1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/dsched.h> 48 #include <sys/proc.h> 49 #include <vm/vm.h> 50 #include <vm/vm_param.h> 51 #include <vm/vm_kern.h> 52 #include <vm/vm_pageout.h> 53 #include <vm/vm_page.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_map.h> 57 #include <vm/vm_pager.h> 58 #include <vm/swap_pager.h> 59 60 #include <sys/buf2.h> 61 #include <sys/thread2.h> 62 #include <sys/spinlock2.h> 63 #include <sys/mplock2.h> 64 #include <vm/vm_page2.h> 65 66 #include "opt_ddb.h" 67 #ifdef DDB 68 #include <ddb/ddb.h> 69 #endif 70 71 /* 72 * Buffer queues. 73 */ 74 enum bufq_type { 75 BQUEUE_NONE, /* not on any queue */ 76 BQUEUE_LOCKED, /* locked buffers */ 77 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 78 BQUEUE_DIRTY, /* B_DELWRI buffers */ 79 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 80 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 81 BQUEUE_EMPTY, /* empty buffer headers */ 82 83 BUFFER_QUEUES /* number of buffer queues */ 84 }; 85 86 typedef enum bufq_type bufq_type_t; 87 88 #define BD_WAKE_SIZE 16384 89 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 90 91 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 92 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin); 93 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin); 94 95 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 96 97 struct buf *buf; /* buffer header pool */ 98 99 static void vfs_clean_pages(struct buf *bp); 100 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 101 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m); 102 static void vfs_vmio_release(struct buf *bp); 103 static int flushbufqueues(bufq_type_t q); 104 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 105 106 static void bd_signal(int totalspace); 107 static void buf_daemon(void); 108 static void buf_daemon_hw(void); 109 110 /* 111 * bogus page -- for I/O to/from partially complete buffers 112 * this is a temporary solution to the problem, but it is not 113 * really that bad. it would be better to split the buffer 114 * for input in the case of buffers partially already in memory, 115 * but the code is intricate enough already. 116 */ 117 vm_page_t bogus_page; 118 119 /* 120 * These are all static, but make the ones we export globals so we do 121 * not need to use compiler magic. 122 */ 123 int bufspace; /* locked by buffer_map */ 124 int maxbufspace; 125 static int bufmallocspace; /* atomic ops */ 126 int maxbufmallocspace, lobufspace, hibufspace; 127 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 128 static int lorunningspace; 129 static int hirunningspace; 130 static int runningbufreq; /* locked by bufcspin */ 131 static int dirtybufspace; /* locked by bufcspin */ 132 static int dirtybufcount; /* locked by bufcspin */ 133 static int dirtybufspacehw; /* locked by bufcspin */ 134 static int dirtybufcounthw; /* locked by bufcspin */ 135 static int runningbufspace; /* locked by bufcspin */ 136 static int runningbufcount; /* locked by bufcspin */ 137 int lodirtybufspace; 138 int hidirtybufspace; 139 static int getnewbufcalls; 140 static int getnewbufrestarts; 141 static int recoverbufcalls; 142 static int needsbuffer; /* locked by bufcspin */ 143 static int bd_request; /* locked by bufcspin */ 144 static int bd_request_hw; /* locked by bufcspin */ 145 static u_int bd_wake_ary[BD_WAKE_SIZE]; 146 static u_int bd_wake_index; 147 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */ 148 static int debug_commit; 149 150 static struct thread *bufdaemon_td; 151 static struct thread *bufdaemonhw_td; 152 153 154 /* 155 * Sysctls for operational control of the buffer cache. 156 */ 157 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 158 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 159 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 160 "High watermark used to trigger explicit flushing of dirty buffers"); 161 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 162 "Minimum amount of buffer space required for active I/O"); 163 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 164 "Maximum amount of buffer space to usable for active I/O"); 165 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0, 166 "Recycle pages to active or inactive queue transition pt 0-64"); 167 /* 168 * Sysctls determining current state of the buffer cache. 169 */ 170 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 171 "Total number of buffers in buffer cache"); 172 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 173 "Pending bytes of dirty buffers (all)"); 174 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 175 "Pending bytes of dirty buffers (heavy weight)"); 176 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 177 "Pending number of dirty buffers"); 178 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 179 "Pending number of dirty buffers (heavy weight)"); 180 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 181 "I/O bytes currently in progress due to asynchronous writes"); 182 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 183 "I/O buffers currently in progress due to asynchronous writes"); 184 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 185 "Hard limit on maximum amount of memory usable for buffer space"); 186 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 187 "Soft limit on maximum amount of memory usable for buffer space"); 188 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 189 "Minimum amount of memory to reserve for system buffer space"); 190 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 191 "Amount of memory available for buffers"); 192 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 193 0, "Maximum amount of memory reserved for buffers using malloc"); 194 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 195 "Amount of memory left for buffers using malloc-scheme"); 196 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 197 "New buffer header acquisition requests"); 198 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 199 0, "New buffer header acquisition restarts"); 200 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 201 "Recover VM space in an emergency"); 202 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 203 "Buffer acquisition restarts due to fragmented buffer map"); 204 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 205 "Amount of time KVA space was deallocated in an arbitrary buffer"); 206 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 207 "Amount of time buffer re-use operations were successful"); 208 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, ""); 209 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 210 "sizeof(struct buf)"); 211 212 char *buf_wmesg = BUF_WMESG; 213 214 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 215 #define VFS_BIO_NEED_UNUSED02 0x02 216 #define VFS_BIO_NEED_UNUSED04 0x04 217 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 218 219 /* 220 * bufspacewakeup: 221 * 222 * Called when buffer space is potentially available for recovery. 223 * getnewbuf() will block on this flag when it is unable to free 224 * sufficient buffer space. Buffer space becomes recoverable when 225 * bp's get placed back in the queues. 226 */ 227 static __inline void 228 bufspacewakeup(void) 229 { 230 /* 231 * If someone is waiting for BUF space, wake them up. Even 232 * though we haven't freed the kva space yet, the waiting 233 * process will be able to now. 234 */ 235 spin_lock(&bufcspin); 236 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 237 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 238 spin_unlock(&bufcspin); 239 wakeup(&needsbuffer); 240 } else { 241 spin_unlock(&bufcspin); 242 } 243 } 244 245 /* 246 * runningbufwakeup: 247 * 248 * Accounting for I/O in progress. 249 * 250 */ 251 static __inline void 252 runningbufwakeup(struct buf *bp) 253 { 254 int totalspace; 255 int limit; 256 257 if ((totalspace = bp->b_runningbufspace) != 0) { 258 spin_lock(&bufcspin); 259 runningbufspace -= totalspace; 260 --runningbufcount; 261 bp->b_runningbufspace = 0; 262 263 /* 264 * see waitrunningbufspace() for limit test. 265 */ 266 limit = hirunningspace * 4 / 6; 267 if (runningbufreq && runningbufspace <= limit) { 268 runningbufreq = 0; 269 spin_unlock(&bufcspin); 270 wakeup(&runningbufreq); 271 } else { 272 spin_unlock(&bufcspin); 273 } 274 bd_signal(totalspace); 275 } 276 } 277 278 /* 279 * bufcountwakeup: 280 * 281 * Called when a buffer has been added to one of the free queues to 282 * account for the buffer and to wakeup anyone waiting for free buffers. 283 * This typically occurs when large amounts of metadata are being handled 284 * by the buffer cache ( else buffer space runs out first, usually ). 285 * 286 * MPSAFE 287 */ 288 static __inline void 289 bufcountwakeup(void) 290 { 291 spin_lock(&bufcspin); 292 if (needsbuffer) { 293 needsbuffer &= ~VFS_BIO_NEED_ANY; 294 spin_unlock(&bufcspin); 295 wakeup(&needsbuffer); 296 } else { 297 spin_unlock(&bufcspin); 298 } 299 } 300 301 /* 302 * waitrunningbufspace() 303 * 304 * Wait for the amount of running I/O to drop to hirunningspace * 4 / 6. 305 * This is the point where write bursting stops so we don't want to wait 306 * for the running amount to drop below it (at least if we still want bioq 307 * to burst writes). 308 * 309 * The caller may be using this function to block in a tight loop, we 310 * must block while runningbufspace is greater then or equal to 311 * hirunningspace * 4 / 6. 312 * 313 * And even with that it may not be enough, due to the presence of 314 * B_LOCKED dirty buffers, so also wait for at least one running buffer 315 * to complete. 316 */ 317 void 318 waitrunningbufspace(void) 319 { 320 int limit = hirunningspace * 4 / 6; 321 int dummy; 322 323 spin_lock(&bufcspin); 324 if (runningbufspace > limit) { 325 while (runningbufspace > limit) { 326 ++runningbufreq; 327 ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0); 328 } 329 spin_unlock(&bufcspin); 330 } else if (runningbufspace > limit / 2) { 331 ++runningbufreq; 332 spin_unlock(&bufcspin); 333 tsleep(&dummy, 0, "wdrn2", 1); 334 } else { 335 spin_unlock(&bufcspin); 336 } 337 } 338 339 /* 340 * buf_dirty_count_severe: 341 * 342 * Return true if we have too many dirty buffers. 343 */ 344 int 345 buf_dirty_count_severe(void) 346 { 347 return (runningbufspace + dirtybufspace >= hidirtybufspace || 348 dirtybufcount >= nbuf / 2); 349 } 350 351 /* 352 * Return true if the amount of running I/O is severe and BIOQ should 353 * start bursting. 354 */ 355 int 356 buf_runningbufspace_severe(void) 357 { 358 return (runningbufspace >= hirunningspace * 4 / 6); 359 } 360 361 /* 362 * vfs_buf_test_cache: 363 * 364 * Called when a buffer is extended. This function clears the B_CACHE 365 * bit if the newly extended portion of the buffer does not contain 366 * valid data. 367 * 368 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 369 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 370 * them while a clean buffer was present. 371 */ 372 static __inline__ 373 void 374 vfs_buf_test_cache(struct buf *bp, 375 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 376 vm_page_t m) 377 { 378 if (bp->b_flags & B_CACHE) { 379 int base = (foff + off) & PAGE_MASK; 380 if (vm_page_is_valid(m, base, size) == 0) 381 bp->b_flags &= ~B_CACHE; 382 } 383 } 384 385 /* 386 * bd_speedup() 387 * 388 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 389 * low water mark. 390 * 391 * MPSAFE 392 */ 393 static __inline__ 394 void 395 bd_speedup(void) 396 { 397 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 398 return; 399 400 if (bd_request == 0 && 401 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 402 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 403 spin_lock(&bufcspin); 404 bd_request = 1; 405 spin_unlock(&bufcspin); 406 wakeup(&bd_request); 407 } 408 if (bd_request_hw == 0 && 409 (dirtybufspacehw > lodirtybufspace / 2 || 410 dirtybufcounthw >= nbuf / 2)) { 411 spin_lock(&bufcspin); 412 bd_request_hw = 1; 413 spin_unlock(&bufcspin); 414 wakeup(&bd_request_hw); 415 } 416 } 417 418 /* 419 * bd_heatup() 420 * 421 * Get the buf_daemon heated up when the number of running and dirty 422 * buffers exceeds the mid-point. 423 * 424 * Return the total number of dirty bytes past the second mid point 425 * as a measure of how much excess dirty data there is in the system. 426 * 427 * MPSAFE 428 */ 429 int 430 bd_heatup(void) 431 { 432 int mid1; 433 int mid2; 434 int totalspace; 435 436 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 437 438 totalspace = runningbufspace + dirtybufspace; 439 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 440 bd_speedup(); 441 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 442 if (totalspace >= mid2) 443 return(totalspace - mid2); 444 } 445 return(0); 446 } 447 448 /* 449 * bd_wait() 450 * 451 * Wait for the buffer cache to flush (totalspace) bytes worth of 452 * buffers, then return. 453 * 454 * Regardless this function blocks while the number of dirty buffers 455 * exceeds hidirtybufspace. 456 * 457 * MPSAFE 458 */ 459 void 460 bd_wait(int totalspace) 461 { 462 u_int i; 463 int count; 464 465 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 466 return; 467 468 while (totalspace > 0) { 469 bd_heatup(); 470 if (totalspace > runningbufspace + dirtybufspace) 471 totalspace = runningbufspace + dirtybufspace; 472 count = totalspace / BKVASIZE; 473 if (count >= BD_WAKE_SIZE) 474 count = BD_WAKE_SIZE - 1; 475 476 spin_lock(&bufcspin); 477 i = (bd_wake_index + count) & BD_WAKE_MASK; 478 ++bd_wake_ary[i]; 479 480 /* 481 * This is not a strict interlock, so we play a bit loose 482 * with locking access to dirtybufspace* 483 */ 484 tsleep_interlock(&bd_wake_ary[i], 0); 485 spin_unlock(&bufcspin); 486 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 487 488 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 489 } 490 } 491 492 /* 493 * bd_signal() 494 * 495 * This function is called whenever runningbufspace or dirtybufspace 496 * is reduced. Track threads waiting for run+dirty buffer I/O 497 * complete. 498 * 499 * MPSAFE 500 */ 501 static void 502 bd_signal(int totalspace) 503 { 504 u_int i; 505 506 if (totalspace > 0) { 507 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 508 totalspace = BKVASIZE * BD_WAKE_SIZE; 509 spin_lock(&bufcspin); 510 while (totalspace > 0) { 511 i = bd_wake_index++; 512 i &= BD_WAKE_MASK; 513 if (bd_wake_ary[i]) { 514 bd_wake_ary[i] = 0; 515 spin_unlock(&bufcspin); 516 wakeup(&bd_wake_ary[i]); 517 spin_lock(&bufcspin); 518 } 519 totalspace -= BKVASIZE; 520 } 521 spin_unlock(&bufcspin); 522 } 523 } 524 525 /* 526 * BIO tracking support routines. 527 * 528 * Release a ref on a bio_track. Wakeup requests are atomically released 529 * along with the last reference so bk_active will never wind up set to 530 * only 0x80000000. 531 * 532 * MPSAFE 533 */ 534 static 535 void 536 bio_track_rel(struct bio_track *track) 537 { 538 int active; 539 int desired; 540 541 /* 542 * Shortcut 543 */ 544 active = track->bk_active; 545 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 546 return; 547 548 /* 549 * Full-on. Note that the wait flag is only atomically released on 550 * the 1->0 count transition. 551 * 552 * We check for a negative count transition using bit 30 since bit 31 553 * has a different meaning. 554 */ 555 for (;;) { 556 desired = (active & 0x7FFFFFFF) - 1; 557 if (desired) 558 desired |= active & 0x80000000; 559 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 560 if (desired & 0x40000000) 561 panic("bio_track_rel: bad count: %p\n", track); 562 if (active & 0x80000000) 563 wakeup(track); 564 break; 565 } 566 active = track->bk_active; 567 } 568 } 569 570 /* 571 * Wait for the tracking count to reach 0. 572 * 573 * Use atomic ops such that the wait flag is only set atomically when 574 * bk_active is non-zero. 575 * 576 * MPSAFE 577 */ 578 int 579 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 580 { 581 int active; 582 int desired; 583 int error; 584 585 /* 586 * Shortcut 587 */ 588 if (track->bk_active == 0) 589 return(0); 590 591 /* 592 * Full-on. Note that the wait flag may only be atomically set if 593 * the active count is non-zero. 594 */ 595 error = 0; 596 while ((active = track->bk_active) != 0) { 597 desired = active | 0x80000000; 598 tsleep_interlock(track, slp_flags); 599 if (active == desired || 600 atomic_cmpset_int(&track->bk_active, active, desired)) { 601 error = tsleep(track, slp_flags | PINTERLOCKED, 602 "iowait", slp_timo); 603 if (error) 604 break; 605 } 606 } 607 return (error); 608 } 609 610 /* 611 * bufinit: 612 * 613 * Load time initialisation of the buffer cache, called from machine 614 * dependant initialization code. 615 */ 616 void 617 bufinit(void) 618 { 619 struct buf *bp; 620 vm_offset_t bogus_offset; 621 int i; 622 623 /* next, make a null set of free lists */ 624 for (i = 0; i < BUFFER_QUEUES; i++) 625 TAILQ_INIT(&bufqueues[i]); 626 627 /* finally, initialize each buffer header and stick on empty q */ 628 for (i = 0; i < nbuf; i++) { 629 bp = &buf[i]; 630 bzero(bp, sizeof *bp); 631 bp->b_flags = B_INVAL; /* we're just an empty header */ 632 bp->b_cmd = BUF_CMD_DONE; 633 bp->b_qindex = BQUEUE_EMPTY; 634 initbufbio(bp); 635 xio_init(&bp->b_xio); 636 buf_dep_init(bp); 637 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 638 } 639 640 /* 641 * maxbufspace is the absolute maximum amount of buffer space we are 642 * allowed to reserve in KVM and in real terms. The absolute maximum 643 * is nominally used by buf_daemon. hibufspace is the nominal maximum 644 * used by most other processes. The differential is required to 645 * ensure that buf_daemon is able to run when other processes might 646 * be blocked waiting for buffer space. 647 * 648 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 649 * this may result in KVM fragmentation which is not handled optimally 650 * by the system. 651 */ 652 maxbufspace = nbuf * BKVASIZE; 653 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 654 lobufspace = hibufspace - MAXBSIZE; 655 656 lorunningspace = 512 * 1024; 657 /* hirunningspace -- see below */ 658 659 /* 660 * Limit the amount of malloc memory since it is wired permanently 661 * into the kernel space. Even though this is accounted for in 662 * the buffer allocation, we don't want the malloced region to grow 663 * uncontrolled. The malloc scheme improves memory utilization 664 * significantly on average (small) directories. 665 */ 666 maxbufmallocspace = hibufspace / 20; 667 668 /* 669 * Reduce the chance of a deadlock occuring by limiting the number 670 * of delayed-write dirty buffers we allow to stack up. 671 * 672 * We don't want too much actually queued to the device at once 673 * (XXX this needs to be per-mount!), because the buffers will 674 * wind up locked for a very long period of time while the I/O 675 * drains. 676 */ 677 hidirtybufspace = hibufspace / 2; /* dirty + running */ 678 hirunningspace = hibufspace / 16; /* locked & queued to device */ 679 if (hirunningspace < 1024 * 1024) 680 hirunningspace = 1024 * 1024; 681 682 dirtybufspace = 0; 683 dirtybufspacehw = 0; 684 685 lodirtybufspace = hidirtybufspace / 2; 686 687 /* 688 * Maximum number of async ops initiated per buf_daemon loop. This is 689 * somewhat of a hack at the moment, we really need to limit ourselves 690 * based on the number of bytes of I/O in-transit that were initiated 691 * from buf_daemon. 692 */ 693 694 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 695 bogus_page = vm_page_alloc(&kernel_object, 696 (bogus_offset >> PAGE_SHIFT), 697 VM_ALLOC_NORMAL); 698 vmstats.v_wire_count++; 699 700 } 701 702 /* 703 * Initialize the embedded bio structures, typically used by 704 * deprecated code which tries to allocate its own struct bufs. 705 */ 706 void 707 initbufbio(struct buf *bp) 708 { 709 bp->b_bio1.bio_buf = bp; 710 bp->b_bio1.bio_prev = NULL; 711 bp->b_bio1.bio_offset = NOOFFSET; 712 bp->b_bio1.bio_next = &bp->b_bio2; 713 bp->b_bio1.bio_done = NULL; 714 bp->b_bio1.bio_flags = 0; 715 716 bp->b_bio2.bio_buf = bp; 717 bp->b_bio2.bio_prev = &bp->b_bio1; 718 bp->b_bio2.bio_offset = NOOFFSET; 719 bp->b_bio2.bio_next = NULL; 720 bp->b_bio2.bio_done = NULL; 721 bp->b_bio2.bio_flags = 0; 722 723 BUF_LOCKINIT(bp); 724 } 725 726 /* 727 * Reinitialize the embedded bio structures as well as any additional 728 * translation cache layers. 729 */ 730 void 731 reinitbufbio(struct buf *bp) 732 { 733 struct bio *bio; 734 735 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 736 bio->bio_done = NULL; 737 bio->bio_offset = NOOFFSET; 738 } 739 } 740 741 /* 742 * Undo the effects of an initbufbio(). 743 */ 744 void 745 uninitbufbio(struct buf *bp) 746 { 747 dsched_exit_buf(bp); 748 BUF_LOCKFREE(bp); 749 } 750 751 /* 752 * Push another BIO layer onto an existing BIO and return it. The new 753 * BIO layer may already exist, holding cached translation data. 754 */ 755 struct bio * 756 push_bio(struct bio *bio) 757 { 758 struct bio *nbio; 759 760 if ((nbio = bio->bio_next) == NULL) { 761 int index = bio - &bio->bio_buf->b_bio_array[0]; 762 if (index >= NBUF_BIO - 1) { 763 panic("push_bio: too many layers bp %p\n", 764 bio->bio_buf); 765 } 766 nbio = &bio->bio_buf->b_bio_array[index + 1]; 767 bio->bio_next = nbio; 768 nbio->bio_prev = bio; 769 nbio->bio_buf = bio->bio_buf; 770 nbio->bio_offset = NOOFFSET; 771 nbio->bio_done = NULL; 772 nbio->bio_next = NULL; 773 } 774 KKASSERT(nbio->bio_done == NULL); 775 return(nbio); 776 } 777 778 /* 779 * Pop a BIO translation layer, returning the previous layer. The 780 * must have been previously pushed. 781 */ 782 struct bio * 783 pop_bio(struct bio *bio) 784 { 785 return(bio->bio_prev); 786 } 787 788 void 789 clearbiocache(struct bio *bio) 790 { 791 while (bio) { 792 bio->bio_offset = NOOFFSET; 793 bio = bio->bio_next; 794 } 795 } 796 797 /* 798 * bfreekva: 799 * 800 * Free the KVA allocation for buffer 'bp'. 801 * 802 * Must be called from a critical section as this is the only locking for 803 * buffer_map. 804 * 805 * Since this call frees up buffer space, we call bufspacewakeup(). 806 * 807 * MPALMOSTSAFE 808 */ 809 static void 810 bfreekva(struct buf *bp) 811 { 812 int count; 813 814 if (bp->b_kvasize) { 815 ++buffreekvacnt; 816 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 817 vm_map_lock(&buffer_map); 818 bufspace -= bp->b_kvasize; 819 vm_map_delete(&buffer_map, 820 (vm_offset_t) bp->b_kvabase, 821 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 822 &count 823 ); 824 vm_map_unlock(&buffer_map); 825 vm_map_entry_release(count); 826 bp->b_kvasize = 0; 827 bp->b_kvabase = NULL; 828 bufspacewakeup(); 829 } 830 } 831 832 /* 833 * bremfree: 834 * 835 * Remove the buffer from the appropriate free list. 836 */ 837 static __inline void 838 _bremfree(struct buf *bp) 839 { 840 if (bp->b_qindex != BQUEUE_NONE) { 841 KASSERT(BUF_REFCNTNB(bp) == 1, 842 ("bremfree: bp %p not locked",bp)); 843 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 844 bp->b_qindex = BQUEUE_NONE; 845 } else { 846 if (BUF_REFCNTNB(bp) <= 1) 847 panic("bremfree: removing a buffer not on a queue"); 848 } 849 } 850 851 void 852 bremfree(struct buf *bp) 853 { 854 spin_lock(&bufqspin); 855 _bremfree(bp); 856 spin_unlock(&bufqspin); 857 } 858 859 static void 860 bremfree_locked(struct buf *bp) 861 { 862 _bremfree(bp); 863 } 864 865 /* 866 * bread: 867 * 868 * Get a buffer with the specified data. Look in the cache first. We 869 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 870 * is set, the buffer is valid and we do not have to do anything ( see 871 * getblk() ). 872 * 873 * MPALMOSTSAFE 874 */ 875 int 876 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 877 { 878 struct buf *bp; 879 880 bp = getblk(vp, loffset, size, 0, 0); 881 *bpp = bp; 882 883 /* if not found in cache, do some I/O */ 884 if ((bp->b_flags & B_CACHE) == 0) { 885 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 886 bp->b_cmd = BUF_CMD_READ; 887 bp->b_bio1.bio_done = biodone_sync; 888 bp->b_bio1.bio_flags |= BIO_SYNC; 889 vfs_busy_pages(vp, bp); 890 vn_strategy(vp, &bp->b_bio1); 891 return (biowait(&bp->b_bio1, "biord")); 892 } 893 return (0); 894 } 895 896 /* 897 * breadn: 898 * 899 * Operates like bread, but also starts asynchronous I/O on 900 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 901 * to initiating I/O . If B_CACHE is set, the buffer is valid 902 * and we do not have to do anything. 903 * 904 * MPALMOSTSAFE 905 */ 906 int 907 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 908 int *rabsize, int cnt, struct buf **bpp) 909 { 910 struct buf *bp, *rabp; 911 int i; 912 int rv = 0, readwait = 0; 913 914 *bpp = bp = getblk(vp, loffset, size, 0, 0); 915 916 /* if not found in cache, do some I/O */ 917 if ((bp->b_flags & B_CACHE) == 0) { 918 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 919 bp->b_cmd = BUF_CMD_READ; 920 bp->b_bio1.bio_done = biodone_sync; 921 bp->b_bio1.bio_flags |= BIO_SYNC; 922 vfs_busy_pages(vp, bp); 923 vn_strategy(vp, &bp->b_bio1); 924 ++readwait; 925 } 926 927 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 928 if (inmem(vp, *raoffset)) 929 continue; 930 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 931 932 if ((rabp->b_flags & B_CACHE) == 0) { 933 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 934 rabp->b_cmd = BUF_CMD_READ; 935 vfs_busy_pages(vp, rabp); 936 BUF_KERNPROC(rabp); 937 vn_strategy(vp, &rabp->b_bio1); 938 } else { 939 brelse(rabp); 940 } 941 } 942 if (readwait) 943 rv = biowait(&bp->b_bio1, "biord"); 944 return (rv); 945 } 946 947 /* 948 * bwrite: 949 * 950 * Synchronous write, waits for completion. 951 * 952 * Write, release buffer on completion. (Done by iodone 953 * if async). Do not bother writing anything if the buffer 954 * is invalid. 955 * 956 * Note that we set B_CACHE here, indicating that buffer is 957 * fully valid and thus cacheable. This is true even of NFS 958 * now so we set it generally. This could be set either here 959 * or in biodone() since the I/O is synchronous. We put it 960 * here. 961 */ 962 int 963 bwrite(struct buf *bp) 964 { 965 int error; 966 967 if (bp->b_flags & B_INVAL) { 968 brelse(bp); 969 return (0); 970 } 971 if (BUF_REFCNTNB(bp) == 0) 972 panic("bwrite: buffer is not busy???"); 973 974 /* Mark the buffer clean */ 975 bundirty(bp); 976 977 bp->b_flags &= ~(B_ERROR | B_EINTR); 978 bp->b_flags |= B_CACHE; 979 bp->b_cmd = BUF_CMD_WRITE; 980 bp->b_bio1.bio_done = biodone_sync; 981 bp->b_bio1.bio_flags |= BIO_SYNC; 982 vfs_busy_pages(bp->b_vp, bp); 983 984 /* 985 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 986 * valid for vnode-backed buffers. 987 */ 988 bsetrunningbufspace(bp, bp->b_bufsize); 989 vn_strategy(bp->b_vp, &bp->b_bio1); 990 error = biowait(&bp->b_bio1, "biows"); 991 brelse(bp); 992 993 return (error); 994 } 995 996 /* 997 * bawrite: 998 * 999 * Asynchronous write. Start output on a buffer, but do not wait for 1000 * it to complete. The buffer is released when the output completes. 1001 * 1002 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1003 * B_INVAL buffers. Not us. 1004 */ 1005 void 1006 bawrite(struct buf *bp) 1007 { 1008 if (bp->b_flags & B_INVAL) { 1009 brelse(bp); 1010 return; 1011 } 1012 if (BUF_REFCNTNB(bp) == 0) 1013 panic("bwrite: buffer is not busy???"); 1014 1015 /* Mark the buffer clean */ 1016 bundirty(bp); 1017 1018 bp->b_flags &= ~(B_ERROR | B_EINTR); 1019 bp->b_flags |= B_CACHE; 1020 bp->b_cmd = BUF_CMD_WRITE; 1021 KKASSERT(bp->b_bio1.bio_done == NULL); 1022 vfs_busy_pages(bp->b_vp, bp); 1023 1024 /* 1025 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1026 * valid for vnode-backed buffers. 1027 */ 1028 bsetrunningbufspace(bp, bp->b_bufsize); 1029 BUF_KERNPROC(bp); 1030 vn_strategy(bp->b_vp, &bp->b_bio1); 1031 } 1032 1033 /* 1034 * bowrite: 1035 * 1036 * Ordered write. Start output on a buffer, and flag it so that the 1037 * device will write it in the order it was queued. The buffer is 1038 * released when the output completes. bwrite() ( or the VOP routine 1039 * anyway ) is responsible for handling B_INVAL buffers. 1040 */ 1041 int 1042 bowrite(struct buf *bp) 1043 { 1044 bp->b_flags |= B_ORDERED; 1045 bawrite(bp); 1046 return (0); 1047 } 1048 1049 /* 1050 * bdwrite: 1051 * 1052 * Delayed write. (Buffer is marked dirty). Do not bother writing 1053 * anything if the buffer is marked invalid. 1054 * 1055 * Note that since the buffer must be completely valid, we can safely 1056 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1057 * biodone() in order to prevent getblk from writing the buffer 1058 * out synchronously. 1059 */ 1060 void 1061 bdwrite(struct buf *bp) 1062 { 1063 if (BUF_REFCNTNB(bp) == 0) 1064 panic("bdwrite: buffer is not busy"); 1065 1066 if (bp->b_flags & B_INVAL) { 1067 brelse(bp); 1068 return; 1069 } 1070 bdirty(bp); 1071 1072 if (dsched_is_clear_buf_priv(bp)) 1073 dsched_new_buf(bp); 1074 1075 /* 1076 * Set B_CACHE, indicating that the buffer is fully valid. This is 1077 * true even of NFS now. 1078 */ 1079 bp->b_flags |= B_CACHE; 1080 1081 /* 1082 * This bmap keeps the system from needing to do the bmap later, 1083 * perhaps when the system is attempting to do a sync. Since it 1084 * is likely that the indirect block -- or whatever other datastructure 1085 * that the filesystem needs is still in memory now, it is a good 1086 * thing to do this. Note also, that if the pageout daemon is 1087 * requesting a sync -- there might not be enough memory to do 1088 * the bmap then... So, this is important to do. 1089 */ 1090 if (bp->b_bio2.bio_offset == NOOFFSET) { 1091 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1092 NULL, NULL, BUF_CMD_WRITE); 1093 } 1094 1095 /* 1096 * Because the underlying pages may still be mapped and 1097 * writable trying to set the dirty buffer (b_dirtyoff/end) 1098 * range here will be inaccurate. 1099 * 1100 * However, we must still clean the pages to satisfy the 1101 * vnode_pager and pageout daemon, so theythink the pages 1102 * have been "cleaned". What has really occured is that 1103 * they've been earmarked for later writing by the buffer 1104 * cache. 1105 * 1106 * So we get the b_dirtyoff/end update but will not actually 1107 * depend on it (NFS that is) until the pages are busied for 1108 * writing later on. 1109 */ 1110 vfs_clean_pages(bp); 1111 bqrelse(bp); 1112 1113 /* 1114 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1115 * due to the softdep code. 1116 */ 1117 } 1118 1119 /* 1120 * Fake write - return pages to VM system as dirty, leave the buffer clean. 1121 * This is used by tmpfs. 1122 * 1123 * It is important for any VFS using this routine to NOT use it for 1124 * IO_SYNC or IO_ASYNC operations which occur when the system really 1125 * wants to flush VM pages to backing store. 1126 */ 1127 void 1128 buwrite(struct buf *bp) 1129 { 1130 vm_page_t m; 1131 int i; 1132 1133 /* 1134 * Only works for VMIO buffers. If the buffer is already 1135 * marked for delayed-write we can't avoid the bdwrite(). 1136 */ 1137 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) { 1138 bdwrite(bp); 1139 return; 1140 } 1141 1142 /* 1143 * Set valid & dirty. 1144 */ 1145 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1146 m = bp->b_xio.xio_pages[i]; 1147 vfs_dirty_one_page(bp, i, m); 1148 } 1149 bqrelse(bp); 1150 } 1151 1152 /* 1153 * bdirty: 1154 * 1155 * Turn buffer into delayed write request by marking it B_DELWRI. 1156 * B_RELBUF and B_NOCACHE must be cleared. 1157 * 1158 * We reassign the buffer to itself to properly update it in the 1159 * dirty/clean lists. 1160 * 1161 * Must be called from a critical section. 1162 * The buffer must be on BQUEUE_NONE. 1163 */ 1164 void 1165 bdirty(struct buf *bp) 1166 { 1167 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1168 if (bp->b_flags & B_NOCACHE) { 1169 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1170 bp->b_flags &= ~B_NOCACHE; 1171 } 1172 if (bp->b_flags & B_INVAL) { 1173 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1174 } 1175 bp->b_flags &= ~B_RELBUF; 1176 1177 if ((bp->b_flags & B_DELWRI) == 0) { 1178 lwkt_gettoken(&bp->b_vp->v_token); 1179 bp->b_flags |= B_DELWRI; 1180 reassignbuf(bp); 1181 lwkt_reltoken(&bp->b_vp->v_token); 1182 1183 spin_lock(&bufcspin); 1184 ++dirtybufcount; 1185 dirtybufspace += bp->b_bufsize; 1186 if (bp->b_flags & B_HEAVY) { 1187 ++dirtybufcounthw; 1188 dirtybufspacehw += bp->b_bufsize; 1189 } 1190 spin_unlock(&bufcspin); 1191 1192 bd_heatup(); 1193 } 1194 } 1195 1196 /* 1197 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1198 * needs to be flushed with a different buf_daemon thread to avoid 1199 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1200 */ 1201 void 1202 bheavy(struct buf *bp) 1203 { 1204 if ((bp->b_flags & B_HEAVY) == 0) { 1205 bp->b_flags |= B_HEAVY; 1206 if (bp->b_flags & B_DELWRI) { 1207 spin_lock(&bufcspin); 1208 ++dirtybufcounthw; 1209 dirtybufspacehw += bp->b_bufsize; 1210 spin_unlock(&bufcspin); 1211 } 1212 } 1213 } 1214 1215 /* 1216 * bundirty: 1217 * 1218 * Clear B_DELWRI for buffer. 1219 * 1220 * Must be called from a critical section. 1221 * 1222 * The buffer is typically on BQUEUE_NONE but there is one case in 1223 * brelse() that calls this function after placing the buffer on 1224 * a different queue. 1225 * 1226 * MPSAFE 1227 */ 1228 void 1229 bundirty(struct buf *bp) 1230 { 1231 if (bp->b_flags & B_DELWRI) { 1232 lwkt_gettoken(&bp->b_vp->v_token); 1233 bp->b_flags &= ~B_DELWRI; 1234 reassignbuf(bp); 1235 lwkt_reltoken(&bp->b_vp->v_token); 1236 1237 spin_lock(&bufcspin); 1238 --dirtybufcount; 1239 dirtybufspace -= bp->b_bufsize; 1240 if (bp->b_flags & B_HEAVY) { 1241 --dirtybufcounthw; 1242 dirtybufspacehw -= bp->b_bufsize; 1243 } 1244 spin_unlock(&bufcspin); 1245 1246 bd_signal(bp->b_bufsize); 1247 } 1248 /* 1249 * Since it is now being written, we can clear its deferred write flag. 1250 */ 1251 bp->b_flags &= ~B_DEFERRED; 1252 } 1253 1254 /* 1255 * Set the b_runningbufspace field, used to track how much I/O is 1256 * in progress at any given moment. 1257 */ 1258 void 1259 bsetrunningbufspace(struct buf *bp, int bytes) 1260 { 1261 bp->b_runningbufspace = bytes; 1262 if (bytes) { 1263 spin_lock(&bufcspin); 1264 runningbufspace += bytes; 1265 ++runningbufcount; 1266 spin_unlock(&bufcspin); 1267 } 1268 } 1269 1270 /* 1271 * brelse: 1272 * 1273 * Release a busy buffer and, if requested, free its resources. The 1274 * buffer will be stashed in the appropriate bufqueue[] allowing it 1275 * to be accessed later as a cache entity or reused for other purposes. 1276 * 1277 * MPALMOSTSAFE 1278 */ 1279 void 1280 brelse(struct buf *bp) 1281 { 1282 #ifdef INVARIANTS 1283 int saved_flags = bp->b_flags; 1284 #endif 1285 1286 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1287 1288 /* 1289 * If B_NOCACHE is set we are being asked to destroy the buffer and 1290 * its backing store. Clear B_DELWRI. 1291 * 1292 * B_NOCACHE is set in two cases: (1) when the caller really wants 1293 * to destroy the buffer and backing store and (2) when the caller 1294 * wants to destroy the buffer and backing store after a write 1295 * completes. 1296 */ 1297 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1298 bundirty(bp); 1299 } 1300 1301 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1302 /* 1303 * A re-dirtied buffer is only subject to destruction 1304 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1305 */ 1306 /* leave buffer intact */ 1307 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1308 (bp->b_bufsize <= 0)) { 1309 /* 1310 * Either a failed read or we were asked to free or not 1311 * cache the buffer. This path is reached with B_DELWRI 1312 * set only if B_INVAL is already set. B_NOCACHE governs 1313 * backing store destruction. 1314 * 1315 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1316 * buffer cannot be immediately freed. 1317 */ 1318 bp->b_flags |= B_INVAL; 1319 if (LIST_FIRST(&bp->b_dep) != NULL) 1320 buf_deallocate(bp); 1321 if (bp->b_flags & B_DELWRI) { 1322 spin_lock(&bufcspin); 1323 --dirtybufcount; 1324 dirtybufspace -= bp->b_bufsize; 1325 if (bp->b_flags & B_HEAVY) { 1326 --dirtybufcounthw; 1327 dirtybufspacehw -= bp->b_bufsize; 1328 } 1329 spin_unlock(&bufcspin); 1330 1331 bd_signal(bp->b_bufsize); 1332 } 1333 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1334 } 1335 1336 /* 1337 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1338 * If vfs_vmio_release() is called with either bit set, the 1339 * underlying pages may wind up getting freed causing a previous 1340 * write (bdwrite()) to get 'lost' because pages associated with 1341 * a B_DELWRI bp are marked clean. Pages associated with a 1342 * B_LOCKED buffer may be mapped by the filesystem. 1343 * 1344 * If we want to release the buffer ourselves (rather then the 1345 * originator asking us to release it), give the originator a 1346 * chance to countermand the release by setting B_LOCKED. 1347 * 1348 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1349 * if B_DELWRI is set. 1350 * 1351 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1352 * on pages to return pages to the VM page queues. 1353 */ 1354 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1355 bp->b_flags &= ~B_RELBUF; 1356 } else if (vm_page_count_severe()) { 1357 if (LIST_FIRST(&bp->b_dep) != NULL) 1358 buf_deallocate(bp); /* can set B_LOCKED */ 1359 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1360 bp->b_flags &= ~B_RELBUF; 1361 else 1362 bp->b_flags |= B_RELBUF; 1363 } 1364 1365 /* 1366 * Make sure b_cmd is clear. It may have already been cleared by 1367 * biodone(). 1368 * 1369 * At this point destroying the buffer is governed by the B_INVAL 1370 * or B_RELBUF flags. 1371 */ 1372 bp->b_cmd = BUF_CMD_DONE; 1373 dsched_exit_buf(bp); 1374 1375 /* 1376 * VMIO buffer rundown. Make sure the VM page array is restored 1377 * after an I/O may have replaces some of the pages with bogus pages 1378 * in order to not destroy dirty pages in a fill-in read. 1379 * 1380 * Note that due to the code above, if a buffer is marked B_DELWRI 1381 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1382 * B_INVAL may still be set, however. 1383 * 1384 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1385 * but not the backing store. B_NOCACHE will destroy the backing 1386 * store. 1387 * 1388 * Note that dirty NFS buffers contain byte-granular write ranges 1389 * and should not be destroyed w/ B_INVAL even if the backing store 1390 * is left intact. 1391 */ 1392 if (bp->b_flags & B_VMIO) { 1393 /* 1394 * Rundown for VMIO buffers which are not dirty NFS buffers. 1395 */ 1396 int i, j, resid; 1397 vm_page_t m; 1398 off_t foff; 1399 vm_pindex_t poff; 1400 vm_object_t obj; 1401 struct vnode *vp; 1402 1403 vp = bp->b_vp; 1404 1405 /* 1406 * Get the base offset and length of the buffer. Note that 1407 * in the VMIO case if the buffer block size is not 1408 * page-aligned then b_data pointer may not be page-aligned. 1409 * But our b_xio.xio_pages array *IS* page aligned. 1410 * 1411 * block sizes less then DEV_BSIZE (usually 512) are not 1412 * supported due to the page granularity bits (m->valid, 1413 * m->dirty, etc...). 1414 * 1415 * See man buf(9) for more information 1416 */ 1417 1418 resid = bp->b_bufsize; 1419 foff = bp->b_loffset; 1420 1421 lwkt_gettoken(&vm_token); 1422 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1423 m = bp->b_xio.xio_pages[i]; 1424 vm_page_flag_clear(m, PG_ZERO); 1425 /* 1426 * If we hit a bogus page, fixup *all* of them 1427 * now. Note that we left these pages wired 1428 * when we removed them so they had better exist, 1429 * and they cannot be ripped out from under us so 1430 * no critical section protection is necessary. 1431 */ 1432 if (m == bogus_page) { 1433 obj = vp->v_object; 1434 poff = OFF_TO_IDX(bp->b_loffset); 1435 1436 for (j = i; j < bp->b_xio.xio_npages; j++) { 1437 vm_page_t mtmp; 1438 1439 mtmp = bp->b_xio.xio_pages[j]; 1440 if (mtmp == bogus_page) { 1441 mtmp = vm_page_lookup(obj, poff + j); 1442 if (!mtmp) { 1443 panic("brelse: page missing"); 1444 } 1445 bp->b_xio.xio_pages[j] = mtmp; 1446 } 1447 } 1448 bp->b_flags &= ~B_HASBOGUS; 1449 1450 if ((bp->b_flags & B_INVAL) == 0) { 1451 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1452 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1453 } 1454 m = bp->b_xio.xio_pages[i]; 1455 } 1456 1457 /* 1458 * Invalidate the backing store if B_NOCACHE is set 1459 * (e.g. used with vinvalbuf()). If this is NFS 1460 * we impose a requirement that the block size be 1461 * a multiple of PAGE_SIZE and create a temporary 1462 * hack to basically invalidate the whole page. The 1463 * problem is that NFS uses really odd buffer sizes 1464 * especially when tracking piecemeal writes and 1465 * it also vinvalbuf()'s a lot, which would result 1466 * in only partial page validation and invalidation 1467 * here. If the file page is mmap()'d, however, 1468 * all the valid bits get set so after we invalidate 1469 * here we would end up with weird m->valid values 1470 * like 0xfc. nfs_getpages() can't handle this so 1471 * we clear all the valid bits for the NFS case 1472 * instead of just some of them. 1473 * 1474 * The real bug is the VM system having to set m->valid 1475 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1476 * itself is an artifact of the whole 512-byte 1477 * granular mess that exists to support odd block 1478 * sizes and UFS meta-data block sizes (e.g. 6144). 1479 * A complete rewrite is required. 1480 * 1481 * XXX 1482 */ 1483 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1484 int poffset = foff & PAGE_MASK; 1485 int presid; 1486 1487 presid = PAGE_SIZE - poffset; 1488 if (bp->b_vp->v_tag == VT_NFS && 1489 bp->b_vp->v_type == VREG) { 1490 ; /* entire page */ 1491 } else if (presid > resid) { 1492 presid = resid; 1493 } 1494 KASSERT(presid >= 0, ("brelse: extra page")); 1495 vm_page_set_invalid(m, poffset, presid); 1496 1497 /* 1498 * Also make sure any swap cache is removed 1499 * as it is now stale (HAMMER in particular 1500 * uses B_NOCACHE to deal with buffer 1501 * aliasing). 1502 */ 1503 swap_pager_unswapped(m); 1504 } 1505 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1506 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1507 } 1508 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1509 vfs_vmio_release(bp); 1510 lwkt_reltoken(&vm_token); 1511 } else { 1512 /* 1513 * Rundown for non-VMIO buffers. 1514 */ 1515 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1516 if (bp->b_bufsize) 1517 allocbuf(bp, 0); 1518 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1519 if (bp->b_vp) 1520 brelvp(bp); 1521 } 1522 } 1523 1524 if (bp->b_qindex != BQUEUE_NONE) 1525 panic("brelse: free buffer onto another queue???"); 1526 if (BUF_REFCNTNB(bp) > 1) { 1527 /* Temporary panic to verify exclusive locking */ 1528 /* This panic goes away when we allow shared refs */ 1529 panic("brelse: multiple refs"); 1530 /* NOT REACHED */ 1531 return; 1532 } 1533 1534 /* 1535 * Figure out the correct queue to place the cleaned up buffer on. 1536 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1537 * disassociated from their vnode. 1538 */ 1539 spin_lock(&bufqspin); 1540 if (bp->b_flags & B_LOCKED) { 1541 /* 1542 * Buffers that are locked are placed in the locked queue 1543 * immediately, regardless of their state. 1544 */ 1545 bp->b_qindex = BQUEUE_LOCKED; 1546 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1547 } else if (bp->b_bufsize == 0) { 1548 /* 1549 * Buffers with no memory. Due to conditionals near the top 1550 * of brelse() such buffers should probably already be 1551 * marked B_INVAL and disassociated from their vnode. 1552 */ 1553 bp->b_flags |= B_INVAL; 1554 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1555 KKASSERT((bp->b_flags & B_HASHED) == 0); 1556 if (bp->b_kvasize) { 1557 bp->b_qindex = BQUEUE_EMPTYKVA; 1558 } else { 1559 bp->b_qindex = BQUEUE_EMPTY; 1560 } 1561 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1562 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1563 /* 1564 * Buffers with junk contents. Again these buffers had better 1565 * already be disassociated from their vnode. 1566 */ 1567 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1568 KKASSERT((bp->b_flags & B_HASHED) == 0); 1569 bp->b_flags |= B_INVAL; 1570 bp->b_qindex = BQUEUE_CLEAN; 1571 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1572 } else { 1573 /* 1574 * Remaining buffers. These buffers are still associated with 1575 * their vnode. 1576 */ 1577 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1578 case B_DELWRI: 1579 bp->b_qindex = BQUEUE_DIRTY; 1580 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1581 break; 1582 case B_DELWRI | B_HEAVY: 1583 bp->b_qindex = BQUEUE_DIRTY_HW; 1584 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1585 b_freelist); 1586 break; 1587 default: 1588 /* 1589 * NOTE: Buffers are always placed at the end of the 1590 * queue. If B_AGE is not set the buffer will cycle 1591 * through the queue twice. 1592 */ 1593 bp->b_qindex = BQUEUE_CLEAN; 1594 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1595 break; 1596 } 1597 } 1598 spin_unlock(&bufqspin); 1599 1600 /* 1601 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1602 * on the correct queue. 1603 */ 1604 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1605 bundirty(bp); 1606 1607 /* 1608 * The bp is on an appropriate queue unless locked. If it is not 1609 * locked or dirty we can wakeup threads waiting for buffer space. 1610 * 1611 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1612 * if B_INVAL is set ). 1613 */ 1614 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1615 bufcountwakeup(); 1616 1617 /* 1618 * Something we can maybe free or reuse 1619 */ 1620 if (bp->b_bufsize || bp->b_kvasize) 1621 bufspacewakeup(); 1622 1623 /* 1624 * Clean up temporary flags and unlock the buffer. 1625 */ 1626 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1627 BUF_UNLOCK(bp); 1628 } 1629 1630 /* 1631 * bqrelse: 1632 * 1633 * Release a buffer back to the appropriate queue but do not try to free 1634 * it. The buffer is expected to be used again soon. 1635 * 1636 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1637 * biodone() to requeue an async I/O on completion. It is also used when 1638 * known good buffers need to be requeued but we think we may need the data 1639 * again soon. 1640 * 1641 * XXX we should be able to leave the B_RELBUF hint set on completion. 1642 * 1643 * MPSAFE 1644 */ 1645 void 1646 bqrelse(struct buf *bp) 1647 { 1648 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1649 1650 if (bp->b_qindex != BQUEUE_NONE) 1651 panic("bqrelse: free buffer onto another queue???"); 1652 if (BUF_REFCNTNB(bp) > 1) { 1653 /* do not release to free list */ 1654 panic("bqrelse: multiple refs"); 1655 return; 1656 } 1657 1658 buf_act_advance(bp); 1659 1660 spin_lock(&bufqspin); 1661 if (bp->b_flags & B_LOCKED) { 1662 /* 1663 * Locked buffers are released to the locked queue. However, 1664 * if the buffer is dirty it will first go into the dirty 1665 * queue and later on after the I/O completes successfully it 1666 * will be released to the locked queue. 1667 */ 1668 bp->b_qindex = BQUEUE_LOCKED; 1669 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1670 } else if (bp->b_flags & B_DELWRI) { 1671 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1672 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1673 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1674 } else if (vm_page_count_severe()) { 1675 /* 1676 * We are too low on memory, we have to try to free the 1677 * buffer (most importantly: the wired pages making up its 1678 * backing store) *now*. 1679 */ 1680 spin_unlock(&bufqspin); 1681 brelse(bp); 1682 return; 1683 } else { 1684 bp->b_qindex = BQUEUE_CLEAN; 1685 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1686 } 1687 spin_unlock(&bufqspin); 1688 1689 if ((bp->b_flags & B_LOCKED) == 0 && 1690 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1691 bufcountwakeup(); 1692 } 1693 1694 /* 1695 * Something we can maybe free or reuse. 1696 */ 1697 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1698 bufspacewakeup(); 1699 1700 /* 1701 * Final cleanup and unlock. Clear bits that are only used while a 1702 * buffer is actively locked. 1703 */ 1704 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1705 dsched_exit_buf(bp); 1706 BUF_UNLOCK(bp); 1707 } 1708 1709 /* 1710 * vfs_vmio_release: 1711 * 1712 * Return backing pages held by the buffer 'bp' back to the VM system 1713 * if possible. The pages are freed if they are no longer valid or 1714 * attempt to free if it was used for direct I/O otherwise they are 1715 * sent to the page cache. 1716 * 1717 * Pages that were marked busy are left alone and skipped. 1718 * 1719 * The KVA mapping (b_data) for the underlying pages is removed by 1720 * this function. 1721 */ 1722 static void 1723 vfs_vmio_release(struct buf *bp) 1724 { 1725 int i; 1726 vm_page_t m; 1727 1728 lwkt_gettoken(&vm_token); 1729 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1730 m = bp->b_xio.xio_pages[i]; 1731 bp->b_xio.xio_pages[i] = NULL; 1732 1733 /* 1734 * The VFS is telling us this is not a meta-data buffer 1735 * even if it is backed by a block device. 1736 */ 1737 if (bp->b_flags & B_NOTMETA) 1738 vm_page_flag_set(m, PG_NOTMETA); 1739 1740 /* 1741 * This is a very important bit of code. We try to track 1742 * VM page use whether the pages are wired into the buffer 1743 * cache or not. While wired into the buffer cache the 1744 * bp tracks the act_count. 1745 * 1746 * We can choose to place unwired pages on the inactive 1747 * queue (0) or active queue (1). If we place too many 1748 * on the active queue the queue will cycle the act_count 1749 * on pages we'd like to keep, just from single-use pages 1750 * (such as when doing a tar-up or file scan). 1751 */ 1752 if (bp->b_act_count < vm_cycle_point) 1753 vm_page_unwire(m, 0); 1754 else 1755 vm_page_unwire(m, 1); 1756 1757 /* 1758 * We don't mess with busy pages, it is 1759 * the responsibility of the process that 1760 * busied the pages to deal with them. 1761 */ 1762 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1763 continue; 1764 1765 if (m->wire_count == 0) { 1766 vm_page_flag_clear(m, PG_ZERO); 1767 /* 1768 * Might as well free the page if we can and it has 1769 * no valid data. We also free the page if the 1770 * buffer was used for direct I/O. 1771 */ 1772 #if 0 1773 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1774 m->hold_count == 0) { 1775 vm_page_busy(m); 1776 vm_page_protect(m, VM_PROT_NONE); 1777 vm_page_free(m); 1778 } else 1779 #endif 1780 if (bp->b_flags & B_DIRECT) { 1781 vm_page_try_to_free(m); 1782 } else if (vm_page_count_severe()) { 1783 m->act_count = bp->b_act_count; 1784 vm_page_try_to_cache(m); 1785 } else { 1786 m->act_count = bp->b_act_count; 1787 } 1788 } 1789 } 1790 lwkt_reltoken(&vm_token); 1791 1792 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), 1793 bp->b_xio.xio_npages); 1794 if (bp->b_bufsize) { 1795 bufspacewakeup(); 1796 bp->b_bufsize = 0; 1797 } 1798 bp->b_xio.xio_npages = 0; 1799 bp->b_flags &= ~B_VMIO; 1800 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1801 if (bp->b_vp) 1802 brelvp(bp); 1803 } 1804 1805 /* 1806 * vfs_bio_awrite: 1807 * 1808 * Implement clustered async writes for clearing out B_DELWRI buffers. 1809 * This is much better then the old way of writing only one buffer at 1810 * a time. Note that we may not be presented with the buffers in the 1811 * correct order, so we search for the cluster in both directions. 1812 * 1813 * The buffer is locked on call. 1814 */ 1815 int 1816 vfs_bio_awrite(struct buf *bp) 1817 { 1818 int i; 1819 int j; 1820 off_t loffset = bp->b_loffset; 1821 struct vnode *vp = bp->b_vp; 1822 int nbytes; 1823 struct buf *bpa; 1824 int nwritten; 1825 int size; 1826 1827 /* 1828 * right now we support clustered writing only to regular files. If 1829 * we find a clusterable block we could be in the middle of a cluster 1830 * rather then at the beginning. 1831 * 1832 * NOTE: b_bio1 contains the logical loffset and is aliased 1833 * to b_loffset. b_bio2 contains the translated block number. 1834 */ 1835 if ((vp->v_type == VREG) && 1836 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1837 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1838 1839 size = vp->v_mount->mnt_stat.f_iosize; 1840 1841 for (i = size; i < MAXPHYS; i += size) { 1842 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1843 BUF_REFCNT(bpa) == 0 && 1844 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1845 (B_DELWRI | B_CLUSTEROK)) && 1846 (bpa->b_bufsize == size)) { 1847 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1848 (bpa->b_bio2.bio_offset != 1849 bp->b_bio2.bio_offset + i)) 1850 break; 1851 } else { 1852 break; 1853 } 1854 } 1855 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1856 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1857 BUF_REFCNT(bpa) == 0 && 1858 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1859 (B_DELWRI | B_CLUSTEROK)) && 1860 (bpa->b_bufsize == size)) { 1861 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1862 (bpa->b_bio2.bio_offset != 1863 bp->b_bio2.bio_offset - j)) 1864 break; 1865 } else { 1866 break; 1867 } 1868 } 1869 j -= size; 1870 nbytes = (i + j); 1871 1872 /* 1873 * this is a possible cluster write 1874 */ 1875 if (nbytes != size) { 1876 BUF_UNLOCK(bp); 1877 nwritten = cluster_wbuild(vp, size, 1878 loffset - j, nbytes); 1879 return nwritten; 1880 } 1881 } 1882 1883 /* 1884 * default (old) behavior, writing out only one block 1885 * 1886 * XXX returns b_bufsize instead of b_bcount for nwritten? 1887 */ 1888 nwritten = bp->b_bufsize; 1889 bremfree(bp); 1890 bawrite(bp); 1891 1892 return nwritten; 1893 } 1894 1895 /* 1896 * getnewbuf: 1897 * 1898 * Find and initialize a new buffer header, freeing up existing buffers 1899 * in the bufqueues as necessary. The new buffer is returned locked. 1900 * 1901 * Important: B_INVAL is not set. If the caller wishes to throw the 1902 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1903 * 1904 * We block if: 1905 * We have insufficient buffer headers 1906 * We have insufficient buffer space 1907 * buffer_map is too fragmented ( space reservation fails ) 1908 * If we have to flush dirty buffers ( but we try to avoid this ) 1909 * 1910 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1911 * Instead we ask the buf daemon to do it for us. We attempt to 1912 * avoid piecemeal wakeups of the pageout daemon. 1913 * 1914 * MPALMOSTSAFE 1915 */ 1916 static struct buf * 1917 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1918 { 1919 struct buf *bp; 1920 struct buf *nbp; 1921 int defrag = 0; 1922 int nqindex; 1923 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1924 static int flushingbufs; 1925 1926 /* 1927 * We can't afford to block since we might be holding a vnode lock, 1928 * which may prevent system daemons from running. We deal with 1929 * low-memory situations by proactively returning memory and running 1930 * async I/O rather then sync I/O. 1931 */ 1932 1933 ++getnewbufcalls; 1934 --getnewbufrestarts; 1935 restart: 1936 ++getnewbufrestarts; 1937 1938 /* 1939 * Setup for scan. If we do not have enough free buffers, 1940 * we setup a degenerate case that immediately fails. Note 1941 * that if we are specially marked process, we are allowed to 1942 * dip into our reserves. 1943 * 1944 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1945 * 1946 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1947 * However, there are a number of cases (defragging, reusing, ...) 1948 * where we cannot backup. 1949 */ 1950 nqindex = BQUEUE_EMPTYKVA; 1951 spin_lock(&bufqspin); 1952 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1953 1954 if (nbp == NULL) { 1955 /* 1956 * If no EMPTYKVA buffers and we are either 1957 * defragging or reusing, locate a CLEAN buffer 1958 * to free or reuse. If bufspace useage is low 1959 * skip this step so we can allocate a new buffer. 1960 */ 1961 if (defrag || bufspace >= lobufspace) { 1962 nqindex = BQUEUE_CLEAN; 1963 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1964 } 1965 1966 /* 1967 * If we could not find or were not allowed to reuse a 1968 * CLEAN buffer, check to see if it is ok to use an EMPTY 1969 * buffer. We can only use an EMPTY buffer if allocating 1970 * its KVA would not otherwise run us out of buffer space. 1971 */ 1972 if (nbp == NULL && defrag == 0 && 1973 bufspace + maxsize < hibufspace) { 1974 nqindex = BQUEUE_EMPTY; 1975 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1976 } 1977 } 1978 1979 /* 1980 * Run scan, possibly freeing data and/or kva mappings on the fly 1981 * depending. 1982 * 1983 * WARNING! bufqspin is held! 1984 */ 1985 while ((bp = nbp) != NULL) { 1986 int qindex = nqindex; 1987 1988 nbp = TAILQ_NEXT(bp, b_freelist); 1989 1990 /* 1991 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1992 * cycles through the queue twice before being selected. 1993 */ 1994 if (qindex == BQUEUE_CLEAN && 1995 (bp->b_flags & B_AGE) == 0 && nbp) { 1996 bp->b_flags |= B_AGE; 1997 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 1998 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 1999 continue; 2000 } 2001 2002 /* 2003 * Calculate next bp ( we can only use it if we do not block 2004 * or do other fancy things ). 2005 */ 2006 if (nbp == NULL) { 2007 switch(qindex) { 2008 case BQUEUE_EMPTY: 2009 nqindex = BQUEUE_EMPTYKVA; 2010 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 2011 break; 2012 /* fall through */ 2013 case BQUEUE_EMPTYKVA: 2014 nqindex = BQUEUE_CLEAN; 2015 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 2016 break; 2017 /* fall through */ 2018 case BQUEUE_CLEAN: 2019 /* 2020 * nbp is NULL. 2021 */ 2022 break; 2023 } 2024 } 2025 2026 /* 2027 * Sanity Checks 2028 */ 2029 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 2030 2031 /* 2032 * Note: we no longer distinguish between VMIO and non-VMIO 2033 * buffers. 2034 */ 2035 KASSERT((bp->b_flags & B_DELWRI) == 0, 2036 ("delwri buffer %p found in queue %d", bp, qindex)); 2037 2038 /* 2039 * Do not try to reuse a buffer with a non-zero b_refs. 2040 * This is an unsynchronized test. A synchronized test 2041 * is also performed after we lock the buffer. 2042 */ 2043 if (bp->b_refs) 2044 continue; 2045 2046 /* 2047 * If we are defragging then we need a buffer with 2048 * b_kvasize != 0. XXX this situation should no longer 2049 * occur, if defrag is non-zero the buffer's b_kvasize 2050 * should also be non-zero at this point. XXX 2051 */ 2052 if (defrag && bp->b_kvasize == 0) { 2053 kprintf("Warning: defrag empty buffer %p\n", bp); 2054 continue; 2055 } 2056 2057 /* 2058 * Start freeing the bp. This is somewhat involved. nbp 2059 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 2060 * on the clean list must be disassociated from their 2061 * current vnode. Buffers on the empty[kva] lists have 2062 * already been disassociated. 2063 */ 2064 2065 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2066 spin_unlock(&bufqspin); 2067 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 2068 goto restart; 2069 } 2070 if (bp->b_qindex != qindex) { 2071 spin_unlock(&bufqspin); 2072 kprintf("getnewbuf: warning, BUF_LOCK blocked " 2073 "unexpectedly on buf %p index %d->%d, " 2074 "race corrected\n", 2075 bp, qindex, bp->b_qindex); 2076 BUF_UNLOCK(bp); 2077 goto restart; 2078 } 2079 bremfree_locked(bp); 2080 spin_unlock(&bufqspin); 2081 2082 /* 2083 * Dependancies must be handled before we disassociate the 2084 * vnode. 2085 * 2086 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2087 * be immediately disassociated. HAMMER then becomes 2088 * responsible for releasing the buffer. 2089 * 2090 * NOTE: bufqspin is UNLOCKED now. 2091 */ 2092 if (LIST_FIRST(&bp->b_dep) != NULL) { 2093 buf_deallocate(bp); 2094 if (bp->b_flags & B_LOCKED) { 2095 bqrelse(bp); 2096 goto restart; 2097 } 2098 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2099 } 2100 2101 if (qindex == BQUEUE_CLEAN) { 2102 if (bp->b_flags & B_VMIO) 2103 vfs_vmio_release(bp); 2104 if (bp->b_vp) 2105 brelvp(bp); 2106 } 2107 2108 /* 2109 * NOTE: nbp is now entirely invalid. We can only restart 2110 * the scan from this point on. 2111 * 2112 * Get the rest of the buffer freed up. b_kva* is still 2113 * valid after this operation. 2114 */ 2115 2116 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 2117 KKASSERT((bp->b_flags & B_HASHED) == 0); 2118 2119 /* 2120 * critical section protection is not required when 2121 * scrapping a buffer's contents because it is already 2122 * wired. 2123 */ 2124 if (bp->b_bufsize) 2125 allocbuf(bp, 0); 2126 2127 bp->b_flags = B_BNOCLIP; 2128 bp->b_cmd = BUF_CMD_DONE; 2129 bp->b_vp = NULL; 2130 bp->b_error = 0; 2131 bp->b_resid = 0; 2132 bp->b_bcount = 0; 2133 bp->b_xio.xio_npages = 0; 2134 bp->b_dirtyoff = bp->b_dirtyend = 0; 2135 bp->b_act_count = ACT_INIT; 2136 reinitbufbio(bp); 2137 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2138 buf_dep_init(bp); 2139 if (blkflags & GETBLK_BHEAVY) 2140 bp->b_flags |= B_HEAVY; 2141 2142 /* 2143 * If we are defragging then free the buffer. 2144 */ 2145 if (defrag) { 2146 bp->b_flags |= B_INVAL; 2147 bfreekva(bp); 2148 brelse(bp); 2149 defrag = 0; 2150 goto restart; 2151 } 2152 2153 /* 2154 * If we are overcomitted then recover the buffer and its 2155 * KVM space. This occurs in rare situations when multiple 2156 * processes are blocked in getnewbuf() or allocbuf(). 2157 */ 2158 if (bufspace >= hibufspace) 2159 flushingbufs = 1; 2160 if (flushingbufs && bp->b_kvasize != 0) { 2161 bp->b_flags |= B_INVAL; 2162 bfreekva(bp); 2163 brelse(bp); 2164 goto restart; 2165 } 2166 if (bufspace < lobufspace) 2167 flushingbufs = 0; 2168 2169 /* 2170 * The brelvp() above interlocked the buffer, test b_refs 2171 * to determine if the buffer can be reused. b_refs 2172 * interlocks lookup/blocking-lock operations and allowing 2173 * buffer reuse can create deadlocks depending on what 2174 * (vp,loffset) is assigned to the reused buffer (see getblk). 2175 */ 2176 if (bp->b_refs) { 2177 bp->b_flags |= B_INVAL; 2178 bfreekva(bp); 2179 brelse(bp); 2180 goto restart; 2181 } 2182 2183 break; 2184 /* NOT REACHED, bufqspin not held */ 2185 } 2186 2187 /* 2188 * If we exhausted our list, sleep as appropriate. We may have to 2189 * wakeup various daemons and write out some dirty buffers. 2190 * 2191 * Generally we are sleeping due to insufficient buffer space. 2192 * 2193 * NOTE: bufqspin is held if bp is NULL, else it is not held. 2194 */ 2195 if (bp == NULL) { 2196 int flags; 2197 char *waitmsg; 2198 2199 spin_unlock(&bufqspin); 2200 if (defrag) { 2201 flags = VFS_BIO_NEED_BUFSPACE; 2202 waitmsg = "nbufkv"; 2203 } else if (bufspace >= hibufspace) { 2204 waitmsg = "nbufbs"; 2205 flags = VFS_BIO_NEED_BUFSPACE; 2206 } else { 2207 waitmsg = "newbuf"; 2208 flags = VFS_BIO_NEED_ANY; 2209 } 2210 2211 bd_speedup(); /* heeeelp */ 2212 spin_lock(&bufcspin); 2213 needsbuffer |= flags; 2214 while (needsbuffer & flags) { 2215 if (ssleep(&needsbuffer, &bufcspin, 2216 slpflags, waitmsg, slptimeo)) { 2217 spin_unlock(&bufcspin); 2218 return (NULL); 2219 } 2220 } 2221 spin_unlock(&bufcspin); 2222 } else { 2223 /* 2224 * We finally have a valid bp. We aren't quite out of the 2225 * woods, we still have to reserve kva space. In order 2226 * to keep fragmentation sane we only allocate kva in 2227 * BKVASIZE chunks. 2228 * 2229 * (bufqspin is not held) 2230 */ 2231 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2232 2233 if (maxsize != bp->b_kvasize) { 2234 vm_offset_t addr = 0; 2235 int count; 2236 2237 bfreekva(bp); 2238 2239 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2240 vm_map_lock(&buffer_map); 2241 2242 if (vm_map_findspace(&buffer_map, 2243 vm_map_min(&buffer_map), maxsize, 2244 maxsize, 0, &addr)) { 2245 /* 2246 * Uh oh. Buffer map is too fragmented. We 2247 * must defragment the map. 2248 */ 2249 vm_map_unlock(&buffer_map); 2250 vm_map_entry_release(count); 2251 ++bufdefragcnt; 2252 defrag = 1; 2253 bp->b_flags |= B_INVAL; 2254 brelse(bp); 2255 goto restart; 2256 } 2257 if (addr) { 2258 vm_map_insert(&buffer_map, &count, 2259 NULL, 0, 2260 addr, addr + maxsize, 2261 VM_MAPTYPE_NORMAL, 2262 VM_PROT_ALL, VM_PROT_ALL, 2263 MAP_NOFAULT); 2264 2265 bp->b_kvabase = (caddr_t) addr; 2266 bp->b_kvasize = maxsize; 2267 bufspace += bp->b_kvasize; 2268 ++bufreusecnt; 2269 } 2270 vm_map_unlock(&buffer_map); 2271 vm_map_entry_release(count); 2272 } 2273 bp->b_data = bp->b_kvabase; 2274 } 2275 return(bp); 2276 } 2277 2278 /* 2279 * This routine is called in an emergency to recover VM pages from the 2280 * buffer cache by cashing in clean buffers. The idea is to recover 2281 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2282 * 2283 * MPSAFE 2284 */ 2285 static int 2286 recoverbufpages(void) 2287 { 2288 struct buf *bp; 2289 int bytes = 0; 2290 2291 ++recoverbufcalls; 2292 2293 spin_lock(&bufqspin); 2294 while (bytes < MAXBSIZE) { 2295 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2296 if (bp == NULL) 2297 break; 2298 2299 /* 2300 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2301 * cycles through the queue twice before being selected. 2302 */ 2303 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2304 bp->b_flags |= B_AGE; 2305 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2306 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2307 bp, b_freelist); 2308 continue; 2309 } 2310 2311 /* 2312 * Sanity Checks 2313 */ 2314 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2315 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2316 2317 /* 2318 * Start freeing the bp. This is somewhat involved. 2319 * 2320 * Buffers on the clean list must be disassociated from 2321 * their current vnode 2322 */ 2323 2324 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2325 kprintf("recoverbufpages: warning, locked buf %p, " 2326 "race corrected\n", 2327 bp); 2328 ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100); 2329 continue; 2330 } 2331 if (bp->b_qindex != BQUEUE_CLEAN) { 2332 kprintf("recoverbufpages: warning, BUF_LOCK blocked " 2333 "unexpectedly on buf %p index %d, race " 2334 "corrected\n", 2335 bp, bp->b_qindex); 2336 BUF_UNLOCK(bp); 2337 continue; 2338 } 2339 bremfree_locked(bp); 2340 spin_unlock(&bufqspin); 2341 2342 /* 2343 * Dependancies must be handled before we disassociate the 2344 * vnode. 2345 * 2346 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2347 * be immediately disassociated. HAMMER then becomes 2348 * responsible for releasing the buffer. 2349 */ 2350 if (LIST_FIRST(&bp->b_dep) != NULL) { 2351 buf_deallocate(bp); 2352 if (bp->b_flags & B_LOCKED) { 2353 bqrelse(bp); 2354 spin_lock(&bufqspin); 2355 continue; 2356 } 2357 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2358 } 2359 2360 bytes += bp->b_bufsize; 2361 2362 if (bp->b_flags & B_VMIO) { 2363 bp->b_flags |= B_DIRECT; /* try to free pages */ 2364 vfs_vmio_release(bp); 2365 } 2366 if (bp->b_vp) 2367 brelvp(bp); 2368 2369 KKASSERT(bp->b_vp == NULL); 2370 KKASSERT((bp->b_flags & B_HASHED) == 0); 2371 2372 /* 2373 * critical section protection is not required when 2374 * scrapping a buffer's contents because it is already 2375 * wired. 2376 */ 2377 if (bp->b_bufsize) 2378 allocbuf(bp, 0); 2379 2380 bp->b_flags = B_BNOCLIP; 2381 bp->b_cmd = BUF_CMD_DONE; 2382 bp->b_vp = NULL; 2383 bp->b_error = 0; 2384 bp->b_resid = 0; 2385 bp->b_bcount = 0; 2386 bp->b_xio.xio_npages = 0; 2387 bp->b_dirtyoff = bp->b_dirtyend = 0; 2388 reinitbufbio(bp); 2389 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2390 buf_dep_init(bp); 2391 bp->b_flags |= B_INVAL; 2392 /* bfreekva(bp); */ 2393 brelse(bp); 2394 spin_lock(&bufqspin); 2395 } 2396 spin_unlock(&bufqspin); 2397 return(bytes); 2398 } 2399 2400 /* 2401 * buf_daemon: 2402 * 2403 * Buffer flushing daemon. Buffers are normally flushed by the 2404 * update daemon but if it cannot keep up this process starts to 2405 * take the load in an attempt to prevent getnewbuf() from blocking. 2406 * 2407 * Once a flush is initiated it does not stop until the number 2408 * of buffers falls below lodirtybuffers, but we will wake up anyone 2409 * waiting at the mid-point. 2410 */ 2411 2412 static struct kproc_desc buf_kp = { 2413 "bufdaemon", 2414 buf_daemon, 2415 &bufdaemon_td 2416 }; 2417 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2418 kproc_start, &buf_kp) 2419 2420 static struct kproc_desc bufhw_kp = { 2421 "bufdaemon_hw", 2422 buf_daemon_hw, 2423 &bufdaemonhw_td 2424 }; 2425 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2426 kproc_start, &bufhw_kp) 2427 2428 /* 2429 * MPSAFE thread 2430 */ 2431 static void 2432 buf_daemon(void) 2433 { 2434 int limit; 2435 2436 /* 2437 * This process needs to be suspended prior to shutdown sync. 2438 */ 2439 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2440 bufdaemon_td, SHUTDOWN_PRI_LAST); 2441 curthread->td_flags |= TDF_SYSTHREAD; 2442 2443 /* 2444 * This process is allowed to take the buffer cache to the limit 2445 */ 2446 for (;;) { 2447 kproc_suspend_loop(); 2448 2449 /* 2450 * Do the flush as long as the number of dirty buffers 2451 * (including those running) exceeds lodirtybufspace. 2452 * 2453 * When flushing limit running I/O to hirunningspace 2454 * Do the flush. Limit the amount of in-transit I/O we 2455 * allow to build up, otherwise we would completely saturate 2456 * the I/O system. Wakeup any waiting processes before we 2457 * normally would so they can run in parallel with our drain. 2458 * 2459 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2460 * but because we split the operation into two threads we 2461 * have to cut it in half for each thread. 2462 */ 2463 waitrunningbufspace(); 2464 limit = lodirtybufspace / 2; 2465 while (runningbufspace + dirtybufspace > limit || 2466 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2467 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2468 break; 2469 if (runningbufspace < hirunningspace) 2470 continue; 2471 waitrunningbufspace(); 2472 } 2473 2474 /* 2475 * We reached our low water mark, reset the 2476 * request and sleep until we are needed again. 2477 * The sleep is just so the suspend code works. 2478 */ 2479 spin_lock(&bufcspin); 2480 if (bd_request == 0) 2481 ssleep(&bd_request, &bufcspin, 0, "psleep", hz); 2482 bd_request = 0; 2483 spin_unlock(&bufcspin); 2484 } 2485 } 2486 2487 /* 2488 * MPSAFE thread 2489 */ 2490 static void 2491 buf_daemon_hw(void) 2492 { 2493 int limit; 2494 2495 /* 2496 * This process needs to be suspended prior to shutdown sync. 2497 */ 2498 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2499 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2500 curthread->td_flags |= TDF_SYSTHREAD; 2501 2502 /* 2503 * This process is allowed to take the buffer cache to the limit 2504 */ 2505 for (;;) { 2506 kproc_suspend_loop(); 2507 2508 /* 2509 * Do the flush. Limit the amount of in-transit I/O we 2510 * allow to build up, otherwise we would completely saturate 2511 * the I/O system. Wakeup any waiting processes before we 2512 * normally would so they can run in parallel with our drain. 2513 * 2514 * Once we decide to flush push the queued I/O up to 2515 * hirunningspace in order to trigger bursting by the bioq 2516 * subsystem. 2517 * 2518 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2519 * but because we split the operation into two threads we 2520 * have to cut it in half for each thread. 2521 */ 2522 waitrunningbufspace(); 2523 limit = lodirtybufspace / 2; 2524 while (runningbufspace + dirtybufspacehw > limit || 2525 dirtybufcounthw >= nbuf / 2) { 2526 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2527 break; 2528 if (runningbufspace < hirunningspace) 2529 continue; 2530 waitrunningbufspace(); 2531 } 2532 2533 /* 2534 * We reached our low water mark, reset the 2535 * request and sleep until we are needed again. 2536 * The sleep is just so the suspend code works. 2537 */ 2538 spin_lock(&bufcspin); 2539 if (bd_request_hw == 0) 2540 ssleep(&bd_request_hw, &bufcspin, 0, "psleep", hz); 2541 bd_request_hw = 0; 2542 spin_unlock(&bufcspin); 2543 } 2544 } 2545 2546 /* 2547 * flushbufqueues: 2548 * 2549 * Try to flush a buffer in the dirty queue. We must be careful to 2550 * free up B_INVAL buffers instead of write them, which NFS is 2551 * particularly sensitive to. 2552 * 2553 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2554 * that we really want to try to get the buffer out and reuse it 2555 * due to the write load on the machine. 2556 * 2557 * We must lock the buffer in order to check its validity before we 2558 * can mess with its contents. bufqspin isn't enough. 2559 */ 2560 static int 2561 flushbufqueues(bufq_type_t q) 2562 { 2563 struct buf *bp; 2564 int r = 0; 2565 int spun; 2566 2567 spin_lock(&bufqspin); 2568 spun = 1; 2569 2570 bp = TAILQ_FIRST(&bufqueues[q]); 2571 while (bp) { 2572 if ((bp->b_flags & B_DELWRI) == 0) { 2573 kprintf("Unexpected clean buffer %p\n", bp); 2574 bp = TAILQ_NEXT(bp, b_freelist); 2575 continue; 2576 } 2577 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2578 bp = TAILQ_NEXT(bp, b_freelist); 2579 continue; 2580 } 2581 KKASSERT(bp->b_qindex == q); 2582 2583 /* 2584 * Must recheck B_DELWRI after successfully locking 2585 * the buffer. 2586 */ 2587 if ((bp->b_flags & B_DELWRI) == 0) { 2588 BUF_UNLOCK(bp); 2589 bp = TAILQ_NEXT(bp, b_freelist); 2590 continue; 2591 } 2592 2593 if (bp->b_flags & B_INVAL) { 2594 _bremfree(bp); 2595 spin_unlock(&bufqspin); 2596 spun = 0; 2597 brelse(bp); 2598 ++r; 2599 break; 2600 } 2601 2602 if (LIST_FIRST(&bp->b_dep) != NULL && 2603 (bp->b_flags & B_DEFERRED) == 0 && 2604 buf_countdeps(bp, 0)) { 2605 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2606 TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist); 2607 bp->b_flags |= B_DEFERRED; 2608 BUF_UNLOCK(bp); 2609 bp = TAILQ_FIRST(&bufqueues[q]); 2610 continue; 2611 } 2612 2613 /* 2614 * If the buffer has a dependancy, buf_checkwrite() must 2615 * also return 0 for us to be able to initate the write. 2616 * 2617 * If the buffer is flagged B_ERROR it may be requeued 2618 * over and over again, we try to avoid a live lock. 2619 * 2620 * NOTE: buf_checkwrite is MPSAFE. 2621 */ 2622 spin_unlock(&bufqspin); 2623 spun = 0; 2624 2625 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) { 2626 bremfree(bp); 2627 brelse(bp); 2628 } else if (bp->b_flags & B_ERROR) { 2629 tsleep(bp, 0, "bioer", 1); 2630 bp->b_flags &= ~B_AGE; 2631 vfs_bio_awrite(bp); 2632 } else { 2633 bp->b_flags |= B_AGE; 2634 vfs_bio_awrite(bp); 2635 } 2636 ++r; 2637 break; 2638 } 2639 if (spun) 2640 spin_unlock(&bufqspin); 2641 return (r); 2642 } 2643 2644 /* 2645 * inmem: 2646 * 2647 * Returns true if no I/O is needed to access the associated VM object. 2648 * This is like findblk except it also hunts around in the VM system for 2649 * the data. 2650 * 2651 * Note that we ignore vm_page_free() races from interrupts against our 2652 * lookup, since if the caller is not protected our return value will not 2653 * be any more valid then otherwise once we exit the critical section. 2654 */ 2655 int 2656 inmem(struct vnode *vp, off_t loffset) 2657 { 2658 vm_object_t obj; 2659 vm_offset_t toff, tinc, size; 2660 vm_page_t m; 2661 2662 if (findblk(vp, loffset, FINDBLK_TEST)) 2663 return 1; 2664 if (vp->v_mount == NULL) 2665 return 0; 2666 if ((obj = vp->v_object) == NULL) 2667 return 0; 2668 2669 size = PAGE_SIZE; 2670 if (size > vp->v_mount->mnt_stat.f_iosize) 2671 size = vp->v_mount->mnt_stat.f_iosize; 2672 2673 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2674 lwkt_gettoken(&vm_token); 2675 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2676 lwkt_reltoken(&vm_token); 2677 if (m == NULL) 2678 return 0; 2679 tinc = size; 2680 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2681 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2682 if (vm_page_is_valid(m, 2683 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2684 return 0; 2685 } 2686 return 1; 2687 } 2688 2689 /* 2690 * findblk: 2691 * 2692 * Locate and return the specified buffer. Unless flagged otherwise, 2693 * a locked buffer will be returned if it exists or NULL if it does not. 2694 * 2695 * findblk()'d buffers are still on the bufqueues and if you intend 2696 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2697 * and possibly do other stuff to it. 2698 * 2699 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2700 * for locking the buffer and ensuring that it remains 2701 * the desired buffer after locking. 2702 * 2703 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2704 * to acquire the lock we return NULL, even if the 2705 * buffer exists. 2706 * 2707 * FINDBLK_REF - Returns the buffer ref'd, which prevents reuse 2708 * by getnewbuf() but does not prevent disassociation 2709 * while we are locked. Used to avoid deadlocks 2710 * against random (vp,loffset)s due to reassignment. 2711 * 2712 * (0) - Lock the buffer blocking. 2713 * 2714 * MPSAFE 2715 */ 2716 struct buf * 2717 findblk(struct vnode *vp, off_t loffset, int flags) 2718 { 2719 struct buf *bp; 2720 int lkflags; 2721 2722 lkflags = LK_EXCLUSIVE; 2723 if (flags & FINDBLK_NBLOCK) 2724 lkflags |= LK_NOWAIT; 2725 2726 for (;;) { 2727 /* 2728 * Lookup. Ref the buf while holding v_token to prevent 2729 * reuse (but does not prevent diassociation). 2730 */ 2731 lwkt_gettoken(&vp->v_token); 2732 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2733 if (bp == NULL) { 2734 lwkt_reltoken(&vp->v_token); 2735 return(NULL); 2736 } 2737 atomic_add_int(&bp->b_refs, 1); 2738 lwkt_reltoken(&vp->v_token); 2739 2740 /* 2741 * If testing only break and return bp, do not lock. 2742 */ 2743 if (flags & FINDBLK_TEST) 2744 break; 2745 2746 /* 2747 * Lock the buffer, return an error if the lock fails. 2748 * (only FINDBLK_NBLOCK can cause the lock to fail). 2749 */ 2750 if (BUF_LOCK(bp, lkflags)) { 2751 atomic_subtract_int(&bp->b_refs, 1); 2752 /* bp = NULL; not needed */ 2753 return(NULL); 2754 } 2755 2756 /* 2757 * Revalidate the locked buf before allowing it to be 2758 * returned. 2759 */ 2760 if (bp->b_vp == vp && bp->b_loffset == loffset) 2761 break; 2762 atomic_subtract_int(&bp->b_refs, 1); 2763 BUF_UNLOCK(bp); 2764 } 2765 2766 /* 2767 * Success 2768 */ 2769 if ((flags & FINDBLK_REF) == 0) 2770 atomic_subtract_int(&bp->b_refs, 1); 2771 return(bp); 2772 } 2773 2774 void 2775 unrefblk(struct buf *bp) 2776 { 2777 atomic_subtract_int(&bp->b_refs, 1); 2778 } 2779 2780 /* 2781 * getcacheblk: 2782 * 2783 * Similar to getblk() except only returns the buffer if it is 2784 * B_CACHE and requires no other manipulation. Otherwise NULL 2785 * is returned. 2786 * 2787 * If B_RAM is set the buffer might be just fine, but we return 2788 * NULL anyway because we want the code to fall through to the 2789 * cluster read. Otherwise read-ahead breaks. 2790 */ 2791 struct buf * 2792 getcacheblk(struct vnode *vp, off_t loffset) 2793 { 2794 struct buf *bp; 2795 2796 bp = findblk(vp, loffset, 0); 2797 if (bp) { 2798 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) { 2799 bp->b_flags &= ~B_AGE; 2800 bremfree(bp); 2801 } else { 2802 BUF_UNLOCK(bp); 2803 bp = NULL; 2804 } 2805 } 2806 return (bp); 2807 } 2808 2809 /* 2810 * getblk: 2811 * 2812 * Get a block given a specified block and offset into a file/device. 2813 * B_INVAL may or may not be set on return. The caller should clear 2814 * B_INVAL prior to initiating a READ. 2815 * 2816 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2817 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2818 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2819 * without doing any of those things the system will likely believe 2820 * the buffer to be valid (especially if it is not B_VMIO), and the 2821 * next getblk() will return the buffer with B_CACHE set. 2822 * 2823 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2824 * an existing buffer. 2825 * 2826 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2827 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2828 * and then cleared based on the backing VM. If the previous buffer is 2829 * non-0-sized but invalid, B_CACHE will be cleared. 2830 * 2831 * If getblk() must create a new buffer, the new buffer is returned with 2832 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2833 * case it is returned with B_INVAL clear and B_CACHE set based on the 2834 * backing VM. 2835 * 2836 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2837 * B_CACHE bit is clear. 2838 * 2839 * What this means, basically, is that the caller should use B_CACHE to 2840 * determine whether the buffer is fully valid or not and should clear 2841 * B_INVAL prior to issuing a read. If the caller intends to validate 2842 * the buffer by loading its data area with something, the caller needs 2843 * to clear B_INVAL. If the caller does this without issuing an I/O, 2844 * the caller should set B_CACHE ( as an optimization ), else the caller 2845 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2846 * a write attempt or if it was a successfull read. If the caller 2847 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2848 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2849 * 2850 * getblk flags: 2851 * 2852 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2853 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2854 * 2855 * MPALMOSTSAFE 2856 */ 2857 struct buf * 2858 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2859 { 2860 struct buf *bp; 2861 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2862 int error; 2863 int lkflags; 2864 2865 if (size > MAXBSIZE) 2866 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2867 if (vp->v_object == NULL) 2868 panic("getblk: vnode %p has no object!", vp); 2869 2870 loop: 2871 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) { 2872 /* 2873 * The buffer was found in the cache, but we need to lock it. 2874 * We must acquire a ref on the bp to prevent reuse, but 2875 * this will not prevent disassociation (brelvp()) so we 2876 * must recheck (vp,loffset) after acquiring the lock. 2877 * 2878 * Without the ref the buffer could potentially be reused 2879 * before we acquire the lock and create a deadlock 2880 * situation between the thread trying to reuse the buffer 2881 * and us due to the fact that we would wind up blocking 2882 * on a random (vp,loffset). 2883 */ 2884 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2885 if (blkflags & GETBLK_NOWAIT) { 2886 unrefblk(bp); 2887 return(NULL); 2888 } 2889 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2890 if (blkflags & GETBLK_PCATCH) 2891 lkflags |= LK_PCATCH; 2892 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2893 if (error) { 2894 unrefblk(bp); 2895 if (error == ENOLCK) 2896 goto loop; 2897 return (NULL); 2898 } 2899 /* buffer may have changed on us */ 2900 } 2901 unrefblk(bp); 2902 2903 /* 2904 * Once the buffer has been locked, make sure we didn't race 2905 * a buffer recyclement. Buffers that are no longer hashed 2906 * will have b_vp == NULL, so this takes care of that check 2907 * as well. 2908 */ 2909 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2910 kprintf("Warning buffer %p (vp %p loffset %lld) " 2911 "was recycled\n", 2912 bp, vp, (long long)loffset); 2913 BUF_UNLOCK(bp); 2914 goto loop; 2915 } 2916 2917 /* 2918 * If SZMATCH any pre-existing buffer must be of the requested 2919 * size or NULL is returned. The caller absolutely does not 2920 * want getblk() to bwrite() the buffer on a size mismatch. 2921 */ 2922 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2923 BUF_UNLOCK(bp); 2924 return(NULL); 2925 } 2926 2927 /* 2928 * All vnode-based buffers must be backed by a VM object. 2929 */ 2930 KKASSERT(bp->b_flags & B_VMIO); 2931 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2932 bp->b_flags &= ~B_AGE; 2933 2934 /* 2935 * Make sure that B_INVAL buffers do not have a cached 2936 * block number translation. 2937 */ 2938 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2939 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 2940 " did not have cleared bio_offset cache\n", 2941 bp, vp, (long long)loffset); 2942 clearbiocache(&bp->b_bio2); 2943 } 2944 2945 /* 2946 * The buffer is locked. B_CACHE is cleared if the buffer is 2947 * invalid. 2948 */ 2949 if (bp->b_flags & B_INVAL) 2950 bp->b_flags &= ~B_CACHE; 2951 bremfree(bp); 2952 2953 /* 2954 * Any size inconsistancy with a dirty buffer or a buffer 2955 * with a softupdates dependancy must be resolved. Resizing 2956 * the buffer in such circumstances can lead to problems. 2957 * 2958 * Dirty or dependant buffers are written synchronously. 2959 * Other types of buffers are simply released and 2960 * reconstituted as they may be backed by valid, dirty VM 2961 * pages (but not marked B_DELWRI). 2962 * 2963 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 2964 * and may be left over from a prior truncation (and thus 2965 * no longer represent the actual EOF point), so we 2966 * definitely do not want to B_NOCACHE the backing store. 2967 */ 2968 if (size != bp->b_bcount) { 2969 if (bp->b_flags & B_DELWRI) { 2970 bp->b_flags |= B_RELBUF; 2971 bwrite(bp); 2972 } else if (LIST_FIRST(&bp->b_dep)) { 2973 bp->b_flags |= B_RELBUF; 2974 bwrite(bp); 2975 } else { 2976 bp->b_flags |= B_RELBUF; 2977 brelse(bp); 2978 } 2979 goto loop; 2980 } 2981 KKASSERT(size <= bp->b_kvasize); 2982 KASSERT(bp->b_loffset != NOOFFSET, 2983 ("getblk: no buffer offset")); 2984 2985 /* 2986 * A buffer with B_DELWRI set and B_CACHE clear must 2987 * be committed before we can return the buffer in 2988 * order to prevent the caller from issuing a read 2989 * ( due to B_CACHE not being set ) and overwriting 2990 * it. 2991 * 2992 * Most callers, including NFS and FFS, need this to 2993 * operate properly either because they assume they 2994 * can issue a read if B_CACHE is not set, or because 2995 * ( for example ) an uncached B_DELWRI might loop due 2996 * to softupdates re-dirtying the buffer. In the latter 2997 * case, B_CACHE is set after the first write completes, 2998 * preventing further loops. 2999 * 3000 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 3001 * above while extending the buffer, we cannot allow the 3002 * buffer to remain with B_CACHE set after the write 3003 * completes or it will represent a corrupt state. To 3004 * deal with this we set B_NOCACHE to scrap the buffer 3005 * after the write. 3006 * 3007 * XXX Should this be B_RELBUF instead of B_NOCACHE? 3008 * I'm not even sure this state is still possible 3009 * now that getblk() writes out any dirty buffers 3010 * on size changes. 3011 * 3012 * We might be able to do something fancy, like setting 3013 * B_CACHE in bwrite() except if B_DELWRI is already set, 3014 * so the below call doesn't set B_CACHE, but that gets real 3015 * confusing. This is much easier. 3016 */ 3017 3018 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 3019 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 3020 "and CACHE clear, b_flags %08x\n", 3021 bp, (intmax_t)bp->b_loffset, bp->b_flags); 3022 bp->b_flags |= B_NOCACHE; 3023 bwrite(bp); 3024 goto loop; 3025 } 3026 } else { 3027 /* 3028 * Buffer is not in-core, create new buffer. The buffer 3029 * returned by getnewbuf() is locked. Note that the returned 3030 * buffer is also considered valid (not marked B_INVAL). 3031 * 3032 * Calculating the offset for the I/O requires figuring out 3033 * the block size. We use DEV_BSIZE for VBLK or VCHR and 3034 * the mount's f_iosize otherwise. If the vnode does not 3035 * have an associated mount we assume that the passed size is 3036 * the block size. 3037 * 3038 * Note that vn_isdisk() cannot be used here since it may 3039 * return a failure for numerous reasons. Note that the 3040 * buffer size may be larger then the block size (the caller 3041 * will use block numbers with the proper multiple). Beware 3042 * of using any v_* fields which are part of unions. In 3043 * particular, in DragonFly the mount point overloading 3044 * mechanism uses the namecache only and the underlying 3045 * directory vnode is not a special case. 3046 */ 3047 int bsize, maxsize; 3048 3049 if (vp->v_type == VBLK || vp->v_type == VCHR) 3050 bsize = DEV_BSIZE; 3051 else if (vp->v_mount) 3052 bsize = vp->v_mount->mnt_stat.f_iosize; 3053 else 3054 bsize = size; 3055 3056 maxsize = size + (loffset & PAGE_MASK); 3057 maxsize = imax(maxsize, bsize); 3058 3059 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 3060 if (bp == NULL) { 3061 if (slpflags || slptimeo) 3062 return NULL; 3063 goto loop; 3064 } 3065 3066 /* 3067 * Atomically insert the buffer into the hash, so that it can 3068 * be found by findblk(). 3069 * 3070 * If bgetvp() returns non-zero a collision occured, and the 3071 * bp will not be associated with the vnode. 3072 * 3073 * Make sure the translation layer has been cleared. 3074 */ 3075 bp->b_loffset = loffset; 3076 bp->b_bio2.bio_offset = NOOFFSET; 3077 /* bp->b_bio2.bio_next = NULL; */ 3078 3079 if (bgetvp(vp, bp, size)) { 3080 bp->b_flags |= B_INVAL; 3081 brelse(bp); 3082 goto loop; 3083 } 3084 3085 /* 3086 * All vnode-based buffers must be backed by a VM object. 3087 */ 3088 KKASSERT(vp->v_object != NULL); 3089 bp->b_flags |= B_VMIO; 3090 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3091 3092 allocbuf(bp, size); 3093 } 3094 KKASSERT(dsched_is_clear_buf_priv(bp)); 3095 return (bp); 3096 } 3097 3098 /* 3099 * regetblk(bp) 3100 * 3101 * Reacquire a buffer that was previously released to the locked queue, 3102 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 3103 * set B_LOCKED (which handles the acquisition race). 3104 * 3105 * To this end, either B_LOCKED must be set or the dependancy list must be 3106 * non-empty. 3107 * 3108 * MPSAFE 3109 */ 3110 void 3111 regetblk(struct buf *bp) 3112 { 3113 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 3114 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 3115 bremfree(bp); 3116 } 3117 3118 /* 3119 * geteblk: 3120 * 3121 * Get an empty, disassociated buffer of given size. The buffer is 3122 * initially set to B_INVAL. 3123 * 3124 * critical section protection is not required for the allocbuf() 3125 * call because races are impossible here. 3126 * 3127 * MPALMOSTSAFE 3128 */ 3129 struct buf * 3130 geteblk(int size) 3131 { 3132 struct buf *bp; 3133 int maxsize; 3134 3135 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3136 3137 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 3138 ; 3139 allocbuf(bp, size); 3140 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3141 KKASSERT(dsched_is_clear_buf_priv(bp)); 3142 return (bp); 3143 } 3144 3145 3146 /* 3147 * allocbuf: 3148 * 3149 * This code constitutes the buffer memory from either anonymous system 3150 * memory (in the case of non-VMIO operations) or from an associated 3151 * VM object (in the case of VMIO operations). This code is able to 3152 * resize a buffer up or down. 3153 * 3154 * Note that this code is tricky, and has many complications to resolve 3155 * deadlock or inconsistant data situations. Tread lightly!!! 3156 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3157 * the caller. Calling this code willy nilly can result in the loss of 3158 * data. 3159 * 3160 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3161 * B_CACHE for the non-VMIO case. 3162 * 3163 * This routine does not need to be called from a critical section but you 3164 * must own the buffer. 3165 * 3166 * MPSAFE 3167 */ 3168 int 3169 allocbuf(struct buf *bp, int size) 3170 { 3171 int newbsize, mbsize; 3172 int i; 3173 3174 if (BUF_REFCNT(bp) == 0) 3175 panic("allocbuf: buffer not busy"); 3176 3177 if (bp->b_kvasize < size) 3178 panic("allocbuf: buffer too small"); 3179 3180 if ((bp->b_flags & B_VMIO) == 0) { 3181 caddr_t origbuf; 3182 int origbufsize; 3183 /* 3184 * Just get anonymous memory from the kernel. Don't 3185 * mess with B_CACHE. 3186 */ 3187 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3188 if (bp->b_flags & B_MALLOC) 3189 newbsize = mbsize; 3190 else 3191 newbsize = round_page(size); 3192 3193 if (newbsize < bp->b_bufsize) { 3194 /* 3195 * Malloced buffers are not shrunk 3196 */ 3197 if (bp->b_flags & B_MALLOC) { 3198 if (newbsize) { 3199 bp->b_bcount = size; 3200 } else { 3201 kfree(bp->b_data, M_BIOBUF); 3202 if (bp->b_bufsize) { 3203 atomic_subtract_int(&bufmallocspace, bp->b_bufsize); 3204 bufspacewakeup(); 3205 bp->b_bufsize = 0; 3206 } 3207 bp->b_data = bp->b_kvabase; 3208 bp->b_bcount = 0; 3209 bp->b_flags &= ~B_MALLOC; 3210 } 3211 return 1; 3212 } 3213 vm_hold_free_pages( 3214 bp, 3215 (vm_offset_t) bp->b_data + newbsize, 3216 (vm_offset_t) bp->b_data + bp->b_bufsize); 3217 } else if (newbsize > bp->b_bufsize) { 3218 /* 3219 * We only use malloced memory on the first allocation. 3220 * and revert to page-allocated memory when the buffer 3221 * grows. 3222 */ 3223 if ((bufmallocspace < maxbufmallocspace) && 3224 (bp->b_bufsize == 0) && 3225 (mbsize <= PAGE_SIZE/2)) { 3226 3227 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3228 bp->b_bufsize = mbsize; 3229 bp->b_bcount = size; 3230 bp->b_flags |= B_MALLOC; 3231 atomic_add_int(&bufmallocspace, mbsize); 3232 return 1; 3233 } 3234 origbuf = NULL; 3235 origbufsize = 0; 3236 /* 3237 * If the buffer is growing on its other-than-first 3238 * allocation, then we revert to the page-allocation 3239 * scheme. 3240 */ 3241 if (bp->b_flags & B_MALLOC) { 3242 origbuf = bp->b_data; 3243 origbufsize = bp->b_bufsize; 3244 bp->b_data = bp->b_kvabase; 3245 if (bp->b_bufsize) { 3246 atomic_subtract_int(&bufmallocspace, 3247 bp->b_bufsize); 3248 bufspacewakeup(); 3249 bp->b_bufsize = 0; 3250 } 3251 bp->b_flags &= ~B_MALLOC; 3252 newbsize = round_page(newbsize); 3253 } 3254 vm_hold_load_pages( 3255 bp, 3256 (vm_offset_t) bp->b_data + bp->b_bufsize, 3257 (vm_offset_t) bp->b_data + newbsize); 3258 if (origbuf) { 3259 bcopy(origbuf, bp->b_data, origbufsize); 3260 kfree(origbuf, M_BIOBUF); 3261 } 3262 } 3263 } else { 3264 vm_page_t m; 3265 int desiredpages; 3266 3267 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3268 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3269 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3270 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3271 3272 if (bp->b_flags & B_MALLOC) 3273 panic("allocbuf: VMIO buffer can't be malloced"); 3274 /* 3275 * Set B_CACHE initially if buffer is 0 length or will become 3276 * 0-length. 3277 */ 3278 if (size == 0 || bp->b_bufsize == 0) 3279 bp->b_flags |= B_CACHE; 3280 3281 if (newbsize < bp->b_bufsize) { 3282 /* 3283 * DEV_BSIZE aligned new buffer size is less then the 3284 * DEV_BSIZE aligned existing buffer size. Figure out 3285 * if we have to remove any pages. 3286 */ 3287 if (desiredpages < bp->b_xio.xio_npages) { 3288 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3289 /* 3290 * the page is not freed here -- it 3291 * is the responsibility of 3292 * vnode_pager_setsize 3293 */ 3294 m = bp->b_xio.xio_pages[i]; 3295 KASSERT(m != bogus_page, 3296 ("allocbuf: bogus page found")); 3297 while (vm_page_sleep_busy(m, TRUE, "biodep")) 3298 ; 3299 3300 bp->b_xio.xio_pages[i] = NULL; 3301 vm_page_unwire(m, 0); 3302 } 3303 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3304 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3305 bp->b_xio.xio_npages = desiredpages; 3306 } 3307 } else if (size > bp->b_bcount) { 3308 /* 3309 * We are growing the buffer, possibly in a 3310 * byte-granular fashion. 3311 */ 3312 struct vnode *vp; 3313 vm_object_t obj; 3314 vm_offset_t toff; 3315 vm_offset_t tinc; 3316 3317 /* 3318 * Step 1, bring in the VM pages from the object, 3319 * allocating them if necessary. We must clear 3320 * B_CACHE if these pages are not valid for the 3321 * range covered by the buffer. 3322 * 3323 * critical section protection is required to protect 3324 * against interrupts unbusying and freeing pages 3325 * between our vm_page_lookup() and our 3326 * busycheck/wiring call. 3327 */ 3328 vp = bp->b_vp; 3329 obj = vp->v_object; 3330 3331 lwkt_gettoken(&vm_token); 3332 while (bp->b_xio.xio_npages < desiredpages) { 3333 vm_page_t m; 3334 vm_pindex_t pi; 3335 3336 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 3337 if ((m = vm_page_lookup(obj, pi)) == NULL) { 3338 /* 3339 * note: must allocate system pages 3340 * since blocking here could intefere 3341 * with paging I/O, no matter which 3342 * process we are. 3343 */ 3344 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3345 if (m) { 3346 vm_page_wire(m); 3347 vm_page_wakeup(m); 3348 vm_page_flag_clear(m, PG_ZERO); 3349 bp->b_flags &= ~B_CACHE; 3350 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3351 ++bp->b_xio.xio_npages; 3352 } 3353 continue; 3354 } 3355 3356 /* 3357 * We found a page. If we have to sleep on it, 3358 * retry because it might have gotten freed out 3359 * from under us. 3360 * 3361 * We can only test PG_BUSY here. Blocking on 3362 * m->busy might lead to a deadlock: 3363 * 3364 * vm_fault->getpages->cluster_read->allocbuf 3365 * 3366 */ 3367 3368 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 3369 continue; 3370 vm_page_flag_clear(m, PG_ZERO); 3371 vm_page_wire(m); 3372 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3373 ++bp->b_xio.xio_npages; 3374 if (bp->b_act_count < m->act_count) 3375 bp->b_act_count = m->act_count; 3376 } 3377 lwkt_reltoken(&vm_token); 3378 3379 /* 3380 * Step 2. We've loaded the pages into the buffer, 3381 * we have to figure out if we can still have B_CACHE 3382 * set. Note that B_CACHE is set according to the 3383 * byte-granular range ( bcount and size ), not the 3384 * aligned range ( newbsize ). 3385 * 3386 * The VM test is against m->valid, which is DEV_BSIZE 3387 * aligned. Needless to say, the validity of the data 3388 * needs to also be DEV_BSIZE aligned. Note that this 3389 * fails with NFS if the server or some other client 3390 * extends the file's EOF. If our buffer is resized, 3391 * B_CACHE may remain set! XXX 3392 */ 3393 3394 toff = bp->b_bcount; 3395 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3396 3397 while ((bp->b_flags & B_CACHE) && toff < size) { 3398 vm_pindex_t pi; 3399 3400 if (tinc > (size - toff)) 3401 tinc = size - toff; 3402 3403 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3404 PAGE_SHIFT; 3405 3406 vfs_buf_test_cache( 3407 bp, 3408 bp->b_loffset, 3409 toff, 3410 tinc, 3411 bp->b_xio.xio_pages[pi] 3412 ); 3413 toff += tinc; 3414 tinc = PAGE_SIZE; 3415 } 3416 3417 /* 3418 * Step 3, fixup the KVM pmap. Remember that 3419 * bp->b_data is relative to bp->b_loffset, but 3420 * bp->b_loffset may be offset into the first page. 3421 */ 3422 3423 bp->b_data = (caddr_t) 3424 trunc_page((vm_offset_t)bp->b_data); 3425 pmap_qenter( 3426 (vm_offset_t)bp->b_data, 3427 bp->b_xio.xio_pages, 3428 bp->b_xio.xio_npages 3429 ); 3430 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3431 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3432 } 3433 } 3434 3435 /* adjust space use on already-dirty buffer */ 3436 if (bp->b_flags & B_DELWRI) { 3437 spin_lock(&bufcspin); 3438 dirtybufspace += newbsize - bp->b_bufsize; 3439 if (bp->b_flags & B_HEAVY) 3440 dirtybufspacehw += newbsize - bp->b_bufsize; 3441 spin_unlock(&bufcspin); 3442 } 3443 if (newbsize < bp->b_bufsize) 3444 bufspacewakeup(); 3445 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3446 bp->b_bcount = size; /* requested buffer size */ 3447 return 1; 3448 } 3449 3450 /* 3451 * biowait: 3452 * 3453 * Wait for buffer I/O completion, returning error status. B_EINTR 3454 * is converted into an EINTR error but not cleared (since a chain 3455 * of biowait() calls may occur). 3456 * 3457 * On return bpdone() will have been called but the buffer will remain 3458 * locked and will not have been brelse()'d. 3459 * 3460 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3461 * likely still in progress on return. 3462 * 3463 * NOTE! This operation is on a BIO, not a BUF. 3464 * 3465 * NOTE! BIO_DONE is cleared by vn_strategy() 3466 * 3467 * MPSAFE 3468 */ 3469 static __inline int 3470 _biowait(struct bio *bio, const char *wmesg, int to) 3471 { 3472 struct buf *bp = bio->bio_buf; 3473 u_int32_t flags; 3474 u_int32_t nflags; 3475 int error; 3476 3477 KKASSERT(bio == &bp->b_bio1); 3478 for (;;) { 3479 flags = bio->bio_flags; 3480 if (flags & BIO_DONE) 3481 break; 3482 tsleep_interlock(bio, 0); 3483 nflags = flags | BIO_WANT; 3484 tsleep_interlock(bio, 0); 3485 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3486 if (wmesg) 3487 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3488 else if (bp->b_cmd == BUF_CMD_READ) 3489 error = tsleep(bio, PINTERLOCKED, "biord", to); 3490 else 3491 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3492 if (error) { 3493 kprintf("tsleep error biowait %d\n", error); 3494 return (error); 3495 } 3496 } 3497 } 3498 3499 /* 3500 * Finish up. 3501 */ 3502 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3503 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3504 if (bp->b_flags & B_EINTR) 3505 return (EINTR); 3506 if (bp->b_flags & B_ERROR) 3507 return (bp->b_error ? bp->b_error : EIO); 3508 return (0); 3509 } 3510 3511 int 3512 biowait(struct bio *bio, const char *wmesg) 3513 { 3514 return(_biowait(bio, wmesg, 0)); 3515 } 3516 3517 int 3518 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3519 { 3520 return(_biowait(bio, wmesg, to)); 3521 } 3522 3523 /* 3524 * This associates a tracking count with an I/O. vn_strategy() and 3525 * dev_dstrategy() do this automatically but there are a few cases 3526 * where a vnode or device layer is bypassed when a block translation 3527 * is cached. In such cases bio_start_transaction() may be called on 3528 * the bypassed layers so the system gets an I/O in progress indication 3529 * for those higher layers. 3530 */ 3531 void 3532 bio_start_transaction(struct bio *bio, struct bio_track *track) 3533 { 3534 bio->bio_track = track; 3535 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3536 dsched_new_buf(bio->bio_buf); 3537 bio_track_ref(track); 3538 } 3539 3540 /* 3541 * Initiate I/O on a vnode. 3542 * 3543 * SWAPCACHE OPERATION: 3544 * 3545 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately 3546 * devfs also uses b_vp for fake buffers so we also have to check 3547 * that B_PAGING is 0. In this case the passed 'vp' is probably the 3548 * underlying block device. The swap assignments are related to the 3549 * buffer cache buffer's b_vp, not the passed vp. 3550 * 3551 * The passed vp == bp->b_vp only in the case where the strategy call 3552 * is made on the vp itself for its own buffers (a regular file or 3553 * block device vp). The filesystem usually then re-calls vn_strategy() 3554 * after translating the request to an underlying device. 3555 * 3556 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the 3557 * underlying buffer cache buffers. 3558 * 3559 * We can only deal with page-aligned buffers at the moment, because 3560 * we can't tell what the real dirty state for pages straddling a buffer 3561 * are. 3562 * 3563 * In order to call swap_pager_strategy() we must provide the VM object 3564 * and base offset for the underlying buffer cache pages so it can find 3565 * the swap blocks. 3566 */ 3567 void 3568 vn_strategy(struct vnode *vp, struct bio *bio) 3569 { 3570 struct bio_track *track; 3571 struct buf *bp = bio->bio_buf; 3572 3573 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3574 3575 /* 3576 * Set when an I/O is issued on the bp. Cleared by consumers 3577 * (aka HAMMER), allowing the consumer to determine if I/O had 3578 * actually occurred. 3579 */ 3580 bp->b_flags |= B_IODEBUG; 3581 3582 /* 3583 * Handle the swap cache intercept. 3584 */ 3585 if (vn_cache_strategy(vp, bio)) 3586 return; 3587 3588 /* 3589 * Otherwise do the operation through the filesystem 3590 */ 3591 if (bp->b_cmd == BUF_CMD_READ) 3592 track = &vp->v_track_read; 3593 else 3594 track = &vp->v_track_write; 3595 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3596 bio->bio_track = track; 3597 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3598 dsched_new_buf(bio->bio_buf); 3599 bio_track_ref(track); 3600 vop_strategy(*vp->v_ops, vp, bio); 3601 } 3602 3603 int 3604 vn_cache_strategy(struct vnode *vp, struct bio *bio) 3605 { 3606 struct buf *bp = bio->bio_buf; 3607 struct bio *nbio; 3608 vm_object_t object; 3609 vm_page_t m; 3610 int i; 3611 3612 /* 3613 * Is this buffer cache buffer suitable for reading from 3614 * the swap cache? 3615 */ 3616 if (vm_swapcache_read_enable == 0 || 3617 bp->b_cmd != BUF_CMD_READ || 3618 ((bp->b_flags & B_CLUSTER) == 0 && 3619 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) || 3620 ((int)bp->b_loffset & PAGE_MASK) != 0 || 3621 (bp->b_bcount & PAGE_MASK) != 0) { 3622 return(0); 3623 } 3624 3625 /* 3626 * Figure out the original VM object (it will match the underlying 3627 * VM pages). Note that swap cached data uses page indices relative 3628 * to that object, not relative to bio->bio_offset. 3629 */ 3630 if (bp->b_flags & B_CLUSTER) 3631 object = vp->v_object; 3632 else 3633 object = bp->b_vp->v_object; 3634 3635 /* 3636 * In order to be able to use the swap cache all underlying VM 3637 * pages must be marked as such, and we can't have any bogus pages. 3638 */ 3639 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 3640 m = bp->b_xio.xio_pages[i]; 3641 if ((m->flags & PG_SWAPPED) == 0) 3642 break; 3643 if (m == bogus_page) 3644 break; 3645 } 3646 3647 /* 3648 * If we are good then issue the I/O using swap_pager_strategy() 3649 */ 3650 if (i == bp->b_xio.xio_npages) { 3651 m = bp->b_xio.xio_pages[0]; 3652 nbio = push_bio(bio); 3653 nbio->bio_offset = ptoa(m->pindex); 3654 KKASSERT(m->object == object); 3655 swap_pager_strategy(object, nbio); 3656 return(1); 3657 } 3658 return(0); 3659 } 3660 3661 /* 3662 * bpdone: 3663 * 3664 * Finish I/O on a buffer after all BIOs have been processed. 3665 * Called when the bio chain is exhausted or by biowait. If called 3666 * by biowait, elseit is typically 0. 3667 * 3668 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3669 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3670 * assuming B_INVAL is clear. 3671 * 3672 * For the VMIO case, we set B_CACHE if the op was a read and no 3673 * read error occured, or if the op was a write. B_CACHE is never 3674 * set if the buffer is invalid or otherwise uncacheable. 3675 * 3676 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3677 * initiator to leave B_INVAL set to brelse the buffer out of existance 3678 * in the biodone routine. 3679 */ 3680 void 3681 bpdone(struct buf *bp, int elseit) 3682 { 3683 buf_cmd_t cmd; 3684 3685 KASSERT(BUF_REFCNTNB(bp) > 0, 3686 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3687 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3688 ("biodone: bp %p already done!", bp)); 3689 3690 /* 3691 * No more BIOs are left. All completion functions have been dealt 3692 * with, now we clean up the buffer. 3693 */ 3694 cmd = bp->b_cmd; 3695 bp->b_cmd = BUF_CMD_DONE; 3696 3697 /* 3698 * Only reads and writes are processed past this point. 3699 */ 3700 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3701 if (cmd == BUF_CMD_FREEBLKS) 3702 bp->b_flags |= B_NOCACHE; 3703 if (elseit) 3704 brelse(bp); 3705 return; 3706 } 3707 3708 /* 3709 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3710 * a lot worse. XXX - move this above the clearing of b_cmd 3711 */ 3712 if (LIST_FIRST(&bp->b_dep) != NULL) 3713 buf_complete(bp); /* MPSAFE */ 3714 3715 /* 3716 * A failed write must re-dirty the buffer unless B_INVAL 3717 * was set. Only applicable to normal buffers (with VPs). 3718 * vinum buffers may not have a vp. 3719 */ 3720 if (cmd == BUF_CMD_WRITE && 3721 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3722 bp->b_flags &= ~B_NOCACHE; 3723 if (bp->b_vp) 3724 bdirty(bp); 3725 } 3726 3727 if (bp->b_flags & B_VMIO) { 3728 int i; 3729 vm_ooffset_t foff; 3730 vm_page_t m; 3731 vm_object_t obj; 3732 int iosize; 3733 struct vnode *vp = bp->b_vp; 3734 3735 obj = vp->v_object; 3736 3737 #if defined(VFS_BIO_DEBUG) 3738 if (vp->v_auxrefs == 0) 3739 panic("biodone: zero vnode hold count"); 3740 if ((vp->v_flag & VOBJBUF) == 0) 3741 panic("biodone: vnode is not setup for merged cache"); 3742 #endif 3743 3744 foff = bp->b_loffset; 3745 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3746 KASSERT(obj != NULL, ("biodone: missing VM object")); 3747 3748 #if defined(VFS_BIO_DEBUG) 3749 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3750 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3751 obj->paging_in_progress, bp->b_xio.xio_npages); 3752 } 3753 #endif 3754 3755 /* 3756 * Set B_CACHE if the op was a normal read and no error 3757 * occured. B_CACHE is set for writes in the b*write() 3758 * routines. 3759 */ 3760 iosize = bp->b_bcount - bp->b_resid; 3761 if (cmd == BUF_CMD_READ && 3762 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3763 bp->b_flags |= B_CACHE; 3764 } 3765 3766 lwkt_gettoken(&vm_token); 3767 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3768 int bogusflag = 0; 3769 int resid; 3770 3771 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3772 if (resid > iosize) 3773 resid = iosize; 3774 3775 /* 3776 * cleanup bogus pages, restoring the originals. Since 3777 * the originals should still be wired, we don't have 3778 * to worry about interrupt/freeing races destroying 3779 * the VM object association. 3780 */ 3781 m = bp->b_xio.xio_pages[i]; 3782 if (m == bogus_page) { 3783 bogusflag = 1; 3784 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3785 if (m == NULL) 3786 panic("biodone: page disappeared"); 3787 bp->b_xio.xio_pages[i] = m; 3788 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3789 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3790 } 3791 #if defined(VFS_BIO_DEBUG) 3792 if (OFF_TO_IDX(foff) != m->pindex) { 3793 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3794 "mismatch\n", 3795 (unsigned long)foff, (long)m->pindex); 3796 } 3797 #endif 3798 3799 /* 3800 * In the write case, the valid and clean bits are 3801 * already changed correctly (see bdwrite()), so we 3802 * only need to do this here in the read case. 3803 */ 3804 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3805 vfs_clean_one_page(bp, i, m); 3806 } 3807 vm_page_flag_clear(m, PG_ZERO); 3808 3809 /* 3810 * when debugging new filesystems or buffer I/O 3811 * methods, this is the most common error that pops 3812 * up. if you see this, you have not set the page 3813 * busy flag correctly!!! 3814 */ 3815 if (m->busy == 0) { 3816 kprintf("biodone: page busy < 0, " 3817 "pindex: %d, foff: 0x(%x,%x), " 3818 "resid: %d, index: %d\n", 3819 (int) m->pindex, (int)(foff >> 32), 3820 (int) foff & 0xffffffff, resid, i); 3821 if (!vn_isdisk(vp, NULL)) 3822 kprintf(" iosize: %ld, loffset: %lld, " 3823 "flags: 0x%08x, npages: %d\n", 3824 bp->b_vp->v_mount->mnt_stat.f_iosize, 3825 (long long)bp->b_loffset, 3826 bp->b_flags, bp->b_xio.xio_npages); 3827 else 3828 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3829 (long long)bp->b_loffset, 3830 bp->b_flags, bp->b_xio.xio_npages); 3831 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3832 m->valid, m->dirty, m->wire_count); 3833 panic("biodone: page busy < 0"); 3834 } 3835 vm_page_io_finish(m); 3836 vm_object_pip_subtract(obj, 1); 3837 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3838 iosize -= resid; 3839 } 3840 bp->b_flags &= ~B_HASBOGUS; 3841 if (obj) 3842 vm_object_pip_wakeupn(obj, 0); 3843 lwkt_reltoken(&vm_token); 3844 } 3845 3846 /* 3847 * Finish up by releasing the buffer. There are no more synchronous 3848 * or asynchronous completions, those were handled by bio_done 3849 * callbacks. 3850 */ 3851 if (elseit) { 3852 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3853 brelse(bp); 3854 else 3855 bqrelse(bp); 3856 } 3857 } 3858 3859 /* 3860 * Normal biodone. 3861 */ 3862 void 3863 biodone(struct bio *bio) 3864 { 3865 struct buf *bp = bio->bio_buf; 3866 3867 runningbufwakeup(bp); 3868 3869 /* 3870 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3871 */ 3872 while (bio) { 3873 biodone_t *done_func; 3874 struct bio_track *track; 3875 3876 /* 3877 * BIO tracking. Most but not all BIOs are tracked. 3878 */ 3879 if ((track = bio->bio_track) != NULL) { 3880 bio_track_rel(track); 3881 bio->bio_track = NULL; 3882 } 3883 3884 /* 3885 * A bio_done function terminates the loop. The function 3886 * will be responsible for any further chaining and/or 3887 * buffer management. 3888 * 3889 * WARNING! The done function can deallocate the buffer! 3890 */ 3891 if ((done_func = bio->bio_done) != NULL) { 3892 bio->bio_done = NULL; 3893 done_func(bio); 3894 return; 3895 } 3896 bio = bio->bio_prev; 3897 } 3898 3899 /* 3900 * If we've run out of bio's do normal [a]synchronous completion. 3901 */ 3902 bpdone(bp, 1); 3903 } 3904 3905 /* 3906 * Synchronous biodone - this terminates a synchronous BIO. 3907 * 3908 * bpdone() is called with elseit=FALSE, leaving the buffer completed 3909 * but still locked. The caller must brelse() the buffer after waiting 3910 * for completion. 3911 */ 3912 void 3913 biodone_sync(struct bio *bio) 3914 { 3915 struct buf *bp = bio->bio_buf; 3916 int flags; 3917 int nflags; 3918 3919 KKASSERT(bio == &bp->b_bio1); 3920 bpdone(bp, 0); 3921 3922 for (;;) { 3923 flags = bio->bio_flags; 3924 nflags = (flags | BIO_DONE) & ~BIO_WANT; 3925 3926 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3927 if (flags & BIO_WANT) 3928 wakeup(bio); 3929 break; 3930 } 3931 } 3932 } 3933 3934 /* 3935 * vfs_unbusy_pages: 3936 * 3937 * This routine is called in lieu of iodone in the case of 3938 * incomplete I/O. This keeps the busy status for pages 3939 * consistant. 3940 */ 3941 void 3942 vfs_unbusy_pages(struct buf *bp) 3943 { 3944 int i; 3945 3946 runningbufwakeup(bp); 3947 3948 lwkt_gettoken(&vm_token); 3949 if (bp->b_flags & B_VMIO) { 3950 struct vnode *vp = bp->b_vp; 3951 vm_object_t obj; 3952 3953 obj = vp->v_object; 3954 3955 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3956 vm_page_t m = bp->b_xio.xio_pages[i]; 3957 3958 /* 3959 * When restoring bogus changes the original pages 3960 * should still be wired, so we are in no danger of 3961 * losing the object association and do not need 3962 * critical section protection particularly. 3963 */ 3964 if (m == bogus_page) { 3965 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3966 if (!m) { 3967 panic("vfs_unbusy_pages: page missing"); 3968 } 3969 bp->b_xio.xio_pages[i] = m; 3970 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3971 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3972 } 3973 vm_object_pip_subtract(obj, 1); 3974 vm_page_flag_clear(m, PG_ZERO); 3975 vm_page_io_finish(m); 3976 } 3977 bp->b_flags &= ~B_HASBOGUS; 3978 vm_object_pip_wakeupn(obj, 0); 3979 } 3980 lwkt_reltoken(&vm_token); 3981 } 3982 3983 /* 3984 * vfs_busy_pages: 3985 * 3986 * This routine is called before a device strategy routine. 3987 * It is used to tell the VM system that paging I/O is in 3988 * progress, and treat the pages associated with the buffer 3989 * almost as being PG_BUSY. Also the object 'paging_in_progress' 3990 * flag is handled to make sure that the object doesn't become 3991 * inconsistant. 3992 * 3993 * Since I/O has not been initiated yet, certain buffer flags 3994 * such as B_ERROR or B_INVAL may be in an inconsistant state 3995 * and should be ignored. 3996 * 3997 * MPSAFE 3998 */ 3999 void 4000 vfs_busy_pages(struct vnode *vp, struct buf *bp) 4001 { 4002 int i, bogus; 4003 struct lwp *lp = curthread->td_lwp; 4004 4005 /* 4006 * The buffer's I/O command must already be set. If reading, 4007 * B_CACHE must be 0 (double check against callers only doing 4008 * I/O when B_CACHE is 0). 4009 */ 4010 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4011 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 4012 4013 if (bp->b_flags & B_VMIO) { 4014 vm_object_t obj; 4015 4016 lwkt_gettoken(&vm_token); 4017 4018 obj = vp->v_object; 4019 KASSERT(bp->b_loffset != NOOFFSET, 4020 ("vfs_busy_pages: no buffer offset")); 4021 4022 /* 4023 * Loop until none of the pages are busy. 4024 */ 4025 retry: 4026 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4027 vm_page_t m = bp->b_xio.xio_pages[i]; 4028 4029 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 4030 goto retry; 4031 } 4032 4033 /* 4034 * Setup for I/O, soft-busy the page right now because 4035 * the next loop may block. 4036 */ 4037 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4038 vm_page_t m = bp->b_xio.xio_pages[i]; 4039 4040 vm_page_flag_clear(m, PG_ZERO); 4041 if ((bp->b_flags & B_CLUSTER) == 0) { 4042 vm_object_pip_add(obj, 1); 4043 vm_page_io_start(m); 4044 } 4045 } 4046 4047 /* 4048 * Adjust protections for I/O and do bogus-page mapping. 4049 * Assume that vm_page_protect() can block (it can block 4050 * if VM_PROT_NONE, don't take any chances regardless). 4051 * 4052 * In particular note that for writes we must incorporate 4053 * page dirtyness from the VM system into the buffer's 4054 * dirty range. 4055 * 4056 * For reads we theoretically must incorporate page dirtyness 4057 * from the VM system to determine if the page needs bogus 4058 * replacement, but we shortcut the test by simply checking 4059 * that all m->valid bits are set, indicating that the page 4060 * is fully valid and does not need to be re-read. For any 4061 * VM system dirtyness the page will also be fully valid 4062 * since it was mapped at one point. 4063 */ 4064 bogus = 0; 4065 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4066 vm_page_t m = bp->b_xio.xio_pages[i]; 4067 4068 vm_page_flag_clear(m, PG_ZERO); /* XXX */ 4069 if (bp->b_cmd == BUF_CMD_WRITE) { 4070 /* 4071 * When readying a vnode-backed buffer for 4072 * a write we must zero-fill any invalid 4073 * portions of the backing VM pages, mark 4074 * it valid and clear related dirty bits. 4075 * 4076 * vfs_clean_one_page() incorporates any 4077 * VM dirtyness and updates the b_dirtyoff 4078 * range (after we've made the page RO). 4079 * 4080 * It is also expected that the pmap modified 4081 * bit has already been cleared by the 4082 * vm_page_protect(). We may not be able 4083 * to clear all dirty bits for a page if it 4084 * was also memory mapped (NFS). 4085 * 4086 * Finally be sure to unassign any swap-cache 4087 * backing store as it is now stale. 4088 */ 4089 vm_page_protect(m, VM_PROT_READ); 4090 vfs_clean_one_page(bp, i, m); 4091 swap_pager_unswapped(m); 4092 } else if (m->valid == VM_PAGE_BITS_ALL) { 4093 /* 4094 * When readying a vnode-backed buffer for 4095 * read we must replace any dirty pages with 4096 * a bogus page so dirty data is not destroyed 4097 * when filling gaps. 4098 * 4099 * To avoid testing whether the page is 4100 * dirty we instead test that the page was 4101 * at some point mapped (m->valid fully 4102 * valid) with the understanding that 4103 * this also covers the dirty case. 4104 */ 4105 bp->b_xio.xio_pages[i] = bogus_page; 4106 bp->b_flags |= B_HASBOGUS; 4107 bogus++; 4108 } else if (m->valid & m->dirty) { 4109 /* 4110 * This case should not occur as partial 4111 * dirtyment can only happen if the buffer 4112 * is B_CACHE, and this code is not entered 4113 * if the buffer is B_CACHE. 4114 */ 4115 kprintf("Warning: vfs_busy_pages - page not " 4116 "fully valid! loff=%jx bpf=%08x " 4117 "idx=%d val=%02x dir=%02x\n", 4118 (intmax_t)bp->b_loffset, bp->b_flags, 4119 i, m->valid, m->dirty); 4120 vm_page_protect(m, VM_PROT_NONE); 4121 } else { 4122 /* 4123 * The page is not valid and can be made 4124 * part of the read. 4125 */ 4126 vm_page_protect(m, VM_PROT_NONE); 4127 } 4128 } 4129 if (bogus) { 4130 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4131 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 4132 } 4133 lwkt_reltoken(&vm_token); 4134 } 4135 4136 /* 4137 * This is the easiest place to put the process accounting for the I/O 4138 * for now. 4139 */ 4140 if (lp != NULL) { 4141 if (bp->b_cmd == BUF_CMD_READ) 4142 lp->lwp_ru.ru_inblock++; 4143 else 4144 lp->lwp_ru.ru_oublock++; 4145 } 4146 } 4147 4148 /* 4149 * vfs_clean_pages: 4150 * 4151 * Tell the VM system that the pages associated with this buffer 4152 * are clean. This is used for delayed writes where the data is 4153 * going to go to disk eventually without additional VM intevention. 4154 * 4155 * Note that while we only really need to clean through to b_bcount, we 4156 * just go ahead and clean through to b_bufsize. 4157 */ 4158 static void 4159 vfs_clean_pages(struct buf *bp) 4160 { 4161 vm_page_t m; 4162 int i; 4163 4164 if ((bp->b_flags & B_VMIO) == 0) 4165 return; 4166 4167 KASSERT(bp->b_loffset != NOOFFSET, 4168 ("vfs_clean_pages: no buffer offset")); 4169 4170 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4171 m = bp->b_xio.xio_pages[i]; 4172 vfs_clean_one_page(bp, i, m); 4173 } 4174 } 4175 4176 /* 4177 * vfs_clean_one_page: 4178 * 4179 * Set the valid bits and clear the dirty bits in a page within a 4180 * buffer. The range is restricted to the buffer's size and the 4181 * buffer's logical offset might index into the first page. 4182 * 4183 * The caller has busied or soft-busied the page and it is not mapped, 4184 * test and incorporate the dirty bits into b_dirtyoff/end before 4185 * clearing them. Note that we need to clear the pmap modified bits 4186 * after determining the the page was dirty, vm_page_set_validclean() 4187 * does not do it for us. 4188 * 4189 * This routine is typically called after a read completes (dirty should 4190 * be zero in that case as we are not called on bogus-replace pages), 4191 * or before a write is initiated. 4192 */ 4193 static void 4194 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 4195 { 4196 int bcount; 4197 int xoff; 4198 int soff; 4199 int eoff; 4200 4201 /* 4202 * Calculate offset range within the page but relative to buffer's 4203 * loffset. loffset might be offset into the first page. 4204 */ 4205 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4206 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4207 4208 if (pageno == 0) { 4209 soff = xoff; 4210 eoff = PAGE_SIZE; 4211 } else { 4212 soff = (pageno << PAGE_SHIFT); 4213 eoff = soff + PAGE_SIZE; 4214 } 4215 if (eoff > bcount) 4216 eoff = bcount; 4217 if (soff >= eoff) 4218 return; 4219 4220 /* 4221 * Test dirty bits and adjust b_dirtyoff/end. 4222 * 4223 * If dirty pages are incorporated into the bp any prior 4224 * B_NEEDCOMMIT state (NFS) must be cleared because the 4225 * caller has not taken into account the new dirty data. 4226 * 4227 * If the page was memory mapped the dirty bits might go beyond the 4228 * end of the buffer, but we can't really make the assumption that 4229 * a file EOF straddles the buffer (even though this is the case for 4230 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 4231 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 4232 * This also saves some console spam. 4233 * 4234 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK, 4235 * NFS can handle huge commits but not huge writes. 4236 */ 4237 vm_page_test_dirty(m); 4238 if (m->dirty) { 4239 if ((bp->b_flags & B_NEEDCOMMIT) && 4240 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 4241 if (debug_commit) 4242 kprintf("Warning: vfs_clean_one_page: bp %p " 4243 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT" 4244 " cmd %d vd %02x/%02x x/s/e %d %d %d " 4245 "doff/end %d %d\n", 4246 bp, (intmax_t)bp->b_loffset, bp->b_bcount, 4247 bp->b_flags, bp->b_cmd, 4248 m->valid, m->dirty, xoff, soff, eoff, 4249 bp->b_dirtyoff, bp->b_dirtyend); 4250 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 4251 if (debug_commit) 4252 print_backtrace(-1); 4253 } 4254 /* 4255 * Only clear the pmap modified bits if ALL the dirty bits 4256 * are set, otherwise the system might mis-clear portions 4257 * of a page. 4258 */ 4259 if (m->dirty == VM_PAGE_BITS_ALL && 4260 (bp->b_flags & B_NEEDCOMMIT) == 0) { 4261 pmap_clear_modify(m); 4262 } 4263 if (bp->b_dirtyoff > soff - xoff) 4264 bp->b_dirtyoff = soff - xoff; 4265 if (bp->b_dirtyend < eoff - xoff) 4266 bp->b_dirtyend = eoff - xoff; 4267 } 4268 4269 /* 4270 * Set related valid bits, clear related dirty bits. 4271 * Does not mess with the pmap modified bit. 4272 * 4273 * WARNING! We cannot just clear all of m->dirty here as the 4274 * buffer cache buffers may use a DEV_BSIZE'd aligned 4275 * block size, or have an odd size (e.g. NFS at file EOF). 4276 * The putpages code can clear m->dirty to 0. 4277 * 4278 * If a VOP_WRITE generates a buffer cache buffer which 4279 * covers the same space as mapped writable pages the 4280 * buffer flush might not be able to clear all the dirty 4281 * bits and still require a putpages from the VM system 4282 * to finish it off. 4283 */ 4284 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 4285 } 4286 4287 /* 4288 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty. 4289 * The page data is assumed to be valid (there is no zeroing here). 4290 */ 4291 static void 4292 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m) 4293 { 4294 int bcount; 4295 int xoff; 4296 int soff; 4297 int eoff; 4298 4299 /* 4300 * Calculate offset range within the page but relative to buffer's 4301 * loffset. loffset might be offset into the first page. 4302 */ 4303 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4304 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4305 4306 if (pageno == 0) { 4307 soff = xoff; 4308 eoff = PAGE_SIZE; 4309 } else { 4310 soff = (pageno << PAGE_SHIFT); 4311 eoff = soff + PAGE_SIZE; 4312 } 4313 if (eoff > bcount) 4314 eoff = bcount; 4315 if (soff >= eoff) 4316 return; 4317 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff); 4318 } 4319 4320 /* 4321 * vfs_bio_clrbuf: 4322 * 4323 * Clear a buffer. This routine essentially fakes an I/O, so we need 4324 * to clear B_ERROR and B_INVAL. 4325 * 4326 * Note that while we only theoretically need to clear through b_bcount, 4327 * we go ahead and clear through b_bufsize. 4328 */ 4329 4330 void 4331 vfs_bio_clrbuf(struct buf *bp) 4332 { 4333 int i, mask = 0; 4334 caddr_t sa, ea; 4335 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 4336 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 4337 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4338 (bp->b_loffset & PAGE_MASK) == 0) { 4339 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4340 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 4341 bp->b_resid = 0; 4342 return; 4343 } 4344 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 4345 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 4346 bzero(bp->b_data, bp->b_bufsize); 4347 bp->b_xio.xio_pages[0]->valid |= mask; 4348 bp->b_resid = 0; 4349 return; 4350 } 4351 } 4352 sa = bp->b_data; 4353 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 4354 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 4355 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 4356 ea = (caddr_t)(vm_offset_t)ulmin( 4357 (u_long)(vm_offset_t)ea, 4358 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 4359 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4360 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 4361 continue; 4362 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 4363 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 4364 bzero(sa, ea - sa); 4365 } 4366 } else { 4367 for (; sa < ea; sa += DEV_BSIZE, j++) { 4368 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 4369 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 4370 bzero(sa, DEV_BSIZE); 4371 } 4372 } 4373 bp->b_xio.xio_pages[i]->valid |= mask; 4374 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 4375 } 4376 bp->b_resid = 0; 4377 } else { 4378 clrbuf(bp); 4379 } 4380 } 4381 4382 /* 4383 * vm_hold_load_pages: 4384 * 4385 * Load pages into the buffer's address space. The pages are 4386 * allocated from the kernel object in order to reduce interference 4387 * with the any VM paging I/O activity. The range of loaded 4388 * pages will be wired. 4389 * 4390 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4391 * retrieve the full range (to - from) of pages. 4392 * 4393 * MPSAFE 4394 */ 4395 void 4396 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4397 { 4398 vm_offset_t pg; 4399 vm_page_t p; 4400 int index; 4401 4402 to = round_page(to); 4403 from = round_page(from); 4404 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4405 4406 pg = from; 4407 while (pg < to) { 4408 /* 4409 * Note: must allocate system pages since blocking here 4410 * could intefere with paging I/O, no matter which 4411 * process we are. 4412 */ 4413 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4414 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4415 if (p) { 4416 vm_page_wire(p); 4417 p->valid = VM_PAGE_BITS_ALL; 4418 vm_page_flag_clear(p, PG_ZERO); 4419 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4420 bp->b_xio.xio_pages[index] = p; 4421 vm_page_wakeup(p); 4422 4423 pg += PAGE_SIZE; 4424 ++index; 4425 } 4426 } 4427 bp->b_xio.xio_npages = index; 4428 } 4429 4430 /* 4431 * Allocate pages for a buffer cache buffer. 4432 * 4433 * Under extremely severe memory conditions even allocating out of the 4434 * system reserve can fail. If this occurs we must allocate out of the 4435 * interrupt reserve to avoid a deadlock with the pageout daemon. 4436 * 4437 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 4438 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 4439 * against the pageout daemon if pages are not freed from other sources. 4440 * 4441 * MPSAFE 4442 */ 4443 static 4444 vm_page_t 4445 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4446 { 4447 vm_page_t p; 4448 4449 /* 4450 * Try a normal allocation, allow use of system reserve. 4451 */ 4452 lwkt_gettoken(&vm_token); 4453 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 4454 if (p) { 4455 lwkt_reltoken(&vm_token); 4456 return(p); 4457 } 4458 4459 /* 4460 * The normal allocation failed and we clearly have a page 4461 * deficit. Try to reclaim some clean VM pages directly 4462 * from the buffer cache. 4463 */ 4464 vm_pageout_deficit += deficit; 4465 recoverbufpages(); 4466 4467 /* 4468 * We may have blocked, the caller will know what to do if the 4469 * page now exists. 4470 */ 4471 if (vm_page_lookup(obj, pg)) { 4472 lwkt_reltoken(&vm_token); 4473 return(NULL); 4474 } 4475 4476 /* 4477 * Allocate and allow use of the interrupt reserve. 4478 * 4479 * If after all that we still can't allocate a VM page we are 4480 * in real trouble, but we slog on anyway hoping that the system 4481 * won't deadlock. 4482 */ 4483 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 4484 VM_ALLOC_INTERRUPT); 4485 if (p) { 4486 if (vm_page_count_severe()) { 4487 kprintf("bio_page_alloc: WARNING emergency page " 4488 "allocation\n"); 4489 vm_wait(hz / 20); 4490 } 4491 } else { 4492 kprintf("bio_page_alloc: WARNING emergency page " 4493 "allocation failed\n"); 4494 vm_wait(hz * 5); 4495 } 4496 lwkt_reltoken(&vm_token); 4497 return(p); 4498 } 4499 4500 /* 4501 * vm_hold_free_pages: 4502 * 4503 * Return pages associated with the buffer back to the VM system. 4504 * 4505 * The range of pages underlying the buffer's address space will 4506 * be unmapped and un-wired. 4507 * 4508 * MPSAFE 4509 */ 4510 void 4511 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4512 { 4513 vm_offset_t pg; 4514 vm_page_t p; 4515 int index, newnpages; 4516 4517 from = round_page(from); 4518 to = round_page(to); 4519 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4520 newnpages = index; 4521 4522 lwkt_gettoken(&vm_token); 4523 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4524 p = bp->b_xio.xio_pages[index]; 4525 if (p && (index < bp->b_xio.xio_npages)) { 4526 if (p->busy) { 4527 kprintf("vm_hold_free_pages: doffset: %lld, " 4528 "loffset: %lld\n", 4529 (long long)bp->b_bio2.bio_offset, 4530 (long long)bp->b_loffset); 4531 } 4532 bp->b_xio.xio_pages[index] = NULL; 4533 pmap_kremove(pg); 4534 vm_page_busy(p); 4535 vm_page_unwire(p, 0); 4536 vm_page_free(p); 4537 } 4538 } 4539 bp->b_xio.xio_npages = newnpages; 4540 lwkt_reltoken(&vm_token); 4541 } 4542 4543 /* 4544 * vmapbuf: 4545 * 4546 * Map a user buffer into KVM via a pbuf. On return the buffer's 4547 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4548 * initialized. 4549 */ 4550 int 4551 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4552 { 4553 caddr_t addr; 4554 vm_offset_t va; 4555 vm_page_t m; 4556 int vmprot; 4557 int error; 4558 int pidx; 4559 int i; 4560 4561 /* 4562 * bp had better have a command and it better be a pbuf. 4563 */ 4564 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4565 KKASSERT(bp->b_flags & B_PAGING); 4566 KKASSERT(bp->b_kvabase); 4567 4568 if (bytes < 0) 4569 return (-1); 4570 4571 /* 4572 * Map the user data into KVM. Mappings have to be page-aligned. 4573 */ 4574 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4575 pidx = 0; 4576 4577 vmprot = VM_PROT_READ; 4578 if (bp->b_cmd == BUF_CMD_READ) 4579 vmprot |= VM_PROT_WRITE; 4580 4581 while (addr < udata + bytes) { 4582 /* 4583 * Do the vm_fault if needed; do the copy-on-write thing 4584 * when reading stuff off device into memory. 4585 * 4586 * vm_fault_page*() returns a held VM page. 4587 */ 4588 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4589 va = trunc_page(va); 4590 4591 m = vm_fault_page_quick(va, vmprot, &error); 4592 if (m == NULL) { 4593 for (i = 0; i < pidx; ++i) { 4594 vm_page_unhold(bp->b_xio.xio_pages[i]); 4595 bp->b_xio.xio_pages[i] = NULL; 4596 } 4597 return(-1); 4598 } 4599 bp->b_xio.xio_pages[pidx] = m; 4600 addr += PAGE_SIZE; 4601 ++pidx; 4602 } 4603 4604 /* 4605 * Map the page array and set the buffer fields to point to 4606 * the mapped data buffer. 4607 */ 4608 if (pidx > btoc(MAXPHYS)) 4609 panic("vmapbuf: mapped more than MAXPHYS"); 4610 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4611 4612 bp->b_xio.xio_npages = pidx; 4613 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4614 bp->b_bcount = bytes; 4615 bp->b_bufsize = bytes; 4616 return(0); 4617 } 4618 4619 /* 4620 * vunmapbuf: 4621 * 4622 * Free the io map PTEs associated with this IO operation. 4623 * We also invalidate the TLB entries and restore the original b_addr. 4624 */ 4625 void 4626 vunmapbuf(struct buf *bp) 4627 { 4628 int pidx; 4629 int npages; 4630 4631 KKASSERT(bp->b_flags & B_PAGING); 4632 4633 npages = bp->b_xio.xio_npages; 4634 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4635 for (pidx = 0; pidx < npages; ++pidx) { 4636 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4637 bp->b_xio.xio_pages[pidx] = NULL; 4638 } 4639 bp->b_xio.xio_npages = 0; 4640 bp->b_data = bp->b_kvabase; 4641 } 4642 4643 /* 4644 * Scan all buffers in the system and issue the callback. 4645 */ 4646 int 4647 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4648 { 4649 int count = 0; 4650 int error; 4651 int n; 4652 4653 for (n = 0; n < nbuf; ++n) { 4654 if ((error = callback(&buf[n], info)) < 0) { 4655 count = error; 4656 break; 4657 } 4658 count += error; 4659 } 4660 return (count); 4661 } 4662 4663 /* 4664 * nestiobuf_iodone: biodone callback for nested buffers and propagate 4665 * completion to the master buffer. 4666 */ 4667 static void 4668 nestiobuf_iodone(struct bio *bio) 4669 { 4670 struct bio *mbio; 4671 struct buf *mbp, *bp; 4672 int error; 4673 int donebytes; 4674 4675 bp = bio->bio_buf; 4676 mbio = bio->bio_caller_info1.ptr; 4677 mbp = mbio->bio_buf; 4678 4679 KKASSERT(bp->b_bcount <= bp->b_bufsize); 4680 KKASSERT(mbp != bp); 4681 4682 error = bp->b_error; 4683 if (bp->b_error == 0 && 4684 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 4685 /* 4686 * Not all got transfered, raise an error. We have no way to 4687 * propagate these conditions to mbp. 4688 */ 4689 error = EIO; 4690 } 4691 4692 donebytes = bp->b_bufsize; 4693 4694 relpbuf(bp, NULL); 4695 nestiobuf_done(mbio, donebytes, error); 4696 } 4697 4698 void 4699 nestiobuf_done(struct bio *mbio, int donebytes, int error) 4700 { 4701 struct buf *mbp; 4702 4703 mbp = mbio->bio_buf; 4704 4705 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0); 4706 4707 /* 4708 * If an error occured, propagate it to the master buffer. 4709 * 4710 * Several biodone()s may wind up running concurrently so 4711 * use an atomic op to adjust b_flags. 4712 */ 4713 if (error) { 4714 mbp->b_error = error; 4715 atomic_set_int(&mbp->b_flags, B_ERROR); 4716 } 4717 4718 /* 4719 * Decrement the operations in progress counter and terminate the 4720 * I/O if this was the last bit. 4721 */ 4722 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4723 mbp->b_resid = 0; 4724 biodone(mbio); 4725 } 4726 } 4727 4728 /* 4729 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent 4730 * the mbio from being biodone()'d while we are still adding sub-bios to 4731 * it. 4732 */ 4733 void 4734 nestiobuf_init(struct bio *bio) 4735 { 4736 bio->bio_driver_info = (void *)1; 4737 } 4738 4739 /* 4740 * The BIOs added to the nestedio have already been started, remove the 4741 * count that placeheld our mbio and biodone() it if the count would 4742 * transition to 0. 4743 */ 4744 void 4745 nestiobuf_start(struct bio *mbio) 4746 { 4747 struct buf *mbp = mbio->bio_buf; 4748 4749 /* 4750 * Decrement the operations in progress counter and terminate the 4751 * I/O if this was the last bit. 4752 */ 4753 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4754 if (mbp->b_flags & B_ERROR) 4755 mbp->b_resid = mbp->b_bcount; 4756 else 4757 mbp->b_resid = 0; 4758 biodone(mbio); 4759 } 4760 } 4761 4762 /* 4763 * Set an intermediate error prior to calling nestiobuf_start() 4764 */ 4765 void 4766 nestiobuf_error(struct bio *mbio, int error) 4767 { 4768 struct buf *mbp = mbio->bio_buf; 4769 4770 if (error) { 4771 mbp->b_error = error; 4772 atomic_set_int(&mbp->b_flags, B_ERROR); 4773 } 4774 } 4775 4776 /* 4777 * nestiobuf_add: setup a "nested" buffer. 4778 * 4779 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 4780 * => 'bp' should be a buffer allocated by getiobuf. 4781 * => 'offset' is a byte offset in the master buffer. 4782 * => 'size' is a size in bytes of this nested buffer. 4783 */ 4784 void 4785 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size) 4786 { 4787 struct buf *mbp = mbio->bio_buf; 4788 struct vnode *vp = mbp->b_vp; 4789 4790 KKASSERT(mbp->b_bcount >= offset + size); 4791 4792 atomic_add_int((int *)&mbio->bio_driver_info, 1); 4793 4794 /* kernel needs to own the lock for it to be released in biodone */ 4795 BUF_KERNPROC(bp); 4796 bp->b_vp = vp; 4797 bp->b_cmd = mbp->b_cmd; 4798 bp->b_bio1.bio_done = nestiobuf_iodone; 4799 bp->b_data = (char *)mbp->b_data + offset; 4800 bp->b_resid = bp->b_bcount = size; 4801 bp->b_bufsize = bp->b_bcount; 4802 4803 bp->b_bio1.bio_track = NULL; 4804 bp->b_bio1.bio_caller_info1.ptr = mbio; 4805 } 4806 4807 /* 4808 * print out statistics from the current status of the buffer pool 4809 * this can be toggeled by the system control option debug.syncprt 4810 */ 4811 #ifdef DEBUG 4812 void 4813 vfs_bufstats(void) 4814 { 4815 int i, j, count; 4816 struct buf *bp; 4817 struct bqueues *dp; 4818 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4819 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4820 4821 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4822 count = 0; 4823 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4824 counts[j] = 0; 4825 4826 spin_lock(&bufqspin); 4827 TAILQ_FOREACH(bp, dp, b_freelist) { 4828 counts[bp->b_bufsize/PAGE_SIZE]++; 4829 count++; 4830 } 4831 spin_unlock(&bufqspin); 4832 4833 kprintf("%s: total-%d", bname[i], count); 4834 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4835 if (counts[j] != 0) 4836 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4837 kprintf("\n"); 4838 } 4839 } 4840 #endif 4841 4842 #ifdef DDB 4843 4844 DB_SHOW_COMMAND(buffer, db_show_buffer) 4845 { 4846 /* get args */ 4847 struct buf *bp = (struct buf *)addr; 4848 4849 if (!have_addr) { 4850 db_printf("usage: show buffer <addr>\n"); 4851 return; 4852 } 4853 4854 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4855 db_printf("b_cmd = %d\n", bp->b_cmd); 4856 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4857 "b_resid = %d\n, b_data = %p, " 4858 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4859 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4860 bp->b_data, 4861 (long long)bp->b_bio2.bio_offset, 4862 (long long)(bp->b_bio2.bio_next ? 4863 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4864 if (bp->b_xio.xio_npages) { 4865 int i; 4866 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4867 bp->b_xio.xio_npages); 4868 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4869 vm_page_t m; 4870 m = bp->b_xio.xio_pages[i]; 4871 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4872 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4873 if ((i + 1) < bp->b_xio.xio_npages) 4874 db_printf(","); 4875 } 4876 db_printf("\n"); 4877 } 4878 } 4879 #endif /* DDB */ 4880