xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 5b991541a99aa38e5ca17ac8e6abee49bd57ac56)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <sys/proc.h>
50 #include <vm/vm.h>
51 #include <vm/vm_param.h>
52 #include <vm/vm_kern.h>
53 #include <vm/vm_pageout.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_extern.h>
57 #include <vm/vm_map.h>
58 #include <vm/vm_pager.h>
59 #include <vm/swap_pager.h>
60 
61 #include <sys/buf2.h>
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
64 #include <sys/mplock2.h>
65 #include <vm/vm_page2.h>
66 
67 #include "opt_ddb.h"
68 #ifdef DDB
69 #include <ddb/ddb.h>
70 #endif
71 
72 /*
73  * Buffer queues.
74  */
75 enum bufq_type {
76 	BQUEUE_NONE,    	/* not on any queue */
77 	BQUEUE_LOCKED,  	/* locked buffers */
78 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
79 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
80 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
81 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
82 	BQUEUE_EMPTY,    	/* empty buffer headers */
83 
84 	BUFFER_QUEUES		/* number of buffer queues */
85 };
86 
87 typedef enum bufq_type bufq_type_t;
88 
89 #define BD_WAKE_SIZE	16384
90 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
91 
92 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
93 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
94 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
95 
96 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
97 
98 struct buf *buf;		/* buffer header pool */
99 
100 static void vfs_clean_pages(struct buf *bp);
101 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
102 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
103 static void vfs_vmio_release(struct buf *bp);
104 static int flushbufqueues(bufq_type_t q);
105 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
106 
107 static void bd_signal(int totalspace);
108 static void buf_daemon(void);
109 static void buf_daemon_hw(void);
110 
111 /*
112  * bogus page -- for I/O to/from partially complete buffers
113  * this is a temporary solution to the problem, but it is not
114  * really that bad.  it would be better to split the buffer
115  * for input in the case of buffers partially already in memory,
116  * but the code is intricate enough already.
117  */
118 vm_page_t bogus_page;
119 
120 /*
121  * These are all static, but make the ones we export globals so we do
122  * not need to use compiler magic.
123  */
124 int bufspace;			/* locked by buffer_map */
125 int maxbufspace;
126 static int bufmallocspace;	/* atomic ops */
127 int maxbufmallocspace, lobufspace, hibufspace;
128 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
129 static int lorunningspace;
130 static int hirunningspace;
131 static int runningbufreq;		/* locked by bufcspin */
132 static int dirtybufspace;		/* locked by bufcspin */
133 static int dirtybufcount;		/* locked by bufcspin */
134 static int dirtybufspacehw;		/* locked by bufcspin */
135 static int dirtybufcounthw;		/* locked by bufcspin */
136 static int runningbufspace;		/* locked by bufcspin */
137 static int runningbufcount;		/* locked by bufcspin */
138 int lodirtybufspace;
139 int hidirtybufspace;
140 static int getnewbufcalls;
141 static int getnewbufrestarts;
142 static int recoverbufcalls;
143 static int needsbuffer;		/* locked by bufcspin */
144 static int bd_request;		/* locked by bufcspin */
145 static int bd_request_hw;	/* locked by bufcspin */
146 static u_int bd_wake_ary[BD_WAKE_SIZE];
147 static u_int bd_wake_index;
148 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
149 static int debug_commit;
150 
151 static struct thread *bufdaemon_td;
152 static struct thread *bufdaemonhw_td;
153 static u_int lowmempgallocs;
154 static u_int lowmempgfails;
155 
156 /*
157  * Sysctls for operational control of the buffer cache.
158  */
159 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
160 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
161 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
162 	"High watermark used to trigger explicit flushing of dirty buffers");
163 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
164 	"Minimum amount of buffer space required for active I/O");
165 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
166 	"Maximum amount of buffer space to usable for active I/O");
167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
168 	"Page allocations done during periods of very low free memory");
169 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
170 	"Page allocations which failed during periods of very low free memory");
171 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
172 	"Recycle pages to active or inactive queue transition pt 0-64");
173 /*
174  * Sysctls determining current state of the buffer cache.
175  */
176 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
177 	"Total number of buffers in buffer cache");
178 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
179 	"Pending bytes of dirty buffers (all)");
180 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
181 	"Pending bytes of dirty buffers (heavy weight)");
182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
183 	"Pending number of dirty buffers");
184 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
185 	"Pending number of dirty buffers (heavy weight)");
186 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
187 	"I/O bytes currently in progress due to asynchronous writes");
188 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
189 	"I/O buffers currently in progress due to asynchronous writes");
190 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
191 	"Hard limit on maximum amount of memory usable for buffer space");
192 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
193 	"Soft limit on maximum amount of memory usable for buffer space");
194 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
195 	"Minimum amount of memory to reserve for system buffer space");
196 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
197 	"Amount of memory available for buffers");
198 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
199 	0, "Maximum amount of memory reserved for buffers using malloc");
200 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
201 	"Amount of memory left for buffers using malloc-scheme");
202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
203 	"New buffer header acquisition requests");
204 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
205 	0, "New buffer header acquisition restarts");
206 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
207 	"Recover VM space in an emergency");
208 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
209 	"Buffer acquisition restarts due to fragmented buffer map");
210 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
211 	"Amount of time KVA space was deallocated in an arbitrary buffer");
212 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
213 	"Amount of time buffer re-use operations were successful");
214 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
215 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
216 	"sizeof(struct buf)");
217 
218 char *buf_wmesg = BUF_WMESG;
219 
220 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
221 #define VFS_BIO_NEED_UNUSED02	0x02
222 #define VFS_BIO_NEED_UNUSED04	0x04
223 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
224 
225 /*
226  * bufspacewakeup:
227  *
228  *	Called when buffer space is potentially available for recovery.
229  *	getnewbuf() will block on this flag when it is unable to free
230  *	sufficient buffer space.  Buffer space becomes recoverable when
231  *	bp's get placed back in the queues.
232  */
233 static __inline void
234 bufspacewakeup(void)
235 {
236 	/*
237 	 * If someone is waiting for BUF space, wake them up.  Even
238 	 * though we haven't freed the kva space yet, the waiting
239 	 * process will be able to now.
240 	 */
241 	spin_lock(&bufcspin);
242 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
243 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
244 		spin_unlock(&bufcspin);
245 		wakeup(&needsbuffer);
246 	} else {
247 		spin_unlock(&bufcspin);
248 	}
249 }
250 
251 /*
252  * runningbufwakeup:
253  *
254  *	Accounting for I/O in progress.
255  *
256  */
257 static __inline void
258 runningbufwakeup(struct buf *bp)
259 {
260 	int totalspace;
261 	int limit;
262 
263 	if ((totalspace = bp->b_runningbufspace) != 0) {
264 		spin_lock(&bufcspin);
265 		runningbufspace -= totalspace;
266 		--runningbufcount;
267 		bp->b_runningbufspace = 0;
268 
269 		/*
270 		 * see waitrunningbufspace() for limit test.
271 		 */
272 		limit = hirunningspace * 4 / 6;
273 		if (runningbufreq && runningbufspace <= limit) {
274 			runningbufreq = 0;
275 			spin_unlock(&bufcspin);
276 			wakeup(&runningbufreq);
277 		} else {
278 			spin_unlock(&bufcspin);
279 		}
280 		bd_signal(totalspace);
281 	}
282 }
283 
284 /*
285  * bufcountwakeup:
286  *
287  *	Called when a buffer has been added to one of the free queues to
288  *	account for the buffer and to wakeup anyone waiting for free buffers.
289  *	This typically occurs when large amounts of metadata are being handled
290  *	by the buffer cache ( else buffer space runs out first, usually ).
291  *
292  * MPSAFE
293  */
294 static __inline void
295 bufcountwakeup(void)
296 {
297 	spin_lock(&bufcspin);
298 	if (needsbuffer) {
299 		needsbuffer &= ~VFS_BIO_NEED_ANY;
300 		spin_unlock(&bufcspin);
301 		wakeup(&needsbuffer);
302 	} else {
303 		spin_unlock(&bufcspin);
304 	}
305 }
306 
307 /*
308  * waitrunningbufspace()
309  *
310  * Wait for the amount of running I/O to drop to hirunningspace * 4 / 6.
311  * This is the point where write bursting stops so we don't want to wait
312  * for the running amount to drop below it (at least if we still want bioq
313  * to burst writes).
314  *
315  * The caller may be using this function to block in a tight loop, we
316  * must block while runningbufspace is greater then or equal to
317  * hirunningspace * 4 / 6.
318  *
319  * And even with that it may not be enough, due to the presence of
320  * B_LOCKED dirty buffers, so also wait for at least one running buffer
321  * to complete.
322  */
323 void
324 waitrunningbufspace(void)
325 {
326 	int limit = hirunningspace * 4 / 6;
327 	int dummy;
328 
329 	spin_lock(&bufcspin);
330 	if (runningbufspace > limit) {
331 		while (runningbufspace > limit) {
332 			++runningbufreq;
333 			ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
334 		}
335 		spin_unlock(&bufcspin);
336 	} else if (runningbufspace > limit / 2) {
337 		++runningbufreq;
338 		spin_unlock(&bufcspin);
339 		tsleep(&dummy, 0, "wdrn2", 1);
340 	} else {
341 		spin_unlock(&bufcspin);
342 	}
343 }
344 
345 /*
346  * buf_dirty_count_severe:
347  *
348  *	Return true if we have too many dirty buffers.
349  */
350 int
351 buf_dirty_count_severe(void)
352 {
353 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
354 	        dirtybufcount >= nbuf / 2);
355 }
356 
357 /*
358  * Return true if the amount of running I/O is severe and BIOQ should
359  * start bursting.
360  */
361 int
362 buf_runningbufspace_severe(void)
363 {
364 	return (runningbufspace >= hirunningspace * 4 / 6);
365 }
366 
367 /*
368  * vfs_buf_test_cache:
369  *
370  * Called when a buffer is extended.  This function clears the B_CACHE
371  * bit if the newly extended portion of the buffer does not contain
372  * valid data.
373  *
374  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
375  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
376  * them while a clean buffer was present.
377  */
378 static __inline__
379 void
380 vfs_buf_test_cache(struct buf *bp,
381 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
382 		  vm_page_t m)
383 {
384 	if (bp->b_flags & B_CACHE) {
385 		int base = (foff + off) & PAGE_MASK;
386 		if (vm_page_is_valid(m, base, size) == 0)
387 			bp->b_flags &= ~B_CACHE;
388 	}
389 }
390 
391 /*
392  * bd_speedup()
393  *
394  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
395  * low water mark.
396  *
397  * MPSAFE
398  */
399 static __inline__
400 void
401 bd_speedup(void)
402 {
403 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
404 		return;
405 
406 	if (bd_request == 0 &&
407 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
408 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
409 		spin_lock(&bufcspin);
410 		bd_request = 1;
411 		spin_unlock(&bufcspin);
412 		wakeup(&bd_request);
413 	}
414 	if (bd_request_hw == 0 &&
415 	    (dirtybufspacehw > lodirtybufspace / 2 ||
416 	     dirtybufcounthw >= nbuf / 2)) {
417 		spin_lock(&bufcspin);
418 		bd_request_hw = 1;
419 		spin_unlock(&bufcspin);
420 		wakeup(&bd_request_hw);
421 	}
422 }
423 
424 /*
425  * bd_heatup()
426  *
427  *	Get the buf_daemon heated up when the number of running and dirty
428  *	buffers exceeds the mid-point.
429  *
430  *	Return the total number of dirty bytes past the second mid point
431  *	as a measure of how much excess dirty data there is in the system.
432  *
433  * MPSAFE
434  */
435 int
436 bd_heatup(void)
437 {
438 	int mid1;
439 	int mid2;
440 	int totalspace;
441 
442 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
443 
444 	totalspace = runningbufspace + dirtybufspace;
445 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
446 		bd_speedup();
447 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
448 		if (totalspace >= mid2)
449 			return(totalspace - mid2);
450 	}
451 	return(0);
452 }
453 
454 /*
455  * bd_wait()
456  *
457  *	Wait for the buffer cache to flush (totalspace) bytes worth of
458  *	buffers, then return.
459  *
460  *	Regardless this function blocks while the number of dirty buffers
461  *	exceeds hidirtybufspace.
462  *
463  * MPSAFE
464  */
465 void
466 bd_wait(int totalspace)
467 {
468 	u_int i;
469 	int count;
470 
471 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
472 		return;
473 
474 	while (totalspace > 0) {
475 		bd_heatup();
476 		if (totalspace > runningbufspace + dirtybufspace)
477 			totalspace = runningbufspace + dirtybufspace;
478 		count = totalspace / BKVASIZE;
479 		if (count >= BD_WAKE_SIZE)
480 			count = BD_WAKE_SIZE - 1;
481 
482 		spin_lock(&bufcspin);
483 		i = (bd_wake_index + count) & BD_WAKE_MASK;
484 		++bd_wake_ary[i];
485 
486 		/*
487 		 * This is not a strict interlock, so we play a bit loose
488 		 * with locking access to dirtybufspace*
489 		 */
490 		tsleep_interlock(&bd_wake_ary[i], 0);
491 		spin_unlock(&bufcspin);
492 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
493 
494 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
495 	}
496 }
497 
498 /*
499  * bd_signal()
500  *
501  *	This function is called whenever runningbufspace or dirtybufspace
502  *	is reduced.  Track threads waiting for run+dirty buffer I/O
503  *	complete.
504  *
505  * MPSAFE
506  */
507 static void
508 bd_signal(int totalspace)
509 {
510 	u_int i;
511 
512 	if (totalspace > 0) {
513 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
514 			totalspace = BKVASIZE * BD_WAKE_SIZE;
515 		spin_lock(&bufcspin);
516 		while (totalspace > 0) {
517 			i = bd_wake_index++;
518 			i &= BD_WAKE_MASK;
519 			if (bd_wake_ary[i]) {
520 				bd_wake_ary[i] = 0;
521 				spin_unlock(&bufcspin);
522 				wakeup(&bd_wake_ary[i]);
523 				spin_lock(&bufcspin);
524 			}
525 			totalspace -= BKVASIZE;
526 		}
527 		spin_unlock(&bufcspin);
528 	}
529 }
530 
531 /*
532  * BIO tracking support routines.
533  *
534  * Release a ref on a bio_track.  Wakeup requests are atomically released
535  * along with the last reference so bk_active will never wind up set to
536  * only 0x80000000.
537  *
538  * MPSAFE
539  */
540 static
541 void
542 bio_track_rel(struct bio_track *track)
543 {
544 	int	active;
545 	int	desired;
546 
547 	/*
548 	 * Shortcut
549 	 */
550 	active = track->bk_active;
551 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
552 		return;
553 
554 	/*
555 	 * Full-on.  Note that the wait flag is only atomically released on
556 	 * the 1->0 count transition.
557 	 *
558 	 * We check for a negative count transition using bit 30 since bit 31
559 	 * has a different meaning.
560 	 */
561 	for (;;) {
562 		desired = (active & 0x7FFFFFFF) - 1;
563 		if (desired)
564 			desired |= active & 0x80000000;
565 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
566 			if (desired & 0x40000000)
567 				panic("bio_track_rel: bad count: %p\n", track);
568 			if (active & 0x80000000)
569 				wakeup(track);
570 			break;
571 		}
572 		active = track->bk_active;
573 	}
574 }
575 
576 /*
577  * Wait for the tracking count to reach 0.
578  *
579  * Use atomic ops such that the wait flag is only set atomically when
580  * bk_active is non-zero.
581  *
582  * MPSAFE
583  */
584 int
585 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
586 {
587 	int	active;
588 	int	desired;
589 	int	error;
590 
591 	/*
592 	 * Shortcut
593 	 */
594 	if (track->bk_active == 0)
595 		return(0);
596 
597 	/*
598 	 * Full-on.  Note that the wait flag may only be atomically set if
599 	 * the active count is non-zero.
600 	 *
601 	 * NOTE: We cannot optimize active == desired since a wakeup could
602 	 *	 clear active prior to our tsleep_interlock().
603 	 */
604 	error = 0;
605 	while ((active = track->bk_active) != 0) {
606 		cpu_ccfence();
607 		desired = active | 0x80000000;
608 		tsleep_interlock(track, slp_flags);
609 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
610 			error = tsleep(track, slp_flags | PINTERLOCKED,
611 				       "trwait", slp_timo);
612 			if (error)
613 				break;
614 		}
615 	}
616 	return (error);
617 }
618 
619 /*
620  * bufinit:
621  *
622  *	Load time initialisation of the buffer cache, called from machine
623  *	dependant initialization code.
624  */
625 void
626 bufinit(void)
627 {
628 	struct buf *bp;
629 	vm_offset_t bogus_offset;
630 	int i;
631 
632 	/* next, make a null set of free lists */
633 	for (i = 0; i < BUFFER_QUEUES; i++)
634 		TAILQ_INIT(&bufqueues[i]);
635 
636 	/* finally, initialize each buffer header and stick on empty q */
637 	for (i = 0; i < nbuf; i++) {
638 		bp = &buf[i];
639 		bzero(bp, sizeof *bp);
640 		bp->b_flags = B_INVAL;	/* we're just an empty header */
641 		bp->b_cmd = BUF_CMD_DONE;
642 		bp->b_qindex = BQUEUE_EMPTY;
643 		initbufbio(bp);
644 		xio_init(&bp->b_xio);
645 		buf_dep_init(bp);
646 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
647 	}
648 
649 	/*
650 	 * maxbufspace is the absolute maximum amount of buffer space we are
651 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
652 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
653 	 * used by most other processes.  The differential is required to
654 	 * ensure that buf_daemon is able to run when other processes might
655 	 * be blocked waiting for buffer space.
656 	 *
657 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
658 	 * this may result in KVM fragmentation which is not handled optimally
659 	 * by the system.
660 	 */
661 	maxbufspace = nbuf * BKVASIZE;
662 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
663 	lobufspace = hibufspace - MAXBSIZE;
664 
665 	lorunningspace = 512 * 1024;
666 	/* hirunningspace -- see below */
667 
668 	/*
669 	 * Limit the amount of malloc memory since it is wired permanently
670 	 * into the kernel space.  Even though this is accounted for in
671 	 * the buffer allocation, we don't want the malloced region to grow
672 	 * uncontrolled.  The malloc scheme improves memory utilization
673 	 * significantly on average (small) directories.
674 	 */
675 	maxbufmallocspace = hibufspace / 20;
676 
677 	/*
678 	 * Reduce the chance of a deadlock occuring by limiting the number
679 	 * of delayed-write dirty buffers we allow to stack up.
680 	 *
681 	 * We don't want too much actually queued to the device at once
682 	 * (XXX this needs to be per-mount!), because the buffers will
683 	 * wind up locked for a very long period of time while the I/O
684 	 * drains.
685 	 */
686 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
687 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
688 	if (hirunningspace < 1024 * 1024)
689 		hirunningspace = 1024 * 1024;
690 
691 	dirtybufspace = 0;
692 	dirtybufspacehw = 0;
693 
694 	lodirtybufspace = hidirtybufspace / 2;
695 
696 	/*
697 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
698 	 * somewhat of a hack at the moment, we really need to limit ourselves
699 	 * based on the number of bytes of I/O in-transit that were initiated
700 	 * from buf_daemon.
701 	 */
702 
703 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
704 	bogus_page = vm_page_alloc(&kernel_object,
705 				   (bogus_offset >> PAGE_SHIFT),
706 				   VM_ALLOC_NORMAL);
707 	vmstats.v_wire_count++;
708 
709 }
710 
711 /*
712  * Initialize the embedded bio structures, typically used by
713  * deprecated code which tries to allocate its own struct bufs.
714  */
715 void
716 initbufbio(struct buf *bp)
717 {
718 	bp->b_bio1.bio_buf = bp;
719 	bp->b_bio1.bio_prev = NULL;
720 	bp->b_bio1.bio_offset = NOOFFSET;
721 	bp->b_bio1.bio_next = &bp->b_bio2;
722 	bp->b_bio1.bio_done = NULL;
723 	bp->b_bio1.bio_flags = 0;
724 
725 	bp->b_bio2.bio_buf = bp;
726 	bp->b_bio2.bio_prev = &bp->b_bio1;
727 	bp->b_bio2.bio_offset = NOOFFSET;
728 	bp->b_bio2.bio_next = NULL;
729 	bp->b_bio2.bio_done = NULL;
730 	bp->b_bio2.bio_flags = 0;
731 
732 	BUF_LOCKINIT(bp);
733 }
734 
735 /*
736  * Reinitialize the embedded bio structures as well as any additional
737  * translation cache layers.
738  */
739 void
740 reinitbufbio(struct buf *bp)
741 {
742 	struct bio *bio;
743 
744 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
745 		bio->bio_done = NULL;
746 		bio->bio_offset = NOOFFSET;
747 	}
748 }
749 
750 /*
751  * Undo the effects of an initbufbio().
752  */
753 void
754 uninitbufbio(struct buf *bp)
755 {
756 	dsched_exit_buf(bp);
757 	BUF_LOCKFREE(bp);
758 }
759 
760 /*
761  * Push another BIO layer onto an existing BIO and return it.  The new
762  * BIO layer may already exist, holding cached translation data.
763  */
764 struct bio *
765 push_bio(struct bio *bio)
766 {
767 	struct bio *nbio;
768 
769 	if ((nbio = bio->bio_next) == NULL) {
770 		int index = bio - &bio->bio_buf->b_bio_array[0];
771 		if (index >= NBUF_BIO - 1) {
772 			panic("push_bio: too many layers bp %p\n",
773 				bio->bio_buf);
774 		}
775 		nbio = &bio->bio_buf->b_bio_array[index + 1];
776 		bio->bio_next = nbio;
777 		nbio->bio_prev = bio;
778 		nbio->bio_buf = bio->bio_buf;
779 		nbio->bio_offset = NOOFFSET;
780 		nbio->bio_done = NULL;
781 		nbio->bio_next = NULL;
782 	}
783 	KKASSERT(nbio->bio_done == NULL);
784 	return(nbio);
785 }
786 
787 /*
788  * Pop a BIO translation layer, returning the previous layer.  The
789  * must have been previously pushed.
790  */
791 struct bio *
792 pop_bio(struct bio *bio)
793 {
794 	return(bio->bio_prev);
795 }
796 
797 void
798 clearbiocache(struct bio *bio)
799 {
800 	while (bio) {
801 		bio->bio_offset = NOOFFSET;
802 		bio = bio->bio_next;
803 	}
804 }
805 
806 /*
807  * bfreekva:
808  *
809  *	Free the KVA allocation for buffer 'bp'.
810  *
811  *	Must be called from a critical section as this is the only locking for
812  *	buffer_map.
813  *
814  *	Since this call frees up buffer space, we call bufspacewakeup().
815  *
816  * MPALMOSTSAFE
817  */
818 static void
819 bfreekva(struct buf *bp)
820 {
821 	int count;
822 
823 	if (bp->b_kvasize) {
824 		++buffreekvacnt;
825 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
826 		vm_map_lock(&buffer_map);
827 		bufspace -= bp->b_kvasize;
828 		vm_map_delete(&buffer_map,
829 		    (vm_offset_t) bp->b_kvabase,
830 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
831 		    &count
832 		);
833 		vm_map_unlock(&buffer_map);
834 		vm_map_entry_release(count);
835 		bp->b_kvasize = 0;
836 		bp->b_kvabase = NULL;
837 		bufspacewakeup();
838 	}
839 }
840 
841 /*
842  * bremfree:
843  *
844  *	Remove the buffer from the appropriate free list.
845  */
846 static __inline void
847 _bremfree(struct buf *bp)
848 {
849 	if (bp->b_qindex != BQUEUE_NONE) {
850 		KASSERT(BUF_REFCNTNB(bp) == 1,
851 				("bremfree: bp %p not locked",bp));
852 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
853 		bp->b_qindex = BQUEUE_NONE;
854 	} else {
855 		if (BUF_REFCNTNB(bp) <= 1)
856 			panic("bremfree: removing a buffer not on a queue");
857 	}
858 }
859 
860 void
861 bremfree(struct buf *bp)
862 {
863 	spin_lock(&bufqspin);
864 	_bremfree(bp);
865 	spin_unlock(&bufqspin);
866 }
867 
868 static void
869 bremfree_locked(struct buf *bp)
870 {
871 	_bremfree(bp);
872 }
873 
874 /*
875  * bread:
876  *
877  *	Get a buffer with the specified data.  Look in the cache first.  We
878  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
879  *	is set, the buffer is valid and we do not have to do anything ( see
880  *	getblk() ).
881  *
882  * MPALMOSTSAFE
883  */
884 int
885 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
886 {
887 	struct buf *bp;
888 
889 	bp = getblk(vp, loffset, size, 0, 0);
890 	*bpp = bp;
891 
892 	/* if not found in cache, do some I/O */
893 	if ((bp->b_flags & B_CACHE) == 0) {
894 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
895 		bp->b_cmd = BUF_CMD_READ;
896 		bp->b_bio1.bio_done = biodone_sync;
897 		bp->b_bio1.bio_flags |= BIO_SYNC;
898 		vfs_busy_pages(vp, bp);
899 		vn_strategy(vp, &bp->b_bio1);
900 		return (biowait(&bp->b_bio1, "biord"));
901 	}
902 	return (0);
903 }
904 
905 /*
906  * breadn:
907  *
908  *	Operates like bread, but also starts asynchronous I/O on
909  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
910  *	to initiating I/O . If B_CACHE is set, the buffer is valid
911  *	and we do not have to do anything.
912  *
913  * MPALMOSTSAFE
914  */
915 int
916 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
917 	int *rabsize, int cnt, struct buf **bpp)
918 {
919 	struct buf *bp, *rabp;
920 	int i;
921 	int rv = 0, readwait = 0;
922 
923 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
924 
925 	/* if not found in cache, do some I/O */
926 	if ((bp->b_flags & B_CACHE) == 0) {
927 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
928 		bp->b_cmd = BUF_CMD_READ;
929 		bp->b_bio1.bio_done = biodone_sync;
930 		bp->b_bio1.bio_flags |= BIO_SYNC;
931 		vfs_busy_pages(vp, bp);
932 		vn_strategy(vp, &bp->b_bio1);
933 		++readwait;
934 	}
935 
936 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
937 		if (inmem(vp, *raoffset))
938 			continue;
939 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
940 
941 		if ((rabp->b_flags & B_CACHE) == 0) {
942 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
943 			rabp->b_cmd = BUF_CMD_READ;
944 			vfs_busy_pages(vp, rabp);
945 			BUF_KERNPROC(rabp);
946 			vn_strategy(vp, &rabp->b_bio1);
947 		} else {
948 			brelse(rabp);
949 		}
950 	}
951 	if (readwait)
952 		rv = biowait(&bp->b_bio1, "biord");
953 	return (rv);
954 }
955 
956 /*
957  * bwrite:
958  *
959  *	Synchronous write, waits for completion.
960  *
961  *	Write, release buffer on completion.  (Done by iodone
962  *	if async).  Do not bother writing anything if the buffer
963  *	is invalid.
964  *
965  *	Note that we set B_CACHE here, indicating that buffer is
966  *	fully valid and thus cacheable.  This is true even of NFS
967  *	now so we set it generally.  This could be set either here
968  *	or in biodone() since the I/O is synchronous.  We put it
969  *	here.
970  */
971 int
972 bwrite(struct buf *bp)
973 {
974 	int error;
975 
976 	if (bp->b_flags & B_INVAL) {
977 		brelse(bp);
978 		return (0);
979 	}
980 	if (BUF_REFCNTNB(bp) == 0)
981 		panic("bwrite: buffer is not busy???");
982 
983 	/* Mark the buffer clean */
984 	bundirty(bp);
985 
986 	bp->b_flags &= ~(B_ERROR | B_EINTR);
987 	bp->b_flags |= B_CACHE;
988 	bp->b_cmd = BUF_CMD_WRITE;
989 	bp->b_bio1.bio_done = biodone_sync;
990 	bp->b_bio1.bio_flags |= BIO_SYNC;
991 	vfs_busy_pages(bp->b_vp, bp);
992 
993 	/*
994 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
995 	 * valid for vnode-backed buffers.
996 	 */
997 	bsetrunningbufspace(bp, bp->b_bufsize);
998 	vn_strategy(bp->b_vp, &bp->b_bio1);
999 	error = biowait(&bp->b_bio1, "biows");
1000 	brelse(bp);
1001 
1002 	return (error);
1003 }
1004 
1005 /*
1006  * bawrite:
1007  *
1008  *	Asynchronous write.  Start output on a buffer, but do not wait for
1009  *	it to complete.  The buffer is released when the output completes.
1010  *
1011  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1012  *	B_INVAL buffers.  Not us.
1013  */
1014 void
1015 bawrite(struct buf *bp)
1016 {
1017 	if (bp->b_flags & B_INVAL) {
1018 		brelse(bp);
1019 		return;
1020 	}
1021 	if (BUF_REFCNTNB(bp) == 0)
1022 		panic("bwrite: buffer is not busy???");
1023 
1024 	/* Mark the buffer clean */
1025 	bundirty(bp);
1026 
1027 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1028 	bp->b_flags |= B_CACHE;
1029 	bp->b_cmd = BUF_CMD_WRITE;
1030 	KKASSERT(bp->b_bio1.bio_done == NULL);
1031 	vfs_busy_pages(bp->b_vp, bp);
1032 
1033 	/*
1034 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1035 	 * valid for vnode-backed buffers.
1036 	 */
1037 	bsetrunningbufspace(bp, bp->b_bufsize);
1038 	BUF_KERNPROC(bp);
1039 	vn_strategy(bp->b_vp, &bp->b_bio1);
1040 }
1041 
1042 /*
1043  * bowrite:
1044  *
1045  *	Ordered write.  Start output on a buffer, and flag it so that the
1046  *	device will write it in the order it was queued.  The buffer is
1047  *	released when the output completes.  bwrite() ( or the VOP routine
1048  *	anyway ) is responsible for handling B_INVAL buffers.
1049  */
1050 int
1051 bowrite(struct buf *bp)
1052 {
1053 	bp->b_flags |= B_ORDERED;
1054 	bawrite(bp);
1055 	return (0);
1056 }
1057 
1058 /*
1059  * bdwrite:
1060  *
1061  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1062  *	anything if the buffer is marked invalid.
1063  *
1064  *	Note that since the buffer must be completely valid, we can safely
1065  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1066  *	biodone() in order to prevent getblk from writing the buffer
1067  *	out synchronously.
1068  */
1069 void
1070 bdwrite(struct buf *bp)
1071 {
1072 	if (BUF_REFCNTNB(bp) == 0)
1073 		panic("bdwrite: buffer is not busy");
1074 
1075 	if (bp->b_flags & B_INVAL) {
1076 		brelse(bp);
1077 		return;
1078 	}
1079 	bdirty(bp);
1080 
1081 	if (dsched_is_clear_buf_priv(bp))
1082 		dsched_new_buf(bp);
1083 
1084 	/*
1085 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1086 	 * true even of NFS now.
1087 	 */
1088 	bp->b_flags |= B_CACHE;
1089 
1090 	/*
1091 	 * This bmap keeps the system from needing to do the bmap later,
1092 	 * perhaps when the system is attempting to do a sync.  Since it
1093 	 * is likely that the indirect block -- or whatever other datastructure
1094 	 * that the filesystem needs is still in memory now, it is a good
1095 	 * thing to do this.  Note also, that if the pageout daemon is
1096 	 * requesting a sync -- there might not be enough memory to do
1097 	 * the bmap then...  So, this is important to do.
1098 	 */
1099 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1100 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1101 			 NULL, NULL, BUF_CMD_WRITE);
1102 	}
1103 
1104 	/*
1105 	 * Because the underlying pages may still be mapped and
1106 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1107 	 * range here will be inaccurate.
1108 	 *
1109 	 * However, we must still clean the pages to satisfy the
1110 	 * vnode_pager and pageout daemon, so theythink the pages
1111 	 * have been "cleaned".  What has really occured is that
1112 	 * they've been earmarked for later writing by the buffer
1113 	 * cache.
1114 	 *
1115 	 * So we get the b_dirtyoff/end update but will not actually
1116 	 * depend on it (NFS that is) until the pages are busied for
1117 	 * writing later on.
1118 	 */
1119 	vfs_clean_pages(bp);
1120 	bqrelse(bp);
1121 
1122 	/*
1123 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1124 	 * due to the softdep code.
1125 	 */
1126 }
1127 
1128 /*
1129  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1130  * This is used by tmpfs.
1131  *
1132  * It is important for any VFS using this routine to NOT use it for
1133  * IO_SYNC or IO_ASYNC operations which occur when the system really
1134  * wants to flush VM pages to backing store.
1135  */
1136 void
1137 buwrite(struct buf *bp)
1138 {
1139 	vm_page_t m;
1140 	int i;
1141 
1142 	/*
1143 	 * Only works for VMIO buffers.  If the buffer is already
1144 	 * marked for delayed-write we can't avoid the bdwrite().
1145 	 */
1146 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1147 		bdwrite(bp);
1148 		return;
1149 	}
1150 
1151 	/*
1152 	 * Set valid & dirty.
1153 	 */
1154 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1155 		m = bp->b_xio.xio_pages[i];
1156 		vfs_dirty_one_page(bp, i, m);
1157 	}
1158 	bqrelse(bp);
1159 }
1160 
1161 /*
1162  * bdirty:
1163  *
1164  *	Turn buffer into delayed write request by marking it B_DELWRI.
1165  *	B_RELBUF and B_NOCACHE must be cleared.
1166  *
1167  *	We reassign the buffer to itself to properly update it in the
1168  *	dirty/clean lists.
1169  *
1170  *	Must be called from a critical section.
1171  *	The buffer must be on BQUEUE_NONE.
1172  */
1173 void
1174 bdirty(struct buf *bp)
1175 {
1176 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1177 	if (bp->b_flags & B_NOCACHE) {
1178 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1179 		bp->b_flags &= ~B_NOCACHE;
1180 	}
1181 	if (bp->b_flags & B_INVAL) {
1182 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1183 	}
1184 	bp->b_flags &= ~B_RELBUF;
1185 
1186 	if ((bp->b_flags & B_DELWRI) == 0) {
1187 		lwkt_gettoken(&bp->b_vp->v_token);
1188 		bp->b_flags |= B_DELWRI;
1189 		reassignbuf(bp);
1190 		lwkt_reltoken(&bp->b_vp->v_token);
1191 
1192 		spin_lock(&bufcspin);
1193 		++dirtybufcount;
1194 		dirtybufspace += bp->b_bufsize;
1195 		if (bp->b_flags & B_HEAVY) {
1196 			++dirtybufcounthw;
1197 			dirtybufspacehw += bp->b_bufsize;
1198 		}
1199 		spin_unlock(&bufcspin);
1200 
1201 		bd_heatup();
1202 	}
1203 }
1204 
1205 /*
1206  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1207  * needs to be flushed with a different buf_daemon thread to avoid
1208  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1209  */
1210 void
1211 bheavy(struct buf *bp)
1212 {
1213 	if ((bp->b_flags & B_HEAVY) == 0) {
1214 		bp->b_flags |= B_HEAVY;
1215 		if (bp->b_flags & B_DELWRI) {
1216 			spin_lock(&bufcspin);
1217 			++dirtybufcounthw;
1218 			dirtybufspacehw += bp->b_bufsize;
1219 			spin_unlock(&bufcspin);
1220 		}
1221 	}
1222 }
1223 
1224 /*
1225  * bundirty:
1226  *
1227  *	Clear B_DELWRI for buffer.
1228  *
1229  *	Must be called from a critical section.
1230  *
1231  *	The buffer is typically on BQUEUE_NONE but there is one case in
1232  *	brelse() that calls this function after placing the buffer on
1233  *	a different queue.
1234  *
1235  * MPSAFE
1236  */
1237 void
1238 bundirty(struct buf *bp)
1239 {
1240 	if (bp->b_flags & B_DELWRI) {
1241 		lwkt_gettoken(&bp->b_vp->v_token);
1242 		bp->b_flags &= ~B_DELWRI;
1243 		reassignbuf(bp);
1244 		lwkt_reltoken(&bp->b_vp->v_token);
1245 
1246 		spin_lock(&bufcspin);
1247 		--dirtybufcount;
1248 		dirtybufspace -= bp->b_bufsize;
1249 		if (bp->b_flags & B_HEAVY) {
1250 			--dirtybufcounthw;
1251 			dirtybufspacehw -= bp->b_bufsize;
1252 		}
1253 		spin_unlock(&bufcspin);
1254 
1255 		bd_signal(bp->b_bufsize);
1256 	}
1257 	/*
1258 	 * Since it is now being written, we can clear its deferred write flag.
1259 	 */
1260 	bp->b_flags &= ~B_DEFERRED;
1261 }
1262 
1263 /*
1264  * Set the b_runningbufspace field, used to track how much I/O is
1265  * in progress at any given moment.
1266  */
1267 void
1268 bsetrunningbufspace(struct buf *bp, int bytes)
1269 {
1270 	bp->b_runningbufspace = bytes;
1271 	if (bytes) {
1272 		spin_lock(&bufcspin);
1273 		runningbufspace += bytes;
1274 		++runningbufcount;
1275 		spin_unlock(&bufcspin);
1276 	}
1277 }
1278 
1279 /*
1280  * brelse:
1281  *
1282  *	Release a busy buffer and, if requested, free its resources.  The
1283  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1284  *	to be accessed later as a cache entity or reused for other purposes.
1285  *
1286  * MPALMOSTSAFE
1287  */
1288 void
1289 brelse(struct buf *bp)
1290 {
1291 #ifdef INVARIANTS
1292 	int saved_flags = bp->b_flags;
1293 #endif
1294 
1295 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1296 
1297 	/*
1298 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1299 	 * its backing store.  Clear B_DELWRI.
1300 	 *
1301 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1302 	 * to destroy the buffer and backing store and (2) when the caller
1303 	 * wants to destroy the buffer and backing store after a write
1304 	 * completes.
1305 	 */
1306 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1307 		bundirty(bp);
1308 	}
1309 
1310 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1311 		/*
1312 		 * A re-dirtied buffer is only subject to destruction
1313 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1314 		 */
1315 		/* leave buffer intact */
1316 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1317 		   (bp->b_bufsize <= 0)) {
1318 		/*
1319 		 * Either a failed read or we were asked to free or not
1320 		 * cache the buffer.  This path is reached with B_DELWRI
1321 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1322 		 * backing store destruction.
1323 		 *
1324 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1325 		 * buffer cannot be immediately freed.
1326 		 */
1327 		bp->b_flags |= B_INVAL;
1328 		if (LIST_FIRST(&bp->b_dep) != NULL)
1329 			buf_deallocate(bp);
1330 		if (bp->b_flags & B_DELWRI) {
1331 			spin_lock(&bufcspin);
1332 			--dirtybufcount;
1333 			dirtybufspace -= bp->b_bufsize;
1334 			if (bp->b_flags & B_HEAVY) {
1335 				--dirtybufcounthw;
1336 				dirtybufspacehw -= bp->b_bufsize;
1337 			}
1338 			spin_unlock(&bufcspin);
1339 
1340 			bd_signal(bp->b_bufsize);
1341 		}
1342 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1343 	}
1344 
1345 	/*
1346 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1347 	 * If vfs_vmio_release() is called with either bit set, the
1348 	 * underlying pages may wind up getting freed causing a previous
1349 	 * write (bdwrite()) to get 'lost' because pages associated with
1350 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1351 	 * B_LOCKED buffer may be mapped by the filesystem.
1352 	 *
1353 	 * If we want to release the buffer ourselves (rather then the
1354 	 * originator asking us to release it), give the originator a
1355 	 * chance to countermand the release by setting B_LOCKED.
1356 	 *
1357 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1358 	 * if B_DELWRI is set.
1359 	 *
1360 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1361 	 * on pages to return pages to the VM page queues.
1362 	 */
1363 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1364 		bp->b_flags &= ~B_RELBUF;
1365 	} else if (vm_page_count_severe()) {
1366 		if (LIST_FIRST(&bp->b_dep) != NULL)
1367 			buf_deallocate(bp);		/* can set B_LOCKED */
1368 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1369 			bp->b_flags &= ~B_RELBUF;
1370 		else
1371 			bp->b_flags |= B_RELBUF;
1372 	}
1373 
1374 	/*
1375 	 * Make sure b_cmd is clear.  It may have already been cleared by
1376 	 * biodone().
1377 	 *
1378 	 * At this point destroying the buffer is governed by the B_INVAL
1379 	 * or B_RELBUF flags.
1380 	 */
1381 	bp->b_cmd = BUF_CMD_DONE;
1382 	dsched_exit_buf(bp);
1383 
1384 	/*
1385 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1386 	 * after an I/O may have replaces some of the pages with bogus pages
1387 	 * in order to not destroy dirty pages in a fill-in read.
1388 	 *
1389 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1390 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1391 	 * B_INVAL may still be set, however.
1392 	 *
1393 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1394 	 * but not the backing store.   B_NOCACHE will destroy the backing
1395 	 * store.
1396 	 *
1397 	 * Note that dirty NFS buffers contain byte-granular write ranges
1398 	 * and should not be destroyed w/ B_INVAL even if the backing store
1399 	 * is left intact.
1400 	 */
1401 	if (bp->b_flags & B_VMIO) {
1402 		/*
1403 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1404 		 */
1405 		int i, j, resid;
1406 		vm_page_t m;
1407 		off_t foff;
1408 		vm_pindex_t poff;
1409 		vm_object_t obj;
1410 		struct vnode *vp;
1411 
1412 		vp = bp->b_vp;
1413 
1414 		/*
1415 		 * Get the base offset and length of the buffer.  Note that
1416 		 * in the VMIO case if the buffer block size is not
1417 		 * page-aligned then b_data pointer may not be page-aligned.
1418 		 * But our b_xio.xio_pages array *IS* page aligned.
1419 		 *
1420 		 * block sizes less then DEV_BSIZE (usually 512) are not
1421 		 * supported due to the page granularity bits (m->valid,
1422 		 * m->dirty, etc...).
1423 		 *
1424 		 * See man buf(9) for more information
1425 		 */
1426 
1427 		resid = bp->b_bufsize;
1428 		foff = bp->b_loffset;
1429 
1430 		lwkt_gettoken(&vm_token);
1431 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1432 			m = bp->b_xio.xio_pages[i];
1433 			vm_page_flag_clear(m, PG_ZERO);
1434 			/*
1435 			 * If we hit a bogus page, fixup *all* of them
1436 			 * now.  Note that we left these pages wired
1437 			 * when we removed them so they had better exist,
1438 			 * and they cannot be ripped out from under us so
1439 			 * no critical section protection is necessary.
1440 			 */
1441 			if (m == bogus_page) {
1442 				obj = vp->v_object;
1443 				poff = OFF_TO_IDX(bp->b_loffset);
1444 
1445 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1446 					vm_page_t mtmp;
1447 
1448 					mtmp = bp->b_xio.xio_pages[j];
1449 					if (mtmp == bogus_page) {
1450 						mtmp = vm_page_lookup(obj, poff + j);
1451 						if (!mtmp) {
1452 							panic("brelse: page missing");
1453 						}
1454 						bp->b_xio.xio_pages[j] = mtmp;
1455 					}
1456 				}
1457 				bp->b_flags &= ~B_HASBOGUS;
1458 
1459 				if ((bp->b_flags & B_INVAL) == 0) {
1460 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1461 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1462 				}
1463 				m = bp->b_xio.xio_pages[i];
1464 			}
1465 
1466 			/*
1467 			 * Invalidate the backing store if B_NOCACHE is set
1468 			 * (e.g. used with vinvalbuf()).  If this is NFS
1469 			 * we impose a requirement that the block size be
1470 			 * a multiple of PAGE_SIZE and create a temporary
1471 			 * hack to basically invalidate the whole page.  The
1472 			 * problem is that NFS uses really odd buffer sizes
1473 			 * especially when tracking piecemeal writes and
1474 			 * it also vinvalbuf()'s a lot, which would result
1475 			 * in only partial page validation and invalidation
1476 			 * here.  If the file page is mmap()'d, however,
1477 			 * all the valid bits get set so after we invalidate
1478 			 * here we would end up with weird m->valid values
1479 			 * like 0xfc.  nfs_getpages() can't handle this so
1480 			 * we clear all the valid bits for the NFS case
1481 			 * instead of just some of them.
1482 			 *
1483 			 * The real bug is the VM system having to set m->valid
1484 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1485 			 * itself is an artifact of the whole 512-byte
1486 			 * granular mess that exists to support odd block
1487 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1488 			 * A complete rewrite is required.
1489 			 *
1490 			 * XXX
1491 			 */
1492 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1493 				int poffset = foff & PAGE_MASK;
1494 				int presid;
1495 
1496 				presid = PAGE_SIZE - poffset;
1497 				if (bp->b_vp->v_tag == VT_NFS &&
1498 				    bp->b_vp->v_type == VREG) {
1499 					; /* entire page */
1500 				} else if (presid > resid) {
1501 					presid = resid;
1502 				}
1503 				KASSERT(presid >= 0, ("brelse: extra page"));
1504 				vm_page_set_invalid(m, poffset, presid);
1505 
1506 				/*
1507 				 * Also make sure any swap cache is removed
1508 				 * as it is now stale (HAMMER in particular
1509 				 * uses B_NOCACHE to deal with buffer
1510 				 * aliasing).
1511 				 */
1512 				swap_pager_unswapped(m);
1513 			}
1514 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1515 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1516 		}
1517 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1518 			vfs_vmio_release(bp);
1519 		lwkt_reltoken(&vm_token);
1520 	} else {
1521 		/*
1522 		 * Rundown for non-VMIO buffers.
1523 		 */
1524 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1525 			if (bp->b_bufsize)
1526 				allocbuf(bp, 0);
1527 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1528 			if (bp->b_vp)
1529 				brelvp(bp);
1530 		}
1531 	}
1532 
1533 	if (bp->b_qindex != BQUEUE_NONE)
1534 		panic("brelse: free buffer onto another queue???");
1535 	if (BUF_REFCNTNB(bp) > 1) {
1536 		/* Temporary panic to verify exclusive locking */
1537 		/* This panic goes away when we allow shared refs */
1538 		panic("brelse: multiple refs");
1539 		/* NOT REACHED */
1540 		return;
1541 	}
1542 
1543 	/*
1544 	 * Figure out the correct queue to place the cleaned up buffer on.
1545 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1546 	 * disassociated from their vnode.
1547 	 */
1548 	spin_lock(&bufqspin);
1549 	if (bp->b_flags & B_LOCKED) {
1550 		/*
1551 		 * Buffers that are locked are placed in the locked queue
1552 		 * immediately, regardless of their state.
1553 		 */
1554 		bp->b_qindex = BQUEUE_LOCKED;
1555 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1556 	} else if (bp->b_bufsize == 0) {
1557 		/*
1558 		 * Buffers with no memory.  Due to conditionals near the top
1559 		 * of brelse() such buffers should probably already be
1560 		 * marked B_INVAL and disassociated from their vnode.
1561 		 */
1562 		bp->b_flags |= B_INVAL;
1563 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1564 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1565 		if (bp->b_kvasize) {
1566 			bp->b_qindex = BQUEUE_EMPTYKVA;
1567 		} else {
1568 			bp->b_qindex = BQUEUE_EMPTY;
1569 		}
1570 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1571 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1572 		/*
1573 		 * Buffers with junk contents.   Again these buffers had better
1574 		 * already be disassociated from their vnode.
1575 		 */
1576 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1577 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1578 		bp->b_flags |= B_INVAL;
1579 		bp->b_qindex = BQUEUE_CLEAN;
1580 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1581 	} else {
1582 		/*
1583 		 * Remaining buffers.  These buffers are still associated with
1584 		 * their vnode.
1585 		 */
1586 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1587 		case B_DELWRI:
1588 		    bp->b_qindex = BQUEUE_DIRTY;
1589 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1590 		    break;
1591 		case B_DELWRI | B_HEAVY:
1592 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1593 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1594 				      b_freelist);
1595 		    break;
1596 		default:
1597 		    /*
1598 		     * NOTE: Buffers are always placed at the end of the
1599 		     * queue.  If B_AGE is not set the buffer will cycle
1600 		     * through the queue twice.
1601 		     */
1602 		    bp->b_qindex = BQUEUE_CLEAN;
1603 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1604 		    break;
1605 		}
1606 	}
1607 	spin_unlock(&bufqspin);
1608 
1609 	/*
1610 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1611 	 * on the correct queue.
1612 	 */
1613 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1614 		bundirty(bp);
1615 
1616 	/*
1617 	 * The bp is on an appropriate queue unless locked.  If it is not
1618 	 * locked or dirty we can wakeup threads waiting for buffer space.
1619 	 *
1620 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1621 	 * if B_INVAL is set ).
1622 	 */
1623 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1624 		bufcountwakeup();
1625 
1626 	/*
1627 	 * Something we can maybe free or reuse
1628 	 */
1629 	if (bp->b_bufsize || bp->b_kvasize)
1630 		bufspacewakeup();
1631 
1632 	/*
1633 	 * Clean up temporary flags and unlock the buffer.
1634 	 */
1635 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1636 	BUF_UNLOCK(bp);
1637 }
1638 
1639 /*
1640  * bqrelse:
1641  *
1642  *	Release a buffer back to the appropriate queue but do not try to free
1643  *	it.  The buffer is expected to be used again soon.
1644  *
1645  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1646  *	biodone() to requeue an async I/O on completion.  It is also used when
1647  *	known good buffers need to be requeued but we think we may need the data
1648  *	again soon.
1649  *
1650  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1651  *
1652  * MPSAFE
1653  */
1654 void
1655 bqrelse(struct buf *bp)
1656 {
1657 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1658 
1659 	if (bp->b_qindex != BQUEUE_NONE)
1660 		panic("bqrelse: free buffer onto another queue???");
1661 	if (BUF_REFCNTNB(bp) > 1) {
1662 		/* do not release to free list */
1663 		panic("bqrelse: multiple refs");
1664 		return;
1665 	}
1666 
1667 	buf_act_advance(bp);
1668 
1669 	spin_lock(&bufqspin);
1670 	if (bp->b_flags & B_LOCKED) {
1671 		/*
1672 		 * Locked buffers are released to the locked queue.  However,
1673 		 * if the buffer is dirty it will first go into the dirty
1674 		 * queue and later on after the I/O completes successfully it
1675 		 * will be released to the locked queue.
1676 		 */
1677 		bp->b_qindex = BQUEUE_LOCKED;
1678 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1679 	} else if (bp->b_flags & B_DELWRI) {
1680 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1681 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1682 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1683 	} else if (vm_page_count_severe()) {
1684 		/*
1685 		 * We are too low on memory, we have to try to free the
1686 		 * buffer (most importantly: the wired pages making up its
1687 		 * backing store) *now*.
1688 		 */
1689 		spin_unlock(&bufqspin);
1690 		brelse(bp);
1691 		return;
1692 	} else {
1693 		bp->b_qindex = BQUEUE_CLEAN;
1694 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1695 	}
1696 	spin_unlock(&bufqspin);
1697 
1698 	if ((bp->b_flags & B_LOCKED) == 0 &&
1699 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1700 		bufcountwakeup();
1701 	}
1702 
1703 	/*
1704 	 * Something we can maybe free or reuse.
1705 	 */
1706 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1707 		bufspacewakeup();
1708 
1709 	/*
1710 	 * Final cleanup and unlock.  Clear bits that are only used while a
1711 	 * buffer is actively locked.
1712 	 */
1713 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1714 	dsched_exit_buf(bp);
1715 	BUF_UNLOCK(bp);
1716 }
1717 
1718 /*
1719  * vfs_vmio_release:
1720  *
1721  *	Return backing pages held by the buffer 'bp' back to the VM system
1722  *	if possible.  The pages are freed if they are no longer valid or
1723  *	attempt to free if it was used for direct I/O otherwise they are
1724  *	sent to the page cache.
1725  *
1726  *	Pages that were marked busy are left alone and skipped.
1727  *
1728  *	The KVA mapping (b_data) for the underlying pages is removed by
1729  *	this function.
1730  */
1731 static void
1732 vfs_vmio_release(struct buf *bp)
1733 {
1734 	int i;
1735 	vm_page_t m;
1736 
1737 	lwkt_gettoken(&vm_token);
1738 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1739 		m = bp->b_xio.xio_pages[i];
1740 		bp->b_xio.xio_pages[i] = NULL;
1741 
1742 		/*
1743 		 * The VFS is telling us this is not a meta-data buffer
1744 		 * even if it is backed by a block device.
1745 		 */
1746 		if (bp->b_flags & B_NOTMETA)
1747 			vm_page_flag_set(m, PG_NOTMETA);
1748 
1749 		/*
1750 		 * This is a very important bit of code.  We try to track
1751 		 * VM page use whether the pages are wired into the buffer
1752 		 * cache or not.  While wired into the buffer cache the
1753 		 * bp tracks the act_count.
1754 		 *
1755 		 * We can choose to place unwired pages on the inactive
1756 		 * queue (0) or active queue (1).  If we place too many
1757 		 * on the active queue the queue will cycle the act_count
1758 		 * on pages we'd like to keep, just from single-use pages
1759 		 * (such as when doing a tar-up or file scan).
1760 		 */
1761 		if (bp->b_act_count < vm_cycle_point)
1762 			vm_page_unwire(m, 0);
1763 		else
1764 			vm_page_unwire(m, 1);
1765 
1766 		/*
1767 		 * We don't mess with busy pages, it is the responsibility
1768 		 * of the process that busied the pages to deal with them.
1769 		 *
1770 		 * However, the caller may have marked the page invalid and
1771 		 * we must still make sure the page is no longer mapped.
1772 		 */
1773 		if ((m->flags & PG_BUSY) || (m->busy != 0)) {
1774 			vm_page_protect(m, VM_PROT_NONE);
1775 			continue;
1776 		}
1777 
1778 		if (m->wire_count == 0) {
1779 			vm_page_flag_clear(m, PG_ZERO);
1780 			/*
1781 			 * Might as well free the page if we can and it has
1782 			 * no valid data.  We also free the page if the
1783 			 * buffer was used for direct I/O.
1784 			 */
1785 #if 0
1786 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1787 					m->hold_count == 0) {
1788 				vm_page_busy(m);
1789 				vm_page_protect(m, VM_PROT_NONE);
1790 				vm_page_free(m);
1791 			} else
1792 #endif
1793 			if (bp->b_flags & B_DIRECT) {
1794 				vm_page_try_to_free(m);
1795 			} else if (vm_page_count_severe()) {
1796 				m->act_count = bp->b_act_count;
1797 				vm_page_try_to_cache(m);
1798 			} else {
1799 				m->act_count = bp->b_act_count;
1800 			}
1801 		}
1802 	}
1803 	lwkt_reltoken(&vm_token);
1804 
1805 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1806 		     bp->b_xio.xio_npages);
1807 	if (bp->b_bufsize) {
1808 		bufspacewakeup();
1809 		bp->b_bufsize = 0;
1810 	}
1811 	bp->b_xio.xio_npages = 0;
1812 	bp->b_flags &= ~B_VMIO;
1813 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1814 	if (bp->b_vp)
1815 		brelvp(bp);
1816 }
1817 
1818 /*
1819  * vfs_bio_awrite:
1820  *
1821  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1822  *	This is much better then the old way of writing only one buffer at
1823  *	a time.  Note that we may not be presented with the buffers in the
1824  *	correct order, so we search for the cluster in both directions.
1825  *
1826  *	The buffer is locked on call.
1827  */
1828 int
1829 vfs_bio_awrite(struct buf *bp)
1830 {
1831 	int i;
1832 	int j;
1833 	off_t loffset = bp->b_loffset;
1834 	struct vnode *vp = bp->b_vp;
1835 	int nbytes;
1836 	struct buf *bpa;
1837 	int nwritten;
1838 	int size;
1839 
1840 	/*
1841 	 * right now we support clustered writing only to regular files.  If
1842 	 * we find a clusterable block we could be in the middle of a cluster
1843 	 * rather then at the beginning.
1844 	 *
1845 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1846 	 * to b_loffset.  b_bio2 contains the translated block number.
1847 	 */
1848 	if ((vp->v_type == VREG) &&
1849 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1850 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1851 
1852 		size = vp->v_mount->mnt_stat.f_iosize;
1853 
1854 		for (i = size; i < MAXPHYS; i += size) {
1855 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1856 			    BUF_REFCNT(bpa) == 0 &&
1857 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1858 			    (B_DELWRI | B_CLUSTEROK)) &&
1859 			    (bpa->b_bufsize == size)) {
1860 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1861 				    (bpa->b_bio2.bio_offset !=
1862 				     bp->b_bio2.bio_offset + i))
1863 					break;
1864 			} else {
1865 				break;
1866 			}
1867 		}
1868 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1869 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1870 			    BUF_REFCNT(bpa) == 0 &&
1871 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1872 			    (B_DELWRI | B_CLUSTEROK)) &&
1873 			    (bpa->b_bufsize == size)) {
1874 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1875 				    (bpa->b_bio2.bio_offset !=
1876 				     bp->b_bio2.bio_offset - j))
1877 					break;
1878 			} else {
1879 				break;
1880 			}
1881 		}
1882 		j -= size;
1883 		nbytes = (i + j);
1884 
1885 		/*
1886 		 * this is a possible cluster write
1887 		 */
1888 		if (nbytes != size) {
1889 			BUF_UNLOCK(bp);
1890 			nwritten = cluster_wbuild(vp, size,
1891 						  loffset - j, nbytes);
1892 			return nwritten;
1893 		}
1894 	}
1895 
1896 	/*
1897 	 * default (old) behavior, writing out only one block
1898 	 *
1899 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1900 	 */
1901 	nwritten = bp->b_bufsize;
1902 	bremfree(bp);
1903 	bawrite(bp);
1904 
1905 	return nwritten;
1906 }
1907 
1908 /*
1909  * getnewbuf:
1910  *
1911  *	Find and initialize a new buffer header, freeing up existing buffers
1912  *	in the bufqueues as necessary.  The new buffer is returned locked.
1913  *
1914  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1915  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1916  *
1917  *	We block if:
1918  *		We have insufficient buffer headers
1919  *		We have insufficient buffer space
1920  *		buffer_map is too fragmented ( space reservation fails )
1921  *		If we have to flush dirty buffers ( but we try to avoid this )
1922  *
1923  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1924  *	Instead we ask the buf daemon to do it for us.  We attempt to
1925  *	avoid piecemeal wakeups of the pageout daemon.
1926  *
1927  * MPALMOSTSAFE
1928  */
1929 static struct buf *
1930 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1931 {
1932 	struct buf *bp;
1933 	struct buf *nbp;
1934 	int defrag = 0;
1935 	int nqindex;
1936 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1937 	static int flushingbufs;
1938 
1939 	/*
1940 	 * We can't afford to block since we might be holding a vnode lock,
1941 	 * which may prevent system daemons from running.  We deal with
1942 	 * low-memory situations by proactively returning memory and running
1943 	 * async I/O rather then sync I/O.
1944 	 */
1945 
1946 	++getnewbufcalls;
1947 	--getnewbufrestarts;
1948 restart:
1949 	++getnewbufrestarts;
1950 
1951 	/*
1952 	 * Setup for scan.  If we do not have enough free buffers,
1953 	 * we setup a degenerate case that immediately fails.  Note
1954 	 * that if we are specially marked process, we are allowed to
1955 	 * dip into our reserves.
1956 	 *
1957 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1958 	 *
1959 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1960 	 * However, there are a number of cases (defragging, reusing, ...)
1961 	 * where we cannot backup.
1962 	 */
1963 	nqindex = BQUEUE_EMPTYKVA;
1964 	spin_lock(&bufqspin);
1965 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1966 
1967 	if (nbp == NULL) {
1968 		/*
1969 		 * If no EMPTYKVA buffers and we are either
1970 		 * defragging or reusing, locate a CLEAN buffer
1971 		 * to free or reuse.  If bufspace useage is low
1972 		 * skip this step so we can allocate a new buffer.
1973 		 */
1974 		if (defrag || bufspace >= lobufspace) {
1975 			nqindex = BQUEUE_CLEAN;
1976 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1977 		}
1978 
1979 		/*
1980 		 * If we could not find or were not allowed to reuse a
1981 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1982 		 * buffer.  We can only use an EMPTY buffer if allocating
1983 		 * its KVA would not otherwise run us out of buffer space.
1984 		 */
1985 		if (nbp == NULL && defrag == 0 &&
1986 		    bufspace + maxsize < hibufspace) {
1987 			nqindex = BQUEUE_EMPTY;
1988 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1989 		}
1990 	}
1991 
1992 	/*
1993 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1994 	 * depending.
1995 	 *
1996 	 * WARNING!  bufqspin is held!
1997 	 */
1998 	while ((bp = nbp) != NULL) {
1999 		int qindex = nqindex;
2000 
2001 		nbp = TAILQ_NEXT(bp, b_freelist);
2002 
2003 		/*
2004 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2005 		 * cycles through the queue twice before being selected.
2006 		 */
2007 		if (qindex == BQUEUE_CLEAN &&
2008 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2009 			bp->b_flags |= B_AGE;
2010 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
2011 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
2012 			continue;
2013 		}
2014 
2015 		/*
2016 		 * Calculate next bp ( we can only use it if we do not block
2017 		 * or do other fancy things ).
2018 		 */
2019 		if (nbp == NULL) {
2020 			switch(qindex) {
2021 			case BQUEUE_EMPTY:
2022 				nqindex = BQUEUE_EMPTYKVA;
2023 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
2024 					break;
2025 				/* fall through */
2026 			case BQUEUE_EMPTYKVA:
2027 				nqindex = BQUEUE_CLEAN;
2028 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
2029 					break;
2030 				/* fall through */
2031 			case BQUEUE_CLEAN:
2032 				/*
2033 				 * nbp is NULL.
2034 				 */
2035 				break;
2036 			}
2037 		}
2038 
2039 		/*
2040 		 * Sanity Checks
2041 		 */
2042 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2043 
2044 		/*
2045 		 * Note: we no longer distinguish between VMIO and non-VMIO
2046 		 * buffers.
2047 		 */
2048 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2049 			("delwri buffer %p found in queue %d", bp, qindex));
2050 
2051 		/*
2052 		 * Do not try to reuse a buffer with a non-zero b_refs.
2053 		 * This is an unsynchronized test.  A synchronized test
2054 		 * is also performed after we lock the buffer.
2055 		 */
2056 		if (bp->b_refs)
2057 			continue;
2058 
2059 		/*
2060 		 * If we are defragging then we need a buffer with
2061 		 * b_kvasize != 0.  XXX this situation should no longer
2062 		 * occur, if defrag is non-zero the buffer's b_kvasize
2063 		 * should also be non-zero at this point.  XXX
2064 		 */
2065 		if (defrag && bp->b_kvasize == 0) {
2066 			kprintf("Warning: defrag empty buffer %p\n", bp);
2067 			continue;
2068 		}
2069 
2070 		/*
2071 		 * Start freeing the bp.  This is somewhat involved.  nbp
2072 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2073 		 * on the clean list must be disassociated from their
2074 		 * current vnode.  Buffers on the empty[kva] lists have
2075 		 * already been disassociated.
2076 		 */
2077 
2078 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2079 			spin_unlock(&bufqspin);
2080 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2081 			goto restart;
2082 		}
2083 		if (bp->b_qindex != qindex) {
2084 			spin_unlock(&bufqspin);
2085 			kprintf("getnewbuf: warning, BUF_LOCK blocked "
2086 				"unexpectedly on buf %p index %d->%d, "
2087 				"race corrected\n",
2088 				bp, qindex, bp->b_qindex);
2089 			BUF_UNLOCK(bp);
2090 			goto restart;
2091 		}
2092 		bremfree_locked(bp);
2093 		spin_unlock(&bufqspin);
2094 
2095 		/*
2096 		 * Dependancies must be handled before we disassociate the
2097 		 * vnode.
2098 		 *
2099 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2100 		 * be immediately disassociated.  HAMMER then becomes
2101 		 * responsible for releasing the buffer.
2102 		 *
2103 		 * NOTE: bufqspin is UNLOCKED now.
2104 		 */
2105 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2106 			buf_deallocate(bp);
2107 			if (bp->b_flags & B_LOCKED) {
2108 				bqrelse(bp);
2109 				goto restart;
2110 			}
2111 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2112 		}
2113 
2114 		if (qindex == BQUEUE_CLEAN) {
2115 			if (bp->b_flags & B_VMIO)
2116 				vfs_vmio_release(bp);
2117 			if (bp->b_vp)
2118 				brelvp(bp);
2119 		}
2120 
2121 		/*
2122 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2123 		 * the scan from this point on.
2124 		 *
2125 		 * Get the rest of the buffer freed up.  b_kva* is still
2126 		 * valid after this operation.
2127 		 */
2128 
2129 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
2130 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2131 
2132 		/*
2133 		 * critical section protection is not required when
2134 		 * scrapping a buffer's contents because it is already
2135 		 * wired.
2136 		 */
2137 		if (bp->b_bufsize)
2138 			allocbuf(bp, 0);
2139 
2140 		bp->b_flags = B_BNOCLIP;
2141 		bp->b_cmd = BUF_CMD_DONE;
2142 		bp->b_vp = NULL;
2143 		bp->b_error = 0;
2144 		bp->b_resid = 0;
2145 		bp->b_bcount = 0;
2146 		bp->b_xio.xio_npages = 0;
2147 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2148 		bp->b_act_count = ACT_INIT;
2149 		reinitbufbio(bp);
2150 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2151 		buf_dep_init(bp);
2152 		if (blkflags & GETBLK_BHEAVY)
2153 			bp->b_flags |= B_HEAVY;
2154 
2155 		/*
2156 		 * If we are defragging then free the buffer.
2157 		 */
2158 		if (defrag) {
2159 			bp->b_flags |= B_INVAL;
2160 			bfreekva(bp);
2161 			brelse(bp);
2162 			defrag = 0;
2163 			goto restart;
2164 		}
2165 
2166 		/*
2167 		 * If we are overcomitted then recover the buffer and its
2168 		 * KVM space.  This occurs in rare situations when multiple
2169 		 * processes are blocked in getnewbuf() or allocbuf().
2170 		 */
2171 		if (bufspace >= hibufspace)
2172 			flushingbufs = 1;
2173 		if (flushingbufs && bp->b_kvasize != 0) {
2174 			bp->b_flags |= B_INVAL;
2175 			bfreekva(bp);
2176 			brelse(bp);
2177 			goto restart;
2178 		}
2179 		if (bufspace < lobufspace)
2180 			flushingbufs = 0;
2181 
2182 		/*
2183 		 * The brelvp() above interlocked the buffer, test b_refs
2184 		 * to determine if the buffer can be reused.  b_refs
2185 		 * interlocks lookup/blocking-lock operations and allowing
2186 		 * buffer reuse can create deadlocks depending on what
2187 		 * (vp,loffset) is assigned to the reused buffer (see getblk).
2188 		 */
2189 		if (bp->b_refs) {
2190 			bp->b_flags |= B_INVAL;
2191 			bfreekva(bp);
2192 			brelse(bp);
2193 			goto restart;
2194 		}
2195 
2196 		break;
2197 		/* NOT REACHED, bufqspin not held */
2198 	}
2199 
2200 	/*
2201 	 * If we exhausted our list, sleep as appropriate.  We may have to
2202 	 * wakeup various daemons and write out some dirty buffers.
2203 	 *
2204 	 * Generally we are sleeping due to insufficient buffer space.
2205 	 *
2206 	 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2207 	 */
2208 	if (bp == NULL) {
2209 		int flags;
2210 		char *waitmsg;
2211 
2212 		spin_unlock(&bufqspin);
2213 		if (defrag) {
2214 			flags = VFS_BIO_NEED_BUFSPACE;
2215 			waitmsg = "nbufkv";
2216 		} else if (bufspace >= hibufspace) {
2217 			waitmsg = "nbufbs";
2218 			flags = VFS_BIO_NEED_BUFSPACE;
2219 		} else {
2220 			waitmsg = "newbuf";
2221 			flags = VFS_BIO_NEED_ANY;
2222 		}
2223 
2224 		bd_speedup();	/* heeeelp */
2225 		spin_lock(&bufcspin);
2226 		needsbuffer |= flags;
2227 		while (needsbuffer & flags) {
2228 			if (ssleep(&needsbuffer, &bufcspin,
2229 				   slpflags, waitmsg, slptimeo)) {
2230 				spin_unlock(&bufcspin);
2231 				return (NULL);
2232 			}
2233 		}
2234 		spin_unlock(&bufcspin);
2235 	} else {
2236 		/*
2237 		 * We finally have a valid bp.  We aren't quite out of the
2238 		 * woods, we still have to reserve kva space.  In order
2239 		 * to keep fragmentation sane we only allocate kva in
2240 		 * BKVASIZE chunks.
2241 		 *
2242 		 * (bufqspin is not held)
2243 		 */
2244 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2245 
2246 		if (maxsize != bp->b_kvasize) {
2247 			vm_offset_t addr = 0;
2248 			int count;
2249 
2250 			bfreekva(bp);
2251 
2252 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2253 			vm_map_lock(&buffer_map);
2254 
2255 			if (vm_map_findspace(&buffer_map,
2256 				    vm_map_min(&buffer_map), maxsize,
2257 				    maxsize, 0, &addr)) {
2258 				/*
2259 				 * Uh oh.  Buffer map is too fragmented.  We
2260 				 * must defragment the map.
2261 				 */
2262 				vm_map_unlock(&buffer_map);
2263 				vm_map_entry_release(count);
2264 				++bufdefragcnt;
2265 				defrag = 1;
2266 				bp->b_flags |= B_INVAL;
2267 				brelse(bp);
2268 				goto restart;
2269 			}
2270 			if (addr) {
2271 				vm_map_insert(&buffer_map, &count,
2272 					NULL, 0,
2273 					addr, addr + maxsize,
2274 					VM_MAPTYPE_NORMAL,
2275 					VM_PROT_ALL, VM_PROT_ALL,
2276 					MAP_NOFAULT);
2277 
2278 				bp->b_kvabase = (caddr_t) addr;
2279 				bp->b_kvasize = maxsize;
2280 				bufspace += bp->b_kvasize;
2281 				++bufreusecnt;
2282 			}
2283 			vm_map_unlock(&buffer_map);
2284 			vm_map_entry_release(count);
2285 		}
2286 		bp->b_data = bp->b_kvabase;
2287 	}
2288 	return(bp);
2289 }
2290 
2291 /*
2292  * This routine is called in an emergency to recover VM pages from the
2293  * buffer cache by cashing in clean buffers.  The idea is to recover
2294  * enough pages to be able to satisfy a stuck bio_page_alloc().
2295  *
2296  * MPSAFE
2297  */
2298 static int
2299 recoverbufpages(void)
2300 {
2301 	struct buf *bp;
2302 	int bytes = 0;
2303 
2304 	++recoverbufcalls;
2305 
2306 	spin_lock(&bufqspin);
2307 	while (bytes < MAXBSIZE) {
2308 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2309 		if (bp == NULL)
2310 			break;
2311 
2312 		/*
2313 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2314 		 * cycles through the queue twice before being selected.
2315 		 */
2316 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2317 			bp->b_flags |= B_AGE;
2318 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2319 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2320 					  bp, b_freelist);
2321 			continue;
2322 		}
2323 
2324 		/*
2325 		 * Sanity Checks
2326 		 */
2327 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2328 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2329 
2330 		/*
2331 		 * Start freeing the bp.  This is somewhat involved.
2332 		 *
2333 		 * Buffers on the clean list must be disassociated from
2334 		 * their current vnode
2335 		 */
2336 
2337 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2338 			kprintf("recoverbufpages: warning, locked buf %p, "
2339 				"race corrected\n",
2340 				bp);
2341 			ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2342 			continue;
2343 		}
2344 		if (bp->b_qindex != BQUEUE_CLEAN) {
2345 			kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2346 				"unexpectedly on buf %p index %d, race "
2347 				"corrected\n",
2348 				bp, bp->b_qindex);
2349 			BUF_UNLOCK(bp);
2350 			continue;
2351 		}
2352 		bremfree_locked(bp);
2353 		spin_unlock(&bufqspin);
2354 
2355 		/*
2356 		 * Dependancies must be handled before we disassociate the
2357 		 * vnode.
2358 		 *
2359 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2360 		 * be immediately disassociated.  HAMMER then becomes
2361 		 * responsible for releasing the buffer.
2362 		 */
2363 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2364 			buf_deallocate(bp);
2365 			if (bp->b_flags & B_LOCKED) {
2366 				bqrelse(bp);
2367 				spin_lock(&bufqspin);
2368 				continue;
2369 			}
2370 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2371 		}
2372 
2373 		bytes += bp->b_bufsize;
2374 
2375 		if (bp->b_flags & B_VMIO) {
2376 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2377 			vfs_vmio_release(bp);
2378 		}
2379 		if (bp->b_vp)
2380 			brelvp(bp);
2381 
2382 		KKASSERT(bp->b_vp == NULL);
2383 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2384 
2385 		/*
2386 		 * critical section protection is not required when
2387 		 * scrapping a buffer's contents because it is already
2388 		 * wired.
2389 		 */
2390 		if (bp->b_bufsize)
2391 			allocbuf(bp, 0);
2392 
2393 		bp->b_flags = B_BNOCLIP;
2394 		bp->b_cmd = BUF_CMD_DONE;
2395 		bp->b_vp = NULL;
2396 		bp->b_error = 0;
2397 		bp->b_resid = 0;
2398 		bp->b_bcount = 0;
2399 		bp->b_xio.xio_npages = 0;
2400 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2401 		reinitbufbio(bp);
2402 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2403 		buf_dep_init(bp);
2404 		bp->b_flags |= B_INVAL;
2405 		/* bfreekva(bp); */
2406 		brelse(bp);
2407 		spin_lock(&bufqspin);
2408 	}
2409 	spin_unlock(&bufqspin);
2410 	return(bytes);
2411 }
2412 
2413 /*
2414  * buf_daemon:
2415  *
2416  *	Buffer flushing daemon.  Buffers are normally flushed by the
2417  *	update daemon but if it cannot keep up this process starts to
2418  *	take the load in an attempt to prevent getnewbuf() from blocking.
2419  *
2420  *	Once a flush is initiated it does not stop until the number
2421  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2422  *	waiting at the mid-point.
2423  */
2424 
2425 static struct kproc_desc buf_kp = {
2426 	"bufdaemon",
2427 	buf_daemon,
2428 	&bufdaemon_td
2429 };
2430 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2431 	kproc_start, &buf_kp)
2432 
2433 static struct kproc_desc bufhw_kp = {
2434 	"bufdaemon_hw",
2435 	buf_daemon_hw,
2436 	&bufdaemonhw_td
2437 };
2438 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2439 	kproc_start, &bufhw_kp)
2440 
2441 /*
2442  * MPSAFE thread
2443  */
2444 static void
2445 buf_daemon(void)
2446 {
2447 	int limit;
2448 
2449 	/*
2450 	 * This process needs to be suspended prior to shutdown sync.
2451 	 */
2452 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2453 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
2454 	curthread->td_flags |= TDF_SYSTHREAD;
2455 
2456 	/*
2457 	 * This process is allowed to take the buffer cache to the limit
2458 	 */
2459 	for (;;) {
2460 		kproc_suspend_loop();
2461 
2462 		/*
2463 		 * Do the flush as long as the number of dirty buffers
2464 		 * (including those running) exceeds lodirtybufspace.
2465 		 *
2466 		 * When flushing limit running I/O to hirunningspace
2467 		 * Do the flush.  Limit the amount of in-transit I/O we
2468 		 * allow to build up, otherwise we would completely saturate
2469 		 * the I/O system.  Wakeup any waiting processes before we
2470 		 * normally would so they can run in parallel with our drain.
2471 		 *
2472 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2473 		 * but because we split the operation into two threads we
2474 		 * have to cut it in half for each thread.
2475 		 */
2476 		waitrunningbufspace();
2477 		limit = lodirtybufspace / 2;
2478 		while (runningbufspace + dirtybufspace > limit ||
2479 		       dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2480 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
2481 				break;
2482 			if (runningbufspace < hirunningspace)
2483 				continue;
2484 			waitrunningbufspace();
2485 		}
2486 
2487 		/*
2488 		 * We reached our low water mark, reset the
2489 		 * request and sleep until we are needed again.
2490 		 * The sleep is just so the suspend code works.
2491 		 */
2492 		spin_lock(&bufcspin);
2493 		if (bd_request == 0)
2494 			ssleep(&bd_request, &bufcspin, 0, "psleep", hz);
2495 		bd_request = 0;
2496 		spin_unlock(&bufcspin);
2497 	}
2498 }
2499 
2500 /*
2501  * MPSAFE thread
2502  */
2503 static void
2504 buf_daemon_hw(void)
2505 {
2506 	int limit;
2507 
2508 	/*
2509 	 * This process needs to be suspended prior to shutdown sync.
2510 	 */
2511 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2512 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2513 	curthread->td_flags |= TDF_SYSTHREAD;
2514 
2515 	/*
2516 	 * This process is allowed to take the buffer cache to the limit
2517 	 */
2518 	for (;;) {
2519 		kproc_suspend_loop();
2520 
2521 		/*
2522 		 * Do the flush.  Limit the amount of in-transit I/O we
2523 		 * allow to build up, otherwise we would completely saturate
2524 		 * the I/O system.  Wakeup any waiting processes before we
2525 		 * normally would so they can run in parallel with our drain.
2526 		 *
2527 		 * Once we decide to flush push the queued I/O up to
2528 		 * hirunningspace in order to trigger bursting by the bioq
2529 		 * subsystem.
2530 		 *
2531 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2532 		 * but because we split the operation into two threads we
2533 		 * have to cut it in half for each thread.
2534 		 */
2535 		waitrunningbufspace();
2536 		limit = lodirtybufspace / 2;
2537 		while (runningbufspace + dirtybufspacehw > limit ||
2538 		       dirtybufcounthw >= nbuf / 2) {
2539 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2540 				break;
2541 			if (runningbufspace < hirunningspace)
2542 				continue;
2543 			waitrunningbufspace();
2544 		}
2545 
2546 		/*
2547 		 * We reached our low water mark, reset the
2548 		 * request and sleep until we are needed again.
2549 		 * The sleep is just so the suspend code works.
2550 		 */
2551 		spin_lock(&bufcspin);
2552 		if (bd_request_hw == 0)
2553 			ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz);
2554 		bd_request_hw = 0;
2555 		spin_unlock(&bufcspin);
2556 	}
2557 }
2558 
2559 /*
2560  * flushbufqueues:
2561  *
2562  *	Try to flush a buffer in the dirty queue.  We must be careful to
2563  *	free up B_INVAL buffers instead of write them, which NFS is
2564  *	particularly sensitive to.
2565  *
2566  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2567  *	that we really want to try to get the buffer out and reuse it
2568  *	due to the write load on the machine.
2569  *
2570  *	We must lock the buffer in order to check its validity before we
2571  *	can mess with its contents.  bufqspin isn't enough.
2572  */
2573 static int
2574 flushbufqueues(bufq_type_t q)
2575 {
2576 	struct buf *bp;
2577 	int r = 0;
2578 	int spun;
2579 
2580 	spin_lock(&bufqspin);
2581 	spun = 1;
2582 
2583 	bp = TAILQ_FIRST(&bufqueues[q]);
2584 	while (bp) {
2585 		if ((bp->b_flags & B_DELWRI) == 0) {
2586 			kprintf("Unexpected clean buffer %p\n", bp);
2587 			bp = TAILQ_NEXT(bp, b_freelist);
2588 			continue;
2589 		}
2590 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2591 			bp = TAILQ_NEXT(bp, b_freelist);
2592 			continue;
2593 		}
2594 		KKASSERT(bp->b_qindex == q);
2595 
2596 		/*
2597 		 * Must recheck B_DELWRI after successfully locking
2598 		 * the buffer.
2599 		 */
2600 		if ((bp->b_flags & B_DELWRI) == 0) {
2601 			BUF_UNLOCK(bp);
2602 			bp = TAILQ_NEXT(bp, b_freelist);
2603 			continue;
2604 		}
2605 
2606 		if (bp->b_flags & B_INVAL) {
2607 			_bremfree(bp);
2608 			spin_unlock(&bufqspin);
2609 			spun = 0;
2610 			brelse(bp);
2611 			++r;
2612 			break;
2613 		}
2614 
2615 		spin_unlock(&bufqspin);
2616 		spun = 0;
2617 
2618 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2619 		    (bp->b_flags & B_DEFERRED) == 0 &&
2620 		    buf_countdeps(bp, 0)) {
2621 			spin_lock(&bufqspin);
2622 			spun = 1;
2623 			TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2624 			TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2625 			bp->b_flags |= B_DEFERRED;
2626 			BUF_UNLOCK(bp);
2627 			bp = TAILQ_FIRST(&bufqueues[q]);
2628 			continue;
2629 		}
2630 
2631 		/*
2632 		 * If the buffer has a dependancy, buf_checkwrite() must
2633 		 * also return 0 for us to be able to initate the write.
2634 		 *
2635 		 * If the buffer is flagged B_ERROR it may be requeued
2636 		 * over and over again, we try to avoid a live lock.
2637 		 *
2638 		 * NOTE: buf_checkwrite is MPSAFE.
2639 		 */
2640 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2641 			bremfree(bp);
2642 			brelse(bp);
2643 		} else if (bp->b_flags & B_ERROR) {
2644 			tsleep(bp, 0, "bioer", 1);
2645 			bp->b_flags &= ~B_AGE;
2646 			vfs_bio_awrite(bp);
2647 		} else {
2648 			bp->b_flags |= B_AGE;
2649 			vfs_bio_awrite(bp);
2650 		}
2651 		++r;
2652 		break;
2653 	}
2654 	if (spun)
2655 		spin_unlock(&bufqspin);
2656 	return (r);
2657 }
2658 
2659 /*
2660  * inmem:
2661  *
2662  *	Returns true if no I/O is needed to access the associated VM object.
2663  *	This is like findblk except it also hunts around in the VM system for
2664  *	the data.
2665  *
2666  *	Note that we ignore vm_page_free() races from interrupts against our
2667  *	lookup, since if the caller is not protected our return value will not
2668  *	be any more valid then otherwise once we exit the critical section.
2669  */
2670 int
2671 inmem(struct vnode *vp, off_t loffset)
2672 {
2673 	vm_object_t obj;
2674 	vm_offset_t toff, tinc, size;
2675 	vm_page_t m;
2676 
2677 	if (findblk(vp, loffset, FINDBLK_TEST))
2678 		return 1;
2679 	if (vp->v_mount == NULL)
2680 		return 0;
2681 	if ((obj = vp->v_object) == NULL)
2682 		return 0;
2683 
2684 	size = PAGE_SIZE;
2685 	if (size > vp->v_mount->mnt_stat.f_iosize)
2686 		size = vp->v_mount->mnt_stat.f_iosize;
2687 
2688 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2689 		lwkt_gettoken(&vm_token);
2690 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2691 		lwkt_reltoken(&vm_token);
2692 		if (m == NULL)
2693 			return 0;
2694 		tinc = size;
2695 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2696 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2697 		if (vm_page_is_valid(m,
2698 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2699 			return 0;
2700 	}
2701 	return 1;
2702 }
2703 
2704 /*
2705  * findblk:
2706  *
2707  *	Locate and return the specified buffer.  Unless flagged otherwise,
2708  *	a locked buffer will be returned if it exists or NULL if it does not.
2709  *
2710  *	findblk()'d buffers are still on the bufqueues and if you intend
2711  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2712  *	and possibly do other stuff to it.
2713  *
2714  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2715  *			  for locking the buffer and ensuring that it remains
2716  *			  the desired buffer after locking.
2717  *
2718  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2719  *			  to acquire the lock we return NULL, even if the
2720  *			  buffer exists.
2721  *
2722  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents reuse
2723  *			  by getnewbuf() but does not prevent disassociation
2724  *			  while we are locked.  Used to avoid deadlocks
2725  *			  against random (vp,loffset)s due to reassignment.
2726  *
2727  *	(0)		- Lock the buffer blocking.
2728  *
2729  * MPSAFE
2730  */
2731 struct buf *
2732 findblk(struct vnode *vp, off_t loffset, int flags)
2733 {
2734 	struct buf *bp;
2735 	int lkflags;
2736 
2737 	lkflags = LK_EXCLUSIVE;
2738 	if (flags & FINDBLK_NBLOCK)
2739 		lkflags |= LK_NOWAIT;
2740 
2741 	for (;;) {
2742 		/*
2743 		 * Lookup.  Ref the buf while holding v_token to prevent
2744 		 * reuse (but does not prevent diassociation).
2745 		 */
2746 		lwkt_gettoken(&vp->v_token);
2747 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2748 		if (bp == NULL) {
2749 			lwkt_reltoken(&vp->v_token);
2750 			return(NULL);
2751 		}
2752 		atomic_add_int(&bp->b_refs, 1);
2753 		lwkt_reltoken(&vp->v_token);
2754 
2755 		/*
2756 		 * If testing only break and return bp, do not lock.
2757 		 */
2758 		if (flags & FINDBLK_TEST)
2759 			break;
2760 
2761 		/*
2762 		 * Lock the buffer, return an error if the lock fails.
2763 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2764 		 */
2765 		if (BUF_LOCK(bp, lkflags)) {
2766 			atomic_subtract_int(&bp->b_refs, 1);
2767 			/* bp = NULL; not needed */
2768 			return(NULL);
2769 		}
2770 
2771 		/*
2772 		 * Revalidate the locked buf before allowing it to be
2773 		 * returned.
2774 		 */
2775 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2776 			break;
2777 		atomic_subtract_int(&bp->b_refs, 1);
2778 		BUF_UNLOCK(bp);
2779 	}
2780 
2781 	/*
2782 	 * Success
2783 	 */
2784 	if ((flags & FINDBLK_REF) == 0)
2785 		atomic_subtract_int(&bp->b_refs, 1);
2786 	return(bp);
2787 }
2788 
2789 void
2790 unrefblk(struct buf *bp)
2791 {
2792 	atomic_subtract_int(&bp->b_refs, 1);
2793 }
2794 
2795 /*
2796  * getcacheblk:
2797  *
2798  *	Similar to getblk() except only returns the buffer if it is
2799  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2800  *	is returned.
2801  *
2802  *	If B_RAM is set the buffer might be just fine, but we return
2803  *	NULL anyway because we want the code to fall through to the
2804  *	cluster read.  Otherwise read-ahead breaks.
2805  */
2806 struct buf *
2807 getcacheblk(struct vnode *vp, off_t loffset)
2808 {
2809 	struct buf *bp;
2810 
2811 	bp = findblk(vp, loffset, 0);
2812 	if (bp) {
2813 		if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2814 			bp->b_flags &= ~B_AGE;
2815 			bremfree(bp);
2816 		} else {
2817 			BUF_UNLOCK(bp);
2818 			bp = NULL;
2819 		}
2820 	}
2821 	return (bp);
2822 }
2823 
2824 /*
2825  * getblk:
2826  *
2827  *	Get a block given a specified block and offset into a file/device.
2828  * 	B_INVAL may or may not be set on return.  The caller should clear
2829  *	B_INVAL prior to initiating a READ.
2830  *
2831  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2832  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2833  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2834  *	without doing any of those things the system will likely believe
2835  *	the buffer to be valid (especially if it is not B_VMIO), and the
2836  *	next getblk() will return the buffer with B_CACHE set.
2837  *
2838  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2839  *	an existing buffer.
2840  *
2841  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2842  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2843  *	and then cleared based on the backing VM.  If the previous buffer is
2844  *	non-0-sized but invalid, B_CACHE will be cleared.
2845  *
2846  *	If getblk() must create a new buffer, the new buffer is returned with
2847  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2848  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2849  *	backing VM.
2850  *
2851  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2852  *	B_CACHE bit is clear.
2853  *
2854  *	What this means, basically, is that the caller should use B_CACHE to
2855  *	determine whether the buffer is fully valid or not and should clear
2856  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2857  *	the buffer by loading its data area with something, the caller needs
2858  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2859  *	the caller should set B_CACHE ( as an optimization ), else the caller
2860  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2861  *	a write attempt or if it was a successfull read.  If the caller
2862  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2863  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2864  *
2865  *	getblk flags:
2866  *
2867  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2868  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2869  *
2870  * MPALMOSTSAFE
2871  */
2872 struct buf *
2873 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2874 {
2875 	struct buf *bp;
2876 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2877 	int error;
2878 	int lkflags;
2879 
2880 	if (size > MAXBSIZE)
2881 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2882 	if (vp->v_object == NULL)
2883 		panic("getblk: vnode %p has no object!", vp);
2884 
2885 loop:
2886 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2887 		/*
2888 		 * The buffer was found in the cache, but we need to lock it.
2889 		 * We must acquire a ref on the bp to prevent reuse, but
2890 		 * this will not prevent disassociation (brelvp()) so we
2891 		 * must recheck (vp,loffset) after acquiring the lock.
2892 		 *
2893 		 * Without the ref the buffer could potentially be reused
2894 		 * before we acquire the lock and create a deadlock
2895 		 * situation between the thread trying to reuse the buffer
2896 		 * and us due to the fact that we would wind up blocking
2897 		 * on a random (vp,loffset).
2898 		 */
2899 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2900 			if (blkflags & GETBLK_NOWAIT) {
2901 				unrefblk(bp);
2902 				return(NULL);
2903 			}
2904 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2905 			if (blkflags & GETBLK_PCATCH)
2906 				lkflags |= LK_PCATCH;
2907 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2908 			if (error) {
2909 				unrefblk(bp);
2910 				if (error == ENOLCK)
2911 					goto loop;
2912 				return (NULL);
2913 			}
2914 			/* buffer may have changed on us */
2915 		}
2916 		unrefblk(bp);
2917 
2918 		/*
2919 		 * Once the buffer has been locked, make sure we didn't race
2920 		 * a buffer recyclement.  Buffers that are no longer hashed
2921 		 * will have b_vp == NULL, so this takes care of that check
2922 		 * as well.
2923 		 */
2924 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2925 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2926 				"was recycled\n",
2927 				bp, vp, (long long)loffset);
2928 			BUF_UNLOCK(bp);
2929 			goto loop;
2930 		}
2931 
2932 		/*
2933 		 * If SZMATCH any pre-existing buffer must be of the requested
2934 		 * size or NULL is returned.  The caller absolutely does not
2935 		 * want getblk() to bwrite() the buffer on a size mismatch.
2936 		 */
2937 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2938 			BUF_UNLOCK(bp);
2939 			return(NULL);
2940 		}
2941 
2942 		/*
2943 		 * All vnode-based buffers must be backed by a VM object.
2944 		 */
2945 		KKASSERT(bp->b_flags & B_VMIO);
2946 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2947 		bp->b_flags &= ~B_AGE;
2948 
2949 		/*
2950 		 * Make sure that B_INVAL buffers do not have a cached
2951 		 * block number translation.
2952 		 */
2953 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2954 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2955 				" did not have cleared bio_offset cache\n",
2956 				bp, vp, (long long)loffset);
2957 			clearbiocache(&bp->b_bio2);
2958 		}
2959 
2960 		/*
2961 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2962 		 * invalid.
2963 		 */
2964 		if (bp->b_flags & B_INVAL)
2965 			bp->b_flags &= ~B_CACHE;
2966 		bremfree(bp);
2967 
2968 		/*
2969 		 * Any size inconsistancy with a dirty buffer or a buffer
2970 		 * with a softupdates dependancy must be resolved.  Resizing
2971 		 * the buffer in such circumstances can lead to problems.
2972 		 *
2973 		 * Dirty or dependant buffers are written synchronously.
2974 		 * Other types of buffers are simply released and
2975 		 * reconstituted as they may be backed by valid, dirty VM
2976 		 * pages (but not marked B_DELWRI).
2977 		 *
2978 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2979 		 * and may be left over from a prior truncation (and thus
2980 		 * no longer represent the actual EOF point), so we
2981 		 * definitely do not want to B_NOCACHE the backing store.
2982 		 */
2983 		if (size != bp->b_bcount) {
2984 			if (bp->b_flags & B_DELWRI) {
2985 				bp->b_flags |= B_RELBUF;
2986 				bwrite(bp);
2987 			} else if (LIST_FIRST(&bp->b_dep)) {
2988 				bp->b_flags |= B_RELBUF;
2989 				bwrite(bp);
2990 			} else {
2991 				bp->b_flags |= B_RELBUF;
2992 				brelse(bp);
2993 			}
2994 			goto loop;
2995 		}
2996 		KKASSERT(size <= bp->b_kvasize);
2997 		KASSERT(bp->b_loffset != NOOFFSET,
2998 			("getblk: no buffer offset"));
2999 
3000 		/*
3001 		 * A buffer with B_DELWRI set and B_CACHE clear must
3002 		 * be committed before we can return the buffer in
3003 		 * order to prevent the caller from issuing a read
3004 		 * ( due to B_CACHE not being set ) and overwriting
3005 		 * it.
3006 		 *
3007 		 * Most callers, including NFS and FFS, need this to
3008 		 * operate properly either because they assume they
3009 		 * can issue a read if B_CACHE is not set, or because
3010 		 * ( for example ) an uncached B_DELWRI might loop due
3011 		 * to softupdates re-dirtying the buffer.  In the latter
3012 		 * case, B_CACHE is set after the first write completes,
3013 		 * preventing further loops.
3014 		 *
3015 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3016 		 * above while extending the buffer, we cannot allow the
3017 		 * buffer to remain with B_CACHE set after the write
3018 		 * completes or it will represent a corrupt state.  To
3019 		 * deal with this we set B_NOCACHE to scrap the buffer
3020 		 * after the write.
3021 		 *
3022 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3023 		 *     I'm not even sure this state is still possible
3024 		 *     now that getblk() writes out any dirty buffers
3025 		 *     on size changes.
3026 		 *
3027 		 * We might be able to do something fancy, like setting
3028 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3029 		 * so the below call doesn't set B_CACHE, but that gets real
3030 		 * confusing.  This is much easier.
3031 		 */
3032 
3033 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3034 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3035 				"and CACHE clear, b_flags %08x\n",
3036 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
3037 			bp->b_flags |= B_NOCACHE;
3038 			bwrite(bp);
3039 			goto loop;
3040 		}
3041 	} else {
3042 		/*
3043 		 * Buffer is not in-core, create new buffer.  The buffer
3044 		 * returned by getnewbuf() is locked.  Note that the returned
3045 		 * buffer is also considered valid (not marked B_INVAL).
3046 		 *
3047 		 * Calculating the offset for the I/O requires figuring out
3048 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3049 		 * the mount's f_iosize otherwise.  If the vnode does not
3050 		 * have an associated mount we assume that the passed size is
3051 		 * the block size.
3052 		 *
3053 		 * Note that vn_isdisk() cannot be used here since it may
3054 		 * return a failure for numerous reasons.   Note that the
3055 		 * buffer size may be larger then the block size (the caller
3056 		 * will use block numbers with the proper multiple).  Beware
3057 		 * of using any v_* fields which are part of unions.  In
3058 		 * particular, in DragonFly the mount point overloading
3059 		 * mechanism uses the namecache only and the underlying
3060 		 * directory vnode is not a special case.
3061 		 */
3062 		int bsize, maxsize;
3063 
3064 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3065 			bsize = DEV_BSIZE;
3066 		else if (vp->v_mount)
3067 			bsize = vp->v_mount->mnt_stat.f_iosize;
3068 		else
3069 			bsize = size;
3070 
3071 		maxsize = size + (loffset & PAGE_MASK);
3072 		maxsize = imax(maxsize, bsize);
3073 
3074 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3075 		if (bp == NULL) {
3076 			if (slpflags || slptimeo)
3077 				return NULL;
3078 			goto loop;
3079 		}
3080 
3081 		/*
3082 		 * Atomically insert the buffer into the hash, so that it can
3083 		 * be found by findblk().
3084 		 *
3085 		 * If bgetvp() returns non-zero a collision occured, and the
3086 		 * bp will not be associated with the vnode.
3087 		 *
3088 		 * Make sure the translation layer has been cleared.
3089 		 */
3090 		bp->b_loffset = loffset;
3091 		bp->b_bio2.bio_offset = NOOFFSET;
3092 		/* bp->b_bio2.bio_next = NULL; */
3093 
3094 		if (bgetvp(vp, bp, size)) {
3095 			bp->b_flags |= B_INVAL;
3096 			brelse(bp);
3097 			goto loop;
3098 		}
3099 
3100 		/*
3101 		 * All vnode-based buffers must be backed by a VM object.
3102 		 */
3103 		KKASSERT(vp->v_object != NULL);
3104 		bp->b_flags |= B_VMIO;
3105 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3106 
3107 		allocbuf(bp, size);
3108 	}
3109 	KKASSERT(dsched_is_clear_buf_priv(bp));
3110 	return (bp);
3111 }
3112 
3113 /*
3114  * regetblk(bp)
3115  *
3116  * Reacquire a buffer that was previously released to the locked queue,
3117  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3118  * set B_LOCKED (which handles the acquisition race).
3119  *
3120  * To this end, either B_LOCKED must be set or the dependancy list must be
3121  * non-empty.
3122  *
3123  * MPSAFE
3124  */
3125 void
3126 regetblk(struct buf *bp)
3127 {
3128 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3129 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3130 	bremfree(bp);
3131 }
3132 
3133 /*
3134  * geteblk:
3135  *
3136  *	Get an empty, disassociated buffer of given size.  The buffer is
3137  *	initially set to B_INVAL.
3138  *
3139  *	critical section protection is not required for the allocbuf()
3140  *	call because races are impossible here.
3141  *
3142  * MPALMOSTSAFE
3143  */
3144 struct buf *
3145 geteblk(int size)
3146 {
3147 	struct buf *bp;
3148 	int maxsize;
3149 
3150 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3151 
3152 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
3153 		;
3154 	allocbuf(bp, size);
3155 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3156 	KKASSERT(dsched_is_clear_buf_priv(bp));
3157 	return (bp);
3158 }
3159 
3160 
3161 /*
3162  * allocbuf:
3163  *
3164  *	This code constitutes the buffer memory from either anonymous system
3165  *	memory (in the case of non-VMIO operations) or from an associated
3166  *	VM object (in the case of VMIO operations).  This code is able to
3167  *	resize a buffer up or down.
3168  *
3169  *	Note that this code is tricky, and has many complications to resolve
3170  *	deadlock or inconsistant data situations.  Tread lightly!!!
3171  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3172  *	the caller.  Calling this code willy nilly can result in the loss of
3173  *	data.
3174  *
3175  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3176  *	B_CACHE for the non-VMIO case.
3177  *
3178  *	This routine does not need to be called from a critical section but you
3179  *	must own the buffer.
3180  *
3181  * MPSAFE
3182  */
3183 int
3184 allocbuf(struct buf *bp, int size)
3185 {
3186 	int newbsize, mbsize;
3187 	int i;
3188 
3189 	if (BUF_REFCNT(bp) == 0)
3190 		panic("allocbuf: buffer not busy");
3191 
3192 	if (bp->b_kvasize < size)
3193 		panic("allocbuf: buffer too small");
3194 
3195 	if ((bp->b_flags & B_VMIO) == 0) {
3196 		caddr_t origbuf;
3197 		int origbufsize;
3198 		/*
3199 		 * Just get anonymous memory from the kernel.  Don't
3200 		 * mess with B_CACHE.
3201 		 */
3202 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3203 		if (bp->b_flags & B_MALLOC)
3204 			newbsize = mbsize;
3205 		else
3206 			newbsize = round_page(size);
3207 
3208 		if (newbsize < bp->b_bufsize) {
3209 			/*
3210 			 * Malloced buffers are not shrunk
3211 			 */
3212 			if (bp->b_flags & B_MALLOC) {
3213 				if (newbsize) {
3214 					bp->b_bcount = size;
3215 				} else {
3216 					kfree(bp->b_data, M_BIOBUF);
3217 					if (bp->b_bufsize) {
3218 						atomic_subtract_int(&bufmallocspace, bp->b_bufsize);
3219 						bufspacewakeup();
3220 						bp->b_bufsize = 0;
3221 					}
3222 					bp->b_data = bp->b_kvabase;
3223 					bp->b_bcount = 0;
3224 					bp->b_flags &= ~B_MALLOC;
3225 				}
3226 				return 1;
3227 			}
3228 			vm_hold_free_pages(
3229 			    bp,
3230 			    (vm_offset_t) bp->b_data + newbsize,
3231 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3232 		} else if (newbsize > bp->b_bufsize) {
3233 			/*
3234 			 * We only use malloced memory on the first allocation.
3235 			 * and revert to page-allocated memory when the buffer
3236 			 * grows.
3237 			 */
3238 			if ((bufmallocspace < maxbufmallocspace) &&
3239 				(bp->b_bufsize == 0) &&
3240 				(mbsize <= PAGE_SIZE/2)) {
3241 
3242 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3243 				bp->b_bufsize = mbsize;
3244 				bp->b_bcount = size;
3245 				bp->b_flags |= B_MALLOC;
3246 				atomic_add_int(&bufmallocspace, mbsize);
3247 				return 1;
3248 			}
3249 			origbuf = NULL;
3250 			origbufsize = 0;
3251 			/*
3252 			 * If the buffer is growing on its other-than-first
3253 			 * allocation, then we revert to the page-allocation
3254 			 * scheme.
3255 			 */
3256 			if (bp->b_flags & B_MALLOC) {
3257 				origbuf = bp->b_data;
3258 				origbufsize = bp->b_bufsize;
3259 				bp->b_data = bp->b_kvabase;
3260 				if (bp->b_bufsize) {
3261 					atomic_subtract_int(&bufmallocspace,
3262 							    bp->b_bufsize);
3263 					bufspacewakeup();
3264 					bp->b_bufsize = 0;
3265 				}
3266 				bp->b_flags &= ~B_MALLOC;
3267 				newbsize = round_page(newbsize);
3268 			}
3269 			vm_hold_load_pages(
3270 			    bp,
3271 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3272 			    (vm_offset_t) bp->b_data + newbsize);
3273 			if (origbuf) {
3274 				bcopy(origbuf, bp->b_data, origbufsize);
3275 				kfree(origbuf, M_BIOBUF);
3276 			}
3277 		}
3278 	} else {
3279 		vm_page_t m;
3280 		int desiredpages;
3281 
3282 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3283 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3284 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3285 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3286 
3287 		if (bp->b_flags & B_MALLOC)
3288 			panic("allocbuf: VMIO buffer can't be malloced");
3289 		/*
3290 		 * Set B_CACHE initially if buffer is 0 length or will become
3291 		 * 0-length.
3292 		 */
3293 		if (size == 0 || bp->b_bufsize == 0)
3294 			bp->b_flags |= B_CACHE;
3295 
3296 		if (newbsize < bp->b_bufsize) {
3297 			/*
3298 			 * DEV_BSIZE aligned new buffer size is less then the
3299 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3300 			 * if we have to remove any pages.
3301 			 */
3302 			if (desiredpages < bp->b_xio.xio_npages) {
3303 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3304 					/*
3305 					 * the page is not freed here -- it
3306 					 * is the responsibility of
3307 					 * vnode_pager_setsize
3308 					 */
3309 					m = bp->b_xio.xio_pages[i];
3310 					KASSERT(m != bogus_page,
3311 					    ("allocbuf: bogus page found"));
3312 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
3313 						;
3314 
3315 					bp->b_xio.xio_pages[i] = NULL;
3316 					vm_page_unwire(m, 0);
3317 				}
3318 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3319 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3320 				bp->b_xio.xio_npages = desiredpages;
3321 			}
3322 		} else if (size > bp->b_bcount) {
3323 			/*
3324 			 * We are growing the buffer, possibly in a
3325 			 * byte-granular fashion.
3326 			 */
3327 			struct vnode *vp;
3328 			vm_object_t obj;
3329 			vm_offset_t toff;
3330 			vm_offset_t tinc;
3331 
3332 			/*
3333 			 * Step 1, bring in the VM pages from the object,
3334 			 * allocating them if necessary.  We must clear
3335 			 * B_CACHE if these pages are not valid for the
3336 			 * range covered by the buffer.
3337 			 *
3338 			 * critical section protection is required to protect
3339 			 * against interrupts unbusying and freeing pages
3340 			 * between our vm_page_lookup() and our
3341 			 * busycheck/wiring call.
3342 			 */
3343 			vp = bp->b_vp;
3344 			obj = vp->v_object;
3345 
3346 			lwkt_gettoken(&vm_token);
3347 			while (bp->b_xio.xio_npages < desiredpages) {
3348 				vm_page_t m;
3349 				vm_pindex_t pi;
3350 
3351 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3352 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
3353 					/*
3354 					 * note: must allocate system pages
3355 					 * since blocking here could intefere
3356 					 * with paging I/O, no matter which
3357 					 * process we are.
3358 					 */
3359 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3360 					if (m) {
3361 						vm_page_wire(m);
3362 						vm_page_wakeup(m);
3363 						vm_page_flag_clear(m, PG_ZERO);
3364 						bp->b_flags &= ~B_CACHE;
3365 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3366 						++bp->b_xio.xio_npages;
3367 					}
3368 					continue;
3369 				}
3370 
3371 				/*
3372 				 * We found a page.  If we have to sleep on it,
3373 				 * retry because it might have gotten freed out
3374 				 * from under us.
3375 				 *
3376 				 * We can only test PG_BUSY here.  Blocking on
3377 				 * m->busy might lead to a deadlock:
3378 				 *
3379 				 *  vm_fault->getpages->cluster_read->allocbuf
3380 				 *
3381 				 */
3382 
3383 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3384 					continue;
3385 				vm_page_flag_clear(m, PG_ZERO);
3386 				vm_page_wire(m);
3387 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3388 				++bp->b_xio.xio_npages;
3389 				if (bp->b_act_count < m->act_count)
3390 					bp->b_act_count = m->act_count;
3391 			}
3392 			lwkt_reltoken(&vm_token);
3393 
3394 			/*
3395 			 * Step 2.  We've loaded the pages into the buffer,
3396 			 * we have to figure out if we can still have B_CACHE
3397 			 * set.  Note that B_CACHE is set according to the
3398 			 * byte-granular range ( bcount and size ), not the
3399 			 * aligned range ( newbsize ).
3400 			 *
3401 			 * The VM test is against m->valid, which is DEV_BSIZE
3402 			 * aligned.  Needless to say, the validity of the data
3403 			 * needs to also be DEV_BSIZE aligned.  Note that this
3404 			 * fails with NFS if the server or some other client
3405 			 * extends the file's EOF.  If our buffer is resized,
3406 			 * B_CACHE may remain set! XXX
3407 			 */
3408 
3409 			toff = bp->b_bcount;
3410 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3411 
3412 			while ((bp->b_flags & B_CACHE) && toff < size) {
3413 				vm_pindex_t pi;
3414 
3415 				if (tinc > (size - toff))
3416 					tinc = size - toff;
3417 
3418 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3419 				    PAGE_SHIFT;
3420 
3421 				vfs_buf_test_cache(
3422 				    bp,
3423 				    bp->b_loffset,
3424 				    toff,
3425 				    tinc,
3426 				    bp->b_xio.xio_pages[pi]
3427 				);
3428 				toff += tinc;
3429 				tinc = PAGE_SIZE;
3430 			}
3431 
3432 			/*
3433 			 * Step 3, fixup the KVM pmap.  Remember that
3434 			 * bp->b_data is relative to bp->b_loffset, but
3435 			 * bp->b_loffset may be offset into the first page.
3436 			 */
3437 
3438 			bp->b_data = (caddr_t)
3439 			    trunc_page((vm_offset_t)bp->b_data);
3440 			pmap_qenter(
3441 			    (vm_offset_t)bp->b_data,
3442 			    bp->b_xio.xio_pages,
3443 			    bp->b_xio.xio_npages
3444 			);
3445 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3446 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3447 		}
3448 	}
3449 
3450 	/* adjust space use on already-dirty buffer */
3451 	if (bp->b_flags & B_DELWRI) {
3452 		spin_lock(&bufcspin);
3453 		dirtybufspace += newbsize - bp->b_bufsize;
3454 		if (bp->b_flags & B_HEAVY)
3455 			dirtybufspacehw += newbsize - bp->b_bufsize;
3456 		spin_unlock(&bufcspin);
3457 	}
3458 	if (newbsize < bp->b_bufsize)
3459 		bufspacewakeup();
3460 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3461 	bp->b_bcount = size;		/* requested buffer size	*/
3462 	return 1;
3463 }
3464 
3465 /*
3466  * biowait:
3467  *
3468  *	Wait for buffer I/O completion, returning error status. B_EINTR
3469  *	is converted into an EINTR error but not cleared (since a chain
3470  *	of biowait() calls may occur).
3471  *
3472  *	On return bpdone() will have been called but the buffer will remain
3473  *	locked and will not have been brelse()'d.
3474  *
3475  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3476  *	likely still in progress on return.
3477  *
3478  *	NOTE!  This operation is on a BIO, not a BUF.
3479  *
3480  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3481  *
3482  * MPSAFE
3483  */
3484 static __inline int
3485 _biowait(struct bio *bio, const char *wmesg, int to)
3486 {
3487 	struct buf *bp = bio->bio_buf;
3488 	u_int32_t flags;
3489 	u_int32_t nflags;
3490 	int error;
3491 
3492 	KKASSERT(bio == &bp->b_bio1);
3493 	for (;;) {
3494 		flags = bio->bio_flags;
3495 		if (flags & BIO_DONE)
3496 			break;
3497 		tsleep_interlock(bio, 0);
3498 		nflags = flags | BIO_WANT;
3499 		tsleep_interlock(bio, 0);
3500 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3501 			if (wmesg)
3502 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3503 			else if (bp->b_cmd == BUF_CMD_READ)
3504 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3505 			else
3506 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3507 			if (error) {
3508 				kprintf("tsleep error biowait %d\n", error);
3509 				return (error);
3510 			}
3511 		}
3512 	}
3513 
3514 	/*
3515 	 * Finish up.
3516 	 */
3517 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3518 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3519 	if (bp->b_flags & B_EINTR)
3520 		return (EINTR);
3521 	if (bp->b_flags & B_ERROR)
3522 		return (bp->b_error ? bp->b_error : EIO);
3523 	return (0);
3524 }
3525 
3526 int
3527 biowait(struct bio *bio, const char *wmesg)
3528 {
3529 	return(_biowait(bio, wmesg, 0));
3530 }
3531 
3532 int
3533 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3534 {
3535 	return(_biowait(bio, wmesg, to));
3536 }
3537 
3538 /*
3539  * This associates a tracking count with an I/O.  vn_strategy() and
3540  * dev_dstrategy() do this automatically but there are a few cases
3541  * where a vnode or device layer is bypassed when a block translation
3542  * is cached.  In such cases bio_start_transaction() may be called on
3543  * the bypassed layers so the system gets an I/O in progress indication
3544  * for those higher layers.
3545  */
3546 void
3547 bio_start_transaction(struct bio *bio, struct bio_track *track)
3548 {
3549 	bio->bio_track = track;
3550 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3551 		dsched_new_buf(bio->bio_buf);
3552 	bio_track_ref(track);
3553 }
3554 
3555 /*
3556  * Initiate I/O on a vnode.
3557  *
3558  * SWAPCACHE OPERATION:
3559  *
3560  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3561  *	devfs also uses b_vp for fake buffers so we also have to check
3562  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3563  *	underlying block device.  The swap assignments are related to the
3564  *	buffer cache buffer's b_vp, not the passed vp.
3565  *
3566  *	The passed vp == bp->b_vp only in the case where the strategy call
3567  *	is made on the vp itself for its own buffers (a regular file or
3568  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3569  *	after translating the request to an underlying device.
3570  *
3571  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3572  *	underlying buffer cache buffers.
3573  *
3574  *	We can only deal with page-aligned buffers at the moment, because
3575  *	we can't tell what the real dirty state for pages straddling a buffer
3576  *	are.
3577  *
3578  *	In order to call swap_pager_strategy() we must provide the VM object
3579  *	and base offset for the underlying buffer cache pages so it can find
3580  *	the swap blocks.
3581  */
3582 void
3583 vn_strategy(struct vnode *vp, struct bio *bio)
3584 {
3585 	struct bio_track *track;
3586 	struct buf *bp = bio->bio_buf;
3587 
3588 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3589 
3590 	/*
3591 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3592 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3593 	 * actually occurred.
3594 	 */
3595 	bp->b_flags |= B_IODEBUG;
3596 
3597 	/*
3598 	 * Handle the swap cache intercept.
3599 	 */
3600 	if (vn_cache_strategy(vp, bio))
3601 		return;
3602 
3603 	/*
3604 	 * Otherwise do the operation through the filesystem
3605 	 */
3606         if (bp->b_cmd == BUF_CMD_READ)
3607                 track = &vp->v_track_read;
3608         else
3609                 track = &vp->v_track_write;
3610 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3611 	bio->bio_track = track;
3612 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3613 		dsched_new_buf(bio->bio_buf);
3614 	bio_track_ref(track);
3615         vop_strategy(*vp->v_ops, vp, bio);
3616 }
3617 
3618 int
3619 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3620 {
3621 	struct buf *bp = bio->bio_buf;
3622 	struct bio *nbio;
3623 	vm_object_t object;
3624 	vm_page_t m;
3625 	int i;
3626 
3627 	/*
3628 	 * Is this buffer cache buffer suitable for reading from
3629 	 * the swap cache?
3630 	 */
3631 	if (vm_swapcache_read_enable == 0 ||
3632 	    bp->b_cmd != BUF_CMD_READ ||
3633 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3634 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3635 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3636 	    (bp->b_bcount & PAGE_MASK) != 0) {
3637 		return(0);
3638 	}
3639 
3640 	/*
3641 	 * Figure out the original VM object (it will match the underlying
3642 	 * VM pages).  Note that swap cached data uses page indices relative
3643 	 * to that object, not relative to bio->bio_offset.
3644 	 */
3645 	if (bp->b_flags & B_CLUSTER)
3646 		object = vp->v_object;
3647 	else
3648 		object = bp->b_vp->v_object;
3649 
3650 	/*
3651 	 * In order to be able to use the swap cache all underlying VM
3652 	 * pages must be marked as such, and we can't have any bogus pages.
3653 	 */
3654 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3655 		m = bp->b_xio.xio_pages[i];
3656 		if ((m->flags & PG_SWAPPED) == 0)
3657 			break;
3658 		if (m == bogus_page)
3659 			break;
3660 	}
3661 
3662 	/*
3663 	 * If we are good then issue the I/O using swap_pager_strategy()
3664 	 */
3665 	if (i == bp->b_xio.xio_npages) {
3666 		m = bp->b_xio.xio_pages[0];
3667 		nbio = push_bio(bio);
3668 		nbio->bio_offset = ptoa(m->pindex);
3669 		KKASSERT(m->object == object);
3670 		swap_pager_strategy(object, nbio);
3671 		return(1);
3672 	}
3673 	return(0);
3674 }
3675 
3676 /*
3677  * bpdone:
3678  *
3679  *	Finish I/O on a buffer after all BIOs have been processed.
3680  *	Called when the bio chain is exhausted or by biowait.  If called
3681  *	by biowait, elseit is typically 0.
3682  *
3683  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3684  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3685  *	assuming B_INVAL is clear.
3686  *
3687  *	For the VMIO case, we set B_CACHE if the op was a read and no
3688  *	read error occured, or if the op was a write.  B_CACHE is never
3689  *	set if the buffer is invalid or otherwise uncacheable.
3690  *
3691  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3692  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3693  *	in the biodone routine.
3694  */
3695 void
3696 bpdone(struct buf *bp, int elseit)
3697 {
3698 	buf_cmd_t cmd;
3699 
3700 	KASSERT(BUF_REFCNTNB(bp) > 0,
3701 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3702 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3703 		("biodone: bp %p already done!", bp));
3704 
3705 	/*
3706 	 * No more BIOs are left.  All completion functions have been dealt
3707 	 * with, now we clean up the buffer.
3708 	 */
3709 	cmd = bp->b_cmd;
3710 	bp->b_cmd = BUF_CMD_DONE;
3711 
3712 	/*
3713 	 * Only reads and writes are processed past this point.
3714 	 */
3715 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3716 		if (cmd == BUF_CMD_FREEBLKS)
3717 			bp->b_flags |= B_NOCACHE;
3718 		if (elseit)
3719 			brelse(bp);
3720 		return;
3721 	}
3722 
3723 	/*
3724 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3725 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3726 	 */
3727 	if (LIST_FIRST(&bp->b_dep) != NULL)
3728 		buf_complete(bp);	/* MPSAFE */
3729 
3730 	/*
3731 	 * A failed write must re-dirty the buffer unless B_INVAL
3732 	 * was set.  Only applicable to normal buffers (with VPs).
3733 	 * vinum buffers may not have a vp.
3734 	 */
3735 	if (cmd == BUF_CMD_WRITE &&
3736 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3737 		bp->b_flags &= ~B_NOCACHE;
3738 		if (bp->b_vp)
3739 			bdirty(bp);
3740 	}
3741 
3742 	if (bp->b_flags & B_VMIO) {
3743 		int i;
3744 		vm_ooffset_t foff;
3745 		vm_page_t m;
3746 		vm_object_t obj;
3747 		int iosize;
3748 		struct vnode *vp = bp->b_vp;
3749 
3750 		obj = vp->v_object;
3751 
3752 #if defined(VFS_BIO_DEBUG)
3753 		if (vp->v_auxrefs == 0)
3754 			panic("biodone: zero vnode hold count");
3755 		if ((vp->v_flag & VOBJBUF) == 0)
3756 			panic("biodone: vnode is not setup for merged cache");
3757 #endif
3758 
3759 		foff = bp->b_loffset;
3760 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3761 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3762 
3763 #if defined(VFS_BIO_DEBUG)
3764 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3765 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3766 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3767 		}
3768 #endif
3769 
3770 		/*
3771 		 * Set B_CACHE if the op was a normal read and no error
3772 		 * occured.  B_CACHE is set for writes in the b*write()
3773 		 * routines.
3774 		 */
3775 		iosize = bp->b_bcount - bp->b_resid;
3776 		if (cmd == BUF_CMD_READ &&
3777 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3778 			bp->b_flags |= B_CACHE;
3779 		}
3780 
3781 		lwkt_gettoken(&vm_token);
3782 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3783 			int bogusflag = 0;
3784 			int resid;
3785 
3786 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3787 			if (resid > iosize)
3788 				resid = iosize;
3789 
3790 			/*
3791 			 * cleanup bogus pages, restoring the originals.  Since
3792 			 * the originals should still be wired, we don't have
3793 			 * to worry about interrupt/freeing races destroying
3794 			 * the VM object association.
3795 			 */
3796 			m = bp->b_xio.xio_pages[i];
3797 			if (m == bogus_page) {
3798 				bogusflag = 1;
3799 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3800 				if (m == NULL)
3801 					panic("biodone: page disappeared");
3802 				bp->b_xio.xio_pages[i] = m;
3803 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3804 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3805 			}
3806 #if defined(VFS_BIO_DEBUG)
3807 			if (OFF_TO_IDX(foff) != m->pindex) {
3808 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3809 					"mismatch\n",
3810 					(unsigned long)foff, (long)m->pindex);
3811 			}
3812 #endif
3813 
3814 			/*
3815 			 * In the write case, the valid and clean bits are
3816 			 * already changed correctly (see bdwrite()), so we
3817 			 * only need to do this here in the read case.
3818 			 */
3819 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3820 				vfs_clean_one_page(bp, i, m);
3821 			}
3822 			vm_page_flag_clear(m, PG_ZERO);
3823 
3824 			/*
3825 			 * when debugging new filesystems or buffer I/O
3826 			 * methods, this is the most common error that pops
3827 			 * up.  if you see this, you have not set the page
3828 			 * busy flag correctly!!!
3829 			 */
3830 			if (m->busy == 0) {
3831 				kprintf("biodone: page busy < 0, "
3832 				    "pindex: %d, foff: 0x(%x,%x), "
3833 				    "resid: %d, index: %d\n",
3834 				    (int) m->pindex, (int)(foff >> 32),
3835 						(int) foff & 0xffffffff, resid, i);
3836 				if (!vn_isdisk(vp, NULL))
3837 					kprintf(" iosize: %ld, loffset: %lld, "
3838 						"flags: 0x%08x, npages: %d\n",
3839 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3840 					    (long long)bp->b_loffset,
3841 					    bp->b_flags, bp->b_xio.xio_npages);
3842 				else
3843 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3844 					    (long long)bp->b_loffset,
3845 					    bp->b_flags, bp->b_xio.xio_npages);
3846 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3847 				    m->valid, m->dirty, m->wire_count);
3848 				panic("biodone: page busy < 0");
3849 			}
3850 			vm_page_io_finish(m);
3851 			vm_object_pip_subtract(obj, 1);
3852 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3853 			iosize -= resid;
3854 		}
3855 		bp->b_flags &= ~B_HASBOGUS;
3856 		if (obj)
3857 			vm_object_pip_wakeupn(obj, 0);
3858 		lwkt_reltoken(&vm_token);
3859 	}
3860 
3861 	/*
3862 	 * Finish up by releasing the buffer.  There are no more synchronous
3863 	 * or asynchronous completions, those were handled by bio_done
3864 	 * callbacks.
3865 	 */
3866 	if (elseit) {
3867 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3868 			brelse(bp);
3869 		else
3870 			bqrelse(bp);
3871 	}
3872 }
3873 
3874 /*
3875  * Normal biodone.
3876  */
3877 void
3878 biodone(struct bio *bio)
3879 {
3880 	struct buf *bp = bio->bio_buf;
3881 
3882 	runningbufwakeup(bp);
3883 
3884 	/*
3885 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3886 	 */
3887 	while (bio) {
3888 		biodone_t *done_func;
3889 		struct bio_track *track;
3890 
3891 		/*
3892 		 * BIO tracking.  Most but not all BIOs are tracked.
3893 		 */
3894 		if ((track = bio->bio_track) != NULL) {
3895 			bio_track_rel(track);
3896 			bio->bio_track = NULL;
3897 		}
3898 
3899 		/*
3900 		 * A bio_done function terminates the loop.  The function
3901 		 * will be responsible for any further chaining and/or
3902 		 * buffer management.
3903 		 *
3904 		 * WARNING!  The done function can deallocate the buffer!
3905 		 */
3906 		if ((done_func = bio->bio_done) != NULL) {
3907 			bio->bio_done = NULL;
3908 			done_func(bio);
3909 			return;
3910 		}
3911 		bio = bio->bio_prev;
3912 	}
3913 
3914 	/*
3915 	 * If we've run out of bio's do normal [a]synchronous completion.
3916 	 */
3917 	bpdone(bp, 1);
3918 }
3919 
3920 /*
3921  * Synchronous biodone - this terminates a synchronous BIO.
3922  *
3923  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3924  * but still locked.  The caller must brelse() the buffer after waiting
3925  * for completion.
3926  */
3927 void
3928 biodone_sync(struct bio *bio)
3929 {
3930 	struct buf *bp = bio->bio_buf;
3931 	int flags;
3932 	int nflags;
3933 
3934 	KKASSERT(bio == &bp->b_bio1);
3935 	bpdone(bp, 0);
3936 
3937 	for (;;) {
3938 		flags = bio->bio_flags;
3939 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
3940 
3941 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3942 			if (flags & BIO_WANT)
3943 				wakeup(bio);
3944 			break;
3945 		}
3946 	}
3947 }
3948 
3949 /*
3950  * vfs_unbusy_pages:
3951  *
3952  *	This routine is called in lieu of iodone in the case of
3953  *	incomplete I/O.  This keeps the busy status for pages
3954  *	consistant.
3955  */
3956 void
3957 vfs_unbusy_pages(struct buf *bp)
3958 {
3959 	int i;
3960 
3961 	runningbufwakeup(bp);
3962 
3963 	lwkt_gettoken(&vm_token);
3964 	if (bp->b_flags & B_VMIO) {
3965 		struct vnode *vp = bp->b_vp;
3966 		vm_object_t obj;
3967 
3968 		obj = vp->v_object;
3969 
3970 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3971 			vm_page_t m = bp->b_xio.xio_pages[i];
3972 
3973 			/*
3974 			 * When restoring bogus changes the original pages
3975 			 * should still be wired, so we are in no danger of
3976 			 * losing the object association and do not need
3977 			 * critical section protection particularly.
3978 			 */
3979 			if (m == bogus_page) {
3980 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3981 				if (!m) {
3982 					panic("vfs_unbusy_pages: page missing");
3983 				}
3984 				bp->b_xio.xio_pages[i] = m;
3985 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3986 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3987 			}
3988 			vm_object_pip_subtract(obj, 1);
3989 			vm_page_flag_clear(m, PG_ZERO);
3990 			vm_page_io_finish(m);
3991 		}
3992 		bp->b_flags &= ~B_HASBOGUS;
3993 		vm_object_pip_wakeupn(obj, 0);
3994 	}
3995 	lwkt_reltoken(&vm_token);
3996 }
3997 
3998 /*
3999  * vfs_busy_pages:
4000  *
4001  *	This routine is called before a device strategy routine.
4002  *	It is used to tell the VM system that paging I/O is in
4003  *	progress, and treat the pages associated with the buffer
4004  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4005  *	flag is handled to make sure that the object doesn't become
4006  *	inconsistant.
4007  *
4008  *	Since I/O has not been initiated yet, certain buffer flags
4009  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4010  *	and should be ignored.
4011  *
4012  * MPSAFE
4013  */
4014 void
4015 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4016 {
4017 	int i, bogus;
4018 	struct lwp *lp = curthread->td_lwp;
4019 
4020 	/*
4021 	 * The buffer's I/O command must already be set.  If reading,
4022 	 * B_CACHE must be 0 (double check against callers only doing
4023 	 * I/O when B_CACHE is 0).
4024 	 */
4025 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4026 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4027 
4028 	if (bp->b_flags & B_VMIO) {
4029 		vm_object_t obj;
4030 
4031 		lwkt_gettoken(&vm_token);
4032 
4033 		obj = vp->v_object;
4034 		KASSERT(bp->b_loffset != NOOFFSET,
4035 			("vfs_busy_pages: no buffer offset"));
4036 
4037 		/*
4038 		 * Loop until none of the pages are busy.
4039 		 */
4040 retry:
4041 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4042 			vm_page_t m = bp->b_xio.xio_pages[i];
4043 
4044 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
4045 				goto retry;
4046 		}
4047 
4048 		/*
4049 		 * Setup for I/O, soft-busy the page right now because
4050 		 * the next loop may block.
4051 		 */
4052 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4053 			vm_page_t m = bp->b_xio.xio_pages[i];
4054 
4055 			vm_page_flag_clear(m, PG_ZERO);
4056 			if ((bp->b_flags & B_CLUSTER) == 0) {
4057 				vm_object_pip_add(obj, 1);
4058 				vm_page_io_start(m);
4059 			}
4060 		}
4061 
4062 		/*
4063 		 * Adjust protections for I/O and do bogus-page mapping.
4064 		 * Assume that vm_page_protect() can block (it can block
4065 		 * if VM_PROT_NONE, don't take any chances regardless).
4066 		 *
4067 		 * In particular note that for writes we must incorporate
4068 		 * page dirtyness from the VM system into the buffer's
4069 		 * dirty range.
4070 		 *
4071 		 * For reads we theoretically must incorporate page dirtyness
4072 		 * from the VM system to determine if the page needs bogus
4073 		 * replacement, but we shortcut the test by simply checking
4074 		 * that all m->valid bits are set, indicating that the page
4075 		 * is fully valid and does not need to be re-read.  For any
4076 		 * VM system dirtyness the page will also be fully valid
4077 		 * since it was mapped at one point.
4078 		 */
4079 		bogus = 0;
4080 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4081 			vm_page_t m = bp->b_xio.xio_pages[i];
4082 
4083 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4084 			if (bp->b_cmd == BUF_CMD_WRITE) {
4085 				/*
4086 				 * When readying a vnode-backed buffer for
4087 				 * a write we must zero-fill any invalid
4088 				 * portions of the backing VM pages, mark
4089 				 * it valid and clear related dirty bits.
4090 				 *
4091 				 * vfs_clean_one_page() incorporates any
4092 				 * VM dirtyness and updates the b_dirtyoff
4093 				 * range (after we've made the page RO).
4094 				 *
4095 				 * It is also expected that the pmap modified
4096 				 * bit has already been cleared by the
4097 				 * vm_page_protect().  We may not be able
4098 				 * to clear all dirty bits for a page if it
4099 				 * was also memory mapped (NFS).
4100 				 *
4101 				 * Finally be sure to unassign any swap-cache
4102 				 * backing store as it is now stale.
4103 				 */
4104 				vm_page_protect(m, VM_PROT_READ);
4105 				vfs_clean_one_page(bp, i, m);
4106 				swap_pager_unswapped(m);
4107 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4108 				/*
4109 				 * When readying a vnode-backed buffer for
4110 				 * read we must replace any dirty pages with
4111 				 * a bogus page so dirty data is not destroyed
4112 				 * when filling gaps.
4113 				 *
4114 				 * To avoid testing whether the page is
4115 				 * dirty we instead test that the page was
4116 				 * at some point mapped (m->valid fully
4117 				 * valid) with the understanding that
4118 				 * this also covers the dirty case.
4119 				 */
4120 				bp->b_xio.xio_pages[i] = bogus_page;
4121 				bp->b_flags |= B_HASBOGUS;
4122 				bogus++;
4123 			} else if (m->valid & m->dirty) {
4124 				/*
4125 				 * This case should not occur as partial
4126 				 * dirtyment can only happen if the buffer
4127 				 * is B_CACHE, and this code is not entered
4128 				 * if the buffer is B_CACHE.
4129 				 */
4130 				kprintf("Warning: vfs_busy_pages - page not "
4131 					"fully valid! loff=%jx bpf=%08x "
4132 					"idx=%d val=%02x dir=%02x\n",
4133 					(intmax_t)bp->b_loffset, bp->b_flags,
4134 					i, m->valid, m->dirty);
4135 				vm_page_protect(m, VM_PROT_NONE);
4136 			} else {
4137 				/*
4138 				 * The page is not valid and can be made
4139 				 * part of the read.
4140 				 */
4141 				vm_page_protect(m, VM_PROT_NONE);
4142 			}
4143 		}
4144 		if (bogus) {
4145 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4146 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4147 		}
4148 		lwkt_reltoken(&vm_token);
4149 	}
4150 
4151 	/*
4152 	 * This is the easiest place to put the process accounting for the I/O
4153 	 * for now.
4154 	 */
4155 	if (lp != NULL) {
4156 		if (bp->b_cmd == BUF_CMD_READ)
4157 			lp->lwp_ru.ru_inblock++;
4158 		else
4159 			lp->lwp_ru.ru_oublock++;
4160 	}
4161 }
4162 
4163 /*
4164  * vfs_clean_pages:
4165  *
4166  *	Tell the VM system that the pages associated with this buffer
4167  *	are clean.  This is used for delayed writes where the data is
4168  *	going to go to disk eventually without additional VM intevention.
4169  *
4170  *	Note that while we only really need to clean through to b_bcount, we
4171  *	just go ahead and clean through to b_bufsize.
4172  */
4173 static void
4174 vfs_clean_pages(struct buf *bp)
4175 {
4176 	vm_page_t m;
4177 	int i;
4178 
4179 	if ((bp->b_flags & B_VMIO) == 0)
4180 		return;
4181 
4182 	KASSERT(bp->b_loffset != NOOFFSET,
4183 		("vfs_clean_pages: no buffer offset"));
4184 
4185 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4186 		m = bp->b_xio.xio_pages[i];
4187 		vfs_clean_one_page(bp, i, m);
4188 	}
4189 }
4190 
4191 /*
4192  * vfs_clean_one_page:
4193  *
4194  *	Set the valid bits and clear the dirty bits in a page within a
4195  *	buffer.  The range is restricted to the buffer's size and the
4196  *	buffer's logical offset might index into the first page.
4197  *
4198  *	The caller has busied or soft-busied the page and it is not mapped,
4199  *	test and incorporate the dirty bits into b_dirtyoff/end before
4200  *	clearing them.  Note that we need to clear the pmap modified bits
4201  *	after determining the the page was dirty, vm_page_set_validclean()
4202  *	does not do it for us.
4203  *
4204  *	This routine is typically called after a read completes (dirty should
4205  *	be zero in that case as we are not called on bogus-replace pages),
4206  *	or before a write is initiated.
4207  */
4208 static void
4209 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4210 {
4211 	int bcount;
4212 	int xoff;
4213 	int soff;
4214 	int eoff;
4215 
4216 	/*
4217 	 * Calculate offset range within the page but relative to buffer's
4218 	 * loffset.  loffset might be offset into the first page.
4219 	 */
4220 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4221 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4222 
4223 	if (pageno == 0) {
4224 		soff = xoff;
4225 		eoff = PAGE_SIZE;
4226 	} else {
4227 		soff = (pageno << PAGE_SHIFT);
4228 		eoff = soff + PAGE_SIZE;
4229 	}
4230 	if (eoff > bcount)
4231 		eoff = bcount;
4232 	if (soff >= eoff)
4233 		return;
4234 
4235 	/*
4236 	 * Test dirty bits and adjust b_dirtyoff/end.
4237 	 *
4238 	 * If dirty pages are incorporated into the bp any prior
4239 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4240 	 * caller has not taken into account the new dirty data.
4241 	 *
4242 	 * If the page was memory mapped the dirty bits might go beyond the
4243 	 * end of the buffer, but we can't really make the assumption that
4244 	 * a file EOF straddles the buffer (even though this is the case for
4245 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4246 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4247 	 * This also saves some console spam.
4248 	 *
4249 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4250 	 * NFS can handle huge commits but not huge writes.
4251 	 */
4252 	vm_page_test_dirty(m);
4253 	if (m->dirty) {
4254 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4255 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4256 			if (debug_commit)
4257 			kprintf("Warning: vfs_clean_one_page: bp %p "
4258 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4259 				" cmd %d vd %02x/%02x x/s/e %d %d %d "
4260 				"doff/end %d %d\n",
4261 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4262 				bp->b_flags, bp->b_cmd,
4263 				m->valid, m->dirty, xoff, soff, eoff,
4264 				bp->b_dirtyoff, bp->b_dirtyend);
4265 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4266 			if (debug_commit)
4267 				print_backtrace(-1);
4268 		}
4269 		/*
4270 		 * Only clear the pmap modified bits if ALL the dirty bits
4271 		 * are set, otherwise the system might mis-clear portions
4272 		 * of a page.
4273 		 */
4274 		if (m->dirty == VM_PAGE_BITS_ALL &&
4275 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4276 			pmap_clear_modify(m);
4277 		}
4278 		if (bp->b_dirtyoff > soff - xoff)
4279 			bp->b_dirtyoff = soff - xoff;
4280 		if (bp->b_dirtyend < eoff - xoff)
4281 			bp->b_dirtyend = eoff - xoff;
4282 	}
4283 
4284 	/*
4285 	 * Set related valid bits, clear related dirty bits.
4286 	 * Does not mess with the pmap modified bit.
4287 	 *
4288 	 * WARNING!  We cannot just clear all of m->dirty here as the
4289 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4290 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4291 	 *	     The putpages code can clear m->dirty to 0.
4292 	 *
4293 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4294 	 *	     covers the same space as mapped writable pages the
4295 	 *	     buffer flush might not be able to clear all the dirty
4296 	 *	     bits and still require a putpages from the VM system
4297 	 *	     to finish it off.
4298 	 */
4299 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4300 }
4301 
4302 /*
4303  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4304  * The page data is assumed to be valid (there is no zeroing here).
4305  */
4306 static void
4307 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4308 {
4309 	int bcount;
4310 	int xoff;
4311 	int soff;
4312 	int eoff;
4313 
4314 	/*
4315 	 * Calculate offset range within the page but relative to buffer's
4316 	 * loffset.  loffset might be offset into the first page.
4317 	 */
4318 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4319 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4320 
4321 	if (pageno == 0) {
4322 		soff = xoff;
4323 		eoff = PAGE_SIZE;
4324 	} else {
4325 		soff = (pageno << PAGE_SHIFT);
4326 		eoff = soff + PAGE_SIZE;
4327 	}
4328 	if (eoff > bcount)
4329 		eoff = bcount;
4330 	if (soff >= eoff)
4331 		return;
4332 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4333 }
4334 
4335 /*
4336  * vfs_bio_clrbuf:
4337  *
4338  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4339  *	to clear B_ERROR and B_INVAL.
4340  *
4341  *	Note that while we only theoretically need to clear through b_bcount,
4342  *	we go ahead and clear through b_bufsize.
4343  */
4344 
4345 void
4346 vfs_bio_clrbuf(struct buf *bp)
4347 {
4348 	int i, mask = 0;
4349 	caddr_t sa, ea;
4350 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4351 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4352 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4353 		    (bp->b_loffset & PAGE_MASK) == 0) {
4354 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4355 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4356 				bp->b_resid = 0;
4357 				return;
4358 			}
4359 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4360 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4361 				bzero(bp->b_data, bp->b_bufsize);
4362 				bp->b_xio.xio_pages[0]->valid |= mask;
4363 				bp->b_resid = 0;
4364 				return;
4365 			}
4366 		}
4367 		sa = bp->b_data;
4368 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4369 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4370 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4371 			ea = (caddr_t)(vm_offset_t)ulmin(
4372 			    (u_long)(vm_offset_t)ea,
4373 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4374 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4375 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4376 				continue;
4377 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4378 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4379 					bzero(sa, ea - sa);
4380 				}
4381 			} else {
4382 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4383 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4384 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4385 						bzero(sa, DEV_BSIZE);
4386 				}
4387 			}
4388 			bp->b_xio.xio_pages[i]->valid |= mask;
4389 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4390 		}
4391 		bp->b_resid = 0;
4392 	} else {
4393 		clrbuf(bp);
4394 	}
4395 }
4396 
4397 /*
4398  * vm_hold_load_pages:
4399  *
4400  *	Load pages into the buffer's address space.  The pages are
4401  *	allocated from the kernel object in order to reduce interference
4402  *	with the any VM paging I/O activity.  The range of loaded
4403  *	pages will be wired.
4404  *
4405  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4406  *	retrieve the full range (to - from) of pages.
4407  *
4408  * MPSAFE
4409  */
4410 void
4411 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4412 {
4413 	vm_offset_t pg;
4414 	vm_page_t p;
4415 	int index;
4416 
4417 	to = round_page(to);
4418 	from = round_page(from);
4419 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4420 
4421 	pg = from;
4422 	while (pg < to) {
4423 		/*
4424 		 * Note: must allocate system pages since blocking here
4425 		 * could intefere with paging I/O, no matter which
4426 		 * process we are.
4427 		 */
4428 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4429 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4430 		if (p) {
4431 			vm_page_wire(p);
4432 			p->valid = VM_PAGE_BITS_ALL;
4433 			vm_page_flag_clear(p, PG_ZERO);
4434 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4435 			bp->b_xio.xio_pages[index] = p;
4436 			vm_page_wakeup(p);
4437 
4438 			pg += PAGE_SIZE;
4439 			++index;
4440 		}
4441 	}
4442 	bp->b_xio.xio_npages = index;
4443 }
4444 
4445 /*
4446  * Allocate pages for a buffer cache buffer.
4447  *
4448  * Under extremely severe memory conditions even allocating out of the
4449  * system reserve can fail.  If this occurs we must allocate out of the
4450  * interrupt reserve to avoid a deadlock with the pageout daemon.
4451  *
4452  * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4453  * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4454  * against the pageout daemon if pages are not freed from other sources.
4455  *
4456  * MPSAFE
4457  */
4458 static
4459 vm_page_t
4460 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4461 {
4462 	vm_page_t p;
4463 
4464 	/*
4465 	 * Try a normal allocation, allow use of system reserve.
4466 	 */
4467 	lwkt_gettoken(&vm_token);
4468 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4469 	if (p) {
4470 		lwkt_reltoken(&vm_token);
4471 		return(p);
4472 	}
4473 
4474 	/*
4475 	 * The normal allocation failed and we clearly have a page
4476 	 * deficit.  Try to reclaim some clean VM pages directly
4477 	 * from the buffer cache.
4478 	 */
4479 	vm_pageout_deficit += deficit;
4480 	recoverbufpages();
4481 
4482 	/*
4483 	 * We may have blocked, the caller will know what to do if the
4484 	 * page now exists.
4485 	 */
4486 	if (vm_page_lookup(obj, pg)) {
4487 		lwkt_reltoken(&vm_token);
4488 		return(NULL);
4489 	}
4490 
4491 	/*
4492 	 * Allocate and allow use of the interrupt reserve.
4493 	 *
4494 	 * If after all that we still can't allocate a VM page we are
4495 	 * in real trouble, but we slog on anyway hoping that the system
4496 	 * won't deadlock.
4497 	 */
4498 	p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4499 				   VM_ALLOC_INTERRUPT);
4500 	if (p) {
4501 		if (vm_page_count_severe()) {
4502 			++lowmempgallocs;
4503 			vm_wait(hz / 20 + 1);
4504 		}
4505 	} else {
4506 		kprintf("bio_page_alloc: Memory exhausted during bufcache "
4507 			"page allocation\n");
4508 		++lowmempgfails;
4509 		vm_wait(hz);
4510 	}
4511 	lwkt_reltoken(&vm_token);
4512 	return(p);
4513 }
4514 
4515 /*
4516  * vm_hold_free_pages:
4517  *
4518  *	Return pages associated with the buffer back to the VM system.
4519  *
4520  *	The range of pages underlying the buffer's address space will
4521  *	be unmapped and un-wired.
4522  *
4523  * MPSAFE
4524  */
4525 void
4526 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4527 {
4528 	vm_offset_t pg;
4529 	vm_page_t p;
4530 	int index, newnpages;
4531 
4532 	from = round_page(from);
4533 	to = round_page(to);
4534 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4535 	newnpages = index;
4536 
4537 	lwkt_gettoken(&vm_token);
4538 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4539 		p = bp->b_xio.xio_pages[index];
4540 		if (p && (index < bp->b_xio.xio_npages)) {
4541 			if (p->busy) {
4542 				kprintf("vm_hold_free_pages: doffset: %lld, "
4543 					"loffset: %lld\n",
4544 					(long long)bp->b_bio2.bio_offset,
4545 					(long long)bp->b_loffset);
4546 			}
4547 			bp->b_xio.xio_pages[index] = NULL;
4548 			pmap_kremove(pg);
4549 			vm_page_busy(p);
4550 			vm_page_unwire(p, 0);
4551 			vm_page_free(p);
4552 		}
4553 	}
4554 	bp->b_xio.xio_npages = newnpages;
4555 	lwkt_reltoken(&vm_token);
4556 }
4557 
4558 /*
4559  * vmapbuf:
4560  *
4561  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4562  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4563  *	initialized.
4564  */
4565 int
4566 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4567 {
4568 	caddr_t addr;
4569 	vm_offset_t va;
4570 	vm_page_t m;
4571 	int vmprot;
4572 	int error;
4573 	int pidx;
4574 	int i;
4575 
4576 	/*
4577 	 * bp had better have a command and it better be a pbuf.
4578 	 */
4579 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4580 	KKASSERT(bp->b_flags & B_PAGING);
4581 	KKASSERT(bp->b_kvabase);
4582 
4583 	if (bytes < 0)
4584 		return (-1);
4585 
4586 	/*
4587 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4588 	 */
4589 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4590 	pidx = 0;
4591 
4592 	vmprot = VM_PROT_READ;
4593 	if (bp->b_cmd == BUF_CMD_READ)
4594 		vmprot |= VM_PROT_WRITE;
4595 
4596 	while (addr < udata + bytes) {
4597 		/*
4598 		 * Do the vm_fault if needed; do the copy-on-write thing
4599 		 * when reading stuff off device into memory.
4600 		 *
4601 		 * vm_fault_page*() returns a held VM page.
4602 		 */
4603 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4604 		va = trunc_page(va);
4605 
4606 		m = vm_fault_page_quick(va, vmprot, &error);
4607 		if (m == NULL) {
4608 			for (i = 0; i < pidx; ++i) {
4609 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4610 			    bp->b_xio.xio_pages[i] = NULL;
4611 			}
4612 			return(-1);
4613 		}
4614 		bp->b_xio.xio_pages[pidx] = m;
4615 		addr += PAGE_SIZE;
4616 		++pidx;
4617 	}
4618 
4619 	/*
4620 	 * Map the page array and set the buffer fields to point to
4621 	 * the mapped data buffer.
4622 	 */
4623 	if (pidx > btoc(MAXPHYS))
4624 		panic("vmapbuf: mapped more than MAXPHYS");
4625 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4626 
4627 	bp->b_xio.xio_npages = pidx;
4628 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4629 	bp->b_bcount = bytes;
4630 	bp->b_bufsize = bytes;
4631 	return(0);
4632 }
4633 
4634 /*
4635  * vunmapbuf:
4636  *
4637  *	Free the io map PTEs associated with this IO operation.
4638  *	We also invalidate the TLB entries and restore the original b_addr.
4639  */
4640 void
4641 vunmapbuf(struct buf *bp)
4642 {
4643 	int pidx;
4644 	int npages;
4645 
4646 	KKASSERT(bp->b_flags & B_PAGING);
4647 
4648 	npages = bp->b_xio.xio_npages;
4649 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4650 	for (pidx = 0; pidx < npages; ++pidx) {
4651 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4652 		bp->b_xio.xio_pages[pidx] = NULL;
4653 	}
4654 	bp->b_xio.xio_npages = 0;
4655 	bp->b_data = bp->b_kvabase;
4656 }
4657 
4658 /*
4659  * Scan all buffers in the system and issue the callback.
4660  */
4661 int
4662 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4663 {
4664 	int count = 0;
4665 	int error;
4666 	int n;
4667 
4668 	for (n = 0; n < nbuf; ++n) {
4669 		if ((error = callback(&buf[n], info)) < 0) {
4670 			count = error;
4671 			break;
4672 		}
4673 		count += error;
4674 	}
4675 	return (count);
4676 }
4677 
4678 /*
4679  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4680  * completion to the master buffer.
4681  */
4682 static void
4683 nestiobuf_iodone(struct bio *bio)
4684 {
4685 	struct bio *mbio;
4686 	struct buf *mbp, *bp;
4687 	struct devstat *stats;
4688 	int error;
4689 	int donebytes;
4690 
4691 	bp = bio->bio_buf;
4692 	mbio = bio->bio_caller_info1.ptr;
4693 	stats = bio->bio_caller_info2.ptr;
4694 	mbp = mbio->bio_buf;
4695 
4696 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4697 	KKASSERT(mbp != bp);
4698 
4699 	error = bp->b_error;
4700 	if (bp->b_error == 0 &&
4701 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4702 		/*
4703 		 * Not all got transfered, raise an error. We have no way to
4704 		 * propagate these conditions to mbp.
4705 		 */
4706 		error = EIO;
4707 	}
4708 
4709 	donebytes = bp->b_bufsize;
4710 
4711 	relpbuf(bp, NULL);
4712 
4713 	nestiobuf_done(mbio, donebytes, error, stats);
4714 }
4715 
4716 void
4717 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4718 {
4719 	struct buf *mbp;
4720 
4721 	mbp = mbio->bio_buf;
4722 
4723 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4724 
4725 	/*
4726 	 * If an error occured, propagate it to the master buffer.
4727 	 *
4728 	 * Several biodone()s may wind up running concurrently so
4729 	 * use an atomic op to adjust b_flags.
4730 	 */
4731 	if (error) {
4732 		mbp->b_error = error;
4733 		atomic_set_int(&mbp->b_flags, B_ERROR);
4734 	}
4735 
4736 	/*
4737 	 * Decrement the operations in progress counter and terminate the
4738 	 * I/O if this was the last bit.
4739 	 */
4740 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4741 		mbp->b_resid = 0;
4742 		if (stats)
4743 			devstat_end_transaction_buf(stats, mbp);
4744 		biodone(mbio);
4745 	}
4746 }
4747 
4748 /*
4749  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4750  * the mbio from being biodone()'d while we are still adding sub-bios to
4751  * it.
4752  */
4753 void
4754 nestiobuf_init(struct bio *bio)
4755 {
4756 	bio->bio_driver_info = (void *)1;
4757 }
4758 
4759 /*
4760  * The BIOs added to the nestedio have already been started, remove the
4761  * count that placeheld our mbio and biodone() it if the count would
4762  * transition to 0.
4763  */
4764 void
4765 nestiobuf_start(struct bio *mbio)
4766 {
4767 	struct buf *mbp = mbio->bio_buf;
4768 
4769 	/*
4770 	 * Decrement the operations in progress counter and terminate the
4771 	 * I/O if this was the last bit.
4772 	 */
4773 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4774 		if (mbp->b_flags & B_ERROR)
4775 			mbp->b_resid = mbp->b_bcount;
4776 		else
4777 			mbp->b_resid = 0;
4778 		biodone(mbio);
4779 	}
4780 }
4781 
4782 /*
4783  * Set an intermediate error prior to calling nestiobuf_start()
4784  */
4785 void
4786 nestiobuf_error(struct bio *mbio, int error)
4787 {
4788 	struct buf *mbp = mbio->bio_buf;
4789 
4790 	if (error) {
4791 		mbp->b_error = error;
4792 		atomic_set_int(&mbp->b_flags, B_ERROR);
4793 	}
4794 }
4795 
4796 /*
4797  * nestiobuf_add: setup a "nested" buffer.
4798  *
4799  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4800  * => 'bp' should be a buffer allocated by getiobuf.
4801  * => 'offset' is a byte offset in the master buffer.
4802  * => 'size' is a size in bytes of this nested buffer.
4803  */
4804 void
4805 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4806 {
4807 	struct buf *mbp = mbio->bio_buf;
4808 	struct vnode *vp = mbp->b_vp;
4809 
4810 	KKASSERT(mbp->b_bcount >= offset + size);
4811 
4812 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4813 
4814 	/* kernel needs to own the lock for it to be released in biodone */
4815 	BUF_KERNPROC(bp);
4816 	bp->b_vp = vp;
4817 	bp->b_cmd = mbp->b_cmd;
4818 	bp->b_bio1.bio_done = nestiobuf_iodone;
4819 	bp->b_data = (char *)mbp->b_data + offset;
4820 	bp->b_resid = bp->b_bcount = size;
4821 	bp->b_bufsize = bp->b_bcount;
4822 
4823 	bp->b_bio1.bio_track = NULL;
4824 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4825 	bp->b_bio1.bio_caller_info2.ptr = stats;
4826 }
4827 
4828 /*
4829  * print out statistics from the current status of the buffer pool
4830  * this can be toggeled by the system control option debug.syncprt
4831  */
4832 #ifdef DEBUG
4833 void
4834 vfs_bufstats(void)
4835 {
4836         int i, j, count;
4837         struct buf *bp;
4838         struct bqueues *dp;
4839         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4840         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4841 
4842         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4843                 count = 0;
4844                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4845                         counts[j] = 0;
4846 
4847 		spin_lock(&bufqspin);
4848                 TAILQ_FOREACH(bp, dp, b_freelist) {
4849                         counts[bp->b_bufsize/PAGE_SIZE]++;
4850                         count++;
4851                 }
4852 		spin_unlock(&bufqspin);
4853 
4854                 kprintf("%s: total-%d", bname[i], count);
4855                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4856                         if (counts[j] != 0)
4857                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4858                 kprintf("\n");
4859         }
4860 }
4861 #endif
4862 
4863 #ifdef DDB
4864 
4865 DB_SHOW_COMMAND(buffer, db_show_buffer)
4866 {
4867 	/* get args */
4868 	struct buf *bp = (struct buf *)addr;
4869 
4870 	if (!have_addr) {
4871 		db_printf("usage: show buffer <addr>\n");
4872 		return;
4873 	}
4874 
4875 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4876 	db_printf("b_cmd = %d\n", bp->b_cmd);
4877 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4878 		  "b_resid = %d\n, b_data = %p, "
4879 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4880 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4881 		  bp->b_data,
4882 		  (long long)bp->b_bio2.bio_offset,
4883 		  (long long)(bp->b_bio2.bio_next ?
4884 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4885 	if (bp->b_xio.xio_npages) {
4886 		int i;
4887 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4888 			bp->b_xio.xio_npages);
4889 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4890 			vm_page_t m;
4891 			m = bp->b_xio.xio_pages[i];
4892 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4893 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4894 			if ((i + 1) < bp->b_xio.xio_npages)
4895 				db_printf(",");
4896 		}
4897 		db_printf("\n");
4898 	}
4899 }
4900 #endif /* DDB */
4901