kproc_suspend_loop(); 2358 2359 /* 2360 * Do the flush. Limit the amount of in-transit I/O we 2361 * allow to build up, otherwise we would completely saturate 2362 * the I/O system. Wakeup any waiting processes before we 2363 * normally would so they can run in parallel with our drain. 2364 * 2365 * Once we decide to flush push the queued I/O up to 2366 * hirunningspace in order to trigger bursting by the bioq 2367 * subsystem. 2368 * 2369 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2370 * but because we split the operation into two threads we 2371 * have to cut it in half for each thread. 2372 */ 2373 waitrunningbufspace(); 2374 limit = lodirtybufspace / 2; 2375 while (runningbufspace + dirtybufspacehw > limit || 2376 dirtybufcounthw >= nbuf / 2) { 2377 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2378 break; 2379 if (runningbufspace < hirunningspace) 2380 continue; 2381 waitrunningbufspace(); 2382 } 2383 2384 /* 2385 * We reached our low water mark, reset the 2386 * request and sleep until we are needed again. 2387 * The sleep is just so the suspend code works. 2388 */ 2389 spin_lock_wr(&needsbuffer_spin); 2390 if (bd_request_hw == 0) { 2391 ssleep(&bd_request_hw, &needsbuffer_spin, 0, 2392 "psleep", hz); 2393 } 2394 bd_request_hw = 0; 2395 spin_unlock_wr(&needsbuffer_spin); 2396 } 2397 } 2398 2399 /* 2400 * flushbufqueues: 2401 * 2402 * Try to flush a buffer in the dirty queue. We must be careful to 2403 * free up B_INVAL buffers instead of write them, which NFS is 2404 * particularly sensitive to. 2405 * 2406 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2407 * that we really want to try to get the buffer out and reuse it 2408 * due to the write load on the machine. 2409 */ 2410 static int 2411 flushbufqueues(bufq_type_t q) 2412 { 2413 struct buf *bp; 2414 int r = 0; 2415 int spun; 2416 2417 spin_lock_wr(&bufspin); 2418 spun = 1; 2419 2420 bp = TAILQ_FIRST(&bufqueues[q]); 2421 while (bp) { 2422 KASSERT((bp->b_flags & B_DELWRI), 2423 ("unexpected clean buffer %p", bp)); 2424 2425 if (bp->b_flags & B_DELWRI) { 2426 if (bp->b_flags & B_INVAL) { 2427 spin_unlock_wr(&bufspin); 2428 spun = 0; 2429 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 2430 panic("flushbufqueues: locked buf"); 2431 bremfree(bp); 2432 brelse(bp); 2433 ++r; 2434 break; 2435 } 2436 if (LIST_FIRST(&bp->b_dep) != NULL && 2437 (bp->b_flags & B_DEFERRED) == 0 && 2438 buf_countdeps(bp, 0)) { 2439 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2440 TAILQ_INSERT_TAIL(&bufqueues[q], bp, 2441 b_freelist); 2442 bp->b_flags |= B_DEFERRED; 2443 bp = TAILQ_FIRST(&bufqueues[q]); 2444 continue; 2445 } 2446 2447 /* 2448 * Only write it out if we can successfully lock 2449 * it. If the buffer has a dependancy, 2450 * buf_checkwrite must also return 0 for us to 2451 * be able to initate the write. 2452 * 2453 * If the buffer is flagged B_ERROR it may be 2454 * requeued over and over again, we try to 2455 * avoid a live lock. 2456 */ 2457 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 2458 spin_unlock_wr(&bufspin); 2459 spun = 0; 2460 if (LIST_FIRST(&bp->b_dep) != NULL && 2461 buf_checkwrite(bp)) { 2462 bremfree(bp); 2463 brelse(bp); 2464 } else if (bp->b_flags & B_ERROR) { 2465 tsleep(bp, 0, "bioer", 1); 2466 bp->b_flags &= ~B_AGE; 2467 vfs_bio_awrite(bp); 2468 } else { 2469 bp->b_flags |= B_AGE; 2470 vfs_bio_awrite(bp); 2471 } 2472 ++r; 2473 break; 2474 } 2475 } 2476 bp = TAILQ_NEXT(bp, b_freelist); 2477 } 2478 if (spun) 2479 spin_unlock_wr(&bufspin); 2480 return (r); 2481 } 2482 2483 /* 2484 * inmem: 2485 * 2486 * Returns true if no I/O is needed to access the associated VM object. 2487 * This is like findblk except it also hunts around in the VM system for 2488 * the data. 2489 * 2490 * Note that we ignore vm_page_free() races from interrupts against our 2491 * lookup, since if the caller is not protected our return value will not 2492 * be any more valid then otherwise once we exit the critical section. 2493 */ 2494 int 2495 inmem(struct vnode *vp, off_t loffset) 2496 { 2497 vm_object_t obj; 2498 vm_offset_t toff, tinc, size; 2499 vm_page_t m; 2500 2501 if (findblk(vp, loffset, FINDBLK_TEST)) 2502 return 1; 2503 if (vp->v_mount == NULL) 2504 return 0; 2505 if ((obj = vp->v_object) == NULL) 2506 return 0; 2507 2508 size = PAGE_SIZE; 2509 if (size > vp->v_mount->mnt_stat.f_iosize) 2510 size = vp->v_mount->mnt_stat.f_iosize; 2511 2512 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2513 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2514 if (m == NULL) 2515 return 0; 2516 tinc = size; 2517 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2518 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2519 if (vm_page_is_valid(m, 2520 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2521 return 0; 2522 } 2523 return 1; 2524 } 2525 2526 /* 2527 * findblk: 2528 * 2529 * Locate and return the specified buffer. Unless flagged otherwise, 2530 * a locked buffer will be returned if it exists or NULL if it does not. 2531 * 2532 * findblk()'d buffers are still on the bufqueues and if you intend 2533 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2534 * and possibly do other stuff to it. 2535 * 2536 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2537 * for locking the buffer and ensuring that it remains 2538 * the desired buffer after locking. 2539 * 2540 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2541 * to acquire the lock we return NULL, even if the 2542 * buffer exists. 2543 * 2544 * (0) - Lock the buffer blocking. 2545 * 2546 * MPSAFE 2547 */ 2548 struct buf * 2549 findblk(struct vnode *vp, off_t loffset, int flags) 2550 { 2551 lwkt_tokref vlock; 2552 struct buf *bp; 2553 int lkflags; 2554 2555 lkflags = LK_EXCLUSIVE; 2556 if (flags & FINDBLK_NBLOCK) 2557 lkflags |= LK_NOWAIT; 2558 2559 for (;;) { 2560 lwkt_gettoken(&vlock, &vp->v_token); 2561 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2562 lwkt_reltoken(&vlock); 2563 if (bp == NULL || (flags & FINDBLK_TEST)) 2564 break; 2565 if (BUF_LOCK(bp, lkflags)) { 2566 bp = NULL; 2567 break; 2568 } 2569 if (bp->b_vp == vp && bp->b_loffset == loffset) 2570 break; 2571 BUF_UNLOCK(bp); 2572 } 2573 return(bp); 2574 } 2575 2576 /* 2577 * getcacheblk: 2578 * 2579 * Similar to getblk() except only returns the buffer if it is 2580 * B_CACHE and requires no other manipulation. Otherwise NULL 2581 * is returned. 2582 * 2583 * If B_RAM is set the buffer might be just fine, but we return 2584 * NULL anyway because we want the code to fall through to the 2585 * cluster read. Otherwise read-ahead breaks. 2586 */ 2587 struct buf * 2588 getcacheblk(struct vnode *vp, off_t loffset) 2589 { 2590 struct buf *bp; 2591 2592 bp = findblk(vp, loffset, 0); 2593 if (bp) { 2594 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) { 2595 bp->b_flags &= ~B_AGE; 2596 bremfree(bp); 2597 } else { 2598 BUF_UNLOCK(bp); 2599 bp = NULL; 2600 } 2601 } 2602 return (bp); 2603 } 2604 2605 /* 2606 * getblk: 2607 * 2608 * Get a block given a specified block and offset into a file/device. 2609 * B_INVAL may or may not be set on return. The caller should clear 2610 * B_INVAL prior to initiating a READ. 2611 * 2612 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2613 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2614 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2615 * without doing any of those things the system will likely believe 2616 * the buffer to be valid (especially if it is not B_VMIO), and the 2617 * next getblk() will return the buffer with B_CACHE set. 2618 * 2619 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2620 * an existing buffer. 2621 * 2622 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2623 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2624 * and then cleared based on the backing VM. If the previous buffer is 2625 * non-0-sized but invalid, B_CACHE will be cleared. 2626 * 2627 * If getblk() must create a new buffer, the new buffer is returned with 2628 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2629 * case it is returned with B_INVAL clear and B_CACHE set based on the 2630 * backing VM. 2631 * 2632 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2633 * B_CACHE bit is clear. 2634 * 2635 * What this means, basically, is that the caller should use B_CACHE to 2636 * determine whether the buffer is fully valid or not and should clear 2637 * B_INVAL prior to issuing a read. If the caller intends to validate 2638 * the buffer by loading its data area with something, the caller needs 2639 * to clear B_INVAL. If the caller does this without issuing an I/O, 2640 * the caller should set B_CACHE ( as an optimization ), else the caller 2641 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2642 * a write attempt or if it was a successfull read. If the caller 2643 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2644 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2645 * 2646 * getblk flags: 2647 * 2648 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2649 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2650 * 2651 * MPALMOSTSAFE 2652 */ 2653 struct buf * 2654 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2655 { 2656 struct buf *bp; 2657 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2658 int error; 2659 int lkflags; 2660 2661 if (size > MAXBSIZE) 2662 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2663 if (vp->v_object == NULL) 2664 panic("getblk: vnode %p has no object!", vp); 2665 2666 loop: 2667 if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) { 2668 /* 2669 * The buffer was found in the cache, but we need to lock it. 2670 * Even with LK_NOWAIT the lockmgr may break our critical 2671 * section, so double-check the validity of the buffer 2672 * once the lock has been obtained. 2673 */ 2674 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2675 if (blkflags & GETBLK_NOWAIT) 2676 return(NULL); 2677 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2678 if (blkflags & GETBLK_PCATCH) 2679 lkflags |= LK_PCATCH; 2680 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2681 if (error) { 2682 if (error == ENOLCK) 2683 goto loop; 2684 return (NULL); 2685 } 2686 /* buffer may have changed on us */ 2687 } 2688 2689 /* 2690 * Once the buffer has been locked, make sure we didn't race 2691 * a buffer recyclement. Buffers that are no longer hashed 2692 * will have b_vp == NULL, so this takes care of that check 2693 * as well. 2694 */ 2695 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2696 kprintf("Warning buffer %p (vp %p loffset %lld) " 2697 "was recycled\n", 2698 bp, vp, (long long)loffset); 2699 BUF_UNLOCK(bp); 2700 goto loop; 2701 } 2702 2703 /* 2704 * If SZMATCH any pre-existing buffer must be of the requested 2705 * size or NULL is returned. The caller absolutely does not 2706 * want getblk() to bwrite() the buffer on a size mismatch. 2707 */ 2708 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2709 BUF_UNLOCK(bp); 2710 return(NULL); 2711 } 2712 2713 /* 2714 * All vnode-based buffers must be backed by a VM object. 2715 */ 2716 KKASSERT(bp->b_flags & B_VMIO); 2717 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2718 bp->b_flags &= ~B_AGE; 2719 2720 /* 2721 * Make sure that B_INVAL buffers do not have a cached 2722 * block number translation. 2723 */ 2724 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2725 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 2726 " did not have cleared bio_offset cache\n", 2727 bp, vp, (long long)loffset); 2728 clearbiocache(&bp->b_bio2); 2729 } 2730 2731 /* 2732 * The buffer is locked. B_CACHE is cleared if the buffer is 2733 * invalid. 2734 */ 2735 if (bp->b_flags & B_INVAL) 2736 bp->b_flags &= ~B_CACHE; 2737 bremfree(bp); 2738 2739 /* 2740 * Any size inconsistancy with a dirty buffer or a buffer 2741 * with a softupdates dependancy must be resolved. Resizing 2742 * the buffer in such circumstances can lead to problems. 2743 * 2744 * Dirty or dependant buffers are written synchronously. 2745 * Other types of buffers are simply released and 2746 * reconstituted as they may be backed by valid, dirty VM 2747 * pages (but not marked B_DELWRI). 2748 * 2749 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 2750 * and may be left over from a prior truncation (and thus 2751 * no longer represent the actual EOF point), so we 2752 * definitely do not want to B_NOCACHE the backing store. 2753 */ 2754 if (size != bp->b_bcount) { 2755 get_mplock(); 2756 if (bp->b_flags & B_DELWRI) { 2757 bp->b_flags |= B_RELBUF; 2758 bwrite(bp); 2759 } else if (LIST_FIRST(&bp->b_dep)) { 2760 bp->b_flags |= B_RELBUF; 2761 bwrite(bp); 2762 } else { 2763 bp->b_flags |= B_RELBUF; 2764 brelse(bp); 2765 } 2766 rel_mplock(); 2767 goto loop; 2768 } 2769 KKASSERT(size <= bp->b_kvasize); 2770 KASSERT(bp->b_loffset != NOOFFSET, 2771 ("getblk: no buffer offset")); 2772 2773 /* 2774 * A buffer with B_DELWRI set and B_CACHE clear must 2775 * be committed before we can return the buffer in 2776 * order to prevent the caller from issuing a read 2777 * ( due to B_CACHE not being set ) and overwriting 2778 * it. 2779 * 2780 * Most callers, including NFS and FFS, need this to 2781 * operate properly either because they assume they 2782 * can issue a read if B_CACHE is not set, or because 2783 * ( for example ) an uncached B_DELWRI might loop due 2784 * to softupdates re-dirtying the buffer. In the latter 2785 * case, B_CACHE is set after the first write completes, 2786 * preventing further loops. 2787 * 2788 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2789 * above while extending the buffer, we cannot allow the 2790 * buffer to remain with B_CACHE set after the write 2791 * completes or it will represent a corrupt state. To 2792 * deal with this we set B_NOCACHE to scrap the buffer 2793 * after the write. 2794 * 2795 * XXX Should this be B_RELBUF instead of B_NOCACHE? 2796 * I'm not even sure this state is still possible 2797 * now that getblk() writes out any dirty buffers 2798 * on size changes. 2799 * 2800 * We might be able to do something fancy, like setting 2801 * B_CACHE in bwrite() except if B_DELWRI is already set, 2802 * so the below call doesn't set B_CACHE, but that gets real 2803 * confusing. This is much easier. 2804 */ 2805 2806 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2807 get_mplock(); 2808 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 2809 "and CACHE clear, b_flags %08x\n", 2810 bp, (intmax_t)bp->b_loffset, bp->b_flags); 2811 bp->b_flags |= B_NOCACHE; 2812 bwrite(bp); 2813 rel_mplock(); 2814 goto loop; 2815 } 2816 } else { 2817 /* 2818 * Buffer is not in-core, create new buffer. The buffer 2819 * returned by getnewbuf() is locked. Note that the returned 2820 * buffer is also considered valid (not marked B_INVAL). 2821 * 2822 * Calculating the offset for the I/O requires figuring out 2823 * the block size. We use DEV_BSIZE for VBLK or VCHR and 2824 * the mount's f_iosize otherwise. If the vnode does not 2825 * have an associated mount we assume that the passed size is 2826 * the block size. 2827 * 2828 * Note that vn_isdisk() cannot be used here since it may 2829 * return a failure for numerous reasons. Note that the 2830 * buffer size may be larger then the block size (the caller 2831 * will use block numbers with the proper multiple). Beware 2832 * of using any v_* fields which are part of unions. In 2833 * particular, in DragonFly the mount point overloading 2834 * mechanism uses the namecache only and the underlying 2835 * directory vnode is not a special case. 2836 */ 2837 int bsize, maxsize; 2838 2839 if (vp->v_type == VBLK || vp->v_type == VCHR) 2840 bsize = DEV_BSIZE; 2841 else if (vp->v_mount) 2842 bsize = vp->v_mount->mnt_stat.f_iosize; 2843 else 2844 bsize = size; 2845 2846 maxsize = size + (loffset & PAGE_MASK); 2847 maxsize = imax(maxsize, bsize); 2848 2849 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 2850 if (bp == NULL) { 2851 if (slpflags || slptimeo) 2852 return NULL; 2853 goto loop; 2854 } 2855 2856 /* 2857 * Atomically insert the buffer into the hash, so that it can 2858 * be found by findblk(). 2859 * 2860 * If bgetvp() returns non-zero a collision occured, and the 2861 * bp will not be associated with the vnode. 2862 * 2863 * Make sure the translation layer has been cleared. 2864 */ 2865 bp->b_loffset = loffset; 2866 bp->b_bio2.bio_offset = NOOFFSET; 2867 /* bp->b_bio2.bio_next = NULL; */ 2868 2869 if (bgetvp(vp, bp)) { 2870 bp->b_flags |= B_INVAL; 2871 brelse(bp); 2872 goto loop; 2873 } 2874 2875 /* 2876 * All vnode-based buffers must be backed by a VM object. 2877 */ 2878 KKASSERT(vp->v_object != NULL); 2879 bp->b_flags |= B_VMIO; 2880 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2881 2882 get_mplock(); 2883 allocbuf(bp, size); 2884 rel_mplock(); 2885 } 2886 return (bp); 2887 } 2888 2889 /* 2890 * regetblk(bp) 2891 * 2892 * Reacquire a buffer that was previously released to the locked queue, 2893 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 2894 * set B_LOCKED (which handles the acquisition race). 2895 * 2896 * To this end, either B_LOCKED must be set or the dependancy list must be 2897 * non-empty. 2898 * 2899 * MPSAFE 2900 */ 2901 void 2902 regetblk(struct buf *bp) 2903 { 2904 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 2905 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 2906 bremfree(bp); 2907 } 2908 2909 /* 2910 * geteblk: 2911 * 2912 * Get an empty, disassociated buffer of given size. The buffer is 2913 * initially set to B_INVAL. 2914 * 2915 * critical section protection is not required for the allocbuf() 2916 * call because races are impossible here. 2917 * 2918 * MPALMOSTSAFE 2919 */ 2920 struct buf * 2921 geteblk(int size) 2922 { 2923 struct buf *bp; 2924 int maxsize; 2925 2926 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2927 2928 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2929 ; 2930 get_mplock(); 2931 allocbuf(bp, size); 2932 rel_mplock(); 2933 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2934 return (bp); 2935 } 2936 2937 2938 /* 2939 * allocbuf: 2940 * 2941 * This code constitutes the buffer memory from either anonymous system 2942 * memory (in the case of non-VMIO operations) or from an associated 2943 * VM object (in the case of VMIO operations). This code is able to 2944 * resize a buffer up or down. 2945 * 2946 * Note that this code is tricky, and has many complications to resolve 2947 * deadlock or inconsistant data situations. Tread lightly!!! 2948 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2949 * the caller. Calling this code willy nilly can result in the loss of data. 2950 * 2951 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2952 * B_CACHE for the non-VMIO case. 2953 * 2954 * This routine does not need to be called from a critical section but you 2955 * must own the buffer. 2956 * 2957 * NOTMPSAFE 2958 */ 2959 int 2960 allocbuf(struct buf *bp, int size) 2961 { 2962 int newbsize, mbsize; 2963 int i; 2964 2965 if (BUF_REFCNT(bp) == 0) 2966 panic("allocbuf: buffer not busy"); 2967 2968 if (bp->b_kvasize < size) 2969 panic("allocbuf: buffer too small"); 2970 2971 if ((bp->b_flags & B_VMIO) == 0) { 2972 caddr_t origbuf; 2973 int origbufsize; 2974 /* 2975 * Just get anonymous memory from the kernel. Don't 2976 * mess with B_CACHE. 2977 */ 2978 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2979 if (bp->b_flags & B_MALLOC) 2980 newbsize = mbsize; 2981 else 2982 newbsize = round_page(size); 2983 2984 if (newbsize < bp->b_bufsize) { 2985 /* 2986 * Malloced buffers are not shrunk 2987 */ 2988 if (bp->b_flags & B_MALLOC) { 2989 if (newbsize) { 2990 bp->b_bcount = size; 2991 } else { 2992 kfree(bp->b_data, M_BIOBUF); 2993 if (bp->b_bufsize) { 2994 bufmallocspace -= bp->b_bufsize; 2995 bufspacewakeup(); 2996 bp->b_bufsize = 0; 2997 } 2998 bp->b_data = bp->b_kvabase; 2999 bp->b_bcount = 0; 3000 bp->b_flags &= ~B_MALLOC; 3001 } 3002 return 1; 3003 } 3004 vm_hold_free_pages( 3005 bp, 3006 (vm_offset_t) bp->b_data + newbsize, 3007 (vm_offset_t) bp->b_data + bp->b_bufsize); 3008 } else if (newbsize > bp->b_bufsize) { 3009 /* 3010 * We only use malloced memory on the first allocation. 3011 * and revert to page-allocated memory when the buffer 3012 * grows. 3013 */ 3014 if ((bufmallocspace < maxbufmallocspace) && 3015 (bp->b_bufsize == 0) && 3016 (mbsize <= PAGE_SIZE/2)) { 3017 3018 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3019 bp->b_bufsize = mbsize; 3020 bp->b_bcount = size; 3021 bp->b_flags |= B_MALLOC; 3022 bufmallocspace += mbsize; 3023 return 1; 3024 } 3025 origbuf = NULL; 3026 origbufsize = 0; 3027 /* 3028 * If the buffer is growing on its other-than-first 3029 * allocation, then we revert to the page-allocation 3030 * scheme. 3031 */ 3032 if (bp->b_flags & B_MALLOC) { 3033 origbuf = bp->b_data; 3034 origbufsize = bp->b_bufsize; 3035 bp->b_data = bp->b_kvabase; 3036 if (bp->b_bufsize) { 3037 bufmallocspace -= bp->b_bufsize; 3038 bufspacewakeup(); 3039 bp->b_bufsize = 0; 3040 } 3041 bp->b_flags &= ~B_MALLOC; 3042 newbsize = round_page(newbsize); 3043 } 3044 vm_hold_load_pages( 3045 bp, 3046 (vm_offset_t) bp->b_data + bp->b_bufsize, 3047 (vm_offset_t) bp->b_data + newbsize); 3048 if (origbuf) { 3049 bcopy(origbuf, bp->b_data, origbufsize); 3050 kfree(origbuf, M_BIOBUF); 3051 } 3052 } 3053 } else { 3054 vm_page_t m; 3055 int desiredpages; 3056 3057 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3058 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3059 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3060 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3061 3062 if (bp->b_flags & B_MALLOC) 3063 panic("allocbuf: VMIO buffer can't be malloced"); 3064 /* 3065 * Set B_CACHE initially if buffer is 0 length or will become 3066 * 0-length. 3067 */ 3068 if (size == 0 || bp->b_bufsize == 0) 3069 bp->b_flags |= B_CACHE; 3070 3071 if (newbsize < bp->b_bufsize) { 3072 /* 3073 * DEV_BSIZE aligned new buffer size is less then the 3074 * DEV_BSIZE aligned existing buffer size. Figure out 3075 * if we have to remove any pages. 3076 */ 3077 if (desiredpages < bp->b_xio.xio_npages) { 3078 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3079 /* 3080 * the page is not freed here -- it 3081 * is the responsibility of 3082 * vnode_pager_setsize 3083 */ 3084 m = bp->b_xio.xio_pages[i]; 3085 KASSERT(m != bogus_page, 3086 ("allocbuf: bogus page found")); 3087 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3088 ; 3089 3090 bp->b_xio.xio_pages[i] = NULL; 3091 vm_page_unwire(m, 0); 3092 } 3093 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3094 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3095 bp->b_xio.xio_npages = desiredpages; 3096 } 3097 } else if (size > bp->b_bcount) { 3098 /* 3099 * We are growing the buffer, possibly in a 3100 * byte-granular fashion. 3101 */ 3102 struct vnode *vp; 3103 vm_object_t obj; 3104 vm_offset_t toff; 3105 vm_offset_t tinc; 3106 3107 /* 3108 * Step 1, bring in the VM pages from the object, 3109 * allocating them if necessary. We must clear 3110 * B_CACHE if these pages are not valid for the 3111 * range covered by the buffer. 3112 * 3113 * critical section protection is required to protect 3114 * against interrupts unbusying and freeing pages 3115 * between our vm_page_lookup() and our 3116 * busycheck/wiring call. 3117 */ 3118 vp = bp->b_vp; 3119 obj = vp->v_object; 3120 3121 crit_enter(); 3122 while (bp->b_xio.xio_npages < desiredpages) { 3123 vm_page_t m; 3124 vm_pindex_t pi; 3125 3126 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3127 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3128 /* 3129 * note: must allocate system pages 3130 * since blocking here could intefere 3131 * with paging I/O, no matter which 3132 * process we are. 3133 */ 3134 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3135 if (m) { 3136 vm_page_wire(m); 3137 vm_page_wakeup(m); 3138 bp->b_flags &= ~B_CACHE; 3139 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3140 ++bp->b_xio.xio_npages; 3141 } 3142 continue; 3143 } 3144 3145 /* 3146 * We found a page. If we have to sleep on it, 3147 * retry because it might have gotten freed out 3148 * from under us. 3149 * 3150 * We can only test PG_BUSY here. Blocking on 3151 * m->busy might lead to a deadlock: 3152 * 3153 * vm_fault->getpages->cluster_read->allocbuf 3154 * 3155 */ 3156 3157 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3158 continue; 3159 vm_page_flag_clear(m, PG_ZERO); 3160 vm_page_wire(m); 3161 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3162 ++bp->b_xio.xio_npages; 3163 } 3164 crit_exit(); 3165 3166 /* 3167 * Step 2. We've loaded the pages into the buffer, 3168 * we have to figure out if we can still have B_CACHE 3169 * set. Note that B_CACHE is set according to the 3170 * byte-granular range ( bcount and size ), not the 3171 * aligned range ( newbsize ). 3172 * 3173 * The VM test is against m->valid, which is DEV_BSIZE 3174 * aligned. Needless to say, the validity of the data 3175 * needs to also be DEV_BSIZE aligned. Note that this 3176 * fails with NFS if the server or some other client 3177 * extends the file's EOF. If our buffer is resized, 3178 * B_CACHE may remain set! XXX 3179 */ 3180 3181 toff = bp->b_bcount; 3182 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3183 3184 while ((bp->b_flags & B_CACHE) && toff < size) { 3185 vm_pindex_t pi; 3186 3187 if (tinc > (size - toff)) 3188 tinc = size - toff; 3189 3190 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3191 PAGE_SHIFT; 3192 3193 vfs_buf_test_cache( 3194 bp, 3195 bp->b_loffset, 3196 toff, 3197 tinc, 3198 bp->b_xio.xio_pages[pi] 3199 ); 3200 toff += tinc; 3201 tinc = PAGE_SIZE; 3202 } 3203 3204 /* 3205 * Step 3, fixup the KVM pmap. Remember that 3206 * bp->b_data is relative to bp->b_loffset, but 3207 * bp->b_loffset may be offset into the first page. 3208 */ 3209 3210 bp->b_data = (caddr_t) 3211 trunc_page((vm_offset_t)bp->b_data); 3212 pmap_qenter( 3213 (vm_offset_t)bp->b_data, 3214 bp->b_xio.xio_pages, 3215 bp->b_xio.xio_npages 3216 ); 3217 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3218 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3219 } 3220 } 3221 3222 /* adjust space use on already-dirty buffer */ 3223 if (bp->b_flags & B_DELWRI) { 3224 dirtybufspace += newbsize - bp->b_bufsize; 3225 if (bp->b_flags & B_HEAVY) 3226 dirtybufspacehw += newbsize - bp->b_bufsize; 3227 } 3228 if (newbsize < bp->b_bufsize) 3229 bufspacewakeup(); 3230 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3231 bp->b_bcount = size; /* requested buffer size */ 3232 return 1; 3233 } 3234 3235 /* 3236 * biowait: 3237 * 3238 * Wait for buffer I/O completion, returning error status. B_EINTR 3239 * is converted into an EINTR error but not cleared (since a chain 3240 * of biowait() calls may occur). 3241 * 3242 * On return bpdone() will have been called but the buffer will remain 3243 * locked and will not have been brelse()'d. 3244 * 3245 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3246 * likely still in progress on return. 3247 * 3248 * NOTE! This operation is on a BIO, not a BUF. 3249 * 3250 * NOTE! BIO_DONE is cleared by vn_strategy() 3251 * 3252 * MPSAFE 3253 */ 3254 static __inline int 3255 _biowait(struct bio *bio, const char *wmesg, int to) 3256 { 3257 struct buf *bp = bio->bio_buf; 3258 u_int32_t flags; 3259 u_int32_t nflags; 3260 int error; 3261 3262 KKASSERT(bio == &bp->b_bio1); 3263 for (;;) { 3264 flags = bio->bio_flags; 3265 if (flags & BIO_DONE) 3266 break; 3267 tsleep_interlock(bio, 0); 3268 nflags = flags | BIO_WANT; 3269 tsleep_interlock(bio, 0); 3270 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3271 if (wmesg) 3272 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3273 else if (bp->b_cmd == BUF_CMD_READ) 3274 error = tsleep(bio, PINTERLOCKED, "biord", to); 3275 else 3276 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3277 if (error) { 3278 kprintf("tsleep error biowait %d\n", error); 3279 return (error); 3280 } 3281 break; 3282 } 3283 } 3284 3285 /* 3286 * Finish up. 3287 */ 3288 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3289 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3290 if (bp->b_flags & B_EINTR) 3291 return (EINTR); 3292 if (bp->b_flags & B_ERROR) 3293 return (bp->b_error ? bp->b_error : EIO); 3294 return (0); 3295 } 3296 3297 int 3298 biowait(struct bio *bio, const char *wmesg) 3299 { 3300 return(_biowait(bio, wmesg, 0)); 3301 } 3302 3303 int 3304 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3305 { 3306 return(_biowait(bio, wmesg, to)); 3307 } 3308 3309 /* 3310 * This associates a tracking count with an I/O. vn_strategy() and 3311 * dev_dstrategy() do this automatically but there are a few cases 3312 * where a vnode or device layer is bypassed when a block translation 3313 * is cached. In such cases bio_start_transaction() may be called on 3314 * the bypassed layers so the system gets an I/O in progress indication 3315 * for those higher layers. 3316 */ 3317 void 3318 bio_start_transaction(struct bio *bio, struct bio_track *track) 3319 { 3320 bio->bio_track = track; 3321 bio_track_ref(track); 3322 } 3323 3324 /* 3325 * Initiate I/O on a vnode. 3326 */ 3327 void 3328 vn_strategy(struct vnode *vp, struct bio *bio) 3329 { 3330 struct bio_track *track; 3331 3332 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE); 3333 if (bio->bio_buf->b_cmd == BUF_CMD_READ) 3334 track = &vp->v_track_read; 3335 else 3336 track = &vp->v_track_write; 3337 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3338 bio->bio_track = track; 3339 bio_track_ref(track); 3340 vop_strategy(*vp->v_ops, vp, bio); 3341 } 3342 3343 /* 3344 * bpdone: 3345 * 3346 * Finish I/O on a buffer after all BIOs have been processed. 3347 * Called when the bio chain is exhausted or by biowait. If called 3348 * by biowait, elseit is typically 0. 3349 * 3350 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3351 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3352 * assuming B_INVAL is clear. 3353 * 3354 * For the VMIO case, we set B_CACHE if the op was a read and no 3355 * read error occured, or if the op was a write. B_CACHE is never 3356 * set if the buffer is invalid or otherwise uncacheable. 3357 * 3358 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3359 * initiator to leave B_INVAL set to brelse the buffer out of existance 3360 * in the biodone routine. 3361 */ 3362 void 3363 bpdone(struct buf *bp, int elseit) 3364 { 3365 buf_cmd_t cmd; 3366 3367 KASSERT(BUF_REFCNTNB(bp) > 0, 3368 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3369 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3370 ("biodone: bp %p already done!", bp)); 3371 3372 /* 3373 * No more BIOs are left. All completion functions have been dealt 3374 * with, now we clean up the buffer. 3375 */ 3376 cmd = bp->b_cmd; 3377 bp->b_cmd = BUF_CMD_DONE; 3378 3379 /* 3380 * Only reads and writes are processed past this point. 3381 */ 3382 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3383 if (cmd == BUF_CMD_FREEBLKS) 3384 bp->b_flags |= B_NOCACHE; 3385 if (elseit) 3386 brelse(bp); 3387 return; 3388 } 3389 3390 /* 3391 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3392 * a lot worse. XXX - move this above the clearing of b_cmd 3393 */ 3394 if (LIST_FIRST(&bp->b_dep) != NULL) 3395 buf_complete(bp); 3396 3397 /* 3398 * A failed write must re-dirty the buffer unless B_INVAL 3399 * was set. Only applicable to normal buffers (with VPs). 3400 * vinum buffers may not have a vp. 3401 */ 3402 if (cmd == BUF_CMD_WRITE && 3403 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3404 bp->b_flags &= ~B_NOCACHE; 3405 if (bp->b_vp) 3406 bdirty(bp); 3407 } 3408 3409 if (bp->b_flags & B_VMIO) { 3410 int i; 3411 vm_ooffset_t foff; 3412 vm_page_t m; 3413 vm_object_t obj; 3414 int iosize; 3415 struct vnode *vp = bp->b_vp; 3416 3417 obj = vp->v_object; 3418 3419 #if defined(VFS_BIO_DEBUG) 3420 if (vp->v_auxrefs == 0) 3421 panic("biodone: zero vnode hold count"); 3422 if ((vp->v_flag & VOBJBUF) == 0) 3423 panic("biodone: vnode is not setup for merged cache"); 3424 #endif 3425 3426 foff = bp->b_loffset; 3427 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3428 KASSERT(obj != NULL, ("biodone: missing VM object")); 3429 3430 #if defined(VFS_BIO_DEBUG) 3431 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3432 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3433 obj->paging_in_progress, bp->b_xio.xio_npages); 3434 } 3435 #endif 3436 3437 /* 3438 * Set B_CACHE if the op was a normal read and no error 3439 * occured. B_CACHE is set for writes in the b*write() 3440 * routines. 3441 */ 3442 iosize = bp->b_bcount - bp->b_resid; 3443 if (cmd == BUF_CMD_READ && 3444 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3445 bp->b_flags |= B_CACHE; 3446 } 3447 3448 crit_enter(); 3449 get_mplock(); 3450 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3451 int bogusflag = 0; 3452 int resid; 3453 3454 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3455 if (resid > iosize) 3456 resid = iosize; 3457 3458 /* 3459 * cleanup bogus pages, restoring the originals. Since 3460 * the originals should still be wired, we don't have 3461 * to worry about interrupt/freeing races destroying 3462 * the VM object association. 3463 */ 3464 m = bp->b_xio.xio_pages[i]; 3465 if (m == bogus_page) { 3466 bogusflag = 1; 3467 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3468 if (m == NULL) 3469 panic("biodone: page disappeared"); 3470 bp->b_xio.xio_pages[i] = m; 3471 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3472 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3473 } 3474 #if defined(VFS_BIO_DEBUG) 3475 if (OFF_TO_IDX(foff) != m->pindex) { 3476 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3477 "mismatch\n", 3478 (unsigned long)foff, (long)m->pindex); 3479 } 3480 #endif 3481 3482 /* 3483 * In the write case, the valid and clean bits are 3484 * already changed correctly (see bdwrite()), so we 3485 * only need to do this here in the read case. 3486 */ 3487 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3488 vfs_clean_one_page(bp, i, m); 3489 } 3490 vm_page_flag_clear(m, PG_ZERO); 3491 3492 /* 3493 * when debugging new filesystems or buffer I/O 3494 * methods, this is the most common error that pops 3495 * up. if you see this, you have not set the page 3496 * busy flag correctly!!! 3497 */ 3498 if (m->busy == 0) { 3499 kprintf("biodone: page busy < 0, " 3500 "pindex: %d, foff: 0x(%x,%x), " 3501 "resid: %d, index: %d\n", 3502 (int) m->pindex, (int)(foff >> 32), 3503 (int) foff & 0xffffffff, resid, i); 3504 if (!vn_isdisk(vp, NULL)) 3505 kprintf(" iosize: %ld, loffset: %lld, " 3506 "flags: 0x%08x, npages: %d\n", 3507 bp->b_vp->v_mount->mnt_stat.f_iosize, 3508 (long long)bp->b_loffset, 3509 bp->b_flags, bp->b_xio.xio_npages); 3510 else 3511 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3512 (long long)bp->b_loffset, 3513 bp->b_flags, bp->b_xio.xio_npages); 3514 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3515 m->valid, m->dirty, m->wire_count); 3516 panic("biodone: page busy < 0"); 3517 } 3518 vm_page_io_finish(m); 3519 vm_object_pip_subtract(obj, 1); 3520 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3521 iosize -= resid; 3522 } 3523 if (obj) 3524 vm_object_pip_wakeupn(obj, 0); 3525 rel_mplock(); 3526 crit_exit(); 3527 } 3528 3529 /* 3530 * Finish up by releasing the buffer. There are no more synchronous 3531 * or asynchronous completions, those were handled by bio_done 3532 * callbacks. 3533 */ 3534 if (elseit) { 3535 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3536 brelse(bp); 3537 else 3538 bqrelse(bp); 3539 } 3540 } 3541 3542 /* 3543 * Normal biodone. 3544 */ 3545 void 3546 biodone(struct bio *bio) 3547 { 3548 struct buf *bp = bio->bio_buf; 3549 3550 runningbufwakeup(bp); 3551 3552 /* 3553 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3554 */ 3555 while (bio) { 3556 biodone_t *done_func; 3557 struct bio_track *track; 3558 3559 /* 3560 * BIO tracking. Most but not all BIOs are tracked. 3561 */ 3562 if ((track = bio->bio_track) != NULL) { 3563 bio_track_rel(track); 3564 bio->bio_track = NULL; 3565 } 3566 3567 /* 3568 * A bio_done function terminates the loop. The function 3569 * will be responsible for any further chaining and/or 3570 * buffer management. 3571 * 3572 * WARNING! The done function can deallocate the buffer! 3573 */ 3574 if ((done_func = bio->bio_done) != NULL) { 3575 bio->bio_done = NULL; 3576 done_func(bio); 3577 return; 3578 } 3579 bio = bio->bio_prev; 3580 } 3581 3582 /* 3583 * If we've run out of bio's do normal [a]synchronous completion. 3584 */ 3585 bpdone(bp, 1); 3586 } 3587 3588 /* 3589 * Synchronous biodone - this terminates a synchronous BIO. 3590 * 3591 * bpdone() is called with elseit=FALSE, leaving the buffer completed 3592 * but still locked. The caller must brelse() the buffer after waiting 3593 * for completion. 3594 */ 3595 void 3596 biodone_sync(struct bio *bio) 3597 { 3598 struct buf *bp = bio->bio_buf; 3599 int flags; 3600 int nflags; 3601 3602 KKASSERT(bio == &bp->b_bio1); 3603 bpdone(bp, 0); 3604 3605 for (;;) { 3606 flags = bio->bio_flags; 3607 nflags = (flags | BIO_DONE) & ~BIO_WANT; 3608 3609 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3610 if (flags & BIO_WANT) 3611 wakeup(bio); 3612 break; 3613 } 3614 } 3615 } 3616 3617 /* 3618 * vfs_unbusy_pages: 3619 * 3620 * This routine is called in lieu of iodone in the case of 3621 * incomplete I/O. This keeps the busy status for pages 3622 * consistant. 3623 */ 3624 void 3625 vfs_unbusy_pages(struct buf *bp) 3626 { 3627 int i; 3628 3629 runningbufwakeup(bp); 3630 if (bp->b_flags & B_VMIO) { 3631 struct vnode *vp = bp->b_vp; 3632 vm_object_t obj; 3633 3634 obj = vp->v_object; 3635 3636 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3637 vm_page_t m = bp->b_xio.xio_pages[i]; 3638 3639 /* 3640 * When restoring bogus changes the original pages 3641 * should still be wired, so we are in no danger of 3642 * losing the object association and do not need 3643 * critical section protection particularly. 3644 */ 3645 if (m == bogus_page) { 3646 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3647 if (!m) { 3648 panic("vfs_unbusy_pages: page missing"); 3649 } 3650 bp->b_xio.xio_pages[i] = m; 3651 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3652 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3653 } 3654 vm_object_pip_subtract(obj, 1); 3655 vm_page_flag_clear(m, PG_ZERO); 3656 vm_page_io_finish(m); 3657 } 3658 vm_object_pip_wakeupn(obj, 0); 3659 } 3660 } 3661 3662 /* 3663 * vfs_busy_pages: 3664 * 3665 * This routine is called before a device strategy routine. 3666 * It is used to tell the VM system that paging I/O is in 3667 * progress, and treat the pages associated with the buffer 3668 * almost as being PG_BUSY. Also the object 'paging_in_progress' 3669 * flag is handled to make sure that the object doesn't become 3670 * inconsistant. 3671 * 3672 * Since I/O has not been initiated yet, certain buffer flags 3673 * such as B_ERROR or B_INVAL may be in an inconsistant state 3674 * and should be ignored. 3675 */ 3676 void 3677 vfs_busy_pages(struct vnode *vp, struct buf *bp) 3678 { 3679 int i, bogus; 3680 struct lwp *lp = curthread->td_lwp; 3681 3682 /* 3683 * The buffer's I/O command must already be set. If reading, 3684 * B_CACHE must be 0 (double check against callers only doing 3685 * I/O when B_CACHE is 0). 3686 */ 3687 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3688 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 3689 3690 if (bp->b_flags & B_VMIO) { 3691 vm_object_t obj; 3692 3693 obj = vp->v_object; 3694 KASSERT(bp->b_loffset != NOOFFSET, 3695 ("vfs_busy_pages: no buffer offset")); 3696 3697 /* 3698 * Loop until none of the pages are busy. 3699 */ 3700 retry: 3701 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3702 vm_page_t m = bp->b_xio.xio_pages[i]; 3703 3704 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3705 goto retry; 3706 } 3707 3708 /* 3709 * Setup for I/O, soft-busy the page right now because 3710 * the next loop may block. 3711 */ 3712 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3713 vm_page_t m = bp->b_xio.xio_pages[i]; 3714 3715 vm_page_flag_clear(m, PG_ZERO); 3716 if ((bp->b_flags & B_CLUSTER) == 0) { 3717 vm_object_pip_add(obj, 1); 3718 vm_page_io_start(m); 3719 } 3720 } 3721 3722 /* 3723 * Adjust protections for I/O and do bogus-page mapping. 3724 * Assume that vm_page_protect() can block (it can block 3725 * if VM_PROT_NONE, don't take any chances regardless). 3726 * 3727 * In particularly note that for writes we must incorporate 3728 * page dirtyness from the VM system into the buffer's 3729 * dirty range. 3730 * 3731 * For reads we theoretically must incorporate page dirtyness 3732 * from the VM system to determine if the page needs bogus 3733 * replacement, but we shortcut the test by simply checking 3734 * that all m->valid bits are set, indicating that the page 3735 * is fully valid and does not need to be re-read. For any 3736 * VM system dirtyness the page will also be fully valid 3737 * since it was mapped at one point. 3738 */ 3739 bogus = 0; 3740 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3741 vm_page_t m = bp->b_xio.xio_pages[i]; 3742 3743 vm_page_flag_clear(m, PG_ZERO); /* XXX */ 3744 if (bp->b_cmd == BUF_CMD_WRITE) { 3745 /* 3746 * When readying a vnode-backed buffer for 3747 * a write we must zero-fill any invalid 3748 * portions of the backing VM pages, mark 3749 * it valid and clear related dirty bits. 3750 * 3751 * vfs_clean_one_page() incorporates any 3752 * VM dirtyness and updates the b_dirtyoff 3753 * range (after we've made the page RO). 3754 * 3755 * It is also expected that the pmap modified 3756 * bit has already been cleared by the 3757 * vm_page_protect(). We may not be able 3758 * to clear all dirty bits for a page if it 3759 * was also memory mapped (NFS). 3760 */ 3761 vm_page_protect(m, VM_PROT_READ); 3762 vfs_clean_one_page(bp, i, m); 3763 } else if (m->valid == VM_PAGE_BITS_ALL) { 3764 /* 3765 * When readying a vnode-backed buffer for 3766 * read we must replace any dirty pages with 3767 * a bogus page so dirty data is not destroyed 3768 * when filling gaps. 3769 * 3770 * To avoid testing whether the page is 3771 * dirty we instead test that the page was 3772 * at some point mapped (m->valid fully 3773 * valid) with the understanding that 3774 * this also covers the dirty case. 3775 */ 3776 bp->b_xio.xio_pages[i] = bogus_page; 3777 bogus++; 3778 } else if (m->valid & m->dirty) { 3779 /* 3780 * This case should not occur as partial 3781 * dirtyment can only happen if the buffer 3782 * is B_CACHE, and this code is not entered 3783 * if the buffer is B_CACHE. 3784 */ 3785 kprintf("Warning: vfs_busy_pages - page not " 3786 "fully valid! loff=%jx bpf=%08x " 3787 "idx=%d val=%02x dir=%02x\n", 3788 (intmax_t)bp->b_loffset, bp->b_flags, 3789 i, m->valid, m->dirty); 3790 vm_page_protect(m, VM_PROT_NONE); 3791 } else { 3792 /* 3793 * The page is not valid and can be made 3794 * part of the read. 3795 */ 3796 vm_page_protect(m, VM_PROT_NONE); 3797 } 3798 } 3799 if (bogus) { 3800 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3801 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3802 } 3803 } 3804 3805 /* 3806 * This is the easiest place to put the process accounting for the I/O 3807 * for now. 3808 */ 3809 if (lp != NULL) { 3810 if (bp->b_cmd == BUF_CMD_READ) 3811 lp->lwp_ru.ru_inblock++; 3812 else 3813 lp->lwp_ru.ru_oublock++; 3814 } 3815 } 3816 3817 /* 3818 * vfs_clean_pages: 3819 * 3820 * Tell the VM system that the pages associated with this buffer 3821 * are clean. This is used for delayed writes where the data is 3822 * going to go to disk eventually without additional VM intevention. 3823 * 3824 * Note that while we only really need to clean through to b_bcount, we 3825 * just go ahead and clean through to b_bufsize. 3826 */ 3827 static void 3828 vfs_clean_pages(struct buf *bp) 3829 { 3830 vm_page_t m; 3831 int i; 3832 3833 if ((bp->b_flags & B_VMIO) == 0) 3834 return; 3835 3836 KASSERT(bp->b_loffset != NOOFFSET, 3837 ("vfs_clean_pages: no buffer offset")); 3838 3839 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3840 m = bp->b_xio.xio_pages[i]; 3841 vfs_clean_one_page(bp, i, m); 3842 } 3843 } 3844 3845 /* 3846 * vfs_clean_one_page: 3847 * 3848 * Set the valid bits and clear the dirty bits in a page within a 3849 * buffer. The range is restricted to the buffer's size and the 3850 * buffer's logical offset might index into the first page. 3851 * 3852 * The caller has busied or soft-busied the page and it is not mapped, 3853 * test and incorporate the dirty bits into b_dirtyoff/end before 3854 * clearing them. Note that we need to clear the pmap modified bits 3855 * after determining the the page was dirty, vm_page_set_validclean() 3856 * does not do it for us. 3857 * 3858 * This routine is typically called after a read completes (dirty should 3859 * be zero in that case as we are not called on bogus-replace pages), 3860 * or before a write is initiated. 3861 */ 3862 static void 3863 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 3864 { 3865 int bcount; 3866 int xoff; 3867 int soff; 3868 int eoff; 3869 3870 /* 3871 * Calculate offset range within the page but relative to buffer's 3872 * loffset. loffset might be offset into the first page. 3873 */ 3874 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 3875 bcount = bp->b_bcount + xoff; /* offset adjusted */ 3876 3877 if (pageno == 0) { 3878 soff = xoff; 3879 eoff = PAGE_SIZE; 3880 } else { 3881 soff = (pageno << PAGE_SHIFT); 3882 eoff = soff + PAGE_SIZE; 3883 } 3884 if (eoff > bcount) 3885 eoff = bcount; 3886 if (soff >= eoff) 3887 return; 3888 3889 /* 3890 * Test dirty bits and adjust b_dirtyoff/end. 3891 * 3892 * If dirty pages are incorporated into the bp any prior 3893 * B_NEEDCOMMIT state (NFS) must be cleared because the 3894 * caller has not taken into account the new dirty data. 3895 * 3896 * If the page was memory mapped the dirty bits might go beyond the 3897 * end of the buffer, but we can't really make the assumption that 3898 * a file EOF straddles the buffer (even though this is the case for 3899 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 3900 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 3901 * This also saves some console spam. 3902 */ 3903 vm_page_test_dirty(m); 3904 if (m->dirty) { 3905 pmap_clear_modify(m); 3906 if ((bp->b_flags & B_NEEDCOMMIT) && 3907 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 3908 kprintf("Warning: vfs_clean_one_page: bp %p " 3909 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT\n", 3910 bp, (intmax_t)bp->b_loffset, bp->b_bcount, 3911 bp->b_flags); 3912 bp->b_flags &= ~B_NEEDCOMMIT; 3913 } 3914 if (bp->b_dirtyoff > soff - xoff) 3915 bp->b_dirtyoff = soff - xoff; 3916 if (bp->b_dirtyend < eoff - xoff) 3917 bp->b_dirtyend = eoff - xoff; 3918 } 3919 3920 /* 3921 * Set related valid bits, clear related dirty bits. 3922 * Does not mess with the pmap modified bit. 3923 * 3924 * WARNING! We cannot just clear all of m->dirty here as the 3925 * buffer cache buffers may use a DEV_BSIZE'd aligned 3926 * block size, or have an odd size (e.g. NFS at file EOF). 3927 * The putpages code can clear m->dirty to 0. 3928 * 3929 * If a VOP_WRITE generates a buffer cache buffer which 3930 * covers the same space as mapped writable pages the 3931 * buffer flush might not be able to clear all the dirty 3932 * bits and still require a putpages from the VM system 3933 * to finish it off. 3934 */ 3935 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 3936 } 3937 3938 /* 3939 * vfs_bio_clrbuf: 3940 * 3941 * Clear a buffer. This routine essentially fakes an I/O, so we need 3942 * to clear B_ERROR and B_INVAL. 3943 * 3944 * Note that while we only theoretically need to clear through b_bcount, 3945 * we go ahead and clear through b_bufsize. 3946 */ 3947 3948 void 3949 vfs_bio_clrbuf(struct buf *bp) 3950 { 3951 int i, mask = 0; 3952 caddr_t sa, ea; 3953 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3954 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 3955 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3956 (bp->b_loffset & PAGE_MASK) == 0) { 3957 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3958 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 3959 bp->b_resid = 0; 3960 return; 3961 } 3962 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 3963 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 3964 bzero(bp->b_data, bp->b_bufsize); 3965 bp->b_xio.xio_pages[0]->valid |= mask; 3966 bp->b_resid = 0; 3967 return; 3968 } 3969 } 3970 sa = bp->b_data; 3971 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 3972 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3973 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3974 ea = (caddr_t)(vm_offset_t)ulmin( 3975 (u_long)(vm_offset_t)ea, 3976 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3977 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3978 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 3979 continue; 3980 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 3981 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 3982 bzero(sa, ea - sa); 3983 } 3984 } else { 3985 for (; sa < ea; sa += DEV_BSIZE, j++) { 3986 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 3987 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 3988 bzero(sa, DEV_BSIZE); 3989 } 3990 } 3991 bp->b_xio.xio_pages[i]->valid |= mask; 3992 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 3993 } 3994 bp->b_resid = 0; 3995 } else { 3996 clrbuf(bp); 3997 } 3998 } 3999 4000 /* 4001 * vm_hold_load_pages: 4002 * 4003 * Load pages into the buffer's address space. The pages are 4004 * allocated from the kernel object in order to reduce interference 4005 * with the any VM paging I/O activity. The range of loaded 4006 * pages will be wired. 4007 * 4008 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4009 * retrieve the full range (to - from) of pages. 4010 * 4011 */ 4012 void 4013 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4014 { 4015 vm_offset_t pg; 4016 vm_page_t p; 4017 int index; 4018 4019 to = round_page(to); 4020 from = round_page(from); 4021 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4022 4023 pg = from; 4024 while (pg < to) { 4025 /* 4026 * Note: must allocate system pages since blocking here 4027 * could intefere with paging I/O, no matter which 4028 * process we are. 4029 */ 4030 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4031 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4032 if (p) { 4033 vm_page_wire(p); 4034 p->valid = VM_PAGE_BITS_ALL; 4035 vm_page_flag_clear(p, PG_ZERO); 4036 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4037 bp->b_xio.xio_pages[index] = p; 4038 vm_page_wakeup(p); 4039 4040 pg += PAGE_SIZE; 4041 ++index; 4042 } 4043 } 4044 bp->b_xio.xio_npages = index; 4045 } 4046 4047 /* 4048 * Allocate pages for a buffer cache buffer. 4049 * 4050 * Under extremely severe memory conditions even allocating out of the 4051 * system reserve can fail. If this occurs we must allocate out of the 4052 * interrupt reserve to avoid a deadlock with the pageout daemon. 4053 * 4054 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 4055 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 4056 * against the pageout daemon if pages are not freed from other sources. 4057 */ 4058 static 4059 vm_page_t 4060 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4061 { 4062 vm_page_t p; 4063 4064 /* 4065 * Try a normal allocation, allow use of system reserve. 4066 */ 4067 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 4068 if (p) 4069 return(p); 4070 4071 /* 4072 * The normal allocation failed and we clearly have a page 4073 * deficit. Try to reclaim some clean VM pages directly 4074 * from the buffer cache. 4075 */ 4076 vm_pageout_deficit += deficit; 4077 recoverbufpages(); 4078 4079 /* 4080 * We may have blocked, the caller will know what to do if the 4081 * page now exists. 4082 */ 4083 if (vm_page_lookup(obj, pg)) 4084 return(NULL); 4085 4086 /* 4087 * Allocate and allow use of the interrupt reserve. 4088 * 4089 * If after all that we still can't allocate a VM page we are 4090 * in real trouble, but we slog on anyway hoping that the system 4091 * won't deadlock. 4092 */ 4093 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 4094 VM_ALLOC_INTERRUPT); 4095 if (p) { 4096 if (vm_page_count_severe()) { 4097 kprintf("bio_page_alloc: WARNING emergency page " 4098 "allocation\n"); 4099 vm_wait(hz / 20); 4100 } 4101 } else { 4102 kprintf("bio_page_alloc: WARNING emergency page " 4103 "allocation failed\n"); 4104 vm_wait(hz * 5); 4105 } 4106 return(p); 4107 } 4108 4109 /* 4110 * vm_hold_free_pages: 4111 * 4112 * Return pages associated with the buffer back to the VM system. 4113 * 4114 * The range of pages underlying the buffer's address space will 4115 * be unmapped and un-wired. 4116 */ 4117 void 4118 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4119 { 4120 vm_offset_t pg; 4121 vm_page_t p; 4122 int index, newnpages; 4123 4124 from = round_page(from); 4125 to = round_page(to); 4126 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4127 4128 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4129 p = bp->b_xio.xio_pages[index]; 4130 if (p && (index < bp->b_xio.xio_npages)) { 4131 if (p->busy) { 4132 kprintf("vm_hold_free_pages: doffset: %lld, " 4133 "loffset: %lld\n", 4134 (long long)bp->b_bio2.bio_offset, 4135 (long long)bp->b_loffset); 4136 } 4137 bp->b_xio.xio_pages[index] = NULL; 4138 pmap_kremove(pg); 4139 vm_page_busy(p); 4140 vm_page_unwire(p, 0); 4141 vm_page_free(p); 4142 } 4143 } 4144 bp->b_xio.xio_npages = newnpages; 4145 } 4146 4147 /* 4148 * vmapbuf: 4149 * 4150 * Map a user buffer into KVM via a pbuf. On return the buffer's 4151 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4152 * initialized. 4153 */ 4154 int 4155 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4156 { 4157 caddr_t addr; 4158 vm_offset_t va; 4159 vm_page_t m; 4160 int vmprot; 4161 int error; 4162 int pidx; 4163 int i; 4164 4165 /* 4166 * bp had better have a command and it better be a pbuf. 4167 */ 4168 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4169 KKASSERT(bp->b_flags & B_PAGING); 4170 4171 if (bytes < 0) 4172 return (-1); 4173 4174 /* 4175 * Map the user data into KVM. Mappings have to be page-aligned. 4176 */ 4177 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4178 pidx = 0; 4179 4180 vmprot = VM_PROT_READ; 4181 if (bp->b_cmd == BUF_CMD_READ) 4182 vmprot |= VM_PROT_WRITE; 4183 4184 while (addr < udata + bytes) { 4185 /* 4186 * Do the vm_fault if needed; do the copy-on-write thing 4187 * when reading stuff off device into memory. 4188 * 4189 * vm_fault_page*() returns a held VM page. 4190 */ 4191 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4192 va = trunc_page(va); 4193 4194 m = vm_fault_page_quick(va, vmprot, &error); 4195 if (m == NULL) { 4196 for (i = 0; i < pidx; ++i) { 4197 vm_page_unhold(bp->b_xio.xio_pages[i]); 4198 bp->b_xio.xio_pages[i] = NULL; 4199 } 4200 return(-1); 4201 } 4202 bp->b_xio.xio_pages[pidx] = m; 4203 addr += PAGE_SIZE; 4204 ++pidx; 4205 } 4206 4207 /* 4208 * Map the page array and set the buffer fields to point to 4209 * the mapped data buffer. 4210 */ 4211 if (pidx > btoc(MAXPHYS)) 4212 panic("vmapbuf: mapped more than MAXPHYS"); 4213 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4214 4215 bp->b_xio.xio_npages = pidx; 4216 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4217 bp->b_bcount = bytes; 4218 bp->b_bufsize = bytes; 4219 return(0); 4220 } 4221 4222 /* 4223 * vunmapbuf: 4224 * 4225 * Free the io map PTEs associated with this IO operation. 4226 * We also invalidate the TLB entries and restore the original b_addr. 4227 */ 4228 void 4229 vunmapbuf(struct buf *bp) 4230 { 4231 int pidx; 4232 int npages; 4233 4234 KKASSERT(bp->b_flags & B_PAGING); 4235 4236 npages = bp->b_xio.xio_npages; 4237 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4238 for (pidx = 0; pidx < npages; ++pidx) { 4239 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4240 bp->b_xio.xio_pages[pidx] = NULL; 4241 } 4242 bp->b_xio.xio_npages = 0; 4243 bp->b_data = bp->b_kvabase; 4244 } 4245 4246 /* 4247 * Scan all buffers in the system and issue the callback. 4248 */ 4249 int 4250 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4251 { 4252 int count = 0; 4253 int error; 4254 int n; 4255 4256 for (n = 0; n < nbuf; ++n) { 4257 if ((error = callback(&buf[n], info)) < 0) { 4258 count = error; 4259 break; 4260 } 4261 count += error; 4262 } 4263 return (count); 4264 } 4265 4266 /* 4267 * print out statistics from the current status of the buffer pool 4268 * this can be toggeled by the system control option debug.syncprt 4269 */ 4270 #ifdef DEBUG 4271 void 4272 vfs_bufstats(void) 4273 { 4274 int i, j, count; 4275 struct buf *bp; 4276 struct bqueues *dp; 4277 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4278 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4279 4280 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4281 count = 0; 4282 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4283 counts[j] = 0; 4284 crit_enter(); 4285 TAILQ_FOREACH(bp, dp, b_freelist) { 4286 counts[bp->b_bufsize/PAGE_SIZE]++; 4287 count++; 4288 } 4289 crit_exit(); 4290 kprintf("%s: total-%d", bname[i], count); 4291 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4292 if (counts[j] != 0) 4293 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4294 kprintf("\n"); 4295 } 4296 } 4297 #endif 4298 4299 #ifdef DDB 4300 4301 DB_SHOW_COMMAND(buffer, db_show_buffer) 4302 { 4303 /* get args */ 4304 struct buf *bp = (struct buf *)addr; 4305 4306 if (!have_addr) { 4307 db_printf("usage: show buffer <addr>\n"); 4308 return; 4309 } 4310 4311 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4312 db_printf("b_cmd = %d\n", bp->b_cmd); 4313 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4314 "b_resid = %d\n, b_data = %p, " 4315 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4316 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4317 bp->b_data, 4318 (long long)bp->b_bio2.bio_offset, 4319 (long long)(bp->b_bio2.bio_next ? 4320 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4321 if (bp->b_xio.xio_npages) { 4322 int i; 4323 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4324 bp->b_xio.xio_npages); 4325 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4326 vm_page_t m; 4327 m = bp->b_xio.xio_pages[i]; 4328 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4329 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4330 if ((i + 1) < bp->b_xio.xio_npages) 4331 db_printf(","); 4332 } 4333 db_printf("\n"); 4334 } 4335 } 4336 #endif /* DDB */ 4337