1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/proc.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 #include <sys/buf2.h> 58 #include <sys/thread2.h> 59 #include <sys/spinlock2.h> 60 #include <vm/vm_page2.h> 61 62 #include "opt_ddb.h" 63 #ifdef DDB 64 #include <ddb/ddb.h> 65 #endif 66 67 /* 68 * Buffer queues. 69 */ 70 enum bufq_type { 71 BQUEUE_NONE, /* not on any queue */ 72 BQUEUE_LOCKED, /* locked buffers */ 73 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 74 BQUEUE_DIRTY, /* B_DELWRI buffers */ 75 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 76 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 77 BQUEUE_EMPTY, /* empty buffer headers */ 78 79 BUFFER_QUEUES /* number of buffer queues */ 80 }; 81 82 typedef enum bufq_type bufq_type_t; 83 84 #define BD_WAKE_SIZE 128 85 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 86 87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 88 struct spinlock bufspin = SPINLOCK_INITIALIZER(&bufspin); 89 90 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 91 92 struct buf *buf; /* buffer header pool */ 93 94 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 95 int pageno, vm_page_t m); 96 static void vfs_clean_pages(struct buf *bp); 97 static void vfs_setdirty(struct buf *bp); 98 static void vfs_vmio_release(struct buf *bp); 99 static int flushbufqueues(bufq_type_t q); 100 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 101 102 static void bd_signal(int totalspace); 103 static void buf_daemon(void); 104 static void buf_daemon_hw(void); 105 106 /* 107 * bogus page -- for I/O to/from partially complete buffers 108 * this is a temporary solution to the problem, but it is not 109 * really that bad. it would be better to split the buffer 110 * for input in the case of buffers partially already in memory, 111 * but the code is intricate enough already. 112 */ 113 vm_page_t bogus_page; 114 115 /* 116 * These are all static, but make the ones we export globals so we do 117 * not need to use compiler magic. 118 */ 119 int bufspace, maxbufspace, 120 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 121 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 122 static int lorunningspace, hirunningspace, runningbufreq; 123 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace; 124 int dirtybufcount, dirtybufcounthw; 125 int runningbufspace, runningbufcount; 126 static int getnewbufcalls; 127 static int getnewbufrestarts; 128 static int recoverbufcalls; 129 static int needsbuffer; /* locked by needsbuffer_spin */ 130 static int bd_request; /* locked by needsbuffer_spin */ 131 static int bd_request_hw; /* locked by needsbuffer_spin */ 132 static u_int bd_wake_ary[BD_WAKE_SIZE]; 133 static u_int bd_wake_index; 134 static struct spinlock needsbuffer_spin; 135 136 static struct thread *bufdaemon_td; 137 static struct thread *bufdaemonhw_td; 138 139 140 /* 141 * Sysctls for operational control of the buffer cache. 142 */ 143 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 144 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 145 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 146 "High watermark used to trigger explicit flushing of dirty buffers"); 147 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 148 "Minimum amount of buffer space required for active I/O"); 149 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 150 "Maximum amount of buffer space to usable for active I/O"); 151 /* 152 * Sysctls determining current state of the buffer cache. 153 */ 154 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 155 "Total number of buffers in buffer cache"); 156 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 157 "Pending bytes of dirty buffers (all)"); 158 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 159 "Pending bytes of dirty buffers (heavy weight)"); 160 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 161 "Pending number of dirty buffers"); 162 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 163 "Pending number of dirty buffers (heavy weight)"); 164 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 165 "I/O bytes currently in progress due to asynchronous writes"); 166 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 167 "I/O buffers currently in progress due to asynchronous writes"); 168 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 169 "Hard limit on maximum amount of memory usable for buffer space"); 170 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 171 "Soft limit on maximum amount of memory usable for buffer space"); 172 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 173 "Minimum amount of memory to reserve for system buffer space"); 174 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 175 "Amount of memory available for buffers"); 176 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 177 0, "Maximum amount of memory reserved for buffers using malloc"); 178 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 179 "Amount of memory left for buffers using malloc-scheme"); 180 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 181 "New buffer header acquisition requests"); 182 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 183 0, "New buffer header acquisition restarts"); 184 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 185 "Recover VM space in an emergency"); 186 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 187 "Buffer acquisition restarts due to fragmented buffer map"); 188 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 189 "Amount of time KVA space was deallocated in an arbitrary buffer"); 190 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 191 "Amount of time buffer re-use operations were successful"); 192 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 193 "sizeof(struct buf)"); 194 195 char *buf_wmesg = BUF_WMESG; 196 197 extern int vm_swap_size; 198 199 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 200 #define VFS_BIO_NEED_UNUSED02 0x02 201 #define VFS_BIO_NEED_UNUSED04 0x04 202 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 203 204 /* 205 * bufspacewakeup: 206 * 207 * Called when buffer space is potentially available for recovery. 208 * getnewbuf() will block on this flag when it is unable to free 209 * sufficient buffer space. Buffer space becomes recoverable when 210 * bp's get placed back in the queues. 211 */ 212 213 static __inline void 214 bufspacewakeup(void) 215 { 216 /* 217 * If someone is waiting for BUF space, wake them up. Even 218 * though we haven't freed the kva space yet, the waiting 219 * process will be able to now. 220 */ 221 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 222 spin_lock_wr(&needsbuffer_spin); 223 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 224 spin_unlock_wr(&needsbuffer_spin); 225 wakeup(&needsbuffer); 226 } 227 } 228 229 /* 230 * runningbufwakeup: 231 * 232 * Accounting for I/O in progress. 233 * 234 */ 235 static __inline void 236 runningbufwakeup(struct buf *bp) 237 { 238 int totalspace; 239 240 if ((totalspace = bp->b_runningbufspace) != 0) { 241 runningbufspace -= totalspace; 242 --runningbufcount; 243 bp->b_runningbufspace = 0; 244 if (runningbufreq && runningbufspace <= lorunningspace) { 245 runningbufreq = 0; 246 wakeup(&runningbufreq); 247 } 248 bd_signal(totalspace); 249 } 250 } 251 252 /* 253 * bufcountwakeup: 254 * 255 * Called when a buffer has been added to one of the free queues to 256 * account for the buffer and to wakeup anyone waiting for free buffers. 257 * This typically occurs when large amounts of metadata are being handled 258 * by the buffer cache ( else buffer space runs out first, usually ). 259 * 260 * MPSAFE 261 */ 262 static __inline void 263 bufcountwakeup(void) 264 { 265 if (needsbuffer) { 266 spin_lock_wr(&needsbuffer_spin); 267 needsbuffer &= ~VFS_BIO_NEED_ANY; 268 spin_unlock_wr(&needsbuffer_spin); 269 wakeup(&needsbuffer); 270 } 271 } 272 273 /* 274 * waitrunningbufspace() 275 * 276 * Wait for the amount of running I/O to drop to a reasonable level. 277 * 278 * The caller may be using this function to block in a tight loop, we 279 * must block of runningbufspace is greater then the passed limit. 280 * And even with that it may not be enough, due to the presence of 281 * B_LOCKED dirty buffers, so also wait for at least one running buffer 282 * to complete. 283 */ 284 static __inline void 285 waitrunningbufspace(int limit) 286 { 287 int lorun; 288 289 if (lorunningspace < limit) 290 lorun = lorunningspace; 291 else 292 lorun = limit; 293 294 crit_enter(); 295 if (runningbufspace > lorun) { 296 while (runningbufspace > lorun) { 297 ++runningbufreq; 298 tsleep(&runningbufreq, 0, "wdrain", 0); 299 } 300 } else if (runningbufspace) { 301 ++runningbufreq; 302 tsleep(&runningbufreq, 0, "wdrain2", 1); 303 } 304 crit_exit(); 305 } 306 307 /* 308 * vfs_buf_test_cache: 309 * 310 * Called when a buffer is extended. This function clears the B_CACHE 311 * bit if the newly extended portion of the buffer does not contain 312 * valid data. 313 */ 314 static __inline__ 315 void 316 vfs_buf_test_cache(struct buf *bp, 317 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 318 vm_page_t m) 319 { 320 if (bp->b_flags & B_CACHE) { 321 int base = (foff + off) & PAGE_MASK; 322 if (vm_page_is_valid(m, base, size) == 0) 323 bp->b_flags &= ~B_CACHE; 324 } 325 } 326 327 /* 328 * bd_speedup() 329 * 330 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 331 * low water mark. 332 * 333 * MPSAFE 334 */ 335 static __inline__ 336 void 337 bd_speedup(void) 338 { 339 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 340 return; 341 342 if (bd_request == 0 && 343 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 344 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 345 spin_lock_wr(&needsbuffer_spin); 346 bd_request = 1; 347 spin_unlock_wr(&needsbuffer_spin); 348 wakeup(&bd_request); 349 } 350 if (bd_request_hw == 0 && 351 (dirtybufspacehw > lodirtybufspace / 2 || 352 dirtybufcounthw >= nbuf / 2)) { 353 spin_lock_wr(&needsbuffer_spin); 354 bd_request_hw = 1; 355 spin_unlock_wr(&needsbuffer_spin); 356 wakeup(&bd_request_hw); 357 } 358 } 359 360 /* 361 * bd_heatup() 362 * 363 * Get the buf_daemon heated up when the number of running and dirty 364 * buffers exceeds the mid-point. 365 * 366 * MPSAFE 367 */ 368 int 369 bd_heatup(void) 370 { 371 int mid1; 372 int mid2; 373 int totalspace; 374 375 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 376 377 totalspace = runningbufspace + dirtybufspace; 378 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 379 bd_speedup(); 380 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 381 if (totalspace >= mid2) 382 return(totalspace - mid2); 383 } 384 return(0); 385 } 386 387 /* 388 * bd_wait() 389 * 390 * Wait for the buffer cache to flush (totalspace) bytes worth of 391 * buffers, then return. 392 * 393 * Regardless this function blocks while the number of dirty buffers 394 * exceeds hidirtybufspace. 395 * 396 * MPSAFE 397 */ 398 void 399 bd_wait(int totalspace) 400 { 401 u_int i; 402 int count; 403 404 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 405 return; 406 407 while (totalspace > 0) { 408 bd_heatup(); 409 crit_enter(); 410 if (totalspace > runningbufspace + dirtybufspace) 411 totalspace = runningbufspace + dirtybufspace; 412 count = totalspace / BKVASIZE; 413 if (count >= BD_WAKE_SIZE) 414 count = BD_WAKE_SIZE - 1; 415 416 spin_lock_wr(&needsbuffer_spin); 417 i = (bd_wake_index + count) & BD_WAKE_MASK; 418 ++bd_wake_ary[i]; 419 tsleep_interlock(&bd_wake_ary[i]); 420 spin_unlock_wr(&needsbuffer_spin); 421 422 tsleep(&bd_wake_ary[i], 0, "flstik", hz); 423 crit_exit(); 424 425 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 426 } 427 } 428 429 /* 430 * bd_signal() 431 * 432 * This function is called whenever runningbufspace or dirtybufspace 433 * is reduced. Track threads waiting for run+dirty buffer I/O 434 * complete. 435 * 436 * MPSAFE 437 */ 438 static void 439 bd_signal(int totalspace) 440 { 441 u_int i; 442 443 if (totalspace > 0) { 444 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 445 totalspace = BKVASIZE * BD_WAKE_SIZE; 446 spin_lock_wr(&needsbuffer_spin); 447 while (totalspace > 0) { 448 i = bd_wake_index++; 449 i &= BD_WAKE_MASK; 450 if (bd_wake_ary[i]) { 451 bd_wake_ary[i] = 0; 452 spin_unlock_wr(&needsbuffer_spin); 453 wakeup(&bd_wake_ary[i]); 454 spin_lock_wr(&needsbuffer_spin); 455 } 456 totalspace -= BKVASIZE; 457 } 458 spin_unlock_wr(&needsbuffer_spin); 459 } 460 } 461 462 /* 463 * BIO tracking support routines. 464 * 465 * Release a ref on a bio_track. Wakeup requests are atomically released 466 * along with the last reference so bk_active will never wind up set to 467 * only 0x80000000. 468 * 469 * MPSAFE 470 */ 471 static 472 void 473 bio_track_rel(struct bio_track *track) 474 { 475 int active; 476 int desired; 477 478 /* 479 * Shortcut 480 */ 481 active = track->bk_active; 482 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 483 return; 484 485 /* 486 * Full-on. Note that the wait flag is only atomically released on 487 * the 1->0 count transition. 488 * 489 * We check for a negative count transition using bit 30 since bit 31 490 * has a different meaning. 491 */ 492 for (;;) { 493 desired = (active & 0x7FFFFFFF) - 1; 494 if (desired) 495 desired |= active & 0x80000000; 496 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 497 if (desired & 0x40000000) 498 panic("bio_track_rel: bad count: %p\n", track); 499 if (active & 0x80000000) 500 wakeup(track); 501 break; 502 } 503 active = track->bk_active; 504 } 505 } 506 507 /* 508 * Wait for the tracking count to reach 0. 509 * 510 * Use atomic ops such that the wait flag is only set atomically when 511 * bk_active is non-zero. 512 * 513 * MPSAFE 514 */ 515 int 516 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 517 { 518 int active; 519 int desired; 520 int error; 521 522 /* 523 * Shortcut 524 */ 525 if (track->bk_active == 0) 526 return(0); 527 528 /* 529 * Full-on. Note that the wait flag may only be atomically set if 530 * the active count is non-zero. 531 */ 532 crit_enter(); /* for tsleep_interlock */ 533 error = 0; 534 while ((active = track->bk_active) != 0) { 535 desired = active | 0x80000000; 536 tsleep_interlock(track); 537 if (active == desired || 538 atomic_cmpset_int(&track->bk_active, active, desired)) { 539 error = tsleep(track, slp_flags, "iowait", slp_timo); 540 if (error) 541 break; 542 } 543 } 544 crit_exit(); 545 return (error); 546 } 547 548 /* 549 * bufinit: 550 * 551 * Load time initialisation of the buffer cache, called from machine 552 * dependant initialization code. 553 */ 554 void 555 bufinit(void) 556 { 557 struct buf *bp; 558 vm_offset_t bogus_offset; 559 int i; 560 561 spin_init(&needsbuffer_spin); 562 563 /* next, make a null set of free lists */ 564 for (i = 0; i < BUFFER_QUEUES; i++) 565 TAILQ_INIT(&bufqueues[i]); 566 567 /* finally, initialize each buffer header and stick on empty q */ 568 for (i = 0; i < nbuf; i++) { 569 bp = &buf[i]; 570 bzero(bp, sizeof *bp); 571 bp->b_flags = B_INVAL; /* we're just an empty header */ 572 bp->b_cmd = BUF_CMD_DONE; 573 bp->b_qindex = BQUEUE_EMPTY; 574 initbufbio(bp); 575 xio_init(&bp->b_xio); 576 buf_dep_init(bp); 577 BUF_LOCKINIT(bp); 578 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 579 } 580 581 /* 582 * maxbufspace is the absolute maximum amount of buffer space we are 583 * allowed to reserve in KVM and in real terms. The absolute maximum 584 * is nominally used by buf_daemon. hibufspace is the nominal maximum 585 * used by most other processes. The differential is required to 586 * ensure that buf_daemon is able to run when other processes might 587 * be blocked waiting for buffer space. 588 * 589 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 590 * this may result in KVM fragmentation which is not handled optimally 591 * by the system. 592 */ 593 maxbufspace = nbuf * BKVASIZE; 594 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 595 lobufspace = hibufspace - MAXBSIZE; 596 597 lorunningspace = 512 * 1024; 598 hirunningspace = 1024 * 1024; 599 600 /* 601 * Limit the amount of malloc memory since it is wired permanently 602 * into the kernel space. Even though this is accounted for in 603 * the buffer allocation, we don't want the malloced region to grow 604 * uncontrolled. The malloc scheme improves memory utilization 605 * significantly on average (small) directories. 606 */ 607 maxbufmallocspace = hibufspace / 20; 608 609 /* 610 * Reduce the chance of a deadlock occuring by limiting the number 611 * of delayed-write dirty buffers we allow to stack up. 612 */ 613 hidirtybufspace = hibufspace / 2; 614 dirtybufspace = 0; 615 dirtybufspacehw = 0; 616 617 lodirtybufspace = hidirtybufspace / 2; 618 619 /* 620 * Maximum number of async ops initiated per buf_daemon loop. This is 621 * somewhat of a hack at the moment, we really need to limit ourselves 622 * based on the number of bytes of I/O in-transit that were initiated 623 * from buf_daemon. 624 */ 625 626 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 627 bogus_page = vm_page_alloc(&kernel_object, 628 (bogus_offset >> PAGE_SHIFT), 629 VM_ALLOC_NORMAL); 630 vmstats.v_wire_count++; 631 632 } 633 634 /* 635 * Initialize the embedded bio structures 636 */ 637 void 638 initbufbio(struct buf *bp) 639 { 640 bp->b_bio1.bio_buf = bp; 641 bp->b_bio1.bio_prev = NULL; 642 bp->b_bio1.bio_offset = NOOFFSET; 643 bp->b_bio1.bio_next = &bp->b_bio2; 644 bp->b_bio1.bio_done = NULL; 645 646 bp->b_bio2.bio_buf = bp; 647 bp->b_bio2.bio_prev = &bp->b_bio1; 648 bp->b_bio2.bio_offset = NOOFFSET; 649 bp->b_bio2.bio_next = NULL; 650 bp->b_bio2.bio_done = NULL; 651 } 652 653 /* 654 * Reinitialize the embedded bio structures as well as any additional 655 * translation cache layers. 656 */ 657 void 658 reinitbufbio(struct buf *bp) 659 { 660 struct bio *bio; 661 662 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 663 bio->bio_done = NULL; 664 bio->bio_offset = NOOFFSET; 665 } 666 } 667 668 /* 669 * Push another BIO layer onto an existing BIO and return it. The new 670 * BIO layer may already exist, holding cached translation data. 671 */ 672 struct bio * 673 push_bio(struct bio *bio) 674 { 675 struct bio *nbio; 676 677 if ((nbio = bio->bio_next) == NULL) { 678 int index = bio - &bio->bio_buf->b_bio_array[0]; 679 if (index >= NBUF_BIO - 1) { 680 panic("push_bio: too many layers bp %p\n", 681 bio->bio_buf); 682 } 683 nbio = &bio->bio_buf->b_bio_array[index + 1]; 684 bio->bio_next = nbio; 685 nbio->bio_prev = bio; 686 nbio->bio_buf = bio->bio_buf; 687 nbio->bio_offset = NOOFFSET; 688 nbio->bio_done = NULL; 689 nbio->bio_next = NULL; 690 } 691 KKASSERT(nbio->bio_done == NULL); 692 return(nbio); 693 } 694 695 /* 696 * Pop a BIO translation layer, returning the previous layer. The 697 * must have been previously pushed. 698 */ 699 struct bio * 700 pop_bio(struct bio *bio) 701 { 702 return(bio->bio_prev); 703 } 704 705 void 706 clearbiocache(struct bio *bio) 707 { 708 while (bio) { 709 bio->bio_offset = NOOFFSET; 710 bio = bio->bio_next; 711 } 712 } 713 714 /* 715 * bfreekva: 716 * 717 * Free the KVA allocation for buffer 'bp'. 718 * 719 * Must be called from a critical section as this is the only locking for 720 * buffer_map. 721 * 722 * Since this call frees up buffer space, we call bufspacewakeup(). 723 * 724 * MPALMOSTSAFE 725 */ 726 static void 727 bfreekva(struct buf *bp) 728 { 729 int count; 730 731 if (bp->b_kvasize) { 732 get_mplock(); 733 ++buffreekvacnt; 734 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 735 vm_map_lock(&buffer_map); 736 bufspace -= bp->b_kvasize; 737 vm_map_delete(&buffer_map, 738 (vm_offset_t) bp->b_kvabase, 739 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 740 &count 741 ); 742 vm_map_unlock(&buffer_map); 743 vm_map_entry_release(count); 744 bp->b_kvasize = 0; 745 bufspacewakeup(); 746 rel_mplock(); 747 } 748 } 749 750 /* 751 * bremfree: 752 * 753 * Remove the buffer from the appropriate free list. 754 */ 755 static __inline void 756 _bremfree(struct buf *bp) 757 { 758 if (bp->b_qindex != BQUEUE_NONE) { 759 KASSERT(BUF_REFCNTNB(bp) == 1, 760 ("bremfree: bp %p not locked",bp)); 761 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 762 bp->b_qindex = BQUEUE_NONE; 763 } else { 764 if (BUF_REFCNTNB(bp) <= 1) 765 panic("bremfree: removing a buffer not on a queue"); 766 } 767 } 768 769 void 770 bremfree(struct buf *bp) 771 { 772 spin_lock_wr(&bufspin); 773 _bremfree(bp); 774 spin_unlock_wr(&bufspin); 775 } 776 777 static void 778 bremfree_locked(struct buf *bp) 779 { 780 _bremfree(bp); 781 } 782 783 /* 784 * bread: 785 * 786 * Get a buffer with the specified data. Look in the cache first. We 787 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 788 * is set, the buffer is valid and we do not have to do anything ( see 789 * getblk() ). 790 * 791 * MPALMOSTSAFE 792 */ 793 int 794 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 795 { 796 struct buf *bp; 797 798 bp = getblk(vp, loffset, size, 0, 0); 799 *bpp = bp; 800 801 /* if not found in cache, do some I/O */ 802 if ((bp->b_flags & B_CACHE) == 0) { 803 get_mplock(); 804 KASSERT(!(bp->b_flags & B_ASYNC), 805 ("bread: illegal async bp %p", bp)); 806 bp->b_flags &= ~(B_ERROR | B_INVAL); 807 bp->b_cmd = BUF_CMD_READ; 808 vfs_busy_pages(vp, bp); 809 vn_strategy(vp, &bp->b_bio1); 810 rel_mplock(); 811 return (biowait(bp)); 812 } 813 return (0); 814 } 815 816 /* 817 * breadn: 818 * 819 * Operates like bread, but also starts asynchronous I/O on 820 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 821 * to initiating I/O . If B_CACHE is set, the buffer is valid 822 * and we do not have to do anything. 823 * 824 * MPALMOSTSAFE 825 */ 826 int 827 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 828 int *rabsize, int cnt, struct buf **bpp) 829 { 830 struct buf *bp, *rabp; 831 int i; 832 int rv = 0, readwait = 0; 833 834 *bpp = bp = getblk(vp, loffset, size, 0, 0); 835 836 /* if not found in cache, do some I/O */ 837 if ((bp->b_flags & B_CACHE) == 0) { 838 get_mplock(); 839 bp->b_flags &= ~(B_ERROR | B_INVAL); 840 bp->b_cmd = BUF_CMD_READ; 841 vfs_busy_pages(vp, bp); 842 vn_strategy(vp, &bp->b_bio1); 843 ++readwait; 844 rel_mplock(); 845 } 846 847 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 848 if (inmem(vp, *raoffset)) 849 continue; 850 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 851 852 if ((rabp->b_flags & B_CACHE) == 0) { 853 rel_mplock(); 854 rabp->b_flags |= B_ASYNC; 855 rabp->b_flags &= ~(B_ERROR | B_INVAL); 856 rabp->b_cmd = BUF_CMD_READ; 857 vfs_busy_pages(vp, rabp); 858 BUF_KERNPROC(rabp); 859 vn_strategy(vp, &rabp->b_bio1); 860 rel_mplock(); 861 } else { 862 brelse(rabp); 863 } 864 } 865 if (readwait) 866 rv = biowait(bp); 867 return (rv); 868 } 869 870 /* 871 * bwrite: 872 * 873 * Write, release buffer on completion. (Done by iodone 874 * if async). Do not bother writing anything if the buffer 875 * is invalid. 876 * 877 * Note that we set B_CACHE here, indicating that buffer is 878 * fully valid and thus cacheable. This is true even of NFS 879 * now so we set it generally. This could be set either here 880 * or in biodone() since the I/O is synchronous. We put it 881 * here. 882 */ 883 int 884 bwrite(struct buf *bp) 885 { 886 int oldflags; 887 888 if (bp->b_flags & B_INVAL) { 889 brelse(bp); 890 return (0); 891 } 892 893 oldflags = bp->b_flags; 894 895 if (BUF_REFCNTNB(bp) == 0) 896 panic("bwrite: buffer is not busy???"); 897 crit_enter(); 898 899 /* Mark the buffer clean */ 900 bundirty(bp); 901 902 bp->b_flags &= ~B_ERROR; 903 bp->b_flags |= B_CACHE; 904 bp->b_cmd = BUF_CMD_WRITE; 905 vfs_busy_pages(bp->b_vp, bp); 906 907 /* 908 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 909 * valid for vnode-backed buffers. 910 */ 911 bp->b_runningbufspace = bp->b_bufsize; 912 if (bp->b_runningbufspace) { 913 runningbufspace += bp->b_runningbufspace; 914 ++runningbufcount; 915 } 916 917 crit_exit(); 918 if (oldflags & B_ASYNC) 919 BUF_KERNPROC(bp); 920 vn_strategy(bp->b_vp, &bp->b_bio1); 921 922 if ((oldflags & B_ASYNC) == 0) { 923 int rtval = biowait(bp); 924 brelse(bp); 925 return (rtval); 926 } 927 return (0); 928 } 929 930 /* 931 * bdwrite: 932 * 933 * Delayed write. (Buffer is marked dirty). Do not bother writing 934 * anything if the buffer is marked invalid. 935 * 936 * Note that since the buffer must be completely valid, we can safely 937 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 938 * biodone() in order to prevent getblk from writing the buffer 939 * out synchronously. 940 */ 941 void 942 bdwrite(struct buf *bp) 943 { 944 if (BUF_REFCNTNB(bp) == 0) 945 panic("bdwrite: buffer is not busy"); 946 947 if (bp->b_flags & B_INVAL) { 948 brelse(bp); 949 return; 950 } 951 bdirty(bp); 952 953 /* 954 * Set B_CACHE, indicating that the buffer is fully valid. This is 955 * true even of NFS now. 956 */ 957 bp->b_flags |= B_CACHE; 958 959 /* 960 * This bmap keeps the system from needing to do the bmap later, 961 * perhaps when the system is attempting to do a sync. Since it 962 * is likely that the indirect block -- or whatever other datastructure 963 * that the filesystem needs is still in memory now, it is a good 964 * thing to do this. Note also, that if the pageout daemon is 965 * requesting a sync -- there might not be enough memory to do 966 * the bmap then... So, this is important to do. 967 */ 968 if (bp->b_bio2.bio_offset == NOOFFSET) { 969 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 970 NULL, NULL, BUF_CMD_WRITE); 971 } 972 973 /* 974 * Set the *dirty* buffer range based upon the VM system dirty pages. 975 */ 976 vfs_setdirty(bp); 977 978 /* 979 * We need to do this here to satisfy the vnode_pager and the 980 * pageout daemon, so that it thinks that the pages have been 981 * "cleaned". Note that since the pages are in a delayed write 982 * buffer -- the VFS layer "will" see that the pages get written 983 * out on the next sync, or perhaps the cluster will be completed. 984 */ 985 vfs_clean_pages(bp); 986 bqrelse(bp); 987 988 /* 989 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 990 * due to the softdep code. 991 */ 992 } 993 994 /* 995 * bdirty: 996 * 997 * Turn buffer into delayed write request by marking it B_DELWRI. 998 * B_RELBUF and B_NOCACHE must be cleared. 999 * 1000 * We reassign the buffer to itself to properly update it in the 1001 * dirty/clean lists. 1002 * 1003 * Must be called from a critical section. 1004 * The buffer must be on BQUEUE_NONE. 1005 */ 1006 void 1007 bdirty(struct buf *bp) 1008 { 1009 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1010 if (bp->b_flags & B_NOCACHE) { 1011 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1012 bp->b_flags &= ~B_NOCACHE; 1013 } 1014 if (bp->b_flags & B_INVAL) { 1015 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1016 } 1017 bp->b_flags &= ~B_RELBUF; 1018 1019 if ((bp->b_flags & B_DELWRI) == 0) { 1020 bp->b_flags |= B_DELWRI; 1021 reassignbuf(bp); 1022 atomic_add_int(&dirtybufcount, 1); 1023 dirtybufspace += bp->b_bufsize; 1024 if (bp->b_flags & B_HEAVY) { 1025 atomic_add_int(&dirtybufcounthw, 1); 1026 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1027 } 1028 bd_heatup(); 1029 } 1030 } 1031 1032 /* 1033 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1034 * needs to be flushed with a different buf_daemon thread to avoid 1035 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1036 */ 1037 void 1038 bheavy(struct buf *bp) 1039 { 1040 if ((bp->b_flags & B_HEAVY) == 0) { 1041 bp->b_flags |= B_HEAVY; 1042 if (bp->b_flags & B_DELWRI) { 1043 atomic_add_int(&dirtybufcounthw, 1); 1044 atomic_add_int(&dirtybufspacehw, bp->b_bufsize); 1045 } 1046 } 1047 } 1048 1049 /* 1050 * bundirty: 1051 * 1052 * Clear B_DELWRI for buffer. 1053 * 1054 * Must be called from a critical section. 1055 * 1056 * The buffer is typically on BQUEUE_NONE but there is one case in 1057 * brelse() that calls this function after placing the buffer on 1058 * a different queue. 1059 * 1060 * MPSAFE 1061 */ 1062 void 1063 bundirty(struct buf *bp) 1064 { 1065 if (bp->b_flags & B_DELWRI) { 1066 bp->b_flags &= ~B_DELWRI; 1067 reassignbuf(bp); 1068 atomic_subtract_int(&dirtybufcount, 1); 1069 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1070 if (bp->b_flags & B_HEAVY) { 1071 atomic_subtract_int(&dirtybufcounthw, 1); 1072 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1073 } 1074 bd_signal(bp->b_bufsize); 1075 } 1076 /* 1077 * Since it is now being written, we can clear its deferred write flag. 1078 */ 1079 bp->b_flags &= ~B_DEFERRED; 1080 } 1081 1082 /* 1083 * bawrite: 1084 * 1085 * Asynchronous write. Start output on a buffer, but do not wait for 1086 * it to complete. The buffer is released when the output completes. 1087 * 1088 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1089 * B_INVAL buffers. Not us. 1090 */ 1091 void 1092 bawrite(struct buf *bp) 1093 { 1094 bp->b_flags |= B_ASYNC; 1095 bwrite(bp); 1096 } 1097 1098 /* 1099 * bowrite: 1100 * 1101 * Ordered write. Start output on a buffer, and flag it so that the 1102 * device will write it in the order it was queued. The buffer is 1103 * released when the output completes. bwrite() ( or the VOP routine 1104 * anyway ) is responsible for handling B_INVAL buffers. 1105 */ 1106 int 1107 bowrite(struct buf *bp) 1108 { 1109 bp->b_flags |= B_ORDERED | B_ASYNC; 1110 return (bwrite(bp)); 1111 } 1112 1113 /* 1114 * buf_dirty_count_severe: 1115 * 1116 * Return true if we have too many dirty buffers. 1117 */ 1118 int 1119 buf_dirty_count_severe(void) 1120 { 1121 return (runningbufspace + dirtybufspace >= hidirtybufspace || 1122 dirtybufcount >= nbuf / 2); 1123 } 1124 1125 /* 1126 * brelse: 1127 * 1128 * Release a busy buffer and, if requested, free its resources. The 1129 * buffer will be stashed in the appropriate bufqueue[] allowing it 1130 * to be accessed later as a cache entity or reused for other purposes. 1131 * 1132 * MPALMOSTSAFE 1133 */ 1134 void 1135 brelse(struct buf *bp) 1136 { 1137 #ifdef INVARIANTS 1138 int saved_flags = bp->b_flags; 1139 #endif 1140 1141 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1142 1143 /* 1144 * If B_NOCACHE is set we are being asked to destroy the buffer and 1145 * its backing store. Clear B_DELWRI. 1146 * 1147 * B_NOCACHE is set in two cases: (1) when the caller really wants 1148 * to destroy the buffer and backing store and (2) when the caller 1149 * wants to destroy the buffer and backing store after a write 1150 * completes. 1151 */ 1152 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1153 bundirty(bp); 1154 } 1155 1156 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1157 /* 1158 * A re-dirtied buffer is only subject to destruction 1159 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1160 */ 1161 /* leave buffer intact */ 1162 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1163 (bp->b_bufsize <= 0)) { 1164 /* 1165 * Either a failed read or we were asked to free or not 1166 * cache the buffer. This path is reached with B_DELWRI 1167 * set only if B_INVAL is already set. B_NOCACHE governs 1168 * backing store destruction. 1169 * 1170 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1171 * buffer cannot be immediately freed. 1172 */ 1173 bp->b_flags |= B_INVAL; 1174 if (LIST_FIRST(&bp->b_dep) != NULL) { 1175 get_mplock(); 1176 buf_deallocate(bp); 1177 rel_mplock(); 1178 } 1179 if (bp->b_flags & B_DELWRI) { 1180 atomic_subtract_int(&dirtybufcount, 1); 1181 atomic_subtract_int(&dirtybufspace, bp->b_bufsize); 1182 if (bp->b_flags & B_HEAVY) { 1183 atomic_subtract_int(&dirtybufcounthw, 1); 1184 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize); 1185 } 1186 bd_signal(bp->b_bufsize); 1187 } 1188 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1189 } 1190 1191 /* 1192 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1193 * If vfs_vmio_release() is called with either bit set, the 1194 * underlying pages may wind up getting freed causing a previous 1195 * write (bdwrite()) to get 'lost' because pages associated with 1196 * a B_DELWRI bp are marked clean. Pages associated with a 1197 * B_LOCKED buffer may be mapped by the filesystem. 1198 * 1199 * If we want to release the buffer ourselves (rather then the 1200 * originator asking us to release it), give the originator a 1201 * chance to countermand the release by setting B_LOCKED. 1202 * 1203 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1204 * if B_DELWRI is set. 1205 * 1206 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1207 * on pages to return pages to the VM page queues. 1208 */ 1209 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1210 bp->b_flags &= ~B_RELBUF; 1211 } else if (vm_page_count_severe()) { 1212 if (LIST_FIRST(&bp->b_dep) != NULL) { 1213 get_mplock(); 1214 buf_deallocate(bp); /* can set B_LOCKED */ 1215 rel_mplock(); 1216 } 1217 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1218 bp->b_flags &= ~B_RELBUF; 1219 else 1220 bp->b_flags |= B_RELBUF; 1221 } 1222 1223 /* 1224 * Make sure b_cmd is clear. It may have already been cleared by 1225 * biodone(). 1226 * 1227 * At this point destroying the buffer is governed by the B_INVAL 1228 * or B_RELBUF flags. 1229 */ 1230 bp->b_cmd = BUF_CMD_DONE; 1231 1232 /* 1233 * VMIO buffer rundown. Make sure the VM page array is restored 1234 * after an I/O may have replaces some of the pages with bogus pages 1235 * in order to not destroy dirty pages in a fill-in read. 1236 * 1237 * Note that due to the code above, if a buffer is marked B_DELWRI 1238 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1239 * B_INVAL may still be set, however. 1240 * 1241 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1242 * but not the backing store. B_NOCACHE will destroy the backing 1243 * store. 1244 * 1245 * Note that dirty NFS buffers contain byte-granular write ranges 1246 * and should not be destroyed w/ B_INVAL even if the backing store 1247 * is left intact. 1248 */ 1249 if (bp->b_flags & B_VMIO) { 1250 /* 1251 * Rundown for VMIO buffers which are not dirty NFS buffers. 1252 */ 1253 int i, j, resid; 1254 vm_page_t m; 1255 off_t foff; 1256 vm_pindex_t poff; 1257 vm_object_t obj; 1258 struct vnode *vp; 1259 1260 vp = bp->b_vp; 1261 1262 /* 1263 * Get the base offset and length of the buffer. Note that 1264 * in the VMIO case if the buffer block size is not 1265 * page-aligned then b_data pointer may not be page-aligned. 1266 * But our b_xio.xio_pages array *IS* page aligned. 1267 * 1268 * block sizes less then DEV_BSIZE (usually 512) are not 1269 * supported due to the page granularity bits (m->valid, 1270 * m->dirty, etc...). 1271 * 1272 * See man buf(9) for more information 1273 */ 1274 1275 resid = bp->b_bufsize; 1276 foff = bp->b_loffset; 1277 1278 get_mplock(); 1279 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1280 m = bp->b_xio.xio_pages[i]; 1281 vm_page_flag_clear(m, PG_ZERO); 1282 /* 1283 * If we hit a bogus page, fixup *all* of them 1284 * now. Note that we left these pages wired 1285 * when we removed them so they had better exist, 1286 * and they cannot be ripped out from under us so 1287 * no critical section protection is necessary. 1288 */ 1289 if (m == bogus_page) { 1290 obj = vp->v_object; 1291 poff = OFF_TO_IDX(bp->b_loffset); 1292 1293 for (j = i; j < bp->b_xio.xio_npages; j++) { 1294 vm_page_t mtmp; 1295 1296 mtmp = bp->b_xio.xio_pages[j]; 1297 if (mtmp == bogus_page) { 1298 mtmp = vm_page_lookup(obj, poff + j); 1299 if (!mtmp) { 1300 panic("brelse: page missing"); 1301 } 1302 bp->b_xio.xio_pages[j] = mtmp; 1303 } 1304 } 1305 1306 if ((bp->b_flags & B_INVAL) == 0) { 1307 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1308 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1309 } 1310 m = bp->b_xio.xio_pages[i]; 1311 } 1312 1313 /* 1314 * Invalidate the backing store if B_NOCACHE is set 1315 * (e.g. used with vinvalbuf()). If this is NFS 1316 * we impose a requirement that the block size be 1317 * a multiple of PAGE_SIZE and create a temporary 1318 * hack to basically invalidate the whole page. The 1319 * problem is that NFS uses really odd buffer sizes 1320 * especially when tracking piecemeal writes and 1321 * it also vinvalbuf()'s a lot, which would result 1322 * in only partial page validation and invalidation 1323 * here. If the file page is mmap()'d, however, 1324 * all the valid bits get set so after we invalidate 1325 * here we would end up with weird m->valid values 1326 * like 0xfc. nfs_getpages() can't handle this so 1327 * we clear all the valid bits for the NFS case 1328 * instead of just some of them. 1329 * 1330 * The real bug is the VM system having to set m->valid 1331 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1332 * itself is an artifact of the whole 512-byte 1333 * granular mess that exists to support odd block 1334 * sizes and UFS meta-data block sizes (e.g. 6144). 1335 * A complete rewrite is required. 1336 */ 1337 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1338 int poffset = foff & PAGE_MASK; 1339 int presid; 1340 1341 presid = PAGE_SIZE - poffset; 1342 if (bp->b_vp->v_tag == VT_NFS && 1343 bp->b_vp->v_type == VREG) { 1344 ; /* entire page */ 1345 } else if (presid > resid) { 1346 presid = resid; 1347 } 1348 KASSERT(presid >= 0, ("brelse: extra page")); 1349 vm_page_set_invalid(m, poffset, presid); 1350 } 1351 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1352 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1353 } 1354 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1355 vfs_vmio_release(bp); 1356 rel_mplock(); 1357 } else { 1358 /* 1359 * Rundown for non-VMIO buffers. 1360 */ 1361 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1362 get_mplock(); 1363 if (bp->b_bufsize) 1364 allocbuf(bp, 0); 1365 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1366 if (bp->b_vp) 1367 brelvp(bp); 1368 rel_mplock(); 1369 } 1370 } 1371 1372 if (bp->b_qindex != BQUEUE_NONE) 1373 panic("brelse: free buffer onto another queue???"); 1374 if (BUF_REFCNTNB(bp) > 1) { 1375 /* Temporary panic to verify exclusive locking */ 1376 /* This panic goes away when we allow shared refs */ 1377 panic("brelse: multiple refs"); 1378 /* NOT REACHED */ 1379 return; 1380 } 1381 1382 /* 1383 * Figure out the correct queue to place the cleaned up buffer on. 1384 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1385 * disassociated from their vnode. 1386 */ 1387 spin_lock_wr(&bufspin); 1388 if (bp->b_flags & B_LOCKED) { 1389 /* 1390 * Buffers that are locked are placed in the locked queue 1391 * immediately, regardless of their state. 1392 */ 1393 bp->b_qindex = BQUEUE_LOCKED; 1394 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1395 } else if (bp->b_bufsize == 0) { 1396 /* 1397 * Buffers with no memory. Due to conditionals near the top 1398 * of brelse() such buffers should probably already be 1399 * marked B_INVAL and disassociated from their vnode. 1400 */ 1401 bp->b_flags |= B_INVAL; 1402 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1403 KKASSERT((bp->b_flags & B_HASHED) == 0); 1404 if (bp->b_kvasize) { 1405 bp->b_qindex = BQUEUE_EMPTYKVA; 1406 } else { 1407 bp->b_qindex = BQUEUE_EMPTY; 1408 } 1409 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1410 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1411 /* 1412 * Buffers with junk contents. Again these buffers had better 1413 * already be disassociated from their vnode. 1414 */ 1415 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1416 KKASSERT((bp->b_flags & B_HASHED) == 0); 1417 bp->b_flags |= B_INVAL; 1418 bp->b_qindex = BQUEUE_CLEAN; 1419 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1420 } else { 1421 /* 1422 * Remaining buffers. These buffers are still associated with 1423 * their vnode. 1424 */ 1425 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1426 case B_DELWRI: 1427 bp->b_qindex = BQUEUE_DIRTY; 1428 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1429 break; 1430 case B_DELWRI | B_HEAVY: 1431 bp->b_qindex = BQUEUE_DIRTY_HW; 1432 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1433 b_freelist); 1434 break; 1435 default: 1436 /* 1437 * NOTE: Buffers are always placed at the end of the 1438 * queue. If B_AGE is not set the buffer will cycle 1439 * through the queue twice. 1440 */ 1441 bp->b_qindex = BQUEUE_CLEAN; 1442 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1443 break; 1444 } 1445 } 1446 spin_unlock_wr(&bufspin); 1447 1448 /* 1449 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1450 * on the correct queue. 1451 */ 1452 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1453 bundirty(bp); 1454 1455 /* 1456 * The bp is on an appropriate queue unless locked. If it is not 1457 * locked or dirty we can wakeup threads waiting for buffer space. 1458 * 1459 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1460 * if B_INVAL is set ). 1461 */ 1462 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1463 bufcountwakeup(); 1464 1465 /* 1466 * Something we can maybe free or reuse 1467 */ 1468 if (bp->b_bufsize || bp->b_kvasize) 1469 bufspacewakeup(); 1470 1471 /* 1472 * Clean up temporary flags and unlock the buffer. 1473 */ 1474 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT); 1475 BUF_UNLOCK(bp); 1476 } 1477 1478 /* 1479 * bqrelse: 1480 * 1481 * Release a buffer back to the appropriate queue but do not try to free 1482 * it. The buffer is expected to be used again soon. 1483 * 1484 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1485 * biodone() to requeue an async I/O on completion. It is also used when 1486 * known good buffers need to be requeued but we think we may need the data 1487 * again soon. 1488 * 1489 * XXX we should be able to leave the B_RELBUF hint set on completion. 1490 * 1491 * MPSAFE 1492 */ 1493 void 1494 bqrelse(struct buf *bp) 1495 { 1496 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1497 1498 if (bp->b_qindex != BQUEUE_NONE) 1499 panic("bqrelse: free buffer onto another queue???"); 1500 if (BUF_REFCNTNB(bp) > 1) { 1501 /* do not release to free list */ 1502 panic("bqrelse: multiple refs"); 1503 return; 1504 } 1505 1506 spin_lock_wr(&bufspin); 1507 if (bp->b_flags & B_LOCKED) { 1508 /* 1509 * Locked buffers are released to the locked queue. However, 1510 * if the buffer is dirty it will first go into the dirty 1511 * queue and later on after the I/O completes successfully it 1512 * will be released to the locked queue. 1513 */ 1514 bp->b_qindex = BQUEUE_LOCKED; 1515 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1516 } else if (bp->b_flags & B_DELWRI) { 1517 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1518 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1519 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1520 } else if (vm_page_count_severe()) { 1521 /* 1522 * We are too low on memory, we have to try to free the 1523 * buffer (most importantly: the wired pages making up its 1524 * backing store) *now*. 1525 */ 1526 spin_unlock_wr(&bufspin); 1527 brelse(bp); 1528 return; 1529 } else { 1530 bp->b_qindex = BQUEUE_CLEAN; 1531 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1532 } 1533 spin_unlock_wr(&bufspin); 1534 1535 if ((bp->b_flags & B_LOCKED) == 0 && 1536 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1537 bufcountwakeup(); 1538 } 1539 1540 /* 1541 * Something we can maybe free or reuse. 1542 */ 1543 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1544 bufspacewakeup(); 1545 1546 /* 1547 * Final cleanup and unlock. Clear bits that are only used while a 1548 * buffer is actively locked. 1549 */ 1550 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF); 1551 BUF_UNLOCK(bp); 1552 } 1553 1554 /* 1555 * vfs_vmio_release: 1556 * 1557 * Return backing pages held by the buffer 'bp' back to the VM system 1558 * if possible. The pages are freed if they are no longer valid or 1559 * attempt to free if it was used for direct I/O otherwise they are 1560 * sent to the page cache. 1561 * 1562 * Pages that were marked busy are left alone and skipped. 1563 * 1564 * The KVA mapping (b_data) for the underlying pages is removed by 1565 * this function. 1566 */ 1567 static void 1568 vfs_vmio_release(struct buf *bp) 1569 { 1570 int i; 1571 vm_page_t m; 1572 1573 crit_enter(); 1574 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1575 m = bp->b_xio.xio_pages[i]; 1576 bp->b_xio.xio_pages[i] = NULL; 1577 /* 1578 * In order to keep page LRU ordering consistent, put 1579 * everything on the inactive queue. 1580 */ 1581 vm_page_unwire(m, 0); 1582 /* 1583 * We don't mess with busy pages, it is 1584 * the responsibility of the process that 1585 * busied the pages to deal with them. 1586 */ 1587 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1588 continue; 1589 1590 if (m->wire_count == 0) { 1591 vm_page_flag_clear(m, PG_ZERO); 1592 /* 1593 * Might as well free the page if we can and it has 1594 * no valid data. We also free the page if the 1595 * buffer was used for direct I/O. 1596 */ 1597 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1598 m->hold_count == 0) { 1599 vm_page_busy(m); 1600 vm_page_protect(m, VM_PROT_NONE); 1601 vm_page_free(m); 1602 } else if (bp->b_flags & B_DIRECT) { 1603 vm_page_try_to_free(m); 1604 } else if (vm_page_count_severe()) { 1605 vm_page_try_to_cache(m); 1606 } 1607 } 1608 } 1609 crit_exit(); 1610 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages); 1611 if (bp->b_bufsize) { 1612 bufspacewakeup(); 1613 bp->b_bufsize = 0; 1614 } 1615 bp->b_xio.xio_npages = 0; 1616 bp->b_flags &= ~B_VMIO; 1617 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1618 if (bp->b_vp) { 1619 get_mplock(); 1620 brelvp(bp); 1621 rel_mplock(); 1622 } 1623 } 1624 1625 /* 1626 * vfs_bio_awrite: 1627 * 1628 * Implement clustered async writes for clearing out B_DELWRI buffers. 1629 * This is much better then the old way of writing only one buffer at 1630 * a time. Note that we may not be presented with the buffers in the 1631 * correct order, so we search for the cluster in both directions. 1632 * 1633 * The buffer is locked on call. 1634 */ 1635 int 1636 vfs_bio_awrite(struct buf *bp) 1637 { 1638 int i; 1639 int j; 1640 off_t loffset = bp->b_loffset; 1641 struct vnode *vp = bp->b_vp; 1642 int nbytes; 1643 struct buf *bpa; 1644 int nwritten; 1645 int size; 1646 1647 /* 1648 * right now we support clustered writing only to regular files. If 1649 * we find a clusterable block we could be in the middle of a cluster 1650 * rather then at the beginning. 1651 * 1652 * NOTE: b_bio1 contains the logical loffset and is aliased 1653 * to b_loffset. b_bio2 contains the translated block number. 1654 */ 1655 if ((vp->v_type == VREG) && 1656 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1657 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1658 1659 size = vp->v_mount->mnt_stat.f_iosize; 1660 1661 for (i = size; i < MAXPHYS; i += size) { 1662 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1663 BUF_REFCNT(bpa) == 0 && 1664 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1665 (B_DELWRI | B_CLUSTEROK)) && 1666 (bpa->b_bufsize == size)) { 1667 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1668 (bpa->b_bio2.bio_offset != 1669 bp->b_bio2.bio_offset + i)) 1670 break; 1671 } else { 1672 break; 1673 } 1674 } 1675 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1676 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1677 BUF_REFCNT(bpa) == 0 && 1678 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1679 (B_DELWRI | B_CLUSTEROK)) && 1680 (bpa->b_bufsize == size)) { 1681 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1682 (bpa->b_bio2.bio_offset != 1683 bp->b_bio2.bio_offset - j)) 1684 break; 1685 } else { 1686 break; 1687 } 1688 } 1689 j -= size; 1690 nbytes = (i + j); 1691 1692 /* 1693 * this is a possible cluster write 1694 */ 1695 if (nbytes != size) { 1696 BUF_UNLOCK(bp); 1697 nwritten = cluster_wbuild(vp, size, 1698 loffset - j, nbytes); 1699 return nwritten; 1700 } 1701 } 1702 1703 bremfree(bp); 1704 bp->b_flags |= B_ASYNC; 1705 1706 /* 1707 * default (old) behavior, writing out only one block 1708 * 1709 * XXX returns b_bufsize instead of b_bcount for nwritten? 1710 */ 1711 nwritten = bp->b_bufsize; 1712 bwrite(bp); 1713 1714 return nwritten; 1715 } 1716 1717 /* 1718 * getnewbuf: 1719 * 1720 * Find and initialize a new buffer header, freeing up existing buffers 1721 * in the bufqueues as necessary. The new buffer is returned locked. 1722 * 1723 * Important: B_INVAL is not set. If the caller wishes to throw the 1724 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1725 * 1726 * We block if: 1727 * We have insufficient buffer headers 1728 * We have insufficient buffer space 1729 * buffer_map is too fragmented ( space reservation fails ) 1730 * If we have to flush dirty buffers ( but we try to avoid this ) 1731 * 1732 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1733 * Instead we ask the buf daemon to do it for us. We attempt to 1734 * avoid piecemeal wakeups of the pageout daemon. 1735 * 1736 * MPALMOSTSAFE 1737 */ 1738 static struct buf * 1739 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1740 { 1741 struct buf *bp; 1742 struct buf *nbp; 1743 int defrag = 0; 1744 int nqindex; 1745 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1746 static int flushingbufs; 1747 1748 /* 1749 * We can't afford to block since we might be holding a vnode lock, 1750 * which may prevent system daemons from running. We deal with 1751 * low-memory situations by proactively returning memory and running 1752 * async I/O rather then sync I/O. 1753 */ 1754 1755 ++getnewbufcalls; 1756 --getnewbufrestarts; 1757 restart: 1758 ++getnewbufrestarts; 1759 1760 /* 1761 * Setup for scan. If we do not have enough free buffers, 1762 * we setup a degenerate case that immediately fails. Note 1763 * that if we are specially marked process, we are allowed to 1764 * dip into our reserves. 1765 * 1766 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1767 * 1768 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1769 * However, there are a number of cases (defragging, reusing, ...) 1770 * where we cannot backup. 1771 */ 1772 nqindex = BQUEUE_EMPTYKVA; 1773 spin_lock_wr(&bufspin); 1774 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1775 1776 if (nbp == NULL) { 1777 /* 1778 * If no EMPTYKVA buffers and we are either 1779 * defragging or reusing, locate a CLEAN buffer 1780 * to free or reuse. If bufspace useage is low 1781 * skip this step so we can allocate a new buffer. 1782 */ 1783 if (defrag || bufspace >= lobufspace) { 1784 nqindex = BQUEUE_CLEAN; 1785 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1786 } 1787 1788 /* 1789 * If we could not find or were not allowed to reuse a 1790 * CLEAN buffer, check to see if it is ok to use an EMPTY 1791 * buffer. We can only use an EMPTY buffer if allocating 1792 * its KVA would not otherwise run us out of buffer space. 1793 */ 1794 if (nbp == NULL && defrag == 0 && 1795 bufspace + maxsize < hibufspace) { 1796 nqindex = BQUEUE_EMPTY; 1797 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1798 } 1799 } 1800 1801 /* 1802 * Run scan, possibly freeing data and/or kva mappings on the fly 1803 * depending. 1804 * 1805 * WARNING! bufspin is held! 1806 */ 1807 while ((bp = nbp) != NULL) { 1808 int qindex = nqindex; 1809 1810 nbp = TAILQ_NEXT(bp, b_freelist); 1811 1812 /* 1813 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1814 * cycles through the queue twice before being selected. 1815 */ 1816 if (qindex == BQUEUE_CLEAN && 1817 (bp->b_flags & B_AGE) == 0 && nbp) { 1818 bp->b_flags |= B_AGE; 1819 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 1820 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 1821 continue; 1822 } 1823 1824 /* 1825 * Calculate next bp ( we can only use it if we do not block 1826 * or do other fancy things ). 1827 */ 1828 if (nbp == NULL) { 1829 switch(qindex) { 1830 case BQUEUE_EMPTY: 1831 nqindex = BQUEUE_EMPTYKVA; 1832 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 1833 break; 1834 /* fall through */ 1835 case BQUEUE_EMPTYKVA: 1836 nqindex = BQUEUE_CLEAN; 1837 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 1838 break; 1839 /* fall through */ 1840 case BQUEUE_CLEAN: 1841 /* 1842 * nbp is NULL. 1843 */ 1844 break; 1845 } 1846 } 1847 1848 /* 1849 * Sanity Checks 1850 */ 1851 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 1852 1853 /* 1854 * Note: we no longer distinguish between VMIO and non-VMIO 1855 * buffers. 1856 */ 1857 1858 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1859 1860 /* 1861 * If we are defragging then we need a buffer with 1862 * b_kvasize != 0. XXX this situation should no longer 1863 * occur, if defrag is non-zero the buffer's b_kvasize 1864 * should also be non-zero at this point. XXX 1865 */ 1866 if (defrag && bp->b_kvasize == 0) { 1867 kprintf("Warning: defrag empty buffer %p\n", bp); 1868 continue; 1869 } 1870 1871 /* 1872 * Start freeing the bp. This is somewhat involved. nbp 1873 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 1874 * on the clean list must be disassociated from their 1875 * current vnode. Buffers on the empty[kva] lists have 1876 * already been disassociated. 1877 */ 1878 1879 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1880 spin_unlock_wr(&bufspin); 1881 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp); 1882 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 1883 goto restart; 1884 } 1885 if (bp->b_qindex != qindex) { 1886 spin_unlock_wr(&bufspin); 1887 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex); 1888 BUF_UNLOCK(bp); 1889 goto restart; 1890 } 1891 bremfree_locked(bp); 1892 spin_unlock_wr(&bufspin); 1893 1894 /* 1895 * Dependancies must be handled before we disassociate the 1896 * vnode. 1897 * 1898 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 1899 * be immediately disassociated. HAMMER then becomes 1900 * responsible for releasing the buffer. 1901 * 1902 * NOTE: bufspin is UNLOCKED now. 1903 */ 1904 if (LIST_FIRST(&bp->b_dep) != NULL) { 1905 get_mplock(); 1906 buf_deallocate(bp); 1907 rel_mplock(); 1908 if (bp->b_flags & B_LOCKED) { 1909 bqrelse(bp); 1910 goto restart; 1911 } 1912 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 1913 } 1914 1915 if (qindex == BQUEUE_CLEAN) { 1916 get_mplock(); 1917 if (bp->b_flags & B_VMIO) { 1918 bp->b_flags &= ~B_ASYNC; 1919 get_mplock(); 1920 vfs_vmio_release(bp); 1921 rel_mplock(); 1922 } 1923 if (bp->b_vp) 1924 brelvp(bp); 1925 rel_mplock(); 1926 } 1927 1928 /* 1929 * NOTE: nbp is now entirely invalid. We can only restart 1930 * the scan from this point on. 1931 * 1932 * Get the rest of the buffer freed up. b_kva* is still 1933 * valid after this operation. 1934 */ 1935 1936 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 1937 KKASSERT((bp->b_flags & B_HASHED) == 0); 1938 1939 /* 1940 * critical section protection is not required when 1941 * scrapping a buffer's contents because it is already 1942 * wired. 1943 */ 1944 if (bp->b_bufsize) { 1945 get_mplock(); 1946 allocbuf(bp, 0); 1947 rel_mplock(); 1948 } 1949 1950 bp->b_flags = B_BNOCLIP; 1951 bp->b_cmd = BUF_CMD_DONE; 1952 bp->b_vp = NULL; 1953 bp->b_error = 0; 1954 bp->b_resid = 0; 1955 bp->b_bcount = 0; 1956 bp->b_xio.xio_npages = 0; 1957 bp->b_dirtyoff = bp->b_dirtyend = 0; 1958 reinitbufbio(bp); 1959 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 1960 buf_dep_init(bp); 1961 if (blkflags & GETBLK_BHEAVY) 1962 bp->b_flags |= B_HEAVY; 1963 1964 /* 1965 * If we are defragging then free the buffer. 1966 */ 1967 if (defrag) { 1968 bp->b_flags |= B_INVAL; 1969 bfreekva(bp); 1970 brelse(bp); 1971 defrag = 0; 1972 goto restart; 1973 } 1974 1975 /* 1976 * If we are overcomitted then recover the buffer and its 1977 * KVM space. This occurs in rare situations when multiple 1978 * processes are blocked in getnewbuf() or allocbuf(). 1979 */ 1980 if (bufspace >= hibufspace) 1981 flushingbufs = 1; 1982 if (flushingbufs && bp->b_kvasize != 0) { 1983 bp->b_flags |= B_INVAL; 1984 bfreekva(bp); 1985 brelse(bp); 1986 goto restart; 1987 } 1988 if (bufspace < lobufspace) 1989 flushingbufs = 0; 1990 break; 1991 /* NOT REACHED, bufspin not held */ 1992 } 1993 1994 /* 1995 * If we exhausted our list, sleep as appropriate. We may have to 1996 * wakeup various daemons and write out some dirty buffers. 1997 * 1998 * Generally we are sleeping due to insufficient buffer space. 1999 * 2000 * NOTE: bufspin is held if bp is NULL, else it is not held. 2001 */ 2002 if (bp == NULL) { 2003 int flags; 2004 char *waitmsg; 2005 2006 spin_unlock_wr(&bufspin); 2007 if (defrag) { 2008 flags = VFS_BIO_NEED_BUFSPACE; 2009 waitmsg = "nbufkv"; 2010 } else if (bufspace >= hibufspace) { 2011 waitmsg = "nbufbs"; 2012 flags = VFS_BIO_NEED_BUFSPACE; 2013 } else { 2014 waitmsg = "newbuf"; 2015 flags = VFS_BIO_NEED_ANY; 2016 } 2017 2018 needsbuffer |= flags; 2019 bd_speedup(); /* heeeelp */ 2020 while (needsbuffer & flags) { 2021 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo)) 2022 return (NULL); 2023 } 2024 } else { 2025 /* 2026 * We finally have a valid bp. We aren't quite out of the 2027 * woods, we still have to reserve kva space. In order 2028 * to keep fragmentation sane we only allocate kva in 2029 * BKVASIZE chunks. 2030 * 2031 * (bufspin is not held) 2032 */ 2033 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2034 2035 if (maxsize != bp->b_kvasize) { 2036 vm_offset_t addr = 0; 2037 int count; 2038 2039 bfreekva(bp); 2040 2041 get_mplock(); 2042 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2043 vm_map_lock(&buffer_map); 2044 2045 if (vm_map_findspace(&buffer_map, 2046 vm_map_min(&buffer_map), maxsize, 2047 maxsize, 0, &addr)) { 2048 /* 2049 * Uh oh. Buffer map is too fragmented. We 2050 * must defragment the map. 2051 */ 2052 vm_map_unlock(&buffer_map); 2053 vm_map_entry_release(count); 2054 ++bufdefragcnt; 2055 defrag = 1; 2056 bp->b_flags |= B_INVAL; 2057 rel_mplock(); 2058 brelse(bp); 2059 goto restart; 2060 } 2061 if (addr) { 2062 vm_map_insert(&buffer_map, &count, 2063 NULL, 0, 2064 addr, addr + maxsize, 2065 VM_MAPTYPE_NORMAL, 2066 VM_PROT_ALL, VM_PROT_ALL, 2067 MAP_NOFAULT); 2068 2069 bp->b_kvabase = (caddr_t) addr; 2070 bp->b_kvasize = maxsize; 2071 bufspace += bp->b_kvasize; 2072 ++bufreusecnt; 2073 } 2074 vm_map_unlock(&buffer_map); 2075 vm_map_entry_release(count); 2076 rel_mplock(); 2077 } 2078 bp->b_data = bp->b_kvabase; 2079 } 2080 return(bp); 2081 } 2082 2083 /* 2084 * This routine is called in an emergency to recover VM pages from the 2085 * buffer cache by cashing in clean buffers. The idea is to recover 2086 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2087 */ 2088 static int 2089 recoverbufpages(void) 2090 { 2091 struct buf *bp; 2092 int bytes = 0; 2093 2094 ++recoverbufcalls; 2095 2096 spin_lock_wr(&bufspin); 2097 while (bytes < MAXBSIZE) { 2098 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2099 if (bp == NULL) 2100 break; 2101 2102 /* 2103 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2104 * cycles through the queue twice before being selected. 2105 */ 2106 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2107 bp->b_flags |= B_AGE; 2108 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2109 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2110 bp, b_freelist); 2111 continue; 2112 } 2113 2114 /* 2115 * Sanity Checks 2116 */ 2117 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2118 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2119 2120 /* 2121 * Start freeing the bp. This is somewhat involved. 2122 * 2123 * Buffers on the clean list must be disassociated from 2124 * their current vnode 2125 */ 2126 2127 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2128 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp); 2129 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2130 continue; 2131 } 2132 if (bp->b_qindex != BQUEUE_CLEAN) { 2133 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex); 2134 BUF_UNLOCK(bp); 2135 continue; 2136 } 2137 bremfree_locked(bp); 2138 spin_unlock_wr(&bufspin); 2139 2140 /* 2141 * Dependancies must be handled before we disassociate the 2142 * vnode. 2143 * 2144 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2145 * be immediately disassociated. HAMMER then becomes 2146 * responsible for releasing the buffer. 2147 */ 2148 if (LIST_FIRST(&bp->b_dep) != NULL) { 2149 buf_deallocate(bp); 2150 if (bp->b_flags & B_LOCKED) { 2151 bqrelse(bp); 2152 spin_lock_wr(&bufspin); 2153 continue; 2154 } 2155 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2156 } 2157 2158 bytes += bp->b_bufsize; 2159 2160 get_mplock(); 2161 if (bp->b_flags & B_VMIO) { 2162 bp->b_flags &= ~B_ASYNC; 2163 bp->b_flags |= B_DIRECT; /* try to free pages */ 2164 vfs_vmio_release(bp); 2165 } 2166 if (bp->b_vp) 2167 brelvp(bp); 2168 2169 KKASSERT(bp->b_vp == NULL); 2170 KKASSERT((bp->b_flags & B_HASHED) == 0); 2171 2172 /* 2173 * critical section protection is not required when 2174 * scrapping a buffer's contents because it is already 2175 * wired. 2176 */ 2177 if (bp->b_bufsize) 2178 allocbuf(bp, 0); 2179 rel_mplock(); 2180 2181 bp->b_flags = B_BNOCLIP; 2182 bp->b_cmd = BUF_CMD_DONE; 2183 bp->b_vp = NULL; 2184 bp->b_error = 0; 2185 bp->b_resid = 0; 2186 bp->b_bcount = 0; 2187 bp->b_xio.xio_npages = 0; 2188 bp->b_dirtyoff = bp->b_dirtyend = 0; 2189 reinitbufbio(bp); 2190 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2191 buf_dep_init(bp); 2192 bp->b_flags |= B_INVAL; 2193 /* bfreekva(bp); */ 2194 brelse(bp); 2195 spin_lock_wr(&bufspin); 2196 } 2197 spin_unlock_wr(&bufspin); 2198 return(bytes); 2199 } 2200 2201 /* 2202 * buf_daemon: 2203 * 2204 * Buffer flushing daemon. Buffers are normally flushed by the 2205 * update daemon but if it cannot keep up this process starts to 2206 * take the load in an attempt to prevent getnewbuf() from blocking. 2207 * 2208 * Once a flush is initiated it does not stop until the number 2209 * of buffers falls below lodirtybuffers, but we will wake up anyone 2210 * waiting at the mid-point. 2211 */ 2212 2213 static struct kproc_desc buf_kp = { 2214 "bufdaemon", 2215 buf_daemon, 2216 &bufdaemon_td 2217 }; 2218 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2219 kproc_start, &buf_kp) 2220 2221 static struct kproc_desc bufhw_kp = { 2222 "bufdaemon_hw", 2223 buf_daemon_hw, 2224 &bufdaemonhw_td 2225 }; 2226 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2227 kproc_start, &bufhw_kp) 2228 2229 static void 2230 buf_daemon(void) 2231 { 2232 int limit; 2233 2234 /* 2235 * This process needs to be suspended prior to shutdown sync. 2236 */ 2237 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2238 bufdaemon_td, SHUTDOWN_PRI_LAST); 2239 curthread->td_flags |= TDF_SYSTHREAD; 2240 2241 /* 2242 * This process is allowed to take the buffer cache to the limit 2243 */ 2244 crit_enter(); 2245 2246 for (;;) { 2247 kproc_suspend_loop(); 2248 2249 /* 2250 * Do the flush. Limit the amount of in-transit I/O we 2251 * allow to build up, otherwise we would completely saturate 2252 * the I/O system. Wakeup any waiting processes before we 2253 * normally would so they can run in parallel with our drain. 2254 * 2255 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2256 * but because we split the operation into two threads we 2257 * have to cut it in half for each thread. 2258 */ 2259 limit = lodirtybufspace / 2; 2260 waitrunningbufspace(limit); 2261 while (runningbufspace + dirtybufspace > limit || 2262 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2263 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2264 break; 2265 waitrunningbufspace(limit); 2266 } 2267 2268 /* 2269 * We reached our low water mark, reset the 2270 * request and sleep until we are needed again. 2271 * The sleep is just so the suspend code works. 2272 */ 2273 spin_lock_wr(&needsbuffer_spin); 2274 if (bd_request == 0) { 2275 msleep(&bd_request, &needsbuffer_spin, 0, 2276 "psleep", hz); 2277 } 2278 bd_request = 0; 2279 spin_unlock_wr(&needsbuffer_spin); 2280 } 2281 } 2282 2283 static void 2284 buf_daemon_hw(void) 2285 { 2286 int limit; 2287 2288 /* 2289 * This process needs to be suspended prior to shutdown sync. 2290 */ 2291 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2292 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2293 curthread->td_flags |= TDF_SYSTHREAD; 2294 2295 /* 2296 * This process is allowed to take the buffer cache to the limit 2297 */ 2298 crit_enter(); 2299 2300 for (;;) { 2301 kproc_suspend_loop(); 2302 2303 /* 2304 * Do the flush. Limit the amount of in-transit I/O we 2305 * allow to build up, otherwise we would completely saturate 2306 * the I/O system. Wakeup any waiting processes before we 2307 * normally would so they can run in parallel with our drain. 2308 * 2309 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2310 * but because we split the operation into two threads we 2311 * have to cut it in half for each thread. 2312 */ 2313 limit = lodirtybufspace / 2; 2314 waitrunningbufspace(limit); 2315 while (runningbufspace + dirtybufspacehw > limit || 2316 dirtybufcounthw >= nbuf / 2) { 2317 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2318 break; 2319 waitrunningbufspace(limit); 2320 } 2321 2322 /* 2323 * We reached our low water mark, reset the 2324 * request and sleep until we are needed again. 2325 * The sleep is just so the suspend code works. 2326 */ 2327 spin_lock_wr(&needsbuffer_spin); 2328 if (bd_request_hw == 0) { 2329 msleep(&bd_request_hw, &needsbuffer_spin, 0, 2330 "psleep", hz); 2331 } 2332 bd_request_hw = 0; 2333 spin_unlock_wr(&needsbuffer_spin); 2334 } 2335 } 2336 2337 /* 2338 * flushbufqueues: 2339 * 2340 * Try to flush a buffer in the dirty queue. We must be careful to 2341 * free up B_INVAL buffers instead of write them, which NFS is 2342 * particularly sensitive to. 2343 * 2344 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2345 * that we really want to try to get the buffer out and reuse it 2346 * due to the write load on the machine. 2347 */ 2348 static int 2349 flushbufqueues(bufq_type_t q) 2350 { 2351 struct buf *bp; 2352 int r = 0; 2353 int spun; 2354 2355 spin_lock_wr(&bufspin); 2356 spun = 1; 2357 2358 bp = TAILQ_FIRST(&bufqueues[q]); 2359 while (bp) { 2360 KASSERT((bp->b_flags & B_DELWRI), 2361 ("unexpected clean buffer %p", bp)); 2362 2363 if (bp->b_flags & B_DELWRI) { 2364 if (bp->b_flags & B_INVAL) { 2365 spin_unlock_wr(&bufspin); 2366 spun = 0; 2367 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 2368 panic("flushbufqueues: locked buf"); 2369 bremfree(bp); 2370 brelse(bp); 2371 ++r; 2372 break; 2373 } 2374 if (LIST_FIRST(&bp->b_dep) != NULL && 2375 (bp->b_flags & B_DEFERRED) == 0 && 2376 buf_countdeps(bp, 0)) { 2377 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2378 TAILQ_INSERT_TAIL(&bufqueues[q], bp, 2379 b_freelist); 2380 bp->b_flags |= B_DEFERRED; 2381 bp = TAILQ_FIRST(&bufqueues[q]); 2382 continue; 2383 } 2384 2385 /* 2386 * Only write it out if we can successfully lock 2387 * it. If the buffer has a dependancy, 2388 * buf_checkwrite must also return 0 for us to 2389 * be able to initate the write. 2390 * 2391 * If the buffer is flagged B_ERROR it may be 2392 * requeued over and over again, we try to 2393 * avoid a live lock. 2394 */ 2395 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 2396 spin_unlock_wr(&bufspin); 2397 spun = 0; 2398 if (LIST_FIRST(&bp->b_dep) != NULL && 2399 buf_checkwrite(bp)) { 2400 bremfree(bp); 2401 brelse(bp); 2402 } else if (bp->b_flags & B_ERROR) { 2403 tsleep(bp, 0, "bioer", 1); 2404 bp->b_flags &= ~B_AGE; 2405 vfs_bio_awrite(bp); 2406 } else { 2407 bp->b_flags |= B_AGE; 2408 vfs_bio_awrite(bp); 2409 } 2410 ++r; 2411 break; 2412 } 2413 } 2414 bp = TAILQ_NEXT(bp, b_freelist); 2415 } 2416 if (spun) 2417 spin_unlock_wr(&bufspin); 2418 return (r); 2419 } 2420 2421 /* 2422 * inmem: 2423 * 2424 * Returns true if no I/O is needed to access the associated VM object. 2425 * This is like findblk except it also hunts around in the VM system for 2426 * the data. 2427 * 2428 * Note that we ignore vm_page_free() races from interrupts against our 2429 * lookup, since if the caller is not protected our return value will not 2430 * be any more valid then otherwise once we exit the critical section. 2431 */ 2432 int 2433 inmem(struct vnode *vp, off_t loffset) 2434 { 2435 vm_object_t obj; 2436 vm_offset_t toff, tinc, size; 2437 vm_page_t m; 2438 2439 if (findblk(vp, loffset, FINDBLK_TEST)) 2440 return 1; 2441 if (vp->v_mount == NULL) 2442 return 0; 2443 if ((obj = vp->v_object) == NULL) 2444 return 0; 2445 2446 size = PAGE_SIZE; 2447 if (size > vp->v_mount->mnt_stat.f_iosize) 2448 size = vp->v_mount->mnt_stat.f_iosize; 2449 2450 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2451 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2452 if (m == NULL) 2453 return 0; 2454 tinc = size; 2455 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2456 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2457 if (vm_page_is_valid(m, 2458 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2459 return 0; 2460 } 2461 return 1; 2462 } 2463 2464 /* 2465 * vfs_setdirty: 2466 * 2467 * Sets the dirty range for a buffer based on the status of the dirty 2468 * bits in the pages comprising the buffer. 2469 * 2470 * The range is limited to the size of the buffer. 2471 * 2472 * This routine is primarily used by NFS, but is generalized for the 2473 * B_VMIO case. 2474 */ 2475 static void 2476 vfs_setdirty(struct buf *bp) 2477 { 2478 int i; 2479 vm_object_t object; 2480 2481 /* 2482 * Degenerate case - empty buffer 2483 */ 2484 2485 if (bp->b_bufsize == 0) 2486 return; 2487 2488 /* 2489 * We qualify the scan for modified pages on whether the 2490 * object has been flushed yet. The OBJ_WRITEABLE flag 2491 * is not cleared simply by protecting pages off. 2492 */ 2493 2494 if ((bp->b_flags & B_VMIO) == 0) 2495 return; 2496 2497 object = bp->b_xio.xio_pages[0]->object; 2498 2499 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2500 kprintf("Warning: object %p writeable but not mightbedirty\n", object); 2501 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2502 kprintf("Warning: object %p mightbedirty but not writeable\n", object); 2503 2504 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2505 vm_offset_t boffset; 2506 vm_offset_t eoffset; 2507 2508 /* 2509 * test the pages to see if they have been modified directly 2510 * by users through the VM system. 2511 */ 2512 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2513 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 2514 vm_page_test_dirty(bp->b_xio.xio_pages[i]); 2515 } 2516 2517 /* 2518 * Calculate the encompassing dirty range, boffset and eoffset, 2519 * (eoffset - boffset) bytes. 2520 */ 2521 2522 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2523 if (bp->b_xio.xio_pages[i]->dirty) 2524 break; 2525 } 2526 boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK); 2527 2528 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) { 2529 if (bp->b_xio.xio_pages[i]->dirty) { 2530 break; 2531 } 2532 } 2533 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK); 2534 2535 /* 2536 * Fit it to the buffer. 2537 */ 2538 2539 if (eoffset > bp->b_bcount) 2540 eoffset = bp->b_bcount; 2541 2542 /* 2543 * If we have a good dirty range, merge with the existing 2544 * dirty range. 2545 */ 2546 2547 if (boffset < eoffset) { 2548 if (bp->b_dirtyoff > boffset) 2549 bp->b_dirtyoff = boffset; 2550 if (bp->b_dirtyend < eoffset) 2551 bp->b_dirtyend = eoffset; 2552 } 2553 } 2554 } 2555 2556 /* 2557 * findblk: 2558 * 2559 * Locate and return the specified buffer. Unless flagged otherwise, 2560 * a locked buffer will be returned if it exists or NULL if it does not. 2561 * 2562 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2563 * for locking the buffer and ensuring that it remains 2564 * the desired buffer after locking. 2565 * 2566 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2567 * to acquire the lock we return NULL, even if the 2568 * buffer exists. 2569 * 2570 * (0) - Lock the buffer blocking. 2571 * 2572 * MPSAFE 2573 */ 2574 struct buf * 2575 findblk(struct vnode *vp, off_t loffset, int flags) 2576 { 2577 lwkt_tokref vlock; 2578 struct buf *bp; 2579 int lkflags; 2580 2581 lkflags = LK_EXCLUSIVE; 2582 if (flags & FINDBLK_NBLOCK) 2583 lkflags |= LK_NOWAIT; 2584 2585 for (;;) { 2586 lwkt_gettoken(&vlock, &vp->v_token); 2587 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2588 lwkt_reltoken(&vlock); 2589 if (bp == NULL || (flags & FINDBLK_TEST)) 2590 break; 2591 if (BUF_LOCK(bp, lkflags)) { 2592 bp = NULL; 2593 break; 2594 } 2595 if (bp->b_vp == vp && bp->b_loffset == loffset) 2596 break; 2597 BUF_UNLOCK(bp); 2598 } 2599 return(bp); 2600 } 2601 2602 /* 2603 * getcacheblk: 2604 * 2605 * Similar to getblk() except only returns the buffer if it is 2606 * B_CACHE and requires no other manipulation. Otherwise NULL 2607 * is returned. 2608 * 2609 * If B_RAM is set the buffer might be just fine, but we return 2610 * NULL anyway because we want the code to fall through to the 2611 * cluster read. Otherwise read-ahead breaks. 2612 */ 2613 struct buf * 2614 getcacheblk(struct vnode *vp, off_t loffset) 2615 { 2616 struct buf *bp; 2617 2618 bp = findblk(vp, loffset, 0); 2619 if (bp) { 2620 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) { 2621 bp->b_flags &= ~B_AGE; 2622 bremfree(bp); 2623 } else { 2624 BUF_UNLOCK(bp); 2625 bp = NULL; 2626 } 2627 } 2628 return (bp); 2629 } 2630 2631 /* 2632 * getblk: 2633 * 2634 * Get a block given a specified block and offset into a file/device. 2635 * B_INVAL may or may not be set on return. The caller should clear 2636 * B_INVAL prior to initiating a READ. 2637 * 2638 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2639 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2640 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2641 * without doing any of those things the system will likely believe 2642 * the buffer to be valid (especially if it is not B_VMIO), and the 2643 * next getblk() will return the buffer with B_CACHE set. 2644 * 2645 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2646 * an existing buffer. 2647 * 2648 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2649 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2650 * and then cleared based on the backing VM. If the previous buffer is 2651 * non-0-sized but invalid, B_CACHE will be cleared. 2652 * 2653 * If getblk() must create a new buffer, the new buffer is returned with 2654 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2655 * case it is returned with B_INVAL clear and B_CACHE set based on the 2656 * backing VM. 2657 * 2658 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2659 * B_CACHE bit is clear. 2660 * 2661 * What this means, basically, is that the caller should use B_CACHE to 2662 * determine whether the buffer is fully valid or not and should clear 2663 * B_INVAL prior to issuing a read. If the caller intends to validate 2664 * the buffer by loading its data area with something, the caller needs 2665 * to clear B_INVAL. If the caller does this without issuing an I/O, 2666 * the caller should set B_CACHE ( as an optimization ), else the caller 2667 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2668 * a write attempt or if it was a successfull read. If the caller 2669 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2670 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2671 * 2672 * getblk flags: 2673 * 2674 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2675 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2676 * 2677 * MPALMOSTSAFE 2678 */ 2679 struct buf * 2680 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2681 { 2682 struct buf *bp; 2683 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2684 int error; 2685 int lkflags; 2686 2687 if (size > MAXBSIZE) 2688 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2689 if (vp->v_object == NULL) 2690 panic("getblk: vnode %p has no object!", vp); 2691 2692 loop: 2693 if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) { 2694 /* 2695 * The buffer was found in the cache, but we need to lock it. 2696 * Even with LK_NOWAIT the lockmgr may break our critical 2697 * section, so double-check the validity of the buffer 2698 * once the lock has been obtained. 2699 */ 2700 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2701 if (blkflags & GETBLK_NOWAIT) 2702 return(NULL); 2703 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2704 if (blkflags & GETBLK_PCATCH) 2705 lkflags |= LK_PCATCH; 2706 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2707 if (error) { 2708 if (error == ENOLCK) 2709 goto loop; 2710 return (NULL); 2711 } 2712 /* buffer may have changed on us */ 2713 } 2714 2715 /* 2716 * Once the buffer has been locked, make sure we didn't race 2717 * a buffer recyclement. Buffers that are no longer hashed 2718 * will have b_vp == NULL, so this takes care of that check 2719 * as well. 2720 */ 2721 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2722 kprintf("Warning buffer %p (vp %p loffset %lld) " 2723 "was recycled\n", 2724 bp, vp, (long long)loffset); 2725 BUF_UNLOCK(bp); 2726 goto loop; 2727 } 2728 2729 /* 2730 * If SZMATCH any pre-existing buffer must be of the requested 2731 * size or NULL is returned. The caller absolutely does not 2732 * want getblk() to bwrite() the buffer on a size mismatch. 2733 */ 2734 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2735 BUF_UNLOCK(bp); 2736 return(NULL); 2737 } 2738 2739 /* 2740 * All vnode-based buffers must be backed by a VM object. 2741 */ 2742 KKASSERT(bp->b_flags & B_VMIO); 2743 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2744 bp->b_flags &= ~B_AGE; 2745 2746 /* 2747 * Make sure that B_INVAL buffers do not have a cached 2748 * block number translation. 2749 */ 2750 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2751 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 2752 " did not have cleared bio_offset cache\n", 2753 bp, vp, (long long)loffset); 2754 clearbiocache(&bp->b_bio2); 2755 } 2756 2757 /* 2758 * The buffer is locked. B_CACHE is cleared if the buffer is 2759 * invalid. 2760 */ 2761 if (bp->b_flags & B_INVAL) 2762 bp->b_flags &= ~B_CACHE; 2763 bremfree(bp); 2764 2765 /* 2766 * Any size inconsistancy with a dirty buffer or a buffer 2767 * with a softupdates dependancy must be resolved. Resizing 2768 * the buffer in such circumstances can lead to problems. 2769 */ 2770 if (size != bp->b_bcount) { 2771 get_mplock(); 2772 if (bp->b_flags & B_DELWRI) { 2773 bp->b_flags |= B_NOCACHE; 2774 bwrite(bp); 2775 } else if (LIST_FIRST(&bp->b_dep)) { 2776 bp->b_flags |= B_NOCACHE; 2777 bwrite(bp); 2778 } else { 2779 bp->b_flags |= B_RELBUF; 2780 brelse(bp); 2781 } 2782 rel_mplock(); 2783 goto loop; 2784 } 2785 KKASSERT(size <= bp->b_kvasize); 2786 KASSERT(bp->b_loffset != NOOFFSET, 2787 ("getblk: no buffer offset")); 2788 2789 /* 2790 * A buffer with B_DELWRI set and B_CACHE clear must 2791 * be committed before we can return the buffer in 2792 * order to prevent the caller from issuing a read 2793 * ( due to B_CACHE not being set ) and overwriting 2794 * it. 2795 * 2796 * Most callers, including NFS and FFS, need this to 2797 * operate properly either because they assume they 2798 * can issue a read if B_CACHE is not set, or because 2799 * ( for example ) an uncached B_DELWRI might loop due 2800 * to softupdates re-dirtying the buffer. In the latter 2801 * case, B_CACHE is set after the first write completes, 2802 * preventing further loops. 2803 * 2804 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2805 * above while extending the buffer, we cannot allow the 2806 * buffer to remain with B_CACHE set after the write 2807 * completes or it will represent a corrupt state. To 2808 * deal with this we set B_NOCACHE to scrap the buffer 2809 * after the write. 2810 * 2811 * We might be able to do something fancy, like setting 2812 * B_CACHE in bwrite() except if B_DELWRI is already set, 2813 * so the below call doesn't set B_CACHE, but that gets real 2814 * confusing. This is much easier. 2815 */ 2816 2817 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2818 get_mplock(); 2819 bp->b_flags |= B_NOCACHE; 2820 bwrite(bp); 2821 rel_mplock(); 2822 goto loop; 2823 } 2824 } else { 2825 /* 2826 * Buffer is not in-core, create new buffer. The buffer 2827 * returned by getnewbuf() is locked. Note that the returned 2828 * buffer is also considered valid (not marked B_INVAL). 2829 * 2830 * Calculating the offset for the I/O requires figuring out 2831 * the block size. We use DEV_BSIZE for VBLK or VCHR and 2832 * the mount's f_iosize otherwise. If the vnode does not 2833 * have an associated mount we assume that the passed size is 2834 * the block size. 2835 * 2836 * Note that vn_isdisk() cannot be used here since it may 2837 * return a failure for numerous reasons. Note that the 2838 * buffer size may be larger then the block size (the caller 2839 * will use block numbers with the proper multiple). Beware 2840 * of using any v_* fields which are part of unions. In 2841 * particular, in DragonFly the mount point overloading 2842 * mechanism uses the namecache only and the underlying 2843 * directory vnode is not a special case. 2844 */ 2845 int bsize, maxsize; 2846 2847 if (vp->v_type == VBLK || vp->v_type == VCHR) 2848 bsize = DEV_BSIZE; 2849 else if (vp->v_mount) 2850 bsize = vp->v_mount->mnt_stat.f_iosize; 2851 else 2852 bsize = size; 2853 2854 maxsize = size + (loffset & PAGE_MASK); 2855 maxsize = imax(maxsize, bsize); 2856 2857 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 2858 if (bp == NULL) { 2859 if (slpflags || slptimeo) 2860 return NULL; 2861 goto loop; 2862 } 2863 2864 /* 2865 * Atomically insert the buffer into the hash, so that it can 2866 * be found by findblk(). 2867 * 2868 * If bgetvp() returns non-zero a collision occured, and the 2869 * bp will not be associated with the vnode. 2870 * 2871 * Make sure the translation layer has been cleared. 2872 */ 2873 bp->b_loffset = loffset; 2874 bp->b_bio2.bio_offset = NOOFFSET; 2875 /* bp->b_bio2.bio_next = NULL; */ 2876 2877 if (bgetvp(vp, bp)) { 2878 bp->b_flags |= B_INVAL; 2879 brelse(bp); 2880 goto loop; 2881 } 2882 2883 /* 2884 * All vnode-based buffers must be backed by a VM object. 2885 */ 2886 KKASSERT(vp->v_object != NULL); 2887 bp->b_flags |= B_VMIO; 2888 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2889 2890 get_mplock(); 2891 allocbuf(bp, size); 2892 rel_mplock(); 2893 } 2894 return (bp); 2895 } 2896 2897 /* 2898 * regetblk(bp) 2899 * 2900 * Reacquire a buffer that was previously released to the locked queue, 2901 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 2902 * set B_LOCKED (which handles the acquisition race). 2903 * 2904 * To this end, either B_LOCKED must be set or the dependancy list must be 2905 * non-empty. 2906 * 2907 * MPSAFE 2908 */ 2909 void 2910 regetblk(struct buf *bp) 2911 { 2912 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 2913 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 2914 bremfree(bp); 2915 } 2916 2917 /* 2918 * geteblk: 2919 * 2920 * Get an empty, disassociated buffer of given size. The buffer is 2921 * initially set to B_INVAL. 2922 * 2923 * critical section protection is not required for the allocbuf() 2924 * call because races are impossible here. 2925 * 2926 * MPALMOSTSAFE 2927 */ 2928 struct buf * 2929 geteblk(int size) 2930 { 2931 struct buf *bp; 2932 int maxsize; 2933 2934 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2935 2936 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2937 ; 2938 get_mplock(); 2939 allocbuf(bp, size); 2940 rel_mplock(); 2941 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2942 return (bp); 2943 } 2944 2945 2946 /* 2947 * allocbuf: 2948 * 2949 * This code constitutes the buffer memory from either anonymous system 2950 * memory (in the case of non-VMIO operations) or from an associated 2951 * VM object (in the case of VMIO operations). This code is able to 2952 * resize a buffer up or down. 2953 * 2954 * Note that this code is tricky, and has many complications to resolve 2955 * deadlock or inconsistant data situations. Tread lightly!!! 2956 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2957 * the caller. Calling this code willy nilly can result in the loss of data. 2958 * 2959 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2960 * B_CACHE for the non-VMIO case. 2961 * 2962 * This routine does not need to be called from a critical section but you 2963 * must own the buffer. 2964 * 2965 * NOTMPSAFE 2966 */ 2967 int 2968 allocbuf(struct buf *bp, int size) 2969 { 2970 int newbsize, mbsize; 2971 int i; 2972 2973 if (BUF_REFCNT(bp) == 0) 2974 panic("allocbuf: buffer not busy"); 2975 2976 if (bp->b_kvasize < size) 2977 panic("allocbuf: buffer too small"); 2978 2979 if ((bp->b_flags & B_VMIO) == 0) { 2980 caddr_t origbuf; 2981 int origbufsize; 2982 /* 2983 * Just get anonymous memory from the kernel. Don't 2984 * mess with B_CACHE. 2985 */ 2986 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2987 if (bp->b_flags & B_MALLOC) 2988 newbsize = mbsize; 2989 else 2990 newbsize = round_page(size); 2991 2992 if (newbsize < bp->b_bufsize) { 2993 /* 2994 * Malloced buffers are not shrunk 2995 */ 2996 if (bp->b_flags & B_MALLOC) { 2997 if (newbsize) { 2998 bp->b_bcount = size; 2999 } else { 3000 kfree(bp->b_data, M_BIOBUF); 3001 if (bp->b_bufsize) { 3002 bufmallocspace -= bp->b_bufsize; 3003 bufspacewakeup(); 3004 bp->b_bufsize = 0; 3005 } 3006 bp->b_data = bp->b_kvabase; 3007 bp->b_bcount = 0; 3008 bp->b_flags &= ~B_MALLOC; 3009 } 3010 return 1; 3011 } 3012 vm_hold_free_pages( 3013 bp, 3014 (vm_offset_t) bp->b_data + newbsize, 3015 (vm_offset_t) bp->b_data + bp->b_bufsize); 3016 } else if (newbsize > bp->b_bufsize) { 3017 /* 3018 * We only use malloced memory on the first allocation. 3019 * and revert to page-allocated memory when the buffer 3020 * grows. 3021 */ 3022 if ((bufmallocspace < maxbufmallocspace) && 3023 (bp->b_bufsize == 0) && 3024 (mbsize <= PAGE_SIZE/2)) { 3025 3026 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3027 bp->b_bufsize = mbsize; 3028 bp->b_bcount = size; 3029 bp->b_flags |= B_MALLOC; 3030 bufmallocspace += mbsize; 3031 return 1; 3032 } 3033 origbuf = NULL; 3034 origbufsize = 0; 3035 /* 3036 * If the buffer is growing on its other-than-first 3037 * allocation, then we revert to the page-allocation 3038 * scheme. 3039 */ 3040 if (bp->b_flags & B_MALLOC) { 3041 origbuf = bp->b_data; 3042 origbufsize = bp->b_bufsize; 3043 bp->b_data = bp->b_kvabase; 3044 if (bp->b_bufsize) { 3045 bufmallocspace -= bp->b_bufsize; 3046 bufspacewakeup(); 3047 bp->b_bufsize = 0; 3048 } 3049 bp->b_flags &= ~B_MALLOC; 3050 newbsize = round_page(newbsize); 3051 } 3052 vm_hold_load_pages( 3053 bp, 3054 (vm_offset_t) bp->b_data + bp->b_bufsize, 3055 (vm_offset_t) bp->b_data + newbsize); 3056 if (origbuf) { 3057 bcopy(origbuf, bp->b_data, origbufsize); 3058 kfree(origbuf, M_BIOBUF); 3059 } 3060 } 3061 } else { 3062 vm_page_t m; 3063 int desiredpages; 3064 3065 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3066 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3067 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3068 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3069 3070 if (bp->b_flags & B_MALLOC) 3071 panic("allocbuf: VMIO buffer can't be malloced"); 3072 /* 3073 * Set B_CACHE initially if buffer is 0 length or will become 3074 * 0-length. 3075 */ 3076 if (size == 0 || bp->b_bufsize == 0) 3077 bp->b_flags |= B_CACHE; 3078 3079 if (newbsize < bp->b_bufsize) { 3080 /* 3081 * DEV_BSIZE aligned new buffer size is less then the 3082 * DEV_BSIZE aligned existing buffer size. Figure out 3083 * if we have to remove any pages. 3084 */ 3085 if (desiredpages < bp->b_xio.xio_npages) { 3086 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3087 /* 3088 * the page is not freed here -- it 3089 * is the responsibility of 3090 * vnode_pager_setsize 3091 */ 3092 m = bp->b_xio.xio_pages[i]; 3093 KASSERT(m != bogus_page, 3094 ("allocbuf: bogus page found")); 3095 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3096 ; 3097 3098 bp->b_xio.xio_pages[i] = NULL; 3099 vm_page_unwire(m, 0); 3100 } 3101 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3102 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3103 bp->b_xio.xio_npages = desiredpages; 3104 } 3105 } else if (size > bp->b_bcount) { 3106 /* 3107 * We are growing the buffer, possibly in a 3108 * byte-granular fashion. 3109 */ 3110 struct vnode *vp; 3111 vm_object_t obj; 3112 vm_offset_t toff; 3113 vm_offset_t tinc; 3114 3115 /* 3116 * Step 1, bring in the VM pages from the object, 3117 * allocating them if necessary. We must clear 3118 * B_CACHE if these pages are not valid for the 3119 * range covered by the buffer. 3120 * 3121 * critical section protection is required to protect 3122 * against interrupts unbusying and freeing pages 3123 * between our vm_page_lookup() and our 3124 * busycheck/wiring call. 3125 */ 3126 vp = bp->b_vp; 3127 obj = vp->v_object; 3128 3129 crit_enter(); 3130 while (bp->b_xio.xio_npages < desiredpages) { 3131 vm_page_t m; 3132 vm_pindex_t pi; 3133 3134 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3135 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3136 /* 3137 * note: must allocate system pages 3138 * since blocking here could intefere 3139 * with paging I/O, no matter which 3140 * process we are. 3141 */ 3142 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3143 if (m) { 3144 vm_page_wire(m); 3145 vm_page_wakeup(m); 3146 bp->b_flags &= ~B_CACHE; 3147 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3148 ++bp->b_xio.xio_npages; 3149 } 3150 continue; 3151 } 3152 3153 /* 3154 * We found a page. If we have to sleep on it, 3155 * retry because it might have gotten freed out 3156 * from under us. 3157 * 3158 * We can only test PG_BUSY here. Blocking on 3159 * m->busy might lead to a deadlock: 3160 * 3161 * vm_fault->getpages->cluster_read->allocbuf 3162 * 3163 */ 3164 3165 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3166 continue; 3167 vm_page_flag_clear(m, PG_ZERO); 3168 vm_page_wire(m); 3169 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3170 ++bp->b_xio.xio_npages; 3171 } 3172 crit_exit(); 3173 3174 /* 3175 * Step 2. We've loaded the pages into the buffer, 3176 * we have to figure out if we can still have B_CACHE 3177 * set. Note that B_CACHE is set according to the 3178 * byte-granular range ( bcount and size ), not the 3179 * aligned range ( newbsize ). 3180 * 3181 * The VM test is against m->valid, which is DEV_BSIZE 3182 * aligned. Needless to say, the validity of the data 3183 * needs to also be DEV_BSIZE aligned. Note that this 3184 * fails with NFS if the server or some other client 3185 * extends the file's EOF. If our buffer is resized, 3186 * B_CACHE may remain set! XXX 3187 */ 3188 3189 toff = bp->b_bcount; 3190 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3191 3192 while ((bp->b_flags & B_CACHE) && toff < size) { 3193 vm_pindex_t pi; 3194 3195 if (tinc > (size - toff)) 3196 tinc = size - toff; 3197 3198 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3199 PAGE_SHIFT; 3200 3201 vfs_buf_test_cache( 3202 bp, 3203 bp->b_loffset, 3204 toff, 3205 tinc, 3206 bp->b_xio.xio_pages[pi] 3207 ); 3208 toff += tinc; 3209 tinc = PAGE_SIZE; 3210 } 3211 3212 /* 3213 * Step 3, fixup the KVM pmap. Remember that 3214 * bp->b_data is relative to bp->b_loffset, but 3215 * bp->b_loffset may be offset into the first page. 3216 */ 3217 3218 bp->b_data = (caddr_t) 3219 trunc_page((vm_offset_t)bp->b_data); 3220 pmap_qenter( 3221 (vm_offset_t)bp->b_data, 3222 bp->b_xio.xio_pages, 3223 bp->b_xio.xio_npages 3224 ); 3225 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3226 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3227 } 3228 } 3229 3230 /* adjust space use on already-dirty buffer */ 3231 if (bp->b_flags & B_DELWRI) { 3232 dirtybufspace += newbsize - bp->b_bufsize; 3233 if (bp->b_flags & B_HEAVY) 3234 dirtybufspacehw += newbsize - bp->b_bufsize; 3235 } 3236 if (newbsize < bp->b_bufsize) 3237 bufspacewakeup(); 3238 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3239 bp->b_bcount = size; /* requested buffer size */ 3240 return 1; 3241 } 3242 3243 /* 3244 * biowait: 3245 * 3246 * Wait for buffer I/O completion, returning error status. The buffer 3247 * is left locked on return. B_EINTR is converted into an EINTR error 3248 * and cleared. 3249 * 3250 * NOTE! The original b_cmd is lost on return, since b_cmd will be 3251 * set to BUF_CMD_DONE. 3252 * 3253 * MPSAFE 3254 */ 3255 int 3256 biowait(struct buf *bp) 3257 { 3258 if (bp->b_cmd != BUF_CMD_DONE) { 3259 crit_enter(); 3260 for (;;) { 3261 tsleep_interlock(bp); 3262 if (bp->b_cmd == BUF_CMD_DONE) 3263 break; 3264 if (bp->b_cmd == BUF_CMD_READ) 3265 tsleep(bp, 0, "biord", 0); 3266 else 3267 tsleep(bp, 0, "biowr", 0); 3268 } 3269 crit_exit(); 3270 } 3271 if (bp->b_flags & B_EINTR) { 3272 bp->b_flags &= ~B_EINTR; 3273 return (EINTR); 3274 } 3275 if (bp->b_flags & B_ERROR) { 3276 return (bp->b_error ? bp->b_error : EIO); 3277 } else { 3278 return (0); 3279 } 3280 } 3281 3282 /* 3283 * This associates a tracking count with an I/O. vn_strategy() and 3284 * dev_dstrategy() do this automatically but there are a few cases 3285 * where a vnode or device layer is bypassed when a block translation 3286 * is cached. In such cases bio_start_transaction() may be called on 3287 * the bypassed layers so the system gets an I/O in progress indication 3288 * for those higher layers. 3289 */ 3290 void 3291 bio_start_transaction(struct bio *bio, struct bio_track *track) 3292 { 3293 bio->bio_track = track; 3294 bio_track_ref(track); 3295 } 3296 3297 /* 3298 * Initiate I/O on a vnode. 3299 */ 3300 void 3301 vn_strategy(struct vnode *vp, struct bio *bio) 3302 { 3303 struct bio_track *track; 3304 3305 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE); 3306 if (bio->bio_buf->b_cmd == BUF_CMD_READ) 3307 track = &vp->v_track_read; 3308 else 3309 track = &vp->v_track_write; 3310 bio->bio_track = track; 3311 bio_track_ref(track); 3312 vop_strategy(*vp->v_ops, vp, bio); 3313 } 3314 3315 /* 3316 * biodone: 3317 * 3318 * Finish I/O on a buffer, optionally calling a completion function. 3319 * This is usually called from an interrupt so process blocking is 3320 * not allowed. 3321 * 3322 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 3323 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3324 * assuming B_INVAL is clear. 3325 * 3326 * For the VMIO case, we set B_CACHE if the op was a read and no 3327 * read error occured, or if the op was a write. B_CACHE is never 3328 * set if the buffer is invalid or otherwise uncacheable. 3329 * 3330 * biodone does not mess with B_INVAL, allowing the I/O routine or the 3331 * initiator to leave B_INVAL set to brelse the buffer out of existance 3332 * in the biodone routine. 3333 */ 3334 void 3335 biodone(struct bio *bio) 3336 { 3337 struct buf *bp = bio->bio_buf; 3338 buf_cmd_t cmd; 3339 3340 crit_enter(); 3341 3342 KASSERT(BUF_REFCNTNB(bp) > 0, 3343 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3344 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3345 ("biodone: bp %p already done!", bp)); 3346 3347 runningbufwakeup(bp); 3348 3349 /* 3350 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3351 */ 3352 while (bio) { 3353 biodone_t *done_func; 3354 struct bio_track *track; 3355 3356 /* 3357 * BIO tracking. Most but not all BIOs are tracked. 3358 */ 3359 if ((track = bio->bio_track) != NULL) { 3360 bio_track_rel(track); 3361 bio->bio_track = NULL; 3362 } 3363 3364 /* 3365 * A bio_done function terminates the loop. The function 3366 * will be responsible for any further chaining and/or 3367 * buffer management. 3368 * 3369 * WARNING! The done function can deallocate the buffer! 3370 */ 3371 if ((done_func = bio->bio_done) != NULL) { 3372 bio->bio_done = NULL; 3373 done_func(bio); 3374 crit_exit(); 3375 return; 3376 } 3377 bio = bio->bio_prev; 3378 } 3379 3380 cmd = bp->b_cmd; 3381 bp->b_cmd = BUF_CMD_DONE; 3382 3383 /* 3384 * Only reads and writes are processed past this point. 3385 */ 3386 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3387 if (cmd == BUF_CMD_FREEBLKS) 3388 bp->b_flags |= B_NOCACHE; 3389 brelse(bp); 3390 crit_exit(); 3391 return; 3392 } 3393 3394 /* 3395 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3396 * a lot worse. XXX - move this above the clearing of b_cmd 3397 */ 3398 if (LIST_FIRST(&bp->b_dep) != NULL) 3399 buf_complete(bp); 3400 3401 /* 3402 * A failed write must re-dirty the buffer unless B_INVAL 3403 * was set. 3404 */ 3405 if (cmd == BUF_CMD_WRITE && 3406 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3407 bp->b_flags &= ~B_NOCACHE; 3408 bdirty(bp); 3409 } 3410 3411 3412 if (bp->b_flags & B_VMIO) { 3413 int i; 3414 vm_ooffset_t foff; 3415 vm_page_t m; 3416 vm_object_t obj; 3417 int iosize; 3418 struct vnode *vp = bp->b_vp; 3419 3420 obj = vp->v_object; 3421 3422 #if defined(VFS_BIO_DEBUG) 3423 if (vp->v_auxrefs == 0) 3424 panic("biodone: zero vnode hold count"); 3425 if ((vp->v_flag & VOBJBUF) == 0) 3426 panic("biodone: vnode is not setup for merged cache"); 3427 #endif 3428 3429 foff = bp->b_loffset; 3430 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3431 KASSERT(obj != NULL, ("biodone: missing VM object")); 3432 3433 #if defined(VFS_BIO_DEBUG) 3434 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3435 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3436 obj->paging_in_progress, bp->b_xio.xio_npages); 3437 } 3438 #endif 3439 3440 /* 3441 * Set B_CACHE if the op was a normal read and no error 3442 * occured. B_CACHE is set for writes in the b*write() 3443 * routines. 3444 */ 3445 iosize = bp->b_bcount - bp->b_resid; 3446 if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3447 bp->b_flags |= B_CACHE; 3448 } 3449 3450 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3451 int bogusflag = 0; 3452 int resid; 3453 3454 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3455 if (resid > iosize) 3456 resid = iosize; 3457 3458 /* 3459 * cleanup bogus pages, restoring the originals. Since 3460 * the originals should still be wired, we don't have 3461 * to worry about interrupt/freeing races destroying 3462 * the VM object association. 3463 */ 3464 m = bp->b_xio.xio_pages[i]; 3465 if (m == bogus_page) { 3466 bogusflag = 1; 3467 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3468 if (m == NULL) 3469 panic("biodone: page disappeared"); 3470 bp->b_xio.xio_pages[i] = m; 3471 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3472 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3473 } 3474 #if defined(VFS_BIO_DEBUG) 3475 if (OFF_TO_IDX(foff) != m->pindex) { 3476 kprintf( 3477 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 3478 (unsigned long)foff, m->pindex); 3479 } 3480 #endif 3481 3482 /* 3483 * In the write case, the valid and clean bits are 3484 * already changed correctly ( see bdwrite() ), so we 3485 * only need to do this here in the read case. 3486 */ 3487 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3488 vfs_page_set_valid(bp, foff, i, m); 3489 } 3490 vm_page_flag_clear(m, PG_ZERO); 3491 3492 /* 3493 * when debugging new filesystems or buffer I/O methods, this 3494 * is the most common error that pops up. if you see this, you 3495 * have not set the page busy flag correctly!!! 3496 */ 3497 if (m->busy == 0) { 3498 kprintf("biodone: page busy < 0, " 3499 "pindex: %d, foff: 0x(%x,%x), " 3500 "resid: %d, index: %d\n", 3501 (int) m->pindex, (int)(foff >> 32), 3502 (int) foff & 0xffffffff, resid, i); 3503 if (!vn_isdisk(vp, NULL)) 3504 kprintf(" iosize: %ld, loffset: %lld, " 3505 "flags: 0x%08x, npages: %d\n", 3506 bp->b_vp->v_mount->mnt_stat.f_iosize, 3507 (long long)bp->b_loffset, 3508 bp->b_flags, bp->b_xio.xio_npages); 3509 else 3510 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3511 (long long)bp->b_loffset, 3512 bp->b_flags, bp->b_xio.xio_npages); 3513 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3514 m->valid, m->dirty, m->wire_count); 3515 panic("biodone: page busy < 0"); 3516 } 3517 vm_page_io_finish(m); 3518 vm_object_pip_subtract(obj, 1); 3519 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3520 iosize -= resid; 3521 } 3522 if (obj) 3523 vm_object_pip_wakeupn(obj, 0); 3524 } 3525 3526 /* 3527 * For asynchronous completions, release the buffer now. The brelse 3528 * will do a wakeup there if necessary - so no need to do a wakeup 3529 * here in the async case. The sync case always needs to do a wakeup. 3530 */ 3531 3532 if (bp->b_flags & B_ASYNC) { 3533 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0) 3534 brelse(bp); 3535 else 3536 bqrelse(bp); 3537 } else { 3538 wakeup(bp); 3539 } 3540 crit_exit(); 3541 } 3542 3543 /* 3544 * vfs_unbusy_pages: 3545 * 3546 * This routine is called in lieu of iodone in the case of 3547 * incomplete I/O. This keeps the busy status for pages 3548 * consistant. 3549 */ 3550 void 3551 vfs_unbusy_pages(struct buf *bp) 3552 { 3553 int i; 3554 3555 runningbufwakeup(bp); 3556 if (bp->b_flags & B_VMIO) { 3557 struct vnode *vp = bp->b_vp; 3558 vm_object_t obj; 3559 3560 obj = vp->v_object; 3561 3562 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3563 vm_page_t m = bp->b_xio.xio_pages[i]; 3564 3565 /* 3566 * When restoring bogus changes the original pages 3567 * should still be wired, so we are in no danger of 3568 * losing the object association and do not need 3569 * critical section protection particularly. 3570 */ 3571 if (m == bogus_page) { 3572 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3573 if (!m) { 3574 panic("vfs_unbusy_pages: page missing"); 3575 } 3576 bp->b_xio.xio_pages[i] = m; 3577 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3578 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3579 } 3580 vm_object_pip_subtract(obj, 1); 3581 vm_page_flag_clear(m, PG_ZERO); 3582 vm_page_io_finish(m); 3583 } 3584 vm_object_pip_wakeupn(obj, 0); 3585 } 3586 } 3587 3588 /* 3589 * vfs_page_set_valid: 3590 * 3591 * Set the valid bits in a page based on the supplied offset. The 3592 * range is restricted to the buffer's size. 3593 * 3594 * This routine is typically called after a read completes. 3595 */ 3596 static void 3597 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3598 { 3599 vm_ooffset_t soff, eoff; 3600 3601 /* 3602 * Start and end offsets in buffer. eoff - soff may not cross a 3603 * page boundry or cross the end of the buffer. The end of the 3604 * buffer, in this case, is our file EOF, not the allocation size 3605 * of the buffer. 3606 */ 3607 soff = off; 3608 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3609 if (eoff > bp->b_loffset + bp->b_bcount) 3610 eoff = bp->b_loffset + bp->b_bcount; 3611 3612 /* 3613 * Set valid range. This is typically the entire buffer and thus the 3614 * entire page. 3615 */ 3616 if (eoff > soff) { 3617 vm_page_set_validclean( 3618 m, 3619 (vm_offset_t) (soff & PAGE_MASK), 3620 (vm_offset_t) (eoff - soff) 3621 ); 3622 } 3623 } 3624 3625 /* 3626 * vfs_busy_pages: 3627 * 3628 * This routine is called before a device strategy routine. 3629 * It is used to tell the VM system that paging I/O is in 3630 * progress, and treat the pages associated with the buffer 3631 * almost as being PG_BUSY. Also the object 'paging_in_progress' 3632 * flag is handled to make sure that the object doesn't become 3633 * inconsistant. 3634 * 3635 * Since I/O has not been initiated yet, certain buffer flags 3636 * such as B_ERROR or B_INVAL may be in an inconsistant state 3637 * and should be ignored. 3638 */ 3639 void 3640 vfs_busy_pages(struct vnode *vp, struct buf *bp) 3641 { 3642 int i, bogus; 3643 struct lwp *lp = curthread->td_lwp; 3644 3645 /* 3646 * The buffer's I/O command must already be set. If reading, 3647 * B_CACHE must be 0 (double check against callers only doing 3648 * I/O when B_CACHE is 0). 3649 */ 3650 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3651 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 3652 3653 if (bp->b_flags & B_VMIO) { 3654 vm_object_t obj; 3655 vm_ooffset_t foff; 3656 3657 obj = vp->v_object; 3658 foff = bp->b_loffset; 3659 KASSERT(bp->b_loffset != NOOFFSET, 3660 ("vfs_busy_pages: no buffer offset")); 3661 vfs_setdirty(bp); 3662 3663 /* 3664 * Loop until none of the pages are busy. 3665 */ 3666 retry: 3667 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3668 vm_page_t m = bp->b_xio.xio_pages[i]; 3669 3670 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3671 goto retry; 3672 } 3673 3674 /* 3675 * Setup for I/O, soft-busy the page right now because 3676 * the next loop may block. 3677 */ 3678 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3679 vm_page_t m = bp->b_xio.xio_pages[i]; 3680 3681 vm_page_flag_clear(m, PG_ZERO); 3682 if ((bp->b_flags & B_CLUSTER) == 0) { 3683 vm_object_pip_add(obj, 1); 3684 vm_page_io_start(m); 3685 } 3686 } 3687 3688 /* 3689 * Adjust protections for I/O and do bogus-page mapping. 3690 * Assume that vm_page_protect() can block (it can block 3691 * if VM_PROT_NONE, don't take any chances regardless). 3692 */ 3693 bogus = 0; 3694 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3695 vm_page_t m = bp->b_xio.xio_pages[i]; 3696 3697 /* 3698 * When readying a vnode-backed buffer for a write 3699 * we must zero-fill any invalid portions of the 3700 * backing VM pages. 3701 * 3702 * When readying a vnode-backed buffer for a read 3703 * we must replace any dirty pages with a bogus 3704 * page so we do not destroy dirty data when 3705 * filling in gaps. Dirty pages might not 3706 * necessarily be marked dirty yet, so use m->valid 3707 * as a reasonable test. 3708 * 3709 * Bogus page replacement is, uh, bogus. We need 3710 * to find a better way. 3711 */ 3712 if (bp->b_cmd == BUF_CMD_WRITE) { 3713 vm_page_protect(m, VM_PROT_READ); 3714 vfs_page_set_valid(bp, foff, i, m); 3715 } else if (m->valid == VM_PAGE_BITS_ALL) { 3716 bp->b_xio.xio_pages[i] = bogus_page; 3717 bogus++; 3718 } else { 3719 vm_page_protect(m, VM_PROT_NONE); 3720 } 3721 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3722 } 3723 if (bogus) 3724 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3725 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3726 } 3727 3728 /* 3729 * This is the easiest place to put the process accounting for the I/O 3730 * for now. 3731 */ 3732 if (lp != NULL) { 3733 if (bp->b_cmd == BUF_CMD_READ) 3734 lp->lwp_ru.ru_inblock++; 3735 else 3736 lp->lwp_ru.ru_oublock++; 3737 } 3738 } 3739 3740 /* 3741 * vfs_clean_pages: 3742 * 3743 * Tell the VM system that the pages associated with this buffer 3744 * are clean. This is used for delayed writes where the data is 3745 * going to go to disk eventually without additional VM intevention. 3746 * 3747 * Note that while we only really need to clean through to b_bcount, we 3748 * just go ahead and clean through to b_bufsize. 3749 */ 3750 static void 3751 vfs_clean_pages(struct buf *bp) 3752 { 3753 int i; 3754 3755 if (bp->b_flags & B_VMIO) { 3756 vm_ooffset_t foff; 3757 3758 foff = bp->b_loffset; 3759 KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset")); 3760 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3761 vm_page_t m = bp->b_xio.xio_pages[i]; 3762 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3763 3764 vfs_page_set_valid(bp, foff, i, m); 3765 foff = noff; 3766 } 3767 } 3768 } 3769 3770 /* 3771 * vfs_bio_set_validclean: 3772 * 3773 * Set the range within the buffer to valid and clean. The range is 3774 * relative to the beginning of the buffer, b_loffset. Note that 3775 * b_loffset itself may be offset from the beginning of the first page. 3776 */ 3777 3778 void 3779 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3780 { 3781 if (bp->b_flags & B_VMIO) { 3782 int i; 3783 int n; 3784 3785 /* 3786 * Fixup base to be relative to beginning of first page. 3787 * Set initial n to be the maximum number of bytes in the 3788 * first page that can be validated. 3789 */ 3790 3791 base += (bp->b_loffset & PAGE_MASK); 3792 n = PAGE_SIZE - (base & PAGE_MASK); 3793 3794 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) { 3795 vm_page_t m = bp->b_xio.xio_pages[i]; 3796 3797 if (n > size) 3798 n = size; 3799 3800 vm_page_set_validclean(m, base & PAGE_MASK, n); 3801 base += n; 3802 size -= n; 3803 n = PAGE_SIZE; 3804 } 3805 } 3806 } 3807 3808 /* 3809 * vfs_bio_clrbuf: 3810 * 3811 * Clear a buffer. This routine essentially fakes an I/O, so we need 3812 * to clear B_ERROR and B_INVAL. 3813 * 3814 * Note that while we only theoretically need to clear through b_bcount, 3815 * we go ahead and clear through b_bufsize. 3816 */ 3817 3818 void 3819 vfs_bio_clrbuf(struct buf *bp) 3820 { 3821 int i, mask = 0; 3822 caddr_t sa, ea; 3823 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3824 bp->b_flags &= ~(B_INVAL|B_ERROR); 3825 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3826 (bp->b_loffset & PAGE_MASK) == 0) { 3827 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3828 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 3829 bp->b_resid = 0; 3830 return; 3831 } 3832 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 3833 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 3834 bzero(bp->b_data, bp->b_bufsize); 3835 bp->b_xio.xio_pages[0]->valid |= mask; 3836 bp->b_resid = 0; 3837 return; 3838 } 3839 } 3840 sa = bp->b_data; 3841 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 3842 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3843 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3844 ea = (caddr_t)(vm_offset_t)ulmin( 3845 (u_long)(vm_offset_t)ea, 3846 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3847 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3848 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 3849 continue; 3850 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 3851 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 3852 bzero(sa, ea - sa); 3853 } 3854 } else { 3855 for (; sa < ea; sa += DEV_BSIZE, j++) { 3856 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 3857 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 3858 bzero(sa, DEV_BSIZE); 3859 } 3860 } 3861 bp->b_xio.xio_pages[i]->valid |= mask; 3862 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 3863 } 3864 bp->b_resid = 0; 3865 } else { 3866 clrbuf(bp); 3867 } 3868 } 3869 3870 /* 3871 * vm_hold_load_pages: 3872 * 3873 * Load pages into the buffer's address space. The pages are 3874 * allocated from the kernel object in order to reduce interference 3875 * with the any VM paging I/O activity. The range of loaded 3876 * pages will be wired. 3877 * 3878 * If a page cannot be allocated, the 'pagedaemon' is woken up to 3879 * retrieve the full range (to - from) of pages. 3880 * 3881 */ 3882 void 3883 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 3884 { 3885 vm_offset_t pg; 3886 vm_page_t p; 3887 int index; 3888 3889 to = round_page(to); 3890 from = round_page(from); 3891 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3892 3893 pg = from; 3894 while (pg < to) { 3895 /* 3896 * Note: must allocate system pages since blocking here 3897 * could intefere with paging I/O, no matter which 3898 * process we are. 3899 */ 3900 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 3901 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 3902 if (p) { 3903 vm_page_wire(p); 3904 p->valid = VM_PAGE_BITS_ALL; 3905 vm_page_flag_clear(p, PG_ZERO); 3906 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 3907 bp->b_xio.xio_pages[index] = p; 3908 vm_page_wakeup(p); 3909 3910 pg += PAGE_SIZE; 3911 ++index; 3912 } 3913 } 3914 bp->b_xio.xio_npages = index; 3915 } 3916 3917 /* 3918 * Allocate pages for a buffer cache buffer. 3919 * 3920 * Under extremely severe memory conditions even allocating out of the 3921 * system reserve can fail. If this occurs we must allocate out of the 3922 * interrupt reserve to avoid a deadlock with the pageout daemon. 3923 * 3924 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 3925 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 3926 * against the pageout daemon if pages are not freed from other sources. 3927 */ 3928 static 3929 vm_page_t 3930 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 3931 { 3932 vm_page_t p; 3933 3934 /* 3935 * Try a normal allocation, allow use of system reserve. 3936 */ 3937 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 3938 if (p) 3939 return(p); 3940 3941 /* 3942 * The normal allocation failed and we clearly have a page 3943 * deficit. Try to reclaim some clean VM pages directly 3944 * from the buffer cache. 3945 */ 3946 vm_pageout_deficit += deficit; 3947 recoverbufpages(); 3948 3949 /* 3950 * We may have blocked, the caller will know what to do if the 3951 * page now exists. 3952 */ 3953 if (vm_page_lookup(obj, pg)) 3954 return(NULL); 3955 3956 /* 3957 * Allocate and allow use of the interrupt reserve. 3958 * 3959 * If after all that we still can't allocate a VM page we are 3960 * in real trouble, but we slog on anyway hoping that the system 3961 * won't deadlock. 3962 */ 3963 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 3964 VM_ALLOC_INTERRUPT); 3965 if (p) { 3966 if (vm_page_count_severe()) { 3967 kprintf("bio_page_alloc: WARNING emergency page " 3968 "allocation\n"); 3969 vm_wait(hz / 20); 3970 } 3971 } else { 3972 kprintf("bio_page_alloc: WARNING emergency page " 3973 "allocation failed\n"); 3974 vm_wait(hz * 5); 3975 } 3976 return(p); 3977 } 3978 3979 /* 3980 * vm_hold_free_pages: 3981 * 3982 * Return pages associated with the buffer back to the VM system. 3983 * 3984 * The range of pages underlying the buffer's address space will 3985 * be unmapped and un-wired. 3986 */ 3987 void 3988 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 3989 { 3990 vm_offset_t pg; 3991 vm_page_t p; 3992 int index, newnpages; 3993 3994 from = round_page(from); 3995 to = round_page(to); 3996 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3997 3998 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3999 p = bp->b_xio.xio_pages[index]; 4000 if (p && (index < bp->b_xio.xio_npages)) { 4001 if (p->busy) { 4002 kprintf("vm_hold_free_pages: doffset: %lld, " 4003 "loffset: %lld\n", 4004 (long long)bp->b_bio2.bio_offset, 4005 (long long)bp->b_loffset); 4006 } 4007 bp->b_xio.xio_pages[index] = NULL; 4008 pmap_kremove(pg); 4009 vm_page_busy(p); 4010 vm_page_unwire(p, 0); 4011 vm_page_free(p); 4012 } 4013 } 4014 bp->b_xio.xio_npages = newnpages; 4015 } 4016 4017 /* 4018 * vmapbuf: 4019 * 4020 * Map a user buffer into KVM via a pbuf. On return the buffer's 4021 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4022 * initialized. 4023 */ 4024 int 4025 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4026 { 4027 caddr_t addr; 4028 vm_offset_t va; 4029 vm_page_t m; 4030 int vmprot; 4031 int error; 4032 int pidx; 4033 int i; 4034 4035 /* 4036 * bp had better have a command and it better be a pbuf. 4037 */ 4038 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4039 KKASSERT(bp->b_flags & B_PAGING); 4040 4041 if (bytes < 0) 4042 return (-1); 4043 4044 /* 4045 * Map the user data into KVM. Mappings have to be page-aligned. 4046 */ 4047 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4048 pidx = 0; 4049 4050 vmprot = VM_PROT_READ; 4051 if (bp->b_cmd == BUF_CMD_READ) 4052 vmprot |= VM_PROT_WRITE; 4053 4054 while (addr < udata + bytes) { 4055 /* 4056 * Do the vm_fault if needed; do the copy-on-write thing 4057 * when reading stuff off device into memory. 4058 * 4059 * vm_fault_page*() returns a held VM page. 4060 */ 4061 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4062 va = trunc_page(va); 4063 4064 m = vm_fault_page_quick(va, vmprot, &error); 4065 if (m == NULL) { 4066 for (i = 0; i < pidx; ++i) { 4067 vm_page_unhold(bp->b_xio.xio_pages[i]); 4068 bp->b_xio.xio_pages[i] = NULL; 4069 } 4070 return(-1); 4071 } 4072 bp->b_xio.xio_pages[pidx] = m; 4073 addr += PAGE_SIZE; 4074 ++pidx; 4075 } 4076 4077 /* 4078 * Map the page array and set the buffer fields to point to 4079 * the mapped data buffer. 4080 */ 4081 if (pidx > btoc(MAXPHYS)) 4082 panic("vmapbuf: mapped more than MAXPHYS"); 4083 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4084 4085 bp->b_xio.xio_npages = pidx; 4086 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4087 bp->b_bcount = bytes; 4088 bp->b_bufsize = bytes; 4089 return(0); 4090 } 4091 4092 /* 4093 * vunmapbuf: 4094 * 4095 * Free the io map PTEs associated with this IO operation. 4096 * We also invalidate the TLB entries and restore the original b_addr. 4097 */ 4098 void 4099 vunmapbuf(struct buf *bp) 4100 { 4101 int pidx; 4102 int npages; 4103 4104 KKASSERT(bp->b_flags & B_PAGING); 4105 4106 npages = bp->b_xio.xio_npages; 4107 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4108 for (pidx = 0; pidx < npages; ++pidx) { 4109 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4110 bp->b_xio.xio_pages[pidx] = NULL; 4111 } 4112 bp->b_xio.xio_npages = 0; 4113 bp->b_data = bp->b_kvabase; 4114 } 4115 4116 /* 4117 * Scan all buffers in the system and issue the callback. 4118 */ 4119 int 4120 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4121 { 4122 int count = 0; 4123 int error; 4124 int n; 4125 4126 for (n = 0; n < nbuf; ++n) { 4127 if ((error = callback(&buf[n], info)) < 0) { 4128 count = error; 4129 break; 4130 } 4131 count += error; 4132 } 4133 return (count); 4134 } 4135 4136 /* 4137 * print out statistics from the current status of the buffer pool 4138 * this can be toggeled by the system control option debug.syncprt 4139 */ 4140 #ifdef DEBUG 4141 void 4142 vfs_bufstats(void) 4143 { 4144 int i, j, count; 4145 struct buf *bp; 4146 struct bqueues *dp; 4147 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4148 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4149 4150 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4151 count = 0; 4152 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4153 counts[j] = 0; 4154 crit_enter(); 4155 TAILQ_FOREACH(bp, dp, b_freelist) { 4156 counts[bp->b_bufsize/PAGE_SIZE]++; 4157 count++; 4158 } 4159 crit_exit(); 4160 kprintf("%s: total-%d", bname[i], count); 4161 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4162 if (counts[j] != 0) 4163 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4164 kprintf("\n"); 4165 } 4166 } 4167 #endif 4168 4169 #ifdef DDB 4170 4171 DB_SHOW_COMMAND(buffer, db_show_buffer) 4172 { 4173 /* get args */ 4174 struct buf *bp = (struct buf *)addr; 4175 4176 if (!have_addr) { 4177 db_printf("usage: show buffer <addr>\n"); 4178 return; 4179 } 4180 4181 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4182 db_printf("b_cmd = %d\n", bp->b_cmd); 4183 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4184 "b_resid = %d\n, b_data = %p, " 4185 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4186 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4187 bp->b_data, 4188 (long long)bp->b_bio2.bio_offset, 4189 (long long)(bp->b_bio2.bio_next ? 4190 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4191 if (bp->b_xio.xio_npages) { 4192 int i; 4193 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4194 bp->b_xio.xio_npages); 4195 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4196 vm_page_t m; 4197 m = bp->b_xio.xio_pages[i]; 4198 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4199 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4200 if ((i + 1) < bp->b_xio.xio_npages) 4201 db_printf(","); 4202 } 4203 db_printf("\n"); 4204 } 4205 } 4206 #endif /* DDB */ 4207