1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/devicestat.h> 36 #include <sys/eventhandler.h> 37 #include <sys/lock.h> 38 #include <sys/malloc.h> 39 #include <sys/mount.h> 40 #include <sys/kernel.h> 41 #include <sys/kthread.h> 42 #include <sys/proc.h> 43 #include <sys/reboot.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 #include <sys/dsched.h> 49 #include <sys/proc.h> 50 #include <vm/vm.h> 51 #include <vm/vm_param.h> 52 #include <vm/vm_kern.h> 53 #include <vm/vm_pageout.h> 54 #include <vm/vm_page.h> 55 #include <vm/vm_object.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_pager.h> 59 #include <vm/swap_pager.h> 60 61 #include <sys/buf2.h> 62 #include <sys/thread2.h> 63 #include <sys/spinlock2.h> 64 #include <sys/mplock2.h> 65 #include <vm/vm_page2.h> 66 67 #include "opt_ddb.h" 68 #ifdef DDB 69 #include <ddb/ddb.h> 70 #endif 71 72 /* 73 * Buffer queues. 74 */ 75 enum bufq_type { 76 BQUEUE_NONE, /* not on any queue */ 77 BQUEUE_LOCKED, /* locked buffers */ 78 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 79 BQUEUE_DIRTY, /* B_DELWRI buffers */ 80 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 81 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 82 BQUEUE_EMPTY, /* empty buffer headers */ 83 84 BUFFER_QUEUES /* number of buffer queues */ 85 }; 86 87 typedef enum bufq_type bufq_type_t; 88 89 #define BD_WAKE_SIZE 16384 90 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 91 92 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 93 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin); 94 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin); 95 96 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 97 98 struct buf *buf; /* buffer header pool */ 99 100 static void vfs_clean_pages(struct buf *bp); 101 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 102 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m); 103 static void vfs_vmio_release(struct buf *bp); 104 static int flushbufqueues(bufq_type_t q); 105 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 106 107 static void bd_signal(int totalspace); 108 static void buf_daemon(void); 109 static void buf_daemon_hw(void); 110 111 /* 112 * bogus page -- for I/O to/from partially complete buffers 113 * this is a temporary solution to the problem, but it is not 114 * really that bad. it would be better to split the buffer 115 * for input in the case of buffers partially already in memory, 116 * but the code is intricate enough already. 117 */ 118 vm_page_t bogus_page; 119 120 /* 121 * These are all static, but make the ones we export globals so we do 122 * not need to use compiler magic. 123 */ 124 int bufspace; /* locked by buffer_map */ 125 int maxbufspace; 126 static int bufmallocspace; /* atomic ops */ 127 int maxbufmallocspace, lobufspace, hibufspace; 128 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 129 static int lorunningspace; 130 static int hirunningspace; 131 static int runningbufreq; /* locked by bufcspin */ 132 static int dirtybufspace; /* locked by bufcspin */ 133 static int dirtybufcount; /* locked by bufcspin */ 134 static int dirtybufspacehw; /* locked by bufcspin */ 135 static int dirtybufcounthw; /* locked by bufcspin */ 136 static int runningbufspace; /* locked by bufcspin */ 137 static int runningbufcount; /* locked by bufcspin */ 138 int lodirtybufspace; 139 int hidirtybufspace; 140 static int getnewbufcalls; 141 static int getnewbufrestarts; 142 static int recoverbufcalls; 143 static int needsbuffer; /* locked by bufcspin */ 144 static int bd_request; /* locked by bufcspin */ 145 static int bd_request_hw; /* locked by bufcspin */ 146 static u_int bd_wake_ary[BD_WAKE_SIZE]; 147 static u_int bd_wake_index; 148 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */ 149 static int debug_commit; 150 151 static struct thread *bufdaemon_td; 152 static struct thread *bufdaemonhw_td; 153 static u_int lowmempgallocs; 154 static u_int lowmempgfails; 155 156 /* 157 * Sysctls for operational control of the buffer cache. 158 */ 159 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 160 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 161 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 162 "High watermark used to trigger explicit flushing of dirty buffers"); 163 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 164 "Minimum amount of buffer space required for active I/O"); 165 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 166 "Maximum amount of buffer space to usable for active I/O"); 167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0, 168 "Page allocations done during periods of very low free memory"); 169 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0, 170 "Page allocations which failed during periods of very low free memory"); 171 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0, 172 "Recycle pages to active or inactive queue transition pt 0-64"); 173 /* 174 * Sysctls determining current state of the buffer cache. 175 */ 176 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 177 "Total number of buffers in buffer cache"); 178 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 179 "Pending bytes of dirty buffers (all)"); 180 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 181 "Pending bytes of dirty buffers (heavy weight)"); 182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 183 "Pending number of dirty buffers"); 184 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 185 "Pending number of dirty buffers (heavy weight)"); 186 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 187 "I/O bytes currently in progress due to asynchronous writes"); 188 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 189 "I/O buffers currently in progress due to asynchronous writes"); 190 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 191 "Hard limit on maximum amount of memory usable for buffer space"); 192 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 193 "Soft limit on maximum amount of memory usable for buffer space"); 194 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 195 "Minimum amount of memory to reserve for system buffer space"); 196 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 197 "Amount of memory available for buffers"); 198 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 199 0, "Maximum amount of memory reserved for buffers using malloc"); 200 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 201 "Amount of memory left for buffers using malloc-scheme"); 202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 203 "New buffer header acquisition requests"); 204 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 205 0, "New buffer header acquisition restarts"); 206 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 207 "Recover VM space in an emergency"); 208 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 209 "Buffer acquisition restarts due to fragmented buffer map"); 210 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 211 "Amount of time KVA space was deallocated in an arbitrary buffer"); 212 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 213 "Amount of time buffer re-use operations were successful"); 214 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, ""); 215 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 216 "sizeof(struct buf)"); 217 218 char *buf_wmesg = BUF_WMESG; 219 220 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 221 #define VFS_BIO_NEED_UNUSED02 0x02 222 #define VFS_BIO_NEED_UNUSED04 0x04 223 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 224 225 /* 226 * bufspacewakeup: 227 * 228 * Called when buffer space is potentially available for recovery. 229 * getnewbuf() will block on this flag when it is unable to free 230 * sufficient buffer space. Buffer space becomes recoverable when 231 * bp's get placed back in the queues. 232 */ 233 static __inline void 234 bufspacewakeup(void) 235 { 236 /* 237 * If someone is waiting for BUF space, wake them up. Even 238 * though we haven't freed the kva space yet, the waiting 239 * process will be able to now. 240 */ 241 spin_lock(&bufcspin); 242 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 243 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 244 spin_unlock(&bufcspin); 245 wakeup(&needsbuffer); 246 } else { 247 spin_unlock(&bufcspin); 248 } 249 } 250 251 /* 252 * runningbufwakeup: 253 * 254 * Accounting for I/O in progress. 255 * 256 */ 257 static __inline void 258 runningbufwakeup(struct buf *bp) 259 { 260 int totalspace; 261 int limit; 262 263 if ((totalspace = bp->b_runningbufspace) != 0) { 264 spin_lock(&bufcspin); 265 runningbufspace -= totalspace; 266 --runningbufcount; 267 bp->b_runningbufspace = 0; 268 269 /* 270 * see waitrunningbufspace() for limit test. 271 */ 272 limit = hirunningspace * 4 / 6; 273 if (runningbufreq && runningbufspace <= limit) { 274 runningbufreq = 0; 275 spin_unlock(&bufcspin); 276 wakeup(&runningbufreq); 277 } else { 278 spin_unlock(&bufcspin); 279 } 280 bd_signal(totalspace); 281 } 282 } 283 284 /* 285 * bufcountwakeup: 286 * 287 * Called when a buffer has been added to one of the free queues to 288 * account for the buffer and to wakeup anyone waiting for free buffers. 289 * This typically occurs when large amounts of metadata are being handled 290 * by the buffer cache ( else buffer space runs out first, usually ). 291 * 292 * MPSAFE 293 */ 294 static __inline void 295 bufcountwakeup(void) 296 { 297 spin_lock(&bufcspin); 298 if (needsbuffer) { 299 needsbuffer &= ~VFS_BIO_NEED_ANY; 300 spin_unlock(&bufcspin); 301 wakeup(&needsbuffer); 302 } else { 303 spin_unlock(&bufcspin); 304 } 305 } 306 307 /* 308 * waitrunningbufspace() 309 * 310 * Wait for the amount of running I/O to drop to hirunningspace * 4 / 6. 311 * This is the point where write bursting stops so we don't want to wait 312 * for the running amount to drop below it (at least if we still want bioq 313 * to burst writes). 314 * 315 * The caller may be using this function to block in a tight loop, we 316 * must block while runningbufspace is greater then or equal to 317 * hirunningspace * 4 / 6. 318 * 319 * And even with that it may not be enough, due to the presence of 320 * B_LOCKED dirty buffers, so also wait for at least one running buffer 321 * to complete. 322 */ 323 void 324 waitrunningbufspace(void) 325 { 326 int limit = hirunningspace * 4 / 6; 327 int dummy; 328 329 spin_lock(&bufcspin); 330 if (runningbufspace > limit) { 331 while (runningbufspace > limit) { 332 ++runningbufreq; 333 ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0); 334 } 335 spin_unlock(&bufcspin); 336 } else if (runningbufspace > limit / 2) { 337 ++runningbufreq; 338 spin_unlock(&bufcspin); 339 tsleep(&dummy, 0, "wdrn2", 1); 340 } else { 341 spin_unlock(&bufcspin); 342 } 343 } 344 345 /* 346 * buf_dirty_count_severe: 347 * 348 * Return true if we have too many dirty buffers. 349 */ 350 int 351 buf_dirty_count_severe(void) 352 { 353 return (runningbufspace + dirtybufspace >= hidirtybufspace || 354 dirtybufcount >= nbuf / 2); 355 } 356 357 /* 358 * Return true if the amount of running I/O is severe and BIOQ should 359 * start bursting. 360 */ 361 int 362 buf_runningbufspace_severe(void) 363 { 364 return (runningbufspace >= hirunningspace * 4 / 6); 365 } 366 367 /* 368 * vfs_buf_test_cache: 369 * 370 * Called when a buffer is extended. This function clears the B_CACHE 371 * bit if the newly extended portion of the buffer does not contain 372 * valid data. 373 * 374 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 375 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 376 * them while a clean buffer was present. 377 */ 378 static __inline__ 379 void 380 vfs_buf_test_cache(struct buf *bp, 381 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 382 vm_page_t m) 383 { 384 if (bp->b_flags & B_CACHE) { 385 int base = (foff + off) & PAGE_MASK; 386 if (vm_page_is_valid(m, base, size) == 0) 387 bp->b_flags &= ~B_CACHE; 388 } 389 } 390 391 /* 392 * bd_speedup() 393 * 394 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 395 * low water mark. 396 * 397 * MPSAFE 398 */ 399 static __inline__ 400 void 401 bd_speedup(void) 402 { 403 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 404 return; 405 406 if (bd_request == 0 && 407 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 408 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 409 spin_lock(&bufcspin); 410 bd_request = 1; 411 spin_unlock(&bufcspin); 412 wakeup(&bd_request); 413 } 414 if (bd_request_hw == 0 && 415 (dirtybufspacehw > lodirtybufspace / 2 || 416 dirtybufcounthw >= nbuf / 2)) { 417 spin_lock(&bufcspin); 418 bd_request_hw = 1; 419 spin_unlock(&bufcspin); 420 wakeup(&bd_request_hw); 421 } 422 } 423 424 /* 425 * bd_heatup() 426 * 427 * Get the buf_daemon heated up when the number of running and dirty 428 * buffers exceeds the mid-point. 429 * 430 * Return the total number of dirty bytes past the second mid point 431 * as a measure of how much excess dirty data there is in the system. 432 * 433 * MPSAFE 434 */ 435 int 436 bd_heatup(void) 437 { 438 int mid1; 439 int mid2; 440 int totalspace; 441 442 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 443 444 totalspace = runningbufspace + dirtybufspace; 445 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 446 bd_speedup(); 447 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 448 if (totalspace >= mid2) 449 return(totalspace - mid2); 450 } 451 return(0); 452 } 453 454 /* 455 * bd_wait() 456 * 457 * Wait for the buffer cache to flush (totalspace) bytes worth of 458 * buffers, then return. 459 * 460 * Regardless this function blocks while the number of dirty buffers 461 * exceeds hidirtybufspace. 462 * 463 * MPSAFE 464 */ 465 void 466 bd_wait(int totalspace) 467 { 468 u_int i; 469 int count; 470 471 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 472 return; 473 474 while (totalspace > 0) { 475 bd_heatup(); 476 if (totalspace > runningbufspace + dirtybufspace) 477 totalspace = runningbufspace + dirtybufspace; 478 count = totalspace / BKVASIZE; 479 if (count >= BD_WAKE_SIZE) 480 count = BD_WAKE_SIZE - 1; 481 482 spin_lock(&bufcspin); 483 i = (bd_wake_index + count) & BD_WAKE_MASK; 484 ++bd_wake_ary[i]; 485 486 /* 487 * This is not a strict interlock, so we play a bit loose 488 * with locking access to dirtybufspace* 489 */ 490 tsleep_interlock(&bd_wake_ary[i], 0); 491 spin_unlock(&bufcspin); 492 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 493 494 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 495 } 496 } 497 498 /* 499 * bd_signal() 500 * 501 * This function is called whenever runningbufspace or dirtybufspace 502 * is reduced. Track threads waiting for run+dirty buffer I/O 503 * complete. 504 * 505 * MPSAFE 506 */ 507 static void 508 bd_signal(int totalspace) 509 { 510 u_int i; 511 512 if (totalspace > 0) { 513 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 514 totalspace = BKVASIZE * BD_WAKE_SIZE; 515 spin_lock(&bufcspin); 516 while (totalspace > 0) { 517 i = bd_wake_index++; 518 i &= BD_WAKE_MASK; 519 if (bd_wake_ary[i]) { 520 bd_wake_ary[i] = 0; 521 spin_unlock(&bufcspin); 522 wakeup(&bd_wake_ary[i]); 523 spin_lock(&bufcspin); 524 } 525 totalspace -= BKVASIZE; 526 } 527 spin_unlock(&bufcspin); 528 } 529 } 530 531 /* 532 * BIO tracking support routines. 533 * 534 * Release a ref on a bio_track. Wakeup requests are atomically released 535 * along with the last reference so bk_active will never wind up set to 536 * only 0x80000000. 537 * 538 * MPSAFE 539 */ 540 static 541 void 542 bio_track_rel(struct bio_track *track) 543 { 544 int active; 545 int desired; 546 547 /* 548 * Shortcut 549 */ 550 active = track->bk_active; 551 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 552 return; 553 554 /* 555 * Full-on. Note that the wait flag is only atomically released on 556 * the 1->0 count transition. 557 * 558 * We check for a negative count transition using bit 30 since bit 31 559 * has a different meaning. 560 */ 561 for (;;) { 562 desired = (active & 0x7FFFFFFF) - 1; 563 if (desired) 564 desired |= active & 0x80000000; 565 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 566 if (desired & 0x40000000) 567 panic("bio_track_rel: bad count: %p\n", track); 568 if (active & 0x80000000) 569 wakeup(track); 570 break; 571 } 572 active = track->bk_active; 573 } 574 } 575 576 /* 577 * Wait for the tracking count to reach 0. 578 * 579 * Use atomic ops such that the wait flag is only set atomically when 580 * bk_active is non-zero. 581 * 582 * MPSAFE 583 */ 584 int 585 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 586 { 587 int active; 588 int desired; 589 int error; 590 591 /* 592 * Shortcut 593 */ 594 if (track->bk_active == 0) 595 return(0); 596 597 /* 598 * Full-on. Note that the wait flag may only be atomically set if 599 * the active count is non-zero. 600 * 601 * NOTE: We cannot optimize active == desired since a wakeup could 602 * clear active prior to our tsleep_interlock(). 603 */ 604 error = 0; 605 while ((active = track->bk_active) != 0) { 606 cpu_ccfence(); 607 desired = active | 0x80000000; 608 tsleep_interlock(track, slp_flags); 609 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 610 error = tsleep(track, slp_flags | PINTERLOCKED, 611 "trwait", slp_timo); 612 if (error) 613 break; 614 } 615 } 616 return (error); 617 } 618 619 /* 620 * bufinit: 621 * 622 * Load time initialisation of the buffer cache, called from machine 623 * dependant initialization code. 624 */ 625 void 626 bufinit(void) 627 { 628 struct buf *bp; 629 vm_offset_t bogus_offset; 630 int i; 631 632 /* next, make a null set of free lists */ 633 for (i = 0; i < BUFFER_QUEUES; i++) 634 TAILQ_INIT(&bufqueues[i]); 635 636 /* finally, initialize each buffer header and stick on empty q */ 637 for (i = 0; i < nbuf; i++) { 638 bp = &buf[i]; 639 bzero(bp, sizeof *bp); 640 bp->b_flags = B_INVAL; /* we're just an empty header */ 641 bp->b_cmd = BUF_CMD_DONE; 642 bp->b_qindex = BQUEUE_EMPTY; 643 initbufbio(bp); 644 xio_init(&bp->b_xio); 645 buf_dep_init(bp); 646 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 647 } 648 649 /* 650 * maxbufspace is the absolute maximum amount of buffer space we are 651 * allowed to reserve in KVM and in real terms. The absolute maximum 652 * is nominally used by buf_daemon. hibufspace is the nominal maximum 653 * used by most other processes. The differential is required to 654 * ensure that buf_daemon is able to run when other processes might 655 * be blocked waiting for buffer space. 656 * 657 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 658 * this may result in KVM fragmentation which is not handled optimally 659 * by the system. 660 */ 661 maxbufspace = nbuf * BKVASIZE; 662 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 663 lobufspace = hibufspace - MAXBSIZE; 664 665 lorunningspace = 512 * 1024; 666 /* hirunningspace -- see below */ 667 668 /* 669 * Limit the amount of malloc memory since it is wired permanently 670 * into the kernel space. Even though this is accounted for in 671 * the buffer allocation, we don't want the malloced region to grow 672 * uncontrolled. The malloc scheme improves memory utilization 673 * significantly on average (small) directories. 674 */ 675 maxbufmallocspace = hibufspace / 20; 676 677 /* 678 * Reduce the chance of a deadlock occuring by limiting the number 679 * of delayed-write dirty buffers we allow to stack up. 680 * 681 * We don't want too much actually queued to the device at once 682 * (XXX this needs to be per-mount!), because the buffers will 683 * wind up locked for a very long period of time while the I/O 684 * drains. 685 */ 686 hidirtybufspace = hibufspace / 2; /* dirty + running */ 687 hirunningspace = hibufspace / 16; /* locked & queued to device */ 688 if (hirunningspace < 1024 * 1024) 689 hirunningspace = 1024 * 1024; 690 691 dirtybufspace = 0; 692 dirtybufspacehw = 0; 693 694 lodirtybufspace = hidirtybufspace / 2; 695 696 /* 697 * Maximum number of async ops initiated per buf_daemon loop. This is 698 * somewhat of a hack at the moment, we really need to limit ourselves 699 * based on the number of bytes of I/O in-transit that were initiated 700 * from buf_daemon. 701 */ 702 703 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 704 bogus_page = vm_page_alloc(&kernel_object, 705 (bogus_offset >> PAGE_SHIFT), 706 VM_ALLOC_NORMAL); 707 vmstats.v_wire_count++; 708 709 } 710 711 /* 712 * Initialize the embedded bio structures, typically used by 713 * deprecated code which tries to allocate its own struct bufs. 714 */ 715 void 716 initbufbio(struct buf *bp) 717 { 718 bp->b_bio1.bio_buf = bp; 719 bp->b_bio1.bio_prev = NULL; 720 bp->b_bio1.bio_offset = NOOFFSET; 721 bp->b_bio1.bio_next = &bp->b_bio2; 722 bp->b_bio1.bio_done = NULL; 723 bp->b_bio1.bio_flags = 0; 724 725 bp->b_bio2.bio_buf = bp; 726 bp->b_bio2.bio_prev = &bp->b_bio1; 727 bp->b_bio2.bio_offset = NOOFFSET; 728 bp->b_bio2.bio_next = NULL; 729 bp->b_bio2.bio_done = NULL; 730 bp->b_bio2.bio_flags = 0; 731 732 BUF_LOCKINIT(bp); 733 } 734 735 /* 736 * Reinitialize the embedded bio structures as well as any additional 737 * translation cache layers. 738 */ 739 void 740 reinitbufbio(struct buf *bp) 741 { 742 struct bio *bio; 743 744 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 745 bio->bio_done = NULL; 746 bio->bio_offset = NOOFFSET; 747 } 748 } 749 750 /* 751 * Undo the effects of an initbufbio(). 752 */ 753 void 754 uninitbufbio(struct buf *bp) 755 { 756 dsched_exit_buf(bp); 757 BUF_LOCKFREE(bp); 758 } 759 760 /* 761 * Push another BIO layer onto an existing BIO and return it. The new 762 * BIO layer may already exist, holding cached translation data. 763 */ 764 struct bio * 765 push_bio(struct bio *bio) 766 { 767 struct bio *nbio; 768 769 if ((nbio = bio->bio_next) == NULL) { 770 int index = bio - &bio->bio_buf->b_bio_array[0]; 771 if (index >= NBUF_BIO - 1) { 772 panic("push_bio: too many layers bp %p\n", 773 bio->bio_buf); 774 } 775 nbio = &bio->bio_buf->b_bio_array[index + 1]; 776 bio->bio_next = nbio; 777 nbio->bio_prev = bio; 778 nbio->bio_buf = bio->bio_buf; 779 nbio->bio_offset = NOOFFSET; 780 nbio->bio_done = NULL; 781 nbio->bio_next = NULL; 782 } 783 KKASSERT(nbio->bio_done == NULL); 784 return(nbio); 785 } 786 787 /* 788 * Pop a BIO translation layer, returning the previous layer. The 789 * must have been previously pushed. 790 */ 791 struct bio * 792 pop_bio(struct bio *bio) 793 { 794 return(bio->bio_prev); 795 } 796 797 void 798 clearbiocache(struct bio *bio) 799 { 800 while (bio) { 801 bio->bio_offset = NOOFFSET; 802 bio = bio->bio_next; 803 } 804 } 805 806 /* 807 * bfreekva: 808 * 809 * Free the KVA allocation for buffer 'bp'. 810 * 811 * Must be called from a critical section as this is the only locking for 812 * buffer_map. 813 * 814 * Since this call frees up buffer space, we call bufspacewakeup(). 815 * 816 * MPALMOSTSAFE 817 */ 818 static void 819 bfreekva(struct buf *bp) 820 { 821 int count; 822 823 if (bp->b_kvasize) { 824 ++buffreekvacnt; 825 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 826 vm_map_lock(&buffer_map); 827 bufspace -= bp->b_kvasize; 828 vm_map_delete(&buffer_map, 829 (vm_offset_t) bp->b_kvabase, 830 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 831 &count 832 ); 833 vm_map_unlock(&buffer_map); 834 vm_map_entry_release(count); 835 bp->b_kvasize = 0; 836 bp->b_kvabase = NULL; 837 bufspacewakeup(); 838 } 839 } 840 841 /* 842 * bremfree: 843 * 844 * Remove the buffer from the appropriate free list. 845 */ 846 static __inline void 847 _bremfree(struct buf *bp) 848 { 849 if (bp->b_qindex != BQUEUE_NONE) { 850 KASSERT(BUF_REFCNTNB(bp) == 1, 851 ("bremfree: bp %p not locked",bp)); 852 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 853 bp->b_qindex = BQUEUE_NONE; 854 } else { 855 if (BUF_REFCNTNB(bp) <= 1) 856 panic("bremfree: removing a buffer not on a queue"); 857 } 858 } 859 860 void 861 bremfree(struct buf *bp) 862 { 863 spin_lock(&bufqspin); 864 _bremfree(bp); 865 spin_unlock(&bufqspin); 866 } 867 868 static void 869 bremfree_locked(struct buf *bp) 870 { 871 _bremfree(bp); 872 } 873 874 /* 875 * bread: 876 * 877 * Get a buffer with the specified data. Look in the cache first. We 878 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 879 * is set, the buffer is valid and we do not have to do anything ( see 880 * getblk() ). 881 * 882 * MPALMOSTSAFE 883 */ 884 int 885 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 886 { 887 struct buf *bp; 888 889 bp = getblk(vp, loffset, size, 0, 0); 890 *bpp = bp; 891 892 /* if not found in cache, do some I/O */ 893 if ((bp->b_flags & B_CACHE) == 0) { 894 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 895 bp->b_cmd = BUF_CMD_READ; 896 bp->b_bio1.bio_done = biodone_sync; 897 bp->b_bio1.bio_flags |= BIO_SYNC; 898 vfs_busy_pages(vp, bp); 899 vn_strategy(vp, &bp->b_bio1); 900 return (biowait(&bp->b_bio1, "biord")); 901 } 902 return (0); 903 } 904 905 /* 906 * breadn: 907 * 908 * Operates like bread, but also starts asynchronous I/O on 909 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 910 * to initiating I/O . If B_CACHE is set, the buffer is valid 911 * and we do not have to do anything. 912 * 913 * MPALMOSTSAFE 914 */ 915 int 916 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 917 int *rabsize, int cnt, struct buf **bpp) 918 { 919 struct buf *bp, *rabp; 920 int i; 921 int rv = 0, readwait = 0; 922 923 *bpp = bp = getblk(vp, loffset, size, 0, 0); 924 925 /* if not found in cache, do some I/O */ 926 if ((bp->b_flags & B_CACHE) == 0) { 927 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 928 bp->b_cmd = BUF_CMD_READ; 929 bp->b_bio1.bio_done = biodone_sync; 930 bp->b_bio1.bio_flags |= BIO_SYNC; 931 vfs_busy_pages(vp, bp); 932 vn_strategy(vp, &bp->b_bio1); 933 ++readwait; 934 } 935 936 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 937 if (inmem(vp, *raoffset)) 938 continue; 939 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 940 941 if ((rabp->b_flags & B_CACHE) == 0) { 942 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 943 rabp->b_cmd = BUF_CMD_READ; 944 vfs_busy_pages(vp, rabp); 945 BUF_KERNPROC(rabp); 946 vn_strategy(vp, &rabp->b_bio1); 947 } else { 948 brelse(rabp); 949 } 950 } 951 if (readwait) 952 rv = biowait(&bp->b_bio1, "biord"); 953 return (rv); 954 } 955 956 /* 957 * bwrite: 958 * 959 * Synchronous write, waits for completion. 960 * 961 * Write, release buffer on completion. (Done by iodone 962 * if async). Do not bother writing anything if the buffer 963 * is invalid. 964 * 965 * Note that we set B_CACHE here, indicating that buffer is 966 * fully valid and thus cacheable. This is true even of NFS 967 * now so we set it generally. This could be set either here 968 * or in biodone() since the I/O is synchronous. We put it 969 * here. 970 */ 971 int 972 bwrite(struct buf *bp) 973 { 974 int error; 975 976 if (bp->b_flags & B_INVAL) { 977 brelse(bp); 978 return (0); 979 } 980 if (BUF_REFCNTNB(bp) == 0) 981 panic("bwrite: buffer is not busy???"); 982 983 /* Mark the buffer clean */ 984 bundirty(bp); 985 986 bp->b_flags &= ~(B_ERROR | B_EINTR); 987 bp->b_flags |= B_CACHE; 988 bp->b_cmd = BUF_CMD_WRITE; 989 bp->b_bio1.bio_done = biodone_sync; 990 bp->b_bio1.bio_flags |= BIO_SYNC; 991 vfs_busy_pages(bp->b_vp, bp); 992 993 /* 994 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 995 * valid for vnode-backed buffers. 996 */ 997 bsetrunningbufspace(bp, bp->b_bufsize); 998 vn_strategy(bp->b_vp, &bp->b_bio1); 999 error = biowait(&bp->b_bio1, "biows"); 1000 brelse(bp); 1001 1002 return (error); 1003 } 1004 1005 /* 1006 * bawrite: 1007 * 1008 * Asynchronous write. Start output on a buffer, but do not wait for 1009 * it to complete. The buffer is released when the output completes. 1010 * 1011 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1012 * B_INVAL buffers. Not us. 1013 */ 1014 void 1015 bawrite(struct buf *bp) 1016 { 1017 if (bp->b_flags & B_INVAL) { 1018 brelse(bp); 1019 return; 1020 } 1021 if (BUF_REFCNTNB(bp) == 0) 1022 panic("bwrite: buffer is not busy???"); 1023 1024 /* Mark the buffer clean */ 1025 bundirty(bp); 1026 1027 bp->b_flags &= ~(B_ERROR | B_EINTR); 1028 bp->b_flags |= B_CACHE; 1029 bp->b_cmd = BUF_CMD_WRITE; 1030 KKASSERT(bp->b_bio1.bio_done == NULL); 1031 vfs_busy_pages(bp->b_vp, bp); 1032 1033 /* 1034 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1035 * valid for vnode-backed buffers. 1036 */ 1037 bsetrunningbufspace(bp, bp->b_bufsize); 1038 BUF_KERNPROC(bp); 1039 vn_strategy(bp->b_vp, &bp->b_bio1); 1040 } 1041 1042 /* 1043 * bowrite: 1044 * 1045 * Ordered write. Start output on a buffer, and flag it so that the 1046 * device will write it in the order it was queued. The buffer is 1047 * released when the output completes. bwrite() ( or the VOP routine 1048 * anyway ) is responsible for handling B_INVAL buffers. 1049 */ 1050 int 1051 bowrite(struct buf *bp) 1052 { 1053 bp->b_flags |= B_ORDERED; 1054 bawrite(bp); 1055 return (0); 1056 } 1057 1058 /* 1059 * bdwrite: 1060 * 1061 * Delayed write. (Buffer is marked dirty). Do not bother writing 1062 * anything if the buffer is marked invalid. 1063 * 1064 * Note that since the buffer must be completely valid, we can safely 1065 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1066 * biodone() in order to prevent getblk from writing the buffer 1067 * out synchronously. 1068 */ 1069 void 1070 bdwrite(struct buf *bp) 1071 { 1072 if (BUF_REFCNTNB(bp) == 0) 1073 panic("bdwrite: buffer is not busy"); 1074 1075 if (bp->b_flags & B_INVAL) { 1076 brelse(bp); 1077 return; 1078 } 1079 bdirty(bp); 1080 1081 if (dsched_is_clear_buf_priv(bp)) 1082 dsched_new_buf(bp); 1083 1084 /* 1085 * Set B_CACHE, indicating that the buffer is fully valid. This is 1086 * true even of NFS now. 1087 */ 1088 bp->b_flags |= B_CACHE; 1089 1090 /* 1091 * This bmap keeps the system from needing to do the bmap later, 1092 * perhaps when the system is attempting to do a sync. Since it 1093 * is likely that the indirect block -- or whatever other datastructure 1094 * that the filesystem needs is still in memory now, it is a good 1095 * thing to do this. Note also, that if the pageout daemon is 1096 * requesting a sync -- there might not be enough memory to do 1097 * the bmap then... So, this is important to do. 1098 */ 1099 if (bp->b_bio2.bio_offset == NOOFFSET) { 1100 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1101 NULL, NULL, BUF_CMD_WRITE); 1102 } 1103 1104 /* 1105 * Because the underlying pages may still be mapped and 1106 * writable trying to set the dirty buffer (b_dirtyoff/end) 1107 * range here will be inaccurate. 1108 * 1109 * However, we must still clean the pages to satisfy the 1110 * vnode_pager and pageout daemon, so theythink the pages 1111 * have been "cleaned". What has really occured is that 1112 * they've been earmarked for later writing by the buffer 1113 * cache. 1114 * 1115 * So we get the b_dirtyoff/end update but will not actually 1116 * depend on it (NFS that is) until the pages are busied for 1117 * writing later on. 1118 */ 1119 vfs_clean_pages(bp); 1120 bqrelse(bp); 1121 1122 /* 1123 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1124 * due to the softdep code. 1125 */ 1126 } 1127 1128 /* 1129 * Fake write - return pages to VM system as dirty, leave the buffer clean. 1130 * This is used by tmpfs. 1131 * 1132 * It is important for any VFS using this routine to NOT use it for 1133 * IO_SYNC or IO_ASYNC operations which occur when the system really 1134 * wants to flush VM pages to backing store. 1135 */ 1136 void 1137 buwrite(struct buf *bp) 1138 { 1139 vm_page_t m; 1140 int i; 1141 1142 /* 1143 * Only works for VMIO buffers. If the buffer is already 1144 * marked for delayed-write we can't avoid the bdwrite(). 1145 */ 1146 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) { 1147 bdwrite(bp); 1148 return; 1149 } 1150 1151 /* 1152 * Set valid & dirty. 1153 */ 1154 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1155 m = bp->b_xio.xio_pages[i]; 1156 vfs_dirty_one_page(bp, i, m); 1157 } 1158 bqrelse(bp); 1159 } 1160 1161 /* 1162 * bdirty: 1163 * 1164 * Turn buffer into delayed write request by marking it B_DELWRI. 1165 * B_RELBUF and B_NOCACHE must be cleared. 1166 * 1167 * We reassign the buffer to itself to properly update it in the 1168 * dirty/clean lists. 1169 * 1170 * Must be called from a critical section. 1171 * The buffer must be on BQUEUE_NONE. 1172 */ 1173 void 1174 bdirty(struct buf *bp) 1175 { 1176 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1177 if (bp->b_flags & B_NOCACHE) { 1178 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1179 bp->b_flags &= ~B_NOCACHE; 1180 } 1181 if (bp->b_flags & B_INVAL) { 1182 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1183 } 1184 bp->b_flags &= ~B_RELBUF; 1185 1186 if ((bp->b_flags & B_DELWRI) == 0) { 1187 lwkt_gettoken(&bp->b_vp->v_token); 1188 bp->b_flags |= B_DELWRI; 1189 reassignbuf(bp); 1190 lwkt_reltoken(&bp->b_vp->v_token); 1191 1192 spin_lock(&bufcspin); 1193 ++dirtybufcount; 1194 dirtybufspace += bp->b_bufsize; 1195 if (bp->b_flags & B_HEAVY) { 1196 ++dirtybufcounthw; 1197 dirtybufspacehw += bp->b_bufsize; 1198 } 1199 spin_unlock(&bufcspin); 1200 1201 bd_heatup(); 1202 } 1203 } 1204 1205 /* 1206 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1207 * needs to be flushed with a different buf_daemon thread to avoid 1208 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1209 */ 1210 void 1211 bheavy(struct buf *bp) 1212 { 1213 if ((bp->b_flags & B_HEAVY) == 0) { 1214 bp->b_flags |= B_HEAVY; 1215 if (bp->b_flags & B_DELWRI) { 1216 spin_lock(&bufcspin); 1217 ++dirtybufcounthw; 1218 dirtybufspacehw += bp->b_bufsize; 1219 spin_unlock(&bufcspin); 1220 } 1221 } 1222 } 1223 1224 /* 1225 * bundirty: 1226 * 1227 * Clear B_DELWRI for buffer. 1228 * 1229 * Must be called from a critical section. 1230 * 1231 * The buffer is typically on BQUEUE_NONE but there is one case in 1232 * brelse() that calls this function after placing the buffer on 1233 * a different queue. 1234 * 1235 * MPSAFE 1236 */ 1237 void 1238 bundirty(struct buf *bp) 1239 { 1240 if (bp->b_flags & B_DELWRI) { 1241 lwkt_gettoken(&bp->b_vp->v_token); 1242 bp->b_flags &= ~B_DELWRI; 1243 reassignbuf(bp); 1244 lwkt_reltoken(&bp->b_vp->v_token); 1245 1246 spin_lock(&bufcspin); 1247 --dirtybufcount; 1248 dirtybufspace -= bp->b_bufsize; 1249 if (bp->b_flags & B_HEAVY) { 1250 --dirtybufcounthw; 1251 dirtybufspacehw -= bp->b_bufsize; 1252 } 1253 spin_unlock(&bufcspin); 1254 1255 bd_signal(bp->b_bufsize); 1256 } 1257 /* 1258 * Since it is now being written, we can clear its deferred write flag. 1259 */ 1260 bp->b_flags &= ~B_DEFERRED; 1261 } 1262 1263 /* 1264 * Set the b_runningbufspace field, used to track how much I/O is 1265 * in progress at any given moment. 1266 */ 1267 void 1268 bsetrunningbufspace(struct buf *bp, int bytes) 1269 { 1270 bp->b_runningbufspace = bytes; 1271 if (bytes) { 1272 spin_lock(&bufcspin); 1273 runningbufspace += bytes; 1274 ++runningbufcount; 1275 spin_unlock(&bufcspin); 1276 } 1277 } 1278 1279 /* 1280 * brelse: 1281 * 1282 * Release a busy buffer and, if requested, free its resources. The 1283 * buffer will be stashed in the appropriate bufqueue[] allowing it 1284 * to be accessed later as a cache entity or reused for other purposes. 1285 * 1286 * MPALMOSTSAFE 1287 */ 1288 void 1289 brelse(struct buf *bp) 1290 { 1291 #ifdef INVARIANTS 1292 int saved_flags = bp->b_flags; 1293 #endif 1294 1295 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1296 1297 /* 1298 * If B_NOCACHE is set we are being asked to destroy the buffer and 1299 * its backing store. Clear B_DELWRI. 1300 * 1301 * B_NOCACHE is set in two cases: (1) when the caller really wants 1302 * to destroy the buffer and backing store and (2) when the caller 1303 * wants to destroy the buffer and backing store after a write 1304 * completes. 1305 */ 1306 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1307 bundirty(bp); 1308 } 1309 1310 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1311 /* 1312 * A re-dirtied buffer is only subject to destruction 1313 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1314 */ 1315 /* leave buffer intact */ 1316 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1317 (bp->b_bufsize <= 0)) { 1318 /* 1319 * Either a failed read or we were asked to free or not 1320 * cache the buffer. This path is reached with B_DELWRI 1321 * set only if B_INVAL is already set. B_NOCACHE governs 1322 * backing store destruction. 1323 * 1324 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1325 * buffer cannot be immediately freed. 1326 */ 1327 bp->b_flags |= B_INVAL; 1328 if (LIST_FIRST(&bp->b_dep) != NULL) 1329 buf_deallocate(bp); 1330 if (bp->b_flags & B_DELWRI) { 1331 spin_lock(&bufcspin); 1332 --dirtybufcount; 1333 dirtybufspace -= bp->b_bufsize; 1334 if (bp->b_flags & B_HEAVY) { 1335 --dirtybufcounthw; 1336 dirtybufspacehw -= bp->b_bufsize; 1337 } 1338 spin_unlock(&bufcspin); 1339 1340 bd_signal(bp->b_bufsize); 1341 } 1342 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1343 } 1344 1345 /* 1346 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1347 * If vfs_vmio_release() is called with either bit set, the 1348 * underlying pages may wind up getting freed causing a previous 1349 * write (bdwrite()) to get 'lost' because pages associated with 1350 * a B_DELWRI bp are marked clean. Pages associated with a 1351 * B_LOCKED buffer may be mapped by the filesystem. 1352 * 1353 * If we want to release the buffer ourselves (rather then the 1354 * originator asking us to release it), give the originator a 1355 * chance to countermand the release by setting B_LOCKED. 1356 * 1357 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1358 * if B_DELWRI is set. 1359 * 1360 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1361 * on pages to return pages to the VM page queues. 1362 */ 1363 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1364 bp->b_flags &= ~B_RELBUF; 1365 } else if (vm_page_count_severe()) { 1366 if (LIST_FIRST(&bp->b_dep) != NULL) 1367 buf_deallocate(bp); /* can set B_LOCKED */ 1368 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1369 bp->b_flags &= ~B_RELBUF; 1370 else 1371 bp->b_flags |= B_RELBUF; 1372 } 1373 1374 /* 1375 * Make sure b_cmd is clear. It may have already been cleared by 1376 * biodone(). 1377 * 1378 * At this point destroying the buffer is governed by the B_INVAL 1379 * or B_RELBUF flags. 1380 */ 1381 bp->b_cmd = BUF_CMD_DONE; 1382 dsched_exit_buf(bp); 1383 1384 /* 1385 * VMIO buffer rundown. Make sure the VM page array is restored 1386 * after an I/O may have replaces some of the pages with bogus pages 1387 * in order to not destroy dirty pages in a fill-in read. 1388 * 1389 * Note that due to the code above, if a buffer is marked B_DELWRI 1390 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1391 * B_INVAL may still be set, however. 1392 * 1393 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1394 * but not the backing store. B_NOCACHE will destroy the backing 1395 * store. 1396 * 1397 * Note that dirty NFS buffers contain byte-granular write ranges 1398 * and should not be destroyed w/ B_INVAL even if the backing store 1399 * is left intact. 1400 */ 1401 if (bp->b_flags & B_VMIO) { 1402 /* 1403 * Rundown for VMIO buffers which are not dirty NFS buffers. 1404 */ 1405 int i, j, resid; 1406 vm_page_t m; 1407 off_t foff; 1408 vm_pindex_t poff; 1409 vm_object_t obj; 1410 struct vnode *vp; 1411 1412 vp = bp->b_vp; 1413 1414 /* 1415 * Get the base offset and length of the buffer. Note that 1416 * in the VMIO case if the buffer block size is not 1417 * page-aligned then b_data pointer may not be page-aligned. 1418 * But our b_xio.xio_pages array *IS* page aligned. 1419 * 1420 * block sizes less then DEV_BSIZE (usually 512) are not 1421 * supported due to the page granularity bits (m->valid, 1422 * m->dirty, etc...). 1423 * 1424 * See man buf(9) for more information 1425 */ 1426 1427 resid = bp->b_bufsize; 1428 foff = bp->b_loffset; 1429 1430 lwkt_gettoken(&vm_token); 1431 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1432 m = bp->b_xio.xio_pages[i]; 1433 vm_page_flag_clear(m, PG_ZERO); 1434 /* 1435 * If we hit a bogus page, fixup *all* of them 1436 * now. Note that we left these pages wired 1437 * when we removed them so they had better exist, 1438 * and they cannot be ripped out from under us so 1439 * no critical section protection is necessary. 1440 */ 1441 if (m == bogus_page) { 1442 obj = vp->v_object; 1443 poff = OFF_TO_IDX(bp->b_loffset); 1444 1445 for (j = i; j < bp->b_xio.xio_npages; j++) { 1446 vm_page_t mtmp; 1447 1448 mtmp = bp->b_xio.xio_pages[j]; 1449 if (mtmp == bogus_page) { 1450 mtmp = vm_page_lookup(obj, poff + j); 1451 if (!mtmp) { 1452 panic("brelse: page missing"); 1453 } 1454 bp->b_xio.xio_pages[j] = mtmp; 1455 } 1456 } 1457 bp->b_flags &= ~B_HASBOGUS; 1458 1459 if ((bp->b_flags & B_INVAL) == 0) { 1460 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1461 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1462 } 1463 m = bp->b_xio.xio_pages[i]; 1464 } 1465 1466 /* 1467 * Invalidate the backing store if B_NOCACHE is set 1468 * (e.g. used with vinvalbuf()). If this is NFS 1469 * we impose a requirement that the block size be 1470 * a multiple of PAGE_SIZE and create a temporary 1471 * hack to basically invalidate the whole page. The 1472 * problem is that NFS uses really odd buffer sizes 1473 * especially when tracking piecemeal writes and 1474 * it also vinvalbuf()'s a lot, which would result 1475 * in only partial page validation and invalidation 1476 * here. If the file page is mmap()'d, however, 1477 * all the valid bits get set so after we invalidate 1478 * here we would end up with weird m->valid values 1479 * like 0xfc. nfs_getpages() can't handle this so 1480 * we clear all the valid bits for the NFS case 1481 * instead of just some of them. 1482 * 1483 * The real bug is the VM system having to set m->valid 1484 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1485 * itself is an artifact of the whole 512-byte 1486 * granular mess that exists to support odd block 1487 * sizes and UFS meta-data block sizes (e.g. 6144). 1488 * A complete rewrite is required. 1489 * 1490 * XXX 1491 */ 1492 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1493 int poffset = foff & PAGE_MASK; 1494 int presid; 1495 1496 presid = PAGE_SIZE - poffset; 1497 if (bp->b_vp->v_tag == VT_NFS && 1498 bp->b_vp->v_type == VREG) { 1499 ; /* entire page */ 1500 } else if (presid > resid) { 1501 presid = resid; 1502 } 1503 KASSERT(presid >= 0, ("brelse: extra page")); 1504 vm_page_set_invalid(m, poffset, presid); 1505 1506 /* 1507 * Also make sure any swap cache is removed 1508 * as it is now stale (HAMMER in particular 1509 * uses B_NOCACHE to deal with buffer 1510 * aliasing). 1511 */ 1512 swap_pager_unswapped(m); 1513 } 1514 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1515 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1516 } 1517 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1518 vfs_vmio_release(bp); 1519 lwkt_reltoken(&vm_token); 1520 } else { 1521 /* 1522 * Rundown for non-VMIO buffers. 1523 */ 1524 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1525 if (bp->b_bufsize) 1526 allocbuf(bp, 0); 1527 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1528 if (bp->b_vp) 1529 brelvp(bp); 1530 } 1531 } 1532 1533 if (bp->b_qindex != BQUEUE_NONE) 1534 panic("brelse: free buffer onto another queue???"); 1535 if (BUF_REFCNTNB(bp) > 1) { 1536 /* Temporary panic to verify exclusive locking */ 1537 /* This panic goes away when we allow shared refs */ 1538 panic("brelse: multiple refs"); 1539 /* NOT REACHED */ 1540 return; 1541 } 1542 1543 /* 1544 * Figure out the correct queue to place the cleaned up buffer on. 1545 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1546 * disassociated from their vnode. 1547 */ 1548 spin_lock(&bufqspin); 1549 if (bp->b_flags & B_LOCKED) { 1550 /* 1551 * Buffers that are locked are placed in the locked queue 1552 * immediately, regardless of their state. 1553 */ 1554 bp->b_qindex = BQUEUE_LOCKED; 1555 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1556 } else if (bp->b_bufsize == 0) { 1557 /* 1558 * Buffers with no memory. Due to conditionals near the top 1559 * of brelse() such buffers should probably already be 1560 * marked B_INVAL and disassociated from their vnode. 1561 */ 1562 bp->b_flags |= B_INVAL; 1563 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1564 KKASSERT((bp->b_flags & B_HASHED) == 0); 1565 if (bp->b_kvasize) { 1566 bp->b_qindex = BQUEUE_EMPTYKVA; 1567 } else { 1568 bp->b_qindex = BQUEUE_EMPTY; 1569 } 1570 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1571 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1572 /* 1573 * Buffers with junk contents. Again these buffers had better 1574 * already be disassociated from their vnode. 1575 */ 1576 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1577 KKASSERT((bp->b_flags & B_HASHED) == 0); 1578 bp->b_flags |= B_INVAL; 1579 bp->b_qindex = BQUEUE_CLEAN; 1580 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1581 } else { 1582 /* 1583 * Remaining buffers. These buffers are still associated with 1584 * their vnode. 1585 */ 1586 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1587 case B_DELWRI: 1588 bp->b_qindex = BQUEUE_DIRTY; 1589 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1590 break; 1591 case B_DELWRI | B_HEAVY: 1592 bp->b_qindex = BQUEUE_DIRTY_HW; 1593 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1594 b_freelist); 1595 break; 1596 default: 1597 /* 1598 * NOTE: Buffers are always placed at the end of the 1599 * queue. If B_AGE is not set the buffer will cycle 1600 * through the queue twice. 1601 */ 1602 bp->b_qindex = BQUEUE_CLEAN; 1603 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1604 break; 1605 } 1606 } 1607 spin_unlock(&bufqspin); 1608 1609 /* 1610 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1611 * on the correct queue. 1612 */ 1613 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1614 bundirty(bp); 1615 1616 /* 1617 * The bp is on an appropriate queue unless locked. If it is not 1618 * locked or dirty we can wakeup threads waiting for buffer space. 1619 * 1620 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1621 * if B_INVAL is set ). 1622 */ 1623 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1624 bufcountwakeup(); 1625 1626 /* 1627 * Something we can maybe free or reuse 1628 */ 1629 if (bp->b_bufsize || bp->b_kvasize) 1630 bufspacewakeup(); 1631 1632 /* 1633 * Clean up temporary flags and unlock the buffer. 1634 */ 1635 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1636 BUF_UNLOCK(bp); 1637 } 1638 1639 /* 1640 * bqrelse: 1641 * 1642 * Release a buffer back to the appropriate queue but do not try to free 1643 * it. The buffer is expected to be used again soon. 1644 * 1645 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1646 * biodone() to requeue an async I/O on completion. It is also used when 1647 * known good buffers need to be requeued but we think we may need the data 1648 * again soon. 1649 * 1650 * XXX we should be able to leave the B_RELBUF hint set on completion. 1651 * 1652 * MPSAFE 1653 */ 1654 void 1655 bqrelse(struct buf *bp) 1656 { 1657 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1658 1659 if (bp->b_qindex != BQUEUE_NONE) 1660 panic("bqrelse: free buffer onto another queue???"); 1661 if (BUF_REFCNTNB(bp) > 1) { 1662 /* do not release to free list */ 1663 panic("bqrelse: multiple refs"); 1664 return; 1665 } 1666 1667 buf_act_advance(bp); 1668 1669 spin_lock(&bufqspin); 1670 if (bp->b_flags & B_LOCKED) { 1671 /* 1672 * Locked buffers are released to the locked queue. However, 1673 * if the buffer is dirty it will first go into the dirty 1674 * queue and later on after the I/O completes successfully it 1675 * will be released to the locked queue. 1676 */ 1677 bp->b_qindex = BQUEUE_LOCKED; 1678 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1679 } else if (bp->b_flags & B_DELWRI) { 1680 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1681 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1682 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1683 } else if (vm_page_count_severe()) { 1684 /* 1685 * We are too low on memory, we have to try to free the 1686 * buffer (most importantly: the wired pages making up its 1687 * backing store) *now*. 1688 */ 1689 spin_unlock(&bufqspin); 1690 brelse(bp); 1691 return; 1692 } else { 1693 bp->b_qindex = BQUEUE_CLEAN; 1694 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1695 } 1696 spin_unlock(&bufqspin); 1697 1698 if ((bp->b_flags & B_LOCKED) == 0 && 1699 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1700 bufcountwakeup(); 1701 } 1702 1703 /* 1704 * Something we can maybe free or reuse. 1705 */ 1706 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1707 bufspacewakeup(); 1708 1709 /* 1710 * Final cleanup and unlock. Clear bits that are only used while a 1711 * buffer is actively locked. 1712 */ 1713 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1714 dsched_exit_buf(bp); 1715 BUF_UNLOCK(bp); 1716 } 1717 1718 /* 1719 * vfs_vmio_release: 1720 * 1721 * Return backing pages held by the buffer 'bp' back to the VM system 1722 * if possible. The pages are freed if they are no longer valid or 1723 * attempt to free if it was used for direct I/O otherwise they are 1724 * sent to the page cache. 1725 * 1726 * Pages that were marked busy are left alone and skipped. 1727 * 1728 * The KVA mapping (b_data) for the underlying pages is removed by 1729 * this function. 1730 */ 1731 static void 1732 vfs_vmio_release(struct buf *bp) 1733 { 1734 int i; 1735 vm_page_t m; 1736 1737 lwkt_gettoken(&vm_token); 1738 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1739 m = bp->b_xio.xio_pages[i]; 1740 bp->b_xio.xio_pages[i] = NULL; 1741 1742 /* 1743 * The VFS is telling us this is not a meta-data buffer 1744 * even if it is backed by a block device. 1745 */ 1746 if (bp->b_flags & B_NOTMETA) 1747 vm_page_flag_set(m, PG_NOTMETA); 1748 1749 /* 1750 * This is a very important bit of code. We try to track 1751 * VM page use whether the pages are wired into the buffer 1752 * cache or not. While wired into the buffer cache the 1753 * bp tracks the act_count. 1754 * 1755 * We can choose to place unwired pages on the inactive 1756 * queue (0) or active queue (1). If we place too many 1757 * on the active queue the queue will cycle the act_count 1758 * on pages we'd like to keep, just from single-use pages 1759 * (such as when doing a tar-up or file scan). 1760 */ 1761 if (bp->b_act_count < vm_cycle_point) 1762 vm_page_unwire(m, 0); 1763 else 1764 vm_page_unwire(m, 1); 1765 1766 /* 1767 * We don't mess with busy pages, it is the responsibility 1768 * of the process that busied the pages to deal with them. 1769 * 1770 * However, the caller may have marked the page invalid and 1771 * we must still make sure the page is no longer mapped. 1772 */ 1773 if ((m->flags & PG_BUSY) || (m->busy != 0)) { 1774 vm_page_protect(m, VM_PROT_NONE); 1775 continue; 1776 } 1777 1778 if (m->wire_count == 0) { 1779 vm_page_flag_clear(m, PG_ZERO); 1780 /* 1781 * Might as well free the page if we can and it has 1782 * no valid data. We also free the page if the 1783 * buffer was used for direct I/O. 1784 */ 1785 #if 0 1786 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1787 m->hold_count == 0) { 1788 vm_page_busy(m); 1789 vm_page_protect(m, VM_PROT_NONE); 1790 vm_page_free(m); 1791 } else 1792 #endif 1793 if (bp->b_flags & B_DIRECT) { 1794 vm_page_try_to_free(m); 1795 } else if (vm_page_count_severe()) { 1796 m->act_count = bp->b_act_count; 1797 vm_page_try_to_cache(m); 1798 } else { 1799 m->act_count = bp->b_act_count; 1800 } 1801 } 1802 } 1803 lwkt_reltoken(&vm_token); 1804 1805 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), 1806 bp->b_xio.xio_npages); 1807 if (bp->b_bufsize) { 1808 bufspacewakeup(); 1809 bp->b_bufsize = 0; 1810 } 1811 bp->b_xio.xio_npages = 0; 1812 bp->b_flags &= ~B_VMIO; 1813 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1814 if (bp->b_vp) 1815 brelvp(bp); 1816 } 1817 1818 /* 1819 * vfs_bio_awrite: 1820 * 1821 * Implement clustered async writes for clearing out B_DELWRI buffers. 1822 * This is much better then the old way of writing only one buffer at 1823 * a time. Note that we may not be presented with the buffers in the 1824 * correct order, so we search for the cluster in both directions. 1825 * 1826 * The buffer is locked on call. 1827 */ 1828 int 1829 vfs_bio_awrite(struct buf *bp) 1830 { 1831 int i; 1832 int j; 1833 off_t loffset = bp->b_loffset; 1834 struct vnode *vp = bp->b_vp; 1835 int nbytes; 1836 struct buf *bpa; 1837 int nwritten; 1838 int size; 1839 1840 /* 1841 * right now we support clustered writing only to regular files. If 1842 * we find a clusterable block we could be in the middle of a cluster 1843 * rather then at the beginning. 1844 * 1845 * NOTE: b_bio1 contains the logical loffset and is aliased 1846 * to b_loffset. b_bio2 contains the translated block number. 1847 */ 1848 if ((vp->v_type == VREG) && 1849 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1850 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1851 1852 size = vp->v_mount->mnt_stat.f_iosize; 1853 1854 for (i = size; i < MAXPHYS; i += size) { 1855 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1856 BUF_REFCNT(bpa) == 0 && 1857 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1858 (B_DELWRI | B_CLUSTEROK)) && 1859 (bpa->b_bufsize == size)) { 1860 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1861 (bpa->b_bio2.bio_offset != 1862 bp->b_bio2.bio_offset + i)) 1863 break; 1864 } else { 1865 break; 1866 } 1867 } 1868 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1869 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1870 BUF_REFCNT(bpa) == 0 && 1871 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1872 (B_DELWRI | B_CLUSTEROK)) && 1873 (bpa->b_bufsize == size)) { 1874 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1875 (bpa->b_bio2.bio_offset != 1876 bp->b_bio2.bio_offset - j)) 1877 break; 1878 } else { 1879 break; 1880 } 1881 } 1882 j -= size; 1883 nbytes = (i + j); 1884 1885 /* 1886 * this is a possible cluster write 1887 */ 1888 if (nbytes != size) { 1889 BUF_UNLOCK(bp); 1890 nwritten = cluster_wbuild(vp, size, 1891 loffset - j, nbytes); 1892 return nwritten; 1893 } 1894 } 1895 1896 /* 1897 * default (old) behavior, writing out only one block 1898 * 1899 * XXX returns b_bufsize instead of b_bcount for nwritten? 1900 */ 1901 nwritten = bp->b_bufsize; 1902 bremfree(bp); 1903 bawrite(bp); 1904 1905 return nwritten; 1906 } 1907 1908 /* 1909 * getnewbuf: 1910 * 1911 * Find and initialize a new buffer header, freeing up existing buffers 1912 * in the bufqueues as necessary. The new buffer is returned locked. 1913 * 1914 * Important: B_INVAL is not set. If the caller wishes to throw the 1915 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1916 * 1917 * We block if: 1918 * We have insufficient buffer headers 1919 * We have insufficient buffer space 1920 * buffer_map is too fragmented ( space reservation fails ) 1921 * If we have to flush dirty buffers ( but we try to avoid this ) 1922 * 1923 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1924 * Instead we ask the buf daemon to do it for us. We attempt to 1925 * avoid piecemeal wakeups of the pageout daemon. 1926 * 1927 * MPALMOSTSAFE 1928 */ 1929 static struct buf * 1930 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1931 { 1932 struct buf *bp; 1933 struct buf *nbp; 1934 int defrag = 0; 1935 int nqindex; 1936 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1937 static int flushingbufs; 1938 1939 /* 1940 * We can't afford to block since we might be holding a vnode lock, 1941 * which may prevent system daemons from running. We deal with 1942 * low-memory situations by proactively returning memory and running 1943 * async I/O rather then sync I/O. 1944 */ 1945 1946 ++getnewbufcalls; 1947 --getnewbufrestarts; 1948 restart: 1949 ++getnewbufrestarts; 1950 1951 /* 1952 * Setup for scan. If we do not have enough free buffers, 1953 * we setup a degenerate case that immediately fails. Note 1954 * that if we are specially marked process, we are allowed to 1955 * dip into our reserves. 1956 * 1957 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1958 * 1959 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1960 * However, there are a number of cases (defragging, reusing, ...) 1961 * where we cannot backup. 1962 */ 1963 nqindex = BQUEUE_EMPTYKVA; 1964 spin_lock(&bufqspin); 1965 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1966 1967 if (nbp == NULL) { 1968 /* 1969 * If no EMPTYKVA buffers and we are either 1970 * defragging or reusing, locate a CLEAN buffer 1971 * to free or reuse. If bufspace useage is low 1972 * skip this step so we can allocate a new buffer. 1973 */ 1974 if (defrag || bufspace >= lobufspace) { 1975 nqindex = BQUEUE_CLEAN; 1976 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1977 } 1978 1979 /* 1980 * If we could not find or were not allowed to reuse a 1981 * CLEAN buffer, check to see if it is ok to use an EMPTY 1982 * buffer. We can only use an EMPTY buffer if allocating 1983 * its KVA would not otherwise run us out of buffer space. 1984 */ 1985 if (nbp == NULL && defrag == 0 && 1986 bufspace + maxsize < hibufspace) { 1987 nqindex = BQUEUE_EMPTY; 1988 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1989 } 1990 } 1991 1992 /* 1993 * Run scan, possibly freeing data and/or kva mappings on the fly 1994 * depending. 1995 * 1996 * WARNING! bufqspin is held! 1997 */ 1998 while ((bp = nbp) != NULL) { 1999 int qindex = nqindex; 2000 2001 nbp = TAILQ_NEXT(bp, b_freelist); 2002 2003 /* 2004 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2005 * cycles through the queue twice before being selected. 2006 */ 2007 if (qindex == BQUEUE_CLEAN && 2008 (bp->b_flags & B_AGE) == 0 && nbp) { 2009 bp->b_flags |= B_AGE; 2010 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 2011 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 2012 continue; 2013 } 2014 2015 /* 2016 * Calculate next bp ( we can only use it if we do not block 2017 * or do other fancy things ). 2018 */ 2019 if (nbp == NULL) { 2020 switch(qindex) { 2021 case BQUEUE_EMPTY: 2022 nqindex = BQUEUE_EMPTYKVA; 2023 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 2024 break; 2025 /* fall through */ 2026 case BQUEUE_EMPTYKVA: 2027 nqindex = BQUEUE_CLEAN; 2028 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 2029 break; 2030 /* fall through */ 2031 case BQUEUE_CLEAN: 2032 /* 2033 * nbp is NULL. 2034 */ 2035 break; 2036 } 2037 } 2038 2039 /* 2040 * Sanity Checks 2041 */ 2042 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 2043 2044 /* 2045 * Note: we no longer distinguish between VMIO and non-VMIO 2046 * buffers. 2047 */ 2048 KASSERT((bp->b_flags & B_DELWRI) == 0, 2049 ("delwri buffer %p found in queue %d", bp, qindex)); 2050 2051 /* 2052 * Do not try to reuse a buffer with a non-zero b_refs. 2053 * This is an unsynchronized test. A synchronized test 2054 * is also performed after we lock the buffer. 2055 */ 2056 if (bp->b_refs) 2057 continue; 2058 2059 /* 2060 * If we are defragging then we need a buffer with 2061 * b_kvasize != 0. XXX this situation should no longer 2062 * occur, if defrag is non-zero the buffer's b_kvasize 2063 * should also be non-zero at this point. XXX 2064 */ 2065 if (defrag && bp->b_kvasize == 0) { 2066 kprintf("Warning: defrag empty buffer %p\n", bp); 2067 continue; 2068 } 2069 2070 /* 2071 * Start freeing the bp. This is somewhat involved. nbp 2072 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 2073 * on the clean list must be disassociated from their 2074 * current vnode. Buffers on the empty[kva] lists have 2075 * already been disassociated. 2076 */ 2077 2078 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2079 spin_unlock(&bufqspin); 2080 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2081 goto restart; 2082 } 2083 if (bp->b_qindex != qindex) { 2084 spin_unlock(&bufqspin); 2085 kprintf("getnewbuf: warning, BUF_LOCK blocked " 2086 "unexpectedly on buf %p index %d->%d, " 2087 "race corrected\n", 2088 bp, qindex, bp->b_qindex); 2089 BUF_UNLOCK(bp); 2090 goto restart; 2091 } 2092 bremfree_locked(bp); 2093 spin_unlock(&bufqspin); 2094 2095 /* 2096 * Dependancies must be handled before we disassociate the 2097 * vnode. 2098 * 2099 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2100 * be immediately disassociated. HAMMER then becomes 2101 * responsible for releasing the buffer. 2102 * 2103 * NOTE: bufqspin is UNLOCKED now. 2104 */ 2105 if (LIST_FIRST(&bp->b_dep) != NULL) { 2106 buf_deallocate(bp); 2107 if (bp->b_flags & B_LOCKED) { 2108 bqrelse(bp); 2109 goto restart; 2110 } 2111 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2112 } 2113 2114 if (qindex == BQUEUE_CLEAN) { 2115 if (bp->b_flags & B_VMIO) 2116 vfs_vmio_release(bp); 2117 if (bp->b_vp) 2118 brelvp(bp); 2119 } 2120 2121 /* 2122 * NOTE: nbp is now entirely invalid. We can only restart 2123 * the scan from this point on. 2124 * 2125 * Get the rest of the buffer freed up. b_kva* is still 2126 * valid after this operation. 2127 */ 2128 2129 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 2130 KKASSERT((bp->b_flags & B_HASHED) == 0); 2131 2132 /* 2133 * critical section protection is not required when 2134 * scrapping a buffer's contents because it is already 2135 * wired. 2136 */ 2137 if (bp->b_bufsize) 2138 allocbuf(bp, 0); 2139 2140 bp->b_flags = B_BNOCLIP; 2141 bp->b_cmd = BUF_CMD_DONE; 2142 bp->b_vp = NULL; 2143 bp->b_error = 0; 2144 bp->b_resid = 0; 2145 bp->b_bcount = 0; 2146 bp->b_xio.xio_npages = 0; 2147 bp->b_dirtyoff = bp->b_dirtyend = 0; 2148 bp->b_act_count = ACT_INIT; 2149 reinitbufbio(bp); 2150 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2151 buf_dep_init(bp); 2152 if (blkflags & GETBLK_BHEAVY) 2153 bp->b_flags |= B_HEAVY; 2154 2155 /* 2156 * If we are defragging then free the buffer. 2157 */ 2158 if (defrag) { 2159 bp->b_flags |= B_INVAL; 2160 bfreekva(bp); 2161 brelse(bp); 2162 defrag = 0; 2163 goto restart; 2164 } 2165 2166 /* 2167 * If we are overcomitted then recover the buffer and its 2168 * KVM space. This occurs in rare situations when multiple 2169 * processes are blocked in getnewbuf() or allocbuf(). 2170 */ 2171 if (bufspace >= hibufspace) 2172 flushingbufs = 1; 2173 if (flushingbufs && bp->b_kvasize != 0) { 2174 bp->b_flags |= B_INVAL; 2175 bfreekva(bp); 2176 brelse(bp); 2177 goto restart; 2178 } 2179 if (bufspace < lobufspace) 2180 flushingbufs = 0; 2181 2182 /* 2183 * The brelvp() above interlocked the buffer, test b_refs 2184 * to determine if the buffer can be reused. b_refs 2185 * interlocks lookup/blocking-lock operations and allowing 2186 * buffer reuse can create deadlocks depending on what 2187 * (vp,loffset) is assigned to the reused buffer (see getblk). 2188 */ 2189 if (bp->b_refs) { 2190 bp->b_flags |= B_INVAL; 2191 bfreekva(bp); 2192 brelse(bp); 2193 goto restart; 2194 } 2195 2196 break; 2197 /* NOT REACHED, bufqspin not held */ 2198 } 2199 2200 /* 2201 * If we exhausted our list, sleep as appropriate. We may have to 2202 * wakeup various daemons and write out some dirty buffers. 2203 * 2204 * Generally we are sleeping due to insufficient buffer space. 2205 * 2206 * NOTE: bufqspin is held if bp is NULL, else it is not held. 2207 */ 2208 if (bp == NULL) { 2209 int flags; 2210 char *waitmsg; 2211 2212 spin_unlock(&bufqspin); 2213 if (defrag) { 2214 flags = VFS_BIO_NEED_BUFSPACE; 2215 waitmsg = "nbufkv"; 2216 } else if (bufspace >= hibufspace) { 2217 waitmsg = "nbufbs"; 2218 flags = VFS_BIO_NEED_BUFSPACE; 2219 } else { 2220 waitmsg = "newbuf"; 2221 flags = VFS_BIO_NEED_ANY; 2222 } 2223 2224 bd_speedup(); /* heeeelp */ 2225 spin_lock(&bufcspin); 2226 needsbuffer |= flags; 2227 while (needsbuffer & flags) { 2228 if (ssleep(&needsbuffer, &bufcspin, 2229 slpflags, waitmsg, slptimeo)) { 2230 spin_unlock(&bufcspin); 2231 return (NULL); 2232 } 2233 } 2234 spin_unlock(&bufcspin); 2235 } else { 2236 /* 2237 * We finally have a valid bp. We aren't quite out of the 2238 * woods, we still have to reserve kva space. In order 2239 * to keep fragmentation sane we only allocate kva in 2240 * BKVASIZE chunks. 2241 * 2242 * (bufqspin is not held) 2243 */ 2244 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2245 2246 if (maxsize != bp->b_kvasize) { 2247 vm_offset_t addr = 0; 2248 int count; 2249 2250 bfreekva(bp); 2251 2252 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2253 vm_map_lock(&buffer_map); 2254 2255 if (vm_map_findspace(&buffer_map, 2256 vm_map_min(&buffer_map), maxsize, 2257 maxsize, 0, &addr)) { 2258 /* 2259 * Uh oh. Buffer map is too fragmented. We 2260 * must defragment the map. 2261 */ 2262 vm_map_unlock(&buffer_map); 2263 vm_map_entry_release(count); 2264 ++bufdefragcnt; 2265 defrag = 1; 2266 bp->b_flags |= B_INVAL; 2267 brelse(bp); 2268 goto restart; 2269 } 2270 if (addr) { 2271 vm_map_insert(&buffer_map, &count, 2272 NULL, 0, 2273 addr, addr + maxsize, 2274 VM_MAPTYPE_NORMAL, 2275 VM_PROT_ALL, VM_PROT_ALL, 2276 MAP_NOFAULT); 2277 2278 bp->b_kvabase = (caddr_t) addr; 2279 bp->b_kvasize = maxsize; 2280 bufspace += bp->b_kvasize; 2281 ++bufreusecnt; 2282 } 2283 vm_map_unlock(&buffer_map); 2284 vm_map_entry_release(count); 2285 } 2286 bp->b_data = bp->b_kvabase; 2287 } 2288 return(bp); 2289 } 2290 2291 /* 2292 * This routine is called in an emergency to recover VM pages from the 2293 * buffer cache by cashing in clean buffers. The idea is to recover 2294 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2295 * 2296 * MPSAFE 2297 */ 2298 static int 2299 recoverbufpages(void) 2300 { 2301 struct buf *bp; 2302 int bytes = 0; 2303 2304 ++recoverbufcalls; 2305 2306 spin_lock(&bufqspin); 2307 while (bytes < MAXBSIZE) { 2308 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2309 if (bp == NULL) 2310 break; 2311 2312 /* 2313 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2314 * cycles through the queue twice before being selected. 2315 */ 2316 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2317 bp->b_flags |= B_AGE; 2318 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2319 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2320 bp, b_freelist); 2321 continue; 2322 } 2323 2324 /* 2325 * Sanity Checks 2326 */ 2327 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2328 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2329 2330 /* 2331 * Start freeing the bp. This is somewhat involved. 2332 * 2333 * Buffers on the clean list must be disassociated from 2334 * their current vnode 2335 */ 2336 2337 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2338 kprintf("recoverbufpages: warning, locked buf %p, " 2339 "race corrected\n", 2340 bp); 2341 ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100); 2342 continue; 2343 } 2344 if (bp->b_qindex != BQUEUE_CLEAN) { 2345 kprintf("recoverbufpages: warning, BUF_LOCK blocked " 2346 "unexpectedly on buf %p index %d, race " 2347 "corrected\n", 2348 bp, bp->b_qindex); 2349 BUF_UNLOCK(bp); 2350 continue; 2351 } 2352 bremfree_locked(bp); 2353 spin_unlock(&bufqspin); 2354 2355 /* 2356 * Dependancies must be handled before we disassociate the 2357 * vnode. 2358 * 2359 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2360 * be immediately disassociated. HAMMER then becomes 2361 * responsible for releasing the buffer. 2362 */ 2363 if (LIST_FIRST(&bp->b_dep) != NULL) { 2364 buf_deallocate(bp); 2365 if (bp->b_flags & B_LOCKED) { 2366 bqrelse(bp); 2367 spin_lock(&bufqspin); 2368 continue; 2369 } 2370 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2371 } 2372 2373 bytes += bp->b_bufsize; 2374 2375 if (bp->b_flags & B_VMIO) { 2376 bp->b_flags |= B_DIRECT; /* try to free pages */ 2377 vfs_vmio_release(bp); 2378 } 2379 if (bp->b_vp) 2380 brelvp(bp); 2381 2382 KKASSERT(bp->b_vp == NULL); 2383 KKASSERT((bp->b_flags & B_HASHED) == 0); 2384 2385 /* 2386 * critical section protection is not required when 2387 * scrapping a buffer's contents because it is already 2388 * wired. 2389 */ 2390 if (bp->b_bufsize) 2391 allocbuf(bp, 0); 2392 2393 bp->b_flags = B_BNOCLIP; 2394 bp->b_cmd = BUF_CMD_DONE; 2395 bp->b_vp = NULL; 2396 bp->b_error = 0; 2397 bp->b_resid = 0; 2398 bp->b_bcount = 0; 2399 bp->b_xio.xio_npages = 0; 2400 bp->b_dirtyoff = bp->b_dirtyend = 0; 2401 reinitbufbio(bp); 2402 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2403 buf_dep_init(bp); 2404 bp->b_flags |= B_INVAL; 2405 /* bfreekva(bp); */ 2406 brelse(bp); 2407 spin_lock(&bufqspin); 2408 } 2409 spin_unlock(&bufqspin); 2410 return(bytes); 2411 } 2412 2413 /* 2414 * buf_daemon: 2415 * 2416 * Buffer flushing daemon. Buffers are normally flushed by the 2417 * update daemon but if it cannot keep up this process starts to 2418 * take the load in an attempt to prevent getnewbuf() from blocking. 2419 * 2420 * Once a flush is initiated it does not stop until the number 2421 * of buffers falls below lodirtybuffers, but we will wake up anyone 2422 * waiting at the mid-point. 2423 */ 2424 2425 static struct kproc_desc buf_kp = { 2426 "bufdaemon", 2427 buf_daemon, 2428 &bufdaemon_td 2429 }; 2430 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2431 kproc_start, &buf_kp) 2432 2433 static struct kproc_desc bufhw_kp = { 2434 "bufdaemon_hw", 2435 buf_daemon_hw, 2436 &bufdaemonhw_td 2437 }; 2438 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2439 kproc_start, &bufhw_kp) 2440 2441 /* 2442 * MPSAFE thread 2443 */ 2444 static void 2445 buf_daemon(void) 2446 { 2447 int limit; 2448 2449 /* 2450 * This process needs to be suspended prior to shutdown sync. 2451 */ 2452 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2453 bufdaemon_td, SHUTDOWN_PRI_LAST); 2454 curthread->td_flags |= TDF_SYSTHREAD; 2455 2456 /* 2457 * This process is allowed to take the buffer cache to the limit 2458 */ 2459 for (;;) { 2460 kproc_suspend_loop(); 2461 2462 /* 2463 * Do the flush as long as the number of dirty buffers 2464 * (including those running) exceeds lodirtybufspace. 2465 * 2466 * When flushing limit running I/O to hirunningspace 2467 * Do the flush. Limit the amount of in-transit I/O we 2468 * allow to build up, otherwise we would completely saturate 2469 * the I/O system. Wakeup any waiting processes before we 2470 * normally would so they can run in parallel with our drain. 2471 * 2472 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2473 * but because we split the operation into two threads we 2474 * have to cut it in half for each thread. 2475 */ 2476 waitrunningbufspace(); 2477 limit = lodirtybufspace / 2; 2478 while (runningbufspace + dirtybufspace > limit || 2479 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2480 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2481 break; 2482 if (runningbufspace < hirunningspace) 2483 continue; 2484 waitrunningbufspace(); 2485 } 2486 2487 /* 2488 * We reached our low water mark, reset the 2489 * request and sleep until we are needed again. 2490 * The sleep is just so the suspend code works. 2491 */ 2492 spin_lock(&bufcspin); 2493 if (bd_request == 0) 2494 ssleep(&bd_request, &bufcspin, 0, "psleep", hz); 2495 bd_request = 0; 2496 spin_unlock(&bufcspin); 2497 } 2498 } 2499 2500 /* 2501 * MPSAFE thread 2502 */ 2503 static void 2504 buf_daemon_hw(void) 2505 { 2506 int limit; 2507 2508 /* 2509 * This process needs to be suspended prior to shutdown sync. 2510 */ 2511 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2512 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2513 curthread->td_flags |= TDF_SYSTHREAD; 2514 2515 /* 2516 * This process is allowed to take the buffer cache to the limit 2517 */ 2518 for (;;) { 2519 kproc_suspend_loop(); 2520 2521 /* 2522 * Do the flush. Limit the amount of in-transit I/O we 2523 * allow to build up, otherwise we would completely saturate 2524 * the I/O system. Wakeup any waiting processes before we 2525 * normally would so they can run in parallel with our drain. 2526 * 2527 * Once we decide to flush push the queued I/O up to 2528 * hirunningspace in order to trigger bursting by the bioq 2529 * subsystem. 2530 * 2531 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2532 * but because we split the operation into two threads we 2533 * have to cut it in half for each thread. 2534 */ 2535 waitrunningbufspace(); 2536 limit = lodirtybufspace / 2; 2537 while (runningbufspace + dirtybufspacehw > limit || 2538 dirtybufcounthw >= nbuf / 2) { 2539 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2540 break; 2541 if (runningbufspace < hirunningspace) 2542 continue; 2543 waitrunningbufspace(); 2544 } 2545 2546 /* 2547 * We reached our low water mark, reset the 2548 * request and sleep until we are needed again. 2549 * The sleep is just so the suspend code works. 2550 */ 2551 spin_lock(&bufcspin); 2552 if (bd_request_hw == 0) 2553 ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz); 2554 bd_request_hw = 0; 2555 spin_unlock(&bufcspin); 2556 } 2557 } 2558 2559 /* 2560 * flushbufqueues: 2561 * 2562 * Try to flush a buffer in the dirty queue. We must be careful to 2563 * free up B_INVAL buffers instead of write them, which NFS is 2564 * particularly sensitive to. 2565 * 2566 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2567 * that we really want to try to get the buffer out and reuse it 2568 * due to the write load on the machine. 2569 * 2570 * We must lock the buffer in order to check its validity before we 2571 * can mess with its contents. bufqspin isn't enough. 2572 */ 2573 static int 2574 flushbufqueues(bufq_type_t q) 2575 { 2576 struct buf *bp; 2577 int r = 0; 2578 int spun; 2579 2580 spin_lock(&bufqspin); 2581 spun = 1; 2582 2583 bp = TAILQ_FIRST(&bufqueues[q]); 2584 while (bp) { 2585 if ((bp->b_flags & B_DELWRI) == 0) { 2586 kprintf("Unexpected clean buffer %p\n", bp); 2587 bp = TAILQ_NEXT(bp, b_freelist); 2588 continue; 2589 } 2590 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2591 bp = TAILQ_NEXT(bp, b_freelist); 2592 continue; 2593 } 2594 KKASSERT(bp->b_qindex == q); 2595 2596 /* 2597 * Must recheck B_DELWRI after successfully locking 2598 * the buffer. 2599 */ 2600 if ((bp->b_flags & B_DELWRI) == 0) { 2601 BUF_UNLOCK(bp); 2602 bp = TAILQ_NEXT(bp, b_freelist); 2603 continue; 2604 } 2605 2606 if (bp->b_flags & B_INVAL) { 2607 _bremfree(bp); 2608 spin_unlock(&bufqspin); 2609 spun = 0; 2610 brelse(bp); 2611 ++r; 2612 break; 2613 } 2614 2615 spin_unlock(&bufqspin); 2616 spun = 0; 2617 2618 if (LIST_FIRST(&bp->b_dep) != NULL && 2619 (bp->b_flags & B_DEFERRED) == 0 && 2620 buf_countdeps(bp, 0)) { 2621 spin_lock(&bufqspin); 2622 spun = 1; 2623 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2624 TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist); 2625 bp->b_flags |= B_DEFERRED; 2626 BUF_UNLOCK(bp); 2627 bp = TAILQ_FIRST(&bufqueues[q]); 2628 continue; 2629 } 2630 2631 /* 2632 * If the buffer has a dependancy, buf_checkwrite() must 2633 * also return 0 for us to be able to initate the write. 2634 * 2635 * If the buffer is flagged B_ERROR it may be requeued 2636 * over and over again, we try to avoid a live lock. 2637 * 2638 * NOTE: buf_checkwrite is MPSAFE. 2639 */ 2640 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) { 2641 bremfree(bp); 2642 brelse(bp); 2643 } else if (bp->b_flags & B_ERROR) { 2644 tsleep(bp, 0, "bioer", 1); 2645 bp->b_flags &= ~B_AGE; 2646 vfs_bio_awrite(bp); 2647 } else { 2648 bp->b_flags |= B_AGE; 2649 vfs_bio_awrite(bp); 2650 } 2651 ++r; 2652 break; 2653 } 2654 if (spun) 2655 spin_unlock(&bufqspin); 2656 return (r); 2657 } 2658 2659 /* 2660 * inmem: 2661 * 2662 * Returns true if no I/O is needed to access the associated VM object. 2663 * This is like findblk except it also hunts around in the VM system for 2664 * the data. 2665 * 2666 * Note that we ignore vm_page_free() races from interrupts against our 2667 * lookup, since if the caller is not protected our return value will not 2668 * be any more valid then otherwise once we exit the critical section. 2669 */ 2670 int 2671 inmem(struct vnode *vp, off_t loffset) 2672 { 2673 vm_object_t obj; 2674 vm_offset_t toff, tinc, size; 2675 vm_page_t m; 2676 2677 if (findblk(vp, loffset, FINDBLK_TEST)) 2678 return 1; 2679 if (vp->v_mount == NULL) 2680 return 0; 2681 if ((obj = vp->v_object) == NULL) 2682 return 0; 2683 2684 size = PAGE_SIZE; 2685 if (size > vp->v_mount->mnt_stat.f_iosize) 2686 size = vp->v_mount->mnt_stat.f_iosize; 2687 2688 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2689 lwkt_gettoken(&vm_token); 2690 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2691 lwkt_reltoken(&vm_token); 2692 if (m == NULL) 2693 return 0; 2694 tinc = size; 2695 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2696 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2697 if (vm_page_is_valid(m, 2698 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2699 return 0; 2700 } 2701 return 1; 2702 } 2703 2704 /* 2705 * findblk: 2706 * 2707 * Locate and return the specified buffer. Unless flagged otherwise, 2708 * a locked buffer will be returned if it exists or NULL if it does not. 2709 * 2710 * findblk()'d buffers are still on the bufqueues and if you intend 2711 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2712 * and possibly do other stuff to it. 2713 * 2714 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2715 * for locking the buffer and ensuring that it remains 2716 * the desired buffer after locking. 2717 * 2718 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2719 * to acquire the lock we return NULL, even if the 2720 * buffer exists. 2721 * 2722 * FINDBLK_REF - Returns the buffer ref'd, which prevents reuse 2723 * by getnewbuf() but does not prevent disassociation 2724 * while we are locked. Used to avoid deadlocks 2725 * against random (vp,loffset)s due to reassignment. 2726 * 2727 * (0) - Lock the buffer blocking. 2728 * 2729 * MPSAFE 2730 */ 2731 struct buf * 2732 findblk(struct vnode *vp, off_t loffset, int flags) 2733 { 2734 struct buf *bp; 2735 int lkflags; 2736 2737 lkflags = LK_EXCLUSIVE; 2738 if (flags & FINDBLK_NBLOCK) 2739 lkflags |= LK_NOWAIT; 2740 2741 for (;;) { 2742 /* 2743 * Lookup. Ref the buf while holding v_token to prevent 2744 * reuse (but does not prevent diassociation). 2745 */ 2746 lwkt_gettoken(&vp->v_token); 2747 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2748 if (bp == NULL) { 2749 lwkt_reltoken(&vp->v_token); 2750 return(NULL); 2751 } 2752 atomic_add_int(&bp->b_refs, 1); 2753 lwkt_reltoken(&vp->v_token); 2754 2755 /* 2756 * If testing only break and return bp, do not lock. 2757 */ 2758 if (flags & FINDBLK_TEST) 2759 break; 2760 2761 /* 2762 * Lock the buffer, return an error if the lock fails. 2763 * (only FINDBLK_NBLOCK can cause the lock to fail). 2764 */ 2765 if (BUF_LOCK(bp, lkflags)) { 2766 atomic_subtract_int(&bp->b_refs, 1); 2767 /* bp = NULL; not needed */ 2768 return(NULL); 2769 } 2770 2771 /* 2772 * Revalidate the locked buf before allowing it to be 2773 * returned. 2774 */ 2775 if (bp->b_vp == vp && bp->b_loffset == loffset) 2776 break; 2777 atomic_subtract_int(&bp->b_refs, 1); 2778 BUF_UNLOCK(bp); 2779 } 2780 2781 /* 2782 * Success 2783 */ 2784 if ((flags & FINDBLK_REF) == 0) 2785 atomic_subtract_int(&bp->b_refs, 1); 2786 return(bp); 2787 } 2788 2789 void 2790 unrefblk(struct buf *bp) 2791 { 2792 atomic_subtract_int(&bp->b_refs, 1); 2793 } 2794 2795 /* 2796 * getcacheblk: 2797 * 2798 * Similar to getblk() except only returns the buffer if it is 2799 * B_CACHE and requires no other manipulation. Otherwise NULL 2800 * is returned. 2801 * 2802 * If B_RAM is set the buffer might be just fine, but we return 2803 * NULL anyway because we want the code to fall through to the 2804 * cluster read. Otherwise read-ahead breaks. 2805 */ 2806 struct buf * 2807 getcacheblk(struct vnode *vp, off_t loffset) 2808 { 2809 struct buf *bp; 2810 2811 bp = findblk(vp, loffset, 0); 2812 if (bp) { 2813 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) { 2814 bp->b_flags &= ~B_AGE; 2815 bremfree(bp); 2816 } else { 2817 BUF_UNLOCK(bp); 2818 bp = NULL; 2819 } 2820 } 2821 return (bp); 2822 } 2823 2824 /* 2825 * getblk: 2826 * 2827 * Get a block given a specified block and offset into a file/device. 2828 * B_INVAL may or may not be set on return. The caller should clear 2829 * B_INVAL prior to initiating a READ. 2830 * 2831 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2832 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2833 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2834 * without doing any of those things the system will likely believe 2835 * the buffer to be valid (especially if it is not B_VMIO), and the 2836 * next getblk() will return the buffer with B_CACHE set. 2837 * 2838 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2839 * an existing buffer. 2840 * 2841 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2842 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2843 * and then cleared based on the backing VM. If the previous buffer is 2844 * non-0-sized but invalid, B_CACHE will be cleared. 2845 * 2846 * If getblk() must create a new buffer, the new buffer is returned with 2847 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2848 * case it is returned with B_INVAL clear and B_CACHE set based on the 2849 * backing VM. 2850 * 2851 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2852 * B_CACHE bit is clear. 2853 * 2854 * What this means, basically, is that the caller should use B_CACHE to 2855 * determine whether the buffer is fully valid or not and should clear 2856 * B_INVAL prior to issuing a read. If the caller intends to validate 2857 * the buffer by loading its data area with something, the caller needs 2858 * to clear B_INVAL. If the caller does this without issuing an I/O, 2859 * the caller should set B_CACHE ( as an optimization ), else the caller 2860 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2861 * a write attempt or if it was a successfull read. If the caller 2862 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2863 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2864 * 2865 * getblk flags: 2866 * 2867 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2868 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2869 * 2870 * MPALMOSTSAFE 2871 */ 2872 struct buf * 2873 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2874 { 2875 struct buf *bp; 2876 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2877 int error; 2878 int lkflags; 2879 2880 if (size > MAXBSIZE) 2881 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2882 if (vp->v_object == NULL) 2883 panic("getblk: vnode %p has no object!", vp); 2884 2885 loop: 2886 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) { 2887 /* 2888 * The buffer was found in the cache, but we need to lock it. 2889 * We must acquire a ref on the bp to prevent reuse, but 2890 * this will not prevent disassociation (brelvp()) so we 2891 * must recheck (vp,loffset) after acquiring the lock. 2892 * 2893 * Without the ref the buffer could potentially be reused 2894 * before we acquire the lock and create a deadlock 2895 * situation between the thread trying to reuse the buffer 2896 * and us due to the fact that we would wind up blocking 2897 * on a random (vp,loffset). 2898 */ 2899 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2900 if (blkflags & GETBLK_NOWAIT) { 2901 unrefblk(bp); 2902 return(NULL); 2903 } 2904 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2905 if (blkflags & GETBLK_PCATCH) 2906 lkflags |= LK_PCATCH; 2907 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2908 if (error) { 2909 unrefblk(bp); 2910 if (error == ENOLCK) 2911 goto loop; 2912 return (NULL); 2913 } 2914 /* buffer may have changed on us */ 2915 } 2916 unrefblk(bp); 2917 2918 /* 2919 * Once the buffer has been locked, make sure we didn't race 2920 * a buffer recyclement. Buffers that are no longer hashed 2921 * will have b_vp == NULL, so this takes care of that check 2922 * as well. 2923 */ 2924 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2925 kprintf("Warning buffer %p (vp %p loffset %lld) " 2926 "was recycled\n", 2927 bp, vp, (long long)loffset); 2928 BUF_UNLOCK(bp); 2929 goto loop; 2930 } 2931 2932 /* 2933 * If SZMATCH any pre-existing buffer must be of the requested 2934 * size or NULL is returned. The caller absolutely does not 2935 * want getblk() to bwrite() the buffer on a size mismatch. 2936 */ 2937 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2938 BUF_UNLOCK(bp); 2939 return(NULL); 2940 } 2941 2942 /* 2943 * All vnode-based buffers must be backed by a VM object. 2944 */ 2945 KKASSERT(bp->b_flags & B_VMIO); 2946 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2947 bp->b_flags &= ~B_AGE; 2948 2949 /* 2950 * Make sure that B_INVAL buffers do not have a cached 2951 * block number translation. 2952 */ 2953 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2954 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 2955 " did not have cleared bio_offset cache\n", 2956 bp, vp, (long long)loffset); 2957 clearbiocache(&bp->b_bio2); 2958 } 2959 2960 /* 2961 * The buffer is locked. B_CACHE is cleared if the buffer is 2962 * invalid. 2963 */ 2964 if (bp->b_flags & B_INVAL) 2965 bp->b_flags &= ~B_CACHE; 2966 bremfree(bp); 2967 2968 /* 2969 * Any size inconsistancy with a dirty buffer or a buffer 2970 * with a softupdates dependancy must be resolved. Resizing 2971 * the buffer in such circumstances can lead to problems. 2972 * 2973 * Dirty or dependant buffers are written synchronously. 2974 * Other types of buffers are simply released and 2975 * reconstituted as they may be backed by valid, dirty VM 2976 * pages (but not marked B_DELWRI). 2977 * 2978 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 2979 * and may be left over from a prior truncation (and thus 2980 * no longer represent the actual EOF point), so we 2981 * definitely do not want to B_NOCACHE the backing store. 2982 */ 2983 if (size != bp->b_bcount) { 2984 if (bp->b_flags & B_DELWRI) { 2985 bp->b_flags |= B_RELBUF; 2986 bwrite(bp); 2987 } else if (LIST_FIRST(&bp->b_dep)) { 2988 bp->b_flags |= B_RELBUF; 2989 bwrite(bp); 2990 } else { 2991 bp->b_flags |= B_RELBUF; 2992 brelse(bp); 2993 } 2994 goto loop; 2995 } 2996 KKASSERT(size <= bp->b_kvasize); 2997 KASSERT(bp->b_loffset != NOOFFSET, 2998 ("getblk: no buffer offset")); 2999 3000 /* 3001 * A buffer with B_DELWRI set and B_CACHE clear must 3002 * be committed before we can return the buffer in 3003 * order to prevent the caller from issuing a read 3004 * ( due to B_CACHE not being set ) and overwriting 3005 * it. 3006 * 3007 * Most callers, including NFS and FFS, need this to 3008 * operate properly either because they assume they 3009 * can issue a read if B_CACHE is not set, or because 3010 * ( for example ) an uncached B_DELWRI might loop due 3011 * to softupdates re-dirtying the buffer. In the latter 3012 * case, B_CACHE is set after the first write completes, 3013 * preventing further loops. 3014 * 3015 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 3016 * above while extending the buffer, we cannot allow the 3017 * buffer to remain with B_CACHE set after the write 3018 * completes or it will represent a corrupt state. To 3019 * deal with this we set B_NOCACHE to scrap the buffer 3020 * after the write. 3021 * 3022 * XXX Should this be B_RELBUF instead of B_NOCACHE? 3023 * I'm not even sure this state is still possible 3024 * now that getblk() writes out any dirty buffers 3025 * on size changes. 3026 * 3027 * We might be able to do something fancy, like setting 3028 * B_CACHE in bwrite() except if B_DELWRI is already set, 3029 * so the below call doesn't set B_CACHE, but that gets real 3030 * confusing. This is much easier. 3031 */ 3032 3033 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 3034 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 3035 "and CACHE clear, b_flags %08x\n", 3036 bp, (intmax_t)bp->b_loffset, bp->b_flags); 3037 bp->b_flags |= B_NOCACHE; 3038 bwrite(bp); 3039 goto loop; 3040 } 3041 } else { 3042 /* 3043 * Buffer is not in-core, create new buffer. The buffer 3044 * returned by getnewbuf() is locked. Note that the returned 3045 * buffer is also considered valid (not marked B_INVAL). 3046 * 3047 * Calculating the offset for the I/O requires figuring out 3048 * the block size. We use DEV_BSIZE for VBLK or VCHR and 3049 * the mount's f_iosize otherwise. If the vnode does not 3050 * have an associated mount we assume that the passed size is 3051 * the block size. 3052 * 3053 * Note that vn_isdisk() cannot be used here since it may 3054 * return a failure for numerous reasons. Note that the 3055 * buffer size may be larger then the block size (the caller 3056 * will use block numbers with the proper multiple). Beware 3057 * of using any v_* fields which are part of unions. In 3058 * particular, in DragonFly the mount point overloading 3059 * mechanism uses the namecache only and the underlying 3060 * directory vnode is not a special case. 3061 */ 3062 int bsize, maxsize; 3063 3064 if (vp->v_type == VBLK || vp->v_type == VCHR) 3065 bsize = DEV_BSIZE; 3066 else if (vp->v_mount) 3067 bsize = vp->v_mount->mnt_stat.f_iosize; 3068 else 3069 bsize = size; 3070 3071 maxsize = size + (loffset & PAGE_MASK); 3072 maxsize = imax(maxsize, bsize); 3073 3074 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 3075 if (bp == NULL) { 3076 if (slpflags || slptimeo) 3077 return NULL; 3078 goto loop; 3079 } 3080 3081 /* 3082 * Atomically insert the buffer into the hash, so that it can 3083 * be found by findblk(). 3084 * 3085 * If bgetvp() returns non-zero a collision occured, and the 3086 * bp will not be associated with the vnode. 3087 * 3088 * Make sure the translation layer has been cleared. 3089 */ 3090 bp->b_loffset = loffset; 3091 bp->b_bio2.bio_offset = NOOFFSET; 3092 /* bp->b_bio2.bio_next = NULL; */ 3093 3094 if (bgetvp(vp, bp, size)) { 3095 bp->b_flags |= B_INVAL; 3096 brelse(bp); 3097 goto loop; 3098 } 3099 3100 /* 3101 * All vnode-based buffers must be backed by a VM object. 3102 */ 3103 KKASSERT(vp->v_object != NULL); 3104 bp->b_flags |= B_VMIO; 3105 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3106 3107 allocbuf(bp, size); 3108 } 3109 KKASSERT(dsched_is_clear_buf_priv(bp)); 3110 return (bp); 3111 } 3112 3113 /* 3114 * regetblk(bp) 3115 * 3116 * Reacquire a buffer that was previously released to the locked queue, 3117 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 3118 * set B_LOCKED (which handles the acquisition race). 3119 * 3120 * To this end, either B_LOCKED must be set or the dependancy list must be 3121 * non-empty. 3122 * 3123 * MPSAFE 3124 */ 3125 void 3126 regetblk(struct buf *bp) 3127 { 3128 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 3129 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 3130 bremfree(bp); 3131 } 3132 3133 /* 3134 * geteblk: 3135 * 3136 * Get an empty, disassociated buffer of given size. The buffer is 3137 * initially set to B_INVAL. 3138 * 3139 * critical section protection is not required for the allocbuf() 3140 * call because races are impossible here. 3141 * 3142 * MPALMOSTSAFE 3143 */ 3144 struct buf * 3145 geteblk(int size) 3146 { 3147 struct buf *bp; 3148 int maxsize; 3149 3150 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3151 3152 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 3153 ; 3154 allocbuf(bp, size); 3155 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3156 KKASSERT(dsched_is_clear_buf_priv(bp)); 3157 return (bp); 3158 } 3159 3160 3161 /* 3162 * allocbuf: 3163 * 3164 * This code constitutes the buffer memory from either anonymous system 3165 * memory (in the case of non-VMIO operations) or from an associated 3166 * VM object (in the case of VMIO operations). This code is able to 3167 * resize a buffer up or down. 3168 * 3169 * Note that this code is tricky, and has many complications to resolve 3170 * deadlock or inconsistant data situations. Tread lightly!!! 3171 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3172 * the caller. Calling this code willy nilly can result in the loss of 3173 * data. 3174 * 3175 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3176 * B_CACHE for the non-VMIO case. 3177 * 3178 * This routine does not need to be called from a critical section but you 3179 * must own the buffer. 3180 * 3181 * MPSAFE 3182 */ 3183 int 3184 allocbuf(struct buf *bp, int size) 3185 { 3186 int newbsize, mbsize; 3187 int i; 3188 3189 if (BUF_REFCNT(bp) == 0) 3190 panic("allocbuf: buffer not busy"); 3191 3192 if (bp->b_kvasize < size) 3193 panic("allocbuf: buffer too small"); 3194 3195 if ((bp->b_flags & B_VMIO) == 0) { 3196 caddr_t origbuf; 3197 int origbufsize; 3198 /* 3199 * Just get anonymous memory from the kernel. Don't 3200 * mess with B_CACHE. 3201 */ 3202 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3203 if (bp->b_flags & B_MALLOC) 3204 newbsize = mbsize; 3205 else 3206 newbsize = round_page(size); 3207 3208 if (newbsize < bp->b_bufsize) { 3209 /* 3210 * Malloced buffers are not shrunk 3211 */ 3212 if (bp->b_flags & B_MALLOC) { 3213 if (newbsize) { 3214 bp->b_bcount = size; 3215 } else { 3216 kfree(bp->b_data, M_BIOBUF); 3217 if (bp->b_bufsize) { 3218 atomic_subtract_int(&bufmallocspace, bp->b_bufsize); 3219 bufspacewakeup(); 3220 bp->b_bufsize = 0; 3221 } 3222 bp->b_data = bp->b_kvabase; 3223 bp->b_bcount = 0; 3224 bp->b_flags &= ~B_MALLOC; 3225 } 3226 return 1; 3227 } 3228 vm_hold_free_pages( 3229 bp, 3230 (vm_offset_t) bp->b_data + newbsize, 3231 (vm_offset_t) bp->b_data + bp->b_bufsize); 3232 } else if (newbsize > bp->b_bufsize) { 3233 /* 3234 * We only use malloced memory on the first allocation. 3235 * and revert to page-allocated memory when the buffer 3236 * grows. 3237 */ 3238 if ((bufmallocspace < maxbufmallocspace) && 3239 (bp->b_bufsize == 0) && 3240 (mbsize <= PAGE_SIZE/2)) { 3241 3242 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3243 bp->b_bufsize = mbsize; 3244 bp->b_bcount = size; 3245 bp->b_flags |= B_MALLOC; 3246 atomic_add_int(&bufmallocspace, mbsize); 3247 return 1; 3248 } 3249 origbuf = NULL; 3250 origbufsize = 0; 3251 /* 3252 * If the buffer is growing on its other-than-first 3253 * allocation, then we revert to the page-allocation 3254 * scheme. 3255 */ 3256 if (bp->b_flags & B_MALLOC) { 3257 origbuf = bp->b_data; 3258 origbufsize = bp->b_bufsize; 3259 bp->b_data = bp->b_kvabase; 3260 if (bp->b_bufsize) { 3261 atomic_subtract_int(&bufmallocspace, 3262 bp->b_bufsize); 3263 bufspacewakeup(); 3264 bp->b_bufsize = 0; 3265 } 3266 bp->b_flags &= ~B_MALLOC; 3267 newbsize = round_page(newbsize); 3268 } 3269 vm_hold_load_pages( 3270 bp, 3271 (vm_offset_t) bp->b_data + bp->b_bufsize, 3272 (vm_offset_t) bp->b_data + newbsize); 3273 if (origbuf) { 3274 bcopy(origbuf, bp->b_data, origbufsize); 3275 kfree(origbuf, M_BIOBUF); 3276 } 3277 } 3278 } else { 3279 vm_page_t m; 3280 int desiredpages; 3281 3282 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3283 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3284 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3285 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3286 3287 if (bp->b_flags & B_MALLOC) 3288 panic("allocbuf: VMIO buffer can't be malloced"); 3289 /* 3290 * Set B_CACHE initially if buffer is 0 length or will become 3291 * 0-length. 3292 */ 3293 if (size == 0 || bp->b_bufsize == 0) 3294 bp->b_flags |= B_CACHE; 3295 3296 if (newbsize < bp->b_bufsize) { 3297 /* 3298 * DEV_BSIZE aligned new buffer size is less then the 3299 * DEV_BSIZE aligned existing buffer size. Figure out 3300 * if we have to remove any pages. 3301 */ 3302 if (desiredpages < bp->b_xio.xio_npages) { 3303 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3304 /* 3305 * the page is not freed here -- it 3306 * is the responsibility of 3307 * vnode_pager_setsize 3308 */ 3309 m = bp->b_xio.xio_pages[i]; 3310 KASSERT(m != bogus_page, 3311 ("allocbuf: bogus page found")); 3312 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3313 ; 3314 3315 bp->b_xio.xio_pages[i] = NULL; 3316 vm_page_unwire(m, 0); 3317 } 3318 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3319 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3320 bp->b_xio.xio_npages = desiredpages; 3321 } 3322 } else if (size > bp->b_bcount) { 3323 /* 3324 * We are growing the buffer, possibly in a 3325 * byte-granular fashion. 3326 */ 3327 struct vnode *vp; 3328 vm_object_t obj; 3329 vm_offset_t toff; 3330 vm_offset_t tinc; 3331 3332 /* 3333 * Step 1, bring in the VM pages from the object, 3334 * allocating them if necessary. We must clear 3335 * B_CACHE if these pages are not valid for the 3336 * range covered by the buffer. 3337 * 3338 * critical section protection is required to protect 3339 * against interrupts unbusying and freeing pages 3340 * between our vm_page_lookup() and our 3341 * busycheck/wiring call. 3342 */ 3343 vp = bp->b_vp; 3344 obj = vp->v_object; 3345 3346 lwkt_gettoken(&vm_token); 3347 while (bp->b_xio.xio_npages < desiredpages) { 3348 vm_page_t m; 3349 vm_pindex_t pi; 3350 3351 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3352 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3353 /* 3354 * note: must allocate system pages 3355 * since blocking here could intefere 3356 * with paging I/O, no matter which 3357 * process we are. 3358 */ 3359 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3360 if (m) { 3361 vm_page_wire(m); 3362 vm_page_wakeup(m); 3363 vm_page_flag_clear(m, PG_ZERO); 3364 bp->b_flags &= ~B_CACHE; 3365 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3366 ++bp->b_xio.xio_npages; 3367 } 3368 continue; 3369 } 3370 3371 /* 3372 * We found a page. If we have to sleep on it, 3373 * retry because it might have gotten freed out 3374 * from under us. 3375 * 3376 * We can only test PG_BUSY here. Blocking on 3377 * m->busy might lead to a deadlock: 3378 * 3379 * vm_fault->getpages->cluster_read->allocbuf 3380 * 3381 */ 3382 3383 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3384 continue; 3385 vm_page_flag_clear(m, PG_ZERO); 3386 vm_page_wire(m); 3387 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3388 ++bp->b_xio.xio_npages; 3389 if (bp->b_act_count < m->act_count) 3390 bp->b_act_count = m->act_count; 3391 } 3392 lwkt_reltoken(&vm_token); 3393 3394 /* 3395 * Step 2. We've loaded the pages into the buffer, 3396 * we have to figure out if we can still have B_CACHE 3397 * set. Note that B_CACHE is set according to the 3398 * byte-granular range ( bcount and size ), not the 3399 * aligned range ( newbsize ). 3400 * 3401 * The VM test is against m->valid, which is DEV_BSIZE 3402 * aligned. Needless to say, the validity of the data 3403 * needs to also be DEV_BSIZE aligned. Note that this 3404 * fails with NFS if the server or some other client 3405 * extends the file's EOF. If our buffer is resized, 3406 * B_CACHE may remain set! XXX 3407 */ 3408 3409 toff = bp->b_bcount; 3410 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3411 3412 while ((bp->b_flags & B_CACHE) && toff < size) { 3413 vm_pindex_t pi; 3414 3415 if (tinc > (size - toff)) 3416 tinc = size - toff; 3417 3418 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3419 PAGE_SHIFT; 3420 3421 vfs_buf_test_cache( 3422 bp, 3423 bp->b_loffset, 3424 toff, 3425 tinc, 3426 bp->b_xio.xio_pages[pi] 3427 ); 3428 toff += tinc; 3429 tinc = PAGE_SIZE; 3430 } 3431 3432 /* 3433 * Step 3, fixup the KVM pmap. Remember that 3434 * bp->b_data is relative to bp->b_loffset, but 3435 * bp->b_loffset may be offset into the first page. 3436 */ 3437 3438 bp->b_data = (caddr_t) 3439 trunc_page((vm_offset_t)bp->b_data); 3440 pmap_qenter( 3441 (vm_offset_t)bp->b_data, 3442 bp->b_xio.xio_pages, 3443 bp->b_xio.xio_npages 3444 ); 3445 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3446 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3447 } 3448 } 3449 3450 /* adjust space use on already-dirty buffer */ 3451 if (bp->b_flags & B_DELWRI) { 3452 spin_lock(&bufcspin); 3453 dirtybufspace += newbsize - bp->b_bufsize; 3454 if (bp->b_flags & B_HEAVY) 3455 dirtybufspacehw += newbsize - bp->b_bufsize; 3456 spin_unlock(&bufcspin); 3457 } 3458 if (newbsize < bp->b_bufsize) 3459 bufspacewakeup(); 3460 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3461 bp->b_bcount = size; /* requested buffer size */ 3462 return 1; 3463 } 3464 3465 /* 3466 * biowait: 3467 * 3468 * Wait for buffer I/O completion, returning error status. B_EINTR 3469 * is converted into an EINTR error but not cleared (since a chain 3470 * of biowait() calls may occur). 3471 * 3472 * On return bpdone() will have been called but the buffer will remain 3473 * locked and will not have been brelse()'d. 3474 * 3475 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3476 * likely still in progress on return. 3477 * 3478 * NOTE! This operation is on a BIO, not a BUF. 3479 * 3480 * NOTE! BIO_DONE is cleared by vn_strategy() 3481 * 3482 * MPSAFE 3483 */ 3484 static __inline int 3485 _biowait(struct bio *bio, const char *wmesg, int to) 3486 { 3487 struct buf *bp = bio->bio_buf; 3488 u_int32_t flags; 3489 u_int32_t nflags; 3490 int error; 3491 3492 KKASSERT(bio == &bp->b_bio1); 3493 for (;;) { 3494 flags = bio->bio_flags; 3495 if (flags & BIO_DONE) 3496 break; 3497 tsleep_interlock(bio, 0); 3498 nflags = flags | BIO_WANT; 3499 tsleep_interlock(bio, 0); 3500 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3501 if (wmesg) 3502 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3503 else if (bp->b_cmd == BUF_CMD_READ) 3504 error = tsleep(bio, PINTERLOCKED, "biord", to); 3505 else 3506 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3507 if (error) { 3508 kprintf("tsleep error biowait %d\n", error); 3509 return (error); 3510 } 3511 } 3512 } 3513 3514 /* 3515 * Finish up. 3516 */ 3517 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3518 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3519 if (bp->b_flags & B_EINTR) 3520 return (EINTR); 3521 if (bp->b_flags & B_ERROR) 3522 return (bp->b_error ? bp->b_error : EIO); 3523 return (0); 3524 } 3525 3526 int 3527 biowait(struct bio *bio, const char *wmesg) 3528 { 3529 return(_biowait(bio, wmesg, 0)); 3530 } 3531 3532 int 3533 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3534 { 3535 return(_biowait(bio, wmesg, to)); 3536 } 3537 3538 /* 3539 * This associates a tracking count with an I/O. vn_strategy() and 3540 * dev_dstrategy() do this automatically but there are a few cases 3541 * where a vnode or device layer is bypassed when a block translation 3542 * is cached. In such cases bio_start_transaction() may be called on 3543 * the bypassed layers so the system gets an I/O in progress indication 3544 * for those higher layers. 3545 */ 3546 void 3547 bio_start_transaction(struct bio *bio, struct bio_track *track) 3548 { 3549 bio->bio_track = track; 3550 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3551 dsched_new_buf(bio->bio_buf); 3552 bio_track_ref(track); 3553 } 3554 3555 /* 3556 * Initiate I/O on a vnode. 3557 * 3558 * SWAPCACHE OPERATION: 3559 * 3560 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately 3561 * devfs also uses b_vp for fake buffers so we also have to check 3562 * that B_PAGING is 0. In this case the passed 'vp' is probably the 3563 * underlying block device. The swap assignments are related to the 3564 * buffer cache buffer's b_vp, not the passed vp. 3565 * 3566 * The passed vp == bp->b_vp only in the case where the strategy call 3567 * is made on the vp itself for its own buffers (a regular file or 3568 * block device vp). The filesystem usually then re-calls vn_strategy() 3569 * after translating the request to an underlying device. 3570 * 3571 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the 3572 * underlying buffer cache buffers. 3573 * 3574 * We can only deal with page-aligned buffers at the moment, because 3575 * we can't tell what the real dirty state for pages straddling a buffer 3576 * are. 3577 * 3578 * In order to call swap_pager_strategy() we must provide the VM object 3579 * and base offset for the underlying buffer cache pages so it can find 3580 * the swap blocks. 3581 */ 3582 void 3583 vn_strategy(struct vnode *vp, struct bio *bio) 3584 { 3585 struct bio_track *track; 3586 struct buf *bp = bio->bio_buf; 3587 3588 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3589 3590 /* 3591 * Set when an I/O is issued on the bp. Cleared by consumers 3592 * (aka HAMMER), allowing the consumer to determine if I/O had 3593 * actually occurred. 3594 */ 3595 bp->b_flags |= B_IODEBUG; 3596 3597 /* 3598 * Handle the swap cache intercept. 3599 */ 3600 if (vn_cache_strategy(vp, bio)) 3601 return; 3602 3603 /* 3604 * Otherwise do the operation through the filesystem 3605 */ 3606 if (bp->b_cmd == BUF_CMD_READ) 3607 track = &vp->v_track_read; 3608 else 3609 track = &vp->v_track_write; 3610 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3611 bio->bio_track = track; 3612 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3613 dsched_new_buf(bio->bio_buf); 3614 bio_track_ref(track); 3615 vop_strategy(*vp->v_ops, vp, bio); 3616 } 3617 3618 int 3619 vn_cache_strategy(struct vnode *vp, struct bio *bio) 3620 { 3621 struct buf *bp = bio->bio_buf; 3622 struct bio *nbio; 3623 vm_object_t object; 3624 vm_page_t m; 3625 int i; 3626 3627 /* 3628 * Is this buffer cache buffer suitable for reading from 3629 * the swap cache? 3630 */ 3631 if (vm_swapcache_read_enable == 0 || 3632 bp->b_cmd != BUF_CMD_READ || 3633 ((bp->b_flags & B_CLUSTER) == 0 && 3634 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) || 3635 ((int)bp->b_loffset & PAGE_MASK) != 0 || 3636 (bp->b_bcount & PAGE_MASK) != 0) { 3637 return(0); 3638 } 3639 3640 /* 3641 * Figure out the original VM object (it will match the underlying 3642 * VM pages). Note that swap cached data uses page indices relative 3643 * to that object, not relative to bio->bio_offset. 3644 */ 3645 if (bp->b_flags & B_CLUSTER) 3646 object = vp->v_object; 3647 else 3648 object = bp->b_vp->v_object; 3649 3650 /* 3651 * In order to be able to use the swap cache all underlying VM 3652 * pages must be marked as such, and we can't have any bogus pages. 3653 */ 3654 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 3655 m = bp->b_xio.xio_pages[i]; 3656 if ((m->flags & PG_SWAPPED) == 0) 3657 break; 3658 if (m == bogus_page) 3659 break; 3660 } 3661 3662 /* 3663 * If we are good then issue the I/O using swap_pager_strategy() 3664 */ 3665 if (i == bp->b_xio.xio_npages) { 3666 m = bp->b_xio.xio_pages[0]; 3667 nbio = push_bio(bio); 3668 nbio->bio_offset = ptoa(m->pindex); 3669 KKASSERT(m->object == object); 3670 swap_pager_strategy(object, nbio); 3671 return(1); 3672 } 3673 return(0); 3674 } 3675 3676 /* 3677 * bpdone: 3678 * 3679 * Finish I/O on a buffer after all BIOs have been processed. 3680 * Called when the bio chain is exhausted or by biowait. If called 3681 * by biowait, elseit is typically 0. 3682 * 3683 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3684 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3685 * assuming B_INVAL is clear. 3686 * 3687 * For the VMIO case, we set B_CACHE if the op was a read and no 3688 * read error occured, or if the op was a write. B_CACHE is never 3689 * set if the buffer is invalid or otherwise uncacheable. 3690 * 3691 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3692 * initiator to leave B_INVAL set to brelse the buffer out of existance 3693 * in the biodone routine. 3694 */ 3695 void 3696 bpdone(struct buf *bp, int elseit) 3697 { 3698 buf_cmd_t cmd; 3699 3700 KASSERT(BUF_REFCNTNB(bp) > 0, 3701 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3702 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3703 ("biodone: bp %p already done!", bp)); 3704 3705 /* 3706 * No more BIOs are left. All completion functions have been dealt 3707 * with, now we clean up the buffer. 3708 */ 3709 cmd = bp->b_cmd; 3710 bp->b_cmd = BUF_CMD_DONE; 3711 3712 /* 3713 * Only reads and writes are processed past this point. 3714 */ 3715 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3716 if (cmd == BUF_CMD_FREEBLKS) 3717 bp->b_flags |= B_NOCACHE; 3718 if (elseit) 3719 brelse(bp); 3720 return; 3721 } 3722 3723 /* 3724 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3725 * a lot worse. XXX - move this above the clearing of b_cmd 3726 */ 3727 if (LIST_FIRST(&bp->b_dep) != NULL) 3728 buf_complete(bp); /* MPSAFE */ 3729 3730 /* 3731 * A failed write must re-dirty the buffer unless B_INVAL 3732 * was set. Only applicable to normal buffers (with VPs). 3733 * vinum buffers may not have a vp. 3734 */ 3735 if (cmd == BUF_CMD_WRITE && 3736 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3737 bp->b_flags &= ~B_NOCACHE; 3738 if (bp->b_vp) 3739 bdirty(bp); 3740 } 3741 3742 if (bp->b_flags & B_VMIO) { 3743 int i; 3744 vm_ooffset_t foff; 3745 vm_page_t m; 3746 vm_object_t obj; 3747 int iosize; 3748 struct vnode *vp = bp->b_vp; 3749 3750 obj = vp->v_object; 3751 3752 #if defined(VFS_BIO_DEBUG) 3753 if (vp->v_auxrefs == 0) 3754 panic("biodone: zero vnode hold count"); 3755 if ((vp->v_flag & VOBJBUF) == 0) 3756 panic("biodone: vnode is not setup for merged cache"); 3757 #endif 3758 3759 foff = bp->b_loffset; 3760 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3761 KASSERT(obj != NULL, ("biodone: missing VM object")); 3762 3763 #if defined(VFS_BIO_DEBUG) 3764 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3765 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3766 obj->paging_in_progress, bp->b_xio.xio_npages); 3767 } 3768 #endif 3769 3770 /* 3771 * Set B_CACHE if the op was a normal read and no error 3772 * occured. B_CACHE is set for writes in the b*write() 3773 * routines. 3774 */ 3775 iosize = bp->b_bcount - bp->b_resid; 3776 if (cmd == BUF_CMD_READ && 3777 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3778 bp->b_flags |= B_CACHE; 3779 } 3780 3781 lwkt_gettoken(&vm_token); 3782 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3783 int bogusflag = 0; 3784 int resid; 3785 3786 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3787 if (resid > iosize) 3788 resid = iosize; 3789 3790 /* 3791 * cleanup bogus pages, restoring the originals. Since 3792 * the originals should still be wired, we don't have 3793 * to worry about interrupt/freeing races destroying 3794 * the VM object association. 3795 */ 3796 m = bp->b_xio.xio_pages[i]; 3797 if (m == bogus_page) { 3798 bogusflag = 1; 3799 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3800 if (m == NULL) 3801 panic("biodone: page disappeared"); 3802 bp->b_xio.xio_pages[i] = m; 3803 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3804 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3805 } 3806 #if defined(VFS_BIO_DEBUG) 3807 if (OFF_TO_IDX(foff) != m->pindex) { 3808 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3809 "mismatch\n", 3810 (unsigned long)foff, (long)m->pindex); 3811 } 3812 #endif 3813 3814 /* 3815 * In the write case, the valid and clean bits are 3816 * already changed correctly (see bdwrite()), so we 3817 * only need to do this here in the read case. 3818 */ 3819 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3820 vfs_clean_one_page(bp, i, m); 3821 } 3822 vm_page_flag_clear(m, PG_ZERO); 3823 3824 /* 3825 * when debugging new filesystems or buffer I/O 3826 * methods, this is the most common error that pops 3827 * up. if you see this, you have not set the page 3828 * busy flag correctly!!! 3829 */ 3830 if (m->busy == 0) { 3831 kprintf("biodone: page busy < 0, " 3832 "pindex: %d, foff: 0x(%x,%x), " 3833 "resid: %d, index: %d\n", 3834 (int) m->pindex, (int)(foff >> 32), 3835 (int) foff & 0xffffffff, resid, i); 3836 if (!vn_isdisk(vp, NULL)) 3837 kprintf(" iosize: %ld, loffset: %lld, " 3838 "flags: 0x%08x, npages: %d\n", 3839 bp->b_vp->v_mount->mnt_stat.f_iosize, 3840 (long long)bp->b_loffset, 3841 bp->b_flags, bp->b_xio.xio_npages); 3842 else 3843 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3844 (long long)bp->b_loffset, 3845 bp->b_flags, bp->b_xio.xio_npages); 3846 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3847 m->valid, m->dirty, m->wire_count); 3848 panic("biodone: page busy < 0"); 3849 } 3850 vm_page_io_finish(m); 3851 vm_object_pip_subtract(obj, 1); 3852 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3853 iosize -= resid; 3854 } 3855 bp->b_flags &= ~B_HASBOGUS; 3856 if (obj) 3857 vm_object_pip_wakeupn(obj, 0); 3858 lwkt_reltoken(&vm_token); 3859 } 3860 3861 /* 3862 * Finish up by releasing the buffer. There are no more synchronous 3863 * or asynchronous completions, those were handled by bio_done 3864 * callbacks. 3865 */ 3866 if (elseit) { 3867 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3868 brelse(bp); 3869 else 3870 bqrelse(bp); 3871 } 3872 } 3873 3874 /* 3875 * Normal biodone. 3876 */ 3877 void 3878 biodone(struct bio *bio) 3879 { 3880 struct buf *bp = bio->bio_buf; 3881 3882 runningbufwakeup(bp); 3883 3884 /* 3885 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3886 */ 3887 while (bio) { 3888 biodone_t *done_func; 3889 struct bio_track *track; 3890 3891 /* 3892 * BIO tracking. Most but not all BIOs are tracked. 3893 */ 3894 if ((track = bio->bio_track) != NULL) { 3895 bio_track_rel(track); 3896 bio->bio_track = NULL; 3897 } 3898 3899 /* 3900 * A bio_done function terminates the loop. The function 3901 * will be responsible for any further chaining and/or 3902 * buffer management. 3903 * 3904 * WARNING! The done function can deallocate the buffer! 3905 */ 3906 if ((done_func = bio->bio_done) != NULL) { 3907 bio->bio_done = NULL; 3908 done_func(bio); 3909 return; 3910 } 3911 bio = bio->bio_prev; 3912 } 3913 3914 /* 3915 * If we've run out of bio's do normal [a]synchronous completion. 3916 */ 3917 bpdone(bp, 1); 3918 } 3919 3920 /* 3921 * Synchronous biodone - this terminates a synchronous BIO. 3922 * 3923 * bpdone() is called with elseit=FALSE, leaving the buffer completed 3924 * but still locked. The caller must brelse() the buffer after waiting 3925 * for completion. 3926 */ 3927 void 3928 biodone_sync(struct bio *bio) 3929 { 3930 struct buf *bp = bio->bio_buf; 3931 int flags; 3932 int nflags; 3933 3934 KKASSERT(bio == &bp->b_bio1); 3935 bpdone(bp, 0); 3936 3937 for (;;) { 3938 flags = bio->bio_flags; 3939 nflags = (flags | BIO_DONE) & ~BIO_WANT; 3940 3941 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3942 if (flags & BIO_WANT) 3943 wakeup(bio); 3944 break; 3945 } 3946 } 3947 } 3948 3949 /* 3950 * vfs_unbusy_pages: 3951 * 3952 * This routine is called in lieu of iodone in the case of 3953 * incomplete I/O. This keeps the busy status for pages 3954 * consistant. 3955 */ 3956 void 3957 vfs_unbusy_pages(struct buf *bp) 3958 { 3959 int i; 3960 3961 runningbufwakeup(bp); 3962 3963 lwkt_gettoken(&vm_token); 3964 if (bp->b_flags & B_VMIO) { 3965 struct vnode *vp = bp->b_vp; 3966 vm_object_t obj; 3967 3968 obj = vp->v_object; 3969 3970 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3971 vm_page_t m = bp->b_xio.xio_pages[i]; 3972 3973 /* 3974 * When restoring bogus changes the original pages 3975 * should still be wired, so we are in no danger of 3976 * losing the object association and do not need 3977 * critical section protection particularly. 3978 */ 3979 if (m == bogus_page) { 3980 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3981 if (!m) { 3982 panic("vfs_unbusy_pages: page missing"); 3983 } 3984 bp->b_xio.xio_pages[i] = m; 3985 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3986 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3987 } 3988 vm_object_pip_subtract(obj, 1); 3989 vm_page_flag_clear(m, PG_ZERO); 3990 vm_page_io_finish(m); 3991 } 3992 bp->b_flags &= ~B_HASBOGUS; 3993 vm_object_pip_wakeupn(obj, 0); 3994 } 3995 lwkt_reltoken(&vm_token); 3996 } 3997 3998 /* 3999 * vfs_busy_pages: 4000 * 4001 * This routine is called before a device strategy routine. 4002 * It is used to tell the VM system that paging I/O is in 4003 * progress, and treat the pages associated with the buffer 4004 * almost as being PG_BUSY. Also the object 'paging_in_progress' 4005 * flag is handled to make sure that the object doesn't become 4006 * inconsistant. 4007 * 4008 * Since I/O has not been initiated yet, certain buffer flags 4009 * such as B_ERROR or B_INVAL may be in an inconsistant state 4010 * and should be ignored. 4011 * 4012 * MPSAFE 4013 */ 4014 void 4015 vfs_busy_pages(struct vnode *vp, struct buf *bp) 4016 { 4017 int i, bogus; 4018 struct lwp *lp = curthread->td_lwp; 4019 4020 /* 4021 * The buffer's I/O command must already be set. If reading, 4022 * B_CACHE must be 0 (double check against callers only doing 4023 * I/O when B_CACHE is 0). 4024 */ 4025 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4026 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 4027 4028 if (bp->b_flags & B_VMIO) { 4029 vm_object_t obj; 4030 4031 lwkt_gettoken(&vm_token); 4032 4033 obj = vp->v_object; 4034 KASSERT(bp->b_loffset != NOOFFSET, 4035 ("vfs_busy_pages: no buffer offset")); 4036 4037 /* 4038 * Loop until none of the pages are busy. 4039 */ 4040 retry: 4041 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4042 vm_page_t m = bp->b_xio.xio_pages[i]; 4043 4044 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 4045 goto retry; 4046 } 4047 4048 /* 4049 * Setup for I/O, soft-busy the page right now because 4050 * the next loop may block. 4051 */ 4052 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4053 vm_page_t m = bp->b_xio.xio_pages[i]; 4054 4055 vm_page_flag_clear(m, PG_ZERO); 4056 if ((bp->b_flags & B_CLUSTER) == 0) { 4057 vm_object_pip_add(obj, 1); 4058 vm_page_io_start(m); 4059 } 4060 } 4061 4062 /* 4063 * Adjust protections for I/O and do bogus-page mapping. 4064 * Assume that vm_page_protect() can block (it can block 4065 * if VM_PROT_NONE, don't take any chances regardless). 4066 * 4067 * In particular note that for writes we must incorporate 4068 * page dirtyness from the VM system into the buffer's 4069 * dirty range. 4070 * 4071 * For reads we theoretically must incorporate page dirtyness 4072 * from the VM system to determine if the page needs bogus 4073 * replacement, but we shortcut the test by simply checking 4074 * that all m->valid bits are set, indicating that the page 4075 * is fully valid and does not need to be re-read. For any 4076 * VM system dirtyness the page will also be fully valid 4077 * since it was mapped at one point. 4078 */ 4079 bogus = 0; 4080 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4081 vm_page_t m = bp->b_xio.xio_pages[i]; 4082 4083 vm_page_flag_clear(m, PG_ZERO); /* XXX */ 4084 if (bp->b_cmd == BUF_CMD_WRITE) { 4085 /* 4086 * When readying a vnode-backed buffer for 4087 * a write we must zero-fill any invalid 4088 * portions of the backing VM pages, mark 4089 * it valid and clear related dirty bits. 4090 * 4091 * vfs_clean_one_page() incorporates any 4092 * VM dirtyness and updates the b_dirtyoff 4093 * range (after we've made the page RO). 4094 * 4095 * It is also expected that the pmap modified 4096 * bit has already been cleared by the 4097 * vm_page_protect(). We may not be able 4098 * to clear all dirty bits for a page if it 4099 * was also memory mapped (NFS). 4100 * 4101 * Finally be sure to unassign any swap-cache 4102 * backing store as it is now stale. 4103 */ 4104 vm_page_protect(m, VM_PROT_READ); 4105 vfs_clean_one_page(bp, i, m); 4106 swap_pager_unswapped(m); 4107 } else if (m->valid == VM_PAGE_BITS_ALL) { 4108 /* 4109 * When readying a vnode-backed buffer for 4110 * read we must replace any dirty pages with 4111 * a bogus page so dirty data is not destroyed 4112 * when filling gaps. 4113 * 4114 * To avoid testing whether the page is 4115 * dirty we instead test that the page was 4116 * at some point mapped (m->valid fully 4117 * valid) with the understanding that 4118 * this also covers the dirty case. 4119 */ 4120 bp->b_xio.xio_pages[i] = bogus_page; 4121 bp->b_flags |= B_HASBOGUS; 4122 bogus++; 4123 } else if (m->valid & m->dirty) { 4124 /* 4125 * This case should not occur as partial 4126 * dirtyment can only happen if the buffer 4127 * is B_CACHE, and this code is not entered 4128 * if the buffer is B_CACHE. 4129 */ 4130 kprintf("Warning: vfs_busy_pages - page not " 4131 "fully valid! loff=%jx bpf=%08x " 4132 "idx=%d val=%02x dir=%02x\n", 4133 (intmax_t)bp->b_loffset, bp->b_flags, 4134 i, m->valid, m->dirty); 4135 vm_page_protect(m, VM_PROT_NONE); 4136 } else { 4137 /* 4138 * The page is not valid and can be made 4139 * part of the read. 4140 */ 4141 vm_page_protect(m, VM_PROT_NONE); 4142 } 4143 } 4144 if (bogus) { 4145 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4146 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 4147 } 4148 lwkt_reltoken(&vm_token); 4149 } 4150 4151 /* 4152 * This is the easiest place to put the process accounting for the I/O 4153 * for now. 4154 */ 4155 if (lp != NULL) { 4156 if (bp->b_cmd == BUF_CMD_READ) 4157 lp->lwp_ru.ru_inblock++; 4158 else 4159 lp->lwp_ru.ru_oublock++; 4160 } 4161 } 4162 4163 /* 4164 * vfs_clean_pages: 4165 * 4166 * Tell the VM system that the pages associated with this buffer 4167 * are clean. This is used for delayed writes where the data is 4168 * going to go to disk eventually without additional VM intevention. 4169 * 4170 * Note that while we only really need to clean through to b_bcount, we 4171 * just go ahead and clean through to b_bufsize. 4172 */ 4173 static void 4174 vfs_clean_pages(struct buf *bp) 4175 { 4176 vm_page_t m; 4177 int i; 4178 4179 if ((bp->b_flags & B_VMIO) == 0) 4180 return; 4181 4182 KASSERT(bp->b_loffset != NOOFFSET, 4183 ("vfs_clean_pages: no buffer offset")); 4184 4185 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4186 m = bp->b_xio.xio_pages[i]; 4187 vfs_clean_one_page(bp, i, m); 4188 } 4189 } 4190 4191 /* 4192 * vfs_clean_one_page: 4193 * 4194 * Set the valid bits and clear the dirty bits in a page within a 4195 * buffer. The range is restricted to the buffer's size and the 4196 * buffer's logical offset might index into the first page. 4197 * 4198 * The caller has busied or soft-busied the page and it is not mapped, 4199 * test and incorporate the dirty bits into b_dirtyoff/end before 4200 * clearing them. Note that we need to clear the pmap modified bits 4201 * after determining the the page was dirty, vm_page_set_validclean() 4202 * does not do it for us. 4203 * 4204 * This routine is typically called after a read completes (dirty should 4205 * be zero in that case as we are not called on bogus-replace pages), 4206 * or before a write is initiated. 4207 */ 4208 static void 4209 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 4210 { 4211 int bcount; 4212 int xoff; 4213 int soff; 4214 int eoff; 4215 4216 /* 4217 * Calculate offset range within the page but relative to buffer's 4218 * loffset. loffset might be offset into the first page. 4219 */ 4220 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4221 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4222 4223 if (pageno == 0) { 4224 soff = xoff; 4225 eoff = PAGE_SIZE; 4226 } else { 4227 soff = (pageno << PAGE_SHIFT); 4228 eoff = soff + PAGE_SIZE; 4229 } 4230 if (eoff > bcount) 4231 eoff = bcount; 4232 if (soff >= eoff) 4233 return; 4234 4235 /* 4236 * Test dirty bits and adjust b_dirtyoff/end. 4237 * 4238 * If dirty pages are incorporated into the bp any prior 4239 * B_NEEDCOMMIT state (NFS) must be cleared because the 4240 * caller has not taken into account the new dirty data. 4241 * 4242 * If the page was memory mapped the dirty bits might go beyond the 4243 * end of the buffer, but we can't really make the assumption that 4244 * a file EOF straddles the buffer (even though this is the case for 4245 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 4246 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 4247 * This also saves some console spam. 4248 * 4249 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK, 4250 * NFS can handle huge commits but not huge writes. 4251 */ 4252 vm_page_test_dirty(m); 4253 if (m->dirty) { 4254 if ((bp->b_flags & B_NEEDCOMMIT) && 4255 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 4256 if (debug_commit) 4257 kprintf("Warning: vfs_clean_one_page: bp %p " 4258 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT" 4259 " cmd %d vd %02x/%02x x/s/e %d %d %d " 4260 "doff/end %d %d\n", 4261 bp, (intmax_t)bp->b_loffset, bp->b_bcount, 4262 bp->b_flags, bp->b_cmd, 4263 m->valid, m->dirty, xoff, soff, eoff, 4264 bp->b_dirtyoff, bp->b_dirtyend); 4265 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 4266 if (debug_commit) 4267 print_backtrace(-1); 4268 } 4269 /* 4270 * Only clear the pmap modified bits if ALL the dirty bits 4271 * are set, otherwise the system might mis-clear portions 4272 * of a page. 4273 */ 4274 if (m->dirty == VM_PAGE_BITS_ALL && 4275 (bp->b_flags & B_NEEDCOMMIT) == 0) { 4276 pmap_clear_modify(m); 4277 } 4278 if (bp->b_dirtyoff > soff - xoff) 4279 bp->b_dirtyoff = soff - xoff; 4280 if (bp->b_dirtyend < eoff - xoff) 4281 bp->b_dirtyend = eoff - xoff; 4282 } 4283 4284 /* 4285 * Set related valid bits, clear related dirty bits. 4286 * Does not mess with the pmap modified bit. 4287 * 4288 * WARNING! We cannot just clear all of m->dirty here as the 4289 * buffer cache buffers may use a DEV_BSIZE'd aligned 4290 * block size, or have an odd size (e.g. NFS at file EOF). 4291 * The putpages code can clear m->dirty to 0. 4292 * 4293 * If a VOP_WRITE generates a buffer cache buffer which 4294 * covers the same space as mapped writable pages the 4295 * buffer flush might not be able to clear all the dirty 4296 * bits and still require a putpages from the VM system 4297 * to finish it off. 4298 */ 4299 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 4300 } 4301 4302 /* 4303 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty. 4304 * The page data is assumed to be valid (there is no zeroing here). 4305 */ 4306 static void 4307 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m) 4308 { 4309 int bcount; 4310 int xoff; 4311 int soff; 4312 int eoff; 4313 4314 /* 4315 * Calculate offset range within the page but relative to buffer's 4316 * loffset. loffset might be offset into the first page. 4317 */ 4318 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4319 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4320 4321 if (pageno == 0) { 4322 soff = xoff; 4323 eoff = PAGE_SIZE; 4324 } else { 4325 soff = (pageno << PAGE_SHIFT); 4326 eoff = soff + PAGE_SIZE; 4327 } 4328 if (eoff > bcount) 4329 eoff = bcount; 4330 if (soff >= eoff) 4331 return; 4332 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff); 4333 } 4334 4335 /* 4336 * vfs_bio_clrbuf: 4337 * 4338 * Clear a buffer. This routine essentially fakes an I/O, so we need 4339 * to clear B_ERROR and B_INVAL. 4340 * 4341 * Note that while we only theoretically need to clear through b_bcount, 4342 * we go ahead and clear through b_bufsize. 4343 */ 4344 4345 void 4346 vfs_bio_clrbuf(struct buf *bp) 4347 { 4348 int i, mask = 0; 4349 caddr_t sa, ea; 4350 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 4351 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 4352 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4353 (bp->b_loffset & PAGE_MASK) == 0) { 4354 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4355 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 4356 bp->b_resid = 0; 4357 return; 4358 } 4359 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 4360 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 4361 bzero(bp->b_data, bp->b_bufsize); 4362 bp->b_xio.xio_pages[0]->valid |= mask; 4363 bp->b_resid = 0; 4364 return; 4365 } 4366 } 4367 sa = bp->b_data; 4368 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 4369 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 4370 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 4371 ea = (caddr_t)(vm_offset_t)ulmin( 4372 (u_long)(vm_offset_t)ea, 4373 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 4374 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4375 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 4376 continue; 4377 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 4378 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 4379 bzero(sa, ea - sa); 4380 } 4381 } else { 4382 for (; sa < ea; sa += DEV_BSIZE, j++) { 4383 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 4384 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 4385 bzero(sa, DEV_BSIZE); 4386 } 4387 } 4388 bp->b_xio.xio_pages[i]->valid |= mask; 4389 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 4390 } 4391 bp->b_resid = 0; 4392 } else { 4393 clrbuf(bp); 4394 } 4395 } 4396 4397 /* 4398 * vm_hold_load_pages: 4399 * 4400 * Load pages into the buffer's address space. The pages are 4401 * allocated from the kernel object in order to reduce interference 4402 * with the any VM paging I/O activity. The range of loaded 4403 * pages will be wired. 4404 * 4405 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4406 * retrieve the full range (to - from) of pages. 4407 * 4408 * MPSAFE 4409 */ 4410 void 4411 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4412 { 4413 vm_offset_t pg; 4414 vm_page_t p; 4415 int index; 4416 4417 to = round_page(to); 4418 from = round_page(from); 4419 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4420 4421 pg = from; 4422 while (pg < to) { 4423 /* 4424 * Note: must allocate system pages since blocking here 4425 * could intefere with paging I/O, no matter which 4426 * process we are. 4427 */ 4428 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4429 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4430 if (p) { 4431 vm_page_wire(p); 4432 p->valid = VM_PAGE_BITS_ALL; 4433 vm_page_flag_clear(p, PG_ZERO); 4434 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4435 bp->b_xio.xio_pages[index] = p; 4436 vm_page_wakeup(p); 4437 4438 pg += PAGE_SIZE; 4439 ++index; 4440 } 4441 } 4442 bp->b_xio.xio_npages = index; 4443 } 4444 4445 /* 4446 * Allocate pages for a buffer cache buffer. 4447 * 4448 * Under extremely severe memory conditions even allocating out of the 4449 * system reserve can fail. If this occurs we must allocate out of the 4450 * interrupt reserve to avoid a deadlock with the pageout daemon. 4451 * 4452 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 4453 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 4454 * against the pageout daemon if pages are not freed from other sources. 4455 * 4456 * MPSAFE 4457 */ 4458 static 4459 vm_page_t 4460 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4461 { 4462 vm_page_t p; 4463 4464 /* 4465 * Try a normal allocation, allow use of system reserve. 4466 */ 4467 lwkt_gettoken(&vm_token); 4468 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 4469 if (p) { 4470 lwkt_reltoken(&vm_token); 4471 return(p); 4472 } 4473 4474 /* 4475 * The normal allocation failed and we clearly have a page 4476 * deficit. Try to reclaim some clean VM pages directly 4477 * from the buffer cache. 4478 */ 4479 vm_pageout_deficit += deficit; 4480 recoverbufpages(); 4481 4482 /* 4483 * We may have blocked, the caller will know what to do if the 4484 * page now exists. 4485 */ 4486 if (vm_page_lookup(obj, pg)) { 4487 lwkt_reltoken(&vm_token); 4488 return(NULL); 4489 } 4490 4491 /* 4492 * Allocate and allow use of the interrupt reserve. 4493 * 4494 * If after all that we still can't allocate a VM page we are 4495 * in real trouble, but we slog on anyway hoping that the system 4496 * won't deadlock. 4497 */ 4498 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 4499 VM_ALLOC_INTERRUPT); 4500 if (p) { 4501 if (vm_page_count_severe()) { 4502 ++lowmempgallocs; 4503 vm_wait(hz / 20 + 1); 4504 } 4505 } else { 4506 kprintf("bio_page_alloc: Memory exhausted during bufcache " 4507 "page allocation\n"); 4508 ++lowmempgfails; 4509 vm_wait(hz); 4510 } 4511 lwkt_reltoken(&vm_token); 4512 return(p); 4513 } 4514 4515 /* 4516 * vm_hold_free_pages: 4517 * 4518 * Return pages associated with the buffer back to the VM system. 4519 * 4520 * The range of pages underlying the buffer's address space will 4521 * be unmapped and un-wired. 4522 * 4523 * MPSAFE 4524 */ 4525 void 4526 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4527 { 4528 vm_offset_t pg; 4529 vm_page_t p; 4530 int index, newnpages; 4531 4532 from = round_page(from); 4533 to = round_page(to); 4534 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4535 newnpages = index; 4536 4537 lwkt_gettoken(&vm_token); 4538 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4539 p = bp->b_xio.xio_pages[index]; 4540 if (p && (index < bp->b_xio.xio_npages)) { 4541 if (p->busy) { 4542 kprintf("vm_hold_free_pages: doffset: %lld, " 4543 "loffset: %lld\n", 4544 (long long)bp->b_bio2.bio_offset, 4545 (long long)bp->b_loffset); 4546 } 4547 bp->b_xio.xio_pages[index] = NULL; 4548 pmap_kremove(pg); 4549 vm_page_busy(p); 4550 vm_page_unwire(p, 0); 4551 vm_page_free(p); 4552 } 4553 } 4554 bp->b_xio.xio_npages = newnpages; 4555 lwkt_reltoken(&vm_token); 4556 } 4557 4558 /* 4559 * vmapbuf: 4560 * 4561 * Map a user buffer into KVM via a pbuf. On return the buffer's 4562 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4563 * initialized. 4564 */ 4565 int 4566 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4567 { 4568 caddr_t addr; 4569 vm_offset_t va; 4570 vm_page_t m; 4571 int vmprot; 4572 int error; 4573 int pidx; 4574 int i; 4575 4576 /* 4577 * bp had better have a command and it better be a pbuf. 4578 */ 4579 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4580 KKASSERT(bp->b_flags & B_PAGING); 4581 KKASSERT(bp->b_kvabase); 4582 4583 if (bytes < 0) 4584 return (-1); 4585 4586 /* 4587 * Map the user data into KVM. Mappings have to be page-aligned. 4588 */ 4589 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4590 pidx = 0; 4591 4592 vmprot = VM_PROT_READ; 4593 if (bp->b_cmd == BUF_CMD_READ) 4594 vmprot |= VM_PROT_WRITE; 4595 4596 while (addr < udata + bytes) { 4597 /* 4598 * Do the vm_fault if needed; do the copy-on-write thing 4599 * when reading stuff off device into memory. 4600 * 4601 * vm_fault_page*() returns a held VM page. 4602 */ 4603 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4604 va = trunc_page(va); 4605 4606 m = vm_fault_page_quick(va, vmprot, &error); 4607 if (m == NULL) { 4608 for (i = 0; i < pidx; ++i) { 4609 vm_page_unhold(bp->b_xio.xio_pages[i]); 4610 bp->b_xio.xio_pages[i] = NULL; 4611 } 4612 return(-1); 4613 } 4614 bp->b_xio.xio_pages[pidx] = m; 4615 addr += PAGE_SIZE; 4616 ++pidx; 4617 } 4618 4619 /* 4620 * Map the page array and set the buffer fields to point to 4621 * the mapped data buffer. 4622 */ 4623 if (pidx > btoc(MAXPHYS)) 4624 panic("vmapbuf: mapped more than MAXPHYS"); 4625 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4626 4627 bp->b_xio.xio_npages = pidx; 4628 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4629 bp->b_bcount = bytes; 4630 bp->b_bufsize = bytes; 4631 return(0); 4632 } 4633 4634 /* 4635 * vunmapbuf: 4636 * 4637 * Free the io map PTEs associated with this IO operation. 4638 * We also invalidate the TLB entries and restore the original b_addr. 4639 */ 4640 void 4641 vunmapbuf(struct buf *bp) 4642 { 4643 int pidx; 4644 int npages; 4645 4646 KKASSERT(bp->b_flags & B_PAGING); 4647 4648 npages = bp->b_xio.xio_npages; 4649 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4650 for (pidx = 0; pidx < npages; ++pidx) { 4651 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4652 bp->b_xio.xio_pages[pidx] = NULL; 4653 } 4654 bp->b_xio.xio_npages = 0; 4655 bp->b_data = bp->b_kvabase; 4656 } 4657 4658 /* 4659 * Scan all buffers in the system and issue the callback. 4660 */ 4661 int 4662 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4663 { 4664 int count = 0; 4665 int error; 4666 int n; 4667 4668 for (n = 0; n < nbuf; ++n) { 4669 if ((error = callback(&buf[n], info)) < 0) { 4670 count = error; 4671 break; 4672 } 4673 count += error; 4674 } 4675 return (count); 4676 } 4677 4678 /* 4679 * nestiobuf_iodone: biodone callback for nested buffers and propagate 4680 * completion to the master buffer. 4681 */ 4682 static void 4683 nestiobuf_iodone(struct bio *bio) 4684 { 4685 struct bio *mbio; 4686 struct buf *mbp, *bp; 4687 struct devstat *stats; 4688 int error; 4689 int donebytes; 4690 4691 bp = bio->bio_buf; 4692 mbio = bio->bio_caller_info1.ptr; 4693 stats = bio->bio_caller_info2.ptr; 4694 mbp = mbio->bio_buf; 4695 4696 KKASSERT(bp->b_bcount <= bp->b_bufsize); 4697 KKASSERT(mbp != bp); 4698 4699 error = bp->b_error; 4700 if (bp->b_error == 0 && 4701 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 4702 /* 4703 * Not all got transfered, raise an error. We have no way to 4704 * propagate these conditions to mbp. 4705 */ 4706 error = EIO; 4707 } 4708 4709 donebytes = bp->b_bufsize; 4710 4711 relpbuf(bp, NULL); 4712 4713 nestiobuf_done(mbio, donebytes, error, stats); 4714 } 4715 4716 void 4717 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats) 4718 { 4719 struct buf *mbp; 4720 4721 mbp = mbio->bio_buf; 4722 4723 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0); 4724 4725 /* 4726 * If an error occured, propagate it to the master buffer. 4727 * 4728 * Several biodone()s may wind up running concurrently so 4729 * use an atomic op to adjust b_flags. 4730 */ 4731 if (error) { 4732 mbp->b_error = error; 4733 atomic_set_int(&mbp->b_flags, B_ERROR); 4734 } 4735 4736 /* 4737 * Decrement the operations in progress counter and terminate the 4738 * I/O if this was the last bit. 4739 */ 4740 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4741 mbp->b_resid = 0; 4742 if (stats) 4743 devstat_end_transaction_buf(stats, mbp); 4744 biodone(mbio); 4745 } 4746 } 4747 4748 /* 4749 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent 4750 * the mbio from being biodone()'d while we are still adding sub-bios to 4751 * it. 4752 */ 4753 void 4754 nestiobuf_init(struct bio *bio) 4755 { 4756 bio->bio_driver_info = (void *)1; 4757 } 4758 4759 /* 4760 * The BIOs added to the nestedio have already been started, remove the 4761 * count that placeheld our mbio and biodone() it if the count would 4762 * transition to 0. 4763 */ 4764 void 4765 nestiobuf_start(struct bio *mbio) 4766 { 4767 struct buf *mbp = mbio->bio_buf; 4768 4769 /* 4770 * Decrement the operations in progress counter and terminate the 4771 * I/O if this was the last bit. 4772 */ 4773 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4774 if (mbp->b_flags & B_ERROR) 4775 mbp->b_resid = mbp->b_bcount; 4776 else 4777 mbp->b_resid = 0; 4778 biodone(mbio); 4779 } 4780 } 4781 4782 /* 4783 * Set an intermediate error prior to calling nestiobuf_start() 4784 */ 4785 void 4786 nestiobuf_error(struct bio *mbio, int error) 4787 { 4788 struct buf *mbp = mbio->bio_buf; 4789 4790 if (error) { 4791 mbp->b_error = error; 4792 atomic_set_int(&mbp->b_flags, B_ERROR); 4793 } 4794 } 4795 4796 /* 4797 * nestiobuf_add: setup a "nested" buffer. 4798 * 4799 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 4800 * => 'bp' should be a buffer allocated by getiobuf. 4801 * => 'offset' is a byte offset in the master buffer. 4802 * => 'size' is a size in bytes of this nested buffer. 4803 */ 4804 void 4805 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats) 4806 { 4807 struct buf *mbp = mbio->bio_buf; 4808 struct vnode *vp = mbp->b_vp; 4809 4810 KKASSERT(mbp->b_bcount >= offset + size); 4811 4812 atomic_add_int((int *)&mbio->bio_driver_info, 1); 4813 4814 /* kernel needs to own the lock for it to be released in biodone */ 4815 BUF_KERNPROC(bp); 4816 bp->b_vp = vp; 4817 bp->b_cmd = mbp->b_cmd; 4818 bp->b_bio1.bio_done = nestiobuf_iodone; 4819 bp->b_data = (char *)mbp->b_data + offset; 4820 bp->b_resid = bp->b_bcount = size; 4821 bp->b_bufsize = bp->b_bcount; 4822 4823 bp->b_bio1.bio_track = NULL; 4824 bp->b_bio1.bio_caller_info1.ptr = mbio; 4825 bp->b_bio1.bio_caller_info2.ptr = stats; 4826 } 4827 4828 /* 4829 * print out statistics from the current status of the buffer pool 4830 * this can be toggeled by the system control option debug.syncprt 4831 */ 4832 #ifdef DEBUG 4833 void 4834 vfs_bufstats(void) 4835 { 4836 int i, j, count; 4837 struct buf *bp; 4838 struct bqueues *dp; 4839 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4840 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4841 4842 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4843 count = 0; 4844 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4845 counts[j] = 0; 4846 4847 spin_lock(&bufqspin); 4848 TAILQ_FOREACH(bp, dp, b_freelist) { 4849 counts[bp->b_bufsize/PAGE_SIZE]++; 4850 count++; 4851 } 4852 spin_unlock(&bufqspin); 4853 4854 kprintf("%s: total-%d", bname[i], count); 4855 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4856 if (counts[j] != 0) 4857 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4858 kprintf("\n"); 4859 } 4860 } 4861 #endif 4862 4863 #ifdef DDB 4864 4865 DB_SHOW_COMMAND(buffer, db_show_buffer) 4866 { 4867 /* get args */ 4868 struct buf *bp = (struct buf *)addr; 4869 4870 if (!have_addr) { 4871 db_printf("usage: show buffer <addr>\n"); 4872 return; 4873 } 4874 4875 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4876 db_printf("b_cmd = %d\n", bp->b_cmd); 4877 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4878 "b_resid = %d\n, b_data = %p, " 4879 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4880 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4881 bp->b_data, 4882 (long long)bp->b_bio2.bio_offset, 4883 (long long)(bp->b_bio2.bio_next ? 4884 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4885 if (bp->b_xio.xio_npages) { 4886 int i; 4887 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4888 bp->b_xio.xio_npages); 4889 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4890 vm_page_t m; 4891 m = bp->b_xio.xio_pages[i]; 4892 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4893 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4894 if ((i + 1) < bp->b_xio.xio_npages) 4895 db_printf(","); 4896 } 4897 db_printf("\n"); 4898 } 4899 } 4900 #endif /* DDB */ 4901