xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 5cccfb7b21444e0e73a738d924f82daf27b4854d)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
61 
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Buffer queues.
69  */
70 enum bufq_type {
71 	BQUEUE_NONE,    	/* not on any queue */
72 	BQUEUE_LOCKED,  	/* locked buffers */
73 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
74 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
75 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
76 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
77 	BQUEUE_EMPTY,    	/* empty buffer headers */
78 
79 	BUFFER_QUEUES		/* number of buffer queues */
80 };
81 
82 typedef enum bufq_type bufq_type_t;
83 
84 #define BD_WAKE_SIZE	128
85 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
86 
87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
88 struct spinlock	bufspin = SPINLOCK_INITIALIZER(&bufspin);
89 
90 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
91 
92 struct buf *buf;		/* buffer header pool */
93 
94 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
95 			       int pageno, vm_page_t m);
96 static void vfs_clean_pages(struct buf *bp);
97 static void vfs_setdirty(struct buf *bp);
98 static void vfs_vmio_release(struct buf *bp);
99 static int flushbufqueues(bufq_type_t q);
100 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
101 
102 static void bd_signal(int totalspace);
103 static void buf_daemon(void);
104 static void buf_daemon_hw(void);
105 
106 /*
107  * bogus page -- for I/O to/from partially complete buffers
108  * this is a temporary solution to the problem, but it is not
109  * really that bad.  it would be better to split the buffer
110  * for input in the case of buffers partially already in memory,
111  * but the code is intricate enough already.
112  */
113 vm_page_t bogus_page;
114 
115 /*
116  * These are all static, but make the ones we export globals so we do
117  * not need to use compiler magic.
118  */
119 int bufspace, maxbufspace,
120 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
121 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
122 static int lorunningspace, hirunningspace, runningbufreq;
123 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
124 int dirtybufcount, dirtybufcounthw;
125 int runningbufspace, runningbufcount;
126 static int getnewbufcalls;
127 static int getnewbufrestarts;
128 static int recoverbufcalls;
129 static int needsbuffer;		/* locked by needsbuffer_spin */
130 static int bd_request;		/* locked by needsbuffer_spin */
131 static int bd_request_hw;	/* locked by needsbuffer_spin */
132 static u_int bd_wake_ary[BD_WAKE_SIZE];
133 static u_int bd_wake_index;
134 static struct spinlock needsbuffer_spin;
135 
136 static struct thread *bufdaemon_td;
137 static struct thread *bufdaemonhw_td;
138 
139 
140 /*
141  * Sysctls for operational control of the buffer cache.
142  */
143 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
144 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
145 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
146 	"High watermark used to trigger explicit flushing of dirty buffers");
147 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
148 	"Minimum amount of buffer space required for active I/O");
149 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
150 	"Maximum amount of buffer space to usable for active I/O");
151 /*
152  * Sysctls determining current state of the buffer cache.
153  */
154 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
155 	"Total number of buffers in buffer cache");
156 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
157 	"Pending bytes of dirty buffers (all)");
158 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
159 	"Pending bytes of dirty buffers (heavy weight)");
160 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
161 	"Pending number of dirty buffers");
162 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
163 	"Pending number of dirty buffers (heavy weight)");
164 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
165 	"I/O bytes currently in progress due to asynchronous writes");
166 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
167 	"I/O buffers currently in progress due to asynchronous writes");
168 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
169 	"Hard limit on maximum amount of memory usable for buffer space");
170 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
171 	"Soft limit on maximum amount of memory usable for buffer space");
172 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
173 	"Minimum amount of memory to reserve for system buffer space");
174 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
175 	"Amount of memory available for buffers");
176 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
177 	0, "Maximum amount of memory reserved for buffers using malloc");
178 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
179 	"Amount of memory left for buffers using malloc-scheme");
180 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
181 	"New buffer header acquisition requests");
182 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
183 	0, "New buffer header acquisition restarts");
184 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
185 	"Recover VM space in an emergency");
186 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
187 	"Buffer acquisition restarts due to fragmented buffer map");
188 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
189 	"Amount of time KVA space was deallocated in an arbitrary buffer");
190 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
191 	"Amount of time buffer re-use operations were successful");
192 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
193 	"sizeof(struct buf)");
194 
195 char *buf_wmesg = BUF_WMESG;
196 
197 extern int vm_swap_size;
198 
199 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
200 #define VFS_BIO_NEED_UNUSED02	0x02
201 #define VFS_BIO_NEED_UNUSED04	0x04
202 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
203 
204 /*
205  * bufspacewakeup:
206  *
207  *	Called when buffer space is potentially available for recovery.
208  *	getnewbuf() will block on this flag when it is unable to free
209  *	sufficient buffer space.  Buffer space becomes recoverable when
210  *	bp's get placed back in the queues.
211  */
212 
213 static __inline void
214 bufspacewakeup(void)
215 {
216 	/*
217 	 * If someone is waiting for BUF space, wake them up.  Even
218 	 * though we haven't freed the kva space yet, the waiting
219 	 * process will be able to now.
220 	 */
221 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
222 		spin_lock_wr(&needsbuffer_spin);
223 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
224 		spin_unlock_wr(&needsbuffer_spin);
225 		wakeup(&needsbuffer);
226 	}
227 }
228 
229 /*
230  * runningbufwakeup:
231  *
232  *	Accounting for I/O in progress.
233  *
234  */
235 static __inline void
236 runningbufwakeup(struct buf *bp)
237 {
238 	int totalspace;
239 
240 	if ((totalspace = bp->b_runningbufspace) != 0) {
241 		runningbufspace -= totalspace;
242 		--runningbufcount;
243 		bp->b_runningbufspace = 0;
244 		if (runningbufreq && runningbufspace <= lorunningspace) {
245 			runningbufreq = 0;
246 			wakeup(&runningbufreq);
247 		}
248 		bd_signal(totalspace);
249 	}
250 }
251 
252 /*
253  * bufcountwakeup:
254  *
255  *	Called when a buffer has been added to one of the free queues to
256  *	account for the buffer and to wakeup anyone waiting for free buffers.
257  *	This typically occurs when large amounts of metadata are being handled
258  *	by the buffer cache ( else buffer space runs out first, usually ).
259  *
260  * MPSAFE
261  */
262 static __inline void
263 bufcountwakeup(void)
264 {
265 	if (needsbuffer) {
266 		spin_lock_wr(&needsbuffer_spin);
267 		needsbuffer &= ~VFS_BIO_NEED_ANY;
268 		spin_unlock_wr(&needsbuffer_spin);
269 		wakeup(&needsbuffer);
270 	}
271 }
272 
273 /*
274  * waitrunningbufspace()
275  *
276  * Wait for the amount of running I/O to drop to a reasonable level.
277  *
278  * The caller may be using this function to block in a tight loop, we
279  * must block of runningbufspace is greater then the passed limit.
280  * And even with that it may not be enough, due to the presence of
281  * B_LOCKED dirty buffers, so also wait for at least one running buffer
282  * to complete.
283  */
284 static __inline void
285 waitrunningbufspace(int limit)
286 {
287 	int lorun;
288 
289 	if (lorunningspace < limit)
290 		lorun = lorunningspace;
291 	else
292 		lorun = limit;
293 
294 	crit_enter();
295 	if (runningbufspace > lorun) {
296 		while (runningbufspace > lorun) {
297 			++runningbufreq;
298 			tsleep(&runningbufreq, 0, "wdrain", 0);
299 		}
300 	} else if (runningbufspace) {
301 		++runningbufreq;
302 		tsleep(&runningbufreq, 0, "wdrain2", 1);
303 	}
304 	crit_exit();
305 }
306 
307 /*
308  * vfs_buf_test_cache:
309  *
310  *	Called when a buffer is extended.  This function clears the B_CACHE
311  *	bit if the newly extended portion of the buffer does not contain
312  *	valid data.
313  */
314 static __inline__
315 void
316 vfs_buf_test_cache(struct buf *bp,
317 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
318 		  vm_page_t m)
319 {
320 	if (bp->b_flags & B_CACHE) {
321 		int base = (foff + off) & PAGE_MASK;
322 		if (vm_page_is_valid(m, base, size) == 0)
323 			bp->b_flags &= ~B_CACHE;
324 	}
325 }
326 
327 /*
328  * bd_speedup()
329  *
330  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
331  * low water mark.
332  *
333  * MPSAFE
334  */
335 static __inline__
336 void
337 bd_speedup(void)
338 {
339 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
340 		return;
341 
342 	if (bd_request == 0 &&
343 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
344 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
345 		spin_lock_wr(&needsbuffer_spin);
346 		bd_request = 1;
347 		spin_unlock_wr(&needsbuffer_spin);
348 		wakeup(&bd_request);
349 	}
350 	if (bd_request_hw == 0 &&
351 	    (dirtybufspacehw > lodirtybufspace / 2 ||
352 	     dirtybufcounthw >= nbuf / 2)) {
353 		spin_lock_wr(&needsbuffer_spin);
354 		bd_request_hw = 1;
355 		spin_unlock_wr(&needsbuffer_spin);
356 		wakeup(&bd_request_hw);
357 	}
358 }
359 
360 /*
361  * bd_heatup()
362  *
363  *	Get the buf_daemon heated up when the number of running and dirty
364  *	buffers exceeds the mid-point.
365  *
366  * MPSAFE
367  */
368 int
369 bd_heatup(void)
370 {
371 	int mid1;
372 	int mid2;
373 	int totalspace;
374 
375 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
376 
377 	totalspace = runningbufspace + dirtybufspace;
378 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
379 		bd_speedup();
380 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
381 		if (totalspace >= mid2)
382 			return(totalspace - mid2);
383 	}
384 	return(0);
385 }
386 
387 /*
388  * bd_wait()
389  *
390  *	Wait for the buffer cache to flush (totalspace) bytes worth of
391  *	buffers, then return.
392  *
393  *	Regardless this function blocks while the number of dirty buffers
394  *	exceeds hidirtybufspace.
395  *
396  * MPSAFE
397  */
398 void
399 bd_wait(int totalspace)
400 {
401 	u_int i;
402 	int count;
403 
404 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
405 		return;
406 
407 	while (totalspace > 0) {
408 		bd_heatup();
409 		crit_enter();
410 		if (totalspace > runningbufspace + dirtybufspace)
411 			totalspace = runningbufspace + dirtybufspace;
412 		count = totalspace / BKVASIZE;
413 		if (count >= BD_WAKE_SIZE)
414 			count = BD_WAKE_SIZE - 1;
415 
416 		spin_lock_wr(&needsbuffer_spin);
417 		i = (bd_wake_index + count) & BD_WAKE_MASK;
418 		++bd_wake_ary[i];
419 		tsleep_interlock(&bd_wake_ary[i]);
420 		spin_unlock_wr(&needsbuffer_spin);
421 
422 		tsleep(&bd_wake_ary[i], 0, "flstik", hz);
423 		crit_exit();
424 
425 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
426 	}
427 }
428 
429 /*
430  * bd_signal()
431  *
432  *	This function is called whenever runningbufspace or dirtybufspace
433  *	is reduced.  Track threads waiting for run+dirty buffer I/O
434  *	complete.
435  *
436  * MPSAFE
437  */
438 static void
439 bd_signal(int totalspace)
440 {
441 	u_int i;
442 
443 	if (totalspace > 0) {
444 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
445 			totalspace = BKVASIZE * BD_WAKE_SIZE;
446 		spin_lock_wr(&needsbuffer_spin);
447 		while (totalspace > 0) {
448 			i = bd_wake_index++;
449 			i &= BD_WAKE_MASK;
450 			if (bd_wake_ary[i]) {
451 				bd_wake_ary[i] = 0;
452 				spin_unlock_wr(&needsbuffer_spin);
453 				wakeup(&bd_wake_ary[i]);
454 				spin_lock_wr(&needsbuffer_spin);
455 			}
456 			totalspace -= BKVASIZE;
457 		}
458 		spin_unlock_wr(&needsbuffer_spin);
459 	}
460 }
461 
462 /*
463  * BIO tracking support routines.
464  *
465  * Release a ref on a bio_track.  Wakeup requests are atomically released
466  * along with the last reference so bk_active will never wind up set to
467  * only 0x80000000.
468  *
469  * MPSAFE
470  */
471 static
472 void
473 bio_track_rel(struct bio_track *track)
474 {
475 	int	active;
476 	int	desired;
477 
478 	/*
479 	 * Shortcut
480 	 */
481 	active = track->bk_active;
482 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
483 		return;
484 
485 	/*
486 	 * Full-on.  Note that the wait flag is only atomically released on
487 	 * the 1->0 count transition.
488 	 *
489 	 * We check for a negative count transition using bit 30 since bit 31
490 	 * has a different meaning.
491 	 */
492 	for (;;) {
493 		desired = (active & 0x7FFFFFFF) - 1;
494 		if (desired)
495 			desired |= active & 0x80000000;
496 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
497 			if (desired & 0x40000000)
498 				panic("bio_track_rel: bad count: %p\n", track);
499 			if (active & 0x80000000)
500 				wakeup(track);
501 			break;
502 		}
503 		active = track->bk_active;
504 	}
505 }
506 
507 /*
508  * Wait for the tracking count to reach 0.
509  *
510  * Use atomic ops such that the wait flag is only set atomically when
511  * bk_active is non-zero.
512  *
513  * MPSAFE
514  */
515 int
516 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
517 {
518 	int	active;
519 	int	desired;
520 	int	error;
521 
522 	/*
523 	 * Shortcut
524 	 */
525 	if (track->bk_active == 0)
526 		return(0);
527 
528 	/*
529 	 * Full-on.  Note that the wait flag may only be atomically set if
530 	 * the active count is non-zero.
531 	 */
532 	crit_enter();	/* for tsleep_interlock */
533 	error = 0;
534 	while ((active = track->bk_active) != 0) {
535 		desired = active | 0x80000000;
536 		tsleep_interlock(track);
537 		if (active == desired ||
538 		    atomic_cmpset_int(&track->bk_active, active, desired)) {
539 			error = tsleep(track, slp_flags, "iowait", slp_timo);
540 			if (error)
541 				break;
542 		}
543 	}
544 	crit_exit();
545 	return (error);
546 }
547 
548 /*
549  * bufinit:
550  *
551  *	Load time initialisation of the buffer cache, called from machine
552  *	dependant initialization code.
553  */
554 void
555 bufinit(void)
556 {
557 	struct buf *bp;
558 	vm_offset_t bogus_offset;
559 	int i;
560 
561 	spin_init(&needsbuffer_spin);
562 
563 	/* next, make a null set of free lists */
564 	for (i = 0; i < BUFFER_QUEUES; i++)
565 		TAILQ_INIT(&bufqueues[i]);
566 
567 	/* finally, initialize each buffer header and stick on empty q */
568 	for (i = 0; i < nbuf; i++) {
569 		bp = &buf[i];
570 		bzero(bp, sizeof *bp);
571 		bp->b_flags = B_INVAL;	/* we're just an empty header */
572 		bp->b_cmd = BUF_CMD_DONE;
573 		bp->b_qindex = BQUEUE_EMPTY;
574 		initbufbio(bp);
575 		xio_init(&bp->b_xio);
576 		buf_dep_init(bp);
577 		BUF_LOCKINIT(bp);
578 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
579 	}
580 
581 	/*
582 	 * maxbufspace is the absolute maximum amount of buffer space we are
583 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
584 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
585 	 * used by most other processes.  The differential is required to
586 	 * ensure that buf_daemon is able to run when other processes might
587 	 * be blocked waiting for buffer space.
588 	 *
589 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
590 	 * this may result in KVM fragmentation which is not handled optimally
591 	 * by the system.
592 	 */
593 	maxbufspace = nbuf * BKVASIZE;
594 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
595 	lobufspace = hibufspace - MAXBSIZE;
596 
597 	lorunningspace = 512 * 1024;
598 	hirunningspace = 1024 * 1024;
599 
600 	/*
601 	 * Limit the amount of malloc memory since it is wired permanently
602 	 * into the kernel space.  Even though this is accounted for in
603 	 * the buffer allocation, we don't want the malloced region to grow
604 	 * uncontrolled.  The malloc scheme improves memory utilization
605 	 * significantly on average (small) directories.
606 	 */
607 	maxbufmallocspace = hibufspace / 20;
608 
609 	/*
610 	 * Reduce the chance of a deadlock occuring by limiting the number
611 	 * of delayed-write dirty buffers we allow to stack up.
612 	 */
613 	hidirtybufspace = hibufspace / 2;
614 	dirtybufspace = 0;
615 	dirtybufspacehw = 0;
616 
617 	lodirtybufspace = hidirtybufspace / 2;
618 
619 	/*
620 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
621 	 * somewhat of a hack at the moment, we really need to limit ourselves
622 	 * based on the number of bytes of I/O in-transit that were initiated
623 	 * from buf_daemon.
624 	 */
625 
626 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
627 	bogus_page = vm_page_alloc(&kernel_object,
628 				   (bogus_offset >> PAGE_SHIFT),
629 				   VM_ALLOC_NORMAL);
630 	vmstats.v_wire_count++;
631 
632 }
633 
634 /*
635  * Initialize the embedded bio structures
636  */
637 void
638 initbufbio(struct buf *bp)
639 {
640 	bp->b_bio1.bio_buf = bp;
641 	bp->b_bio1.bio_prev = NULL;
642 	bp->b_bio1.bio_offset = NOOFFSET;
643 	bp->b_bio1.bio_next = &bp->b_bio2;
644 	bp->b_bio1.bio_done = NULL;
645 
646 	bp->b_bio2.bio_buf = bp;
647 	bp->b_bio2.bio_prev = &bp->b_bio1;
648 	bp->b_bio2.bio_offset = NOOFFSET;
649 	bp->b_bio2.bio_next = NULL;
650 	bp->b_bio2.bio_done = NULL;
651 }
652 
653 /*
654  * Reinitialize the embedded bio structures as well as any additional
655  * translation cache layers.
656  */
657 void
658 reinitbufbio(struct buf *bp)
659 {
660 	struct bio *bio;
661 
662 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
663 		bio->bio_done = NULL;
664 		bio->bio_offset = NOOFFSET;
665 	}
666 }
667 
668 /*
669  * Push another BIO layer onto an existing BIO and return it.  The new
670  * BIO layer may already exist, holding cached translation data.
671  */
672 struct bio *
673 push_bio(struct bio *bio)
674 {
675 	struct bio *nbio;
676 
677 	if ((nbio = bio->bio_next) == NULL) {
678 		int index = bio - &bio->bio_buf->b_bio_array[0];
679 		if (index >= NBUF_BIO - 1) {
680 			panic("push_bio: too many layers bp %p\n",
681 				bio->bio_buf);
682 		}
683 		nbio = &bio->bio_buf->b_bio_array[index + 1];
684 		bio->bio_next = nbio;
685 		nbio->bio_prev = bio;
686 		nbio->bio_buf = bio->bio_buf;
687 		nbio->bio_offset = NOOFFSET;
688 		nbio->bio_done = NULL;
689 		nbio->bio_next = NULL;
690 	}
691 	KKASSERT(nbio->bio_done == NULL);
692 	return(nbio);
693 }
694 
695 /*
696  * Pop a BIO translation layer, returning the previous layer.  The
697  * must have been previously pushed.
698  */
699 struct bio *
700 pop_bio(struct bio *bio)
701 {
702 	return(bio->bio_prev);
703 }
704 
705 void
706 clearbiocache(struct bio *bio)
707 {
708 	while (bio) {
709 		bio->bio_offset = NOOFFSET;
710 		bio = bio->bio_next;
711 	}
712 }
713 
714 /*
715  * bfreekva:
716  *
717  *	Free the KVA allocation for buffer 'bp'.
718  *
719  *	Must be called from a critical section as this is the only locking for
720  *	buffer_map.
721  *
722  *	Since this call frees up buffer space, we call bufspacewakeup().
723  *
724  * MPALMOSTSAFE
725  */
726 static void
727 bfreekva(struct buf *bp)
728 {
729 	int count;
730 
731 	if (bp->b_kvasize) {
732 		get_mplock();
733 		++buffreekvacnt;
734 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
735 		vm_map_lock(&buffer_map);
736 		bufspace -= bp->b_kvasize;
737 		vm_map_delete(&buffer_map,
738 		    (vm_offset_t) bp->b_kvabase,
739 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
740 		    &count
741 		);
742 		vm_map_unlock(&buffer_map);
743 		vm_map_entry_release(count);
744 		bp->b_kvasize = 0;
745 		bufspacewakeup();
746 		rel_mplock();
747 	}
748 }
749 
750 /*
751  * bremfree:
752  *
753  *	Remove the buffer from the appropriate free list.
754  */
755 static __inline void
756 _bremfree(struct buf *bp)
757 {
758 	if (bp->b_qindex != BQUEUE_NONE) {
759 		KASSERT(BUF_REFCNTNB(bp) == 1,
760 				("bremfree: bp %p not locked",bp));
761 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
762 		bp->b_qindex = BQUEUE_NONE;
763 	} else {
764 		if (BUF_REFCNTNB(bp) <= 1)
765 			panic("bremfree: removing a buffer not on a queue");
766 	}
767 }
768 
769 void
770 bremfree(struct buf *bp)
771 {
772 	spin_lock_wr(&bufspin);
773 	_bremfree(bp);
774 	spin_unlock_wr(&bufspin);
775 }
776 
777 static void
778 bremfree_locked(struct buf *bp)
779 {
780 	_bremfree(bp);
781 }
782 
783 /*
784  * bread:
785  *
786  *	Get a buffer with the specified data.  Look in the cache first.  We
787  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
788  *	is set, the buffer is valid and we do not have to do anything ( see
789  *	getblk() ).
790  *
791  * MPALMOSTSAFE
792  */
793 int
794 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
795 {
796 	struct buf *bp;
797 
798 	bp = getblk(vp, loffset, size, 0, 0);
799 	*bpp = bp;
800 
801 	/* if not found in cache, do some I/O */
802 	if ((bp->b_flags & B_CACHE) == 0) {
803 		get_mplock();
804 		KASSERT(!(bp->b_flags & B_ASYNC),
805 			("bread: illegal async bp %p", bp));
806 		bp->b_flags &= ~(B_ERROR | B_INVAL);
807 		bp->b_cmd = BUF_CMD_READ;
808 		vfs_busy_pages(vp, bp);
809 		vn_strategy(vp, &bp->b_bio1);
810 		rel_mplock();
811 		return (biowait(bp));
812 	}
813 	return (0);
814 }
815 
816 /*
817  * breadn:
818  *
819  *	Operates like bread, but also starts asynchronous I/O on
820  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
821  *	to initiating I/O . If B_CACHE is set, the buffer is valid
822  *	and we do not have to do anything.
823  *
824  * MPALMOSTSAFE
825  */
826 int
827 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
828 	int *rabsize, int cnt, struct buf **bpp)
829 {
830 	struct buf *bp, *rabp;
831 	int i;
832 	int rv = 0, readwait = 0;
833 
834 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
835 
836 	/* if not found in cache, do some I/O */
837 	if ((bp->b_flags & B_CACHE) == 0) {
838 		get_mplock();
839 		bp->b_flags &= ~(B_ERROR | B_INVAL);
840 		bp->b_cmd = BUF_CMD_READ;
841 		vfs_busy_pages(vp, bp);
842 		vn_strategy(vp, &bp->b_bio1);
843 		++readwait;
844 		rel_mplock();
845 	}
846 
847 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
848 		if (inmem(vp, *raoffset))
849 			continue;
850 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
851 
852 		if ((rabp->b_flags & B_CACHE) == 0) {
853 			rel_mplock();
854 			rabp->b_flags |= B_ASYNC;
855 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
856 			rabp->b_cmd = BUF_CMD_READ;
857 			vfs_busy_pages(vp, rabp);
858 			BUF_KERNPROC(rabp);
859 			vn_strategy(vp, &rabp->b_bio1);
860 			rel_mplock();
861 		} else {
862 			brelse(rabp);
863 		}
864 	}
865 	if (readwait)
866 		rv = biowait(bp);
867 	return (rv);
868 }
869 
870 /*
871  * bwrite:
872  *
873  *	Write, release buffer on completion.  (Done by iodone
874  *	if async).  Do not bother writing anything if the buffer
875  *	is invalid.
876  *
877  *	Note that we set B_CACHE here, indicating that buffer is
878  *	fully valid and thus cacheable.  This is true even of NFS
879  *	now so we set it generally.  This could be set either here
880  *	or in biodone() since the I/O is synchronous.  We put it
881  *	here.
882  */
883 int
884 bwrite(struct buf *bp)
885 {
886 	int oldflags;
887 
888 	if (bp->b_flags & B_INVAL) {
889 		brelse(bp);
890 		return (0);
891 	}
892 
893 	oldflags = bp->b_flags;
894 
895 	if (BUF_REFCNTNB(bp) == 0)
896 		panic("bwrite: buffer is not busy???");
897 	crit_enter();
898 
899 	/* Mark the buffer clean */
900 	bundirty(bp);
901 
902 	bp->b_flags &= ~B_ERROR;
903 	bp->b_flags |= B_CACHE;
904 	bp->b_cmd = BUF_CMD_WRITE;
905 	vfs_busy_pages(bp->b_vp, bp);
906 
907 	/*
908 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
909 	 * valid for vnode-backed buffers.
910 	 */
911 	bp->b_runningbufspace = bp->b_bufsize;
912 	if (bp->b_runningbufspace) {
913 		runningbufspace += bp->b_runningbufspace;
914 		++runningbufcount;
915 	}
916 
917 	crit_exit();
918 	if (oldflags & B_ASYNC)
919 		BUF_KERNPROC(bp);
920 	vn_strategy(bp->b_vp, &bp->b_bio1);
921 
922 	if ((oldflags & B_ASYNC) == 0) {
923 		int rtval = biowait(bp);
924 		brelse(bp);
925 		return (rtval);
926 	}
927 	return (0);
928 }
929 
930 /*
931  * bdwrite:
932  *
933  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
934  *	anything if the buffer is marked invalid.
935  *
936  *	Note that since the buffer must be completely valid, we can safely
937  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
938  *	biodone() in order to prevent getblk from writing the buffer
939  *	out synchronously.
940  */
941 void
942 bdwrite(struct buf *bp)
943 {
944 	if (BUF_REFCNTNB(bp) == 0)
945 		panic("bdwrite: buffer is not busy");
946 
947 	if (bp->b_flags & B_INVAL) {
948 		brelse(bp);
949 		return;
950 	}
951 	bdirty(bp);
952 
953 	/*
954 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
955 	 * true even of NFS now.
956 	 */
957 	bp->b_flags |= B_CACHE;
958 
959 	/*
960 	 * This bmap keeps the system from needing to do the bmap later,
961 	 * perhaps when the system is attempting to do a sync.  Since it
962 	 * is likely that the indirect block -- or whatever other datastructure
963 	 * that the filesystem needs is still in memory now, it is a good
964 	 * thing to do this.  Note also, that if the pageout daemon is
965 	 * requesting a sync -- there might not be enough memory to do
966 	 * the bmap then...  So, this is important to do.
967 	 */
968 	if (bp->b_bio2.bio_offset == NOOFFSET) {
969 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
970 			 NULL, NULL, BUF_CMD_WRITE);
971 	}
972 
973 	/*
974 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
975 	 */
976 	vfs_setdirty(bp);
977 
978 	/*
979 	 * We need to do this here to satisfy the vnode_pager and the
980 	 * pageout daemon, so that it thinks that the pages have been
981 	 * "cleaned".  Note that since the pages are in a delayed write
982 	 * buffer -- the VFS layer "will" see that the pages get written
983 	 * out on the next sync, or perhaps the cluster will be completed.
984 	 */
985 	vfs_clean_pages(bp);
986 	bqrelse(bp);
987 
988 	/*
989 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
990 	 * due to the softdep code.
991 	 */
992 }
993 
994 /*
995  * bdirty:
996  *
997  *	Turn buffer into delayed write request by marking it B_DELWRI.
998  *	B_RELBUF and B_NOCACHE must be cleared.
999  *
1000  *	We reassign the buffer to itself to properly update it in the
1001  *	dirty/clean lists.
1002  *
1003  *	Must be called from a critical section.
1004  *	The buffer must be on BQUEUE_NONE.
1005  */
1006 void
1007 bdirty(struct buf *bp)
1008 {
1009 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1010 	if (bp->b_flags & B_NOCACHE) {
1011 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1012 		bp->b_flags &= ~B_NOCACHE;
1013 	}
1014 	if (bp->b_flags & B_INVAL) {
1015 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1016 	}
1017 	bp->b_flags &= ~B_RELBUF;
1018 
1019 	if ((bp->b_flags & B_DELWRI) == 0) {
1020 		bp->b_flags |= B_DELWRI;
1021 		reassignbuf(bp);
1022 		atomic_add_int(&dirtybufcount, 1);
1023 		dirtybufspace += bp->b_bufsize;
1024 		if (bp->b_flags & B_HEAVY) {
1025 			atomic_add_int(&dirtybufcounthw, 1);
1026 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1027 		}
1028 		bd_heatup();
1029 	}
1030 }
1031 
1032 /*
1033  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1034  * needs to be flushed with a different buf_daemon thread to avoid
1035  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1036  */
1037 void
1038 bheavy(struct buf *bp)
1039 {
1040 	if ((bp->b_flags & B_HEAVY) == 0) {
1041 		bp->b_flags |= B_HEAVY;
1042 		if (bp->b_flags & B_DELWRI) {
1043 			atomic_add_int(&dirtybufcounthw, 1);
1044 			atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1045 		}
1046 	}
1047 }
1048 
1049 /*
1050  * bundirty:
1051  *
1052  *	Clear B_DELWRI for buffer.
1053  *
1054  *	Must be called from a critical section.
1055  *
1056  *	The buffer is typically on BQUEUE_NONE but there is one case in
1057  *	brelse() that calls this function after placing the buffer on
1058  *	a different queue.
1059  *
1060  * MPSAFE
1061  */
1062 void
1063 bundirty(struct buf *bp)
1064 {
1065 	if (bp->b_flags & B_DELWRI) {
1066 		bp->b_flags &= ~B_DELWRI;
1067 		reassignbuf(bp);
1068 		atomic_subtract_int(&dirtybufcount, 1);
1069 		atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1070 		if (bp->b_flags & B_HEAVY) {
1071 			atomic_subtract_int(&dirtybufcounthw, 1);
1072 			atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1073 		}
1074 		bd_signal(bp->b_bufsize);
1075 	}
1076 	/*
1077 	 * Since it is now being written, we can clear its deferred write flag.
1078 	 */
1079 	bp->b_flags &= ~B_DEFERRED;
1080 }
1081 
1082 /*
1083  * bawrite:
1084  *
1085  *	Asynchronous write.  Start output on a buffer, but do not wait for
1086  *	it to complete.  The buffer is released when the output completes.
1087  *
1088  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1089  *	B_INVAL buffers.  Not us.
1090  */
1091 void
1092 bawrite(struct buf *bp)
1093 {
1094 	bp->b_flags |= B_ASYNC;
1095 	bwrite(bp);
1096 }
1097 
1098 /*
1099  * bowrite:
1100  *
1101  *	Ordered write.  Start output on a buffer, and flag it so that the
1102  *	device will write it in the order it was queued.  The buffer is
1103  *	released when the output completes.  bwrite() ( or the VOP routine
1104  *	anyway ) is responsible for handling B_INVAL buffers.
1105  */
1106 int
1107 bowrite(struct buf *bp)
1108 {
1109 	bp->b_flags |= B_ORDERED | B_ASYNC;
1110 	return (bwrite(bp));
1111 }
1112 
1113 /*
1114  * buf_dirty_count_severe:
1115  *
1116  *	Return true if we have too many dirty buffers.
1117  */
1118 int
1119 buf_dirty_count_severe(void)
1120 {
1121 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
1122 	        dirtybufcount >= nbuf / 2);
1123 }
1124 
1125 /*
1126  * brelse:
1127  *
1128  *	Release a busy buffer and, if requested, free its resources.  The
1129  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1130  *	to be accessed later as a cache entity or reused for other purposes.
1131  *
1132  * MPALMOSTSAFE
1133  */
1134 void
1135 brelse(struct buf *bp)
1136 {
1137 #ifdef INVARIANTS
1138 	int saved_flags = bp->b_flags;
1139 #endif
1140 
1141 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1142 
1143 	/*
1144 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1145 	 * its backing store.  Clear B_DELWRI.
1146 	 *
1147 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1148 	 * to destroy the buffer and backing store and (2) when the caller
1149 	 * wants to destroy the buffer and backing store after a write
1150 	 * completes.
1151 	 */
1152 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1153 		bundirty(bp);
1154 	}
1155 
1156 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1157 		/*
1158 		 * A re-dirtied buffer is only subject to destruction
1159 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1160 		 */
1161 		/* leave buffer intact */
1162 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1163 		   (bp->b_bufsize <= 0)) {
1164 		/*
1165 		 * Either a failed read or we were asked to free or not
1166 		 * cache the buffer.  This path is reached with B_DELWRI
1167 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1168 		 * backing store destruction.
1169 		 *
1170 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1171 		 * buffer cannot be immediately freed.
1172 		 */
1173 		bp->b_flags |= B_INVAL;
1174 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1175 			get_mplock();
1176 			buf_deallocate(bp);
1177 			rel_mplock();
1178 		}
1179 		if (bp->b_flags & B_DELWRI) {
1180 			atomic_subtract_int(&dirtybufcount, 1);
1181 			atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1182 			if (bp->b_flags & B_HEAVY) {
1183 				atomic_subtract_int(&dirtybufcounthw, 1);
1184 				atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1185 			}
1186 			bd_signal(bp->b_bufsize);
1187 		}
1188 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1189 	}
1190 
1191 	/*
1192 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1193 	 * If vfs_vmio_release() is called with either bit set, the
1194 	 * underlying pages may wind up getting freed causing a previous
1195 	 * write (bdwrite()) to get 'lost' because pages associated with
1196 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1197 	 * B_LOCKED buffer may be mapped by the filesystem.
1198 	 *
1199 	 * If we want to release the buffer ourselves (rather then the
1200 	 * originator asking us to release it), give the originator a
1201 	 * chance to countermand the release by setting B_LOCKED.
1202 	 *
1203 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1204 	 * if B_DELWRI is set.
1205 	 *
1206 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1207 	 * on pages to return pages to the VM page queues.
1208 	 */
1209 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1210 		bp->b_flags &= ~B_RELBUF;
1211 	} else if (vm_page_count_severe()) {
1212 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1213 			get_mplock();
1214 			buf_deallocate(bp);		/* can set B_LOCKED */
1215 			rel_mplock();
1216 		}
1217 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1218 			bp->b_flags &= ~B_RELBUF;
1219 		else
1220 			bp->b_flags |= B_RELBUF;
1221 	}
1222 
1223 	/*
1224 	 * Make sure b_cmd is clear.  It may have already been cleared by
1225 	 * biodone().
1226 	 *
1227 	 * At this point destroying the buffer is governed by the B_INVAL
1228 	 * or B_RELBUF flags.
1229 	 */
1230 	bp->b_cmd = BUF_CMD_DONE;
1231 
1232 	/*
1233 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1234 	 * after an I/O may have replaces some of the pages with bogus pages
1235 	 * in order to not destroy dirty pages in a fill-in read.
1236 	 *
1237 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1238 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1239 	 * B_INVAL may still be set, however.
1240 	 *
1241 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1242 	 * but not the backing store.   B_NOCACHE will destroy the backing
1243 	 * store.
1244 	 *
1245 	 * Note that dirty NFS buffers contain byte-granular write ranges
1246 	 * and should not be destroyed w/ B_INVAL even if the backing store
1247 	 * is left intact.
1248 	 */
1249 	if (bp->b_flags & B_VMIO) {
1250 		/*
1251 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1252 		 */
1253 		int i, j, resid;
1254 		vm_page_t m;
1255 		off_t foff;
1256 		vm_pindex_t poff;
1257 		vm_object_t obj;
1258 		struct vnode *vp;
1259 
1260 		vp = bp->b_vp;
1261 
1262 		/*
1263 		 * Get the base offset and length of the buffer.  Note that
1264 		 * in the VMIO case if the buffer block size is not
1265 		 * page-aligned then b_data pointer may not be page-aligned.
1266 		 * But our b_xio.xio_pages array *IS* page aligned.
1267 		 *
1268 		 * block sizes less then DEV_BSIZE (usually 512) are not
1269 		 * supported due to the page granularity bits (m->valid,
1270 		 * m->dirty, etc...).
1271 		 *
1272 		 * See man buf(9) for more information
1273 		 */
1274 
1275 		resid = bp->b_bufsize;
1276 		foff = bp->b_loffset;
1277 
1278 		get_mplock();
1279 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1280 			m = bp->b_xio.xio_pages[i];
1281 			vm_page_flag_clear(m, PG_ZERO);
1282 			/*
1283 			 * If we hit a bogus page, fixup *all* of them
1284 			 * now.  Note that we left these pages wired
1285 			 * when we removed them so they had better exist,
1286 			 * and they cannot be ripped out from under us so
1287 			 * no critical section protection is necessary.
1288 			 */
1289 			if (m == bogus_page) {
1290 				obj = vp->v_object;
1291 				poff = OFF_TO_IDX(bp->b_loffset);
1292 
1293 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1294 					vm_page_t mtmp;
1295 
1296 					mtmp = bp->b_xio.xio_pages[j];
1297 					if (mtmp == bogus_page) {
1298 						mtmp = vm_page_lookup(obj, poff + j);
1299 						if (!mtmp) {
1300 							panic("brelse: page missing");
1301 						}
1302 						bp->b_xio.xio_pages[j] = mtmp;
1303 					}
1304 				}
1305 
1306 				if ((bp->b_flags & B_INVAL) == 0) {
1307 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1308 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1309 				}
1310 				m = bp->b_xio.xio_pages[i];
1311 			}
1312 
1313 			/*
1314 			 * Invalidate the backing store if B_NOCACHE is set
1315 			 * (e.g. used with vinvalbuf()).  If this is NFS
1316 			 * we impose a requirement that the block size be
1317 			 * a multiple of PAGE_SIZE and create a temporary
1318 			 * hack to basically invalidate the whole page.  The
1319 			 * problem is that NFS uses really odd buffer sizes
1320 			 * especially when tracking piecemeal writes and
1321 			 * it also vinvalbuf()'s a lot, which would result
1322 			 * in only partial page validation and invalidation
1323 			 * here.  If the file page is mmap()'d, however,
1324 			 * all the valid bits get set so after we invalidate
1325 			 * here we would end up with weird m->valid values
1326 			 * like 0xfc.  nfs_getpages() can't handle this so
1327 			 * we clear all the valid bits for the NFS case
1328 			 * instead of just some of them.
1329 			 *
1330 			 * The real bug is the VM system having to set m->valid
1331 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1332 			 * itself is an artifact of the whole 512-byte
1333 			 * granular mess that exists to support odd block
1334 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1335 			 * A complete rewrite is required.
1336 			 */
1337 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1338 				int poffset = foff & PAGE_MASK;
1339 				int presid;
1340 
1341 				presid = PAGE_SIZE - poffset;
1342 				if (bp->b_vp->v_tag == VT_NFS &&
1343 				    bp->b_vp->v_type == VREG) {
1344 					; /* entire page */
1345 				} else if (presid > resid) {
1346 					presid = resid;
1347 				}
1348 				KASSERT(presid >= 0, ("brelse: extra page"));
1349 				vm_page_set_invalid(m, poffset, presid);
1350 			}
1351 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1352 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1353 		}
1354 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1355 			vfs_vmio_release(bp);
1356 		rel_mplock();
1357 	} else {
1358 		/*
1359 		 * Rundown for non-VMIO buffers.
1360 		 */
1361 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1362 			get_mplock();
1363 			if (bp->b_bufsize)
1364 				allocbuf(bp, 0);
1365 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1366 			if (bp->b_vp)
1367 				brelvp(bp);
1368 			rel_mplock();
1369 		}
1370 	}
1371 
1372 	if (bp->b_qindex != BQUEUE_NONE)
1373 		panic("brelse: free buffer onto another queue???");
1374 	if (BUF_REFCNTNB(bp) > 1) {
1375 		/* Temporary panic to verify exclusive locking */
1376 		/* This panic goes away when we allow shared refs */
1377 		panic("brelse: multiple refs");
1378 		/* NOT REACHED */
1379 		return;
1380 	}
1381 
1382 	/*
1383 	 * Figure out the correct queue to place the cleaned up buffer on.
1384 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1385 	 * disassociated from their vnode.
1386 	 */
1387 	spin_lock_wr(&bufspin);
1388 	if (bp->b_flags & B_LOCKED) {
1389 		/*
1390 		 * Buffers that are locked are placed in the locked queue
1391 		 * immediately, regardless of their state.
1392 		 */
1393 		bp->b_qindex = BQUEUE_LOCKED;
1394 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1395 	} else if (bp->b_bufsize == 0) {
1396 		/*
1397 		 * Buffers with no memory.  Due to conditionals near the top
1398 		 * of brelse() such buffers should probably already be
1399 		 * marked B_INVAL and disassociated from their vnode.
1400 		 */
1401 		bp->b_flags |= B_INVAL;
1402 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1403 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1404 		if (bp->b_kvasize) {
1405 			bp->b_qindex = BQUEUE_EMPTYKVA;
1406 		} else {
1407 			bp->b_qindex = BQUEUE_EMPTY;
1408 		}
1409 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1410 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1411 		/*
1412 		 * Buffers with junk contents.   Again these buffers had better
1413 		 * already be disassociated from their vnode.
1414 		 */
1415 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1416 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1417 		bp->b_flags |= B_INVAL;
1418 		bp->b_qindex = BQUEUE_CLEAN;
1419 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1420 	} else {
1421 		/*
1422 		 * Remaining buffers.  These buffers are still associated with
1423 		 * their vnode.
1424 		 */
1425 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1426 		case B_DELWRI:
1427 		    bp->b_qindex = BQUEUE_DIRTY;
1428 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1429 		    break;
1430 		case B_DELWRI | B_HEAVY:
1431 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1432 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1433 				      b_freelist);
1434 		    break;
1435 		default:
1436 		    /*
1437 		     * NOTE: Buffers are always placed at the end of the
1438 		     * queue.  If B_AGE is not set the buffer will cycle
1439 		     * through the queue twice.
1440 		     */
1441 		    bp->b_qindex = BQUEUE_CLEAN;
1442 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1443 		    break;
1444 		}
1445 	}
1446 	spin_unlock_wr(&bufspin);
1447 
1448 	/*
1449 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1450 	 * on the correct queue.
1451 	 */
1452 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1453 		bundirty(bp);
1454 
1455 	/*
1456 	 * The bp is on an appropriate queue unless locked.  If it is not
1457 	 * locked or dirty we can wakeup threads waiting for buffer space.
1458 	 *
1459 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1460 	 * if B_INVAL is set ).
1461 	 */
1462 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1463 		bufcountwakeup();
1464 
1465 	/*
1466 	 * Something we can maybe free or reuse
1467 	 */
1468 	if (bp->b_bufsize || bp->b_kvasize)
1469 		bufspacewakeup();
1470 
1471 	/*
1472 	 * Clean up temporary flags and unlock the buffer.
1473 	 */
1474 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
1475 	BUF_UNLOCK(bp);
1476 }
1477 
1478 /*
1479  * bqrelse:
1480  *
1481  *	Release a buffer back to the appropriate queue but do not try to free
1482  *	it.  The buffer is expected to be used again soon.
1483  *
1484  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1485  *	biodone() to requeue an async I/O on completion.  It is also used when
1486  *	known good buffers need to be requeued but we think we may need the data
1487  *	again soon.
1488  *
1489  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1490  *
1491  * MPSAFE
1492  */
1493 void
1494 bqrelse(struct buf *bp)
1495 {
1496 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1497 
1498 	if (bp->b_qindex != BQUEUE_NONE)
1499 		panic("bqrelse: free buffer onto another queue???");
1500 	if (BUF_REFCNTNB(bp) > 1) {
1501 		/* do not release to free list */
1502 		panic("bqrelse: multiple refs");
1503 		return;
1504 	}
1505 
1506 	spin_lock_wr(&bufspin);
1507 	if (bp->b_flags & B_LOCKED) {
1508 		/*
1509 		 * Locked buffers are released to the locked queue.  However,
1510 		 * if the buffer is dirty it will first go into the dirty
1511 		 * queue and later on after the I/O completes successfully it
1512 		 * will be released to the locked queue.
1513 		 */
1514 		bp->b_qindex = BQUEUE_LOCKED;
1515 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1516 	} else if (bp->b_flags & B_DELWRI) {
1517 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1518 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1519 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1520 	} else if (vm_page_count_severe()) {
1521 		/*
1522 		 * We are too low on memory, we have to try to free the
1523 		 * buffer (most importantly: the wired pages making up its
1524 		 * backing store) *now*.
1525 		 */
1526 		spin_unlock_wr(&bufspin);
1527 		brelse(bp);
1528 		return;
1529 	} else {
1530 		bp->b_qindex = BQUEUE_CLEAN;
1531 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1532 	}
1533 	spin_unlock_wr(&bufspin);
1534 
1535 	if ((bp->b_flags & B_LOCKED) == 0 &&
1536 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1537 		bufcountwakeup();
1538 	}
1539 
1540 	/*
1541 	 * Something we can maybe free or reuse.
1542 	 */
1543 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1544 		bufspacewakeup();
1545 
1546 	/*
1547 	 * Final cleanup and unlock.  Clear bits that are only used while a
1548 	 * buffer is actively locked.
1549 	 */
1550 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF);
1551 	BUF_UNLOCK(bp);
1552 }
1553 
1554 /*
1555  * vfs_vmio_release:
1556  *
1557  *	Return backing pages held by the buffer 'bp' back to the VM system
1558  *	if possible.  The pages are freed if they are no longer valid or
1559  *	attempt to free if it was used for direct I/O otherwise they are
1560  *	sent to the page cache.
1561  *
1562  *	Pages that were marked busy are left alone and skipped.
1563  *
1564  *	The KVA mapping (b_data) for the underlying pages is removed by
1565  *	this function.
1566  */
1567 static void
1568 vfs_vmio_release(struct buf *bp)
1569 {
1570 	int i;
1571 	vm_page_t m;
1572 
1573 	crit_enter();
1574 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1575 		m = bp->b_xio.xio_pages[i];
1576 		bp->b_xio.xio_pages[i] = NULL;
1577 		/*
1578 		 * In order to keep page LRU ordering consistent, put
1579 		 * everything on the inactive queue.
1580 		 */
1581 		vm_page_unwire(m, 0);
1582 		/*
1583 		 * We don't mess with busy pages, it is
1584 		 * the responsibility of the process that
1585 		 * busied the pages to deal with them.
1586 		 */
1587 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1588 			continue;
1589 
1590 		if (m->wire_count == 0) {
1591 			vm_page_flag_clear(m, PG_ZERO);
1592 			/*
1593 			 * Might as well free the page if we can and it has
1594 			 * no valid data.  We also free the page if the
1595 			 * buffer was used for direct I/O.
1596 			 */
1597 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1598 					m->hold_count == 0) {
1599 				vm_page_busy(m);
1600 				vm_page_protect(m, VM_PROT_NONE);
1601 				vm_page_free(m);
1602 			} else if (bp->b_flags & B_DIRECT) {
1603 				vm_page_try_to_free(m);
1604 			} else if (vm_page_count_severe()) {
1605 				vm_page_try_to_cache(m);
1606 			}
1607 		}
1608 	}
1609 	crit_exit();
1610 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1611 	if (bp->b_bufsize) {
1612 		bufspacewakeup();
1613 		bp->b_bufsize = 0;
1614 	}
1615 	bp->b_xio.xio_npages = 0;
1616 	bp->b_flags &= ~B_VMIO;
1617 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1618 	if (bp->b_vp) {
1619 		get_mplock();
1620 		brelvp(bp);
1621 		rel_mplock();
1622 	}
1623 }
1624 
1625 /*
1626  * vfs_bio_awrite:
1627  *
1628  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1629  *	This is much better then the old way of writing only one buffer at
1630  *	a time.  Note that we may not be presented with the buffers in the
1631  *	correct order, so we search for the cluster in both directions.
1632  *
1633  *	The buffer is locked on call.
1634  */
1635 int
1636 vfs_bio_awrite(struct buf *bp)
1637 {
1638 	int i;
1639 	int j;
1640 	off_t loffset = bp->b_loffset;
1641 	struct vnode *vp = bp->b_vp;
1642 	int nbytes;
1643 	struct buf *bpa;
1644 	int nwritten;
1645 	int size;
1646 
1647 	/*
1648 	 * right now we support clustered writing only to regular files.  If
1649 	 * we find a clusterable block we could be in the middle of a cluster
1650 	 * rather then at the beginning.
1651 	 *
1652 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1653 	 * to b_loffset.  b_bio2 contains the translated block number.
1654 	 */
1655 	if ((vp->v_type == VREG) &&
1656 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1657 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1658 
1659 		size = vp->v_mount->mnt_stat.f_iosize;
1660 
1661 		for (i = size; i < MAXPHYS; i += size) {
1662 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1663 			    BUF_REFCNT(bpa) == 0 &&
1664 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1665 			    (B_DELWRI | B_CLUSTEROK)) &&
1666 			    (bpa->b_bufsize == size)) {
1667 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1668 				    (bpa->b_bio2.bio_offset !=
1669 				     bp->b_bio2.bio_offset + i))
1670 					break;
1671 			} else {
1672 				break;
1673 			}
1674 		}
1675 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1676 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1677 			    BUF_REFCNT(bpa) == 0 &&
1678 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1679 			    (B_DELWRI | B_CLUSTEROK)) &&
1680 			    (bpa->b_bufsize == size)) {
1681 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1682 				    (bpa->b_bio2.bio_offset !=
1683 				     bp->b_bio2.bio_offset - j))
1684 					break;
1685 			} else {
1686 				break;
1687 			}
1688 		}
1689 		j -= size;
1690 		nbytes = (i + j);
1691 
1692 		/*
1693 		 * this is a possible cluster write
1694 		 */
1695 		if (nbytes != size) {
1696 			BUF_UNLOCK(bp);
1697 			nwritten = cluster_wbuild(vp, size,
1698 						  loffset - j, nbytes);
1699 			return nwritten;
1700 		}
1701 	}
1702 
1703 	bremfree(bp);
1704 	bp->b_flags |= B_ASYNC;
1705 
1706 	/*
1707 	 * default (old) behavior, writing out only one block
1708 	 *
1709 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1710 	 */
1711 	nwritten = bp->b_bufsize;
1712 	bwrite(bp);
1713 
1714 	return nwritten;
1715 }
1716 
1717 /*
1718  * getnewbuf:
1719  *
1720  *	Find and initialize a new buffer header, freeing up existing buffers
1721  *	in the bufqueues as necessary.  The new buffer is returned locked.
1722  *
1723  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1724  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1725  *
1726  *	We block if:
1727  *		We have insufficient buffer headers
1728  *		We have insufficient buffer space
1729  *		buffer_map is too fragmented ( space reservation fails )
1730  *		If we have to flush dirty buffers ( but we try to avoid this )
1731  *
1732  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1733  *	Instead we ask the buf daemon to do it for us.  We attempt to
1734  *	avoid piecemeal wakeups of the pageout daemon.
1735  *
1736  * MPALMOSTSAFE
1737  */
1738 static struct buf *
1739 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1740 {
1741 	struct buf *bp;
1742 	struct buf *nbp;
1743 	int defrag = 0;
1744 	int nqindex;
1745 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1746 	static int flushingbufs;
1747 
1748 	/*
1749 	 * We can't afford to block since we might be holding a vnode lock,
1750 	 * which may prevent system daemons from running.  We deal with
1751 	 * low-memory situations by proactively returning memory and running
1752 	 * async I/O rather then sync I/O.
1753 	 */
1754 
1755 	++getnewbufcalls;
1756 	--getnewbufrestarts;
1757 restart:
1758 	++getnewbufrestarts;
1759 
1760 	/*
1761 	 * Setup for scan.  If we do not have enough free buffers,
1762 	 * we setup a degenerate case that immediately fails.  Note
1763 	 * that if we are specially marked process, we are allowed to
1764 	 * dip into our reserves.
1765 	 *
1766 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1767 	 *
1768 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1769 	 * However, there are a number of cases (defragging, reusing, ...)
1770 	 * where we cannot backup.
1771 	 */
1772 	nqindex = BQUEUE_EMPTYKVA;
1773 	spin_lock_wr(&bufspin);
1774 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1775 
1776 	if (nbp == NULL) {
1777 		/*
1778 		 * If no EMPTYKVA buffers and we are either
1779 		 * defragging or reusing, locate a CLEAN buffer
1780 		 * to free or reuse.  If bufspace useage is low
1781 		 * skip this step so we can allocate a new buffer.
1782 		 */
1783 		if (defrag || bufspace >= lobufspace) {
1784 			nqindex = BQUEUE_CLEAN;
1785 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1786 		}
1787 
1788 		/*
1789 		 * If we could not find or were not allowed to reuse a
1790 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1791 		 * buffer.  We can only use an EMPTY buffer if allocating
1792 		 * its KVA would not otherwise run us out of buffer space.
1793 		 */
1794 		if (nbp == NULL && defrag == 0 &&
1795 		    bufspace + maxsize < hibufspace) {
1796 			nqindex = BQUEUE_EMPTY;
1797 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1798 		}
1799 	}
1800 
1801 	/*
1802 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1803 	 * depending.
1804 	 *
1805 	 * WARNING!  bufspin is held!
1806 	 */
1807 	while ((bp = nbp) != NULL) {
1808 		int qindex = nqindex;
1809 
1810 		nbp = TAILQ_NEXT(bp, b_freelist);
1811 
1812 		/*
1813 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
1814 		 * cycles through the queue twice before being selected.
1815 		 */
1816 		if (qindex == BQUEUE_CLEAN &&
1817 		    (bp->b_flags & B_AGE) == 0 && nbp) {
1818 			bp->b_flags |= B_AGE;
1819 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1820 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1821 			continue;
1822 		}
1823 
1824 		/*
1825 		 * Calculate next bp ( we can only use it if we do not block
1826 		 * or do other fancy things ).
1827 		 */
1828 		if (nbp == NULL) {
1829 			switch(qindex) {
1830 			case BQUEUE_EMPTY:
1831 				nqindex = BQUEUE_EMPTYKVA;
1832 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1833 					break;
1834 				/* fall through */
1835 			case BQUEUE_EMPTYKVA:
1836 				nqindex = BQUEUE_CLEAN;
1837 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1838 					break;
1839 				/* fall through */
1840 			case BQUEUE_CLEAN:
1841 				/*
1842 				 * nbp is NULL.
1843 				 */
1844 				break;
1845 			}
1846 		}
1847 
1848 		/*
1849 		 * Sanity Checks
1850 		 */
1851 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1852 
1853 		/*
1854 		 * Note: we no longer distinguish between VMIO and non-VMIO
1855 		 * buffers.
1856 		 */
1857 
1858 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1859 
1860 		/*
1861 		 * If we are defragging then we need a buffer with
1862 		 * b_kvasize != 0.  XXX this situation should no longer
1863 		 * occur, if defrag is non-zero the buffer's b_kvasize
1864 		 * should also be non-zero at this point.  XXX
1865 		 */
1866 		if (defrag && bp->b_kvasize == 0) {
1867 			kprintf("Warning: defrag empty buffer %p\n", bp);
1868 			continue;
1869 		}
1870 
1871 		/*
1872 		 * Start freeing the bp.  This is somewhat involved.  nbp
1873 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1874 		 * on the clean list must be disassociated from their
1875 		 * current vnode.  Buffers on the empty[kva] lists have
1876 		 * already been disassociated.
1877 		 */
1878 
1879 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1880 			spin_unlock_wr(&bufspin);
1881 			kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1882 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1883 			goto restart;
1884 		}
1885 		if (bp->b_qindex != qindex) {
1886 			spin_unlock_wr(&bufspin);
1887 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1888 			BUF_UNLOCK(bp);
1889 			goto restart;
1890 		}
1891 		bremfree_locked(bp);
1892 		spin_unlock_wr(&bufspin);
1893 
1894 		/*
1895 		 * Dependancies must be handled before we disassociate the
1896 		 * vnode.
1897 		 *
1898 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1899 		 * be immediately disassociated.  HAMMER then becomes
1900 		 * responsible for releasing the buffer.
1901 		 *
1902 		 * NOTE: bufspin is UNLOCKED now.
1903 		 */
1904 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1905 			get_mplock();
1906 			buf_deallocate(bp);
1907 			rel_mplock();
1908 			if (bp->b_flags & B_LOCKED) {
1909 				bqrelse(bp);
1910 				goto restart;
1911 			}
1912 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1913 		}
1914 
1915 		if (qindex == BQUEUE_CLEAN) {
1916 			get_mplock();
1917 			if (bp->b_flags & B_VMIO) {
1918 				bp->b_flags &= ~B_ASYNC;
1919 				get_mplock();
1920 				vfs_vmio_release(bp);
1921 				rel_mplock();
1922 			}
1923 			if (bp->b_vp)
1924 				brelvp(bp);
1925 			rel_mplock();
1926 		}
1927 
1928 		/*
1929 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1930 		 * the scan from this point on.
1931 		 *
1932 		 * Get the rest of the buffer freed up.  b_kva* is still
1933 		 * valid after this operation.
1934 		 */
1935 
1936 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1937 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1938 
1939 		/*
1940 		 * critical section protection is not required when
1941 		 * scrapping a buffer's contents because it is already
1942 		 * wired.
1943 		 */
1944 		if (bp->b_bufsize) {
1945 			get_mplock();
1946 			allocbuf(bp, 0);
1947 			rel_mplock();
1948 		}
1949 
1950 		bp->b_flags = B_BNOCLIP;
1951 		bp->b_cmd = BUF_CMD_DONE;
1952 		bp->b_vp = NULL;
1953 		bp->b_error = 0;
1954 		bp->b_resid = 0;
1955 		bp->b_bcount = 0;
1956 		bp->b_xio.xio_npages = 0;
1957 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1958 		reinitbufbio(bp);
1959 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1960 		buf_dep_init(bp);
1961 		if (blkflags & GETBLK_BHEAVY)
1962 			bp->b_flags |= B_HEAVY;
1963 
1964 		/*
1965 		 * If we are defragging then free the buffer.
1966 		 */
1967 		if (defrag) {
1968 			bp->b_flags |= B_INVAL;
1969 			bfreekva(bp);
1970 			brelse(bp);
1971 			defrag = 0;
1972 			goto restart;
1973 		}
1974 
1975 		/*
1976 		 * If we are overcomitted then recover the buffer and its
1977 		 * KVM space.  This occurs in rare situations when multiple
1978 		 * processes are blocked in getnewbuf() or allocbuf().
1979 		 */
1980 		if (bufspace >= hibufspace)
1981 			flushingbufs = 1;
1982 		if (flushingbufs && bp->b_kvasize != 0) {
1983 			bp->b_flags |= B_INVAL;
1984 			bfreekva(bp);
1985 			brelse(bp);
1986 			goto restart;
1987 		}
1988 		if (bufspace < lobufspace)
1989 			flushingbufs = 0;
1990 		break;
1991 		/* NOT REACHED, bufspin not held */
1992 	}
1993 
1994 	/*
1995 	 * If we exhausted our list, sleep as appropriate.  We may have to
1996 	 * wakeup various daemons and write out some dirty buffers.
1997 	 *
1998 	 * Generally we are sleeping due to insufficient buffer space.
1999 	 *
2000 	 * NOTE: bufspin is held if bp is NULL, else it is not held.
2001 	 */
2002 	if (bp == NULL) {
2003 		int flags;
2004 		char *waitmsg;
2005 
2006 		spin_unlock_wr(&bufspin);
2007 		if (defrag) {
2008 			flags = VFS_BIO_NEED_BUFSPACE;
2009 			waitmsg = "nbufkv";
2010 		} else if (bufspace >= hibufspace) {
2011 			waitmsg = "nbufbs";
2012 			flags = VFS_BIO_NEED_BUFSPACE;
2013 		} else {
2014 			waitmsg = "newbuf";
2015 			flags = VFS_BIO_NEED_ANY;
2016 		}
2017 
2018 		needsbuffer |= flags;
2019 		bd_speedup();	/* heeeelp */
2020 		while (needsbuffer & flags) {
2021 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2022 				return (NULL);
2023 		}
2024 	} else {
2025 		/*
2026 		 * We finally have a valid bp.  We aren't quite out of the
2027 		 * woods, we still have to reserve kva space.  In order
2028 		 * to keep fragmentation sane we only allocate kva in
2029 		 * BKVASIZE chunks.
2030 		 *
2031 		 * (bufspin is not held)
2032 		 */
2033 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2034 
2035 		if (maxsize != bp->b_kvasize) {
2036 			vm_offset_t addr = 0;
2037 			int count;
2038 
2039 			bfreekva(bp);
2040 
2041 			get_mplock();
2042 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2043 			vm_map_lock(&buffer_map);
2044 
2045 			if (vm_map_findspace(&buffer_map,
2046 				    vm_map_min(&buffer_map), maxsize,
2047 				    maxsize, 0, &addr)) {
2048 				/*
2049 				 * Uh oh.  Buffer map is too fragmented.  We
2050 				 * must defragment the map.
2051 				 */
2052 				vm_map_unlock(&buffer_map);
2053 				vm_map_entry_release(count);
2054 				++bufdefragcnt;
2055 				defrag = 1;
2056 				bp->b_flags |= B_INVAL;
2057 				rel_mplock();
2058 				brelse(bp);
2059 				goto restart;
2060 			}
2061 			if (addr) {
2062 				vm_map_insert(&buffer_map, &count,
2063 					NULL, 0,
2064 					addr, addr + maxsize,
2065 					VM_MAPTYPE_NORMAL,
2066 					VM_PROT_ALL, VM_PROT_ALL,
2067 					MAP_NOFAULT);
2068 
2069 				bp->b_kvabase = (caddr_t) addr;
2070 				bp->b_kvasize = maxsize;
2071 				bufspace += bp->b_kvasize;
2072 				++bufreusecnt;
2073 			}
2074 			vm_map_unlock(&buffer_map);
2075 			vm_map_entry_release(count);
2076 			rel_mplock();
2077 		}
2078 		bp->b_data = bp->b_kvabase;
2079 	}
2080 	return(bp);
2081 }
2082 
2083 /*
2084  * This routine is called in an emergency to recover VM pages from the
2085  * buffer cache by cashing in clean buffers.  The idea is to recover
2086  * enough pages to be able to satisfy a stuck bio_page_alloc().
2087  */
2088 static int
2089 recoverbufpages(void)
2090 {
2091 	struct buf *bp;
2092 	int bytes = 0;
2093 
2094 	++recoverbufcalls;
2095 
2096 	spin_lock_wr(&bufspin);
2097 	while (bytes < MAXBSIZE) {
2098 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2099 		if (bp == NULL)
2100 			break;
2101 
2102 		/*
2103 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2104 		 * cycles through the queue twice before being selected.
2105 		 */
2106 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2107 			bp->b_flags |= B_AGE;
2108 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2109 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2110 					  bp, b_freelist);
2111 			continue;
2112 		}
2113 
2114 		/*
2115 		 * Sanity Checks
2116 		 */
2117 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2118 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2119 
2120 		/*
2121 		 * Start freeing the bp.  This is somewhat involved.
2122 		 *
2123 		 * Buffers on the clean list must be disassociated from
2124 		 * their current vnode
2125 		 */
2126 
2127 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2128 			kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2129 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2130 			continue;
2131 		}
2132 		if (bp->b_qindex != BQUEUE_CLEAN) {
2133 			kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2134 			BUF_UNLOCK(bp);
2135 			continue;
2136 		}
2137 		bremfree_locked(bp);
2138 		spin_unlock_wr(&bufspin);
2139 
2140 		/*
2141 		 * Dependancies must be handled before we disassociate the
2142 		 * vnode.
2143 		 *
2144 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2145 		 * be immediately disassociated.  HAMMER then becomes
2146 		 * responsible for releasing the buffer.
2147 		 */
2148 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2149 			buf_deallocate(bp);
2150 			if (bp->b_flags & B_LOCKED) {
2151 				bqrelse(bp);
2152 				spin_lock_wr(&bufspin);
2153 				continue;
2154 			}
2155 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2156 		}
2157 
2158 		bytes += bp->b_bufsize;
2159 
2160 		get_mplock();
2161 		if (bp->b_flags & B_VMIO) {
2162 			bp->b_flags &= ~B_ASYNC;
2163 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2164 			vfs_vmio_release(bp);
2165 		}
2166 		if (bp->b_vp)
2167 			brelvp(bp);
2168 
2169 		KKASSERT(bp->b_vp == NULL);
2170 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2171 
2172 		/*
2173 		 * critical section protection is not required when
2174 		 * scrapping a buffer's contents because it is already
2175 		 * wired.
2176 		 */
2177 		if (bp->b_bufsize)
2178 			allocbuf(bp, 0);
2179 		rel_mplock();
2180 
2181 		bp->b_flags = B_BNOCLIP;
2182 		bp->b_cmd = BUF_CMD_DONE;
2183 		bp->b_vp = NULL;
2184 		bp->b_error = 0;
2185 		bp->b_resid = 0;
2186 		bp->b_bcount = 0;
2187 		bp->b_xio.xio_npages = 0;
2188 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2189 		reinitbufbio(bp);
2190 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2191 		buf_dep_init(bp);
2192 		bp->b_flags |= B_INVAL;
2193 		/* bfreekva(bp); */
2194 		brelse(bp);
2195 		spin_lock_wr(&bufspin);
2196 	}
2197 	spin_unlock_wr(&bufspin);
2198 	return(bytes);
2199 }
2200 
2201 /*
2202  * buf_daemon:
2203  *
2204  *	Buffer flushing daemon.  Buffers are normally flushed by the
2205  *	update daemon but if it cannot keep up this process starts to
2206  *	take the load in an attempt to prevent getnewbuf() from blocking.
2207  *
2208  *	Once a flush is initiated it does not stop until the number
2209  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2210  *	waiting at the mid-point.
2211  */
2212 
2213 static struct kproc_desc buf_kp = {
2214 	"bufdaemon",
2215 	buf_daemon,
2216 	&bufdaemon_td
2217 };
2218 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2219 	kproc_start, &buf_kp)
2220 
2221 static struct kproc_desc bufhw_kp = {
2222 	"bufdaemon_hw",
2223 	buf_daemon_hw,
2224 	&bufdaemonhw_td
2225 };
2226 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2227 	kproc_start, &bufhw_kp)
2228 
2229 static void
2230 buf_daemon(void)
2231 {
2232 	int limit;
2233 
2234 	/*
2235 	 * This process needs to be suspended prior to shutdown sync.
2236 	 */
2237 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2238 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2239 	curthread->td_flags |= TDF_SYSTHREAD;
2240 
2241 	/*
2242 	 * This process is allowed to take the buffer cache to the limit
2243 	 */
2244 	crit_enter();
2245 
2246 	for (;;) {
2247 		kproc_suspend_loop();
2248 
2249 		/*
2250 		 * Do the flush.  Limit the amount of in-transit I/O we
2251 		 * allow to build up, otherwise we would completely saturate
2252 		 * the I/O system.  Wakeup any waiting processes before we
2253 		 * normally would so they can run in parallel with our drain.
2254 		 *
2255 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2256 		 * but because we split the operation into two threads we
2257 		 * have to cut it in half for each thread.
2258 		 */
2259 		limit = lodirtybufspace / 2;
2260 		waitrunningbufspace(limit);
2261 		while (runningbufspace + dirtybufspace > limit ||
2262 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2263 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2264 				break;
2265 			waitrunningbufspace(limit);
2266 		}
2267 
2268 		/*
2269 		 * We reached our low water mark, reset the
2270 		 * request and sleep until we are needed again.
2271 		 * The sleep is just so the suspend code works.
2272 		 */
2273 		spin_lock_wr(&needsbuffer_spin);
2274 		if (bd_request == 0) {
2275 			msleep(&bd_request, &needsbuffer_spin, 0,
2276 			       "psleep", hz);
2277 		}
2278 		bd_request = 0;
2279 		spin_unlock_wr(&needsbuffer_spin);
2280 	}
2281 }
2282 
2283 static void
2284 buf_daemon_hw(void)
2285 {
2286 	int limit;
2287 
2288 	/*
2289 	 * This process needs to be suspended prior to shutdown sync.
2290 	 */
2291 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2292 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2293 	curthread->td_flags |= TDF_SYSTHREAD;
2294 
2295 	/*
2296 	 * This process is allowed to take the buffer cache to the limit
2297 	 */
2298 	crit_enter();
2299 
2300 	for (;;) {
2301 		kproc_suspend_loop();
2302 
2303 		/*
2304 		 * Do the flush.  Limit the amount of in-transit I/O we
2305 		 * allow to build up, otherwise we would completely saturate
2306 		 * the I/O system.  Wakeup any waiting processes before we
2307 		 * normally would so they can run in parallel with our drain.
2308 		 *
2309 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2310 		 * but because we split the operation into two threads we
2311 		 * have to cut it in half for each thread.
2312 		 */
2313 		limit = lodirtybufspace / 2;
2314 		waitrunningbufspace(limit);
2315 		while (runningbufspace + dirtybufspacehw > limit ||
2316 		       dirtybufcounthw >= nbuf / 2) {
2317 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2318 				break;
2319 			waitrunningbufspace(limit);
2320 		}
2321 
2322 		/*
2323 		 * We reached our low water mark, reset the
2324 		 * request and sleep until we are needed again.
2325 		 * The sleep is just so the suspend code works.
2326 		 */
2327 		spin_lock_wr(&needsbuffer_spin);
2328 		if (bd_request_hw == 0) {
2329 			msleep(&bd_request_hw, &needsbuffer_spin, 0,
2330 			       "psleep", hz);
2331 		}
2332 		bd_request_hw = 0;
2333 		spin_unlock_wr(&needsbuffer_spin);
2334 	}
2335 }
2336 
2337 /*
2338  * flushbufqueues:
2339  *
2340  *	Try to flush a buffer in the dirty queue.  We must be careful to
2341  *	free up B_INVAL buffers instead of write them, which NFS is
2342  *	particularly sensitive to.
2343  *
2344  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2345  *	that we really want to try to get the buffer out and reuse it
2346  *	due to the write load on the machine.
2347  */
2348 static int
2349 flushbufqueues(bufq_type_t q)
2350 {
2351 	struct buf *bp;
2352 	int r = 0;
2353 	int spun;
2354 
2355 	spin_lock_wr(&bufspin);
2356 	spun = 1;
2357 
2358 	bp = TAILQ_FIRST(&bufqueues[q]);
2359 	while (bp) {
2360 		KASSERT((bp->b_flags & B_DELWRI),
2361 			("unexpected clean buffer %p", bp));
2362 
2363 		if (bp->b_flags & B_DELWRI) {
2364 			if (bp->b_flags & B_INVAL) {
2365 				spin_unlock_wr(&bufspin);
2366 				spun = 0;
2367 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2368 					panic("flushbufqueues: locked buf");
2369 				bremfree(bp);
2370 				brelse(bp);
2371 				++r;
2372 				break;
2373 			}
2374 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2375 			    (bp->b_flags & B_DEFERRED) == 0 &&
2376 			    buf_countdeps(bp, 0)) {
2377 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2378 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2379 						  b_freelist);
2380 				bp->b_flags |= B_DEFERRED;
2381 				bp = TAILQ_FIRST(&bufqueues[q]);
2382 				continue;
2383 			}
2384 
2385 			/*
2386 			 * Only write it out if we can successfully lock
2387 			 * it.  If the buffer has a dependancy,
2388 			 * buf_checkwrite must also return 0 for us to
2389 			 * be able to initate the write.
2390 			 *
2391 			 * If the buffer is flagged B_ERROR it may be
2392 			 * requeued over and over again, we try to
2393 			 * avoid a live lock.
2394 			 */
2395 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2396 				spin_unlock_wr(&bufspin);
2397 				spun = 0;
2398 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2399 				    buf_checkwrite(bp)) {
2400 					bremfree(bp);
2401 					brelse(bp);
2402 				} else if (bp->b_flags & B_ERROR) {
2403 					tsleep(bp, 0, "bioer", 1);
2404 					bp->b_flags &= ~B_AGE;
2405 					vfs_bio_awrite(bp);
2406 				} else {
2407 					bp->b_flags |= B_AGE;
2408 					vfs_bio_awrite(bp);
2409 				}
2410 				++r;
2411 				break;
2412 			}
2413 		}
2414 		bp = TAILQ_NEXT(bp, b_freelist);
2415 	}
2416 	if (spun)
2417 		spin_unlock_wr(&bufspin);
2418 	return (r);
2419 }
2420 
2421 /*
2422  * inmem:
2423  *
2424  *	Returns true if no I/O is needed to access the associated VM object.
2425  *	This is like findblk except it also hunts around in the VM system for
2426  *	the data.
2427  *
2428  *	Note that we ignore vm_page_free() races from interrupts against our
2429  *	lookup, since if the caller is not protected our return value will not
2430  *	be any more valid then otherwise once we exit the critical section.
2431  */
2432 int
2433 inmem(struct vnode *vp, off_t loffset)
2434 {
2435 	vm_object_t obj;
2436 	vm_offset_t toff, tinc, size;
2437 	vm_page_t m;
2438 
2439 	if (findblk(vp, loffset, FINDBLK_TEST))
2440 		return 1;
2441 	if (vp->v_mount == NULL)
2442 		return 0;
2443 	if ((obj = vp->v_object) == NULL)
2444 		return 0;
2445 
2446 	size = PAGE_SIZE;
2447 	if (size > vp->v_mount->mnt_stat.f_iosize)
2448 		size = vp->v_mount->mnt_stat.f_iosize;
2449 
2450 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2451 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2452 		if (m == NULL)
2453 			return 0;
2454 		tinc = size;
2455 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2456 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2457 		if (vm_page_is_valid(m,
2458 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2459 			return 0;
2460 	}
2461 	return 1;
2462 }
2463 
2464 /*
2465  * vfs_setdirty:
2466  *
2467  *	Sets the dirty range for a buffer based on the status of the dirty
2468  *	bits in the pages comprising the buffer.
2469  *
2470  *	The range is limited to the size of the buffer.
2471  *
2472  *	This routine is primarily used by NFS, but is generalized for the
2473  *	B_VMIO case.
2474  */
2475 static void
2476 vfs_setdirty(struct buf *bp)
2477 {
2478 	int i;
2479 	vm_object_t object;
2480 
2481 	/*
2482 	 * Degenerate case - empty buffer
2483 	 */
2484 
2485 	if (bp->b_bufsize == 0)
2486 		return;
2487 
2488 	/*
2489 	 * We qualify the scan for modified pages on whether the
2490 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2491 	 * is not cleared simply by protecting pages off.
2492 	 */
2493 
2494 	if ((bp->b_flags & B_VMIO) == 0)
2495 		return;
2496 
2497 	object = bp->b_xio.xio_pages[0]->object;
2498 
2499 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2500 		kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2501 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2502 		kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2503 
2504 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2505 		vm_offset_t boffset;
2506 		vm_offset_t eoffset;
2507 
2508 		/*
2509 		 * test the pages to see if they have been modified directly
2510 		 * by users through the VM system.
2511 		 */
2512 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2513 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2514 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2515 		}
2516 
2517 		/*
2518 		 * Calculate the encompassing dirty range, boffset and eoffset,
2519 		 * (eoffset - boffset) bytes.
2520 		 */
2521 
2522 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2523 			if (bp->b_xio.xio_pages[i]->dirty)
2524 				break;
2525 		}
2526 		boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2527 
2528 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2529 			if (bp->b_xio.xio_pages[i]->dirty) {
2530 				break;
2531 			}
2532 		}
2533 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2534 
2535 		/*
2536 		 * Fit it to the buffer.
2537 		 */
2538 
2539 		if (eoffset > bp->b_bcount)
2540 			eoffset = bp->b_bcount;
2541 
2542 		/*
2543 		 * If we have a good dirty range, merge with the existing
2544 		 * dirty range.
2545 		 */
2546 
2547 		if (boffset < eoffset) {
2548 			if (bp->b_dirtyoff > boffset)
2549 				bp->b_dirtyoff = boffset;
2550 			if (bp->b_dirtyend < eoffset)
2551 				bp->b_dirtyend = eoffset;
2552 		}
2553 	}
2554 }
2555 
2556 /*
2557  * findblk:
2558  *
2559  *	Locate and return the specified buffer.  Unless flagged otherwise,
2560  *	a locked buffer will be returned if it exists or NULL if it does not.
2561  *
2562  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2563  *			  for locking the buffer and ensuring that it remains
2564  *			  the desired buffer after locking.
2565  *
2566  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2567  *			  to acquire the lock we return NULL, even if the
2568  *			  buffer exists.
2569  *
2570  *	(0)		- Lock the buffer blocking.
2571  *
2572  * MPSAFE
2573  */
2574 struct buf *
2575 findblk(struct vnode *vp, off_t loffset, int flags)
2576 {
2577 	lwkt_tokref vlock;
2578 	struct buf *bp;
2579 	int lkflags;
2580 
2581 	lkflags = LK_EXCLUSIVE;
2582 	if (flags & FINDBLK_NBLOCK)
2583 		lkflags |= LK_NOWAIT;
2584 
2585 	for (;;) {
2586 		lwkt_gettoken(&vlock, &vp->v_token);
2587 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2588 		lwkt_reltoken(&vlock);
2589 		if (bp == NULL || (flags & FINDBLK_TEST))
2590 			break;
2591 		if (BUF_LOCK(bp, lkflags)) {
2592 			bp = NULL;
2593 			break;
2594 		}
2595 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2596 			break;
2597 		BUF_UNLOCK(bp);
2598 	}
2599 	return(bp);
2600 }
2601 
2602 /*
2603  * getcacheblk:
2604  *
2605  *	Similar to getblk() except only returns the buffer if it is
2606  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2607  *	is returned.
2608  *
2609  *	If B_RAM is set the buffer might be just fine, but we return
2610  *	NULL anyway because we want the code to fall through to the
2611  *	cluster read.  Otherwise read-ahead breaks.
2612  */
2613 struct buf *
2614 getcacheblk(struct vnode *vp, off_t loffset)
2615 {
2616 	struct buf *bp;
2617 
2618 	bp = findblk(vp, loffset, 0);
2619 	if (bp) {
2620 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2621 			bp->b_flags &= ~B_AGE;
2622 			bremfree(bp);
2623 		} else {
2624 			BUF_UNLOCK(bp);
2625 			bp = NULL;
2626 		}
2627 	}
2628 	return (bp);
2629 }
2630 
2631 /*
2632  * getblk:
2633  *
2634  *	Get a block given a specified block and offset into a file/device.
2635  * 	B_INVAL may or may not be set on return.  The caller should clear
2636  *	B_INVAL prior to initiating a READ.
2637  *
2638  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2639  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2640  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2641  *	without doing any of those things the system will likely believe
2642  *	the buffer to be valid (especially if it is not B_VMIO), and the
2643  *	next getblk() will return the buffer with B_CACHE set.
2644  *
2645  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2646  *	an existing buffer.
2647  *
2648  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2649  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2650  *	and then cleared based on the backing VM.  If the previous buffer is
2651  *	non-0-sized but invalid, B_CACHE will be cleared.
2652  *
2653  *	If getblk() must create a new buffer, the new buffer is returned with
2654  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2655  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2656  *	backing VM.
2657  *
2658  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2659  *	B_CACHE bit is clear.
2660  *
2661  *	What this means, basically, is that the caller should use B_CACHE to
2662  *	determine whether the buffer is fully valid or not and should clear
2663  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2664  *	the buffer by loading its data area with something, the caller needs
2665  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2666  *	the caller should set B_CACHE ( as an optimization ), else the caller
2667  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2668  *	a write attempt or if it was a successfull read.  If the caller
2669  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2670  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2671  *
2672  *	getblk flags:
2673  *
2674  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2675  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2676  *
2677  * MPALMOSTSAFE
2678  */
2679 struct buf *
2680 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2681 {
2682 	struct buf *bp;
2683 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2684 	int error;
2685 	int lkflags;
2686 
2687 	if (size > MAXBSIZE)
2688 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2689 	if (vp->v_object == NULL)
2690 		panic("getblk: vnode %p has no object!", vp);
2691 
2692 loop:
2693 	if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2694 		/*
2695 		 * The buffer was found in the cache, but we need to lock it.
2696 		 * Even with LK_NOWAIT the lockmgr may break our critical
2697 		 * section, so double-check the validity of the buffer
2698 		 * once the lock has been obtained.
2699 		 */
2700 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2701 			if (blkflags & GETBLK_NOWAIT)
2702 				return(NULL);
2703 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2704 			if (blkflags & GETBLK_PCATCH)
2705 				lkflags |= LK_PCATCH;
2706 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2707 			if (error) {
2708 				if (error == ENOLCK)
2709 					goto loop;
2710 				return (NULL);
2711 			}
2712 			/* buffer may have changed on us */
2713 		}
2714 
2715 		/*
2716 		 * Once the buffer has been locked, make sure we didn't race
2717 		 * a buffer recyclement.  Buffers that are no longer hashed
2718 		 * will have b_vp == NULL, so this takes care of that check
2719 		 * as well.
2720 		 */
2721 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2722 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2723 				"was recycled\n",
2724 				bp, vp, (long long)loffset);
2725 			BUF_UNLOCK(bp);
2726 			goto loop;
2727 		}
2728 
2729 		/*
2730 		 * If SZMATCH any pre-existing buffer must be of the requested
2731 		 * size or NULL is returned.  The caller absolutely does not
2732 		 * want getblk() to bwrite() the buffer on a size mismatch.
2733 		 */
2734 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2735 			BUF_UNLOCK(bp);
2736 			return(NULL);
2737 		}
2738 
2739 		/*
2740 		 * All vnode-based buffers must be backed by a VM object.
2741 		 */
2742 		KKASSERT(bp->b_flags & B_VMIO);
2743 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2744 		bp->b_flags &= ~B_AGE;
2745 
2746 		/*
2747 		 * Make sure that B_INVAL buffers do not have a cached
2748 		 * block number translation.
2749 		 */
2750 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2751 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2752 				" did not have cleared bio_offset cache\n",
2753 				bp, vp, (long long)loffset);
2754 			clearbiocache(&bp->b_bio2);
2755 		}
2756 
2757 		/*
2758 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2759 		 * invalid.
2760 		 */
2761 		if (bp->b_flags & B_INVAL)
2762 			bp->b_flags &= ~B_CACHE;
2763 		bremfree(bp);
2764 
2765 		/*
2766 		 * Any size inconsistancy with a dirty buffer or a buffer
2767 		 * with a softupdates dependancy must be resolved.  Resizing
2768 		 * the buffer in such circumstances can lead to problems.
2769 		 */
2770 		if (size != bp->b_bcount) {
2771 			get_mplock();
2772 			if (bp->b_flags & B_DELWRI) {
2773 				bp->b_flags |= B_NOCACHE;
2774 				bwrite(bp);
2775 			} else if (LIST_FIRST(&bp->b_dep)) {
2776 				bp->b_flags |= B_NOCACHE;
2777 				bwrite(bp);
2778 			} else {
2779 				bp->b_flags |= B_RELBUF;
2780 				brelse(bp);
2781 			}
2782 			rel_mplock();
2783 			goto loop;
2784 		}
2785 		KKASSERT(size <= bp->b_kvasize);
2786 		KASSERT(bp->b_loffset != NOOFFSET,
2787 			("getblk: no buffer offset"));
2788 
2789 		/*
2790 		 * A buffer with B_DELWRI set and B_CACHE clear must
2791 		 * be committed before we can return the buffer in
2792 		 * order to prevent the caller from issuing a read
2793 		 * ( due to B_CACHE not being set ) and overwriting
2794 		 * it.
2795 		 *
2796 		 * Most callers, including NFS and FFS, need this to
2797 		 * operate properly either because they assume they
2798 		 * can issue a read if B_CACHE is not set, or because
2799 		 * ( for example ) an uncached B_DELWRI might loop due
2800 		 * to softupdates re-dirtying the buffer.  In the latter
2801 		 * case, B_CACHE is set after the first write completes,
2802 		 * preventing further loops.
2803 		 *
2804 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2805 		 * above while extending the buffer, we cannot allow the
2806 		 * buffer to remain with B_CACHE set after the write
2807 		 * completes or it will represent a corrupt state.  To
2808 		 * deal with this we set B_NOCACHE to scrap the buffer
2809 		 * after the write.
2810 		 *
2811 		 * We might be able to do something fancy, like setting
2812 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2813 		 * so the below call doesn't set B_CACHE, but that gets real
2814 		 * confusing.  This is much easier.
2815 		 */
2816 
2817 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2818 			get_mplock();
2819 			bp->b_flags |= B_NOCACHE;
2820 			bwrite(bp);
2821 			rel_mplock();
2822 			goto loop;
2823 		}
2824 	} else {
2825 		/*
2826 		 * Buffer is not in-core, create new buffer.  The buffer
2827 		 * returned by getnewbuf() is locked.  Note that the returned
2828 		 * buffer is also considered valid (not marked B_INVAL).
2829 		 *
2830 		 * Calculating the offset for the I/O requires figuring out
2831 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2832 		 * the mount's f_iosize otherwise.  If the vnode does not
2833 		 * have an associated mount we assume that the passed size is
2834 		 * the block size.
2835 		 *
2836 		 * Note that vn_isdisk() cannot be used here since it may
2837 		 * return a failure for numerous reasons.   Note that the
2838 		 * buffer size may be larger then the block size (the caller
2839 		 * will use block numbers with the proper multiple).  Beware
2840 		 * of using any v_* fields which are part of unions.  In
2841 		 * particular, in DragonFly the mount point overloading
2842 		 * mechanism uses the namecache only and the underlying
2843 		 * directory vnode is not a special case.
2844 		 */
2845 		int bsize, maxsize;
2846 
2847 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2848 			bsize = DEV_BSIZE;
2849 		else if (vp->v_mount)
2850 			bsize = vp->v_mount->mnt_stat.f_iosize;
2851 		else
2852 			bsize = size;
2853 
2854 		maxsize = size + (loffset & PAGE_MASK);
2855 		maxsize = imax(maxsize, bsize);
2856 
2857 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2858 		if (bp == NULL) {
2859 			if (slpflags || slptimeo)
2860 				return NULL;
2861 			goto loop;
2862 		}
2863 
2864 		/*
2865 		 * Atomically insert the buffer into the hash, so that it can
2866 		 * be found by findblk().
2867 		 *
2868 		 * If bgetvp() returns non-zero a collision occured, and the
2869 		 * bp will not be associated with the vnode.
2870 		 *
2871 		 * Make sure the translation layer has been cleared.
2872 		 */
2873 		bp->b_loffset = loffset;
2874 		bp->b_bio2.bio_offset = NOOFFSET;
2875 		/* bp->b_bio2.bio_next = NULL; */
2876 
2877 		if (bgetvp(vp, bp)) {
2878 			bp->b_flags |= B_INVAL;
2879 			brelse(bp);
2880 			goto loop;
2881 		}
2882 
2883 		/*
2884 		 * All vnode-based buffers must be backed by a VM object.
2885 		 */
2886 		KKASSERT(vp->v_object != NULL);
2887 		bp->b_flags |= B_VMIO;
2888 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2889 
2890 		get_mplock();
2891 		allocbuf(bp, size);
2892 		rel_mplock();
2893 	}
2894 	return (bp);
2895 }
2896 
2897 /*
2898  * regetblk(bp)
2899  *
2900  * Reacquire a buffer that was previously released to the locked queue,
2901  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2902  * set B_LOCKED (which handles the acquisition race).
2903  *
2904  * To this end, either B_LOCKED must be set or the dependancy list must be
2905  * non-empty.
2906  *
2907  * MPSAFE
2908  */
2909 void
2910 regetblk(struct buf *bp)
2911 {
2912 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2913 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2914 	bremfree(bp);
2915 }
2916 
2917 /*
2918  * geteblk:
2919  *
2920  *	Get an empty, disassociated buffer of given size.  The buffer is
2921  *	initially set to B_INVAL.
2922  *
2923  *	critical section protection is not required for the allocbuf()
2924  *	call because races are impossible here.
2925  *
2926  * MPALMOSTSAFE
2927  */
2928 struct buf *
2929 geteblk(int size)
2930 {
2931 	struct buf *bp;
2932 	int maxsize;
2933 
2934 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2935 
2936 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2937 		;
2938 	get_mplock();
2939 	allocbuf(bp, size);
2940 	rel_mplock();
2941 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2942 	return (bp);
2943 }
2944 
2945 
2946 /*
2947  * allocbuf:
2948  *
2949  *	This code constitutes the buffer memory from either anonymous system
2950  *	memory (in the case of non-VMIO operations) or from an associated
2951  *	VM object (in the case of VMIO operations).  This code is able to
2952  *	resize a buffer up or down.
2953  *
2954  *	Note that this code is tricky, and has many complications to resolve
2955  *	deadlock or inconsistant data situations.  Tread lightly!!!
2956  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2957  *	the caller.  Calling this code willy nilly can result in the loss of data.
2958  *
2959  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2960  *	B_CACHE for the non-VMIO case.
2961  *
2962  *	This routine does not need to be called from a critical section but you
2963  *	must own the buffer.
2964  *
2965  * NOTMPSAFE
2966  */
2967 int
2968 allocbuf(struct buf *bp, int size)
2969 {
2970 	int newbsize, mbsize;
2971 	int i;
2972 
2973 	if (BUF_REFCNT(bp) == 0)
2974 		panic("allocbuf: buffer not busy");
2975 
2976 	if (bp->b_kvasize < size)
2977 		panic("allocbuf: buffer too small");
2978 
2979 	if ((bp->b_flags & B_VMIO) == 0) {
2980 		caddr_t origbuf;
2981 		int origbufsize;
2982 		/*
2983 		 * Just get anonymous memory from the kernel.  Don't
2984 		 * mess with B_CACHE.
2985 		 */
2986 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2987 		if (bp->b_flags & B_MALLOC)
2988 			newbsize = mbsize;
2989 		else
2990 			newbsize = round_page(size);
2991 
2992 		if (newbsize < bp->b_bufsize) {
2993 			/*
2994 			 * Malloced buffers are not shrunk
2995 			 */
2996 			if (bp->b_flags & B_MALLOC) {
2997 				if (newbsize) {
2998 					bp->b_bcount = size;
2999 				} else {
3000 					kfree(bp->b_data, M_BIOBUF);
3001 					if (bp->b_bufsize) {
3002 						bufmallocspace -= bp->b_bufsize;
3003 						bufspacewakeup();
3004 						bp->b_bufsize = 0;
3005 					}
3006 					bp->b_data = bp->b_kvabase;
3007 					bp->b_bcount = 0;
3008 					bp->b_flags &= ~B_MALLOC;
3009 				}
3010 				return 1;
3011 			}
3012 			vm_hold_free_pages(
3013 			    bp,
3014 			    (vm_offset_t) bp->b_data + newbsize,
3015 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3016 		} else if (newbsize > bp->b_bufsize) {
3017 			/*
3018 			 * We only use malloced memory on the first allocation.
3019 			 * and revert to page-allocated memory when the buffer
3020 			 * grows.
3021 			 */
3022 			if ((bufmallocspace < maxbufmallocspace) &&
3023 				(bp->b_bufsize == 0) &&
3024 				(mbsize <= PAGE_SIZE/2)) {
3025 
3026 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3027 				bp->b_bufsize = mbsize;
3028 				bp->b_bcount = size;
3029 				bp->b_flags |= B_MALLOC;
3030 				bufmallocspace += mbsize;
3031 				return 1;
3032 			}
3033 			origbuf = NULL;
3034 			origbufsize = 0;
3035 			/*
3036 			 * If the buffer is growing on its other-than-first
3037 			 * allocation, then we revert to the page-allocation
3038 			 * scheme.
3039 			 */
3040 			if (bp->b_flags & B_MALLOC) {
3041 				origbuf = bp->b_data;
3042 				origbufsize = bp->b_bufsize;
3043 				bp->b_data = bp->b_kvabase;
3044 				if (bp->b_bufsize) {
3045 					bufmallocspace -= bp->b_bufsize;
3046 					bufspacewakeup();
3047 					bp->b_bufsize = 0;
3048 				}
3049 				bp->b_flags &= ~B_MALLOC;
3050 				newbsize = round_page(newbsize);
3051 			}
3052 			vm_hold_load_pages(
3053 			    bp,
3054 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3055 			    (vm_offset_t) bp->b_data + newbsize);
3056 			if (origbuf) {
3057 				bcopy(origbuf, bp->b_data, origbufsize);
3058 				kfree(origbuf, M_BIOBUF);
3059 			}
3060 		}
3061 	} else {
3062 		vm_page_t m;
3063 		int desiredpages;
3064 
3065 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3066 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3067 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3068 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3069 
3070 		if (bp->b_flags & B_MALLOC)
3071 			panic("allocbuf: VMIO buffer can't be malloced");
3072 		/*
3073 		 * Set B_CACHE initially if buffer is 0 length or will become
3074 		 * 0-length.
3075 		 */
3076 		if (size == 0 || bp->b_bufsize == 0)
3077 			bp->b_flags |= B_CACHE;
3078 
3079 		if (newbsize < bp->b_bufsize) {
3080 			/*
3081 			 * DEV_BSIZE aligned new buffer size is less then the
3082 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3083 			 * if we have to remove any pages.
3084 			 */
3085 			if (desiredpages < bp->b_xio.xio_npages) {
3086 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3087 					/*
3088 					 * the page is not freed here -- it
3089 					 * is the responsibility of
3090 					 * vnode_pager_setsize
3091 					 */
3092 					m = bp->b_xio.xio_pages[i];
3093 					KASSERT(m != bogus_page,
3094 					    ("allocbuf: bogus page found"));
3095 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3096 						;
3097 
3098 					bp->b_xio.xio_pages[i] = NULL;
3099 					vm_page_unwire(m, 0);
3100 				}
3101 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3102 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3103 				bp->b_xio.xio_npages = desiredpages;
3104 			}
3105 		} else if (size > bp->b_bcount) {
3106 			/*
3107 			 * We are growing the buffer, possibly in a
3108 			 * byte-granular fashion.
3109 			 */
3110 			struct vnode *vp;
3111 			vm_object_t obj;
3112 			vm_offset_t toff;
3113 			vm_offset_t tinc;
3114 
3115 			/*
3116 			 * Step 1, bring in the VM pages from the object,
3117 			 * allocating them if necessary.  We must clear
3118 			 * B_CACHE if these pages are not valid for the
3119 			 * range covered by the buffer.
3120 			 *
3121 			 * critical section protection is required to protect
3122 			 * against interrupts unbusying and freeing pages
3123 			 * between our vm_page_lookup() and our
3124 			 * busycheck/wiring call.
3125 			 */
3126 			vp = bp->b_vp;
3127 			obj = vp->v_object;
3128 
3129 			crit_enter();
3130 			while (bp->b_xio.xio_npages < desiredpages) {
3131 				vm_page_t m;
3132 				vm_pindex_t pi;
3133 
3134 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3135 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3136 					/*
3137 					 * note: must allocate system pages
3138 					 * since blocking here could intefere
3139 					 * with paging I/O, no matter which
3140 					 * process we are.
3141 					 */
3142 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3143 					if (m) {
3144 						vm_page_wire(m);
3145 						vm_page_wakeup(m);
3146 						bp->b_flags &= ~B_CACHE;
3147 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3148 						++bp->b_xio.xio_npages;
3149 					}
3150 					continue;
3151 				}
3152 
3153 				/*
3154 				 * We found a page.  If we have to sleep on it,
3155 				 * retry because it might have gotten freed out
3156 				 * from under us.
3157 				 *
3158 				 * We can only test PG_BUSY here.  Blocking on
3159 				 * m->busy might lead to a deadlock:
3160 				 *
3161 				 *  vm_fault->getpages->cluster_read->allocbuf
3162 				 *
3163 				 */
3164 
3165 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3166 					continue;
3167 				vm_page_flag_clear(m, PG_ZERO);
3168 				vm_page_wire(m);
3169 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3170 				++bp->b_xio.xio_npages;
3171 			}
3172 			crit_exit();
3173 
3174 			/*
3175 			 * Step 2.  We've loaded the pages into the buffer,
3176 			 * we have to figure out if we can still have B_CACHE
3177 			 * set.  Note that B_CACHE is set according to the
3178 			 * byte-granular range ( bcount and size ), not the
3179 			 * aligned range ( newbsize ).
3180 			 *
3181 			 * The VM test is against m->valid, which is DEV_BSIZE
3182 			 * aligned.  Needless to say, the validity of the data
3183 			 * needs to also be DEV_BSIZE aligned.  Note that this
3184 			 * fails with NFS if the server or some other client
3185 			 * extends the file's EOF.  If our buffer is resized,
3186 			 * B_CACHE may remain set! XXX
3187 			 */
3188 
3189 			toff = bp->b_bcount;
3190 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3191 
3192 			while ((bp->b_flags & B_CACHE) && toff < size) {
3193 				vm_pindex_t pi;
3194 
3195 				if (tinc > (size - toff))
3196 					tinc = size - toff;
3197 
3198 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3199 				    PAGE_SHIFT;
3200 
3201 				vfs_buf_test_cache(
3202 				    bp,
3203 				    bp->b_loffset,
3204 				    toff,
3205 				    tinc,
3206 				    bp->b_xio.xio_pages[pi]
3207 				);
3208 				toff += tinc;
3209 				tinc = PAGE_SIZE;
3210 			}
3211 
3212 			/*
3213 			 * Step 3, fixup the KVM pmap.  Remember that
3214 			 * bp->b_data is relative to bp->b_loffset, but
3215 			 * bp->b_loffset may be offset into the first page.
3216 			 */
3217 
3218 			bp->b_data = (caddr_t)
3219 			    trunc_page((vm_offset_t)bp->b_data);
3220 			pmap_qenter(
3221 			    (vm_offset_t)bp->b_data,
3222 			    bp->b_xio.xio_pages,
3223 			    bp->b_xio.xio_npages
3224 			);
3225 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3226 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3227 		}
3228 	}
3229 
3230 	/* adjust space use on already-dirty buffer */
3231 	if (bp->b_flags & B_DELWRI) {
3232 		dirtybufspace += newbsize - bp->b_bufsize;
3233 		if (bp->b_flags & B_HEAVY)
3234 			dirtybufspacehw += newbsize - bp->b_bufsize;
3235 	}
3236 	if (newbsize < bp->b_bufsize)
3237 		bufspacewakeup();
3238 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3239 	bp->b_bcount = size;		/* requested buffer size	*/
3240 	return 1;
3241 }
3242 
3243 /*
3244  * biowait:
3245  *
3246  *	Wait for buffer I/O completion, returning error status.  The buffer
3247  *	is left locked on return.  B_EINTR is converted into an EINTR error
3248  *	and cleared.
3249  *
3250  *	NOTE!  The original b_cmd is lost on return, since b_cmd will be
3251  *	set to BUF_CMD_DONE.
3252  *
3253  * MPSAFE
3254  */
3255 int
3256 biowait(struct buf *bp)
3257 {
3258 	if (bp->b_cmd != BUF_CMD_DONE) {
3259 		crit_enter();
3260 		for (;;) {
3261 			tsleep_interlock(bp);
3262 			if (bp->b_cmd == BUF_CMD_DONE)
3263 				break;
3264 			if (bp->b_cmd == BUF_CMD_READ)
3265 				tsleep(bp, 0, "biord", 0);
3266 			else
3267 				tsleep(bp, 0, "biowr", 0);
3268 		}
3269 		crit_exit();
3270 	}
3271 	if (bp->b_flags & B_EINTR) {
3272 		bp->b_flags &= ~B_EINTR;
3273 		return (EINTR);
3274 	}
3275 	if (bp->b_flags & B_ERROR) {
3276 		return (bp->b_error ? bp->b_error : EIO);
3277 	} else {
3278 		return (0);
3279 	}
3280 }
3281 
3282 /*
3283  * This associates a tracking count with an I/O.  vn_strategy() and
3284  * dev_dstrategy() do this automatically but there are a few cases
3285  * where a vnode or device layer is bypassed when a block translation
3286  * is cached.  In such cases bio_start_transaction() may be called on
3287  * the bypassed layers so the system gets an I/O in progress indication
3288  * for those higher layers.
3289  */
3290 void
3291 bio_start_transaction(struct bio *bio, struct bio_track *track)
3292 {
3293 	bio->bio_track = track;
3294 	bio_track_ref(track);
3295 }
3296 
3297 /*
3298  * Initiate I/O on a vnode.
3299  */
3300 void
3301 vn_strategy(struct vnode *vp, struct bio *bio)
3302 {
3303 	struct bio_track *track;
3304 
3305 	KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
3306         if (bio->bio_buf->b_cmd == BUF_CMD_READ)
3307                 track = &vp->v_track_read;
3308         else
3309                 track = &vp->v_track_write;
3310 	bio->bio_track = track;
3311 	bio_track_ref(track);
3312         vop_strategy(*vp->v_ops, vp, bio);
3313 }
3314 
3315 /*
3316  * biodone:
3317  *
3318  *	Finish I/O on a buffer, optionally calling a completion function.
3319  *	This is usually called from an interrupt so process blocking is
3320  *	not allowed.
3321  *
3322  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3323  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3324  *	assuming B_INVAL is clear.
3325  *
3326  *	For the VMIO case, we set B_CACHE if the op was a read and no
3327  *	read error occured, or if the op was a write.  B_CACHE is never
3328  *	set if the buffer is invalid or otherwise uncacheable.
3329  *
3330  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3331  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3332  *	in the biodone routine.
3333  */
3334 void
3335 biodone(struct bio *bio)
3336 {
3337 	struct buf *bp = bio->bio_buf;
3338 	buf_cmd_t cmd;
3339 
3340 	crit_enter();
3341 
3342 	KASSERT(BUF_REFCNTNB(bp) > 0,
3343 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3344 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3345 		("biodone: bp %p already done!", bp));
3346 
3347 	runningbufwakeup(bp);
3348 
3349 	/*
3350 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3351 	 */
3352 	while (bio) {
3353 		biodone_t *done_func;
3354 		struct bio_track *track;
3355 
3356 		/*
3357 		 * BIO tracking.  Most but not all BIOs are tracked.
3358 		 */
3359 		if ((track = bio->bio_track) != NULL) {
3360 			bio_track_rel(track);
3361 			bio->bio_track = NULL;
3362 		}
3363 
3364 		/*
3365 		 * A bio_done function terminates the loop.  The function
3366 		 * will be responsible for any further chaining and/or
3367 		 * buffer management.
3368 		 *
3369 		 * WARNING!  The done function can deallocate the buffer!
3370 		 */
3371 		if ((done_func = bio->bio_done) != NULL) {
3372 			bio->bio_done = NULL;
3373 			done_func(bio);
3374 			crit_exit();
3375 			return;
3376 		}
3377 		bio = bio->bio_prev;
3378 	}
3379 
3380 	cmd = bp->b_cmd;
3381 	bp->b_cmd = BUF_CMD_DONE;
3382 
3383 	/*
3384 	 * Only reads and writes are processed past this point.
3385 	 */
3386 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3387 		if (cmd == BUF_CMD_FREEBLKS)
3388 			bp->b_flags |= B_NOCACHE;
3389 		brelse(bp);
3390 		crit_exit();
3391 		return;
3392 	}
3393 
3394 	/*
3395 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3396 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3397 	 */
3398 	if (LIST_FIRST(&bp->b_dep) != NULL)
3399 		buf_complete(bp);
3400 
3401 	/*
3402 	 * A failed write must re-dirty the buffer unless B_INVAL
3403 	 * was set.
3404 	 */
3405 	if (cmd == BUF_CMD_WRITE &&
3406 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3407 		bp->b_flags &= ~B_NOCACHE;
3408 		bdirty(bp);
3409 	}
3410 
3411 
3412 	if (bp->b_flags & B_VMIO) {
3413 		int i;
3414 		vm_ooffset_t foff;
3415 		vm_page_t m;
3416 		vm_object_t obj;
3417 		int iosize;
3418 		struct vnode *vp = bp->b_vp;
3419 
3420 		obj = vp->v_object;
3421 
3422 #if defined(VFS_BIO_DEBUG)
3423 		if (vp->v_auxrefs == 0)
3424 			panic("biodone: zero vnode hold count");
3425 		if ((vp->v_flag & VOBJBUF) == 0)
3426 			panic("biodone: vnode is not setup for merged cache");
3427 #endif
3428 
3429 		foff = bp->b_loffset;
3430 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3431 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3432 
3433 #if defined(VFS_BIO_DEBUG)
3434 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3435 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3436 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3437 		}
3438 #endif
3439 
3440 		/*
3441 		 * Set B_CACHE if the op was a normal read and no error
3442 		 * occured.  B_CACHE is set for writes in the b*write()
3443 		 * routines.
3444 		 */
3445 		iosize = bp->b_bcount - bp->b_resid;
3446 		if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3447 			bp->b_flags |= B_CACHE;
3448 		}
3449 
3450 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3451 			int bogusflag = 0;
3452 			int resid;
3453 
3454 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3455 			if (resid > iosize)
3456 				resid = iosize;
3457 
3458 			/*
3459 			 * cleanup bogus pages, restoring the originals.  Since
3460 			 * the originals should still be wired, we don't have
3461 			 * to worry about interrupt/freeing races destroying
3462 			 * the VM object association.
3463 			 */
3464 			m = bp->b_xio.xio_pages[i];
3465 			if (m == bogus_page) {
3466 				bogusflag = 1;
3467 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3468 				if (m == NULL)
3469 					panic("biodone: page disappeared");
3470 				bp->b_xio.xio_pages[i] = m;
3471 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3472 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3473 			}
3474 #if defined(VFS_BIO_DEBUG)
3475 			if (OFF_TO_IDX(foff) != m->pindex) {
3476 				kprintf(
3477 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
3478 				    (unsigned long)foff, m->pindex);
3479 			}
3480 #endif
3481 
3482 			/*
3483 			 * In the write case, the valid and clean bits are
3484 			 * already changed correctly ( see bdwrite() ), so we
3485 			 * only need to do this here in the read case.
3486 			 */
3487 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3488 				vfs_page_set_valid(bp, foff, i, m);
3489 			}
3490 			vm_page_flag_clear(m, PG_ZERO);
3491 
3492 			/*
3493 			 * when debugging new filesystems or buffer I/O methods, this
3494 			 * is the most common error that pops up.  if you see this, you
3495 			 * have not set the page busy flag correctly!!!
3496 			 */
3497 			if (m->busy == 0) {
3498 				kprintf("biodone: page busy < 0, "
3499 				    "pindex: %d, foff: 0x(%x,%x), "
3500 				    "resid: %d, index: %d\n",
3501 				    (int) m->pindex, (int)(foff >> 32),
3502 						(int) foff & 0xffffffff, resid, i);
3503 				if (!vn_isdisk(vp, NULL))
3504 					kprintf(" iosize: %ld, loffset: %lld, "
3505 						"flags: 0x%08x, npages: %d\n",
3506 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3507 					    (long long)bp->b_loffset,
3508 					    bp->b_flags, bp->b_xio.xio_npages);
3509 				else
3510 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3511 					    (long long)bp->b_loffset,
3512 					    bp->b_flags, bp->b_xio.xio_npages);
3513 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3514 				    m->valid, m->dirty, m->wire_count);
3515 				panic("biodone: page busy < 0");
3516 			}
3517 			vm_page_io_finish(m);
3518 			vm_object_pip_subtract(obj, 1);
3519 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3520 			iosize -= resid;
3521 		}
3522 		if (obj)
3523 			vm_object_pip_wakeupn(obj, 0);
3524 	}
3525 
3526 	/*
3527 	 * For asynchronous completions, release the buffer now. The brelse
3528 	 * will do a wakeup there if necessary - so no need to do a wakeup
3529 	 * here in the async case. The sync case always needs to do a wakeup.
3530 	 */
3531 
3532 	if (bp->b_flags & B_ASYNC) {
3533 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3534 			brelse(bp);
3535 		else
3536 			bqrelse(bp);
3537 	} else {
3538 		wakeup(bp);
3539 	}
3540 	crit_exit();
3541 }
3542 
3543 /*
3544  * vfs_unbusy_pages:
3545  *
3546  *	This routine is called in lieu of iodone in the case of
3547  *	incomplete I/O.  This keeps the busy status for pages
3548  *	consistant.
3549  */
3550 void
3551 vfs_unbusy_pages(struct buf *bp)
3552 {
3553 	int i;
3554 
3555 	runningbufwakeup(bp);
3556 	if (bp->b_flags & B_VMIO) {
3557 		struct vnode *vp = bp->b_vp;
3558 		vm_object_t obj;
3559 
3560 		obj = vp->v_object;
3561 
3562 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3563 			vm_page_t m = bp->b_xio.xio_pages[i];
3564 
3565 			/*
3566 			 * When restoring bogus changes the original pages
3567 			 * should still be wired, so we are in no danger of
3568 			 * losing the object association and do not need
3569 			 * critical section protection particularly.
3570 			 */
3571 			if (m == bogus_page) {
3572 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3573 				if (!m) {
3574 					panic("vfs_unbusy_pages: page missing");
3575 				}
3576 				bp->b_xio.xio_pages[i] = m;
3577 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3578 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3579 			}
3580 			vm_object_pip_subtract(obj, 1);
3581 			vm_page_flag_clear(m, PG_ZERO);
3582 			vm_page_io_finish(m);
3583 		}
3584 		vm_object_pip_wakeupn(obj, 0);
3585 	}
3586 }
3587 
3588 /*
3589  * vfs_page_set_valid:
3590  *
3591  *	Set the valid bits in a page based on the supplied offset.   The
3592  *	range is restricted to the buffer's size.
3593  *
3594  *	This routine is typically called after a read completes.
3595  */
3596 static void
3597 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3598 {
3599 	vm_ooffset_t soff, eoff;
3600 
3601 	/*
3602 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3603 	 * page boundry or cross the end of the buffer.  The end of the
3604 	 * buffer, in this case, is our file EOF, not the allocation size
3605 	 * of the buffer.
3606 	 */
3607 	soff = off;
3608 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3609 	if (eoff > bp->b_loffset + bp->b_bcount)
3610 		eoff = bp->b_loffset + bp->b_bcount;
3611 
3612 	/*
3613 	 * Set valid range.  This is typically the entire buffer and thus the
3614 	 * entire page.
3615 	 */
3616 	if (eoff > soff) {
3617 		vm_page_set_validclean(
3618 		    m,
3619 		   (vm_offset_t) (soff & PAGE_MASK),
3620 		   (vm_offset_t) (eoff - soff)
3621 		);
3622 	}
3623 }
3624 
3625 /*
3626  * vfs_busy_pages:
3627  *
3628  *	This routine is called before a device strategy routine.
3629  *	It is used to tell the VM system that paging I/O is in
3630  *	progress, and treat the pages associated with the buffer
3631  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3632  *	flag is handled to make sure that the object doesn't become
3633  *	inconsistant.
3634  *
3635  *	Since I/O has not been initiated yet, certain buffer flags
3636  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3637  *	and should be ignored.
3638  */
3639 void
3640 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3641 {
3642 	int i, bogus;
3643 	struct lwp *lp = curthread->td_lwp;
3644 
3645 	/*
3646 	 * The buffer's I/O command must already be set.  If reading,
3647 	 * B_CACHE must be 0 (double check against callers only doing
3648 	 * I/O when B_CACHE is 0).
3649 	 */
3650 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3651 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3652 
3653 	if (bp->b_flags & B_VMIO) {
3654 		vm_object_t obj;
3655 		vm_ooffset_t foff;
3656 
3657 		obj = vp->v_object;
3658 		foff = bp->b_loffset;
3659 		KASSERT(bp->b_loffset != NOOFFSET,
3660 			("vfs_busy_pages: no buffer offset"));
3661 		vfs_setdirty(bp);
3662 
3663 		/*
3664 		 * Loop until none of the pages are busy.
3665 		 */
3666 retry:
3667 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3668 			vm_page_t m = bp->b_xio.xio_pages[i];
3669 
3670 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3671 				goto retry;
3672 		}
3673 
3674 		/*
3675 		 * Setup for I/O, soft-busy the page right now because
3676 		 * the next loop may block.
3677 		 */
3678 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3679 			vm_page_t m = bp->b_xio.xio_pages[i];
3680 
3681 			vm_page_flag_clear(m, PG_ZERO);
3682 			if ((bp->b_flags & B_CLUSTER) == 0) {
3683 				vm_object_pip_add(obj, 1);
3684 				vm_page_io_start(m);
3685 			}
3686 		}
3687 
3688 		/*
3689 		 * Adjust protections for I/O and do bogus-page mapping.
3690 		 * Assume that vm_page_protect() can block (it can block
3691 		 * if VM_PROT_NONE, don't take any chances regardless).
3692 		 */
3693 		bogus = 0;
3694 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3695 			vm_page_t m = bp->b_xio.xio_pages[i];
3696 
3697 			/*
3698 			 * When readying a vnode-backed buffer for a write
3699 			 * we must zero-fill any invalid portions of the
3700 			 * backing VM pages.
3701 			 *
3702 			 * When readying a vnode-backed buffer for a read
3703 			 * we must replace any dirty pages with a bogus
3704 			 * page so we do not destroy dirty data when
3705 			 * filling in gaps.  Dirty pages might not
3706 			 * necessarily be marked dirty yet, so use m->valid
3707 			 * as a reasonable test.
3708 			 *
3709 			 * Bogus page replacement is, uh, bogus.  We need
3710 			 * to find a better way.
3711 			 */
3712 			if (bp->b_cmd == BUF_CMD_WRITE) {
3713 				vm_page_protect(m, VM_PROT_READ);
3714 				vfs_page_set_valid(bp, foff, i, m);
3715 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3716 				bp->b_xio.xio_pages[i] = bogus_page;
3717 				bogus++;
3718 			} else {
3719 				vm_page_protect(m, VM_PROT_NONE);
3720 			}
3721 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3722 		}
3723 		if (bogus)
3724 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3725 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3726 	}
3727 
3728 	/*
3729 	 * This is the easiest place to put the process accounting for the I/O
3730 	 * for now.
3731 	 */
3732 	if (lp != NULL) {
3733 		if (bp->b_cmd == BUF_CMD_READ)
3734 			lp->lwp_ru.ru_inblock++;
3735 		else
3736 			lp->lwp_ru.ru_oublock++;
3737 	}
3738 }
3739 
3740 /*
3741  * vfs_clean_pages:
3742  *
3743  *	Tell the VM system that the pages associated with this buffer
3744  *	are clean.  This is used for delayed writes where the data is
3745  *	going to go to disk eventually without additional VM intevention.
3746  *
3747  *	Note that while we only really need to clean through to b_bcount, we
3748  *	just go ahead and clean through to b_bufsize.
3749  */
3750 static void
3751 vfs_clean_pages(struct buf *bp)
3752 {
3753 	int i;
3754 
3755 	if (bp->b_flags & B_VMIO) {
3756 		vm_ooffset_t foff;
3757 
3758 		foff = bp->b_loffset;
3759 		KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3760 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3761 			vm_page_t m = bp->b_xio.xio_pages[i];
3762 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3763 
3764 			vfs_page_set_valid(bp, foff, i, m);
3765 			foff = noff;
3766 		}
3767 	}
3768 }
3769 
3770 /*
3771  * vfs_bio_set_validclean:
3772  *
3773  *	Set the range within the buffer to valid and clean.  The range is
3774  *	relative to the beginning of the buffer, b_loffset.  Note that
3775  *	b_loffset itself may be offset from the beginning of the first page.
3776  */
3777 
3778 void
3779 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3780 {
3781 	if (bp->b_flags & B_VMIO) {
3782 		int i;
3783 		int n;
3784 
3785 		/*
3786 		 * Fixup base to be relative to beginning of first page.
3787 		 * Set initial n to be the maximum number of bytes in the
3788 		 * first page that can be validated.
3789 		 */
3790 
3791 		base += (bp->b_loffset & PAGE_MASK);
3792 		n = PAGE_SIZE - (base & PAGE_MASK);
3793 
3794 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3795 			vm_page_t m = bp->b_xio.xio_pages[i];
3796 
3797 			if (n > size)
3798 				n = size;
3799 
3800 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3801 			base += n;
3802 			size -= n;
3803 			n = PAGE_SIZE;
3804 		}
3805 	}
3806 }
3807 
3808 /*
3809  * vfs_bio_clrbuf:
3810  *
3811  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3812  *	to clear B_ERROR and B_INVAL.
3813  *
3814  *	Note that while we only theoretically need to clear through b_bcount,
3815  *	we go ahead and clear through b_bufsize.
3816  */
3817 
3818 void
3819 vfs_bio_clrbuf(struct buf *bp)
3820 {
3821 	int i, mask = 0;
3822 	caddr_t sa, ea;
3823 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3824 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3825 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3826 		    (bp->b_loffset & PAGE_MASK) == 0) {
3827 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3828 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3829 				bp->b_resid = 0;
3830 				return;
3831 			}
3832 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3833 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3834 				bzero(bp->b_data, bp->b_bufsize);
3835 				bp->b_xio.xio_pages[0]->valid |= mask;
3836 				bp->b_resid = 0;
3837 				return;
3838 			}
3839 		}
3840 		sa = bp->b_data;
3841 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3842 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3843 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3844 			ea = (caddr_t)(vm_offset_t)ulmin(
3845 			    (u_long)(vm_offset_t)ea,
3846 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3847 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3848 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3849 				continue;
3850 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3851 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3852 					bzero(sa, ea - sa);
3853 				}
3854 			} else {
3855 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3856 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3857 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3858 						bzero(sa, DEV_BSIZE);
3859 				}
3860 			}
3861 			bp->b_xio.xio_pages[i]->valid |= mask;
3862 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3863 		}
3864 		bp->b_resid = 0;
3865 	} else {
3866 		clrbuf(bp);
3867 	}
3868 }
3869 
3870 /*
3871  * vm_hold_load_pages:
3872  *
3873  *	Load pages into the buffer's address space.  The pages are
3874  *	allocated from the kernel object in order to reduce interference
3875  *	with the any VM paging I/O activity.  The range of loaded
3876  *	pages will be wired.
3877  *
3878  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
3879  *	retrieve the full range (to - from) of pages.
3880  *
3881  */
3882 void
3883 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3884 {
3885 	vm_offset_t pg;
3886 	vm_page_t p;
3887 	int index;
3888 
3889 	to = round_page(to);
3890 	from = round_page(from);
3891 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3892 
3893 	pg = from;
3894 	while (pg < to) {
3895 		/*
3896 		 * Note: must allocate system pages since blocking here
3897 		 * could intefere with paging I/O, no matter which
3898 		 * process we are.
3899 		 */
3900 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
3901 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
3902 		if (p) {
3903 			vm_page_wire(p);
3904 			p->valid = VM_PAGE_BITS_ALL;
3905 			vm_page_flag_clear(p, PG_ZERO);
3906 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3907 			bp->b_xio.xio_pages[index] = p;
3908 			vm_page_wakeup(p);
3909 
3910 			pg += PAGE_SIZE;
3911 			++index;
3912 		}
3913 	}
3914 	bp->b_xio.xio_npages = index;
3915 }
3916 
3917 /*
3918  * Allocate pages for a buffer cache buffer.
3919  *
3920  * Under extremely severe memory conditions even allocating out of the
3921  * system reserve can fail.  If this occurs we must allocate out of the
3922  * interrupt reserve to avoid a deadlock with the pageout daemon.
3923  *
3924  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
3925  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
3926  * against the pageout daemon if pages are not freed from other sources.
3927  */
3928 static
3929 vm_page_t
3930 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
3931 {
3932 	vm_page_t p;
3933 
3934 	/*
3935 	 * Try a normal allocation, allow use of system reserve.
3936 	 */
3937 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3938 	if (p)
3939 		return(p);
3940 
3941 	/*
3942 	 * The normal allocation failed and we clearly have a page
3943 	 * deficit.  Try to reclaim some clean VM pages directly
3944 	 * from the buffer cache.
3945 	 */
3946 	vm_pageout_deficit += deficit;
3947 	recoverbufpages();
3948 
3949 	/*
3950 	 * We may have blocked, the caller will know what to do if the
3951 	 * page now exists.
3952 	 */
3953 	if (vm_page_lookup(obj, pg))
3954 		return(NULL);
3955 
3956 	/*
3957 	 * Allocate and allow use of the interrupt reserve.
3958 	 *
3959 	 * If after all that we still can't allocate a VM page we are
3960 	 * in real trouble, but we slog on anyway hoping that the system
3961 	 * won't deadlock.
3962 	 */
3963 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
3964 				   VM_ALLOC_INTERRUPT);
3965 	if (p) {
3966 		if (vm_page_count_severe()) {
3967 			kprintf("bio_page_alloc: WARNING emergency page "
3968 				"allocation\n");
3969 			vm_wait(hz / 20);
3970 		}
3971 	} else {
3972 		kprintf("bio_page_alloc: WARNING emergency page "
3973 			"allocation failed\n");
3974 		vm_wait(hz * 5);
3975 	}
3976 	return(p);
3977 }
3978 
3979 /*
3980  * vm_hold_free_pages:
3981  *
3982  *	Return pages associated with the buffer back to the VM system.
3983  *
3984  *	The range of pages underlying the buffer's address space will
3985  *	be unmapped and un-wired.
3986  */
3987 void
3988 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3989 {
3990 	vm_offset_t pg;
3991 	vm_page_t p;
3992 	int index, newnpages;
3993 
3994 	from = round_page(from);
3995 	to = round_page(to);
3996 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3997 
3998 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3999 		p = bp->b_xio.xio_pages[index];
4000 		if (p && (index < bp->b_xio.xio_npages)) {
4001 			if (p->busy) {
4002 				kprintf("vm_hold_free_pages: doffset: %lld, "
4003 					"loffset: %lld\n",
4004 					(long long)bp->b_bio2.bio_offset,
4005 					(long long)bp->b_loffset);
4006 			}
4007 			bp->b_xio.xio_pages[index] = NULL;
4008 			pmap_kremove(pg);
4009 			vm_page_busy(p);
4010 			vm_page_unwire(p, 0);
4011 			vm_page_free(p);
4012 		}
4013 	}
4014 	bp->b_xio.xio_npages = newnpages;
4015 }
4016 
4017 /*
4018  * vmapbuf:
4019  *
4020  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4021  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4022  *	initialized.
4023  */
4024 int
4025 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4026 {
4027 	caddr_t addr;
4028 	vm_offset_t va;
4029 	vm_page_t m;
4030 	int vmprot;
4031 	int error;
4032 	int pidx;
4033 	int i;
4034 
4035 	/*
4036 	 * bp had better have a command and it better be a pbuf.
4037 	 */
4038 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4039 	KKASSERT(bp->b_flags & B_PAGING);
4040 
4041 	if (bytes < 0)
4042 		return (-1);
4043 
4044 	/*
4045 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4046 	 */
4047 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4048 	pidx = 0;
4049 
4050 	vmprot = VM_PROT_READ;
4051 	if (bp->b_cmd == BUF_CMD_READ)
4052 		vmprot |= VM_PROT_WRITE;
4053 
4054 	while (addr < udata + bytes) {
4055 		/*
4056 		 * Do the vm_fault if needed; do the copy-on-write thing
4057 		 * when reading stuff off device into memory.
4058 		 *
4059 		 * vm_fault_page*() returns a held VM page.
4060 		 */
4061 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4062 		va = trunc_page(va);
4063 
4064 		m = vm_fault_page_quick(va, vmprot, &error);
4065 		if (m == NULL) {
4066 			for (i = 0; i < pidx; ++i) {
4067 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4068 			    bp->b_xio.xio_pages[i] = NULL;
4069 			}
4070 			return(-1);
4071 		}
4072 		bp->b_xio.xio_pages[pidx] = m;
4073 		addr += PAGE_SIZE;
4074 		++pidx;
4075 	}
4076 
4077 	/*
4078 	 * Map the page array and set the buffer fields to point to
4079 	 * the mapped data buffer.
4080 	 */
4081 	if (pidx > btoc(MAXPHYS))
4082 		panic("vmapbuf: mapped more than MAXPHYS");
4083 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4084 
4085 	bp->b_xio.xio_npages = pidx;
4086 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4087 	bp->b_bcount = bytes;
4088 	bp->b_bufsize = bytes;
4089 	return(0);
4090 }
4091 
4092 /*
4093  * vunmapbuf:
4094  *
4095  *	Free the io map PTEs associated with this IO operation.
4096  *	We also invalidate the TLB entries and restore the original b_addr.
4097  */
4098 void
4099 vunmapbuf(struct buf *bp)
4100 {
4101 	int pidx;
4102 	int npages;
4103 
4104 	KKASSERT(bp->b_flags & B_PAGING);
4105 
4106 	npages = bp->b_xio.xio_npages;
4107 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4108 	for (pidx = 0; pidx < npages; ++pidx) {
4109 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4110 		bp->b_xio.xio_pages[pidx] = NULL;
4111 	}
4112 	bp->b_xio.xio_npages = 0;
4113 	bp->b_data = bp->b_kvabase;
4114 }
4115 
4116 /*
4117  * Scan all buffers in the system and issue the callback.
4118  */
4119 int
4120 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4121 {
4122 	int count = 0;
4123 	int error;
4124 	int n;
4125 
4126 	for (n = 0; n < nbuf; ++n) {
4127 		if ((error = callback(&buf[n], info)) < 0) {
4128 			count = error;
4129 			break;
4130 		}
4131 		count += error;
4132 	}
4133 	return (count);
4134 }
4135 
4136 /*
4137  * print out statistics from the current status of the buffer pool
4138  * this can be toggeled by the system control option debug.syncprt
4139  */
4140 #ifdef DEBUG
4141 void
4142 vfs_bufstats(void)
4143 {
4144         int i, j, count;
4145         struct buf *bp;
4146         struct bqueues *dp;
4147         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4148         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4149 
4150         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4151                 count = 0;
4152                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4153                         counts[j] = 0;
4154 		crit_enter();
4155                 TAILQ_FOREACH(bp, dp, b_freelist) {
4156                         counts[bp->b_bufsize/PAGE_SIZE]++;
4157                         count++;
4158                 }
4159 		crit_exit();
4160                 kprintf("%s: total-%d", bname[i], count);
4161                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4162                         if (counts[j] != 0)
4163                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4164                 kprintf("\n");
4165         }
4166 }
4167 #endif
4168 
4169 #ifdef DDB
4170 
4171 DB_SHOW_COMMAND(buffer, db_show_buffer)
4172 {
4173 	/* get args */
4174 	struct buf *bp = (struct buf *)addr;
4175 
4176 	if (!have_addr) {
4177 		db_printf("usage: show buffer <addr>\n");
4178 		return;
4179 	}
4180 
4181 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4182 	db_printf("b_cmd = %d\n", bp->b_cmd);
4183 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4184 		  "b_resid = %d\n, b_data = %p, "
4185 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4186 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4187 		  bp->b_data,
4188 		  (long long)bp->b_bio2.bio_offset,
4189 		  (long long)(bp->b_bio2.bio_next ?
4190 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4191 	if (bp->b_xio.xio_npages) {
4192 		int i;
4193 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4194 			bp->b_xio.xio_npages);
4195 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4196 			vm_page_t m;
4197 			m = bp->b_xio.xio_pages[i];
4198 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4199 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4200 			if ((i + 1) < bp->b_xio.xio_npages)
4201 				db_printf(",");
4202 		}
4203 		db_printf("\n");
4204 	}
4205 }
4206 #endif /* DDB */
4207