1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/dsched.h> 48 #include <sys/proc.h> 49 #include <vm/vm.h> 50 #include <vm/vm_param.h> 51 #include <vm/vm_kern.h> 52 #include <vm/vm_pageout.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_map.h> 57 #include <vm/vm_pager.h> 58 #include <vm/swap_pager.h> 59 60 #include <sys/buf2.h> 61 #include <sys/thread2.h> 62 #include <sys/spinlock2.h> 63 #include <sys/mplock2.h> 64 #include <vm/vm_page2.h> 65 66 #include "opt_ddb.h" 67 #ifdef DDB 68 #include <ddb/ddb.h> 69 #endif 70 71 /* 72 * Buffer queues. 73 */ 74 enum bufq_type { 75 BQUEUE_NONE, /* not on any queue */ 76 BQUEUE_LOCKED, /* locked buffers */ 77 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 78 BQUEUE_DIRTY, /* B_DELWRI buffers */ 79 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 80 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 81 BQUEUE_EMPTY, /* empty buffer headers */ 82 83 BUFFER_QUEUES /* number of buffer queues */ 84 }; 85 86 typedef enum bufq_type bufq_type_t; 87 88 #define BD_WAKE_SIZE 16384 89 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 90 91 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 92 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin); 93 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin); 94 95 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 96 97 struct buf *buf; /* buffer header pool */ 98 99 static void vfs_clean_pages(struct buf *bp); 100 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 101 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m); 102 static void vfs_vmio_release(struct buf *bp); 103 static int flushbufqueues(bufq_type_t q); 104 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 105 106 static void bd_signal(int totalspace); 107 static void buf_daemon(void); 108 static void buf_daemon_hw(void); 109 110 /* 111 * bogus page -- for I/O to/from partially complete buffers 112 * this is a temporary solution to the problem, but it is not 113 * really that bad. it would be better to split the buffer 114 * for input in the case of buffers partially already in memory, 115 * but the code is intricate enough already. 116 */ 117 vm_page_t bogus_page; 118 119 /* 120 * These are all static, but make the ones we export globals so we do 121 * not need to use compiler magic. 122 */ 123 int bufspace; /* locked by buffer_map */ 124 int maxbufspace; 125 static int bufmallocspace; /* atomic ops */ 126 int maxbufmallocspace, lobufspace, hibufspace; 127 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 128 static int lorunningspace; 129 static int hirunningspace; 130 static int runningbufreq; /* locked by bufcspin */ 131 static int dirtybufspace; /* locked by bufcspin */ 132 static int dirtybufcount; /* locked by bufcspin */ 133 static int dirtybufspacehw; /* locked by bufcspin */ 134 static int dirtybufcounthw; /* locked by bufcspin */ 135 static int runningbufspace; /* locked by bufcspin */ 136 static int runningbufcount; /* locked by bufcspin */ 137 int lodirtybufspace; 138 int hidirtybufspace; 139 static int getnewbufcalls; 140 static int getnewbufrestarts; 141 static int recoverbufcalls; 142 static int needsbuffer; /* locked by bufcspin */ 143 static int bd_request; /* locked by bufcspin */ 144 static int bd_request_hw; /* locked by bufcspin */ 145 static u_int bd_wake_ary[BD_WAKE_SIZE]; 146 static u_int bd_wake_index; 147 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */ 148 static int debug_commit; 149 150 static struct thread *bufdaemon_td; 151 static struct thread *bufdaemonhw_td; 152 static u_int lowmempgallocs; 153 static u_int lowmempgfails; 154 155 /* 156 * Sysctls for operational control of the buffer cache. 157 */ 158 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 159 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 160 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 161 "High watermark used to trigger explicit flushing of dirty buffers"); 162 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 163 "Minimum amount of buffer space required for active I/O"); 164 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 165 "Maximum amount of buffer space to usable for active I/O"); 166 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0, 167 "Page allocations done during periods of very low free memory"); 168 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0, 169 "Page allocations which failed during periods of very low free memory"); 170 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0, 171 "Recycle pages to active or inactive queue transition pt 0-64"); 172 /* 173 * Sysctls determining current state of the buffer cache. 174 */ 175 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 176 "Total number of buffers in buffer cache"); 177 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 178 "Pending bytes of dirty buffers (all)"); 179 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 180 "Pending bytes of dirty buffers (heavy weight)"); 181 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 182 "Pending number of dirty buffers"); 183 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 184 "Pending number of dirty buffers (heavy weight)"); 185 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 186 "I/O bytes currently in progress due to asynchronous writes"); 187 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 188 "I/O buffers currently in progress due to asynchronous writes"); 189 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 190 "Hard limit on maximum amount of memory usable for buffer space"); 191 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 192 "Soft limit on maximum amount of memory usable for buffer space"); 193 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 194 "Minimum amount of memory to reserve for system buffer space"); 195 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 196 "Amount of memory available for buffers"); 197 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 198 0, "Maximum amount of memory reserved for buffers using malloc"); 199 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 200 "Amount of memory left for buffers using malloc-scheme"); 201 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 202 "New buffer header acquisition requests"); 203 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 204 0, "New buffer header acquisition restarts"); 205 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 206 "Recover VM space in an emergency"); 207 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 208 "Buffer acquisition restarts due to fragmented buffer map"); 209 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 210 "Amount of time KVA space was deallocated in an arbitrary buffer"); 211 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 212 "Amount of time buffer re-use operations were successful"); 213 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, ""); 214 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 215 "sizeof(struct buf)"); 216 217 char *buf_wmesg = BUF_WMESG; 218 219 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 220 #define VFS_BIO_NEED_UNUSED02 0x02 221 #define VFS_BIO_NEED_UNUSED04 0x04 222 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 223 224 /* 225 * bufspacewakeup: 226 * 227 * Called when buffer space is potentially available for recovery. 228 * getnewbuf() will block on this flag when it is unable to free 229 * sufficient buffer space. Buffer space becomes recoverable when 230 * bp's get placed back in the queues. 231 */ 232 static __inline void 233 bufspacewakeup(void) 234 { 235 /* 236 * If someone is waiting for BUF space, wake them up. Even 237 * though we haven't freed the kva space yet, the waiting 238 * process will be able to now. 239 */ 240 spin_lock(&bufcspin); 241 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 242 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 243 spin_unlock(&bufcspin); 244 wakeup(&needsbuffer); 245 } else { 246 spin_unlock(&bufcspin); 247 } 248 } 249 250 /* 251 * runningbufwakeup: 252 * 253 * Accounting for I/O in progress. 254 * 255 */ 256 static __inline void 257 runningbufwakeup(struct buf *bp) 258 { 259 int totalspace; 260 int limit; 261 262 if ((totalspace = bp->b_runningbufspace) != 0) { 263 spin_lock(&bufcspin); 264 runningbufspace -= totalspace; 265 --runningbufcount; 266 bp->b_runningbufspace = 0; 267 268 /* 269 * see waitrunningbufspace() for limit test. 270 */ 271 limit = hirunningspace * 4 / 6; 272 if (runningbufreq && runningbufspace <= limit) { 273 runningbufreq = 0; 274 spin_unlock(&bufcspin); 275 wakeup(&runningbufreq); 276 } else { 277 spin_unlock(&bufcspin); 278 } 279 bd_signal(totalspace); 280 } 281 } 282 283 /* 284 * bufcountwakeup: 285 * 286 * Called when a buffer has been added to one of the free queues to 287 * account for the buffer and to wakeup anyone waiting for free buffers. 288 * This typically occurs when large amounts of metadata are being handled 289 * by the buffer cache ( else buffer space runs out first, usually ). 290 * 291 * MPSAFE 292 */ 293 static __inline void 294 bufcountwakeup(void) 295 { 296 spin_lock(&bufcspin); 297 if (needsbuffer) { 298 needsbuffer &= ~VFS_BIO_NEED_ANY; 299 spin_unlock(&bufcspin); 300 wakeup(&needsbuffer); 301 } else { 302 spin_unlock(&bufcspin); 303 } 304 } 305 306 /* 307 * waitrunningbufspace() 308 * 309 * Wait for the amount of running I/O to drop to hirunningspace * 4 / 6. 310 * This is the point where write bursting stops so we don't want to wait 311 * for the running amount to drop below it (at least if we still want bioq 312 * to burst writes). 313 * 314 * The caller may be using this function to block in a tight loop, we 315 * must block while runningbufspace is greater then or equal to 316 * hirunningspace * 4 / 6. 317 * 318 * And even with that it may not be enough, due to the presence of 319 * B_LOCKED dirty buffers, so also wait for at least one running buffer 320 * to complete. 321 */ 322 void 323 waitrunningbufspace(void) 324 { 325 int limit = hirunningspace * 4 / 6; 326 int dummy; 327 328 spin_lock(&bufcspin); 329 if (runningbufspace > limit) { 330 while (runningbufspace > limit) { 331 ++runningbufreq; 332 ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0); 333 } 334 spin_unlock(&bufcspin); 335 } else if (runningbufspace > limit / 2) { 336 ++runningbufreq; 337 spin_unlock(&bufcspin); 338 tsleep(&dummy, 0, "wdrn2", 1); 339 } else { 340 spin_unlock(&bufcspin); 341 } 342 } 343 344 /* 345 * buf_dirty_count_severe: 346 * 347 * Return true if we have too many dirty buffers. 348 */ 349 int 350 buf_dirty_count_severe(void) 351 { 352 return (runningbufspace + dirtybufspace >= hidirtybufspace || 353 dirtybufcount >= nbuf / 2); 354 } 355 356 /* 357 * Return true if the amount of running I/O is severe and BIOQ should 358 * start bursting. 359 */ 360 int 361 buf_runningbufspace_severe(void) 362 { 363 return (runningbufspace >= hirunningspace * 4 / 6); 364 } 365 366 /* 367 * vfs_buf_test_cache: 368 * 369 * Called when a buffer is extended. This function clears the B_CACHE 370 * bit if the newly extended portion of the buffer does not contain 371 * valid data. 372 * 373 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 374 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 375 * them while a clean buffer was present. 376 */ 377 static __inline__ 378 void 379 vfs_buf_test_cache(struct buf *bp, 380 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 381 vm_page_t m) 382 { 383 if (bp->b_flags & B_CACHE) { 384 int base = (foff + off) & PAGE_MASK; 385 if (vm_page_is_valid(m, base, size) == 0) 386 bp->b_flags &= ~B_CACHE; 387 } 388 } 389 390 /* 391 * bd_speedup() 392 * 393 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 394 * low water mark. 395 * 396 * MPSAFE 397 */ 398 static __inline__ 399 void 400 bd_speedup(void) 401 { 402 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 403 return; 404 405 if (bd_request == 0 && 406 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 407 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 408 spin_lock(&bufcspin); 409 bd_request = 1; 410 spin_unlock(&bufcspin); 411 wakeup(&bd_request); 412 } 413 if (bd_request_hw == 0 && 414 (dirtybufspacehw > lodirtybufspace / 2 || 415 dirtybufcounthw >= nbuf / 2)) { 416 spin_lock(&bufcspin); 417 bd_request_hw = 1; 418 spin_unlock(&bufcspin); 419 wakeup(&bd_request_hw); 420 } 421 } 422 423 /* 424 * bd_heatup() 425 * 426 * Get the buf_daemon heated up when the number of running and dirty 427 * buffers exceeds the mid-point. 428 * 429 * Return the total number of dirty bytes past the second mid point 430 * as a measure of how much excess dirty data there is in the system. 431 * 432 * MPSAFE 433 */ 434 int 435 bd_heatup(void) 436 { 437 int mid1; 438 int mid2; 439 int totalspace; 440 441 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 442 443 totalspace = runningbufspace + dirtybufspace; 444 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 445 bd_speedup(); 446 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 447 if (totalspace >= mid2) 448 return(totalspace - mid2); 449 } 450 return(0); 451 } 452 453 /* 454 * bd_wait() 455 * 456 * Wait for the buffer cache to flush (totalspace) bytes worth of 457 * buffers, then return. 458 * 459 * Regardless this function blocks while the number of dirty buffers 460 * exceeds hidirtybufspace. 461 * 462 * MPSAFE 463 */ 464 void 465 bd_wait(int totalspace) 466 { 467 u_int i; 468 int count; 469 470 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 471 return; 472 473 while (totalspace > 0) { 474 bd_heatup(); 475 if (totalspace > runningbufspace + dirtybufspace) 476 totalspace = runningbufspace + dirtybufspace; 477 count = totalspace / BKVASIZE; 478 if (count >= BD_WAKE_SIZE) 479 count = BD_WAKE_SIZE - 1; 480 481 spin_lock(&bufcspin); 482 i = (bd_wake_index + count) & BD_WAKE_MASK; 483 ++bd_wake_ary[i]; 484 485 /* 486 * This is not a strict interlock, so we play a bit loose 487 * with locking access to dirtybufspace* 488 */ 489 tsleep_interlock(&bd_wake_ary[i], 0); 490 spin_unlock(&bufcspin); 491 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 492 493 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 494 } 495 } 496 497 /* 498 * bd_signal() 499 * 500 * This function is called whenever runningbufspace or dirtybufspace 501 * is reduced. Track threads waiting for run+dirty buffer I/O 502 * complete. 503 * 504 * MPSAFE 505 */ 506 static void 507 bd_signal(int totalspace) 508 { 509 u_int i; 510 511 if (totalspace > 0) { 512 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 513 totalspace = BKVASIZE * BD_WAKE_SIZE; 514 spin_lock(&bufcspin); 515 while (totalspace > 0) { 516 i = bd_wake_index++; 517 i &= BD_WAKE_MASK; 518 if (bd_wake_ary[i]) { 519 bd_wake_ary[i] = 0; 520 spin_unlock(&bufcspin); 521 wakeup(&bd_wake_ary[i]); 522 spin_lock(&bufcspin); 523 } 524 totalspace -= BKVASIZE; 525 } 526 spin_unlock(&bufcspin); 527 } 528 } 529 530 /* 531 * BIO tracking support routines. 532 * 533 * Release a ref on a bio_track. Wakeup requests are atomically released 534 * along with the last reference so bk_active will never wind up set to 535 * only 0x80000000. 536 * 537 * MPSAFE 538 */ 539 static 540 void 541 bio_track_rel(struct bio_track *track) 542 { 543 int active; 544 int desired; 545 546 /* 547 * Shortcut 548 */ 549 active = track->bk_active; 550 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 551 return; 552 553 /* 554 * Full-on. Note that the wait flag is only atomically released on 555 * the 1->0 count transition. 556 * 557 * We check for a negative count transition using bit 30 since bit 31 558 * has a different meaning. 559 */ 560 for (;;) { 561 desired = (active & 0x7FFFFFFF) - 1; 562 if (desired) 563 desired |= active & 0x80000000; 564 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 565 if (desired & 0x40000000) 566 panic("bio_track_rel: bad count: %p\n", track); 567 if (active & 0x80000000) 568 wakeup(track); 569 break; 570 } 571 active = track->bk_active; 572 } 573 } 574 575 /* 576 * Wait for the tracking count to reach 0. 577 * 578 * Use atomic ops such that the wait flag is only set atomically when 579 * bk_active is non-zero. 580 * 581 * MPSAFE 582 */ 583 int 584 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 585 { 586 int active; 587 int desired; 588 int error; 589 590 /* 591 * Shortcut 592 */ 593 if (track->bk_active == 0) 594 return(0); 595 596 /* 597 * Full-on. Note that the wait flag may only be atomically set if 598 * the active count is non-zero. 599 * 600 * NOTE: We cannot optimize active == desired since a wakeup could 601 * clear active prior to our tsleep_interlock(). 602 */ 603 error = 0; 604 while ((active = track->bk_active) != 0) { 605 cpu_ccfence(); 606 desired = active | 0x80000000; 607 tsleep_interlock(track, slp_flags); 608 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 609 error = tsleep(track, slp_flags | PINTERLOCKED, 610 "trwait", slp_timo); 611 if (error) 612 break; 613 } 614 } 615 return (error); 616 } 617 618 /* 619 * bufinit: 620 * 621 * Load time initialisation of the buffer cache, called from machine 622 * dependant initialization code. 623 */ 624 void 625 bufinit(void) 626 { 627 struct buf *bp; 628 vm_offset_t bogus_offset; 629 int i; 630 631 /* next, make a null set of free lists */ 632 for (i = 0; i < BUFFER_QUEUES; i++) 633 TAILQ_INIT(&bufqueues[i]); 634 635 /* finally, initialize each buffer header and stick on empty q */ 636 for (i = 0; i < nbuf; i++) { 637 bp = &buf[i]; 638 bzero(bp, sizeof *bp); 639 bp->b_flags = B_INVAL; /* we're just an empty header */ 640 bp->b_cmd = BUF_CMD_DONE; 641 bp->b_qindex = BQUEUE_EMPTY; 642 initbufbio(bp); 643 xio_init(&bp->b_xio); 644 buf_dep_init(bp); 645 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 646 } 647 648 /* 649 * maxbufspace is the absolute maximum amount of buffer space we are 650 * allowed to reserve in KVM and in real terms. The absolute maximum 651 * is nominally used by buf_daemon. hibufspace is the nominal maximum 652 * used by most other processes. The differential is required to 653 * ensure that buf_daemon is able to run when other processes might 654 * be blocked waiting for buffer space. 655 * 656 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 657 * this may result in KVM fragmentation which is not handled optimally 658 * by the system. 659 */ 660 maxbufspace = nbuf * BKVASIZE; 661 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 662 lobufspace = hibufspace - MAXBSIZE; 663 664 lorunningspace = 512 * 1024; 665 /* hirunningspace -- see below */ 666 667 /* 668 * Limit the amount of malloc memory since it is wired permanently 669 * into the kernel space. Even though this is accounted for in 670 * the buffer allocation, we don't want the malloced region to grow 671 * uncontrolled. The malloc scheme improves memory utilization 672 * significantly on average (small) directories. 673 */ 674 maxbufmallocspace = hibufspace / 20; 675 676 /* 677 * Reduce the chance of a deadlock occuring by limiting the number 678 * of delayed-write dirty buffers we allow to stack up. 679 * 680 * We don't want too much actually queued to the device at once 681 * (XXX this needs to be per-mount!), because the buffers will 682 * wind up locked for a very long period of time while the I/O 683 * drains. 684 */ 685 hidirtybufspace = hibufspace / 2; /* dirty + running */ 686 hirunningspace = hibufspace / 16; /* locked & queued to device */ 687 if (hirunningspace < 1024 * 1024) 688 hirunningspace = 1024 * 1024; 689 690 dirtybufspace = 0; 691 dirtybufspacehw = 0; 692 693 lodirtybufspace = hidirtybufspace / 2; 694 695 /* 696 * Maximum number of async ops initiated per buf_daemon loop. This is 697 * somewhat of a hack at the moment, we really need to limit ourselves 698 * based on the number of bytes of I/O in-transit that were initiated 699 * from buf_daemon. 700 */ 701 702 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 703 bogus_page = vm_page_alloc(&kernel_object, 704 (bogus_offset >> PAGE_SHIFT), 705 VM_ALLOC_NORMAL); 706 vmstats.v_wire_count++; 707 708 } 709 710 /* 711 * Initialize the embedded bio structures, typically used by 712 * deprecated code which tries to allocate its own struct bufs. 713 */ 714 void 715 initbufbio(struct buf *bp) 716 { 717 bp->b_bio1.bio_buf = bp; 718 bp->b_bio1.bio_prev = NULL; 719 bp->b_bio1.bio_offset = NOOFFSET; 720 bp->b_bio1.bio_next = &bp->b_bio2; 721 bp->b_bio1.bio_done = NULL; 722 bp->b_bio1.bio_flags = 0; 723 724 bp->b_bio2.bio_buf = bp; 725 bp->b_bio2.bio_prev = &bp->b_bio1; 726 bp->b_bio2.bio_offset = NOOFFSET; 727 bp->b_bio2.bio_next = NULL; 728 bp->b_bio2.bio_done = NULL; 729 bp->b_bio2.bio_flags = 0; 730 731 BUF_LOCKINIT(bp); 732 } 733 734 /* 735 * Reinitialize the embedded bio structures as well as any additional 736 * translation cache layers. 737 */ 738 void 739 reinitbufbio(struct buf *bp) 740 { 741 struct bio *bio; 742 743 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 744 bio->bio_done = NULL; 745 bio->bio_offset = NOOFFSET; 746 } 747 } 748 749 /* 750 * Undo the effects of an initbufbio(). 751 */ 752 void 753 uninitbufbio(struct buf *bp) 754 { 755 dsched_exit_buf(bp); 756 BUF_LOCKFREE(bp); 757 } 758 759 /* 760 * Push another BIO layer onto an existing BIO and return it. The new 761 * BIO layer may already exist, holding cached translation data. 762 */ 763 struct bio * 764 push_bio(struct bio *bio) 765 { 766 struct bio *nbio; 767 768 if ((nbio = bio->bio_next) == NULL) { 769 int index = bio - &bio->bio_buf->b_bio_array[0]; 770 if (index >= NBUF_BIO - 1) { 771 panic("push_bio: too many layers bp %p\n", 772 bio->bio_buf); 773 } 774 nbio = &bio->bio_buf->b_bio_array[index + 1]; 775 bio->bio_next = nbio; 776 nbio->bio_prev = bio; 777 nbio->bio_buf = bio->bio_buf; 778 nbio->bio_offset = NOOFFSET; 779 nbio->bio_done = NULL; 780 nbio->bio_next = NULL; 781 } 782 KKASSERT(nbio->bio_done == NULL); 783 return(nbio); 784 } 785 786 /* 787 * Pop a BIO translation layer, returning the previous layer. The 788 * must have been previously pushed. 789 */ 790 struct bio * 791 pop_bio(struct bio *bio) 792 { 793 return(bio->bio_prev); 794 } 795 796 void 797 clearbiocache(struct bio *bio) 798 { 799 while (bio) { 800 bio->bio_offset = NOOFFSET; 801 bio = bio->bio_next; 802 } 803 } 804 805 /* 806 * bfreekva: 807 * 808 * Free the KVA allocation for buffer 'bp'. 809 * 810 * Must be called from a critical section as this is the only locking for 811 * buffer_map. 812 * 813 * Since this call frees up buffer space, we call bufspacewakeup(). 814 * 815 * MPALMOSTSAFE 816 */ 817 static void 818 bfreekva(struct buf *bp) 819 { 820 int count; 821 822 if (bp->b_kvasize) { 823 ++buffreekvacnt; 824 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 825 vm_map_lock(&buffer_map); 826 bufspace -= bp->b_kvasize; 827 vm_map_delete(&buffer_map, 828 (vm_offset_t) bp->b_kvabase, 829 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 830 &count 831 ); 832 vm_map_unlock(&buffer_map); 833 vm_map_entry_release(count); 834 bp->b_kvasize = 0; 835 bp->b_kvabase = NULL; 836 bufspacewakeup(); 837 } 838 } 839 840 /* 841 * bremfree: 842 * 843 * Remove the buffer from the appropriate free list. 844 */ 845 static __inline void 846 _bremfree(struct buf *bp) 847 { 848 if (bp->b_qindex != BQUEUE_NONE) { 849 KASSERT(BUF_REFCNTNB(bp) == 1, 850 ("bremfree: bp %p not locked",bp)); 851 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 852 bp->b_qindex = BQUEUE_NONE; 853 } else { 854 if (BUF_REFCNTNB(bp) <= 1) 855 panic("bremfree: removing a buffer not on a queue"); 856 } 857 } 858 859 void 860 bremfree(struct buf *bp) 861 { 862 spin_lock(&bufqspin); 863 _bremfree(bp); 864 spin_unlock(&bufqspin); 865 } 866 867 static void 868 bremfree_locked(struct buf *bp) 869 { 870 _bremfree(bp); 871 } 872 873 /* 874 * bread: 875 * 876 * Get a buffer with the specified data. Look in the cache first. We 877 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 878 * is set, the buffer is valid and we do not have to do anything ( see 879 * getblk() ). 880 * 881 * MPALMOSTSAFE 882 */ 883 int 884 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 885 { 886 struct buf *bp; 887 888 bp = getblk(vp, loffset, size, 0, 0); 889 *bpp = bp; 890 891 /* if not found in cache, do some I/O */ 892 if ((bp->b_flags & B_CACHE) == 0) { 893 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 894 bp->b_cmd = BUF_CMD_READ; 895 bp->b_bio1.bio_done = biodone_sync; 896 bp->b_bio1.bio_flags |= BIO_SYNC; 897 vfs_busy_pages(vp, bp); 898 vn_strategy(vp, &bp->b_bio1); 899 return (biowait(&bp->b_bio1, "biord")); 900 } 901 return (0); 902 } 903 904 /* 905 * breadn: 906 * 907 * Operates like bread, but also starts asynchronous I/O on 908 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 909 * to initiating I/O . If B_CACHE is set, the buffer is valid 910 * and we do not have to do anything. 911 * 912 * MPALMOSTSAFE 913 */ 914 int 915 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 916 int *rabsize, int cnt, struct buf **bpp) 917 { 918 struct buf *bp, *rabp; 919 int i; 920 int rv = 0, readwait = 0; 921 922 *bpp = bp = getblk(vp, loffset, size, 0, 0); 923 924 /* if not found in cache, do some I/O */ 925 if ((bp->b_flags & B_CACHE) == 0) { 926 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 927 bp->b_cmd = BUF_CMD_READ; 928 bp->b_bio1.bio_done = biodone_sync; 929 bp->b_bio1.bio_flags |= BIO_SYNC; 930 vfs_busy_pages(vp, bp); 931 vn_strategy(vp, &bp->b_bio1); 932 ++readwait; 933 } 934 935 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 936 if (inmem(vp, *raoffset)) 937 continue; 938 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 939 940 if ((rabp->b_flags & B_CACHE) == 0) { 941 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 942 rabp->b_cmd = BUF_CMD_READ; 943 vfs_busy_pages(vp, rabp); 944 BUF_KERNPROC(rabp); 945 vn_strategy(vp, &rabp->b_bio1); 946 } else { 947 brelse(rabp); 948 } 949 } 950 if (readwait) 951 rv = biowait(&bp->b_bio1, "biord"); 952 return (rv); 953 } 954 955 /* 956 * bwrite: 957 * 958 * Synchronous write, waits for completion. 959 * 960 * Write, release buffer on completion. (Done by iodone 961 * if async). Do not bother writing anything if the buffer 962 * is invalid. 963 * 964 * Note that we set B_CACHE here, indicating that buffer is 965 * fully valid and thus cacheable. This is true even of NFS 966 * now so we set it generally. This could be set either here 967 * or in biodone() since the I/O is synchronous. We put it 968 * here. 969 */ 970 int 971 bwrite(struct buf *bp) 972 { 973 int error; 974 975 if (bp->b_flags & B_INVAL) { 976 brelse(bp); 977 return (0); 978 } 979 if (BUF_REFCNTNB(bp) == 0) 980 panic("bwrite: buffer is not busy???"); 981 982 /* Mark the buffer clean */ 983 bundirty(bp); 984 985 bp->b_flags &= ~(B_ERROR | B_EINTR); 986 bp->b_flags |= B_CACHE; 987 bp->b_cmd = BUF_CMD_WRITE; 988 bp->b_bio1.bio_done = biodone_sync; 989 bp->b_bio1.bio_flags |= BIO_SYNC; 990 vfs_busy_pages(bp->b_vp, bp); 991 992 /* 993 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 994 * valid for vnode-backed buffers. 995 */ 996 bsetrunningbufspace(bp, bp->b_bufsize); 997 vn_strategy(bp->b_vp, &bp->b_bio1); 998 error = biowait(&bp->b_bio1, "biows"); 999 brelse(bp); 1000 1001 return (error); 1002 } 1003 1004 /* 1005 * bawrite: 1006 * 1007 * Asynchronous write. Start output on a buffer, but do not wait for 1008 * it to complete. The buffer is released when the output completes. 1009 * 1010 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1011 * B_INVAL buffers. Not us. 1012 */ 1013 void 1014 bawrite(struct buf *bp) 1015 { 1016 if (bp->b_flags & B_INVAL) { 1017 brelse(bp); 1018 return; 1019 } 1020 if (BUF_REFCNTNB(bp) == 0) 1021 panic("bwrite: buffer is not busy???"); 1022 1023 /* Mark the buffer clean */ 1024 bundirty(bp); 1025 1026 bp->b_flags &= ~(B_ERROR | B_EINTR); 1027 bp->b_flags |= B_CACHE; 1028 bp->b_cmd = BUF_CMD_WRITE; 1029 KKASSERT(bp->b_bio1.bio_done == NULL); 1030 vfs_busy_pages(bp->b_vp, bp); 1031 1032 /* 1033 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1034 * valid for vnode-backed buffers. 1035 */ 1036 bsetrunningbufspace(bp, bp->b_bufsize); 1037 BUF_KERNPROC(bp); 1038 vn_strategy(bp->b_vp, &bp->b_bio1); 1039 } 1040 1041 /* 1042 * bowrite: 1043 * 1044 * Ordered write. Start output on a buffer, and flag it so that the 1045 * device will write it in the order it was queued. The buffer is 1046 * released when the output completes. bwrite() ( or the VOP routine 1047 * anyway ) is responsible for handling B_INVAL buffers. 1048 */ 1049 int 1050 bowrite(struct buf *bp) 1051 { 1052 bp->b_flags |= B_ORDERED; 1053 bawrite(bp); 1054 return (0); 1055 } 1056 1057 /* 1058 * bdwrite: 1059 * 1060 * Delayed write. (Buffer is marked dirty). Do not bother writing 1061 * anything if the buffer is marked invalid. 1062 * 1063 * Note that since the buffer must be completely valid, we can safely 1064 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1065 * biodone() in order to prevent getblk from writing the buffer 1066 * out synchronously. 1067 */ 1068 void 1069 bdwrite(struct buf *bp) 1070 { 1071 if (BUF_REFCNTNB(bp) == 0) 1072 panic("bdwrite: buffer is not busy"); 1073 1074 if (bp->b_flags & B_INVAL) { 1075 brelse(bp); 1076 return; 1077 } 1078 bdirty(bp); 1079 1080 if (dsched_is_clear_buf_priv(bp)) 1081 dsched_new_buf(bp); 1082 1083 /* 1084 * Set B_CACHE, indicating that the buffer is fully valid. This is 1085 * true even of NFS now. 1086 */ 1087 bp->b_flags |= B_CACHE; 1088 1089 /* 1090 * This bmap keeps the system from needing to do the bmap later, 1091 * perhaps when the system is attempting to do a sync. Since it 1092 * is likely that the indirect block -- or whatever other datastructure 1093 * that the filesystem needs is still in memory now, it is a good 1094 * thing to do this. Note also, that if the pageout daemon is 1095 * requesting a sync -- there might not be enough memory to do 1096 * the bmap then... So, this is important to do. 1097 */ 1098 if (bp->b_bio2.bio_offset == NOOFFSET) { 1099 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1100 NULL, NULL, BUF_CMD_WRITE); 1101 } 1102 1103 /* 1104 * Because the underlying pages may still be mapped and 1105 * writable trying to set the dirty buffer (b_dirtyoff/end) 1106 * range here will be inaccurate. 1107 * 1108 * However, we must still clean the pages to satisfy the 1109 * vnode_pager and pageout daemon, so theythink the pages 1110 * have been "cleaned". What has really occured is that 1111 * they've been earmarked for later writing by the buffer 1112 * cache. 1113 * 1114 * So we get the b_dirtyoff/end update but will not actually 1115 * depend on it (NFS that is) until the pages are busied for 1116 * writing later on. 1117 */ 1118 vfs_clean_pages(bp); 1119 bqrelse(bp); 1120 1121 /* 1122 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1123 * due to the softdep code. 1124 */ 1125 } 1126 1127 /* 1128 * Fake write - return pages to VM system as dirty, leave the buffer clean. 1129 * This is used by tmpfs. 1130 * 1131 * It is important for any VFS using this routine to NOT use it for 1132 * IO_SYNC or IO_ASYNC operations which occur when the system really 1133 * wants to flush VM pages to backing store. 1134 */ 1135 void 1136 buwrite(struct buf *bp) 1137 { 1138 vm_page_t m; 1139 int i; 1140 1141 /* 1142 * Only works for VMIO buffers. If the buffer is already 1143 * marked for delayed-write we can't avoid the bdwrite(). 1144 */ 1145 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) { 1146 bdwrite(bp); 1147 return; 1148 } 1149 1150 /* 1151 * Set valid & dirty. 1152 */ 1153 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1154 m = bp->b_xio.xio_pages[i]; 1155 vfs_dirty_one_page(bp, i, m); 1156 } 1157 bqrelse(bp); 1158 } 1159 1160 /* 1161 * bdirty: 1162 * 1163 * Turn buffer into delayed write request by marking it B_DELWRI. 1164 * B_RELBUF and B_NOCACHE must be cleared. 1165 * 1166 * We reassign the buffer to itself to properly update it in the 1167 * dirty/clean lists. 1168 * 1169 * Must be called from a critical section. 1170 * The buffer must be on BQUEUE_NONE. 1171 */ 1172 void 1173 bdirty(struct buf *bp) 1174 { 1175 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1176 if (bp->b_flags & B_NOCACHE) { 1177 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1178 bp->b_flags &= ~B_NOCACHE; 1179 } 1180 if (bp->b_flags & B_INVAL) { 1181 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1182 } 1183 bp->b_flags &= ~B_RELBUF; 1184 1185 if ((bp->b_flags & B_DELWRI) == 0) { 1186 lwkt_gettoken(&bp->b_vp->v_token); 1187 bp->b_flags |= B_DELWRI; 1188 reassignbuf(bp); 1189 lwkt_reltoken(&bp->b_vp->v_token); 1190 1191 spin_lock(&bufcspin); 1192 ++dirtybufcount; 1193 dirtybufspace += bp->b_bufsize; 1194 if (bp->b_flags & B_HEAVY) { 1195 ++dirtybufcounthw; 1196 dirtybufspacehw += bp->b_bufsize; 1197 } 1198 spin_unlock(&bufcspin); 1199 1200 bd_heatup(); 1201 } 1202 } 1203 1204 /* 1205 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1206 * needs to be flushed with a different buf_daemon thread to avoid 1207 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1208 */ 1209 void 1210 bheavy(struct buf *bp) 1211 { 1212 if ((bp->b_flags & B_HEAVY) == 0) { 1213 bp->b_flags |= B_HEAVY; 1214 if (bp->b_flags & B_DELWRI) { 1215 spin_lock(&bufcspin); 1216 ++dirtybufcounthw; 1217 dirtybufspacehw += bp->b_bufsize; 1218 spin_unlock(&bufcspin); 1219 } 1220 } 1221 } 1222 1223 /* 1224 * bundirty: 1225 * 1226 * Clear B_DELWRI for buffer. 1227 * 1228 * Must be called from a critical section. 1229 * 1230 * The buffer is typically on BQUEUE_NONE but there is one case in 1231 * brelse() that calls this function after placing the buffer on 1232 * a different queue. 1233 * 1234 * MPSAFE 1235 */ 1236 void 1237 bundirty(struct buf *bp) 1238 { 1239 if (bp->b_flags & B_DELWRI) { 1240 lwkt_gettoken(&bp->b_vp->v_token); 1241 bp->b_flags &= ~B_DELWRI; 1242 reassignbuf(bp); 1243 lwkt_reltoken(&bp->b_vp->v_token); 1244 1245 spin_lock(&bufcspin); 1246 --dirtybufcount; 1247 dirtybufspace -= bp->b_bufsize; 1248 if (bp->b_flags & B_HEAVY) { 1249 --dirtybufcounthw; 1250 dirtybufspacehw -= bp->b_bufsize; 1251 } 1252 spin_unlock(&bufcspin); 1253 1254 bd_signal(bp->b_bufsize); 1255 } 1256 /* 1257 * Since it is now being written, we can clear its deferred write flag. 1258 */ 1259 bp->b_flags &= ~B_DEFERRED; 1260 } 1261 1262 /* 1263 * Set the b_runningbufspace field, used to track how much I/O is 1264 * in progress at any given moment. 1265 */ 1266 void 1267 bsetrunningbufspace(struct buf *bp, int bytes) 1268 { 1269 bp->b_runningbufspace = bytes; 1270 if (bytes) { 1271 spin_lock(&bufcspin); 1272 runningbufspace += bytes; 1273 ++runningbufcount; 1274 spin_unlock(&bufcspin); 1275 } 1276 } 1277 1278 /* 1279 * brelse: 1280 * 1281 * Release a busy buffer and, if requested, free its resources. The 1282 * buffer will be stashed in the appropriate bufqueue[] allowing it 1283 * to be accessed later as a cache entity or reused for other purposes. 1284 * 1285 * MPALMOSTSAFE 1286 */ 1287 void 1288 brelse(struct buf *bp) 1289 { 1290 #ifdef INVARIANTS 1291 int saved_flags = bp->b_flags; 1292 #endif 1293 1294 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1295 1296 /* 1297 * If B_NOCACHE is set we are being asked to destroy the buffer and 1298 * its backing store. Clear B_DELWRI. 1299 * 1300 * B_NOCACHE is set in two cases: (1) when the caller really wants 1301 * to destroy the buffer and backing store and (2) when the caller 1302 * wants to destroy the buffer and backing store after a write 1303 * completes. 1304 */ 1305 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1306 bundirty(bp); 1307 } 1308 1309 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1310 /* 1311 * A re-dirtied buffer is only subject to destruction 1312 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1313 */ 1314 /* leave buffer intact */ 1315 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1316 (bp->b_bufsize <= 0)) { 1317 /* 1318 * Either a failed read or we were asked to free or not 1319 * cache the buffer. This path is reached with B_DELWRI 1320 * set only if B_INVAL is already set. B_NOCACHE governs 1321 * backing store destruction. 1322 * 1323 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1324 * buffer cannot be immediately freed. 1325 */ 1326 bp->b_flags |= B_INVAL; 1327 if (LIST_FIRST(&bp->b_dep) != NULL) 1328 buf_deallocate(bp); 1329 if (bp->b_flags & B_DELWRI) { 1330 spin_lock(&bufcspin); 1331 --dirtybufcount; 1332 dirtybufspace -= bp->b_bufsize; 1333 if (bp->b_flags & B_HEAVY) { 1334 --dirtybufcounthw; 1335 dirtybufspacehw -= bp->b_bufsize; 1336 } 1337 spin_unlock(&bufcspin); 1338 1339 bd_signal(bp->b_bufsize); 1340 } 1341 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1342 } 1343 1344 /* 1345 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1346 * If vfs_vmio_release() is called with either bit set, the 1347 * underlying pages may wind up getting freed causing a previous 1348 * write (bdwrite()) to get 'lost' because pages associated with 1349 * a B_DELWRI bp are marked clean. Pages associated with a 1350 * B_LOCKED buffer may be mapped by the filesystem. 1351 * 1352 * If we want to release the buffer ourselves (rather then the 1353 * originator asking us to release it), give the originator a 1354 * chance to countermand the release by setting B_LOCKED. 1355 * 1356 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1357 * if B_DELWRI is set. 1358 * 1359 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1360 * on pages to return pages to the VM page queues. 1361 */ 1362 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1363 bp->b_flags &= ~B_RELBUF; 1364 } else if (vm_page_count_severe()) { 1365 if (LIST_FIRST(&bp->b_dep) != NULL) 1366 buf_deallocate(bp); /* can set B_LOCKED */ 1367 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1368 bp->b_flags &= ~B_RELBUF; 1369 else 1370 bp->b_flags |= B_RELBUF; 1371 } 1372 1373 /* 1374 * Make sure b_cmd is clear. It may have already been cleared by 1375 * biodone(). 1376 * 1377 * At this point destroying the buffer is governed by the B_INVAL 1378 * or B_RELBUF flags. 1379 */ 1380 bp->b_cmd = BUF_CMD_DONE; 1381 dsched_exit_buf(bp); 1382 1383 /* 1384 * VMIO buffer rundown. Make sure the VM page array is restored 1385 * after an I/O may have replaces some of the pages with bogus pages 1386 * in order to not destroy dirty pages in a fill-in read. 1387 * 1388 * Note that due to the code above, if a buffer is marked B_DELWRI 1389 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1390 * B_INVAL may still be set, however. 1391 * 1392 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1393 * but not the backing store. B_NOCACHE will destroy the backing 1394 * store. 1395 * 1396 * Note that dirty NFS buffers contain byte-granular write ranges 1397 * and should not be destroyed w/ B_INVAL even if the backing store 1398 * is left intact. 1399 */ 1400 if (bp->b_flags & B_VMIO) { 1401 /* 1402 * Rundown for VMIO buffers which are not dirty NFS buffers. 1403 */ 1404 int i, j, resid; 1405 vm_page_t m; 1406 off_t foff; 1407 vm_pindex_t poff; 1408 vm_object_t obj; 1409 struct vnode *vp; 1410 1411 vp = bp->b_vp; 1412 1413 /* 1414 * Get the base offset and length of the buffer. Note that 1415 * in the VMIO case if the buffer block size is not 1416 * page-aligned then b_data pointer may not be page-aligned. 1417 * But our b_xio.xio_pages array *IS* page aligned. 1418 * 1419 * block sizes less then DEV_BSIZE (usually 512) are not 1420 * supported due to the page granularity bits (m->valid, 1421 * m->dirty, etc...). 1422 * 1423 * See man buf(9) for more information 1424 */ 1425 1426 resid = bp->b_bufsize; 1427 foff = bp->b_loffset; 1428 1429 lwkt_gettoken(&vm_token); 1430 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1431 m = bp->b_xio.xio_pages[i]; 1432 vm_page_flag_clear(m, PG_ZERO); 1433 /* 1434 * If we hit a bogus page, fixup *all* of them 1435 * now. Note that we left these pages wired 1436 * when we removed them so they had better exist, 1437 * and they cannot be ripped out from under us so 1438 * no critical section protection is necessary. 1439 */ 1440 if (m == bogus_page) { 1441 obj = vp->v_object; 1442 poff = OFF_TO_IDX(bp->b_loffset); 1443 1444 for (j = i; j < bp->b_xio.xio_npages; j++) { 1445 vm_page_t mtmp; 1446 1447 mtmp = bp->b_xio.xio_pages[j]; 1448 if (mtmp == bogus_page) { 1449 mtmp = vm_page_lookup(obj, poff + j); 1450 if (!mtmp) { 1451 panic("brelse: page missing"); 1452 } 1453 bp->b_xio.xio_pages[j] = mtmp; 1454 } 1455 } 1456 bp->b_flags &= ~B_HASBOGUS; 1457 1458 if ((bp->b_flags & B_INVAL) == 0) { 1459 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1460 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1461 } 1462 m = bp->b_xio.xio_pages[i]; 1463 } 1464 1465 /* 1466 * Invalidate the backing store if B_NOCACHE is set 1467 * (e.g. used with vinvalbuf()). If this is NFS 1468 * we impose a requirement that the block size be 1469 * a multiple of PAGE_SIZE and create a temporary 1470 * hack to basically invalidate the whole page. The 1471 * problem is that NFS uses really odd buffer sizes 1472 * especially when tracking piecemeal writes and 1473 * it also vinvalbuf()'s a lot, which would result 1474 * in only partial page validation and invalidation 1475 * here. If the file page is mmap()'d, however, 1476 * all the valid bits get set so after we invalidate 1477 * here we would end up with weird m->valid values 1478 * like 0xfc. nfs_getpages() can't handle this so 1479 * we clear all the valid bits for the NFS case 1480 * instead of just some of them. 1481 * 1482 * The real bug is the VM system having to set m->valid 1483 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1484 * itself is an artifact of the whole 512-byte 1485 * granular mess that exists to support odd block 1486 * sizes and UFS meta-data block sizes (e.g. 6144). 1487 * A complete rewrite is required. 1488 * 1489 * XXX 1490 */ 1491 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1492 int poffset = foff & PAGE_MASK; 1493 int presid; 1494 1495 presid = PAGE_SIZE - poffset; 1496 if (bp->b_vp->v_tag == VT_NFS && 1497 bp->b_vp->v_type == VREG) { 1498 ; /* entire page */ 1499 } else if (presid > resid) { 1500 presid = resid; 1501 } 1502 KASSERT(presid >= 0, ("brelse: extra page")); 1503 vm_page_set_invalid(m, poffset, presid); 1504 1505 /* 1506 * Also make sure any swap cache is removed 1507 * as it is now stale (HAMMER in particular 1508 * uses B_NOCACHE to deal with buffer 1509 * aliasing). 1510 */ 1511 swap_pager_unswapped(m); 1512 } 1513 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1514 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1515 } 1516 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1517 vfs_vmio_release(bp); 1518 lwkt_reltoken(&vm_token); 1519 } else { 1520 /* 1521 * Rundown for non-VMIO buffers. 1522 */ 1523 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1524 if (bp->b_bufsize) 1525 allocbuf(bp, 0); 1526 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1527 if (bp->b_vp) 1528 brelvp(bp); 1529 } 1530 } 1531 1532 if (bp->b_qindex != BQUEUE_NONE) 1533 panic("brelse: free buffer onto another queue???"); 1534 if (BUF_REFCNTNB(bp) > 1) { 1535 /* Temporary panic to verify exclusive locking */ 1536 /* This panic goes away when we allow shared refs */ 1537 panic("brelse: multiple refs"); 1538 /* NOT REACHED */ 1539 return; 1540 } 1541 1542 /* 1543 * Figure out the correct queue to place the cleaned up buffer on. 1544 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1545 * disassociated from their vnode. 1546 */ 1547 spin_lock(&bufqspin); 1548 if (bp->b_flags & B_LOCKED) { 1549 /* 1550 * Buffers that are locked are placed in the locked queue 1551 * immediately, regardless of their state. 1552 */ 1553 bp->b_qindex = BQUEUE_LOCKED; 1554 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1555 } else if (bp->b_bufsize == 0) { 1556 /* 1557 * Buffers with no memory. Due to conditionals near the top 1558 * of brelse() such buffers should probably already be 1559 * marked B_INVAL and disassociated from their vnode. 1560 */ 1561 bp->b_flags |= B_INVAL; 1562 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1563 KKASSERT((bp->b_flags & B_HASHED) == 0); 1564 if (bp->b_kvasize) { 1565 bp->b_qindex = BQUEUE_EMPTYKVA; 1566 } else { 1567 bp->b_qindex = BQUEUE_EMPTY; 1568 } 1569 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1570 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1571 /* 1572 * Buffers with junk contents. Again these buffers had better 1573 * already be disassociated from their vnode. 1574 */ 1575 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1576 KKASSERT((bp->b_flags & B_HASHED) == 0); 1577 bp->b_flags |= B_INVAL; 1578 bp->b_qindex = BQUEUE_CLEAN; 1579 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1580 } else { 1581 /* 1582 * Remaining buffers. These buffers are still associated with 1583 * their vnode. 1584 */ 1585 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1586 case B_DELWRI: 1587 bp->b_qindex = BQUEUE_DIRTY; 1588 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1589 break; 1590 case B_DELWRI | B_HEAVY: 1591 bp->b_qindex = BQUEUE_DIRTY_HW; 1592 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1593 b_freelist); 1594 break; 1595 default: 1596 /* 1597 * NOTE: Buffers are always placed at the end of the 1598 * queue. If B_AGE is not set the buffer will cycle 1599 * through the queue twice. 1600 */ 1601 bp->b_qindex = BQUEUE_CLEAN; 1602 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1603 break; 1604 } 1605 } 1606 spin_unlock(&bufqspin); 1607 1608 /* 1609 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1610 * on the correct queue. 1611 */ 1612 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1613 bundirty(bp); 1614 1615 /* 1616 * The bp is on an appropriate queue unless locked. If it is not 1617 * locked or dirty we can wakeup threads waiting for buffer space. 1618 * 1619 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1620 * if B_INVAL is set ). 1621 */ 1622 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1623 bufcountwakeup(); 1624 1625 /* 1626 * Something we can maybe free or reuse 1627 */ 1628 if (bp->b_bufsize || bp->b_kvasize) 1629 bufspacewakeup(); 1630 1631 /* 1632 * Clean up temporary flags and unlock the buffer. 1633 */ 1634 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1635 BUF_UNLOCK(bp); 1636 } 1637 1638 /* 1639 * bqrelse: 1640 * 1641 * Release a buffer back to the appropriate queue but do not try to free 1642 * it. The buffer is expected to be used again soon. 1643 * 1644 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1645 * biodone() to requeue an async I/O on completion. It is also used when 1646 * known good buffers need to be requeued but we think we may need the data 1647 * again soon. 1648 * 1649 * XXX we should be able to leave the B_RELBUF hint set on completion. 1650 * 1651 * MPSAFE 1652 */ 1653 void 1654 bqrelse(struct buf *bp) 1655 { 1656 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1657 1658 if (bp->b_qindex != BQUEUE_NONE) 1659 panic("bqrelse: free buffer onto another queue???"); 1660 if (BUF_REFCNTNB(bp) > 1) { 1661 /* do not release to free list */ 1662 panic("bqrelse: multiple refs"); 1663 return; 1664 } 1665 1666 buf_act_advance(bp); 1667 1668 spin_lock(&bufqspin); 1669 if (bp->b_flags & B_LOCKED) { 1670 /* 1671 * Locked buffers are released to the locked queue. However, 1672 * if the buffer is dirty it will first go into the dirty 1673 * queue and later on after the I/O completes successfully it 1674 * will be released to the locked queue. 1675 */ 1676 bp->b_qindex = BQUEUE_LOCKED; 1677 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1678 } else if (bp->b_flags & B_DELWRI) { 1679 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1680 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1681 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1682 } else if (vm_page_count_severe()) { 1683 /* 1684 * We are too low on memory, we have to try to free the 1685 * buffer (most importantly: the wired pages making up its 1686 * backing store) *now*. 1687 */ 1688 spin_unlock(&bufqspin); 1689 brelse(bp); 1690 return; 1691 } else { 1692 bp->b_qindex = BQUEUE_CLEAN; 1693 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1694 } 1695 spin_unlock(&bufqspin); 1696 1697 if ((bp->b_flags & B_LOCKED) == 0 && 1698 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1699 bufcountwakeup(); 1700 } 1701 1702 /* 1703 * Something we can maybe free or reuse. 1704 */ 1705 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1706 bufspacewakeup(); 1707 1708 /* 1709 * Final cleanup and unlock. Clear bits that are only used while a 1710 * buffer is actively locked. 1711 */ 1712 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1713 dsched_exit_buf(bp); 1714 BUF_UNLOCK(bp); 1715 } 1716 1717 /* 1718 * vfs_vmio_release: 1719 * 1720 * Return backing pages held by the buffer 'bp' back to the VM system 1721 * if possible. The pages are freed if they are no longer valid or 1722 * attempt to free if it was used for direct I/O otherwise they are 1723 * sent to the page cache. 1724 * 1725 * Pages that were marked busy are left alone and skipped. 1726 * 1727 * The KVA mapping (b_data) for the underlying pages is removed by 1728 * this function. 1729 */ 1730 static void 1731 vfs_vmio_release(struct buf *bp) 1732 { 1733 int i; 1734 vm_page_t m; 1735 1736 lwkt_gettoken(&vm_token); 1737 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1738 m = bp->b_xio.xio_pages[i]; 1739 bp->b_xio.xio_pages[i] = NULL; 1740 1741 /* 1742 * The VFS is telling us this is not a meta-data buffer 1743 * even if it is backed by a block device. 1744 */ 1745 if (bp->b_flags & B_NOTMETA) 1746 vm_page_flag_set(m, PG_NOTMETA); 1747 1748 /* 1749 * This is a very important bit of code. We try to track 1750 * VM page use whether the pages are wired into the buffer 1751 * cache or not. While wired into the buffer cache the 1752 * bp tracks the act_count. 1753 * 1754 * We can choose to place unwired pages on the inactive 1755 * queue (0) or active queue (1). If we place too many 1756 * on the active queue the queue will cycle the act_count 1757 * on pages we'd like to keep, just from single-use pages 1758 * (such as when doing a tar-up or file scan). 1759 */ 1760 if (bp->b_act_count < vm_cycle_point) 1761 vm_page_unwire(m, 0); 1762 else 1763 vm_page_unwire(m, 1); 1764 1765 /* 1766 * We don't mess with busy pages, it is the responsibility 1767 * of the process that busied the pages to deal with them. 1768 * 1769 * However, the caller may have marked the page invalid and 1770 * we must still make sure the page is no longer mapped. 1771 */ 1772 if ((m->flags & PG_BUSY) || (m->busy != 0)) { 1773 vm_page_protect(m, VM_PROT_NONE); 1774 continue; 1775 } 1776 1777 if (m->wire_count == 0) { 1778 vm_page_flag_clear(m, PG_ZERO); 1779 /* 1780 * Might as well free the page if we can and it has 1781 * no valid data. We also free the page if the 1782 * buffer was used for direct I/O. 1783 */ 1784 #if 0 1785 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1786 m->hold_count == 0) { 1787 vm_page_busy(m); 1788 vm_page_protect(m, VM_PROT_NONE); 1789 vm_page_free(m); 1790 } else 1791 #endif 1792 if (bp->b_flags & B_DIRECT) { 1793 vm_page_try_to_free(m); 1794 } else if (vm_page_count_severe()) { 1795 m->act_count = bp->b_act_count; 1796 vm_page_try_to_cache(m); 1797 } else { 1798 m->act_count = bp->b_act_count; 1799 } 1800 } 1801 } 1802 lwkt_reltoken(&vm_token); 1803 1804 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), 1805 bp->b_xio.xio_npages); 1806 if (bp->b_bufsize) { 1807 bufspacewakeup(); 1808 bp->b_bufsize = 0; 1809 } 1810 bp->b_xio.xio_npages = 0; 1811 bp->b_flags &= ~B_VMIO; 1812 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1813 if (bp->b_vp) 1814 brelvp(bp); 1815 } 1816 1817 /* 1818 * vfs_bio_awrite: 1819 * 1820 * Implement clustered async writes for clearing out B_DELWRI buffers. 1821 * This is much better then the old way of writing only one buffer at 1822 * a time. Note that we may not be presented with the buffers in the 1823 * correct order, so we search for the cluster in both directions. 1824 * 1825 * The buffer is locked on call. 1826 */ 1827 int 1828 vfs_bio_awrite(struct buf *bp) 1829 { 1830 int i; 1831 int j; 1832 off_t loffset = bp->b_loffset; 1833 struct vnode *vp = bp->b_vp; 1834 int nbytes; 1835 struct buf *bpa; 1836 int nwritten; 1837 int size; 1838 1839 /* 1840 * right now we support clustered writing only to regular files. If 1841 * we find a clusterable block we could be in the middle of a cluster 1842 * rather then at the beginning. 1843 * 1844 * NOTE: b_bio1 contains the logical loffset and is aliased 1845 * to b_loffset. b_bio2 contains the translated block number. 1846 */ 1847 if ((vp->v_type == VREG) && 1848 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1849 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1850 1851 size = vp->v_mount->mnt_stat.f_iosize; 1852 1853 for (i = size; i < MAXPHYS; i += size) { 1854 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1855 BUF_REFCNT(bpa) == 0 && 1856 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1857 (B_DELWRI | B_CLUSTEROK)) && 1858 (bpa->b_bufsize == size)) { 1859 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1860 (bpa->b_bio2.bio_offset != 1861 bp->b_bio2.bio_offset + i)) 1862 break; 1863 } else { 1864 break; 1865 } 1866 } 1867 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1868 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1869 BUF_REFCNT(bpa) == 0 && 1870 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1871 (B_DELWRI | B_CLUSTEROK)) && 1872 (bpa->b_bufsize == size)) { 1873 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1874 (bpa->b_bio2.bio_offset != 1875 bp->b_bio2.bio_offset - j)) 1876 break; 1877 } else { 1878 break; 1879 } 1880 } 1881 j -= size; 1882 nbytes = (i + j); 1883 1884 /* 1885 * this is a possible cluster write 1886 */ 1887 if (nbytes != size) { 1888 BUF_UNLOCK(bp); 1889 nwritten = cluster_wbuild(vp, size, 1890 loffset - j, nbytes); 1891 return nwritten; 1892 } 1893 } 1894 1895 /* 1896 * default (old) behavior, writing out only one block 1897 * 1898 * XXX returns b_bufsize instead of b_bcount for nwritten? 1899 */ 1900 nwritten = bp->b_bufsize; 1901 bremfree(bp); 1902 bawrite(bp); 1903 1904 return nwritten; 1905 } 1906 1907 /* 1908 * getnewbuf: 1909 * 1910 * Find and initialize a new buffer header, freeing up existing buffers 1911 * in the bufqueues as necessary. The new buffer is returned locked. 1912 * 1913 * Important: B_INVAL is not set. If the caller wishes to throw the 1914 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1915 * 1916 * We block if: 1917 * We have insufficient buffer headers 1918 * We have insufficient buffer space 1919 * buffer_map is too fragmented ( space reservation fails ) 1920 * If we have to flush dirty buffers ( but we try to avoid this ) 1921 * 1922 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1923 * Instead we ask the buf daemon to do it for us. We attempt to 1924 * avoid piecemeal wakeups of the pageout daemon. 1925 * 1926 * MPALMOSTSAFE 1927 */ 1928 static struct buf * 1929 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1930 { 1931 struct buf *bp; 1932 struct buf *nbp; 1933 int defrag = 0; 1934 int nqindex; 1935 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1936 static int flushingbufs; 1937 1938 /* 1939 * We can't afford to block since we might be holding a vnode lock, 1940 * which may prevent system daemons from running. We deal with 1941 * low-memory situations by proactively returning memory and running 1942 * async I/O rather then sync I/O. 1943 */ 1944 1945 ++getnewbufcalls; 1946 --getnewbufrestarts; 1947 restart: 1948 ++getnewbufrestarts; 1949 1950 /* 1951 * Setup for scan. If we do not have enough free buffers, 1952 * we setup a degenerate case that immediately fails. Note 1953 * that if we are specially marked process, we are allowed to 1954 * dip into our reserves. 1955 * 1956 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1957 * 1958 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1959 * However, there are a number of cases (defragging, reusing, ...) 1960 * where we cannot backup. 1961 */ 1962 nqindex = BQUEUE_EMPTYKVA; 1963 spin_lock(&bufqspin); 1964 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1965 1966 if (nbp == NULL) { 1967 /* 1968 * If no EMPTYKVA buffers and we are either 1969 * defragging or reusing, locate a CLEAN buffer 1970 * to free or reuse. If bufspace useage is low 1971 * skip this step so we can allocate a new buffer. 1972 */ 1973 if (defrag || bufspace >= lobufspace) { 1974 nqindex = BQUEUE_CLEAN; 1975 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1976 } 1977 1978 /* 1979 * If we could not find or were not allowed to reuse a 1980 * CLEAN buffer, check to see if it is ok to use an EMPTY 1981 * buffer. We can only use an EMPTY buffer if allocating 1982 * its KVA would not otherwise run us out of buffer space. 1983 */ 1984 if (nbp == NULL && defrag == 0 && 1985 bufspace + maxsize < hibufspace) { 1986 nqindex = BQUEUE_EMPTY; 1987 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1988 } 1989 } 1990 1991 /* 1992 * Run scan, possibly freeing data and/or kva mappings on the fly 1993 * depending. 1994 * 1995 * WARNING! bufqspin is held! 1996 */ 1997 while ((bp = nbp) != NULL) { 1998 int qindex = nqindex; 1999 2000 nbp = TAILQ_NEXT(bp, b_freelist); 2001 2002 /* 2003 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2004 * cycles through the queue twice before being selected. 2005 */ 2006 if (qindex == BQUEUE_CLEAN && 2007 (bp->b_flags & B_AGE) == 0 && nbp) { 2008 bp->b_flags |= B_AGE; 2009 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 2010 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 2011 continue; 2012 } 2013 2014 /* 2015 * Calculate next bp ( we can only use it if we do not block 2016 * or do other fancy things ). 2017 */ 2018 if (nbp == NULL) { 2019 switch(qindex) { 2020 case BQUEUE_EMPTY: 2021 nqindex = BQUEUE_EMPTYKVA; 2022 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 2023 break; 2024 /* fall through */ 2025 case BQUEUE_EMPTYKVA: 2026 nqindex = BQUEUE_CLEAN; 2027 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 2028 break; 2029 /* fall through */ 2030 case BQUEUE_CLEAN: 2031 /* 2032 * nbp is NULL. 2033 */ 2034 break; 2035 } 2036 } 2037 2038 /* 2039 * Sanity Checks 2040 */ 2041 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 2042 2043 /* 2044 * Note: we no longer distinguish between VMIO and non-VMIO 2045 * buffers. 2046 */ 2047 KASSERT((bp->b_flags & B_DELWRI) == 0, 2048 ("delwri buffer %p found in queue %d", bp, qindex)); 2049 2050 /* 2051 * Do not try to reuse a buffer with a non-zero b_refs. 2052 * This is an unsynchronized test. A synchronized test 2053 * is also performed after we lock the buffer. 2054 */ 2055 if (bp->b_refs) 2056 continue; 2057 2058 /* 2059 * If we are defragging then we need a buffer with 2060 * b_kvasize != 0. XXX this situation should no longer 2061 * occur, if defrag is non-zero the buffer's b_kvasize 2062 * should also be non-zero at this point. XXX 2063 */ 2064 if (defrag && bp->b_kvasize == 0) { 2065 kprintf("Warning: defrag empty buffer %p\n", bp); 2066 continue; 2067 } 2068 2069 /* 2070 * Start freeing the bp. This is somewhat involved. nbp 2071 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 2072 * on the clean list must be disassociated from their 2073 * current vnode. Buffers on the empty[kva] lists have 2074 * already been disassociated. 2075 */ 2076 2077 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2078 spin_unlock(&bufqspin); 2079 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2080 goto restart; 2081 } 2082 if (bp->b_qindex != qindex) { 2083 spin_unlock(&bufqspin); 2084 kprintf("getnewbuf: warning, BUF_LOCK blocked " 2085 "unexpectedly on buf %p index %d->%d, " 2086 "race corrected\n", 2087 bp, qindex, bp->b_qindex); 2088 BUF_UNLOCK(bp); 2089 goto restart; 2090 } 2091 bremfree_locked(bp); 2092 spin_unlock(&bufqspin); 2093 2094 /* 2095 * Dependancies must be handled before we disassociate the 2096 * vnode. 2097 * 2098 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2099 * be immediately disassociated. HAMMER then becomes 2100 * responsible for releasing the buffer. 2101 * 2102 * NOTE: bufqspin is UNLOCKED now. 2103 */ 2104 if (LIST_FIRST(&bp->b_dep) != NULL) { 2105 buf_deallocate(bp); 2106 if (bp->b_flags & B_LOCKED) { 2107 bqrelse(bp); 2108 goto restart; 2109 } 2110 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2111 } 2112 2113 if (qindex == BQUEUE_CLEAN) { 2114 if (bp->b_flags & B_VMIO) 2115 vfs_vmio_release(bp); 2116 if (bp->b_vp) 2117 brelvp(bp); 2118 } 2119 2120 /* 2121 * NOTE: nbp is now entirely invalid. We can only restart 2122 * the scan from this point on. 2123 * 2124 * Get the rest of the buffer freed up. b_kva* is still 2125 * valid after this operation. 2126 */ 2127 2128 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 2129 KKASSERT((bp->b_flags & B_HASHED) == 0); 2130 2131 /* 2132 * critical section protection is not required when 2133 * scrapping a buffer's contents because it is already 2134 * wired. 2135 */ 2136 if (bp->b_bufsize) 2137 allocbuf(bp, 0); 2138 2139 bp->b_flags = B_BNOCLIP; 2140 bp->b_cmd = BUF_CMD_DONE; 2141 bp->b_vp = NULL; 2142 bp->b_error = 0; 2143 bp->b_resid = 0; 2144 bp->b_bcount = 0; 2145 bp->b_xio.xio_npages = 0; 2146 bp->b_dirtyoff = bp->b_dirtyend = 0; 2147 bp->b_act_count = ACT_INIT; 2148 reinitbufbio(bp); 2149 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2150 buf_dep_init(bp); 2151 if (blkflags & GETBLK_BHEAVY) 2152 bp->b_flags |= B_HEAVY; 2153 2154 /* 2155 * If we are defragging then free the buffer. 2156 */ 2157 if (defrag) { 2158 bp->b_flags |= B_INVAL; 2159 bfreekva(bp); 2160 brelse(bp); 2161 defrag = 0; 2162 goto restart; 2163 } 2164 2165 /* 2166 * If we are overcomitted then recover the buffer and its 2167 * KVM space. This occurs in rare situations when multiple 2168 * processes are blocked in getnewbuf() or allocbuf(). 2169 */ 2170 if (bufspace >= hibufspace) 2171 flushingbufs = 1; 2172 if (flushingbufs && bp->b_kvasize != 0) { 2173 bp->b_flags |= B_INVAL; 2174 bfreekva(bp); 2175 brelse(bp); 2176 goto restart; 2177 } 2178 if (bufspace < lobufspace) 2179 flushingbufs = 0; 2180 2181 /* 2182 * The brelvp() above interlocked the buffer, test b_refs 2183 * to determine if the buffer can be reused. b_refs 2184 * interlocks lookup/blocking-lock operations and allowing 2185 * buffer reuse can create deadlocks depending on what 2186 * (vp,loffset) is assigned to the reused buffer (see getblk). 2187 */ 2188 if (bp->b_refs) { 2189 bp->b_flags |= B_INVAL; 2190 bfreekva(bp); 2191 brelse(bp); 2192 goto restart; 2193 } 2194 2195 break; 2196 /* NOT REACHED, bufqspin not held */ 2197 } 2198 2199 /* 2200 * If we exhausted our list, sleep as appropriate. We may have to 2201 * wakeup various daemons and write out some dirty buffers. 2202 * 2203 * Generally we are sleeping due to insufficient buffer space. 2204 * 2205 * NOTE: bufqspin is held if bp is NULL, else it is not held. 2206 */ 2207 if (bp == NULL) { 2208 int flags; 2209 char *waitmsg; 2210 2211 spin_unlock(&bufqspin); 2212 if (defrag) { 2213 flags = VFS_BIO_NEED_BUFSPACE; 2214 waitmsg = "nbufkv"; 2215 } else if (bufspace >= hibufspace) { 2216 waitmsg = "nbufbs"; 2217 flags = VFS_BIO_NEED_BUFSPACE; 2218 } else { 2219 waitmsg = "newbuf"; 2220 flags = VFS_BIO_NEED_ANY; 2221 } 2222 2223 bd_speedup(); /* heeeelp */ 2224 spin_lock(&bufcspin); 2225 needsbuffer |= flags; 2226 while (needsbuffer & flags) { 2227 if (ssleep(&needsbuffer, &bufcspin, 2228 slpflags, waitmsg, slptimeo)) { 2229 spin_unlock(&bufcspin); 2230 return (NULL); 2231 } 2232 } 2233 spin_unlock(&bufcspin); 2234 } else { 2235 /* 2236 * We finally have a valid bp. We aren't quite out of the 2237 * woods, we still have to reserve kva space. In order 2238 * to keep fragmentation sane we only allocate kva in 2239 * BKVASIZE chunks. 2240 * 2241 * (bufqspin is not held) 2242 */ 2243 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2244 2245 if (maxsize != bp->b_kvasize) { 2246 vm_offset_t addr = 0; 2247 int count; 2248 2249 bfreekva(bp); 2250 2251 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2252 vm_map_lock(&buffer_map); 2253 2254 if (vm_map_findspace(&buffer_map, 2255 vm_map_min(&buffer_map), maxsize, 2256 maxsize, 0, &addr)) { 2257 /* 2258 * Uh oh. Buffer map is too fragmented. We 2259 * must defragment the map. 2260 */ 2261 vm_map_unlock(&buffer_map); 2262 vm_map_entry_release(count); 2263 ++bufdefragcnt; 2264 defrag = 1; 2265 bp->b_flags |= B_INVAL; 2266 brelse(bp); 2267 goto restart; 2268 } 2269 if (addr) { 2270 vm_map_insert(&buffer_map, &count, 2271 NULL, 0, 2272 addr, addr + maxsize, 2273 VM_MAPTYPE_NORMAL, 2274 VM_PROT_ALL, VM_PROT_ALL, 2275 MAP_NOFAULT); 2276 2277 bp->b_kvabase = (caddr_t) addr; 2278 bp->b_kvasize = maxsize; 2279 bufspace += bp->b_kvasize; 2280 ++bufreusecnt; 2281 } 2282 vm_map_unlock(&buffer_map); 2283 vm_map_entry_release(count); 2284 } 2285 bp->b_data = bp->b_kvabase; 2286 } 2287 return(bp); 2288 } 2289 2290 /* 2291 * This routine is called in an emergency to recover VM pages from the 2292 * buffer cache by cashing in clean buffers. The idea is to recover 2293 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2294 * 2295 * MPSAFE 2296 */ 2297 static int 2298 recoverbufpages(void) 2299 { 2300 struct buf *bp; 2301 int bytes = 0; 2302 2303 ++recoverbufcalls; 2304 2305 spin_lock(&bufqspin); 2306 while (bytes < MAXBSIZE) { 2307 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2308 if (bp == NULL) 2309 break; 2310 2311 /* 2312 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2313 * cycles through the queue twice before being selected. 2314 */ 2315 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2316 bp->b_flags |= B_AGE; 2317 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2318 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2319 bp, b_freelist); 2320 continue; 2321 } 2322 2323 /* 2324 * Sanity Checks 2325 */ 2326 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2327 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2328 2329 /* 2330 * Start freeing the bp. This is somewhat involved. 2331 * 2332 * Buffers on the clean list must be disassociated from 2333 * their current vnode 2334 */ 2335 2336 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2337 kprintf("recoverbufpages: warning, locked buf %p, " 2338 "race corrected\n", 2339 bp); 2340 ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100); 2341 continue; 2342 } 2343 if (bp->b_qindex != BQUEUE_CLEAN) { 2344 kprintf("recoverbufpages: warning, BUF_LOCK blocked " 2345 "unexpectedly on buf %p index %d, race " 2346 "corrected\n", 2347 bp, bp->b_qindex); 2348 BUF_UNLOCK(bp); 2349 continue; 2350 } 2351 bremfree_locked(bp); 2352 spin_unlock(&bufqspin); 2353 2354 /* 2355 * Dependancies must be handled before we disassociate the 2356 * vnode. 2357 * 2358 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2359 * be immediately disassociated. HAMMER then becomes 2360 * responsible for releasing the buffer. 2361 */ 2362 if (LIST_FIRST(&bp->b_dep) != NULL) { 2363 buf_deallocate(bp); 2364 if (bp->b_flags & B_LOCKED) { 2365 bqrelse(bp); 2366 spin_lock(&bufqspin); 2367 continue; 2368 } 2369 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2370 } 2371 2372 bytes += bp->b_bufsize; 2373 2374 if (bp->b_flags & B_VMIO) { 2375 bp->b_flags |= B_DIRECT; /* try to free pages */ 2376 vfs_vmio_release(bp); 2377 } 2378 if (bp->b_vp) 2379 brelvp(bp); 2380 2381 KKASSERT(bp->b_vp == NULL); 2382 KKASSERT((bp->b_flags & B_HASHED) == 0); 2383 2384 /* 2385 * critical section protection is not required when 2386 * scrapping a buffer's contents because it is already 2387 * wired. 2388 */ 2389 if (bp->b_bufsize) 2390 allocbuf(bp, 0); 2391 2392 bp->b_flags = B_BNOCLIP; 2393 bp->b_cmd = BUF_CMD_DONE; 2394 bp->b_vp = NULL; 2395 bp->b_error = 0; 2396 bp->b_resid = 0; 2397 bp->b_bcount = 0; 2398 bp->b_xio.xio_npages = 0; 2399 bp->b_dirtyoff = bp->b_dirtyend = 0; 2400 reinitbufbio(bp); 2401 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2402 buf_dep_init(bp); 2403 bp->b_flags |= B_INVAL; 2404 /* bfreekva(bp); */ 2405 brelse(bp); 2406 spin_lock(&bufqspin); 2407 } 2408 spin_unlock(&bufqspin); 2409 return(bytes); 2410 } 2411 2412 /* 2413 * buf_daemon: 2414 * 2415 * Buffer flushing daemon. Buffers are normally flushed by the 2416 * update daemon but if it cannot keep up this process starts to 2417 * take the load in an attempt to prevent getnewbuf() from blocking. 2418 * 2419 * Once a flush is initiated it does not stop until the number 2420 * of buffers falls below lodirtybuffers, but we will wake up anyone 2421 * waiting at the mid-point. 2422 */ 2423 2424 static struct kproc_desc buf_kp = { 2425 "bufdaemon", 2426 buf_daemon, 2427 &bufdaemon_td 2428 }; 2429 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2430 kproc_start, &buf_kp) 2431 2432 static struct kproc_desc bufhw_kp = { 2433 "bufdaemon_hw", 2434 buf_daemon_hw, 2435 &bufdaemonhw_td 2436 }; 2437 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2438 kproc_start, &bufhw_kp) 2439 2440 /* 2441 * MPSAFE thread 2442 */ 2443 static void 2444 buf_daemon(void) 2445 { 2446 int limit; 2447 2448 /* 2449 * This process needs to be suspended prior to shutdown sync. 2450 */ 2451 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2452 bufdaemon_td, SHUTDOWN_PRI_LAST); 2453 curthread->td_flags |= TDF_SYSTHREAD; 2454 2455 /* 2456 * This process is allowed to take the buffer cache to the limit 2457 */ 2458 for (;;) { 2459 kproc_suspend_loop(); 2460 2461 /* 2462 * Do the flush as long as the number of dirty buffers 2463 * (including those running) exceeds lodirtybufspace. 2464 * 2465 * When flushing limit running I/O to hirunningspace 2466 * Do the flush. Limit the amount of in-transit I/O we 2467 * allow to build up, otherwise we would completely saturate 2468 * the I/O system. Wakeup any waiting processes before we 2469 * normally would so they can run in parallel with our drain. 2470 * 2471 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2472 * but because we split the operation into two threads we 2473 * have to cut it in half for each thread. 2474 */ 2475 waitrunningbufspace(); 2476 limit = lodirtybufspace / 2; 2477 while (runningbufspace + dirtybufspace > limit || 2478 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2479 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2480 break; 2481 if (runningbufspace < hirunningspace) 2482 continue; 2483 waitrunningbufspace(); 2484 } 2485 2486 /* 2487 * We reached our low water mark, reset the 2488 * request and sleep until we are needed again. 2489 * The sleep is just so the suspend code works. 2490 */ 2491 spin_lock(&bufcspin); 2492 if (bd_request == 0) 2493 ssleep(&bd_request, &bufcspin, 0, "psleep", hz); 2494 bd_request = 0; 2495 spin_unlock(&bufcspin); 2496 } 2497 } 2498 2499 /* 2500 * MPSAFE thread 2501 */ 2502 static void 2503 buf_daemon_hw(void) 2504 { 2505 int limit; 2506 2507 /* 2508 * This process needs to be suspended prior to shutdown sync. 2509 */ 2510 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2511 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2512 curthread->td_flags |= TDF_SYSTHREAD; 2513 2514 /* 2515 * This process is allowed to take the buffer cache to the limit 2516 */ 2517 for (;;) { 2518 kproc_suspend_loop(); 2519 2520 /* 2521 * Do the flush. Limit the amount of in-transit I/O we 2522 * allow to build up, otherwise we would completely saturate 2523 * the I/O system. Wakeup any waiting processes before we 2524 * normally would so they can run in parallel with our drain. 2525 * 2526 * Once we decide to flush push the queued I/O up to 2527 * hirunningspace in order to trigger bursting by the bioq 2528 * subsystem. 2529 * 2530 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2531 * but because we split the operation into two threads we 2532 * have to cut it in half for each thread. 2533 */ 2534 waitrunningbufspace(); 2535 limit = lodirtybufspace / 2; 2536 while (runningbufspace + dirtybufspacehw > limit || 2537 dirtybufcounthw >= nbuf / 2) { 2538 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2539 break; 2540 if (runningbufspace < hirunningspace) 2541 continue; 2542 waitrunningbufspace(); 2543 } 2544 2545 /* 2546 * We reached our low water mark, reset the 2547 * request and sleep until we are needed again. 2548 * The sleep is just so the suspend code works. 2549 */ 2550 spin_lock(&bufcspin); 2551 if (bd_request_hw == 0) 2552 ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz); 2553 bd_request_hw = 0; 2554 spin_unlock(&bufcspin); 2555 } 2556 } 2557 2558 /* 2559 * flushbufqueues: 2560 * 2561 * Try to flush a buffer in the dirty queue. We must be careful to 2562 * free up B_INVAL buffers instead of write them, which NFS is 2563 * particularly sensitive to. 2564 * 2565 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2566 * that we really want to try to get the buffer out and reuse it 2567 * due to the write load on the machine. 2568 * 2569 * We must lock the buffer in order to check its validity before we 2570 * can mess with its contents. bufqspin isn't enough. 2571 */ 2572 static int 2573 flushbufqueues(bufq_type_t q) 2574 { 2575 struct buf *bp; 2576 int r = 0; 2577 int spun; 2578 2579 spin_lock(&bufqspin); 2580 spun = 1; 2581 2582 bp = TAILQ_FIRST(&bufqueues[q]); 2583 while (bp) { 2584 if ((bp->b_flags & B_DELWRI) == 0) { 2585 kprintf("Unexpected clean buffer %p\n", bp); 2586 bp = TAILQ_NEXT(bp, b_freelist); 2587 continue; 2588 } 2589 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2590 bp = TAILQ_NEXT(bp, b_freelist); 2591 continue; 2592 } 2593 KKASSERT(bp->b_qindex == q); 2594 2595 /* 2596 * Must recheck B_DELWRI after successfully locking 2597 * the buffer. 2598 */ 2599 if ((bp->b_flags & B_DELWRI) == 0) { 2600 BUF_UNLOCK(bp); 2601 bp = TAILQ_NEXT(bp, b_freelist); 2602 continue; 2603 } 2604 2605 if (bp->b_flags & B_INVAL) { 2606 _bremfree(bp); 2607 spin_unlock(&bufqspin); 2608 spun = 0; 2609 brelse(bp); 2610 ++r; 2611 break; 2612 } 2613 2614 spin_unlock(&bufqspin); 2615 spun = 0; 2616 2617 if (LIST_FIRST(&bp->b_dep) != NULL && 2618 (bp->b_flags & B_DEFERRED) == 0 && 2619 buf_countdeps(bp, 0)) { 2620 spin_lock(&bufqspin); 2621 spun = 1; 2622 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2623 TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist); 2624 bp->b_flags |= B_DEFERRED; 2625 BUF_UNLOCK(bp); 2626 bp = TAILQ_FIRST(&bufqueues[q]); 2627 continue; 2628 } 2629 2630 /* 2631 * If the buffer has a dependancy, buf_checkwrite() must 2632 * also return 0 for us to be able to initate the write. 2633 * 2634 * If the buffer is flagged B_ERROR it may be requeued 2635 * over and over again, we try to avoid a live lock. 2636 * 2637 * NOTE: buf_checkwrite is MPSAFE. 2638 */ 2639 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) { 2640 bremfree(bp); 2641 brelse(bp); 2642 } else if (bp->b_flags & B_ERROR) { 2643 tsleep(bp, 0, "bioer", 1); 2644 bp->b_flags &= ~B_AGE; 2645 vfs_bio_awrite(bp); 2646 } else { 2647 bp->b_flags |= B_AGE; 2648 vfs_bio_awrite(bp); 2649 } 2650 ++r; 2651 break; 2652 } 2653 if (spun) 2654 spin_unlock(&bufqspin); 2655 return (r); 2656 } 2657 2658 /* 2659 * inmem: 2660 * 2661 * Returns true if no I/O is needed to access the associated VM object. 2662 * This is like findblk except it also hunts around in the VM system for 2663 * the data. 2664 * 2665 * Note that we ignore vm_page_free() races from interrupts against our 2666 * lookup, since if the caller is not protected our return value will not 2667 * be any more valid then otherwise once we exit the critical section. 2668 */ 2669 int 2670 inmem(struct vnode *vp, off_t loffset) 2671 { 2672 vm_object_t obj; 2673 vm_offset_t toff, tinc, size; 2674 vm_page_t m; 2675 2676 if (findblk(vp, loffset, FINDBLK_TEST)) 2677 return 1; 2678 if (vp->v_mount == NULL) 2679 return 0; 2680 if ((obj = vp->v_object) == NULL) 2681 return 0; 2682 2683 size = PAGE_SIZE; 2684 if (size > vp->v_mount->mnt_stat.f_iosize) 2685 size = vp->v_mount->mnt_stat.f_iosize; 2686 2687 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2688 lwkt_gettoken(&vm_token); 2689 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2690 lwkt_reltoken(&vm_token); 2691 if (m == NULL) 2692 return 0; 2693 tinc = size; 2694 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2695 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2696 if (vm_page_is_valid(m, 2697 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2698 return 0; 2699 } 2700 return 1; 2701 } 2702 2703 /* 2704 * findblk: 2705 * 2706 * Locate and return the specified buffer. Unless flagged otherwise, 2707 * a locked buffer will be returned if it exists or NULL if it does not. 2708 * 2709 * findblk()'d buffers are still on the bufqueues and if you intend 2710 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2711 * and possibly do other stuff to it. 2712 * 2713 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2714 * for locking the buffer and ensuring that it remains 2715 * the desired buffer after locking. 2716 * 2717 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2718 * to acquire the lock we return NULL, even if the 2719 * buffer exists. 2720 * 2721 * FINDBLK_REF - Returns the buffer ref'd, which prevents reuse 2722 * by getnewbuf() but does not prevent disassociation 2723 * while we are locked. Used to avoid deadlocks 2724 * against random (vp,loffset)s due to reassignment. 2725 * 2726 * (0) - Lock the buffer blocking. 2727 * 2728 * MPSAFE 2729 */ 2730 struct buf * 2731 findblk(struct vnode *vp, off_t loffset, int flags) 2732 { 2733 struct buf *bp; 2734 int lkflags; 2735 2736 lkflags = LK_EXCLUSIVE; 2737 if (flags & FINDBLK_NBLOCK) 2738 lkflags |= LK_NOWAIT; 2739 2740 for (;;) { 2741 /* 2742 * Lookup. Ref the buf while holding v_token to prevent 2743 * reuse (but does not prevent diassociation). 2744 */ 2745 lwkt_gettoken(&vp->v_token); 2746 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2747 if (bp == NULL) { 2748 lwkt_reltoken(&vp->v_token); 2749 return(NULL); 2750 } 2751 atomic_add_int(&bp->b_refs, 1); 2752 lwkt_reltoken(&vp->v_token); 2753 2754 /* 2755 * If testing only break and return bp, do not lock. 2756 */ 2757 if (flags & FINDBLK_TEST) 2758 break; 2759 2760 /* 2761 * Lock the buffer, return an error if the lock fails. 2762 * (only FINDBLK_NBLOCK can cause the lock to fail). 2763 */ 2764 if (BUF_LOCK(bp, lkflags)) { 2765 atomic_subtract_int(&bp->b_refs, 1); 2766 /* bp = NULL; not needed */ 2767 return(NULL); 2768 } 2769 2770 /* 2771 * Revalidate the locked buf before allowing it to be 2772 * returned. 2773 */ 2774 if (bp->b_vp == vp && bp->b_loffset == loffset) 2775 break; 2776 atomic_subtract_int(&bp->b_refs, 1); 2777 BUF_UNLOCK(bp); 2778 } 2779 2780 /* 2781 * Success 2782 */ 2783 if ((flags & FINDBLK_REF) == 0) 2784 atomic_subtract_int(&bp->b_refs, 1); 2785 return(bp); 2786 } 2787 2788 void 2789 unrefblk(struct buf *bp) 2790 { 2791 atomic_subtract_int(&bp->b_refs, 1); 2792 } 2793 2794 /* 2795 * getcacheblk: 2796 * 2797 * Similar to getblk() except only returns the buffer if it is 2798 * B_CACHE and requires no other manipulation. Otherwise NULL 2799 * is returned. 2800 * 2801 * If B_RAM is set the buffer might be just fine, but we return 2802 * NULL anyway because we want the code to fall through to the 2803 * cluster read. Otherwise read-ahead breaks. 2804 */ 2805 struct buf * 2806 getcacheblk(struct vnode *vp, off_t loffset) 2807 { 2808 struct buf *bp; 2809 2810 bp = findblk(vp, loffset, 0); 2811 if (bp) { 2812 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) { 2813 bp->b_flags &= ~B_AGE; 2814 bremfree(bp); 2815 } else { 2816 BUF_UNLOCK(bp); 2817 bp = NULL; 2818 } 2819 } 2820 return (bp); 2821 } 2822 2823 /* 2824 * getblk: 2825 * 2826 * Get a block given a specified block and offset into a file/device. 2827 * B_INVAL may or may not be set on return. The caller should clear 2828 * B_INVAL prior to initiating a READ. 2829 * 2830 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2831 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2832 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2833 * without doing any of those things the system will likely believe 2834 * the buffer to be valid (especially if it is not B_VMIO), and the 2835 * next getblk() will return the buffer with B_CACHE set. 2836 * 2837 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2838 * an existing buffer. 2839 * 2840 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2841 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2842 * and then cleared based on the backing VM. If the previous buffer is 2843 * non-0-sized but invalid, B_CACHE will be cleared. 2844 * 2845 * If getblk() must create a new buffer, the new buffer is returned with 2846 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2847 * case it is returned with B_INVAL clear and B_CACHE set based on the 2848 * backing VM. 2849 * 2850 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2851 * B_CACHE bit is clear. 2852 * 2853 * What this means, basically, is that the caller should use B_CACHE to 2854 * determine whether the buffer is fully valid or not and should clear 2855 * B_INVAL prior to issuing a read. If the caller intends to validate 2856 * the buffer by loading its data area with something, the caller needs 2857 * to clear B_INVAL. If the caller does this without issuing an I/O, 2858 * the caller should set B_CACHE ( as an optimization ), else the caller 2859 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2860 * a write attempt or if it was a successfull read. If the caller 2861 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2862 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2863 * 2864 * getblk flags: 2865 * 2866 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2867 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2868 * 2869 * MPALMOSTSAFE 2870 */ 2871 struct buf * 2872 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2873 { 2874 struct buf *bp; 2875 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2876 int error; 2877 int lkflags; 2878 2879 if (size > MAXBSIZE) 2880 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2881 if (vp->v_object == NULL) 2882 panic("getblk: vnode %p has no object!", vp); 2883 2884 loop: 2885 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) { 2886 /* 2887 * The buffer was found in the cache, but we need to lock it. 2888 * We must acquire a ref on the bp to prevent reuse, but 2889 * this will not prevent disassociation (brelvp()) so we 2890 * must recheck (vp,loffset) after acquiring the lock. 2891 * 2892 * Without the ref the buffer could potentially be reused 2893 * before we acquire the lock and create a deadlock 2894 * situation between the thread trying to reuse the buffer 2895 * and us due to the fact that we would wind up blocking 2896 * on a random (vp,loffset). 2897 */ 2898 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2899 if (blkflags & GETBLK_NOWAIT) { 2900 unrefblk(bp); 2901 return(NULL); 2902 } 2903 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2904 if (blkflags & GETBLK_PCATCH) 2905 lkflags |= LK_PCATCH; 2906 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2907 if (error) { 2908 unrefblk(bp); 2909 if (error == ENOLCK) 2910 goto loop; 2911 return (NULL); 2912 } 2913 /* buffer may have changed on us */ 2914 } 2915 unrefblk(bp); 2916 2917 /* 2918 * Once the buffer has been locked, make sure we didn't race 2919 * a buffer recyclement. Buffers that are no longer hashed 2920 * will have b_vp == NULL, so this takes care of that check 2921 * as well. 2922 */ 2923 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2924 kprintf("Warning buffer %p (vp %p loffset %lld) " 2925 "was recycled\n", 2926 bp, vp, (long long)loffset); 2927 BUF_UNLOCK(bp); 2928 goto loop; 2929 } 2930 2931 /* 2932 * If SZMATCH any pre-existing buffer must be of the requested 2933 * size or NULL is returned. The caller absolutely does not 2934 * want getblk() to bwrite() the buffer on a size mismatch. 2935 */ 2936 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2937 BUF_UNLOCK(bp); 2938 return(NULL); 2939 } 2940 2941 /* 2942 * All vnode-based buffers must be backed by a VM object. 2943 */ 2944 KKASSERT(bp->b_flags & B_VMIO); 2945 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2946 bp->b_flags &= ~B_AGE; 2947 2948 /* 2949 * Make sure that B_INVAL buffers do not have a cached 2950 * block number translation. 2951 */ 2952 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2953 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 2954 " did not have cleared bio_offset cache\n", 2955 bp, vp, (long long)loffset); 2956 clearbiocache(&bp->b_bio2); 2957 } 2958 2959 /* 2960 * The buffer is locked. B_CACHE is cleared if the buffer is 2961 * invalid. 2962 */ 2963 if (bp->b_flags & B_INVAL) 2964 bp->b_flags &= ~B_CACHE; 2965 bremfree(bp); 2966 2967 /* 2968 * Any size inconsistancy with a dirty buffer or a buffer 2969 * with a softupdates dependancy must be resolved. Resizing 2970 * the buffer in such circumstances can lead to problems. 2971 * 2972 * Dirty or dependant buffers are written synchronously. 2973 * Other types of buffers are simply released and 2974 * reconstituted as they may be backed by valid, dirty VM 2975 * pages (but not marked B_DELWRI). 2976 * 2977 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 2978 * and may be left over from a prior truncation (and thus 2979 * no longer represent the actual EOF point), so we 2980 * definitely do not want to B_NOCACHE the backing store. 2981 */ 2982 if (size != bp->b_bcount) { 2983 if (bp->b_flags & B_DELWRI) { 2984 bp->b_flags |= B_RELBUF; 2985 bwrite(bp); 2986 } else if (LIST_FIRST(&bp->b_dep)) { 2987 bp->b_flags |= B_RELBUF; 2988 bwrite(bp); 2989 } else { 2990 bp->b_flags |= B_RELBUF; 2991 brelse(bp); 2992 } 2993 goto loop; 2994 } 2995 KKASSERT(size <= bp->b_kvasize); 2996 KASSERT(bp->b_loffset != NOOFFSET, 2997 ("getblk: no buffer offset")); 2998 2999 /* 3000 * A buffer with B_DELWRI set and B_CACHE clear must 3001 * be committed before we can return the buffer in 3002 * order to prevent the caller from issuing a read 3003 * ( due to B_CACHE not being set ) and overwriting 3004 * it. 3005 * 3006 * Most callers, including NFS and FFS, need this to 3007 * operate properly either because they assume they 3008 * can issue a read if B_CACHE is not set, or because 3009 * ( for example ) an uncached B_DELWRI might loop due 3010 * to softupdates re-dirtying the buffer. In the latter 3011 * case, B_CACHE is set after the first write completes, 3012 * preventing further loops. 3013 * 3014 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 3015 * above while extending the buffer, we cannot allow the 3016 * buffer to remain with B_CACHE set after the write 3017 * completes or it will represent a corrupt state. To 3018 * deal with this we set B_NOCACHE to scrap the buffer 3019 * after the write. 3020 * 3021 * XXX Should this be B_RELBUF instead of B_NOCACHE? 3022 * I'm not even sure this state is still possible 3023 * now that getblk() writes out any dirty buffers 3024 * on size changes. 3025 * 3026 * We might be able to do something fancy, like setting 3027 * B_CACHE in bwrite() except if B_DELWRI is already set, 3028 * so the below call doesn't set B_CACHE, but that gets real 3029 * confusing. This is much easier. 3030 */ 3031 3032 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 3033 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 3034 "and CACHE clear, b_flags %08x\n", 3035 bp, (intmax_t)bp->b_loffset, bp->b_flags); 3036 bp->b_flags |= B_NOCACHE; 3037 bwrite(bp); 3038 goto loop; 3039 } 3040 } else { 3041 /* 3042 * Buffer is not in-core, create new buffer. The buffer 3043 * returned by getnewbuf() is locked. Note that the returned 3044 * buffer is also considered valid (not marked B_INVAL). 3045 * 3046 * Calculating the offset for the I/O requires figuring out 3047 * the block size. We use DEV_BSIZE for VBLK or VCHR and 3048 * the mount's f_iosize otherwise. If the vnode does not 3049 * have an associated mount we assume that the passed size is 3050 * the block size. 3051 * 3052 * Note that vn_isdisk() cannot be used here since it may 3053 * return a failure for numerous reasons. Note that the 3054 * buffer size may be larger then the block size (the caller 3055 * will use block numbers with the proper multiple). Beware 3056 * of using any v_* fields which are part of unions. In 3057 * particular, in DragonFly the mount point overloading 3058 * mechanism uses the namecache only and the underlying 3059 * directory vnode is not a special case. 3060 */ 3061 int bsize, maxsize; 3062 3063 if (vp->v_type == VBLK || vp->v_type == VCHR) 3064 bsize = DEV_BSIZE; 3065 else if (vp->v_mount) 3066 bsize = vp->v_mount->mnt_stat.f_iosize; 3067 else 3068 bsize = size; 3069 3070 maxsize = size + (loffset & PAGE_MASK); 3071 maxsize = imax(maxsize, bsize); 3072 3073 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 3074 if (bp == NULL) { 3075 if (slpflags || slptimeo) 3076 return NULL; 3077 goto loop; 3078 } 3079 3080 /* 3081 * Atomically insert the buffer into the hash, so that it can 3082 * be found by findblk(). 3083 * 3084 * If bgetvp() returns non-zero a collision occured, and the 3085 * bp will not be associated with the vnode. 3086 * 3087 * Make sure the translation layer has been cleared. 3088 */ 3089 bp->b_loffset = loffset; 3090 bp->b_bio2.bio_offset = NOOFFSET; 3091 /* bp->b_bio2.bio_next = NULL; */ 3092 3093 if (bgetvp(vp, bp, size)) { 3094 bp->b_flags |= B_INVAL; 3095 brelse(bp); 3096 goto loop; 3097 } 3098 3099 /* 3100 * All vnode-based buffers must be backed by a VM object. 3101 */ 3102 KKASSERT(vp->v_object != NULL); 3103 bp->b_flags |= B_VMIO; 3104 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3105 3106 allocbuf(bp, size); 3107 } 3108 KKASSERT(dsched_is_clear_buf_priv(bp)); 3109 return (bp); 3110 } 3111 3112 /* 3113 * regetblk(bp) 3114 * 3115 * Reacquire a buffer that was previously released to the locked queue, 3116 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 3117 * set B_LOCKED (which handles the acquisition race). 3118 * 3119 * To this end, either B_LOCKED must be set or the dependancy list must be 3120 * non-empty. 3121 * 3122 * MPSAFE 3123 */ 3124 void 3125 regetblk(struct buf *bp) 3126 { 3127 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 3128 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 3129 bremfree(bp); 3130 } 3131 3132 /* 3133 * geteblk: 3134 * 3135 * Get an empty, disassociated buffer of given size. The buffer is 3136 * initially set to B_INVAL. 3137 * 3138 * critical section protection is not required for the allocbuf() 3139 * call because races are impossible here. 3140 * 3141 * MPALMOSTSAFE 3142 */ 3143 struct buf * 3144 geteblk(int size) 3145 { 3146 struct buf *bp; 3147 int maxsize; 3148 3149 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3150 3151 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 3152 ; 3153 allocbuf(bp, size); 3154 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3155 KKASSERT(dsched_is_clear_buf_priv(bp)); 3156 return (bp); 3157 } 3158 3159 3160 /* 3161 * allocbuf: 3162 * 3163 * This code constitutes the buffer memory from either anonymous system 3164 * memory (in the case of non-VMIO operations) or from an associated 3165 * VM object (in the case of VMIO operations). This code is able to 3166 * resize a buffer up or down. 3167 * 3168 * Note that this code is tricky, and has many complications to resolve 3169 * deadlock or inconsistant data situations. Tread lightly!!! 3170 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3171 * the caller. Calling this code willy nilly can result in the loss of 3172 * data. 3173 * 3174 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3175 * B_CACHE for the non-VMIO case. 3176 * 3177 * This routine does not need to be called from a critical section but you 3178 * must own the buffer. 3179 * 3180 * MPSAFE 3181 */ 3182 int 3183 allocbuf(struct buf *bp, int size) 3184 { 3185 int newbsize, mbsize; 3186 int i; 3187 3188 if (BUF_REFCNT(bp) == 0) 3189 panic("allocbuf: buffer not busy"); 3190 3191 if (bp->b_kvasize < size) 3192 panic("allocbuf: buffer too small"); 3193 3194 if ((bp->b_flags & B_VMIO) == 0) { 3195 caddr_t origbuf; 3196 int origbufsize; 3197 /* 3198 * Just get anonymous memory from the kernel. Don't 3199 * mess with B_CACHE. 3200 */ 3201 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3202 if (bp->b_flags & B_MALLOC) 3203 newbsize = mbsize; 3204 else 3205 newbsize = round_page(size); 3206 3207 if (newbsize < bp->b_bufsize) { 3208 /* 3209 * Malloced buffers are not shrunk 3210 */ 3211 if (bp->b_flags & B_MALLOC) { 3212 if (newbsize) { 3213 bp->b_bcount = size; 3214 } else { 3215 kfree(bp->b_data, M_BIOBUF); 3216 if (bp->b_bufsize) { 3217 atomic_subtract_int(&bufmallocspace, bp->b_bufsize); 3218 bufspacewakeup(); 3219 bp->b_bufsize = 0; 3220 } 3221 bp->b_data = bp->b_kvabase; 3222 bp->b_bcount = 0; 3223 bp->b_flags &= ~B_MALLOC; 3224 } 3225 return 1; 3226 } 3227 vm_hold_free_pages( 3228 bp, 3229 (vm_offset_t) bp->b_data + newbsize, 3230 (vm_offset_t) bp->b_data + bp->b_bufsize); 3231 } else if (newbsize > bp->b_bufsize) { 3232 /* 3233 * We only use malloced memory on the first allocation. 3234 * and revert to page-allocated memory when the buffer 3235 * grows. 3236 */ 3237 if ((bufmallocspace < maxbufmallocspace) && 3238 (bp->b_bufsize == 0) && 3239 (mbsize <= PAGE_SIZE/2)) { 3240 3241 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3242 bp->b_bufsize = mbsize; 3243 bp->b_bcount = size; 3244 bp->b_flags |= B_MALLOC; 3245 atomic_add_int(&bufmallocspace, mbsize); 3246 return 1; 3247 } 3248 origbuf = NULL; 3249 origbufsize = 0; 3250 /* 3251 * If the buffer is growing on its other-than-first 3252 * allocation, then we revert to the page-allocation 3253 * scheme. 3254 */ 3255 if (bp->b_flags & B_MALLOC) { 3256 origbuf = bp->b_data; 3257 origbufsize = bp->b_bufsize; 3258 bp->b_data = bp->b_kvabase; 3259 if (bp->b_bufsize) { 3260 atomic_subtract_int(&bufmallocspace, 3261 bp->b_bufsize); 3262 bufspacewakeup(); 3263 bp->b_bufsize = 0; 3264 } 3265 bp->b_flags &= ~B_MALLOC; 3266 newbsize = round_page(newbsize); 3267 } 3268 vm_hold_load_pages( 3269 bp, 3270 (vm_offset_t) bp->b_data + bp->b_bufsize, 3271 (vm_offset_t) bp->b_data + newbsize); 3272 if (origbuf) { 3273 bcopy(origbuf, bp->b_data, origbufsize); 3274 kfree(origbuf, M_BIOBUF); 3275 } 3276 } 3277 } else { 3278 vm_page_t m; 3279 int desiredpages; 3280 3281 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3282 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3283 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3284 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3285 3286 if (bp->b_flags & B_MALLOC) 3287 panic("allocbuf: VMIO buffer can't be malloced"); 3288 /* 3289 * Set B_CACHE initially if buffer is 0 length or will become 3290 * 0-length. 3291 */ 3292 if (size == 0 || bp->b_bufsize == 0) 3293 bp->b_flags |= B_CACHE; 3294 3295 if (newbsize < bp->b_bufsize) { 3296 /* 3297 * DEV_BSIZE aligned new buffer size is less then the 3298 * DEV_BSIZE aligned existing buffer size. Figure out 3299 * if we have to remove any pages. 3300 */ 3301 if (desiredpages < bp->b_xio.xio_npages) { 3302 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3303 /* 3304 * the page is not freed here -- it 3305 * is the responsibility of 3306 * vnode_pager_setsize 3307 */ 3308 m = bp->b_xio.xio_pages[i]; 3309 KASSERT(m != bogus_page, 3310 ("allocbuf: bogus page found")); 3311 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3312 ; 3313 3314 bp->b_xio.xio_pages[i] = NULL; 3315 vm_page_unwire(m, 0); 3316 } 3317 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3318 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3319 bp->b_xio.xio_npages = desiredpages; 3320 } 3321 } else if (size > bp->b_bcount) { 3322 /* 3323 * We are growing the buffer, possibly in a 3324 * byte-granular fashion. 3325 */ 3326 struct vnode *vp; 3327 vm_object_t obj; 3328 vm_offset_t toff; 3329 vm_offset_t tinc; 3330 3331 /* 3332 * Step 1, bring in the VM pages from the object, 3333 * allocating them if necessary. We must clear 3334 * B_CACHE if these pages are not valid for the 3335 * range covered by the buffer. 3336 * 3337 * critical section protection is required to protect 3338 * against interrupts unbusying and freeing pages 3339 * between our vm_page_lookup() and our 3340 * busycheck/wiring call. 3341 */ 3342 vp = bp->b_vp; 3343 obj = vp->v_object; 3344 3345 lwkt_gettoken(&vm_token); 3346 while (bp->b_xio.xio_npages < desiredpages) { 3347 vm_page_t m; 3348 vm_pindex_t pi; 3349 3350 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3351 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3352 /* 3353 * note: must allocate system pages 3354 * since blocking here could intefere 3355 * with paging I/O, no matter which 3356 * process we are. 3357 */ 3358 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3359 if (m) { 3360 vm_page_wire(m); 3361 vm_page_wakeup(m); 3362 vm_page_flag_clear(m, PG_ZERO); 3363 bp->b_flags &= ~B_CACHE; 3364 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3365 ++bp->b_xio.xio_npages; 3366 } 3367 continue; 3368 } 3369 3370 /* 3371 * We found a page. If we have to sleep on it, 3372 * retry because it might have gotten freed out 3373 * from under us. 3374 * 3375 * We can only test PG_BUSY here. Blocking on 3376 * m->busy might lead to a deadlock: 3377 * 3378 * vm_fault->getpages->cluster_read->allocbuf 3379 * 3380 */ 3381 3382 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3383 continue; 3384 vm_page_flag_clear(m, PG_ZERO); 3385 vm_page_wire(m); 3386 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3387 ++bp->b_xio.xio_npages; 3388 if (bp->b_act_count < m->act_count) 3389 bp->b_act_count = m->act_count; 3390 } 3391 lwkt_reltoken(&vm_token); 3392 3393 /* 3394 * Step 2. We've loaded the pages into the buffer, 3395 * we have to figure out if we can still have B_CACHE 3396 * set. Note that B_CACHE is set according to the 3397 * byte-granular range ( bcount and size ), not the 3398 * aligned range ( newbsize ). 3399 * 3400 * The VM test is against m->valid, which is DEV_BSIZE 3401 * aligned. Needless to say, the validity of the data 3402 * needs to also be DEV_BSIZE aligned. Note that this 3403 * fails with NFS if the server or some other client 3404 * extends the file's EOF. If our buffer is resized, 3405 * B_CACHE may remain set! XXX 3406 */ 3407 3408 toff = bp->b_bcount; 3409 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3410 3411 while ((bp->b_flags & B_CACHE) && toff < size) { 3412 vm_pindex_t pi; 3413 3414 if (tinc > (size - toff)) 3415 tinc = size - toff; 3416 3417 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3418 PAGE_SHIFT; 3419 3420 vfs_buf_test_cache( 3421 bp, 3422 bp->b_loffset, 3423 toff, 3424 tinc, 3425 bp->b_xio.xio_pages[pi] 3426 ); 3427 toff += tinc; 3428 tinc = PAGE_SIZE; 3429 } 3430 3431 /* 3432 * Step 3, fixup the KVM pmap. Remember that 3433 * bp->b_data is relative to bp->b_loffset, but 3434 * bp->b_loffset may be offset into the first page. 3435 */ 3436 3437 bp->b_data = (caddr_t) 3438 trunc_page((vm_offset_t)bp->b_data); 3439 pmap_qenter( 3440 (vm_offset_t)bp->b_data, 3441 bp->b_xio.xio_pages, 3442 bp->b_xio.xio_npages 3443 ); 3444 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3445 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3446 } 3447 } 3448 3449 /* adjust space use on already-dirty buffer */ 3450 if (bp->b_flags & B_DELWRI) { 3451 spin_lock(&bufcspin); 3452 dirtybufspace += newbsize - bp->b_bufsize; 3453 if (bp->b_flags & B_HEAVY) 3454 dirtybufspacehw += newbsize - bp->b_bufsize; 3455 spin_unlock(&bufcspin); 3456 } 3457 if (newbsize < bp->b_bufsize) 3458 bufspacewakeup(); 3459 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3460 bp->b_bcount = size; /* requested buffer size */ 3461 return 1; 3462 } 3463 3464 /* 3465 * biowait: 3466 * 3467 * Wait for buffer I/O completion, returning error status. B_EINTR 3468 * is converted into an EINTR error but not cleared (since a chain 3469 * of biowait() calls may occur). 3470 * 3471 * On return bpdone() will have been called but the buffer will remain 3472 * locked and will not have been brelse()'d. 3473 * 3474 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3475 * likely still in progress on return. 3476 * 3477 * NOTE! This operation is on a BIO, not a BUF. 3478 * 3479 * NOTE! BIO_DONE is cleared by vn_strategy() 3480 * 3481 * MPSAFE 3482 */ 3483 static __inline int 3484 _biowait(struct bio *bio, const char *wmesg, int to) 3485 { 3486 struct buf *bp = bio->bio_buf; 3487 u_int32_t flags; 3488 u_int32_t nflags; 3489 int error; 3490 3491 KKASSERT(bio == &bp->b_bio1); 3492 for (;;) { 3493 flags = bio->bio_flags; 3494 if (flags & BIO_DONE) 3495 break; 3496 tsleep_interlock(bio, 0); 3497 nflags = flags | BIO_WANT; 3498 tsleep_interlock(bio, 0); 3499 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3500 if (wmesg) 3501 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3502 else if (bp->b_cmd == BUF_CMD_READ) 3503 error = tsleep(bio, PINTERLOCKED, "biord", to); 3504 else 3505 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3506 if (error) { 3507 kprintf("tsleep error biowait %d\n", error); 3508 return (error); 3509 } 3510 } 3511 } 3512 3513 /* 3514 * Finish up. 3515 */ 3516 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3517 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3518 if (bp->b_flags & B_EINTR) 3519 return (EINTR); 3520 if (bp->b_flags & B_ERROR) 3521 return (bp->b_error ? bp->b_error : EIO); 3522 return (0); 3523 } 3524 3525 int 3526 biowait(struct bio *bio, const char *wmesg) 3527 { 3528 return(_biowait(bio, wmesg, 0)); 3529 } 3530 3531 int 3532 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3533 { 3534 return(_biowait(bio, wmesg, to)); 3535 } 3536 3537 /* 3538 * This associates a tracking count with an I/O. vn_strategy() and 3539 * dev_dstrategy() do this automatically but there are a few cases 3540 * where a vnode or device layer is bypassed when a block translation 3541 * is cached. In such cases bio_start_transaction() may be called on 3542 * the bypassed layers so the system gets an I/O in progress indication 3543 * for those higher layers. 3544 */ 3545 void 3546 bio_start_transaction(struct bio *bio, struct bio_track *track) 3547 { 3548 bio->bio_track = track; 3549 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3550 dsched_new_buf(bio->bio_buf); 3551 bio_track_ref(track); 3552 } 3553 3554 /* 3555 * Initiate I/O on a vnode. 3556 * 3557 * SWAPCACHE OPERATION: 3558 * 3559 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately 3560 * devfs also uses b_vp for fake buffers so we also have to check 3561 * that B_PAGING is 0. In this case the passed 'vp' is probably the 3562 * underlying block device. The swap assignments are related to the 3563 * buffer cache buffer's b_vp, not the passed vp. 3564 * 3565 * The passed vp == bp->b_vp only in the case where the strategy call 3566 * is made on the vp itself for its own buffers (a regular file or 3567 * block device vp). The filesystem usually then re-calls vn_strategy() 3568 * after translating the request to an underlying device. 3569 * 3570 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the 3571 * underlying buffer cache buffers. 3572 * 3573 * We can only deal with page-aligned buffers at the moment, because 3574 * we can't tell what the real dirty state for pages straddling a buffer 3575 * are. 3576 * 3577 * In order to call swap_pager_strategy() we must provide the VM object 3578 * and base offset for the underlying buffer cache pages so it can find 3579 * the swap blocks. 3580 */ 3581 void 3582 vn_strategy(struct vnode *vp, struct bio *bio) 3583 { 3584 struct bio_track *track; 3585 struct buf *bp = bio->bio_buf; 3586 3587 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3588 3589 /* 3590 * Set when an I/O is issued on the bp. Cleared by consumers 3591 * (aka HAMMER), allowing the consumer to determine if I/O had 3592 * actually occurred. 3593 */ 3594 bp->b_flags |= B_IODEBUG; 3595 3596 /* 3597 * Handle the swap cache intercept. 3598 */ 3599 if (vn_cache_strategy(vp, bio)) 3600 return; 3601 3602 /* 3603 * Otherwise do the operation through the filesystem 3604 */ 3605 if (bp->b_cmd == BUF_CMD_READ) 3606 track = &vp->v_track_read; 3607 else 3608 track = &vp->v_track_write; 3609 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3610 bio->bio_track = track; 3611 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3612 dsched_new_buf(bio->bio_buf); 3613 bio_track_ref(track); 3614 vop_strategy(*vp->v_ops, vp, bio); 3615 } 3616 3617 int 3618 vn_cache_strategy(struct vnode *vp, struct bio *bio) 3619 { 3620 struct buf *bp = bio->bio_buf; 3621 struct bio *nbio; 3622 vm_object_t object; 3623 vm_page_t m; 3624 int i; 3625 3626 /* 3627 * Is this buffer cache buffer suitable for reading from 3628 * the swap cache? 3629 */ 3630 if (vm_swapcache_read_enable == 0 || 3631 bp->b_cmd != BUF_CMD_READ || 3632 ((bp->b_flags & B_CLUSTER) == 0 && 3633 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) || 3634 ((int)bp->b_loffset & PAGE_MASK) != 0 || 3635 (bp->b_bcount & PAGE_MASK) != 0) { 3636 return(0); 3637 } 3638 3639 /* 3640 * Figure out the original VM object (it will match the underlying 3641 * VM pages). Note that swap cached data uses page indices relative 3642 * to that object, not relative to bio->bio_offset. 3643 */ 3644 if (bp->b_flags & B_CLUSTER) 3645 object = vp->v_object; 3646 else 3647 object = bp->b_vp->v_object; 3648 3649 /* 3650 * In order to be able to use the swap cache all underlying VM 3651 * pages must be marked as such, and we can't have any bogus pages. 3652 */ 3653 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 3654 m = bp->b_xio.xio_pages[i]; 3655 if ((m->flags & PG_SWAPPED) == 0) 3656 break; 3657 if (m == bogus_page) 3658 break; 3659 } 3660 3661 /* 3662 * If we are good then issue the I/O using swap_pager_strategy() 3663 */ 3664 if (i == bp->b_xio.xio_npages) { 3665 m = bp->b_xio.xio_pages[0]; 3666 nbio = push_bio(bio); 3667 nbio->bio_offset = ptoa(m->pindex); 3668 KKASSERT(m->object == object); 3669 swap_pager_strategy(object, nbio); 3670 return(1); 3671 } 3672 return(0); 3673 } 3674 3675 /* 3676 * bpdone: 3677 * 3678 * Finish I/O on a buffer after all BIOs have been processed. 3679 * Called when the bio chain is exhausted or by biowait. If called 3680 * by biowait, elseit is typically 0. 3681 * 3682 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3683 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3684 * assuming B_INVAL is clear. 3685 * 3686 * For the VMIO case, we set B_CACHE if the op was a read and no 3687 * read error occured, or if the op was a write. B_CACHE is never 3688 * set if the buffer is invalid or otherwise uncacheable. 3689 * 3690 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3691 * initiator to leave B_INVAL set to brelse the buffer out of existance 3692 * in the biodone routine. 3693 */ 3694 void 3695 bpdone(struct buf *bp, int elseit) 3696 { 3697 buf_cmd_t cmd; 3698 3699 KASSERT(BUF_REFCNTNB(bp) > 0, 3700 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3701 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3702 ("biodone: bp %p already done!", bp)); 3703 3704 /* 3705 * No more BIOs are left. All completion functions have been dealt 3706 * with, now we clean up the buffer. 3707 */ 3708 cmd = bp->b_cmd; 3709 bp->b_cmd = BUF_CMD_DONE; 3710 3711 /* 3712 * Only reads and writes are processed past this point. 3713 */ 3714 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3715 if (cmd == BUF_CMD_FREEBLKS) 3716 bp->b_flags |= B_NOCACHE; 3717 if (elseit) 3718 brelse(bp); 3719 return; 3720 } 3721 3722 /* 3723 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3724 * a lot worse. XXX - move this above the clearing of b_cmd 3725 */ 3726 if (LIST_FIRST(&bp->b_dep) != NULL) 3727 buf_complete(bp); /* MPSAFE */ 3728 3729 /* 3730 * A failed write must re-dirty the buffer unless B_INVAL 3731 * was set. Only applicable to normal buffers (with VPs). 3732 * vinum buffers may not have a vp. 3733 */ 3734 if (cmd == BUF_CMD_WRITE && 3735 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3736 bp->b_flags &= ~B_NOCACHE; 3737 if (bp->b_vp) 3738 bdirty(bp); 3739 } 3740 3741 if (bp->b_flags & B_VMIO) { 3742 int i; 3743 vm_ooffset_t foff; 3744 vm_page_t m; 3745 vm_object_t obj; 3746 int iosize; 3747 struct vnode *vp = bp->b_vp; 3748 3749 obj = vp->v_object; 3750 3751 #if defined(VFS_BIO_DEBUG) 3752 if (vp->v_auxrefs == 0) 3753 panic("biodone: zero vnode hold count"); 3754 if ((vp->v_flag & VOBJBUF) == 0) 3755 panic("biodone: vnode is not setup for merged cache"); 3756 #endif 3757 3758 foff = bp->b_loffset; 3759 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3760 KASSERT(obj != NULL, ("biodone: missing VM object")); 3761 3762 #if defined(VFS_BIO_DEBUG) 3763 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3764 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3765 obj->paging_in_progress, bp->b_xio.xio_npages); 3766 } 3767 #endif 3768 3769 /* 3770 * Set B_CACHE if the op was a normal read and no error 3771 * occured. B_CACHE is set for writes in the b*write() 3772 * routines. 3773 */ 3774 iosize = bp->b_bcount - bp->b_resid; 3775 if (cmd == BUF_CMD_READ && 3776 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3777 bp->b_flags |= B_CACHE; 3778 } 3779 3780 lwkt_gettoken(&vm_token); 3781 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3782 int bogusflag = 0; 3783 int resid; 3784 3785 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3786 if (resid > iosize) 3787 resid = iosize; 3788 3789 /* 3790 * cleanup bogus pages, restoring the originals. Since 3791 * the originals should still be wired, we don't have 3792 * to worry about interrupt/freeing races destroying 3793 * the VM object association. 3794 */ 3795 m = bp->b_xio.xio_pages[i]; 3796 if (m == bogus_page) { 3797 bogusflag = 1; 3798 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3799 if (m == NULL) 3800 panic("biodone: page disappeared"); 3801 bp->b_xio.xio_pages[i] = m; 3802 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3803 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3804 } 3805 #if defined(VFS_BIO_DEBUG) 3806 if (OFF_TO_IDX(foff) != m->pindex) { 3807 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3808 "mismatch\n", 3809 (unsigned long)foff, (long)m->pindex); 3810 } 3811 #endif 3812 3813 /* 3814 * In the write case, the valid and clean bits are 3815 * already changed correctly (see bdwrite()), so we 3816 * only need to do this here in the read case. 3817 */ 3818 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3819 vfs_clean_one_page(bp, i, m); 3820 } 3821 vm_page_flag_clear(m, PG_ZERO); 3822 3823 /* 3824 * when debugging new filesystems or buffer I/O 3825 * methods, this is the most common error that pops 3826 * up. if you see this, you have not set the page 3827 * busy flag correctly!!! 3828 */ 3829 if (m->busy == 0) { 3830 kprintf("biodone: page busy < 0, " 3831 "pindex: %d, foff: 0x(%x,%x), " 3832 "resid: %d, index: %d\n", 3833 (int) m->pindex, (int)(foff >> 32), 3834 (int) foff & 0xffffffff, resid, i); 3835 if (!vn_isdisk(vp, NULL)) 3836 kprintf(" iosize: %ld, loffset: %lld, " 3837 "flags: 0x%08x, npages: %d\n", 3838 bp->b_vp->v_mount->mnt_stat.f_iosize, 3839 (long long)bp->b_loffset, 3840 bp->b_flags, bp->b_xio.xio_npages); 3841 else 3842 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3843 (long long)bp->b_loffset, 3844 bp->b_flags, bp->b_xio.xio_npages); 3845 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3846 m->valid, m->dirty, m->wire_count); 3847 panic("biodone: page busy < 0"); 3848 } 3849 vm_page_io_finish(m); 3850 vm_object_pip_subtract(obj, 1); 3851 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3852 iosize -= resid; 3853 } 3854 bp->b_flags &= ~B_HASBOGUS; 3855 if (obj) 3856 vm_object_pip_wakeupn(obj, 0); 3857 lwkt_reltoken(&vm_token); 3858 } 3859 3860 /* 3861 * Finish up by releasing the buffer. There are no more synchronous 3862 * or asynchronous completions, those were handled by bio_done 3863 * callbacks. 3864 */ 3865 if (elseit) { 3866 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3867 brelse(bp); 3868 else 3869 bqrelse(bp); 3870 } 3871 } 3872 3873 /* 3874 * Normal biodone. 3875 */ 3876 void 3877 biodone(struct bio *bio) 3878 { 3879 struct buf *bp = bio->bio_buf; 3880 3881 runningbufwakeup(bp); 3882 3883 /* 3884 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3885 */ 3886 while (bio) { 3887 biodone_t *done_func; 3888 struct bio_track *track; 3889 3890 /* 3891 * BIO tracking. Most but not all BIOs are tracked. 3892 */ 3893 if ((track = bio->bio_track) != NULL) { 3894 bio_track_rel(track); 3895 bio->bio_track = NULL; 3896 } 3897 3898 /* 3899 * A bio_done function terminates the loop. The function 3900 * will be responsible for any further chaining and/or 3901 * buffer management. 3902 * 3903 * WARNING! The done function can deallocate the buffer! 3904 */ 3905 if ((done_func = bio->bio_done) != NULL) { 3906 bio->bio_done = NULL; 3907 done_func(bio); 3908 return; 3909 } 3910 bio = bio->bio_prev; 3911 } 3912 3913 /* 3914 * If we've run out of bio's do normal [a]synchronous completion. 3915 */ 3916 bpdone(bp, 1); 3917 } 3918 3919 /* 3920 * Synchronous biodone - this terminates a synchronous BIO. 3921 * 3922 * bpdone() is called with elseit=FALSE, leaving the buffer completed 3923 * but still locked. The caller must brelse() the buffer after waiting 3924 * for completion. 3925 */ 3926 void 3927 biodone_sync(struct bio *bio) 3928 { 3929 struct buf *bp = bio->bio_buf; 3930 int flags; 3931 int nflags; 3932 3933 KKASSERT(bio == &bp->b_bio1); 3934 bpdone(bp, 0); 3935 3936 for (;;) { 3937 flags = bio->bio_flags; 3938 nflags = (flags | BIO_DONE) & ~BIO_WANT; 3939 3940 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3941 if (flags & BIO_WANT) 3942 wakeup(bio); 3943 break; 3944 } 3945 } 3946 } 3947 3948 /* 3949 * vfs_unbusy_pages: 3950 * 3951 * This routine is called in lieu of iodone in the case of 3952 * incomplete I/O. This keeps the busy status for pages 3953 * consistant. 3954 */ 3955 void 3956 vfs_unbusy_pages(struct buf *bp) 3957 { 3958 int i; 3959 3960 runningbufwakeup(bp); 3961 3962 lwkt_gettoken(&vm_token); 3963 if (bp->b_flags & B_VMIO) { 3964 struct vnode *vp = bp->b_vp; 3965 vm_object_t obj; 3966 3967 obj = vp->v_object; 3968 3969 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3970 vm_page_t m = bp->b_xio.xio_pages[i]; 3971 3972 /* 3973 * When restoring bogus changes the original pages 3974 * should still be wired, so we are in no danger of 3975 * losing the object association and do not need 3976 * critical section protection particularly. 3977 */ 3978 if (m == bogus_page) { 3979 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3980 if (!m) { 3981 panic("vfs_unbusy_pages: page missing"); 3982 } 3983 bp->b_xio.xio_pages[i] = m; 3984 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3985 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3986 } 3987 vm_object_pip_subtract(obj, 1); 3988 vm_page_flag_clear(m, PG_ZERO); 3989 vm_page_io_finish(m); 3990 } 3991 bp->b_flags &= ~B_HASBOGUS; 3992 vm_object_pip_wakeupn(obj, 0); 3993 } 3994 lwkt_reltoken(&vm_token); 3995 } 3996 3997 /* 3998 * vfs_busy_pages: 3999 * 4000 * This routine is called before a device strategy routine. 4001 * It is used to tell the VM system that paging I/O is in 4002 * progress, and treat the pages associated with the buffer 4003 * almost as being PG_BUSY. Also the object 'paging_in_progress' 4004 * flag is handled to make sure that the object doesn't become 4005 * inconsistant. 4006 * 4007 * Since I/O has not been initiated yet, certain buffer flags 4008 * such as B_ERROR or B_INVAL may be in an inconsistant state 4009 * and should be ignored. 4010 * 4011 * MPSAFE 4012 */ 4013 void 4014 vfs_busy_pages(struct vnode *vp, struct buf *bp) 4015 { 4016 int i, bogus; 4017 struct lwp *lp = curthread->td_lwp; 4018 4019 /* 4020 * The buffer's I/O command must already be set. If reading, 4021 * B_CACHE must be 0 (double check against callers only doing 4022 * I/O when B_CACHE is 0). 4023 */ 4024 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4025 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 4026 4027 if (bp->b_flags & B_VMIO) { 4028 vm_object_t obj; 4029 4030 lwkt_gettoken(&vm_token); 4031 4032 obj = vp->v_object; 4033 KASSERT(bp->b_loffset != NOOFFSET, 4034 ("vfs_busy_pages: no buffer offset")); 4035 4036 /* 4037 * Loop until none of the pages are busy. 4038 */ 4039 retry: 4040 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4041 vm_page_t m = bp->b_xio.xio_pages[i]; 4042 4043 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 4044 goto retry; 4045 } 4046 4047 /* 4048 * Setup for I/O, soft-busy the page right now because 4049 * the next loop may block. 4050 */ 4051 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4052 vm_page_t m = bp->b_xio.xio_pages[i]; 4053 4054 vm_page_flag_clear(m, PG_ZERO); 4055 if ((bp->b_flags & B_CLUSTER) == 0) { 4056 vm_object_pip_add(obj, 1); 4057 vm_page_io_start(m); 4058 } 4059 } 4060 4061 /* 4062 * Adjust protections for I/O and do bogus-page mapping. 4063 * Assume that vm_page_protect() can block (it can block 4064 * if VM_PROT_NONE, don't take any chances regardless). 4065 * 4066 * In particular note that for writes we must incorporate 4067 * page dirtyness from the VM system into the buffer's 4068 * dirty range. 4069 * 4070 * For reads we theoretically must incorporate page dirtyness 4071 * from the VM system to determine if the page needs bogus 4072 * replacement, but we shortcut the test by simply checking 4073 * that all m->valid bits are set, indicating that the page 4074 * is fully valid and does not need to be re-read. For any 4075 * VM system dirtyness the page will also be fully valid 4076 * since it was mapped at one point. 4077 */ 4078 bogus = 0; 4079 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4080 vm_page_t m = bp->b_xio.xio_pages[i]; 4081 4082 vm_page_flag_clear(m, PG_ZERO); /* XXX */ 4083 if (bp->b_cmd == BUF_CMD_WRITE) { 4084 /* 4085 * When readying a vnode-backed buffer for 4086 * a write we must zero-fill any invalid 4087 * portions of the backing VM pages, mark 4088 * it valid and clear related dirty bits. 4089 * 4090 * vfs_clean_one_page() incorporates any 4091 * VM dirtyness and updates the b_dirtyoff 4092 * range (after we've made the page RO). 4093 * 4094 * It is also expected that the pmap modified 4095 * bit has already been cleared by the 4096 * vm_page_protect(). We may not be able 4097 * to clear all dirty bits for a page if it 4098 * was also memory mapped (NFS). 4099 * 4100 * Finally be sure to unassign any swap-cache 4101 * backing store as it is now stale. 4102 */ 4103 vm_page_protect(m, VM_PROT_READ); 4104 vfs_clean_one_page(bp, i, m); 4105 swap_pager_unswapped(m); 4106 } else if (m->valid == VM_PAGE_BITS_ALL) { 4107 /* 4108 * When readying a vnode-backed buffer for 4109 * read we must replace any dirty pages with 4110 * a bogus page so dirty data is not destroyed 4111 * when filling gaps. 4112 * 4113 * To avoid testing whether the page is 4114 * dirty we instead test that the page was 4115 * at some point mapped (m->valid fully 4116 * valid) with the understanding that 4117 * this also covers the dirty case. 4118 */ 4119 bp->b_xio.xio_pages[i] = bogus_page; 4120 bp->b_flags |= B_HASBOGUS; 4121 bogus++; 4122 } else if (m->valid & m->dirty) { 4123 /* 4124 * This case should not occur as partial 4125 * dirtyment can only happen if the buffer 4126 * is B_CACHE, and this code is not entered 4127 * if the buffer is B_CACHE. 4128 */ 4129 kprintf("Warning: vfs_busy_pages - page not " 4130 "fully valid! loff=%jx bpf=%08x " 4131 "idx=%d val=%02x dir=%02x\n", 4132 (intmax_t)bp->b_loffset, bp->b_flags, 4133 i, m->valid, m->dirty); 4134 vm_page_protect(m, VM_PROT_NONE); 4135 } else { 4136 /* 4137 * The page is not valid and can be made 4138 * part of the read. 4139 */ 4140 vm_page_protect(m, VM_PROT_NONE); 4141 } 4142 } 4143 if (bogus) { 4144 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4145 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 4146 } 4147 lwkt_reltoken(&vm_token); 4148 } 4149 4150 /* 4151 * This is the easiest place to put the process accounting for the I/O 4152 * for now. 4153 */ 4154 if (lp != NULL) { 4155 if (bp->b_cmd == BUF_CMD_READ) 4156 lp->lwp_ru.ru_inblock++; 4157 else 4158 lp->lwp_ru.ru_oublock++; 4159 } 4160 } 4161 4162 /* 4163 * vfs_clean_pages: 4164 * 4165 * Tell the VM system that the pages associated with this buffer 4166 * are clean. This is used for delayed writes where the data is 4167 * going to go to disk eventually without additional VM intevention. 4168 * 4169 * Note that while we only really need to clean through to b_bcount, we 4170 * just go ahead and clean through to b_bufsize. 4171 */ 4172 static void 4173 vfs_clean_pages(struct buf *bp) 4174 { 4175 vm_page_t m; 4176 int i; 4177 4178 if ((bp->b_flags & B_VMIO) == 0) 4179 return; 4180 4181 KASSERT(bp->b_loffset != NOOFFSET, 4182 ("vfs_clean_pages: no buffer offset")); 4183 4184 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4185 m = bp->b_xio.xio_pages[i]; 4186 vfs_clean_one_page(bp, i, m); 4187 } 4188 } 4189 4190 /* 4191 * vfs_clean_one_page: 4192 * 4193 * Set the valid bits and clear the dirty bits in a page within a 4194 * buffer. The range is restricted to the buffer's size and the 4195 * buffer's logical offset might index into the first page. 4196 * 4197 * The caller has busied or soft-busied the page and it is not mapped, 4198 * test and incorporate the dirty bits into b_dirtyoff/end before 4199 * clearing them. Note that we need to clear the pmap modified bits 4200 * after determining the the page was dirty, vm_page_set_validclean() 4201 * does not do it for us. 4202 * 4203 * This routine is typically called after a read completes (dirty should 4204 * be zero in that case as we are not called on bogus-replace pages), 4205 * or before a write is initiated. 4206 */ 4207 static void 4208 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 4209 { 4210 int bcount; 4211 int xoff; 4212 int soff; 4213 int eoff; 4214 4215 /* 4216 * Calculate offset range within the page but relative to buffer's 4217 * loffset. loffset might be offset into the first page. 4218 */ 4219 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4220 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4221 4222 if (pageno == 0) { 4223 soff = xoff; 4224 eoff = PAGE_SIZE; 4225 } else { 4226 soff = (pageno << PAGE_SHIFT); 4227 eoff = soff + PAGE_SIZE; 4228 } 4229 if (eoff > bcount) 4230 eoff = bcount; 4231 if (soff >= eoff) 4232 return; 4233 4234 /* 4235 * Test dirty bits and adjust b_dirtyoff/end. 4236 * 4237 * If dirty pages are incorporated into the bp any prior 4238 * B_NEEDCOMMIT state (NFS) must be cleared because the 4239 * caller has not taken into account the new dirty data. 4240 * 4241 * If the page was memory mapped the dirty bits might go beyond the 4242 * end of the buffer, but we can't really make the assumption that 4243 * a file EOF straddles the buffer (even though this is the case for 4244 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 4245 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 4246 * This also saves some console spam. 4247 * 4248 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK, 4249 * NFS can handle huge commits but not huge writes. 4250 */ 4251 vm_page_test_dirty(m); 4252 if (m->dirty) { 4253 if ((bp->b_flags & B_NEEDCOMMIT) && 4254 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 4255 if (debug_commit) 4256 kprintf("Warning: vfs_clean_one_page: bp %p " 4257 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT" 4258 " cmd %d vd %02x/%02x x/s/e %d %d %d " 4259 "doff/end %d %d\n", 4260 bp, (intmax_t)bp->b_loffset, bp->b_bcount, 4261 bp->b_flags, bp->b_cmd, 4262 m->valid, m->dirty, xoff, soff, eoff, 4263 bp->b_dirtyoff, bp->b_dirtyend); 4264 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 4265 if (debug_commit) 4266 print_backtrace(-1); 4267 } 4268 /* 4269 * Only clear the pmap modified bits if ALL the dirty bits 4270 * are set, otherwise the system might mis-clear portions 4271 * of a page. 4272 */ 4273 if (m->dirty == VM_PAGE_BITS_ALL && 4274 (bp->b_flags & B_NEEDCOMMIT) == 0) { 4275 pmap_clear_modify(m); 4276 } 4277 if (bp->b_dirtyoff > soff - xoff) 4278 bp->b_dirtyoff = soff - xoff; 4279 if (bp->b_dirtyend < eoff - xoff) 4280 bp->b_dirtyend = eoff - xoff; 4281 } 4282 4283 /* 4284 * Set related valid bits, clear related dirty bits. 4285 * Does not mess with the pmap modified bit. 4286 * 4287 * WARNING! We cannot just clear all of m->dirty here as the 4288 * buffer cache buffers may use a DEV_BSIZE'd aligned 4289 * block size, or have an odd size (e.g. NFS at file EOF). 4290 * The putpages code can clear m->dirty to 0. 4291 * 4292 * If a VOP_WRITE generates a buffer cache buffer which 4293 * covers the same space as mapped writable pages the 4294 * buffer flush might not be able to clear all the dirty 4295 * bits and still require a putpages from the VM system 4296 * to finish it off. 4297 */ 4298 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 4299 } 4300 4301 /* 4302 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty. 4303 * The page data is assumed to be valid (there is no zeroing here). 4304 */ 4305 static void 4306 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m) 4307 { 4308 int bcount; 4309 int xoff; 4310 int soff; 4311 int eoff; 4312 4313 /* 4314 * Calculate offset range within the page but relative to buffer's 4315 * loffset. loffset might be offset into the first page. 4316 */ 4317 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4318 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4319 4320 if (pageno == 0) { 4321 soff = xoff; 4322 eoff = PAGE_SIZE; 4323 } else { 4324 soff = (pageno << PAGE_SHIFT); 4325 eoff = soff + PAGE_SIZE; 4326 } 4327 if (eoff > bcount) 4328 eoff = bcount; 4329 if (soff >= eoff) 4330 return; 4331 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff); 4332 } 4333 4334 /* 4335 * vfs_bio_clrbuf: 4336 * 4337 * Clear a buffer. This routine essentially fakes an I/O, so we need 4338 * to clear B_ERROR and B_INVAL. 4339 * 4340 * Note that while we only theoretically need to clear through b_bcount, 4341 * we go ahead and clear through b_bufsize. 4342 */ 4343 4344 void 4345 vfs_bio_clrbuf(struct buf *bp) 4346 { 4347 int i, mask = 0; 4348 caddr_t sa, ea; 4349 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 4350 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 4351 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4352 (bp->b_loffset & PAGE_MASK) == 0) { 4353 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4354 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 4355 bp->b_resid = 0; 4356 return; 4357 } 4358 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 4359 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 4360 bzero(bp->b_data, bp->b_bufsize); 4361 bp->b_xio.xio_pages[0]->valid |= mask; 4362 bp->b_resid = 0; 4363 return; 4364 } 4365 } 4366 sa = bp->b_data; 4367 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 4368 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 4369 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 4370 ea = (caddr_t)(vm_offset_t)ulmin( 4371 (u_long)(vm_offset_t)ea, 4372 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 4373 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4374 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 4375 continue; 4376 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 4377 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 4378 bzero(sa, ea - sa); 4379 } 4380 } else { 4381 for (; sa < ea; sa += DEV_BSIZE, j++) { 4382 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 4383 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 4384 bzero(sa, DEV_BSIZE); 4385 } 4386 } 4387 bp->b_xio.xio_pages[i]->valid |= mask; 4388 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 4389 } 4390 bp->b_resid = 0; 4391 } else { 4392 clrbuf(bp); 4393 } 4394 } 4395 4396 /* 4397 * vm_hold_load_pages: 4398 * 4399 * Load pages into the buffer's address space. The pages are 4400 * allocated from the kernel object in order to reduce interference 4401 * with the any VM paging I/O activity. The range of loaded 4402 * pages will be wired. 4403 * 4404 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4405 * retrieve the full range (to - from) of pages. 4406 * 4407 * MPSAFE 4408 */ 4409 void 4410 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4411 { 4412 vm_offset_t pg; 4413 vm_page_t p; 4414 int index; 4415 4416 to = round_page(to); 4417 from = round_page(from); 4418 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4419 4420 pg = from; 4421 while (pg < to) { 4422 /* 4423 * Note: must allocate system pages since blocking here 4424 * could intefere with paging I/O, no matter which 4425 * process we are. 4426 */ 4427 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4428 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4429 if (p) { 4430 vm_page_wire(p); 4431 p->valid = VM_PAGE_BITS_ALL; 4432 vm_page_flag_clear(p, PG_ZERO); 4433 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4434 bp->b_xio.xio_pages[index] = p; 4435 vm_page_wakeup(p); 4436 4437 pg += PAGE_SIZE; 4438 ++index; 4439 } 4440 } 4441 bp->b_xio.xio_npages = index; 4442 } 4443 4444 /* 4445 * Allocate pages for a buffer cache buffer. 4446 * 4447 * Under extremely severe memory conditions even allocating out of the 4448 * system reserve can fail. If this occurs we must allocate out of the 4449 * interrupt reserve to avoid a deadlock with the pageout daemon. 4450 * 4451 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 4452 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 4453 * against the pageout daemon if pages are not freed from other sources. 4454 * 4455 * MPSAFE 4456 */ 4457 static 4458 vm_page_t 4459 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4460 { 4461 vm_page_t p; 4462 4463 /* 4464 * Try a normal allocation, allow use of system reserve. 4465 */ 4466 lwkt_gettoken(&vm_token); 4467 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 4468 if (p) { 4469 lwkt_reltoken(&vm_token); 4470 return(p); 4471 } 4472 4473 /* 4474 * The normal allocation failed and we clearly have a page 4475 * deficit. Try to reclaim some clean VM pages directly 4476 * from the buffer cache. 4477 */ 4478 vm_pageout_deficit += deficit; 4479 recoverbufpages(); 4480 4481 /* 4482 * We may have blocked, the caller will know what to do if the 4483 * page now exists. 4484 */ 4485 if (vm_page_lookup(obj, pg)) { 4486 lwkt_reltoken(&vm_token); 4487 return(NULL); 4488 } 4489 4490 /* 4491 * Allocate and allow use of the interrupt reserve. 4492 * 4493 * If after all that we still can't allocate a VM page we are 4494 * in real trouble, but we slog on anyway hoping that the system 4495 * won't deadlock. 4496 */ 4497 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 4498 VM_ALLOC_INTERRUPT); 4499 if (p) { 4500 if (vm_page_count_severe()) { 4501 ++lowmempgallocs; 4502 vm_wait(hz / 20 + 1); 4503 } 4504 } else { 4505 kprintf("bio_page_alloc: Memory exhausted during bufcache " 4506 "page allocation\n"); 4507 ++lowmempgfails; 4508 vm_wait(hz); 4509 } 4510 lwkt_reltoken(&vm_token); 4511 return(p); 4512 } 4513 4514 /* 4515 * vm_hold_free_pages: 4516 * 4517 * Return pages associated with the buffer back to the VM system. 4518 * 4519 * The range of pages underlying the buffer's address space will 4520 * be unmapped and un-wired. 4521 * 4522 * MPSAFE 4523 */ 4524 void 4525 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4526 { 4527 vm_offset_t pg; 4528 vm_page_t p; 4529 int index, newnpages; 4530 4531 from = round_page(from); 4532 to = round_page(to); 4533 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4534 newnpages = index; 4535 4536 lwkt_gettoken(&vm_token); 4537 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4538 p = bp->b_xio.xio_pages[index]; 4539 if (p && (index < bp->b_xio.xio_npages)) { 4540 if (p->busy) { 4541 kprintf("vm_hold_free_pages: doffset: %lld, " 4542 "loffset: %lld\n", 4543 (long long)bp->b_bio2.bio_offset, 4544 (long long)bp->b_loffset); 4545 } 4546 bp->b_xio.xio_pages[index] = NULL; 4547 pmap_kremove(pg); 4548 vm_page_busy(p); 4549 vm_page_unwire(p, 0); 4550 vm_page_free(p); 4551 } 4552 } 4553 bp->b_xio.xio_npages = newnpages; 4554 lwkt_reltoken(&vm_token); 4555 } 4556 4557 /* 4558 * vmapbuf: 4559 * 4560 * Map a user buffer into KVM via a pbuf. On return the buffer's 4561 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4562 * initialized. 4563 */ 4564 int 4565 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4566 { 4567 caddr_t addr; 4568 vm_offset_t va; 4569 vm_page_t m; 4570 int vmprot; 4571 int error; 4572 int pidx; 4573 int i; 4574 4575 /* 4576 * bp had better have a command and it better be a pbuf. 4577 */ 4578 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4579 KKASSERT(bp->b_flags & B_PAGING); 4580 KKASSERT(bp->b_kvabase); 4581 4582 if (bytes < 0) 4583 return (-1); 4584 4585 /* 4586 * Map the user data into KVM. Mappings have to be page-aligned. 4587 */ 4588 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4589 pidx = 0; 4590 4591 vmprot = VM_PROT_READ; 4592 if (bp->b_cmd == BUF_CMD_READ) 4593 vmprot |= VM_PROT_WRITE; 4594 4595 while (addr < udata + bytes) { 4596 /* 4597 * Do the vm_fault if needed; do the copy-on-write thing 4598 * when reading stuff off device into memory. 4599 * 4600 * vm_fault_page*() returns a held VM page. 4601 */ 4602 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4603 va = trunc_page(va); 4604 4605 m = vm_fault_page_quick(va, vmprot, &error); 4606 if (m == NULL) { 4607 for (i = 0; i < pidx; ++i) { 4608 vm_page_unhold(bp->b_xio.xio_pages[i]); 4609 bp->b_xio.xio_pages[i] = NULL; 4610 } 4611 return(-1); 4612 } 4613 bp->b_xio.xio_pages[pidx] = m; 4614 addr += PAGE_SIZE; 4615 ++pidx; 4616 } 4617 4618 /* 4619 * Map the page array and set the buffer fields to point to 4620 * the mapped data buffer. 4621 */ 4622 if (pidx > btoc(MAXPHYS)) 4623 panic("vmapbuf: mapped more than MAXPHYS"); 4624 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4625 4626 bp->b_xio.xio_npages = pidx; 4627 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4628 bp->b_bcount = bytes; 4629 bp->b_bufsize = bytes; 4630 return(0); 4631 } 4632 4633 /* 4634 * vunmapbuf: 4635 * 4636 * Free the io map PTEs associated with this IO operation. 4637 * We also invalidate the TLB entries and restore the original b_addr. 4638 */ 4639 void 4640 vunmapbuf(struct buf *bp) 4641 { 4642 int pidx; 4643 int npages; 4644 4645 KKASSERT(bp->b_flags & B_PAGING); 4646 4647 npages = bp->b_xio.xio_npages; 4648 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4649 for (pidx = 0; pidx < npages; ++pidx) { 4650 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4651 bp->b_xio.xio_pages[pidx] = NULL; 4652 } 4653 bp->b_xio.xio_npages = 0; 4654 bp->b_data = bp->b_kvabase; 4655 } 4656 4657 /* 4658 * Scan all buffers in the system and issue the callback. 4659 */ 4660 int 4661 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4662 { 4663 int count = 0; 4664 int error; 4665 int n; 4666 4667 for (n = 0; n < nbuf; ++n) { 4668 if ((error = callback(&buf[n], info)) < 0) { 4669 count = error; 4670 break; 4671 } 4672 count += error; 4673 } 4674 return (count); 4675 } 4676 4677 /* 4678 * nestiobuf_iodone: biodone callback for nested buffers and propagate 4679 * completion to the master buffer. 4680 */ 4681 static void 4682 nestiobuf_iodone(struct bio *bio) 4683 { 4684 struct bio *mbio; 4685 struct buf *mbp, *bp; 4686 int error; 4687 int donebytes; 4688 4689 bp = bio->bio_buf; 4690 mbio = bio->bio_caller_info1.ptr; 4691 mbp = mbio->bio_buf; 4692 4693 KKASSERT(bp->b_bcount <= bp->b_bufsize); 4694 KKASSERT(mbp != bp); 4695 4696 error = bp->b_error; 4697 if (bp->b_error == 0 && 4698 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 4699 /* 4700 * Not all got transfered, raise an error. We have no way to 4701 * propagate these conditions to mbp. 4702 */ 4703 error = EIO; 4704 } 4705 4706 donebytes = bp->b_bufsize; 4707 4708 relpbuf(bp, NULL); 4709 nestiobuf_done(mbio, donebytes, error); 4710 } 4711 4712 void 4713 nestiobuf_done(struct bio *mbio, int donebytes, int error) 4714 { 4715 struct buf *mbp; 4716 4717 mbp = mbio->bio_buf; 4718 4719 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0); 4720 4721 /* 4722 * If an error occured, propagate it to the master buffer. 4723 * 4724 * Several biodone()s may wind up running concurrently so 4725 * use an atomic op to adjust b_flags. 4726 */ 4727 if (error) { 4728 mbp->b_error = error; 4729 atomic_set_int(&mbp->b_flags, B_ERROR); 4730 } 4731 4732 /* 4733 * Decrement the operations in progress counter and terminate the 4734 * I/O if this was the last bit. 4735 */ 4736 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4737 mbp->b_resid = 0; 4738 biodone(mbio); 4739 } 4740 } 4741 4742 /* 4743 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent 4744 * the mbio from being biodone()'d while we are still adding sub-bios to 4745 * it. 4746 */ 4747 void 4748 nestiobuf_init(struct bio *bio) 4749 { 4750 bio->bio_driver_info = (void *)1; 4751 } 4752 4753 /* 4754 * The BIOs added to the nestedio have already been started, remove the 4755 * count that placeheld our mbio and biodone() it if the count would 4756 * transition to 0. 4757 */ 4758 void 4759 nestiobuf_start(struct bio *mbio) 4760 { 4761 struct buf *mbp = mbio->bio_buf; 4762 4763 /* 4764 * Decrement the operations in progress counter and terminate the 4765 * I/O if this was the last bit. 4766 */ 4767 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4768 if (mbp->b_flags & B_ERROR) 4769 mbp->b_resid = mbp->b_bcount; 4770 else 4771 mbp->b_resid = 0; 4772 biodone(mbio); 4773 } 4774 } 4775 4776 /* 4777 * Set an intermediate error prior to calling nestiobuf_start() 4778 */ 4779 void 4780 nestiobuf_error(struct bio *mbio, int error) 4781 { 4782 struct buf *mbp = mbio->bio_buf; 4783 4784 if (error) { 4785 mbp->b_error = error; 4786 atomic_set_int(&mbp->b_flags, B_ERROR); 4787 } 4788 } 4789 4790 /* 4791 * nestiobuf_add: setup a "nested" buffer. 4792 * 4793 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 4794 * => 'bp' should be a buffer allocated by getiobuf. 4795 * => 'offset' is a byte offset in the master buffer. 4796 * => 'size' is a size in bytes of this nested buffer. 4797 */ 4798 void 4799 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size) 4800 { 4801 struct buf *mbp = mbio->bio_buf; 4802 struct vnode *vp = mbp->b_vp; 4803 4804 KKASSERT(mbp->b_bcount >= offset + size); 4805 4806 atomic_add_int((int *)&mbio->bio_driver_info, 1); 4807 4808 /* kernel needs to own the lock for it to be released in biodone */ 4809 BUF_KERNPROC(bp); 4810 bp->b_vp = vp; 4811 bp->b_cmd = mbp->b_cmd; 4812 bp->b_bio1.bio_done = nestiobuf_iodone; 4813 bp->b_data = (char *)mbp->b_data + offset; 4814 bp->b_resid = bp->b_bcount = size; 4815 bp->b_bufsize = bp->b_bcount; 4816 4817 bp->b_bio1.bio_track = NULL; 4818 bp->b_bio1.bio_caller_info1.ptr = mbio; 4819 } 4820 4821 /* 4822 * print out statistics from the current status of the buffer pool 4823 * this can be toggeled by the system control option debug.syncprt 4824 */ 4825 #ifdef DEBUG 4826 void 4827 vfs_bufstats(void) 4828 { 4829 int i, j, count; 4830 struct buf *bp; 4831 struct bqueues *dp; 4832 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4833 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4834 4835 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4836 count = 0; 4837 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4838 counts[j] = 0; 4839 4840 spin_lock(&bufqspin); 4841 TAILQ_FOREACH(bp, dp, b_freelist) { 4842 counts[bp->b_bufsize/PAGE_SIZE]++; 4843 count++; 4844 } 4845 spin_unlock(&bufqspin); 4846 4847 kprintf("%s: total-%d", bname[i], count); 4848 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4849 if (counts[j] != 0) 4850 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4851 kprintf("\n"); 4852 } 4853 } 4854 #endif 4855 4856 #ifdef DDB 4857 4858 DB_SHOW_COMMAND(buffer, db_show_buffer) 4859 { 4860 /* get args */ 4861 struct buf *bp = (struct buf *)addr; 4862 4863 if (!have_addr) { 4864 db_printf("usage: show buffer <addr>\n"); 4865 return; 4866 } 4867 4868 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4869 db_printf("b_cmd = %d\n", bp->b_cmd); 4870 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4871 "b_resid = %d\n, b_data = %p, " 4872 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4873 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4874 bp->b_data, 4875 (long long)bp->b_bio2.bio_offset, 4876 (long long)(bp->b_bio2.bio_next ? 4877 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4878 if (bp->b_xio.xio_npages) { 4879 int i; 4880 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4881 bp->b_xio.xio_npages); 4882 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4883 vm_page_t m; 4884 m = bp->b_xio.xio_pages[i]; 4885 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4886 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4887 if ((i + 1) < bp->b_xio.xio_npages) 4888 db_printf(","); 4889 } 4890 db_printf("\n"); 4891 } 4892 } 4893 #endif /* DDB */ 4894