1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.35 2005/04/15 19:08:11 dillon Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/proc.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 #include <sys/buf2.h> 58 #include <sys/thread2.h> 59 #include <vm/vm_page2.h> 60 61 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 62 63 struct bio_ops bioops; /* I/O operation notification */ 64 65 struct buf *buf; /* buffer header pool */ 66 struct swqueue bswlist; 67 68 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 69 vm_offset_t to); 70 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 71 vm_offset_t to); 72 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 73 int pageno, vm_page_t m); 74 static void vfs_clean_pages(struct buf * bp); 75 static void vfs_setdirty(struct buf *bp); 76 static void vfs_vmio_release(struct buf *bp); 77 #if 0 78 static void vfs_backgroundwritedone(struct buf *bp); 79 #endif 80 static int flushbufqueues(void); 81 82 static int bd_request; 83 84 static void buf_daemon (void); 85 /* 86 * bogus page -- for I/O to/from partially complete buffers 87 * this is a temporary solution to the problem, but it is not 88 * really that bad. it would be better to split the buffer 89 * for input in the case of buffers partially already in memory, 90 * but the code is intricate enough already. 91 */ 92 vm_page_t bogus_page; 93 int vmiodirenable = TRUE; 94 int runningbufspace; 95 struct lwkt_token buftimetoken; /* Interlock on setting prio and timo */ 96 97 static vm_offset_t bogus_offset; 98 99 static int bufspace, maxbufspace, 100 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 101 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 102 static int needsbuffer; 103 static int lorunningspace, hirunningspace, runningbufreq; 104 static int numdirtybuffers, lodirtybuffers, hidirtybuffers; 105 static int numfreebuffers, lofreebuffers, hifreebuffers; 106 static int getnewbufcalls; 107 static int getnewbufrestarts; 108 109 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, 110 &numdirtybuffers, 0, ""); 111 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, 112 &lodirtybuffers, 0, ""); 113 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, 114 &hidirtybuffers, 0, ""); 115 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, 116 &numfreebuffers, 0, ""); 117 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, 118 &lofreebuffers, 0, ""); 119 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, 120 &hifreebuffers, 0, ""); 121 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, 122 &runningbufspace, 0, ""); 123 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, 124 &lorunningspace, 0, ""); 125 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, 126 &hirunningspace, 0, ""); 127 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, 128 &maxbufspace, 0, ""); 129 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, 130 &hibufspace, 0, ""); 131 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, 132 &lobufspace, 0, ""); 133 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, 134 &bufspace, 0, ""); 135 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, 136 &maxbufmallocspace, 0, ""); 137 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, 138 &bufmallocspace, 0, ""); 139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, 140 &getnewbufcalls, 0, ""); 141 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, 142 &getnewbufrestarts, 0, ""); 143 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, 144 &vmiodirenable, 0, ""); 145 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, 146 &bufdefragcnt, 0, ""); 147 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, 148 &buffreekvacnt, 0, ""); 149 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, 150 &bufreusecnt, 0, ""); 151 152 #if 0 153 /* 154 * Disable background writes for now. There appear to be races in the 155 * flags tests and locking operations as well as races in the completion 156 * code modifying the original bp (origbp) without holding a lock, assuming 157 * splbio protection when there might not be splbio protection. 158 * 159 * XXX disable also because the RB tree can't handle multiple blocks with 160 * the same lblkno. 161 */ 162 static int dobkgrdwrite = 0; 163 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 164 "Do background writes (honoring the BV_BKGRDWRITE flag)?"); 165 #endif 166 167 static int bufhashmask; 168 static int bufhashshift; 169 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 170 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } }; 171 char *buf_wmesg = BUF_WMESG; 172 173 extern int vm_swap_size; 174 175 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 176 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 177 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 178 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 179 180 /* 181 * Buffer hash table code. Note that the logical block scans linearly, which 182 * gives us some L1 cache locality. 183 */ 184 185 static __inline 186 struct bufhashhdr * 187 bufhash(struct vnode *vnp, daddr_t bn) 188 { 189 u_int64_t hashkey64; 190 int hashkey; 191 192 /* 193 * A variation on the Fibonacci hash that Knuth credits to 194 * R. W. Floyd, see Knuth's _Art of Computer Programming, 195 * Volume 3 / Sorting and Searching_ 196 * 197 * We reduce the argument to 32 bits before doing the hash to 198 * avoid the need for a slow 64x64 multiply on 32 bit platforms. 199 * 200 * sizeof(struct vnode) is 168 on i386, so toss some of the lower 201 * bits of the vnode address to reduce the key range, which 202 * improves the distribution of keys across buckets. 203 * 204 * The file system cylinder group blocks are very heavily 205 * used. They are located at invervals of fbg, which is 206 * on the order of 89 to 94 * 2^10, depending on other 207 * filesystem parameters, for a 16k block size. Smaller block 208 * sizes will reduce fpg approximately proportionally. This 209 * will cause the cylinder group index to be hashed using the 210 * lower bits of the hash multiplier, which will not distribute 211 * the keys as uniformly in a classic Fibonacci hash where a 212 * relatively small number of the upper bits of the result 213 * are used. Using 2^16 as a close-enough approximation to 214 * fpg, split the hash multiplier in half, with the upper 16 215 * bits being the inverse of the golden ratio, and the lower 216 * 16 bits being a fraction between 1/3 and 3/7 (closer to 217 * 3/7 in this case), that gives good experimental results. 218 */ 219 hashkey64 = ((u_int64_t)(uintptr_t)vnp >> 3) + (u_int64_t)bn; 220 hashkey = (((u_int32_t)(hashkey64 + (hashkey64 >> 32)) * 0x9E376DB1u) >> 221 bufhashshift) & bufhashmask; 222 return(&bufhashtbl[hashkey]); 223 } 224 225 /* 226 * numdirtywakeup: 227 * 228 * If someone is blocked due to there being too many dirty buffers, 229 * and numdirtybuffers is now reasonable, wake them up. 230 */ 231 232 static __inline void 233 numdirtywakeup(int level) 234 { 235 if (numdirtybuffers <= level) { 236 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 237 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 238 wakeup(&needsbuffer); 239 } 240 } 241 } 242 243 /* 244 * bufspacewakeup: 245 * 246 * Called when buffer space is potentially available for recovery. 247 * getnewbuf() will block on this flag when it is unable to free 248 * sufficient buffer space. Buffer space becomes recoverable when 249 * bp's get placed back in the queues. 250 */ 251 252 static __inline void 253 bufspacewakeup(void) 254 { 255 /* 256 * If someone is waiting for BUF space, wake them up. Even 257 * though we haven't freed the kva space yet, the waiting 258 * process will be able to now. 259 */ 260 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 261 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 262 wakeup(&needsbuffer); 263 } 264 } 265 266 /* 267 * runningbufwakeup() - in-progress I/O accounting. 268 * 269 */ 270 static __inline void 271 runningbufwakeup(struct buf *bp) 272 { 273 if (bp->b_runningbufspace) { 274 runningbufspace -= bp->b_runningbufspace; 275 bp->b_runningbufspace = 0; 276 if (runningbufreq && runningbufspace <= lorunningspace) { 277 runningbufreq = 0; 278 wakeup(&runningbufreq); 279 } 280 } 281 } 282 283 /* 284 * bufcountwakeup: 285 * 286 * Called when a buffer has been added to one of the free queues to 287 * account for the buffer and to wakeup anyone waiting for free buffers. 288 * This typically occurs when large amounts of metadata are being handled 289 * by the buffer cache ( else buffer space runs out first, usually ). 290 */ 291 292 static __inline void 293 bufcountwakeup(void) 294 { 295 ++numfreebuffers; 296 if (needsbuffer) { 297 needsbuffer &= ~VFS_BIO_NEED_ANY; 298 if (numfreebuffers >= hifreebuffers) 299 needsbuffer &= ~VFS_BIO_NEED_FREE; 300 wakeup(&needsbuffer); 301 } 302 } 303 304 /* 305 * waitrunningbufspace() 306 * 307 * runningbufspace is a measure of the amount of I/O currently 308 * running. This routine is used in async-write situations to 309 * prevent creating huge backups of pending writes to a device. 310 * Only asynchronous writes are governed by this function. 311 * 312 * Reads will adjust runningbufspace, but will not block based on it. 313 * The read load has a side effect of reducing the allowed write load. 314 * 315 * This does NOT turn an async write into a sync write. It waits 316 * for earlier writes to complete and generally returns before the 317 * caller's write has reached the device. 318 */ 319 static __inline void 320 waitrunningbufspace(void) 321 { 322 while (runningbufspace > hirunningspace) { 323 int s; 324 325 s = splbio(); /* fix race against interrupt/biodone() */ 326 ++runningbufreq; 327 tsleep(&runningbufreq, 0, "wdrain", 0); 328 splx(s); 329 } 330 } 331 332 /* 333 * vfs_buf_test_cache: 334 * 335 * Called when a buffer is extended. This function clears the B_CACHE 336 * bit if the newly extended portion of the buffer does not contain 337 * valid data. 338 */ 339 static __inline__ 340 void 341 vfs_buf_test_cache(struct buf *bp, 342 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 343 vm_page_t m) 344 { 345 if (bp->b_flags & B_CACHE) { 346 int base = (foff + off) & PAGE_MASK; 347 if (vm_page_is_valid(m, base, size) == 0) 348 bp->b_flags &= ~B_CACHE; 349 } 350 } 351 352 static __inline__ 353 void 354 bd_wakeup(int dirtybuflevel) 355 { 356 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 357 bd_request = 1; 358 wakeup(&bd_request); 359 } 360 } 361 362 /* 363 * bd_speedup - speedup the buffer cache flushing code 364 */ 365 366 static __inline__ 367 void 368 bd_speedup(void) 369 { 370 bd_wakeup(1); 371 } 372 373 /* 374 * Initialize buffer headers and related structures. 375 */ 376 377 caddr_t 378 bufhashinit(caddr_t vaddr) 379 { 380 /* first, make a null hash table */ 381 bufhashshift = 29; 382 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) 383 bufhashshift--; 384 bufhashtbl = (void *)vaddr; 385 vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask; 386 --bufhashmask; 387 return(vaddr); 388 } 389 390 void 391 bufinit(void) 392 { 393 struct buf *bp; 394 int i; 395 396 TAILQ_INIT(&bswlist); 397 LIST_INIT(&invalhash); 398 lwkt_token_init(&buftimetoken); 399 400 for (i = 0; i <= bufhashmask; i++) 401 LIST_INIT(&bufhashtbl[i]); 402 403 /* next, make a null set of free lists */ 404 for (i = 0; i < BUFFER_QUEUES; i++) 405 TAILQ_INIT(&bufqueues[i]); 406 407 /* finally, initialize each buffer header and stick on empty q */ 408 for (i = 0; i < nbuf; i++) { 409 bp = &buf[i]; 410 bzero(bp, sizeof *bp); 411 bp->b_flags = B_INVAL; /* we're just an empty header */ 412 bp->b_dev = NODEV; 413 bp->b_qindex = QUEUE_EMPTY; 414 bp->b_xflags = 0; 415 xio_init(&bp->b_xio); 416 LIST_INIT(&bp->b_dep); 417 BUF_LOCKINIT(bp); 418 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 419 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 420 } 421 422 /* 423 * maxbufspace is the absolute maximum amount of buffer space we are 424 * allowed to reserve in KVM and in real terms. The absolute maximum 425 * is nominally used by buf_daemon. hibufspace is the nominal maximum 426 * used by most other processes. The differential is required to 427 * ensure that buf_daemon is able to run when other processes might 428 * be blocked waiting for buffer space. 429 * 430 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 431 * this may result in KVM fragmentation which is not handled optimally 432 * by the system. 433 */ 434 maxbufspace = nbuf * BKVASIZE; 435 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 436 lobufspace = hibufspace - MAXBSIZE; 437 438 lorunningspace = 512 * 1024; 439 hirunningspace = 1024 * 1024; 440 441 /* 442 * Limit the amount of malloc memory since it is wired permanently into 443 * the kernel space. Even though this is accounted for in the buffer 444 * allocation, we don't want the malloced region to grow uncontrolled. 445 * The malloc scheme improves memory utilization significantly on average 446 * (small) directories. 447 */ 448 maxbufmallocspace = hibufspace / 20; 449 450 /* 451 * Reduce the chance of a deadlock occuring by limiting the number 452 * of delayed-write dirty buffers we allow to stack up. 453 */ 454 hidirtybuffers = nbuf / 4 + 20; 455 numdirtybuffers = 0; 456 /* 457 * To support extreme low-memory systems, make sure hidirtybuffers cannot 458 * eat up all available buffer space. This occurs when our minimum cannot 459 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 460 * BKVASIZE'd (8K) buffers. 461 */ 462 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 463 hidirtybuffers >>= 1; 464 } 465 lodirtybuffers = hidirtybuffers / 2; 466 467 /* 468 * Try to keep the number of free buffers in the specified range, 469 * and give special processes (e.g. like buf_daemon) access to an 470 * emergency reserve. 471 */ 472 lofreebuffers = nbuf / 18 + 5; 473 hifreebuffers = 2 * lofreebuffers; 474 numfreebuffers = nbuf; 475 476 /* 477 * Maximum number of async ops initiated per buf_daemon loop. This is 478 * somewhat of a hack at the moment, we really need to limit ourselves 479 * based on the number of bytes of I/O in-transit that were initiated 480 * from buf_daemon. 481 */ 482 483 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 484 bogus_page = vm_page_alloc(kernel_object, 485 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 486 VM_ALLOC_NORMAL); 487 vmstats.v_wire_count++; 488 489 } 490 491 /* 492 * bfreekva() - free the kva allocation for a buffer. 493 * 494 * Must be called at splbio() or higher as this is the only locking for 495 * buffer_map. 496 * 497 * Since this call frees up buffer space, we call bufspacewakeup(). 498 */ 499 static void 500 bfreekva(struct buf * bp) 501 { 502 int count; 503 504 if (bp->b_kvasize) { 505 ++buffreekvacnt; 506 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 507 vm_map_lock(buffer_map); 508 bufspace -= bp->b_kvasize; 509 vm_map_delete(buffer_map, 510 (vm_offset_t) bp->b_kvabase, 511 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 512 &count 513 ); 514 vm_map_unlock(buffer_map); 515 vm_map_entry_release(count); 516 bp->b_kvasize = 0; 517 bufspacewakeup(); 518 } 519 } 520 521 /* 522 * bremfree: 523 * 524 * Remove the buffer from the appropriate free list. 525 */ 526 void 527 bremfree(struct buf * bp) 528 { 529 int s = splbio(); 530 int old_qindex = bp->b_qindex; 531 532 if (bp->b_qindex != QUEUE_NONE) { 533 KASSERT(BUF_REFCNTNB(bp) == 1, 534 ("bremfree: bp %p not locked",bp)); 535 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 536 bp->b_qindex = QUEUE_NONE; 537 } else { 538 if (BUF_REFCNTNB(bp) <= 1) 539 panic("bremfree: removing a buffer not on a queue"); 540 } 541 542 /* 543 * Fixup numfreebuffers count. If the buffer is invalid or not 544 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 545 * the buffer was free and we must decrement numfreebuffers. 546 */ 547 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 548 switch(old_qindex) { 549 case QUEUE_DIRTY: 550 case QUEUE_CLEAN: 551 case QUEUE_EMPTY: 552 case QUEUE_EMPTYKVA: 553 --numfreebuffers; 554 break; 555 default: 556 break; 557 } 558 } 559 splx(s); 560 } 561 562 563 /* 564 * Get a buffer with the specified data. Look in the cache first. We 565 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 566 * is set, the buffer is valid and we do not have to do anything ( see 567 * getblk() ). 568 */ 569 int 570 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp) 571 { 572 struct buf *bp; 573 574 bp = getblk(vp, blkno, size, 0, 0); 575 *bpp = bp; 576 577 /* if not found in cache, do some I/O */ 578 if ((bp->b_flags & B_CACHE) == 0) { 579 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp)); 580 bp->b_flags |= B_READ; 581 bp->b_flags &= ~(B_ERROR | B_INVAL); 582 vfs_busy_pages(bp, 0); 583 VOP_STRATEGY(vp, bp); 584 return (biowait(bp)); 585 } 586 return (0); 587 } 588 589 /* 590 * Operates like bread, but also starts asynchronous I/O on 591 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 592 * to initiating I/O . If B_CACHE is set, the buffer is valid 593 * and we do not have to do anything. 594 */ 595 int 596 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno, 597 int *rabsize, int cnt, struct buf ** bpp) 598 { 599 struct buf *bp, *rabp; 600 int i; 601 int rv = 0, readwait = 0; 602 603 *bpp = bp = getblk(vp, blkno, size, 0, 0); 604 605 /* if not found in cache, do some I/O */ 606 if ((bp->b_flags & B_CACHE) == 0) { 607 bp->b_flags |= B_READ; 608 bp->b_flags &= ~(B_ERROR | B_INVAL); 609 vfs_busy_pages(bp, 0); 610 VOP_STRATEGY(vp, bp); 611 ++readwait; 612 } 613 614 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 615 if (inmem(vp, *rablkno)) 616 continue; 617 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 618 619 if ((rabp->b_flags & B_CACHE) == 0) { 620 rabp->b_flags |= B_READ | B_ASYNC; 621 rabp->b_flags &= ~(B_ERROR | B_INVAL); 622 vfs_busy_pages(rabp, 0); 623 BUF_KERNPROC(rabp); 624 VOP_STRATEGY(vp, rabp); 625 } else { 626 brelse(rabp); 627 } 628 } 629 630 if (readwait) { 631 rv = biowait(bp); 632 } 633 return (rv); 634 } 635 636 /* 637 * Write, release buffer on completion. (Done by iodone 638 * if async). Do not bother writing anything if the buffer 639 * is invalid. 640 * 641 * Note that we set B_CACHE here, indicating that buffer is 642 * fully valid and thus cacheable. This is true even of NFS 643 * now so we set it generally. This could be set either here 644 * or in biodone() since the I/O is synchronous. We put it 645 * here. 646 */ 647 int 648 bwrite(struct buf * bp) 649 { 650 int oldflags, s; 651 #if 0 652 struct buf *newbp; 653 #endif 654 655 if (bp->b_flags & B_INVAL) { 656 brelse(bp); 657 return (0); 658 } 659 660 oldflags = bp->b_flags; 661 662 if (BUF_REFCNTNB(bp) == 0) 663 panic("bwrite: buffer is not busy???"); 664 s = splbio(); 665 /* 666 * If a background write is already in progress, delay 667 * writing this block if it is asynchronous. Otherwise 668 * wait for the background write to complete. 669 */ 670 if (bp->b_xflags & BX_BKGRDINPROG) { 671 if (bp->b_flags & B_ASYNC) { 672 splx(s); 673 bdwrite(bp); 674 return (0); 675 } 676 bp->b_xflags |= BX_BKGRDWAIT; 677 tsleep(&bp->b_xflags, 0, "biord", 0); 678 if (bp->b_xflags & BX_BKGRDINPROG) 679 panic("bwrite: still writing"); 680 } 681 682 /* Mark the buffer clean */ 683 bundirty(bp); 684 685 #if 0 686 /* 687 * If this buffer is marked for background writing and we 688 * do not have to wait for it, make a copy and write the 689 * copy so as to leave this buffer ready for further use. 690 * 691 * This optimization eats a lot of memory. If we have a page 692 * or buffer shortfull we can't do it. 693 * 694 * XXX DISABLED! This had to be removed to support the RB_TREE 695 * work and, really, this isn't the best place to do this sort 696 * of thing anyway. We really need a device copy-on-write feature. 697 */ 698 if (dobkgrdwrite && 699 (bp->b_xflags & BX_BKGRDWRITE) && 700 (bp->b_flags & B_ASYNC) && 701 !vm_page_count_severe() && 702 !buf_dirty_count_severe()) { 703 if (bp->b_flags & B_CALL) 704 panic("bwrite: need chained iodone"); 705 706 /* get a new block */ 707 newbp = geteblk(bp->b_bufsize); 708 709 /* set it to be identical to the old block */ 710 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 711 newbp->b_lblkno = bp->b_lblkno; 712 newbp->b_blkno = bp->b_blkno; 713 newbp->b_offset = bp->b_offset; 714 newbp->b_iodone = vfs_backgroundwritedone; 715 newbp->b_flags |= B_ASYNC | B_CALL; 716 newbp->b_flags &= ~B_INVAL; 717 bgetvp(bp->b_vp, newbp); 718 719 /* move over the dependencies */ 720 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps) 721 (*bioops.io_movedeps)(bp, newbp); 722 723 /* 724 * Initiate write on the copy, release the original to 725 * the B_LOCKED queue so that it cannot go away until 726 * the background write completes. If not locked it could go 727 * away and then be reconstituted while it was being written. 728 * If the reconstituted buffer were written, we could end up 729 * with two background copies being written at the same time. 730 */ 731 bp->b_xflags |= BX_BKGRDINPROG; 732 bp->b_flags |= B_LOCKED; 733 bqrelse(bp); 734 bp = newbp; 735 } 736 #endif 737 738 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR); 739 bp->b_flags |= B_CACHE; 740 741 bp->b_vp->v_numoutput++; 742 vfs_busy_pages(bp, 1); 743 744 /* 745 * Normal bwrites pipeline writes 746 */ 747 bp->b_runningbufspace = bp->b_bufsize; 748 runningbufspace += bp->b_runningbufspace; 749 750 splx(s); 751 if (oldflags & B_ASYNC) 752 BUF_KERNPROC(bp); 753 VOP_STRATEGY(bp->b_vp, bp); 754 755 if ((oldflags & B_ASYNC) == 0) { 756 int rtval = biowait(bp); 757 brelse(bp); 758 return (rtval); 759 } else if ((oldflags & B_NOWDRAIN) == 0) { 760 /* 761 * don't allow the async write to saturate the I/O 762 * system. Deadlocks can occur only if a device strategy 763 * routine (like in VN) turns around and issues another 764 * high-level write, in which case B_NOWDRAIN is expected 765 * to be set. Otherwise we will not deadlock here because 766 * we are blocking waiting for I/O that is already in-progress 767 * to complete. 768 */ 769 waitrunningbufspace(); 770 } 771 772 return (0); 773 } 774 775 #if 0 776 /* 777 * Complete a background write started from bwrite. 778 */ 779 static void 780 vfs_backgroundwritedone(struct buf *bp) 781 { 782 struct buf *origbp; 783 784 /* 785 * Find the original buffer that we are writing. 786 */ 787 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 788 panic("backgroundwritedone: lost buffer"); 789 /* 790 * Process dependencies then return any unfinished ones. 791 */ 792 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 793 (*bioops.io_complete)(bp); 794 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps) 795 (*bioops.io_movedeps)(bp, origbp); 796 /* 797 * Clear the BX_BKGRDINPROG flag in the original buffer 798 * and awaken it if it is waiting for the write to complete. 799 * If BX_BKGRDINPROG is not set in the original buffer it must 800 * have been released and re-instantiated - which is not legal. 801 */ 802 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2")); 803 origbp->b_xflags &= ~BX_BKGRDINPROG; 804 if (origbp->b_xflags & BX_BKGRDWAIT) { 805 origbp->b_xflags &= ~BX_BKGRDWAIT; 806 wakeup(&origbp->b_xflags); 807 } 808 /* 809 * Clear the B_LOCKED flag and remove it from the locked 810 * queue if it currently resides there. 811 */ 812 origbp->b_flags &= ~B_LOCKED; 813 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 814 bremfree(origbp); 815 bqrelse(origbp); 816 } 817 /* 818 * This buffer is marked B_NOCACHE, so when it is released 819 * by biodone, it will be tossed. We mark it with B_READ 820 * to avoid biodone doing a second vwakeup. 821 */ 822 bp->b_flags |= B_NOCACHE | B_READ; 823 bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE); 824 bp->b_iodone = 0; 825 biodone(bp); 826 } 827 #endif 828 829 /* 830 * Delayed write. (Buffer is marked dirty). Do not bother writing 831 * anything if the buffer is marked invalid. 832 * 833 * Note that since the buffer must be completely valid, we can safely 834 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 835 * biodone() in order to prevent getblk from writing the buffer 836 * out synchronously. 837 */ 838 void 839 bdwrite(struct buf *bp) 840 { 841 if (BUF_REFCNTNB(bp) == 0) 842 panic("bdwrite: buffer is not busy"); 843 844 if (bp->b_flags & B_INVAL) { 845 brelse(bp); 846 return; 847 } 848 bdirty(bp); 849 850 /* 851 * Set B_CACHE, indicating that the buffer is fully valid. This is 852 * true even of NFS now. 853 */ 854 bp->b_flags |= B_CACHE; 855 856 /* 857 * This bmap keeps the system from needing to do the bmap later, 858 * perhaps when the system is attempting to do a sync. Since it 859 * is likely that the indirect block -- or whatever other datastructure 860 * that the filesystem needs is still in memory now, it is a good 861 * thing to do this. Note also, that if the pageout daemon is 862 * requesting a sync -- there might not be enough memory to do 863 * the bmap then... So, this is important to do. 864 */ 865 if (bp->b_lblkno == bp->b_blkno) { 866 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 867 } 868 869 /* 870 * Set the *dirty* buffer range based upon the VM system dirty pages. 871 */ 872 vfs_setdirty(bp); 873 874 /* 875 * We need to do this here to satisfy the vnode_pager and the 876 * pageout daemon, so that it thinks that the pages have been 877 * "cleaned". Note that since the pages are in a delayed write 878 * buffer -- the VFS layer "will" see that the pages get written 879 * out on the next sync, or perhaps the cluster will be completed. 880 */ 881 vfs_clean_pages(bp); 882 bqrelse(bp); 883 884 /* 885 * Wakeup the buffer flushing daemon if we have a lot of dirty 886 * buffers (midpoint between our recovery point and our stall 887 * point). 888 */ 889 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 890 891 /* 892 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 893 * due to the softdep code. 894 */ 895 } 896 897 /* 898 * bdirty: 899 * 900 * Turn buffer into delayed write request. We must clear B_READ and 901 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 902 * itself to properly update it in the dirty/clean lists. We mark it 903 * B_DONE to ensure that any asynchronization of the buffer properly 904 * clears B_DONE ( else a panic will occur later ). 905 * 906 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 907 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 908 * should only be called if the buffer is known-good. 909 * 910 * Since the buffer is not on a queue, we do not update the numfreebuffers 911 * count. 912 * 913 * Must be called at splbio(). 914 * The buffer must be on QUEUE_NONE. 915 */ 916 void 917 bdirty(struct buf *bp) 918 { 919 KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 920 bp->b_flags &= ~(B_READ|B_RELBUF); 921 922 if ((bp->b_flags & B_DELWRI) == 0) { 923 bp->b_flags |= B_DONE | B_DELWRI; 924 reassignbuf(bp, bp->b_vp); 925 ++numdirtybuffers; 926 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 927 } 928 } 929 930 /* 931 * bundirty: 932 * 933 * Clear B_DELWRI for buffer. 934 * 935 * Since the buffer is not on a queue, we do not update the numfreebuffers 936 * count. 937 * 938 * Must be called at splbio(). 939 * 940 * The buffer is typically on QUEUE_NONE but there is one case in 941 * brelse() that calls this function after placing the buffer on 942 * a different queue. 943 */ 944 945 void 946 bundirty(struct buf *bp) 947 { 948 if (bp->b_flags & B_DELWRI) { 949 bp->b_flags &= ~B_DELWRI; 950 reassignbuf(bp, bp->b_vp); 951 --numdirtybuffers; 952 numdirtywakeup(lodirtybuffers); 953 } 954 /* 955 * Since it is now being written, we can clear its deferred write flag. 956 */ 957 bp->b_flags &= ~B_DEFERRED; 958 } 959 960 /* 961 * bawrite: 962 * 963 * Asynchronous write. Start output on a buffer, but do not wait for 964 * it to complete. The buffer is released when the output completes. 965 * 966 * bwrite() ( or the VOP routine anyway ) is responsible for handling 967 * B_INVAL buffers. Not us. 968 */ 969 void 970 bawrite(struct buf * bp) 971 { 972 bp->b_flags |= B_ASYNC; 973 (void) VOP_BWRITE(bp->b_vp, bp); 974 } 975 976 /* 977 * bowrite: 978 * 979 * Ordered write. Start output on a buffer, and flag it so that the 980 * device will write it in the order it was queued. The buffer is 981 * released when the output completes. bwrite() ( or the VOP routine 982 * anyway ) is responsible for handling B_INVAL buffers. 983 */ 984 int 985 bowrite(struct buf * bp) 986 { 987 bp->b_flags |= B_ORDERED | B_ASYNC; 988 return (VOP_BWRITE(bp->b_vp, bp)); 989 } 990 991 /* 992 * bwillwrite: 993 * 994 * Called prior to the locking of any vnodes when we are expecting to 995 * write. We do not want to starve the buffer cache with too many 996 * dirty buffers so we block here. By blocking prior to the locking 997 * of any vnodes we attempt to avoid the situation where a locked vnode 998 * prevents the various system daemons from flushing related buffers. 999 */ 1000 1001 void 1002 bwillwrite(void) 1003 { 1004 if (numdirtybuffers >= hidirtybuffers) { 1005 int s; 1006 1007 s = splbio(); 1008 while (numdirtybuffers >= hidirtybuffers) { 1009 bd_wakeup(1); 1010 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 1011 tsleep(&needsbuffer, 0, "flswai", 0); 1012 } 1013 splx(s); 1014 } 1015 } 1016 1017 /* 1018 * Return true if we have too many dirty buffers. 1019 */ 1020 int 1021 buf_dirty_count_severe(void) 1022 { 1023 return(numdirtybuffers >= hidirtybuffers); 1024 } 1025 1026 /* 1027 * brelse: 1028 * 1029 * Release a busy buffer and, if requested, free its resources. The 1030 * buffer will be stashed in the appropriate bufqueue[] allowing it 1031 * to be accessed later as a cache entity or reused for other purposes. 1032 */ 1033 void 1034 brelse(struct buf * bp) 1035 { 1036 int s; 1037 1038 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1039 1040 s = splbio(); 1041 1042 if (bp->b_flags & B_LOCKED) 1043 bp->b_flags &= ~B_ERROR; 1044 1045 if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) { 1046 /* 1047 * Failed write, redirty. Must clear B_ERROR to prevent 1048 * pages from being scrapped. If B_INVAL is set then 1049 * this case is not run and the next case is run to 1050 * destroy the buffer. B_INVAL can occur if the buffer 1051 * is outside the range supported by the underlying device. 1052 */ 1053 bp->b_flags &= ~B_ERROR; 1054 bdirty(bp); 1055 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) || 1056 (bp->b_bufsize <= 0)) { 1057 /* 1058 * Either a failed I/O or we were asked to free or not 1059 * cache the buffer. 1060 */ 1061 bp->b_flags |= B_INVAL; 1062 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1063 (*bioops.io_deallocate)(bp); 1064 if (bp->b_flags & B_DELWRI) { 1065 --numdirtybuffers; 1066 numdirtywakeup(lodirtybuffers); 1067 } 1068 bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF); 1069 if ((bp->b_flags & B_VMIO) == 0) { 1070 if (bp->b_bufsize) 1071 allocbuf(bp, 0); 1072 if (bp->b_vp) 1073 brelvp(bp); 1074 } 1075 } 1076 1077 /* 1078 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1079 * is called with B_DELWRI set, the underlying pages may wind up 1080 * getting freed causing a previous write (bdwrite()) to get 'lost' 1081 * because pages associated with a B_DELWRI bp are marked clean. 1082 * 1083 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1084 * if B_DELWRI is set. 1085 * 1086 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1087 * on pages to return pages to the VM page queues. 1088 */ 1089 if (bp->b_flags & B_DELWRI) 1090 bp->b_flags &= ~B_RELBUF; 1091 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1092 bp->b_flags |= B_RELBUF; 1093 1094 /* 1095 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1096 * constituted, not even NFS buffers now. Two flags effect this. If 1097 * B_INVAL, the struct buf is invalidated but the VM object is kept 1098 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1099 * 1100 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be 1101 * invalidated. B_ERROR cannot be set for a failed write unless the 1102 * buffer is also B_INVAL because it hits the re-dirtying code above. 1103 * 1104 * Normally we can do this whether a buffer is B_DELWRI or not. If 1105 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1106 * the commit state and we cannot afford to lose the buffer. If the 1107 * buffer has a background write in progress, we need to keep it 1108 * around to prevent it from being reconstituted and starting a second 1109 * background write. 1110 */ 1111 if ((bp->b_flags & B_VMIO) 1112 && !(bp->b_vp->v_tag == VT_NFS && 1113 !vn_isdisk(bp->b_vp, NULL) && 1114 (bp->b_flags & B_DELWRI)) 1115 ) { 1116 1117 int i, j, resid; 1118 vm_page_t m; 1119 off_t foff; 1120 vm_pindex_t poff; 1121 vm_object_t obj; 1122 struct vnode *vp; 1123 1124 vp = bp->b_vp; 1125 1126 /* 1127 * Get the base offset and length of the buffer. Note that 1128 * in the VMIO case if the buffer block size is not 1129 * page-aligned then b_data pointer may not be page-aligned. 1130 * But our b_xio.xio_pages array *IS* page aligned. 1131 * 1132 * block sizes less then DEV_BSIZE (usually 512) are not 1133 * supported due to the page granularity bits (m->valid, 1134 * m->dirty, etc...). 1135 * 1136 * See man buf(9) for more information 1137 */ 1138 1139 resid = bp->b_bufsize; 1140 foff = bp->b_offset; 1141 1142 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1143 m = bp->b_xio.xio_pages[i]; 1144 vm_page_flag_clear(m, PG_ZERO); 1145 /* 1146 * If we hit a bogus page, fixup *all* of them 1147 * now. Note that we left these pages wired 1148 * when we removed them so they had better exist, 1149 * and they cannot be ripped out from under us so 1150 * no splvm() protection is necessary. 1151 */ 1152 if (m == bogus_page) { 1153 VOP_GETVOBJECT(vp, &obj); 1154 poff = OFF_TO_IDX(bp->b_offset); 1155 1156 for (j = i; j < bp->b_xio.xio_npages; j++) { 1157 vm_page_t mtmp; 1158 1159 mtmp = bp->b_xio.xio_pages[j]; 1160 if (mtmp == bogus_page) { 1161 mtmp = vm_page_lookup(obj, poff + j); 1162 if (!mtmp) { 1163 panic("brelse: page missing"); 1164 } 1165 bp->b_xio.xio_pages[j] = mtmp; 1166 } 1167 } 1168 1169 if ((bp->b_flags & B_INVAL) == 0) { 1170 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1171 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1172 } 1173 m = bp->b_xio.xio_pages[i]; 1174 } 1175 1176 /* 1177 * Invalidate the backing store if B_NOCACHE is set 1178 * (e.g. used with vinvalbuf()). If this is NFS 1179 * we impose a requirement that the block size be 1180 * a multiple of PAGE_SIZE and create a temporary 1181 * hack to basically invalidate the whole page. The 1182 * problem is that NFS uses really odd buffer sizes 1183 * especially when tracking piecemeal writes and 1184 * it also vinvalbuf()'s a lot, which would result 1185 * in only partial page validation and invalidation 1186 * here. If the file page is mmap()'d, however, 1187 * all the valid bits get set so after we invalidate 1188 * here we would end up with weird m->valid values 1189 * like 0xfc. nfs_getpages() can't handle this so 1190 * we clear all the valid bits for the NFS case 1191 * instead of just some of them. 1192 * 1193 * The real bug is the VM system having to set m->valid 1194 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1195 * itself is an artifact of the whole 512-byte 1196 * granular mess that exists to support odd block 1197 * sizes and UFS meta-data block sizes (e.g. 6144). 1198 * A complete rewrite is required. 1199 */ 1200 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1201 int poffset = foff & PAGE_MASK; 1202 int presid; 1203 1204 presid = PAGE_SIZE - poffset; 1205 if (bp->b_vp->v_tag == VT_NFS && 1206 bp->b_vp->v_type == VREG) { 1207 ; /* entire page */ 1208 } else if (presid > resid) { 1209 presid = resid; 1210 } 1211 KASSERT(presid >= 0, ("brelse: extra page")); 1212 vm_page_set_invalid(m, poffset, presid); 1213 } 1214 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1215 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1216 } 1217 1218 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1219 vfs_vmio_release(bp); 1220 1221 } else if (bp->b_flags & B_VMIO) { 1222 1223 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1224 vfs_vmio_release(bp); 1225 1226 } 1227 1228 if (bp->b_qindex != QUEUE_NONE) 1229 panic("brelse: free buffer onto another queue???"); 1230 if (BUF_REFCNTNB(bp) > 1) { 1231 /* Temporary panic to verify exclusive locking */ 1232 /* This panic goes away when we allow shared refs */ 1233 panic("brelse: multiple refs"); 1234 /* do not release to free list */ 1235 BUF_UNLOCK(bp); 1236 splx(s); 1237 return; 1238 } 1239 1240 /* enqueue */ 1241 1242 /* buffers with no memory */ 1243 if (bp->b_bufsize == 0) { 1244 bp->b_flags |= B_INVAL; 1245 bp->b_xflags &= ~BX_BKGRDWRITE; 1246 if (bp->b_xflags & BX_BKGRDINPROG) 1247 panic("losing buffer 1"); 1248 if (bp->b_kvasize) { 1249 bp->b_qindex = QUEUE_EMPTYKVA; 1250 } else { 1251 bp->b_qindex = QUEUE_EMPTY; 1252 } 1253 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1254 LIST_REMOVE(bp, b_hash); 1255 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1256 bp->b_dev = NODEV; 1257 /* buffers with junk contents */ 1258 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) { 1259 bp->b_flags |= B_INVAL; 1260 bp->b_xflags &= ~BX_BKGRDWRITE; 1261 if (bp->b_xflags & BX_BKGRDINPROG) 1262 panic("losing buffer 2"); 1263 bp->b_qindex = QUEUE_CLEAN; 1264 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1265 LIST_REMOVE(bp, b_hash); 1266 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1267 bp->b_dev = NODEV; 1268 1269 /* buffers that are locked */ 1270 } else if (bp->b_flags & B_LOCKED) { 1271 bp->b_qindex = QUEUE_LOCKED; 1272 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1273 1274 /* remaining buffers */ 1275 } else { 1276 switch(bp->b_flags & (B_DELWRI|B_AGE)) { 1277 case B_DELWRI | B_AGE: 1278 bp->b_qindex = QUEUE_DIRTY; 1279 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1280 break; 1281 case B_DELWRI: 1282 bp->b_qindex = QUEUE_DIRTY; 1283 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1284 break; 1285 case B_AGE: 1286 bp->b_qindex = QUEUE_CLEAN; 1287 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1288 break; 1289 default: 1290 bp->b_qindex = QUEUE_CLEAN; 1291 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1292 break; 1293 } 1294 } 1295 1296 /* 1297 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1298 * on the correct queue. 1299 */ 1300 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1301 bundirty(bp); 1302 1303 /* 1304 * Fixup numfreebuffers count. The bp is on an appropriate queue 1305 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1306 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1307 * if B_INVAL is set ). 1308 */ 1309 1310 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1311 bufcountwakeup(); 1312 1313 /* 1314 * Something we can maybe free or reuse 1315 */ 1316 if (bp->b_bufsize || bp->b_kvasize) 1317 bufspacewakeup(); 1318 1319 /* unlock */ 1320 BUF_UNLOCK(bp); 1321 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | 1322 B_DIRECT | B_NOWDRAIN); 1323 splx(s); 1324 } 1325 1326 /* 1327 * Release a buffer back to the appropriate queue but do not try to free 1328 * it. The buffer is expected to be used again soon. 1329 * 1330 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1331 * biodone() to requeue an async I/O on completion. It is also used when 1332 * known good buffers need to be requeued but we think we may need the data 1333 * again soon. 1334 * 1335 * XXX we should be able to leave the B_RELBUF hint set on completion. 1336 */ 1337 void 1338 bqrelse(struct buf * bp) 1339 { 1340 int s; 1341 1342 s = splbio(); 1343 1344 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1345 1346 if (bp->b_qindex != QUEUE_NONE) 1347 panic("bqrelse: free buffer onto another queue???"); 1348 if (BUF_REFCNTNB(bp) > 1) { 1349 /* do not release to free list */ 1350 panic("bqrelse: multiple refs"); 1351 BUF_UNLOCK(bp); 1352 splx(s); 1353 return; 1354 } 1355 if (bp->b_flags & B_LOCKED) { 1356 bp->b_flags &= ~B_ERROR; 1357 bp->b_qindex = QUEUE_LOCKED; 1358 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1359 /* buffers with stale but valid contents */ 1360 } else if (bp->b_flags & B_DELWRI) { 1361 bp->b_qindex = QUEUE_DIRTY; 1362 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1363 } else if (vm_page_count_severe()) { 1364 /* 1365 * We are too low on memory, we have to try to free the 1366 * buffer (most importantly: the wired pages making up its 1367 * backing store) *now*. 1368 */ 1369 splx(s); 1370 brelse(bp); 1371 return; 1372 } else { 1373 bp->b_qindex = QUEUE_CLEAN; 1374 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1375 } 1376 1377 if ((bp->b_flags & B_LOCKED) == 0 && 1378 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1379 bufcountwakeup(); 1380 } 1381 1382 /* 1383 * Something we can maybe free or reuse. 1384 */ 1385 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1386 bufspacewakeup(); 1387 1388 /* unlock */ 1389 BUF_UNLOCK(bp); 1390 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1391 splx(s); 1392 } 1393 1394 static void 1395 vfs_vmio_release(struct buf *bp) 1396 { 1397 int i, s; 1398 vm_page_t m; 1399 1400 s = splvm(); 1401 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1402 m = bp->b_xio.xio_pages[i]; 1403 bp->b_xio.xio_pages[i] = NULL; 1404 /* 1405 * In order to keep page LRU ordering consistent, put 1406 * everything on the inactive queue. 1407 */ 1408 vm_page_unwire(m, 0); 1409 /* 1410 * We don't mess with busy pages, it is 1411 * the responsibility of the process that 1412 * busied the pages to deal with them. 1413 */ 1414 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1415 continue; 1416 1417 if (m->wire_count == 0) { 1418 vm_page_flag_clear(m, PG_ZERO); 1419 /* 1420 * Might as well free the page if we can and it has 1421 * no valid data. We also free the page if the 1422 * buffer was used for direct I/O. 1423 */ 1424 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) { 1425 vm_page_busy(m); 1426 vm_page_protect(m, VM_PROT_NONE); 1427 vm_page_free(m); 1428 } else if (bp->b_flags & B_DIRECT) { 1429 vm_page_try_to_free(m); 1430 } else if (vm_page_count_severe()) { 1431 vm_page_try_to_cache(m); 1432 } 1433 } 1434 } 1435 splx(s); 1436 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages); 1437 if (bp->b_bufsize) { 1438 bufspacewakeup(); 1439 bp->b_bufsize = 0; 1440 } 1441 bp->b_xio.xio_npages = 0; 1442 bp->b_flags &= ~B_VMIO; 1443 if (bp->b_vp) 1444 brelvp(bp); 1445 } 1446 1447 /* 1448 * Check to see if a block is currently memory resident. 1449 */ 1450 struct buf * 1451 gbincore(struct vnode * vp, daddr_t blkno) 1452 { 1453 struct buf *bp; 1454 struct bufhashhdr *bh; 1455 1456 bh = bufhash(vp, blkno); 1457 1458 /* Search hash chain */ 1459 LIST_FOREACH(bp, bh, b_hash) { 1460 /* hit */ 1461 if (bp->b_vp == vp && bp->b_lblkno == blkno && 1462 (bp->b_flags & B_INVAL) == 0) { 1463 break; 1464 } 1465 } 1466 return (bp); 1467 } 1468 1469 /* 1470 * vfs_bio_awrite: 1471 * 1472 * Implement clustered async writes for clearing out B_DELWRI buffers. 1473 * This is much better then the old way of writing only one buffer at 1474 * a time. Note that we may not be presented with the buffers in the 1475 * correct order, so we search for the cluster in both directions. 1476 */ 1477 int 1478 vfs_bio_awrite(struct buf * bp) 1479 { 1480 int i; 1481 int j; 1482 daddr_t lblkno = bp->b_lblkno; 1483 struct vnode *vp = bp->b_vp; 1484 int s; 1485 int ncl; 1486 struct buf *bpa; 1487 int nwritten; 1488 int size; 1489 int maxcl; 1490 1491 s = splbio(); 1492 /* 1493 * right now we support clustered writing only to regular files. If 1494 * we find a clusterable block we could be in the middle of a cluster 1495 * rather then at the beginning. 1496 */ 1497 if ((vp->v_type == VREG) && 1498 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1499 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1500 1501 size = vp->v_mount->mnt_stat.f_iosize; 1502 maxcl = MAXPHYS / size; 1503 1504 for (i = 1; i < maxcl; i++) { 1505 if ((bpa = gbincore(vp, lblkno + i)) && 1506 BUF_REFCNT(bpa) == 0 && 1507 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1508 (B_DELWRI | B_CLUSTEROK)) && 1509 (bpa->b_bufsize == size)) { 1510 if ((bpa->b_blkno == bpa->b_lblkno) || 1511 (bpa->b_blkno != 1512 bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1513 break; 1514 } else { 1515 break; 1516 } 1517 } 1518 for (j = 1; i + j <= maxcl && j <= lblkno; j++) { 1519 if ((bpa = gbincore(vp, lblkno - j)) && 1520 BUF_REFCNT(bpa) == 0 && 1521 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1522 (B_DELWRI | B_CLUSTEROK)) && 1523 (bpa->b_bufsize == size)) { 1524 if ((bpa->b_blkno == bpa->b_lblkno) || 1525 (bpa->b_blkno != 1526 bp->b_blkno - ((j * size) >> DEV_BSHIFT))) 1527 break; 1528 } else { 1529 break; 1530 } 1531 } 1532 --j; 1533 ncl = i + j; 1534 /* 1535 * this is a possible cluster write 1536 */ 1537 if (ncl != 1) { 1538 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1539 splx(s); 1540 return nwritten; 1541 } 1542 } 1543 1544 BUF_LOCK(bp, LK_EXCLUSIVE); 1545 bremfree(bp); 1546 bp->b_flags |= B_ASYNC; 1547 1548 splx(s); 1549 /* 1550 * default (old) behavior, writing out only one block 1551 * 1552 * XXX returns b_bufsize instead of b_bcount for nwritten? 1553 */ 1554 nwritten = bp->b_bufsize; 1555 (void) VOP_BWRITE(bp->b_vp, bp); 1556 1557 return nwritten; 1558 } 1559 1560 /* 1561 * getnewbuf: 1562 * 1563 * Find and initialize a new buffer header, freeing up existing buffers 1564 * in the bufqueues as necessary. The new buffer is returned locked. 1565 * 1566 * Important: B_INVAL is not set. If the caller wishes to throw the 1567 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1568 * 1569 * We block if: 1570 * We have insufficient buffer headers 1571 * We have insufficient buffer space 1572 * buffer_map is too fragmented ( space reservation fails ) 1573 * If we have to flush dirty buffers ( but we try to avoid this ) 1574 * 1575 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1576 * Instead we ask the buf daemon to do it for us. We attempt to 1577 * avoid piecemeal wakeups of the pageout daemon. 1578 */ 1579 1580 static struct buf * 1581 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1582 { 1583 struct buf *bp; 1584 struct buf *nbp; 1585 int defrag = 0; 1586 int nqindex; 1587 static int flushingbufs; 1588 1589 /* 1590 * We can't afford to block since we might be holding a vnode lock, 1591 * which may prevent system daemons from running. We deal with 1592 * low-memory situations by proactively returning memory and running 1593 * async I/O rather then sync I/O. 1594 */ 1595 1596 ++getnewbufcalls; 1597 --getnewbufrestarts; 1598 restart: 1599 ++getnewbufrestarts; 1600 1601 /* 1602 * Setup for scan. If we do not have enough free buffers, 1603 * we setup a degenerate case that immediately fails. Note 1604 * that if we are specially marked process, we are allowed to 1605 * dip into our reserves. 1606 * 1607 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1608 * 1609 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1610 * However, there are a number of cases (defragging, reusing, ...) 1611 * where we cannot backup. 1612 */ 1613 nqindex = QUEUE_EMPTYKVA; 1614 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1615 1616 if (nbp == NULL) { 1617 /* 1618 * If no EMPTYKVA buffers and we are either 1619 * defragging or reusing, locate a CLEAN buffer 1620 * to free or reuse. If bufspace useage is low 1621 * skip this step so we can allocate a new buffer. 1622 */ 1623 if (defrag || bufspace >= lobufspace) { 1624 nqindex = QUEUE_CLEAN; 1625 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1626 } 1627 1628 /* 1629 * If we could not find or were not allowed to reuse a 1630 * CLEAN buffer, check to see if it is ok to use an EMPTY 1631 * buffer. We can only use an EMPTY buffer if allocating 1632 * its KVA would not otherwise run us out of buffer space. 1633 */ 1634 if (nbp == NULL && defrag == 0 && 1635 bufspace + maxsize < hibufspace) { 1636 nqindex = QUEUE_EMPTY; 1637 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1638 } 1639 } 1640 1641 /* 1642 * Run scan, possibly freeing data and/or kva mappings on the fly 1643 * depending. 1644 */ 1645 1646 while ((bp = nbp) != NULL) { 1647 int qindex = nqindex; 1648 1649 /* 1650 * Calculate next bp ( we can only use it if we do not block 1651 * or do other fancy things ). 1652 */ 1653 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1654 switch(qindex) { 1655 case QUEUE_EMPTY: 1656 nqindex = QUEUE_EMPTYKVA; 1657 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1658 break; 1659 /* fall through */ 1660 case QUEUE_EMPTYKVA: 1661 nqindex = QUEUE_CLEAN; 1662 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1663 break; 1664 /* fall through */ 1665 case QUEUE_CLEAN: 1666 /* 1667 * nbp is NULL. 1668 */ 1669 break; 1670 } 1671 } 1672 1673 /* 1674 * Sanity Checks 1675 */ 1676 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1677 1678 /* 1679 * Note: we no longer distinguish between VMIO and non-VMIO 1680 * buffers. 1681 */ 1682 1683 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1684 1685 /* 1686 * If we are defragging then we need a buffer with 1687 * b_kvasize != 0. XXX this situation should no longer 1688 * occur, if defrag is non-zero the buffer's b_kvasize 1689 * should also be non-zero at this point. XXX 1690 */ 1691 if (defrag && bp->b_kvasize == 0) { 1692 printf("Warning: defrag empty buffer %p\n", bp); 1693 continue; 1694 } 1695 1696 /* 1697 * Start freeing the bp. This is somewhat involved. nbp 1698 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1699 */ 1700 1701 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1702 panic("getnewbuf: locked buf"); 1703 bremfree(bp); 1704 1705 if (qindex == QUEUE_CLEAN) { 1706 if (bp->b_flags & B_VMIO) { 1707 bp->b_flags &= ~B_ASYNC; 1708 vfs_vmio_release(bp); 1709 } 1710 if (bp->b_vp) 1711 brelvp(bp); 1712 } 1713 1714 /* 1715 * NOTE: nbp is now entirely invalid. We can only restart 1716 * the scan from this point on. 1717 * 1718 * Get the rest of the buffer freed up. b_kva* is still 1719 * valid after this operation. 1720 */ 1721 1722 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1723 (*bioops.io_deallocate)(bp); 1724 if (bp->b_xflags & BX_BKGRDINPROG) 1725 panic("losing buffer 3"); 1726 LIST_REMOVE(bp, b_hash); 1727 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1728 1729 /* 1730 * spl protection not required when scrapping a buffer's 1731 * contents because it is already wired. 1732 */ 1733 if (bp->b_bufsize) 1734 allocbuf(bp, 0); 1735 1736 bp->b_flags = 0; 1737 bp->b_xflags = 0; 1738 bp->b_dev = NODEV; 1739 bp->b_vp = NULL; 1740 bp->b_blkno = bp->b_lblkno = 0; 1741 bp->b_offset = NOOFFSET; 1742 bp->b_iodone = 0; 1743 bp->b_error = 0; 1744 bp->b_resid = 0; 1745 bp->b_bcount = 0; 1746 bp->b_xio.xio_npages = 0; 1747 bp->b_dirtyoff = bp->b_dirtyend = 0; 1748 1749 LIST_INIT(&bp->b_dep); 1750 1751 /* 1752 * If we are defragging then free the buffer. 1753 */ 1754 if (defrag) { 1755 bp->b_flags |= B_INVAL; 1756 bfreekva(bp); 1757 brelse(bp); 1758 defrag = 0; 1759 goto restart; 1760 } 1761 1762 /* 1763 * If we are overcomitted then recover the buffer and its 1764 * KVM space. This occurs in rare situations when multiple 1765 * processes are blocked in getnewbuf() or allocbuf(). 1766 */ 1767 if (bufspace >= hibufspace) 1768 flushingbufs = 1; 1769 if (flushingbufs && bp->b_kvasize != 0) { 1770 bp->b_flags |= B_INVAL; 1771 bfreekva(bp); 1772 brelse(bp); 1773 goto restart; 1774 } 1775 if (bufspace < lobufspace) 1776 flushingbufs = 0; 1777 break; 1778 } 1779 1780 /* 1781 * If we exhausted our list, sleep as appropriate. We may have to 1782 * wakeup various daemons and write out some dirty buffers. 1783 * 1784 * Generally we are sleeping due to insufficient buffer space. 1785 */ 1786 1787 if (bp == NULL) { 1788 int flags; 1789 char *waitmsg; 1790 1791 if (defrag) { 1792 flags = VFS_BIO_NEED_BUFSPACE; 1793 waitmsg = "nbufkv"; 1794 } else if (bufspace >= hibufspace) { 1795 waitmsg = "nbufbs"; 1796 flags = VFS_BIO_NEED_BUFSPACE; 1797 } else { 1798 waitmsg = "newbuf"; 1799 flags = VFS_BIO_NEED_ANY; 1800 } 1801 1802 bd_speedup(); /* heeeelp */ 1803 1804 needsbuffer |= flags; 1805 while (needsbuffer & flags) { 1806 if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo)) 1807 return (NULL); 1808 } 1809 } else { 1810 /* 1811 * We finally have a valid bp. We aren't quite out of the 1812 * woods, we still have to reserve kva space. In order 1813 * to keep fragmentation sane we only allocate kva in 1814 * BKVASIZE chunks. 1815 */ 1816 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1817 1818 if (maxsize != bp->b_kvasize) { 1819 vm_offset_t addr = 0; 1820 int count; 1821 1822 bfreekva(bp); 1823 1824 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1825 vm_map_lock(buffer_map); 1826 1827 if (vm_map_findspace(buffer_map, 1828 vm_map_min(buffer_map), maxsize, 1829 maxsize, &addr)) { 1830 /* 1831 * Uh oh. Buffer map is to fragmented. We 1832 * must defragment the map. 1833 */ 1834 vm_map_unlock(buffer_map); 1835 vm_map_entry_release(count); 1836 ++bufdefragcnt; 1837 defrag = 1; 1838 bp->b_flags |= B_INVAL; 1839 brelse(bp); 1840 goto restart; 1841 } 1842 if (addr) { 1843 vm_map_insert(buffer_map, &count, 1844 NULL, 0, 1845 addr, addr + maxsize, 1846 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1847 1848 bp->b_kvabase = (caddr_t) addr; 1849 bp->b_kvasize = maxsize; 1850 bufspace += bp->b_kvasize; 1851 ++bufreusecnt; 1852 } 1853 vm_map_unlock(buffer_map); 1854 vm_map_entry_release(count); 1855 } 1856 bp->b_data = bp->b_kvabase; 1857 } 1858 return(bp); 1859 } 1860 1861 /* 1862 * buf_daemon: 1863 * 1864 * buffer flushing daemon. Buffers are normally flushed by the 1865 * update daemon but if it cannot keep up this process starts to 1866 * take the load in an attempt to prevent getnewbuf() from blocking. 1867 */ 1868 1869 static struct thread *bufdaemonthread; 1870 1871 static struct kproc_desc buf_kp = { 1872 "bufdaemon", 1873 buf_daemon, 1874 &bufdaemonthread 1875 }; 1876 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 1877 1878 static void 1879 buf_daemon() 1880 { 1881 int s; 1882 1883 /* 1884 * This process needs to be suspended prior to shutdown sync. 1885 */ 1886 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 1887 bufdaemonthread, SHUTDOWN_PRI_LAST); 1888 1889 /* 1890 * This process is allowed to take the buffer cache to the limit 1891 */ 1892 s = splbio(); 1893 1894 for (;;) { 1895 kproc_suspend_loop(); 1896 1897 /* 1898 * Do the flush. Limit the amount of in-transit I/O we 1899 * allow to build up, otherwise we would completely saturate 1900 * the I/O system. Wakeup any waiting processes before we 1901 * normally would so they can run in parallel with our drain. 1902 */ 1903 while (numdirtybuffers > lodirtybuffers) { 1904 if (flushbufqueues() == 0) 1905 break; 1906 waitrunningbufspace(); 1907 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 1908 } 1909 1910 /* 1911 * Only clear bd_request if we have reached our low water 1912 * mark. The buf_daemon normally waits 5 seconds and 1913 * then incrementally flushes any dirty buffers that have 1914 * built up, within reason. 1915 * 1916 * If we were unable to hit our low water mark and couldn't 1917 * find any flushable buffers, we sleep half a second. 1918 * Otherwise we loop immediately. 1919 */ 1920 if (numdirtybuffers <= lodirtybuffers) { 1921 /* 1922 * We reached our low water mark, reset the 1923 * request and sleep until we are needed again. 1924 * The sleep is just so the suspend code works. 1925 */ 1926 bd_request = 0; 1927 tsleep(&bd_request, 0, "psleep", hz); 1928 } else { 1929 /* 1930 * We couldn't find any flushable dirty buffers but 1931 * still have too many dirty buffers, we 1932 * have to sleep and try again. (rare) 1933 */ 1934 tsleep(&bd_request, 0, "qsleep", hz / 2); 1935 } 1936 } 1937 } 1938 1939 /* 1940 * flushbufqueues: 1941 * 1942 * Try to flush a buffer in the dirty queue. We must be careful to 1943 * free up B_INVAL buffers instead of write them, which NFS is 1944 * particularly sensitive to. 1945 */ 1946 1947 static int 1948 flushbufqueues(void) 1949 { 1950 struct buf *bp; 1951 int r = 0; 1952 1953 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1954 1955 while (bp) { 1956 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp)); 1957 if ((bp->b_flags & B_DELWRI) != 0 && 1958 (bp->b_xflags & BX_BKGRDINPROG) == 0) { 1959 if (bp->b_flags & B_INVAL) { 1960 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1961 panic("flushbufqueues: locked buf"); 1962 bremfree(bp); 1963 brelse(bp); 1964 ++r; 1965 break; 1966 } 1967 if (LIST_FIRST(&bp->b_dep) != NULL && 1968 bioops.io_countdeps && 1969 (bp->b_flags & B_DEFERRED) == 0 && 1970 (*bioops.io_countdeps)(bp, 0)) { 1971 TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], 1972 bp, b_freelist); 1973 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], 1974 bp, b_freelist); 1975 bp->b_flags |= B_DEFERRED; 1976 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1977 continue; 1978 } 1979 vfs_bio_awrite(bp); 1980 ++r; 1981 break; 1982 } 1983 bp = TAILQ_NEXT(bp, b_freelist); 1984 } 1985 return (r); 1986 } 1987 1988 /* 1989 * Check to see if a block is currently memory resident. 1990 */ 1991 struct buf * 1992 incore(struct vnode * vp, daddr_t blkno) 1993 { 1994 struct buf *bp; 1995 1996 crit_enter(); 1997 bp = gbincore(vp, blkno); 1998 crit_exit(); 1999 return (bp); 2000 } 2001 2002 /* 2003 * Returns true if no I/O is needed to access the associated VM object. 2004 * This is like incore except it also hunts around in the VM system for 2005 * the data. 2006 * 2007 * Note that we ignore vm_page_free() races from interrupts against our 2008 * lookup, since if the caller is not protected our return value will not 2009 * be any more valid then otherwise once we splx(). 2010 */ 2011 int 2012 inmem(struct vnode * vp, daddr_t blkno) 2013 { 2014 vm_object_t obj; 2015 vm_offset_t toff, tinc, size; 2016 vm_page_t m; 2017 vm_ooffset_t off; 2018 2019 if (incore(vp, blkno)) 2020 return 1; 2021 if (vp->v_mount == NULL) 2022 return 0; 2023 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0) 2024 return 0; 2025 2026 size = PAGE_SIZE; 2027 if (size > vp->v_mount->mnt_stat.f_iosize) 2028 size = vp->v_mount->mnt_stat.f_iosize; 2029 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 2030 2031 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2032 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 2033 if (!m) 2034 return 0; 2035 tinc = size; 2036 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 2037 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 2038 if (vm_page_is_valid(m, 2039 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 2040 return 0; 2041 } 2042 return 1; 2043 } 2044 2045 /* 2046 * vfs_setdirty: 2047 * 2048 * Sets the dirty range for a buffer based on the status of the dirty 2049 * bits in the pages comprising the buffer. 2050 * 2051 * The range is limited to the size of the buffer. 2052 * 2053 * This routine is primarily used by NFS, but is generalized for the 2054 * B_VMIO case. 2055 */ 2056 static void 2057 vfs_setdirty(struct buf *bp) 2058 { 2059 int i; 2060 vm_object_t object; 2061 2062 /* 2063 * Degenerate case - empty buffer 2064 */ 2065 2066 if (bp->b_bufsize == 0) 2067 return; 2068 2069 /* 2070 * We qualify the scan for modified pages on whether the 2071 * object has been flushed yet. The OBJ_WRITEABLE flag 2072 * is not cleared simply by protecting pages off. 2073 */ 2074 2075 if ((bp->b_flags & B_VMIO) == 0) 2076 return; 2077 2078 object = bp->b_xio.xio_pages[0]->object; 2079 2080 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2081 printf("Warning: object %p writeable but not mightbedirty\n", object); 2082 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2083 printf("Warning: object %p mightbedirty but not writeable\n", object); 2084 2085 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2086 vm_offset_t boffset; 2087 vm_offset_t eoffset; 2088 2089 /* 2090 * test the pages to see if they have been modified directly 2091 * by users through the VM system. 2092 */ 2093 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2094 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 2095 vm_page_test_dirty(bp->b_xio.xio_pages[i]); 2096 } 2097 2098 /* 2099 * Calculate the encompassing dirty range, boffset and eoffset, 2100 * (eoffset - boffset) bytes. 2101 */ 2102 2103 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2104 if (bp->b_xio.xio_pages[i]->dirty) 2105 break; 2106 } 2107 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2108 2109 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) { 2110 if (bp->b_xio.xio_pages[i]->dirty) { 2111 break; 2112 } 2113 } 2114 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2115 2116 /* 2117 * Fit it to the buffer. 2118 */ 2119 2120 if (eoffset > bp->b_bcount) 2121 eoffset = bp->b_bcount; 2122 2123 /* 2124 * If we have a good dirty range, merge with the existing 2125 * dirty range. 2126 */ 2127 2128 if (boffset < eoffset) { 2129 if (bp->b_dirtyoff > boffset) 2130 bp->b_dirtyoff = boffset; 2131 if (bp->b_dirtyend < eoffset) 2132 bp->b_dirtyend = eoffset; 2133 } 2134 } 2135 } 2136 2137 /* 2138 * getblk: 2139 * 2140 * Get a block given a specified block and offset into a file/device. 2141 * The buffers B_DONE bit will be cleared on return, making it almost 2142 * ready for an I/O initiation. B_INVAL may or may not be set on 2143 * return. The caller should clear B_INVAL prior to initiating a 2144 * READ. 2145 * 2146 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2147 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2148 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2149 * without doing any of those things the system will likely believe 2150 * the buffer to be valid (especially if it is not B_VMIO), and the 2151 * next getblk() will return the buffer with B_CACHE set. 2152 * 2153 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2154 * an existing buffer. 2155 * 2156 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2157 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2158 * and then cleared based on the backing VM. If the previous buffer is 2159 * non-0-sized but invalid, B_CACHE will be cleared. 2160 * 2161 * If getblk() must create a new buffer, the new buffer is returned with 2162 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2163 * case it is returned with B_INVAL clear and B_CACHE set based on the 2164 * backing VM. 2165 * 2166 * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos 2167 * B_CACHE bit is clear. 2168 * 2169 * What this means, basically, is that the caller should use B_CACHE to 2170 * determine whether the buffer is fully valid or not and should clear 2171 * B_INVAL prior to issuing a read. If the caller intends to validate 2172 * the buffer by loading its data area with something, the caller needs 2173 * to clear B_INVAL. If the caller does this without issuing an I/O, 2174 * the caller should set B_CACHE ( as an optimization ), else the caller 2175 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2176 * a write attempt or if it was a successfull read. If the caller 2177 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2178 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2179 */ 2180 struct buf * 2181 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 2182 { 2183 struct buf *bp; 2184 int s; 2185 struct bufhashhdr *bh; 2186 2187 if (size > MAXBSIZE) 2188 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2189 2190 s = splbio(); 2191 loop: 2192 /* 2193 * Block if we are low on buffers. Certain processes are allowed 2194 * to completely exhaust the buffer cache. 2195 * 2196 * If this check ever becomes a bottleneck it may be better to 2197 * move it into the else, when gbincore() fails. At the moment 2198 * it isn't a problem. 2199 * 2200 * XXX remove, we cannot afford to block anywhere if holding a vnode 2201 * lock in low-memory situation, so take it to the max. 2202 */ 2203 if (numfreebuffers == 0) { 2204 if (!curproc) 2205 return NULL; 2206 needsbuffer |= VFS_BIO_NEED_ANY; 2207 tsleep(&needsbuffer, slpflag, "newbuf", slptimeo); 2208 } 2209 2210 if ((bp = gbincore(vp, blkno))) { 2211 /* 2212 * Buffer is in-core. If the buffer is not busy, it must 2213 * be on a queue. 2214 */ 2215 2216 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2217 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, 2218 "getblk", slpflag, slptimeo) == ENOLCK) 2219 goto loop; 2220 splx(s); 2221 return (struct buf *) NULL; 2222 } 2223 2224 /* 2225 * The buffer is locked. B_CACHE is cleared if the buffer is 2226 * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set 2227 * and for a VMIO buffer B_CACHE is adjusted according to the 2228 * backing VM cache. 2229 */ 2230 if (bp->b_flags & B_INVAL) 2231 bp->b_flags &= ~B_CACHE; 2232 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2233 bp->b_flags |= B_CACHE; 2234 bremfree(bp); 2235 2236 /* 2237 * check for size inconsistancies for non-VMIO case. 2238 */ 2239 2240 if (bp->b_bcount != size) { 2241 if ((bp->b_flags & B_VMIO) == 0 || 2242 (size > bp->b_kvasize)) { 2243 if (bp->b_flags & B_DELWRI) { 2244 bp->b_flags |= B_NOCACHE; 2245 VOP_BWRITE(bp->b_vp, bp); 2246 } else { 2247 if ((bp->b_flags & B_VMIO) && 2248 (LIST_FIRST(&bp->b_dep) == NULL)) { 2249 bp->b_flags |= B_RELBUF; 2250 brelse(bp); 2251 } else { 2252 bp->b_flags |= B_NOCACHE; 2253 VOP_BWRITE(bp->b_vp, bp); 2254 } 2255 } 2256 goto loop; 2257 } 2258 } 2259 2260 /* 2261 * If the size is inconsistant in the VMIO case, we can resize 2262 * the buffer. This might lead to B_CACHE getting set or 2263 * cleared. If the size has not changed, B_CACHE remains 2264 * unchanged from its previous state. 2265 */ 2266 2267 if (bp->b_bcount != size) 2268 allocbuf(bp, size); 2269 2270 KASSERT(bp->b_offset != NOOFFSET, 2271 ("getblk: no buffer offset")); 2272 2273 /* 2274 * A buffer with B_DELWRI set and B_CACHE clear must 2275 * be committed before we can return the buffer in 2276 * order to prevent the caller from issuing a read 2277 * ( due to B_CACHE not being set ) and overwriting 2278 * it. 2279 * 2280 * Most callers, including NFS and FFS, need this to 2281 * operate properly either because they assume they 2282 * can issue a read if B_CACHE is not set, or because 2283 * ( for example ) an uncached B_DELWRI might loop due 2284 * to softupdates re-dirtying the buffer. In the latter 2285 * case, B_CACHE is set after the first write completes, 2286 * preventing further loops. 2287 * 2288 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2289 * above while extending the buffer, we cannot allow the 2290 * buffer to remain with B_CACHE set after the write 2291 * completes or it will represent a corrupt state. To 2292 * deal with this we set B_NOCACHE to scrap the buffer 2293 * after the write. 2294 * 2295 * We might be able to do something fancy, like setting 2296 * B_CACHE in bwrite() except if B_DELWRI is already set, 2297 * so the below call doesn't set B_CACHE, but that gets real 2298 * confusing. This is much easier. 2299 */ 2300 2301 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2302 bp->b_flags |= B_NOCACHE; 2303 VOP_BWRITE(bp->b_vp, bp); 2304 goto loop; 2305 } 2306 2307 splx(s); 2308 bp->b_flags &= ~B_DONE; 2309 } else { 2310 /* 2311 * Buffer is not in-core, create new buffer. The buffer 2312 * returned by getnewbuf() is locked. Note that the returned 2313 * buffer is also considered valid (not marked B_INVAL). 2314 * 2315 * Calculating the offset for the I/O requires figuring out 2316 * the block size. We use DEV_BSIZE for VBLK or VCHR and 2317 * the mount's f_iosize otherwise. If the vnode does not 2318 * have an associated mount we assume that the passed size is 2319 * the block size. 2320 * 2321 * Note that vn_isdisk() cannot be used here since it may 2322 * return a failure for numerous reasons. Note that the 2323 * buffer size may be larger then the block size (the caller 2324 * will use block numbers with the proper multiple). Beware 2325 * of using any v_* fields which are part of unions. In 2326 * particular, in DragonFly the mount point overloading 2327 * mechanism is such that the underlying directory (with a 2328 * non-NULL v_mountedhere) is not a special case. 2329 */ 2330 int bsize, maxsize, vmio; 2331 off_t offset; 2332 2333 if (vp->v_type == VBLK || vp->v_type == VCHR) 2334 bsize = DEV_BSIZE; 2335 else if (vp->v_mount) 2336 bsize = vp->v_mount->mnt_stat.f_iosize; 2337 else 2338 bsize = size; 2339 2340 offset = (off_t)blkno * bsize; 2341 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF); 2342 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2343 maxsize = imax(maxsize, bsize); 2344 2345 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2346 if (slpflag || slptimeo) { 2347 splx(s); 2348 return NULL; 2349 } 2350 goto loop; 2351 } 2352 2353 /* 2354 * This code is used to make sure that a buffer is not 2355 * created while the getnewbuf routine is blocked. 2356 * This can be a problem whether the vnode is locked or not. 2357 * If the buffer is created out from under us, we have to 2358 * throw away the one we just created. There is now window 2359 * race because we are safely running at splbio() from the 2360 * point of the duplicate buffer creation through to here, 2361 * and we've locked the buffer. 2362 */ 2363 if (gbincore(vp, blkno)) { 2364 bp->b_flags |= B_INVAL; 2365 brelse(bp); 2366 goto loop; 2367 } 2368 2369 /* 2370 * Insert the buffer into the hash, so that it can 2371 * be found by incore. 2372 */ 2373 bp->b_blkno = bp->b_lblkno = blkno; 2374 bp->b_offset = offset; 2375 2376 bgetvp(vp, bp); 2377 LIST_REMOVE(bp, b_hash); 2378 bh = bufhash(vp, blkno); 2379 LIST_INSERT_HEAD(bh, bp, b_hash); 2380 2381 /* 2382 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2383 * buffer size starts out as 0, B_CACHE will be set by 2384 * allocbuf() for the VMIO case prior to it testing the 2385 * backing store for validity. 2386 */ 2387 2388 if (vmio) { 2389 bp->b_flags |= B_VMIO; 2390 #if defined(VFS_BIO_DEBUG) 2391 if (vn_canvmio(vp) != TRUE) 2392 printf("getblk: vmioing file type %d???\n", vp->v_type); 2393 #endif 2394 } else { 2395 bp->b_flags &= ~B_VMIO; 2396 } 2397 2398 allocbuf(bp, size); 2399 2400 splx(s); 2401 bp->b_flags &= ~B_DONE; 2402 } 2403 return (bp); 2404 } 2405 2406 /* 2407 * Get an empty, disassociated buffer of given size. The buffer is initially 2408 * set to B_INVAL. 2409 * 2410 * spl protection is not required for the allocbuf() call because races are 2411 * impossible here. 2412 */ 2413 struct buf * 2414 geteblk(int size) 2415 { 2416 struct buf *bp; 2417 int s; 2418 int maxsize; 2419 2420 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2421 2422 s = splbio(); 2423 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0); 2424 splx(s); 2425 allocbuf(bp, size); 2426 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2427 return (bp); 2428 } 2429 2430 2431 /* 2432 * This code constitutes the buffer memory from either anonymous system 2433 * memory (in the case of non-VMIO operations) or from an associated 2434 * VM object (in the case of VMIO operations). This code is able to 2435 * resize a buffer up or down. 2436 * 2437 * Note that this code is tricky, and has many complications to resolve 2438 * deadlock or inconsistant data situations. Tread lightly!!! 2439 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2440 * the caller. Calling this code willy nilly can result in the loss of data. 2441 * 2442 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2443 * B_CACHE for the non-VMIO case. 2444 * 2445 * This routine does not need to be called at splbio() but you must own the 2446 * buffer. 2447 */ 2448 int 2449 allocbuf(struct buf *bp, int size) 2450 { 2451 int newbsize, mbsize; 2452 int i; 2453 2454 if (BUF_REFCNT(bp) == 0) 2455 panic("allocbuf: buffer not busy"); 2456 2457 if (bp->b_kvasize < size) 2458 panic("allocbuf: buffer too small"); 2459 2460 if ((bp->b_flags & B_VMIO) == 0) { 2461 caddr_t origbuf; 2462 int origbufsize; 2463 /* 2464 * Just get anonymous memory from the kernel. Don't 2465 * mess with B_CACHE. 2466 */ 2467 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2468 #if !defined(NO_B_MALLOC) 2469 if (bp->b_flags & B_MALLOC) 2470 newbsize = mbsize; 2471 else 2472 #endif 2473 newbsize = round_page(size); 2474 2475 if (newbsize < bp->b_bufsize) { 2476 #if !defined(NO_B_MALLOC) 2477 /* 2478 * malloced buffers are not shrunk 2479 */ 2480 if (bp->b_flags & B_MALLOC) { 2481 if (newbsize) { 2482 bp->b_bcount = size; 2483 } else { 2484 free(bp->b_data, M_BIOBUF); 2485 if (bp->b_bufsize) { 2486 bufmallocspace -= bp->b_bufsize; 2487 bufspacewakeup(); 2488 bp->b_bufsize = 0; 2489 } 2490 bp->b_data = bp->b_kvabase; 2491 bp->b_bcount = 0; 2492 bp->b_flags &= ~B_MALLOC; 2493 } 2494 return 1; 2495 } 2496 #endif 2497 vm_hold_free_pages( 2498 bp, 2499 (vm_offset_t) bp->b_data + newbsize, 2500 (vm_offset_t) bp->b_data + bp->b_bufsize); 2501 } else if (newbsize > bp->b_bufsize) { 2502 #if !defined(NO_B_MALLOC) 2503 /* 2504 * We only use malloced memory on the first allocation. 2505 * and revert to page-allocated memory when the buffer 2506 * grows. 2507 */ 2508 if ( (bufmallocspace < maxbufmallocspace) && 2509 (bp->b_bufsize == 0) && 2510 (mbsize <= PAGE_SIZE/2)) { 2511 2512 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2513 bp->b_bufsize = mbsize; 2514 bp->b_bcount = size; 2515 bp->b_flags |= B_MALLOC; 2516 bufmallocspace += mbsize; 2517 return 1; 2518 } 2519 #endif 2520 origbuf = NULL; 2521 origbufsize = 0; 2522 #if !defined(NO_B_MALLOC) 2523 /* 2524 * If the buffer is growing on its other-than-first allocation, 2525 * then we revert to the page-allocation scheme. 2526 */ 2527 if (bp->b_flags & B_MALLOC) { 2528 origbuf = bp->b_data; 2529 origbufsize = bp->b_bufsize; 2530 bp->b_data = bp->b_kvabase; 2531 if (bp->b_bufsize) { 2532 bufmallocspace -= bp->b_bufsize; 2533 bufspacewakeup(); 2534 bp->b_bufsize = 0; 2535 } 2536 bp->b_flags &= ~B_MALLOC; 2537 newbsize = round_page(newbsize); 2538 } 2539 #endif 2540 vm_hold_load_pages( 2541 bp, 2542 (vm_offset_t) bp->b_data + bp->b_bufsize, 2543 (vm_offset_t) bp->b_data + newbsize); 2544 #if !defined(NO_B_MALLOC) 2545 if (origbuf) { 2546 bcopy(origbuf, bp->b_data, origbufsize); 2547 free(origbuf, M_BIOBUF); 2548 } 2549 #endif 2550 } 2551 } else { 2552 vm_page_t m; 2553 int desiredpages; 2554 2555 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2556 desiredpages = (size == 0) ? 0 : 2557 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2558 2559 #if !defined(NO_B_MALLOC) 2560 if (bp->b_flags & B_MALLOC) 2561 panic("allocbuf: VMIO buffer can't be malloced"); 2562 #endif 2563 /* 2564 * Set B_CACHE initially if buffer is 0 length or will become 2565 * 0-length. 2566 */ 2567 if (size == 0 || bp->b_bufsize == 0) 2568 bp->b_flags |= B_CACHE; 2569 2570 if (newbsize < bp->b_bufsize) { 2571 /* 2572 * DEV_BSIZE aligned new buffer size is less then the 2573 * DEV_BSIZE aligned existing buffer size. Figure out 2574 * if we have to remove any pages. 2575 */ 2576 if (desiredpages < bp->b_xio.xio_npages) { 2577 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 2578 /* 2579 * the page is not freed here -- it 2580 * is the responsibility of 2581 * vnode_pager_setsize 2582 */ 2583 m = bp->b_xio.xio_pages[i]; 2584 KASSERT(m != bogus_page, 2585 ("allocbuf: bogus page found")); 2586 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2587 ; 2588 2589 bp->b_xio.xio_pages[i] = NULL; 2590 vm_page_unwire(m, 0); 2591 } 2592 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2593 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 2594 bp->b_xio.xio_npages = desiredpages; 2595 } 2596 } else if (size > bp->b_bcount) { 2597 /* 2598 * We are growing the buffer, possibly in a 2599 * byte-granular fashion. 2600 */ 2601 struct vnode *vp; 2602 vm_object_t obj; 2603 vm_offset_t toff; 2604 vm_offset_t tinc; 2605 2606 /* 2607 * Step 1, bring in the VM pages from the object, 2608 * allocating them if necessary. We must clear 2609 * B_CACHE if these pages are not valid for the 2610 * range covered by the buffer. 2611 * 2612 * spl protection is required to protect against 2613 * interrupts unbusying and freeing pages between 2614 * our vm_page_lookup() and our busycheck/wiring 2615 * call. 2616 */ 2617 vp = bp->b_vp; 2618 VOP_GETVOBJECT(vp, &obj); 2619 2620 crit_enter(); 2621 while (bp->b_xio.xio_npages < desiredpages) { 2622 vm_page_t m; 2623 vm_pindex_t pi; 2624 2625 pi = OFF_TO_IDX(bp->b_offset) + bp->b_xio.xio_npages; 2626 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2627 /* 2628 * note: must allocate system pages 2629 * since blocking here could intefere 2630 * with paging I/O, no matter which 2631 * process we are. 2632 */ 2633 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 2634 if (m == NULL) { 2635 vm_wait(); 2636 vm_pageout_deficit += desiredpages - 2637 bp->b_xio.xio_npages; 2638 } else { 2639 vm_page_wire(m); 2640 vm_page_wakeup(m); 2641 bp->b_flags &= ~B_CACHE; 2642 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 2643 ++bp->b_xio.xio_npages; 2644 } 2645 continue; 2646 } 2647 2648 /* 2649 * We found a page. If we have to sleep on it, 2650 * retry because it might have gotten freed out 2651 * from under us. 2652 * 2653 * We can only test PG_BUSY here. Blocking on 2654 * m->busy might lead to a deadlock: 2655 * 2656 * vm_fault->getpages->cluster_read->allocbuf 2657 * 2658 */ 2659 2660 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2661 continue; 2662 2663 /* 2664 * We have a good page. Should we wakeup the 2665 * page daemon? 2666 */ 2667 if ((curthread != pagethread) && 2668 ((m->queue - m->pc) == PQ_CACHE) && 2669 ((vmstats.v_free_count + vmstats.v_cache_count) < 2670 (vmstats.v_free_min + vmstats.v_cache_min))) { 2671 pagedaemon_wakeup(); 2672 } 2673 vm_page_flag_clear(m, PG_ZERO); 2674 vm_page_wire(m); 2675 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 2676 ++bp->b_xio.xio_npages; 2677 } 2678 crit_exit(); 2679 2680 /* 2681 * Step 2. We've loaded the pages into the buffer, 2682 * we have to figure out if we can still have B_CACHE 2683 * set. Note that B_CACHE is set according to the 2684 * byte-granular range ( bcount and size ), new the 2685 * aligned range ( newbsize ). 2686 * 2687 * The VM test is against m->valid, which is DEV_BSIZE 2688 * aligned. Needless to say, the validity of the data 2689 * needs to also be DEV_BSIZE aligned. Note that this 2690 * fails with NFS if the server or some other client 2691 * extends the file's EOF. If our buffer is resized, 2692 * B_CACHE may remain set! XXX 2693 */ 2694 2695 toff = bp->b_bcount; 2696 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2697 2698 while ((bp->b_flags & B_CACHE) && toff < size) { 2699 vm_pindex_t pi; 2700 2701 if (tinc > (size - toff)) 2702 tinc = size - toff; 2703 2704 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2705 PAGE_SHIFT; 2706 2707 vfs_buf_test_cache( 2708 bp, 2709 bp->b_offset, 2710 toff, 2711 tinc, 2712 bp->b_xio.xio_pages[pi] 2713 ); 2714 toff += tinc; 2715 tinc = PAGE_SIZE; 2716 } 2717 2718 /* 2719 * Step 3, fixup the KVM pmap. Remember that 2720 * bp->b_data is relative to bp->b_offset, but 2721 * bp->b_offset may be offset into the first page. 2722 */ 2723 2724 bp->b_data = (caddr_t) 2725 trunc_page((vm_offset_t)bp->b_data); 2726 pmap_qenter( 2727 (vm_offset_t)bp->b_data, 2728 bp->b_xio.xio_pages, 2729 bp->b_xio.xio_npages 2730 ); 2731 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2732 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2733 } 2734 } 2735 if (newbsize < bp->b_bufsize) 2736 bufspacewakeup(); 2737 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2738 bp->b_bcount = size; /* requested buffer size */ 2739 return 1; 2740 } 2741 2742 /* 2743 * biowait: 2744 * 2745 * Wait for buffer I/O completion, returning error status. The buffer 2746 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR 2747 * error and cleared. 2748 */ 2749 int 2750 biowait(struct buf * bp) 2751 { 2752 int s; 2753 2754 s = splbio(); 2755 while ((bp->b_flags & B_DONE) == 0) { 2756 #if defined(NO_SCHEDULE_MODS) 2757 tsleep(bp, 0, "biowait", 0); 2758 #else 2759 if (bp->b_flags & B_READ) 2760 tsleep(bp, 0, "biord", 0); 2761 else 2762 tsleep(bp, 0, "biowr", 0); 2763 #endif 2764 } 2765 splx(s); 2766 if (bp->b_flags & B_EINTR) { 2767 bp->b_flags &= ~B_EINTR; 2768 return (EINTR); 2769 } 2770 if (bp->b_flags & B_ERROR) { 2771 return (bp->b_error ? bp->b_error : EIO); 2772 } else { 2773 return (0); 2774 } 2775 } 2776 2777 /* 2778 * biodone: 2779 * 2780 * Finish I/O on a buffer, optionally calling a completion function. 2781 * This is usually called from an interrupt so process blocking is 2782 * not allowed. 2783 * 2784 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2785 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2786 * assuming B_INVAL is clear. 2787 * 2788 * For the VMIO case, we set B_CACHE if the op was a read and no 2789 * read error occured, or if the op was a write. B_CACHE is never 2790 * set if the buffer is invalid or otherwise uncacheable. 2791 * 2792 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2793 * initiator to leave B_INVAL set to brelse the buffer out of existance 2794 * in the biodone routine. 2795 * 2796 * b_dev is required to be reinitialized prior to the top level strategy 2797 * call in a device stack. To avoid improper reuse, biodone() sets 2798 * b_dev to NODEV. 2799 */ 2800 void 2801 biodone(struct buf *bp) 2802 { 2803 int s, error; 2804 2805 s = splbio(); 2806 2807 KASSERT(BUF_REFCNTNB(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 2808 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 2809 2810 bp->b_flags |= B_DONE; 2811 bp->b_dev = NODEV; 2812 runningbufwakeup(bp); 2813 2814 if (bp->b_flags & B_FREEBUF) { 2815 brelse(bp); 2816 splx(s); 2817 return; 2818 } 2819 2820 if ((bp->b_flags & B_READ) == 0) { 2821 vwakeup(bp); 2822 } 2823 2824 /* call optional completion function if requested */ 2825 if (bp->b_flags & B_CALL) { 2826 bp->b_flags &= ~B_CALL; 2827 (*bp->b_iodone) (bp); 2828 splx(s); 2829 return; 2830 } 2831 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 2832 (*bioops.io_complete)(bp); 2833 2834 if (bp->b_flags & B_VMIO) { 2835 int i; 2836 vm_ooffset_t foff; 2837 vm_page_t m; 2838 vm_object_t obj; 2839 int iosize; 2840 struct vnode *vp = bp->b_vp; 2841 2842 error = VOP_GETVOBJECT(vp, &obj); 2843 2844 #if defined(VFS_BIO_DEBUG) 2845 if (vp->v_holdcnt == 0) { 2846 panic("biodone: zero vnode hold count"); 2847 } 2848 2849 if (error) { 2850 panic("biodone: missing VM object"); 2851 } 2852 2853 if ((vp->v_flag & VOBJBUF) == 0) { 2854 panic("biodone: vnode is not setup for merged cache"); 2855 } 2856 #endif 2857 2858 foff = bp->b_offset; 2859 KASSERT(bp->b_offset != NOOFFSET, 2860 ("biodone: no buffer offset")); 2861 2862 if (error) { 2863 panic("biodone: no object"); 2864 } 2865 #if defined(VFS_BIO_DEBUG) 2866 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 2867 printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 2868 obj->paging_in_progress, bp->b_xio.xio_npages); 2869 } 2870 #endif 2871 2872 /* 2873 * Set B_CACHE if the op was a normal read and no error 2874 * occured. B_CACHE is set for writes in the b*write() 2875 * routines. 2876 */ 2877 iosize = bp->b_bcount - bp->b_resid; 2878 if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) { 2879 bp->b_flags |= B_CACHE; 2880 } 2881 2882 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2883 int bogusflag = 0; 2884 int resid; 2885 2886 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2887 if (resid > iosize) 2888 resid = iosize; 2889 2890 /* 2891 * cleanup bogus pages, restoring the originals. Since 2892 * the originals should still be wired, we don't have 2893 * to worry about interrupt/freeing races destroying 2894 * the VM object association. 2895 */ 2896 m = bp->b_xio.xio_pages[i]; 2897 if (m == bogus_page) { 2898 bogusflag = 1; 2899 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2900 if (m == NULL) 2901 panic("biodone: page disappeared"); 2902 bp->b_xio.xio_pages[i] = m; 2903 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 2904 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 2905 } 2906 #if defined(VFS_BIO_DEBUG) 2907 if (OFF_TO_IDX(foff) != m->pindex) { 2908 printf( 2909 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 2910 (unsigned long)foff, m->pindex); 2911 } 2912 #endif 2913 2914 /* 2915 * In the write case, the valid and clean bits are 2916 * already changed correctly ( see bdwrite() ), so we 2917 * only need to do this here in the read case. 2918 */ 2919 if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) { 2920 vfs_page_set_valid(bp, foff, i, m); 2921 } 2922 vm_page_flag_clear(m, PG_ZERO); 2923 2924 /* 2925 * when debugging new filesystems or buffer I/O methods, this 2926 * is the most common error that pops up. if you see this, you 2927 * have not set the page busy flag correctly!!! 2928 */ 2929 if (m->busy == 0) { 2930 printf("biodone: page busy < 0, " 2931 "pindex: %d, foff: 0x(%x,%x), " 2932 "resid: %d, index: %d\n", 2933 (int) m->pindex, (int)(foff >> 32), 2934 (int) foff & 0xffffffff, resid, i); 2935 if (!vn_isdisk(vp, NULL)) 2936 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n", 2937 bp->b_vp->v_mount->mnt_stat.f_iosize, 2938 (int) bp->b_lblkno, 2939 bp->b_flags, bp->b_xio.xio_npages); 2940 else 2941 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n", 2942 (int) bp->b_lblkno, 2943 bp->b_flags, bp->b_xio.xio_npages); 2944 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 2945 m->valid, m->dirty, m->wire_count); 2946 panic("biodone: page busy < 0"); 2947 } 2948 vm_page_io_finish(m); 2949 vm_object_pip_subtract(obj, 1); 2950 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2951 iosize -= resid; 2952 } 2953 if (obj) 2954 vm_object_pip_wakeupn(obj, 0); 2955 } 2956 2957 /* 2958 * For asynchronous completions, release the buffer now. The brelse 2959 * will do a wakeup there if necessary - so no need to do a wakeup 2960 * here in the async case. The sync case always needs to do a wakeup. 2961 */ 2962 2963 if (bp->b_flags & B_ASYNC) { 2964 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0) 2965 brelse(bp); 2966 else 2967 bqrelse(bp); 2968 } else { 2969 wakeup(bp); 2970 } 2971 splx(s); 2972 } 2973 2974 /* 2975 * This routine is called in lieu of iodone in the case of 2976 * incomplete I/O. This keeps the busy status for pages 2977 * consistant. 2978 */ 2979 void 2980 vfs_unbusy_pages(struct buf *bp) 2981 { 2982 int i; 2983 2984 runningbufwakeup(bp); 2985 if (bp->b_flags & B_VMIO) { 2986 struct vnode *vp = bp->b_vp; 2987 vm_object_t obj; 2988 2989 VOP_GETVOBJECT(vp, &obj); 2990 2991 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2992 vm_page_t m = bp->b_xio.xio_pages[i]; 2993 2994 /* 2995 * When restoring bogus changes the original pages 2996 * should still be wired, so we are in no danger of 2997 * losing the object association and do not need 2998 * spl protection particularly. 2999 */ 3000 if (m == bogus_page) { 3001 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 3002 if (!m) { 3003 panic("vfs_unbusy_pages: page missing"); 3004 } 3005 bp->b_xio.xio_pages[i] = m; 3006 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3007 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3008 } 3009 vm_object_pip_subtract(obj, 1); 3010 vm_page_flag_clear(m, PG_ZERO); 3011 vm_page_io_finish(m); 3012 } 3013 vm_object_pip_wakeupn(obj, 0); 3014 } 3015 } 3016 3017 /* 3018 * vfs_page_set_valid: 3019 * 3020 * Set the valid bits in a page based on the supplied offset. The 3021 * range is restricted to the buffer's size. 3022 * 3023 * This routine is typically called after a read completes. 3024 */ 3025 static void 3026 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3027 { 3028 vm_ooffset_t soff, eoff; 3029 3030 /* 3031 * Start and end offsets in buffer. eoff - soff may not cross a 3032 * page boundry or cross the end of the buffer. The end of the 3033 * buffer, in this case, is our file EOF, not the allocation size 3034 * of the buffer. 3035 */ 3036 soff = off; 3037 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3038 if (eoff > bp->b_offset + bp->b_bcount) 3039 eoff = bp->b_offset + bp->b_bcount; 3040 3041 /* 3042 * Set valid range. This is typically the entire buffer and thus the 3043 * entire page. 3044 */ 3045 if (eoff > soff) { 3046 vm_page_set_validclean( 3047 m, 3048 (vm_offset_t) (soff & PAGE_MASK), 3049 (vm_offset_t) (eoff - soff) 3050 ); 3051 } 3052 } 3053 3054 /* 3055 * This routine is called before a device strategy routine. 3056 * It is used to tell the VM system that paging I/O is in 3057 * progress, and treat the pages associated with the buffer 3058 * almost as being PG_BUSY. Also the object paging_in_progress 3059 * flag is handled to make sure that the object doesn't become 3060 * inconsistant. 3061 * 3062 * Since I/O has not been initiated yet, certain buffer flags 3063 * such as B_ERROR or B_INVAL may be in an inconsistant state 3064 * and should be ignored. 3065 */ 3066 void 3067 vfs_busy_pages(struct buf *bp, int clear_modify) 3068 { 3069 int i, bogus; 3070 3071 if (bp->b_flags & B_VMIO) { 3072 struct vnode *vp = bp->b_vp; 3073 vm_object_t obj; 3074 vm_ooffset_t foff; 3075 3076 VOP_GETVOBJECT(vp, &obj); 3077 foff = bp->b_offset; 3078 KASSERT(bp->b_offset != NOOFFSET, 3079 ("vfs_busy_pages: no buffer offset")); 3080 vfs_setdirty(bp); 3081 3082 retry: 3083 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3084 vm_page_t m = bp->b_xio.xio_pages[i]; 3085 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3086 goto retry; 3087 } 3088 3089 bogus = 0; 3090 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3091 vm_page_t m = bp->b_xio.xio_pages[i]; 3092 3093 vm_page_flag_clear(m, PG_ZERO); 3094 if ((bp->b_flags & B_CLUSTER) == 0) { 3095 vm_object_pip_add(obj, 1); 3096 vm_page_io_start(m); 3097 } 3098 3099 /* 3100 * When readying a buffer for a read ( i.e 3101 * clear_modify == 0 ), it is important to do 3102 * bogus_page replacement for valid pages in 3103 * partially instantiated buffers. Partially 3104 * instantiated buffers can, in turn, occur when 3105 * reconstituting a buffer from its VM backing store 3106 * base. We only have to do this if B_CACHE is 3107 * clear ( which causes the I/O to occur in the 3108 * first place ). The replacement prevents the read 3109 * I/O from overwriting potentially dirty VM-backed 3110 * pages. XXX bogus page replacement is, uh, bogus. 3111 * It may not work properly with small-block devices. 3112 * We need to find a better way. 3113 */ 3114 3115 vm_page_protect(m, VM_PROT_NONE); 3116 if (clear_modify) 3117 vfs_page_set_valid(bp, foff, i, m); 3118 else if (m->valid == VM_PAGE_BITS_ALL && 3119 (bp->b_flags & B_CACHE) == 0) { 3120 bp->b_xio.xio_pages[i] = bogus_page; 3121 bogus++; 3122 } 3123 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3124 } 3125 if (bogus) 3126 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3127 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3128 } 3129 3130 /* 3131 * This is the easiest place to put the process accounting for the I/O 3132 * for now. 3133 */ 3134 { 3135 struct proc *p; 3136 3137 if ((p = curthread->td_proc) != NULL) { 3138 if (bp->b_flags & B_READ) 3139 p->p_stats->p_ru.ru_inblock++; 3140 else 3141 p->p_stats->p_ru.ru_oublock++; 3142 } 3143 } 3144 } 3145 3146 /* 3147 * Tell the VM system that the pages associated with this buffer 3148 * are clean. This is used for delayed writes where the data is 3149 * going to go to disk eventually without additional VM intevention. 3150 * 3151 * Note that while we only really need to clean through to b_bcount, we 3152 * just go ahead and clean through to b_bufsize. 3153 */ 3154 static void 3155 vfs_clean_pages(struct buf *bp) 3156 { 3157 int i; 3158 3159 if (bp->b_flags & B_VMIO) { 3160 vm_ooffset_t foff; 3161 3162 foff = bp->b_offset; 3163 KASSERT(bp->b_offset != NOOFFSET, 3164 ("vfs_clean_pages: no buffer offset")); 3165 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3166 vm_page_t m = bp->b_xio.xio_pages[i]; 3167 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3168 vm_ooffset_t eoff = noff; 3169 3170 if (eoff > bp->b_offset + bp->b_bufsize) 3171 eoff = bp->b_offset + bp->b_bufsize; 3172 vfs_page_set_valid(bp, foff, i, m); 3173 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3174 foff = noff; 3175 } 3176 } 3177 } 3178 3179 /* 3180 * vfs_bio_set_validclean: 3181 * 3182 * Set the range within the buffer to valid and clean. The range is 3183 * relative to the beginning of the buffer, b_offset. Note that b_offset 3184 * itself may be offset from the beginning of the first page. 3185 */ 3186 3187 void 3188 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3189 { 3190 if (bp->b_flags & B_VMIO) { 3191 int i; 3192 int n; 3193 3194 /* 3195 * Fixup base to be relative to beginning of first page. 3196 * Set initial n to be the maximum number of bytes in the 3197 * first page that can be validated. 3198 */ 3199 3200 base += (bp->b_offset & PAGE_MASK); 3201 n = PAGE_SIZE - (base & PAGE_MASK); 3202 3203 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) { 3204 vm_page_t m = bp->b_xio.xio_pages[i]; 3205 3206 if (n > size) 3207 n = size; 3208 3209 vm_page_set_validclean(m, base & PAGE_MASK, n); 3210 base += n; 3211 size -= n; 3212 n = PAGE_SIZE; 3213 } 3214 } 3215 } 3216 3217 /* 3218 * vfs_bio_clrbuf: 3219 * 3220 * clear a buffer. This routine essentially fakes an I/O, so we need 3221 * to clear B_ERROR and B_INVAL. 3222 * 3223 * Note that while we only theoretically need to clear through b_bcount, 3224 * we go ahead and clear through b_bufsize. 3225 */ 3226 3227 void 3228 vfs_bio_clrbuf(struct buf *bp) 3229 { 3230 int i, mask = 0; 3231 caddr_t sa, ea; 3232 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3233 bp->b_flags &= ~(B_INVAL|B_ERROR); 3234 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3235 (bp->b_offset & PAGE_MASK) == 0) { 3236 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3237 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 3238 bp->b_resid = 0; 3239 return; 3240 } 3241 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 3242 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 3243 bzero(bp->b_data, bp->b_bufsize); 3244 bp->b_xio.xio_pages[0]->valid |= mask; 3245 bp->b_resid = 0; 3246 return; 3247 } 3248 } 3249 ea = sa = bp->b_data; 3250 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 3251 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3252 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3253 ea = (caddr_t)(vm_offset_t)ulmin( 3254 (u_long)(vm_offset_t)ea, 3255 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3256 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3257 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 3258 continue; 3259 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 3260 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 3261 bzero(sa, ea - sa); 3262 } 3263 } else { 3264 for (; sa < ea; sa += DEV_BSIZE, j++) { 3265 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 3266 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 3267 bzero(sa, DEV_BSIZE); 3268 } 3269 } 3270 bp->b_xio.xio_pages[i]->valid |= mask; 3271 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 3272 } 3273 bp->b_resid = 0; 3274 } else { 3275 clrbuf(bp); 3276 } 3277 } 3278 3279 /* 3280 * vm_hold_load_pages and vm_hold_unload pages get pages into 3281 * a buffers address space. The pages are anonymous and are 3282 * not associated with a file object. 3283 */ 3284 void 3285 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 3286 { 3287 vm_offset_t pg; 3288 vm_page_t p; 3289 int index; 3290 3291 to = round_page(to); 3292 from = round_page(from); 3293 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3294 3295 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3296 3297 tryagain: 3298 3299 /* 3300 * note: must allocate system pages since blocking here 3301 * could intefere with paging I/O, no matter which 3302 * process we are. 3303 */ 3304 p = vm_page_alloc(kernel_object, 3305 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3306 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 3307 if (!p) { 3308 vm_pageout_deficit += (to - from) >> PAGE_SHIFT; 3309 vm_wait(); 3310 goto tryagain; 3311 } 3312 vm_page_wire(p); 3313 p->valid = VM_PAGE_BITS_ALL; 3314 vm_page_flag_clear(p, PG_ZERO); 3315 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 3316 bp->b_xio.xio_pages[index] = p; 3317 vm_page_wakeup(p); 3318 } 3319 bp->b_xio.xio_npages = index; 3320 } 3321 3322 void 3323 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 3324 { 3325 vm_offset_t pg; 3326 vm_page_t p; 3327 int index, newnpages; 3328 3329 from = round_page(from); 3330 to = round_page(to); 3331 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3332 3333 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3334 p = bp->b_xio.xio_pages[index]; 3335 if (p && (index < bp->b_xio.xio_npages)) { 3336 if (p->busy) { 3337 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n", 3338 bp->b_blkno, bp->b_lblkno); 3339 } 3340 bp->b_xio.xio_pages[index] = NULL; 3341 pmap_kremove(pg); 3342 vm_page_busy(p); 3343 vm_page_unwire(p, 0); 3344 vm_page_free(p); 3345 } 3346 } 3347 bp->b_xio.xio_npages = newnpages; 3348 } 3349 3350 /* 3351 * Map an IO request into kernel virtual address space. 3352 * 3353 * All requests are (re)mapped into kernel VA space. 3354 * Notice that we use b_bufsize for the size of the buffer 3355 * to be mapped. b_bcount might be modified by the driver. 3356 */ 3357 int 3358 vmapbuf(struct buf *bp) 3359 { 3360 caddr_t addr, v, kva; 3361 vm_paddr_t pa; 3362 int pidx; 3363 int i; 3364 struct vm_page *m; 3365 3366 if ((bp->b_flags & B_PHYS) == 0) 3367 panic("vmapbuf"); 3368 if (bp->b_bufsize < 0) 3369 return (-1); 3370 for (v = bp->b_saveaddr, 3371 addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), 3372 pidx = 0; 3373 addr < bp->b_data + bp->b_bufsize; 3374 addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) { 3375 /* 3376 * Do the vm_fault if needed; do the copy-on-write thing 3377 * when reading stuff off device into memory. 3378 */ 3379 retry: 3380 i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data, 3381 (bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ); 3382 if (i < 0) { 3383 for (i = 0; i < pidx; ++i) { 3384 vm_page_unhold(bp->b_xio.xio_pages[i]); 3385 bp->b_xio.xio_pages[i] = NULL; 3386 } 3387 return(-1); 3388 } 3389 3390 /* 3391 * WARNING! If sparc support is MFCd in the future this will 3392 * have to be changed from pmap_kextract() to pmap_extract() 3393 * ala -current. 3394 */ 3395 #ifdef __sparc64__ 3396 #error "If MFCing sparc support use pmap_extract" 3397 #endif 3398 pa = pmap_kextract((vm_offset_t)addr); 3399 if (pa == 0) { 3400 printf("vmapbuf: warning, race against user address during I/O"); 3401 goto retry; 3402 } 3403 m = PHYS_TO_VM_PAGE(pa); 3404 vm_page_hold(m); 3405 bp->b_xio.xio_pages[pidx] = m; 3406 } 3407 if (pidx > btoc(MAXPHYS)) 3408 panic("vmapbuf: mapped more than MAXPHYS"); 3409 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx); 3410 3411 kva = bp->b_saveaddr; 3412 bp->b_xio.xio_npages = pidx; 3413 bp->b_saveaddr = bp->b_data; 3414 bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK); 3415 return(0); 3416 } 3417 3418 /* 3419 * Free the io map PTEs associated with this IO operation. 3420 * We also invalidate the TLB entries and restore the original b_addr. 3421 */ 3422 void 3423 vunmapbuf(struct buf *bp) 3424 { 3425 int pidx; 3426 int npages; 3427 vm_page_t *m; 3428 3429 if ((bp->b_flags & B_PHYS) == 0) 3430 panic("vunmapbuf"); 3431 3432 npages = bp->b_xio.xio_npages; 3433 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), 3434 npages); 3435 m = bp->b_xio.xio_pages; 3436 for (pidx = 0; pidx < npages; pidx++) 3437 vm_page_unhold(*m++); 3438 3439 bp->b_data = bp->b_saveaddr; 3440 } 3441 3442 #include "opt_ddb.h" 3443 #ifdef DDB 3444 #include <ddb/ddb.h> 3445 3446 DB_SHOW_COMMAND(buffer, db_show_buffer) 3447 { 3448 /* get args */ 3449 struct buf *bp = (struct buf *)addr; 3450 3451 if (!have_addr) { 3452 db_printf("usage: show buffer <addr>\n"); 3453 return; 3454 } 3455 3456 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3457 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, " 3458 "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, " 3459 "b_blkno = %d, b_pblkno = %d\n", 3460 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3461 major(bp->b_dev), minor(bp->b_dev), 3462 bp->b_data, bp->b_blkno, bp->b_pblkno); 3463 if (bp->b_xio.xio_npages) { 3464 int i; 3465 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 3466 bp->b_xio.xio_npages); 3467 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3468 vm_page_t m; 3469 m = bp->b_xio.xio_pages[i]; 3470 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3471 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3472 if ((i + 1) < bp->b_xio.xio_npages) 3473 db_printf(","); 3474 } 3475 db_printf("\n"); 3476 } 3477 } 3478 #endif /* DDB */ 3479