1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/buf.h> 33 #include <sys/conf.h> 34 #include <sys/devicestat.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/dsched.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 #include <vm/vm_pager.h> 57 #include <vm/swap_pager.h> 58 59 #include <sys/buf2.h> 60 #include <sys/thread2.h> 61 #include <sys/spinlock2.h> 62 #include <sys/mplock2.h> 63 #include <vm/vm_page2.h> 64 65 #include "opt_ddb.h" 66 #ifdef DDB 67 #include <ddb/ddb.h> 68 #endif 69 70 /* 71 * Buffer queues. 72 */ 73 enum bufq_type { 74 BQUEUE_NONE, /* not on any queue */ 75 BQUEUE_LOCKED, /* locked buffers */ 76 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 77 BQUEUE_DIRTY, /* B_DELWRI buffers */ 78 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 79 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 80 BQUEUE_EMPTY, /* empty buffer headers */ 81 82 BUFFER_QUEUES /* number of buffer queues */ 83 }; 84 85 typedef enum bufq_type bufq_type_t; 86 87 #define BD_WAKE_SIZE 16384 88 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 89 90 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 91 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin); 92 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin); 93 94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 95 96 struct buf *buf; /* buffer header pool */ 97 98 static void vfs_clean_pages(struct buf *bp); 99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m); 100 #if 0 101 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m); 102 #endif 103 static void vfs_vmio_release(struct buf *bp); 104 static int flushbufqueues(bufq_type_t q); 105 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 106 107 static void bd_signal(int totalspace); 108 static void buf_daemon(void); 109 static void buf_daemon_hw(void); 110 111 /* 112 * bogus page -- for I/O to/from partially complete buffers 113 * this is a temporary solution to the problem, but it is not 114 * really that bad. it would be better to split the buffer 115 * for input in the case of buffers partially already in memory, 116 * but the code is intricate enough already. 117 */ 118 vm_page_t bogus_page; 119 120 /* 121 * These are all static, but make the ones we export globals so we do 122 * not need to use compiler magic. 123 */ 124 long bufspace; /* locked by buffer_map */ 125 long maxbufspace; 126 static long bufmallocspace; /* atomic ops */ 127 long maxbufmallocspace, lobufspace, hibufspace; 128 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 129 static long lorunningspace; 130 static long hirunningspace; 131 static int runningbufreq; /* locked by bufcspin */ 132 static long dirtybufspace; /* locked by bufcspin */ 133 static int dirtybufcount; /* locked by bufcspin */ 134 static long dirtybufspacehw; /* locked by bufcspin */ 135 static int dirtybufcounthw; /* locked by bufcspin */ 136 static long runningbufspace; /* locked by bufcspin */ 137 static int runningbufcount; /* locked by bufcspin */ 138 long lodirtybufspace; 139 long hidirtybufspace; 140 static int getnewbufcalls; 141 static int getnewbufrestarts; 142 static int recoverbufcalls; 143 static int needsbuffer; /* locked by bufcspin */ 144 static int bd_request; /* locked by bufcspin */ 145 static int bd_request_hw; /* locked by bufcspin */ 146 static u_int bd_wake_ary[BD_WAKE_SIZE]; 147 static u_int bd_wake_index; 148 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */ 149 static int debug_commit; 150 151 static struct thread *bufdaemon_td; 152 static struct thread *bufdaemonhw_td; 153 static u_int lowmempgallocs; 154 static u_int lowmempgfails; 155 156 /* 157 * Sysctls for operational control of the buffer cache. 158 */ 159 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 160 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 161 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 162 "High watermark used to trigger explicit flushing of dirty buffers"); 163 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 164 "Minimum amount of buffer space required for active I/O"); 165 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 166 "Maximum amount of buffer space to usable for active I/O"); 167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0, 168 "Page allocations done during periods of very low free memory"); 169 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0, 170 "Page allocations which failed during periods of very low free memory"); 171 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0, 172 "Recycle pages to active or inactive queue transition pt 0-64"); 173 /* 174 * Sysctls determining current state of the buffer cache. 175 */ 176 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 177 "Total number of buffers in buffer cache"); 178 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 179 "Pending bytes of dirty buffers (all)"); 180 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 181 "Pending bytes of dirty buffers (heavy weight)"); 182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 183 "Pending number of dirty buffers"); 184 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 185 "Pending number of dirty buffers (heavy weight)"); 186 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 187 "I/O bytes currently in progress due to asynchronous writes"); 188 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 189 "I/O buffers currently in progress due to asynchronous writes"); 190 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 191 "Hard limit on maximum amount of memory usable for buffer space"); 192 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 193 "Soft limit on maximum amount of memory usable for buffer space"); 194 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 195 "Minimum amount of memory to reserve for system buffer space"); 196 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 197 "Amount of memory available for buffers"); 198 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 199 0, "Maximum amount of memory reserved for buffers using malloc"); 200 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 201 "Amount of memory left for buffers using malloc-scheme"); 202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 203 "New buffer header acquisition requests"); 204 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 205 0, "New buffer header acquisition restarts"); 206 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 207 "Recover VM space in an emergency"); 208 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 209 "Buffer acquisition restarts due to fragmented buffer map"); 210 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 211 "Amount of time KVA space was deallocated in an arbitrary buffer"); 212 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 213 "Amount of time buffer re-use operations were successful"); 214 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, ""); 215 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 216 "sizeof(struct buf)"); 217 218 char *buf_wmesg = BUF_WMESG; 219 220 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 221 #define VFS_BIO_NEED_UNUSED02 0x02 222 #define VFS_BIO_NEED_UNUSED04 0x04 223 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 224 225 /* 226 * bufspacewakeup: 227 * 228 * Called when buffer space is potentially available for recovery. 229 * getnewbuf() will block on this flag when it is unable to free 230 * sufficient buffer space. Buffer space becomes recoverable when 231 * bp's get placed back in the queues. 232 */ 233 static __inline void 234 bufspacewakeup(void) 235 { 236 /* 237 * If someone is waiting for BUF space, wake them up. Even 238 * though we haven't freed the kva space yet, the waiting 239 * process will be able to now. 240 */ 241 spin_lock(&bufcspin); 242 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 243 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 244 spin_unlock(&bufcspin); 245 wakeup(&needsbuffer); 246 } else { 247 spin_unlock(&bufcspin); 248 } 249 } 250 251 /* 252 * runningbufwakeup: 253 * 254 * Accounting for I/O in progress. 255 * 256 */ 257 static __inline void 258 runningbufwakeup(struct buf *bp) 259 { 260 long totalspace; 261 long limit; 262 263 if ((totalspace = bp->b_runningbufspace) != 0) { 264 spin_lock(&bufcspin); 265 runningbufspace -= totalspace; 266 --runningbufcount; 267 bp->b_runningbufspace = 0; 268 269 /* 270 * see waitrunningbufspace() for limit test. 271 */ 272 limit = hirunningspace * 3 / 6; 273 if (runningbufreq && runningbufspace <= limit) { 274 runningbufreq = 0; 275 spin_unlock(&bufcspin); 276 wakeup(&runningbufreq); 277 } else { 278 spin_unlock(&bufcspin); 279 } 280 bd_signal(totalspace); 281 } 282 } 283 284 /* 285 * bufcountwakeup: 286 * 287 * Called when a buffer has been added to one of the free queues to 288 * account for the buffer and to wakeup anyone waiting for free buffers. 289 * This typically occurs when large amounts of metadata are being handled 290 * by the buffer cache ( else buffer space runs out first, usually ). 291 * 292 * MPSAFE 293 */ 294 static __inline void 295 bufcountwakeup(void) 296 { 297 spin_lock(&bufcspin); 298 if (needsbuffer) { 299 needsbuffer &= ~VFS_BIO_NEED_ANY; 300 spin_unlock(&bufcspin); 301 wakeup(&needsbuffer); 302 } else { 303 spin_unlock(&bufcspin); 304 } 305 } 306 307 /* 308 * waitrunningbufspace() 309 * 310 * If runningbufspace exceeds 4/6 hirunningspace we block until 311 * runningbufspace drops to 3/6 hirunningspace. We also block if another 312 * thread blocked here in order to be fair, even if runningbufspace 313 * is now lower than the limit. 314 * 315 * The caller may be using this function to block in a tight loop, we 316 * must block while runningbufspace is greater than at least 317 * hirunningspace * 3 / 6. 318 */ 319 void 320 waitrunningbufspace(void) 321 { 322 long limit = hirunningspace * 4 / 6; 323 324 if (runningbufspace > limit || runningbufreq) { 325 spin_lock(&bufcspin); 326 while (runningbufspace > limit || runningbufreq) { 327 runningbufreq = 1; 328 ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0); 329 } 330 spin_unlock(&bufcspin); 331 } 332 } 333 334 /* 335 * buf_dirty_count_severe: 336 * 337 * Return true if we have too many dirty buffers. 338 */ 339 int 340 buf_dirty_count_severe(void) 341 { 342 return (runningbufspace + dirtybufspace >= hidirtybufspace || 343 dirtybufcount >= nbuf / 2); 344 } 345 346 /* 347 * Return true if the amount of running I/O is severe and BIOQ should 348 * start bursting. 349 */ 350 int 351 buf_runningbufspace_severe(void) 352 { 353 return (runningbufspace >= hirunningspace * 4 / 6); 354 } 355 356 /* 357 * vfs_buf_test_cache: 358 * 359 * Called when a buffer is extended. This function clears the B_CACHE 360 * bit if the newly extended portion of the buffer does not contain 361 * valid data. 362 * 363 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer 364 * cache buffers. The VM pages remain dirty, as someone had mmap()'d 365 * them while a clean buffer was present. 366 */ 367 static __inline__ 368 void 369 vfs_buf_test_cache(struct buf *bp, 370 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 371 vm_page_t m) 372 { 373 if (bp->b_flags & B_CACHE) { 374 int base = (foff + off) & PAGE_MASK; 375 if (vm_page_is_valid(m, base, size) == 0) 376 bp->b_flags &= ~B_CACHE; 377 } 378 } 379 380 /* 381 * bd_speedup() 382 * 383 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 384 * low water mark. 385 * 386 * MPSAFE 387 */ 388 static __inline__ 389 void 390 bd_speedup(void) 391 { 392 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 393 return; 394 395 if (bd_request == 0 && 396 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 397 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 398 spin_lock(&bufcspin); 399 bd_request = 1; 400 spin_unlock(&bufcspin); 401 wakeup(&bd_request); 402 } 403 if (bd_request_hw == 0 && 404 (dirtybufspacehw > lodirtybufspace / 2 || 405 dirtybufcounthw >= nbuf / 2)) { 406 spin_lock(&bufcspin); 407 bd_request_hw = 1; 408 spin_unlock(&bufcspin); 409 wakeup(&bd_request_hw); 410 } 411 } 412 413 /* 414 * bd_heatup() 415 * 416 * Get the buf_daemon heated up when the number of running and dirty 417 * buffers exceeds the mid-point. 418 * 419 * Return the total number of dirty bytes past the second mid point 420 * as a measure of how much excess dirty data there is in the system. 421 * 422 * MPSAFE 423 */ 424 int 425 bd_heatup(void) 426 { 427 long mid1; 428 long mid2; 429 long totalspace; 430 431 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 432 433 totalspace = runningbufspace + dirtybufspace; 434 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 435 bd_speedup(); 436 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 437 if (totalspace >= mid2) 438 return(totalspace - mid2); 439 } 440 return(0); 441 } 442 443 /* 444 * bd_wait() 445 * 446 * Wait for the buffer cache to flush (totalspace) bytes worth of 447 * buffers, then return. 448 * 449 * Regardless this function blocks while the number of dirty buffers 450 * exceeds hidirtybufspace. 451 * 452 * MPSAFE 453 */ 454 void 455 bd_wait(int totalspace) 456 { 457 u_int i; 458 int count; 459 460 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 461 return; 462 463 while (totalspace > 0) { 464 bd_heatup(); 465 if (totalspace > runningbufspace + dirtybufspace) 466 totalspace = runningbufspace + dirtybufspace; 467 count = totalspace / BKVASIZE; 468 if (count >= BD_WAKE_SIZE) 469 count = BD_WAKE_SIZE - 1; 470 471 spin_lock(&bufcspin); 472 i = (bd_wake_index + count) & BD_WAKE_MASK; 473 ++bd_wake_ary[i]; 474 475 /* 476 * This is not a strict interlock, so we play a bit loose 477 * with locking access to dirtybufspace* 478 */ 479 tsleep_interlock(&bd_wake_ary[i], 0); 480 spin_unlock(&bufcspin); 481 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz); 482 483 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 484 } 485 } 486 487 /* 488 * bd_signal() 489 * 490 * This function is called whenever runningbufspace or dirtybufspace 491 * is reduced. Track threads waiting for run+dirty buffer I/O 492 * complete. 493 * 494 * MPSAFE 495 */ 496 static void 497 bd_signal(int totalspace) 498 { 499 u_int i; 500 501 if (totalspace > 0) { 502 if (totalspace > BKVASIZE * BD_WAKE_SIZE) 503 totalspace = BKVASIZE * BD_WAKE_SIZE; 504 spin_lock(&bufcspin); 505 while (totalspace > 0) { 506 i = bd_wake_index++; 507 i &= BD_WAKE_MASK; 508 if (bd_wake_ary[i]) { 509 bd_wake_ary[i] = 0; 510 spin_unlock(&bufcspin); 511 wakeup(&bd_wake_ary[i]); 512 spin_lock(&bufcspin); 513 } 514 totalspace -= BKVASIZE; 515 } 516 spin_unlock(&bufcspin); 517 } 518 } 519 520 /* 521 * BIO tracking support routines. 522 * 523 * Release a ref on a bio_track. Wakeup requests are atomically released 524 * along with the last reference so bk_active will never wind up set to 525 * only 0x80000000. 526 * 527 * MPSAFE 528 */ 529 static 530 void 531 bio_track_rel(struct bio_track *track) 532 { 533 int active; 534 int desired; 535 536 /* 537 * Shortcut 538 */ 539 active = track->bk_active; 540 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0)) 541 return; 542 543 /* 544 * Full-on. Note that the wait flag is only atomically released on 545 * the 1->0 count transition. 546 * 547 * We check for a negative count transition using bit 30 since bit 31 548 * has a different meaning. 549 */ 550 for (;;) { 551 desired = (active & 0x7FFFFFFF) - 1; 552 if (desired) 553 desired |= active & 0x80000000; 554 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 555 if (desired & 0x40000000) 556 panic("bio_track_rel: bad count: %p\n", track); 557 if (active & 0x80000000) 558 wakeup(track); 559 break; 560 } 561 active = track->bk_active; 562 } 563 } 564 565 /* 566 * Wait for the tracking count to reach 0. 567 * 568 * Use atomic ops such that the wait flag is only set atomically when 569 * bk_active is non-zero. 570 * 571 * MPSAFE 572 */ 573 int 574 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo) 575 { 576 int active; 577 int desired; 578 int error; 579 580 /* 581 * Shortcut 582 */ 583 if (track->bk_active == 0) 584 return(0); 585 586 /* 587 * Full-on. Note that the wait flag may only be atomically set if 588 * the active count is non-zero. 589 * 590 * NOTE: We cannot optimize active == desired since a wakeup could 591 * clear active prior to our tsleep_interlock(). 592 */ 593 error = 0; 594 while ((active = track->bk_active) != 0) { 595 cpu_ccfence(); 596 desired = active | 0x80000000; 597 tsleep_interlock(track, slp_flags); 598 if (atomic_cmpset_int(&track->bk_active, active, desired)) { 599 error = tsleep(track, slp_flags | PINTERLOCKED, 600 "trwait", slp_timo); 601 if (error) 602 break; 603 } 604 } 605 return (error); 606 } 607 608 /* 609 * bufinit: 610 * 611 * Load time initialisation of the buffer cache, called from machine 612 * dependant initialization code. 613 */ 614 void 615 bufinit(void) 616 { 617 struct buf *bp; 618 vm_offset_t bogus_offset; 619 int i; 620 621 /* next, make a null set of free lists */ 622 for (i = 0; i < BUFFER_QUEUES; i++) 623 TAILQ_INIT(&bufqueues[i]); 624 625 /* finally, initialize each buffer header and stick on empty q */ 626 for (i = 0; i < nbuf; i++) { 627 bp = &buf[i]; 628 bzero(bp, sizeof *bp); 629 bp->b_flags = B_INVAL; /* we're just an empty header */ 630 bp->b_cmd = BUF_CMD_DONE; 631 bp->b_qindex = BQUEUE_EMPTY; 632 initbufbio(bp); 633 xio_init(&bp->b_xio); 634 buf_dep_init(bp); 635 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 636 } 637 638 /* 639 * maxbufspace is the absolute maximum amount of buffer space we are 640 * allowed to reserve in KVM and in real terms. The absolute maximum 641 * is nominally used by buf_daemon. hibufspace is the nominal maximum 642 * used by most other processes. The differential is required to 643 * ensure that buf_daemon is able to run when other processes might 644 * be blocked waiting for buffer space. 645 * 646 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 647 * this may result in KVM fragmentation which is not handled optimally 648 * by the system. 649 */ 650 maxbufspace = (long)nbuf * BKVASIZE; 651 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 652 lobufspace = hibufspace - MAXBSIZE; 653 654 lorunningspace = 512 * 1024; 655 /* hirunningspace -- see below */ 656 657 /* 658 * Limit the amount of malloc memory since it is wired permanently 659 * into the kernel space. Even though this is accounted for in 660 * the buffer allocation, we don't want the malloced region to grow 661 * uncontrolled. The malloc scheme improves memory utilization 662 * significantly on average (small) directories. 663 */ 664 maxbufmallocspace = hibufspace / 20; 665 666 /* 667 * Reduce the chance of a deadlock occuring by limiting the number 668 * of delayed-write dirty buffers we allow to stack up. 669 * 670 * We don't want too much actually queued to the device at once 671 * (XXX this needs to be per-mount!), because the buffers will 672 * wind up locked for a very long period of time while the I/O 673 * drains. 674 */ 675 hidirtybufspace = hibufspace / 2; /* dirty + running */ 676 hirunningspace = hibufspace / 16; /* locked & queued to device */ 677 if (hirunningspace < 1024 * 1024) 678 hirunningspace = 1024 * 1024; 679 680 dirtybufspace = 0; 681 dirtybufspacehw = 0; 682 683 lodirtybufspace = hidirtybufspace / 2; 684 685 /* 686 * Maximum number of async ops initiated per buf_daemon loop. This is 687 * somewhat of a hack at the moment, we really need to limit ourselves 688 * based on the number of bytes of I/O in-transit that were initiated 689 * from buf_daemon. 690 */ 691 692 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 693 vm_object_hold(&kernel_object); 694 bogus_page = vm_page_alloc(&kernel_object, 695 (bogus_offset >> PAGE_SHIFT), 696 VM_ALLOC_NORMAL); 697 vm_object_drop(&kernel_object); 698 vmstats.v_wire_count++; 699 700 } 701 702 /* 703 * Initialize the embedded bio structures, typically used by 704 * deprecated code which tries to allocate its own struct bufs. 705 */ 706 void 707 initbufbio(struct buf *bp) 708 { 709 bp->b_bio1.bio_buf = bp; 710 bp->b_bio1.bio_prev = NULL; 711 bp->b_bio1.bio_offset = NOOFFSET; 712 bp->b_bio1.bio_next = &bp->b_bio2; 713 bp->b_bio1.bio_done = NULL; 714 bp->b_bio1.bio_flags = 0; 715 716 bp->b_bio2.bio_buf = bp; 717 bp->b_bio2.bio_prev = &bp->b_bio1; 718 bp->b_bio2.bio_offset = NOOFFSET; 719 bp->b_bio2.bio_next = NULL; 720 bp->b_bio2.bio_done = NULL; 721 bp->b_bio2.bio_flags = 0; 722 723 BUF_LOCKINIT(bp); 724 } 725 726 /* 727 * Reinitialize the embedded bio structures as well as any additional 728 * translation cache layers. 729 */ 730 void 731 reinitbufbio(struct buf *bp) 732 { 733 struct bio *bio; 734 735 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 736 bio->bio_done = NULL; 737 bio->bio_offset = NOOFFSET; 738 } 739 } 740 741 /* 742 * Undo the effects of an initbufbio(). 743 */ 744 void 745 uninitbufbio(struct buf *bp) 746 { 747 dsched_exit_buf(bp); 748 BUF_LOCKFREE(bp); 749 } 750 751 /* 752 * Push another BIO layer onto an existing BIO and return it. The new 753 * BIO layer may already exist, holding cached translation data. 754 */ 755 struct bio * 756 push_bio(struct bio *bio) 757 { 758 struct bio *nbio; 759 760 if ((nbio = bio->bio_next) == NULL) { 761 int index = bio - &bio->bio_buf->b_bio_array[0]; 762 if (index >= NBUF_BIO - 1) { 763 panic("push_bio: too many layers bp %p\n", 764 bio->bio_buf); 765 } 766 nbio = &bio->bio_buf->b_bio_array[index + 1]; 767 bio->bio_next = nbio; 768 nbio->bio_prev = bio; 769 nbio->bio_buf = bio->bio_buf; 770 nbio->bio_offset = NOOFFSET; 771 nbio->bio_done = NULL; 772 nbio->bio_next = NULL; 773 } 774 KKASSERT(nbio->bio_done == NULL); 775 return(nbio); 776 } 777 778 /* 779 * Pop a BIO translation layer, returning the previous layer. The 780 * must have been previously pushed. 781 */ 782 struct bio * 783 pop_bio(struct bio *bio) 784 { 785 return(bio->bio_prev); 786 } 787 788 void 789 clearbiocache(struct bio *bio) 790 { 791 while (bio) { 792 bio->bio_offset = NOOFFSET; 793 bio = bio->bio_next; 794 } 795 } 796 797 /* 798 * bfreekva: 799 * 800 * Free the KVA allocation for buffer 'bp'. 801 * 802 * Must be called from a critical section as this is the only locking for 803 * buffer_map. 804 * 805 * Since this call frees up buffer space, we call bufspacewakeup(). 806 * 807 * MPALMOSTSAFE 808 */ 809 static void 810 bfreekva(struct buf *bp) 811 { 812 int count; 813 814 if (bp->b_kvasize) { 815 ++buffreekvacnt; 816 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 817 vm_map_lock(&buffer_map); 818 bufspace -= bp->b_kvasize; 819 vm_map_delete(&buffer_map, 820 (vm_offset_t) bp->b_kvabase, 821 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 822 &count 823 ); 824 vm_map_unlock(&buffer_map); 825 vm_map_entry_release(count); 826 bp->b_kvasize = 0; 827 bp->b_kvabase = NULL; 828 bufspacewakeup(); 829 } 830 } 831 832 /* 833 * bremfree: 834 * 835 * Remove the buffer from the appropriate free list. 836 */ 837 static __inline void 838 _bremfree(struct buf *bp) 839 { 840 if (bp->b_qindex != BQUEUE_NONE) { 841 KASSERT(BUF_REFCNTNB(bp) == 1, 842 ("bremfree: bp %p not locked",bp)); 843 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 844 bp->b_qindex = BQUEUE_NONE; 845 } else { 846 if (BUF_REFCNTNB(bp) <= 1) 847 panic("bremfree: removing a buffer not on a queue"); 848 } 849 } 850 851 void 852 bremfree(struct buf *bp) 853 { 854 spin_lock(&bufqspin); 855 _bremfree(bp); 856 spin_unlock(&bufqspin); 857 } 858 859 static void 860 bremfree_locked(struct buf *bp) 861 { 862 _bremfree(bp); 863 } 864 865 /* 866 * This version of bread issues any required I/O asyncnronously and 867 * makes a callback on completion. 868 * 869 * The callback must check whether BIO_DONE is set in the bio and issue 870 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing 871 * BIO_DONE and disposing of the I/O (bqrelse()ing it). 872 */ 873 void 874 breadcb(struct vnode *vp, off_t loffset, int size, 875 void (*func)(struct bio *), void *arg) 876 { 877 struct buf *bp; 878 879 bp = getblk(vp, loffset, size, 0, 0); 880 881 /* if not found in cache, do some I/O */ 882 if ((bp->b_flags & B_CACHE) == 0) { 883 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 884 bp->b_cmd = BUF_CMD_READ; 885 bp->b_bio1.bio_done = func; 886 bp->b_bio1.bio_caller_info1.ptr = arg; 887 vfs_busy_pages(vp, bp); 888 BUF_KERNPROC(bp); 889 vn_strategy(vp, &bp->b_bio1); 890 } else if (func) { 891 /* 892 * Since we are issuing the callback synchronously it cannot 893 * race the BIO_DONE, so no need for atomic ops here. 894 */ 895 /*bp->b_bio1.bio_done = func;*/ 896 bp->b_bio1.bio_caller_info1.ptr = arg; 897 bp->b_bio1.bio_flags |= BIO_DONE; 898 func(&bp->b_bio1); 899 } else { 900 bqrelse(bp); 901 } 902 } 903 904 /* 905 * breadnx() - Terminal function for bread() and breadn(). 906 * 907 * This function will start asynchronous I/O on read-ahead blocks as well 908 * as satisfy the primary request. 909 * 910 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is 911 * set, the buffer is valid and we do not have to do anything. 912 */ 913 int 914 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 915 int *rabsize, int cnt, struct buf **bpp) 916 { 917 struct buf *bp, *rabp; 918 int i; 919 int rv = 0, readwait = 0; 920 921 if (*bpp) 922 bp = *bpp; 923 else 924 *bpp = bp = getblk(vp, loffset, size, 0, 0); 925 926 /* if not found in cache, do some I/O */ 927 if ((bp->b_flags & B_CACHE) == 0) { 928 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 929 bp->b_cmd = BUF_CMD_READ; 930 bp->b_bio1.bio_done = biodone_sync; 931 bp->b_bio1.bio_flags |= BIO_SYNC; 932 vfs_busy_pages(vp, bp); 933 vn_strategy(vp, &bp->b_bio1); 934 ++readwait; 935 } 936 937 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 938 if (inmem(vp, *raoffset)) 939 continue; 940 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 941 942 if ((rabp->b_flags & B_CACHE) == 0) { 943 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL); 944 rabp->b_cmd = BUF_CMD_READ; 945 vfs_busy_pages(vp, rabp); 946 BUF_KERNPROC(rabp); 947 vn_strategy(vp, &rabp->b_bio1); 948 } else { 949 brelse(rabp); 950 } 951 } 952 if (readwait) 953 rv = biowait(&bp->b_bio1, "biord"); 954 return (rv); 955 } 956 957 /* 958 * bwrite: 959 * 960 * Synchronous write, waits for completion. 961 * 962 * Write, release buffer on completion. (Done by iodone 963 * if async). Do not bother writing anything if the buffer 964 * is invalid. 965 * 966 * Note that we set B_CACHE here, indicating that buffer is 967 * fully valid and thus cacheable. This is true even of NFS 968 * now so we set it generally. This could be set either here 969 * or in biodone() since the I/O is synchronous. We put it 970 * here. 971 */ 972 int 973 bwrite(struct buf *bp) 974 { 975 int error; 976 977 if (bp->b_flags & B_INVAL) { 978 brelse(bp); 979 return (0); 980 } 981 if (BUF_REFCNTNB(bp) == 0) 982 panic("bwrite: buffer is not busy???"); 983 984 /* Mark the buffer clean */ 985 bundirty(bp); 986 987 bp->b_flags &= ~(B_ERROR | B_EINTR); 988 bp->b_flags |= B_CACHE; 989 bp->b_cmd = BUF_CMD_WRITE; 990 bp->b_bio1.bio_done = biodone_sync; 991 bp->b_bio1.bio_flags |= BIO_SYNC; 992 vfs_busy_pages(bp->b_vp, bp); 993 994 /* 995 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 996 * valid for vnode-backed buffers. 997 */ 998 bsetrunningbufspace(bp, bp->b_bufsize); 999 vn_strategy(bp->b_vp, &bp->b_bio1); 1000 error = biowait(&bp->b_bio1, "biows"); 1001 brelse(bp); 1002 1003 return (error); 1004 } 1005 1006 /* 1007 * bawrite: 1008 * 1009 * Asynchronous write. Start output on a buffer, but do not wait for 1010 * it to complete. The buffer is released when the output completes. 1011 * 1012 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1013 * B_INVAL buffers. Not us. 1014 */ 1015 void 1016 bawrite(struct buf *bp) 1017 { 1018 if (bp->b_flags & B_INVAL) { 1019 brelse(bp); 1020 return; 1021 } 1022 if (BUF_REFCNTNB(bp) == 0) 1023 panic("bwrite: buffer is not busy???"); 1024 1025 /* Mark the buffer clean */ 1026 bundirty(bp); 1027 1028 bp->b_flags &= ~(B_ERROR | B_EINTR); 1029 bp->b_flags |= B_CACHE; 1030 bp->b_cmd = BUF_CMD_WRITE; 1031 KKASSERT(bp->b_bio1.bio_done == NULL); 1032 vfs_busy_pages(bp->b_vp, bp); 1033 1034 /* 1035 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 1036 * valid for vnode-backed buffers. 1037 */ 1038 bsetrunningbufspace(bp, bp->b_bufsize); 1039 BUF_KERNPROC(bp); 1040 vn_strategy(bp->b_vp, &bp->b_bio1); 1041 } 1042 1043 /* 1044 * bowrite: 1045 * 1046 * Ordered write. Start output on a buffer, and flag it so that the 1047 * device will write it in the order it was queued. The buffer is 1048 * released when the output completes. bwrite() ( or the VOP routine 1049 * anyway ) is responsible for handling B_INVAL buffers. 1050 */ 1051 int 1052 bowrite(struct buf *bp) 1053 { 1054 bp->b_flags |= B_ORDERED; 1055 bawrite(bp); 1056 return (0); 1057 } 1058 1059 /* 1060 * bdwrite: 1061 * 1062 * Delayed write. (Buffer is marked dirty). Do not bother writing 1063 * anything if the buffer is marked invalid. 1064 * 1065 * Note that since the buffer must be completely valid, we can safely 1066 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1067 * biodone() in order to prevent getblk from writing the buffer 1068 * out synchronously. 1069 */ 1070 void 1071 bdwrite(struct buf *bp) 1072 { 1073 if (BUF_REFCNTNB(bp) == 0) 1074 panic("bdwrite: buffer is not busy"); 1075 1076 if (bp->b_flags & B_INVAL) { 1077 brelse(bp); 1078 return; 1079 } 1080 bdirty(bp); 1081 1082 if (dsched_is_clear_buf_priv(bp)) 1083 dsched_new_buf(bp); 1084 1085 /* 1086 * Set B_CACHE, indicating that the buffer is fully valid. This is 1087 * true even of NFS now. 1088 */ 1089 bp->b_flags |= B_CACHE; 1090 1091 /* 1092 * This bmap keeps the system from needing to do the bmap later, 1093 * perhaps when the system is attempting to do a sync. Since it 1094 * is likely that the indirect block -- or whatever other datastructure 1095 * that the filesystem needs is still in memory now, it is a good 1096 * thing to do this. Note also, that if the pageout daemon is 1097 * requesting a sync -- there might not be enough memory to do 1098 * the bmap then... So, this is important to do. 1099 */ 1100 if (bp->b_bio2.bio_offset == NOOFFSET) { 1101 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 1102 NULL, NULL, BUF_CMD_WRITE); 1103 } 1104 1105 /* 1106 * Because the underlying pages may still be mapped and 1107 * writable trying to set the dirty buffer (b_dirtyoff/end) 1108 * range here will be inaccurate. 1109 * 1110 * However, we must still clean the pages to satisfy the 1111 * vnode_pager and pageout daemon, so theythink the pages 1112 * have been "cleaned". What has really occured is that 1113 * they've been earmarked for later writing by the buffer 1114 * cache. 1115 * 1116 * So we get the b_dirtyoff/end update but will not actually 1117 * depend on it (NFS that is) until the pages are busied for 1118 * writing later on. 1119 */ 1120 vfs_clean_pages(bp); 1121 bqrelse(bp); 1122 1123 /* 1124 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1125 * due to the softdep code. 1126 */ 1127 } 1128 1129 /* 1130 * Fake write - return pages to VM system as dirty, leave the buffer clean. 1131 * This is used by tmpfs. 1132 * 1133 * It is important for any VFS using this routine to NOT use it for 1134 * IO_SYNC or IO_ASYNC operations which occur when the system really 1135 * wants to flush VM pages to backing store. 1136 */ 1137 void 1138 buwrite(struct buf *bp) 1139 { 1140 vm_page_t m; 1141 int i; 1142 1143 /* 1144 * Only works for VMIO buffers. If the buffer is already 1145 * marked for delayed-write we can't avoid the bdwrite(). 1146 */ 1147 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) { 1148 bdwrite(bp); 1149 return; 1150 } 1151 1152 /* 1153 * Mark as needing a commit. 1154 */ 1155 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1156 m = bp->b_xio.xio_pages[i]; 1157 vm_page_need_commit(m); 1158 } 1159 bqrelse(bp); 1160 } 1161 1162 /* 1163 * bdirty: 1164 * 1165 * Turn buffer into delayed write request by marking it B_DELWRI. 1166 * B_RELBUF and B_NOCACHE must be cleared. 1167 * 1168 * We reassign the buffer to itself to properly update it in the 1169 * dirty/clean lists. 1170 * 1171 * Must be called from a critical section. 1172 * The buffer must be on BQUEUE_NONE. 1173 */ 1174 void 1175 bdirty(struct buf *bp) 1176 { 1177 KASSERT(bp->b_qindex == BQUEUE_NONE, 1178 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1179 if (bp->b_flags & B_NOCACHE) { 1180 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 1181 bp->b_flags &= ~B_NOCACHE; 1182 } 1183 if (bp->b_flags & B_INVAL) { 1184 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 1185 } 1186 bp->b_flags &= ~B_RELBUF; 1187 1188 if ((bp->b_flags & B_DELWRI) == 0) { 1189 lwkt_gettoken(&bp->b_vp->v_token); 1190 bp->b_flags |= B_DELWRI; 1191 reassignbuf(bp); 1192 lwkt_reltoken(&bp->b_vp->v_token); 1193 1194 spin_lock(&bufcspin); 1195 ++dirtybufcount; 1196 dirtybufspace += bp->b_bufsize; 1197 if (bp->b_flags & B_HEAVY) { 1198 ++dirtybufcounthw; 1199 dirtybufspacehw += bp->b_bufsize; 1200 } 1201 spin_unlock(&bufcspin); 1202 1203 bd_heatup(); 1204 } 1205 } 1206 1207 /* 1208 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 1209 * needs to be flushed with a different buf_daemon thread to avoid 1210 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 1211 */ 1212 void 1213 bheavy(struct buf *bp) 1214 { 1215 if ((bp->b_flags & B_HEAVY) == 0) { 1216 bp->b_flags |= B_HEAVY; 1217 if (bp->b_flags & B_DELWRI) { 1218 spin_lock(&bufcspin); 1219 ++dirtybufcounthw; 1220 dirtybufspacehw += bp->b_bufsize; 1221 spin_unlock(&bufcspin); 1222 } 1223 } 1224 } 1225 1226 /* 1227 * bundirty: 1228 * 1229 * Clear B_DELWRI for buffer. 1230 * 1231 * Must be called from a critical section. 1232 * 1233 * The buffer is typically on BQUEUE_NONE but there is one case in 1234 * brelse() that calls this function after placing the buffer on 1235 * a different queue. 1236 * 1237 * MPSAFE 1238 */ 1239 void 1240 bundirty(struct buf *bp) 1241 { 1242 if (bp->b_flags & B_DELWRI) { 1243 lwkt_gettoken(&bp->b_vp->v_token); 1244 bp->b_flags &= ~B_DELWRI; 1245 reassignbuf(bp); 1246 lwkt_reltoken(&bp->b_vp->v_token); 1247 1248 spin_lock(&bufcspin); 1249 --dirtybufcount; 1250 dirtybufspace -= bp->b_bufsize; 1251 if (bp->b_flags & B_HEAVY) { 1252 --dirtybufcounthw; 1253 dirtybufspacehw -= bp->b_bufsize; 1254 } 1255 spin_unlock(&bufcspin); 1256 1257 bd_signal(bp->b_bufsize); 1258 } 1259 /* 1260 * Since it is now being written, we can clear its deferred write flag. 1261 */ 1262 bp->b_flags &= ~B_DEFERRED; 1263 } 1264 1265 /* 1266 * Set the b_runningbufspace field, used to track how much I/O is 1267 * in progress at any given moment. 1268 */ 1269 void 1270 bsetrunningbufspace(struct buf *bp, int bytes) 1271 { 1272 bp->b_runningbufspace = bytes; 1273 if (bytes) { 1274 spin_lock(&bufcspin); 1275 runningbufspace += bytes; 1276 ++runningbufcount; 1277 spin_unlock(&bufcspin); 1278 } 1279 } 1280 1281 /* 1282 * brelse: 1283 * 1284 * Release a busy buffer and, if requested, free its resources. The 1285 * buffer will be stashed in the appropriate bufqueue[] allowing it 1286 * to be accessed later as a cache entity or reused for other purposes. 1287 * 1288 * MPALMOSTSAFE 1289 */ 1290 void 1291 brelse(struct buf *bp) 1292 { 1293 #ifdef INVARIANTS 1294 int saved_flags = bp->b_flags; 1295 #endif 1296 1297 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1298 1299 /* 1300 * If B_NOCACHE is set we are being asked to destroy the buffer and 1301 * its backing store. Clear B_DELWRI. 1302 * 1303 * B_NOCACHE is set in two cases: (1) when the caller really wants 1304 * to destroy the buffer and backing store and (2) when the caller 1305 * wants to destroy the buffer and backing store after a write 1306 * completes. 1307 */ 1308 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1309 bundirty(bp); 1310 } 1311 1312 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1313 /* 1314 * A re-dirtied buffer is only subject to destruction 1315 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1316 */ 1317 /* leave buffer intact */ 1318 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1319 (bp->b_bufsize <= 0)) { 1320 /* 1321 * Either a failed read or we were asked to free or not 1322 * cache the buffer. This path is reached with B_DELWRI 1323 * set only if B_INVAL is already set. B_NOCACHE governs 1324 * backing store destruction. 1325 * 1326 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1327 * buffer cannot be immediately freed. 1328 */ 1329 bp->b_flags |= B_INVAL; 1330 if (LIST_FIRST(&bp->b_dep) != NULL) 1331 buf_deallocate(bp); 1332 if (bp->b_flags & B_DELWRI) { 1333 spin_lock(&bufcspin); 1334 --dirtybufcount; 1335 dirtybufspace -= bp->b_bufsize; 1336 if (bp->b_flags & B_HEAVY) { 1337 --dirtybufcounthw; 1338 dirtybufspacehw -= bp->b_bufsize; 1339 } 1340 spin_unlock(&bufcspin); 1341 1342 bd_signal(bp->b_bufsize); 1343 } 1344 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1345 } 1346 1347 /* 1348 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set, 1349 * or if b_refs is non-zero. 1350 * 1351 * If vfs_vmio_release() is called with either bit set, the 1352 * underlying pages may wind up getting freed causing a previous 1353 * write (bdwrite()) to get 'lost' because pages associated with 1354 * a B_DELWRI bp are marked clean. Pages associated with a 1355 * B_LOCKED buffer may be mapped by the filesystem. 1356 * 1357 * If we want to release the buffer ourselves (rather then the 1358 * originator asking us to release it), give the originator a 1359 * chance to countermand the release by setting B_LOCKED. 1360 * 1361 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1362 * if B_DELWRI is set. 1363 * 1364 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1365 * on pages to return pages to the VM page queues. 1366 */ 1367 if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) { 1368 bp->b_flags &= ~B_RELBUF; 1369 } else if (vm_page_count_min(0)) { 1370 if (LIST_FIRST(&bp->b_dep) != NULL) 1371 buf_deallocate(bp); /* can set B_LOCKED */ 1372 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1373 bp->b_flags &= ~B_RELBUF; 1374 else 1375 bp->b_flags |= B_RELBUF; 1376 } 1377 1378 /* 1379 * Make sure b_cmd is clear. It may have already been cleared by 1380 * biodone(). 1381 * 1382 * At this point destroying the buffer is governed by the B_INVAL 1383 * or B_RELBUF flags. 1384 */ 1385 bp->b_cmd = BUF_CMD_DONE; 1386 dsched_exit_buf(bp); 1387 1388 /* 1389 * VMIO buffer rundown. Make sure the VM page array is restored 1390 * after an I/O may have replaces some of the pages with bogus pages 1391 * in order to not destroy dirty pages in a fill-in read. 1392 * 1393 * Note that due to the code above, if a buffer is marked B_DELWRI 1394 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1395 * B_INVAL may still be set, however. 1396 * 1397 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1398 * but not the backing store. B_NOCACHE will destroy the backing 1399 * store. 1400 * 1401 * Note that dirty NFS buffers contain byte-granular write ranges 1402 * and should not be destroyed w/ B_INVAL even if the backing store 1403 * is left intact. 1404 */ 1405 if (bp->b_flags & B_VMIO) { 1406 /* 1407 * Rundown for VMIO buffers which are not dirty NFS buffers. 1408 */ 1409 int i, j, resid; 1410 vm_page_t m; 1411 off_t foff; 1412 vm_pindex_t poff; 1413 vm_object_t obj; 1414 struct vnode *vp; 1415 1416 vp = bp->b_vp; 1417 1418 /* 1419 * Get the base offset and length of the buffer. Note that 1420 * in the VMIO case if the buffer block size is not 1421 * page-aligned then b_data pointer may not be page-aligned. 1422 * But our b_xio.xio_pages array *IS* page aligned. 1423 * 1424 * block sizes less then DEV_BSIZE (usually 512) are not 1425 * supported due to the page granularity bits (m->valid, 1426 * m->dirty, etc...). 1427 * 1428 * See man buf(9) for more information 1429 */ 1430 1431 resid = bp->b_bufsize; 1432 foff = bp->b_loffset; 1433 1434 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1435 m = bp->b_xio.xio_pages[i]; 1436 vm_page_flag_clear(m, PG_ZERO); 1437 /* 1438 * If we hit a bogus page, fixup *all* of them 1439 * now. Note that we left these pages wired 1440 * when we removed them so they had better exist, 1441 * and they cannot be ripped out from under us so 1442 * no critical section protection is necessary. 1443 */ 1444 if (m == bogus_page) { 1445 obj = vp->v_object; 1446 poff = OFF_TO_IDX(bp->b_loffset); 1447 1448 vm_object_hold(obj); 1449 for (j = i; j < bp->b_xio.xio_npages; j++) { 1450 vm_page_t mtmp; 1451 1452 mtmp = bp->b_xio.xio_pages[j]; 1453 if (mtmp == bogus_page) { 1454 mtmp = vm_page_lookup(obj, poff + j); 1455 if (!mtmp) { 1456 panic("brelse: page missing"); 1457 } 1458 bp->b_xio.xio_pages[j] = mtmp; 1459 } 1460 } 1461 bp->b_flags &= ~B_HASBOGUS; 1462 vm_object_drop(obj); 1463 1464 if ((bp->b_flags & B_INVAL) == 0) { 1465 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1466 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1467 } 1468 m = bp->b_xio.xio_pages[i]; 1469 } 1470 1471 /* 1472 * Invalidate the backing store if B_NOCACHE is set 1473 * (e.g. used with vinvalbuf()). If this is NFS 1474 * we impose a requirement that the block size be 1475 * a multiple of PAGE_SIZE and create a temporary 1476 * hack to basically invalidate the whole page. The 1477 * problem is that NFS uses really odd buffer sizes 1478 * especially when tracking piecemeal writes and 1479 * it also vinvalbuf()'s a lot, which would result 1480 * in only partial page validation and invalidation 1481 * here. If the file page is mmap()'d, however, 1482 * all the valid bits get set so after we invalidate 1483 * here we would end up with weird m->valid values 1484 * like 0xfc. nfs_getpages() can't handle this so 1485 * we clear all the valid bits for the NFS case 1486 * instead of just some of them. 1487 * 1488 * The real bug is the VM system having to set m->valid 1489 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1490 * itself is an artifact of the whole 512-byte 1491 * granular mess that exists to support odd block 1492 * sizes and UFS meta-data block sizes (e.g. 6144). 1493 * A complete rewrite is required. 1494 * 1495 * XXX 1496 */ 1497 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1498 int poffset = foff & PAGE_MASK; 1499 int presid; 1500 1501 presid = PAGE_SIZE - poffset; 1502 if (bp->b_vp->v_tag == VT_NFS && 1503 bp->b_vp->v_type == VREG) { 1504 ; /* entire page */ 1505 } else if (presid > resid) { 1506 presid = resid; 1507 } 1508 KASSERT(presid >= 0, ("brelse: extra page")); 1509 vm_page_set_invalid(m, poffset, presid); 1510 1511 /* 1512 * Also make sure any swap cache is removed 1513 * as it is now stale (HAMMER in particular 1514 * uses B_NOCACHE to deal with buffer 1515 * aliasing). 1516 */ 1517 swap_pager_unswapped(m); 1518 } 1519 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1520 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1521 } 1522 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1523 vfs_vmio_release(bp); 1524 } else { 1525 /* 1526 * Rundown for non-VMIO buffers. 1527 */ 1528 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1529 if (bp->b_bufsize) 1530 allocbuf(bp, 0); 1531 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1532 if (bp->b_vp) 1533 brelvp(bp); 1534 } 1535 } 1536 1537 if (bp->b_qindex != BQUEUE_NONE) 1538 panic("brelse: free buffer onto another queue???"); 1539 if (BUF_REFCNTNB(bp) > 1) { 1540 /* Temporary panic to verify exclusive locking */ 1541 /* This panic goes away when we allow shared refs */ 1542 panic("brelse: multiple refs"); 1543 /* NOT REACHED */ 1544 return; 1545 } 1546 1547 /* 1548 * Figure out the correct queue to place the cleaned up buffer on. 1549 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1550 * disassociated from their vnode. 1551 */ 1552 spin_lock(&bufqspin); 1553 if (bp->b_flags & B_LOCKED) { 1554 /* 1555 * Buffers that are locked are placed in the locked queue 1556 * immediately, regardless of their state. 1557 */ 1558 bp->b_qindex = BQUEUE_LOCKED; 1559 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1560 } else if (bp->b_bufsize == 0) { 1561 /* 1562 * Buffers with no memory. Due to conditionals near the top 1563 * of brelse() such buffers should probably already be 1564 * marked B_INVAL and disassociated from their vnode. 1565 */ 1566 bp->b_flags |= B_INVAL; 1567 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1568 KKASSERT((bp->b_flags & B_HASHED) == 0); 1569 if (bp->b_kvasize) { 1570 bp->b_qindex = BQUEUE_EMPTYKVA; 1571 } else { 1572 bp->b_qindex = BQUEUE_EMPTY; 1573 } 1574 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1575 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1576 /* 1577 * Buffers with junk contents. Again these buffers had better 1578 * already be disassociated from their vnode. 1579 */ 1580 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1581 KKASSERT((bp->b_flags & B_HASHED) == 0); 1582 bp->b_flags |= B_INVAL; 1583 bp->b_qindex = BQUEUE_CLEAN; 1584 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1585 } else { 1586 /* 1587 * Remaining buffers. These buffers are still associated with 1588 * their vnode. 1589 */ 1590 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1591 case B_DELWRI: 1592 bp->b_qindex = BQUEUE_DIRTY; 1593 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1594 break; 1595 case B_DELWRI | B_HEAVY: 1596 bp->b_qindex = BQUEUE_DIRTY_HW; 1597 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1598 b_freelist); 1599 break; 1600 default: 1601 /* 1602 * NOTE: Buffers are always placed at the end of the 1603 * queue. If B_AGE is not set the buffer will cycle 1604 * through the queue twice. 1605 */ 1606 bp->b_qindex = BQUEUE_CLEAN; 1607 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1608 break; 1609 } 1610 } 1611 spin_unlock(&bufqspin); 1612 1613 /* 1614 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1615 * on the correct queue. 1616 */ 1617 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1618 bundirty(bp); 1619 1620 /* 1621 * The bp is on an appropriate queue unless locked. If it is not 1622 * locked or dirty we can wakeup threads waiting for buffer space. 1623 * 1624 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1625 * if B_INVAL is set ). 1626 */ 1627 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1628 bufcountwakeup(); 1629 1630 /* 1631 * Something we can maybe free or reuse 1632 */ 1633 if (bp->b_bufsize || bp->b_kvasize) 1634 bufspacewakeup(); 1635 1636 /* 1637 * Clean up temporary flags and unlock the buffer. 1638 */ 1639 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT); 1640 BUF_UNLOCK(bp); 1641 } 1642 1643 /* 1644 * bqrelse: 1645 * 1646 * Release a buffer back to the appropriate queue but do not try to free 1647 * it. The buffer is expected to be used again soon. 1648 * 1649 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1650 * biodone() to requeue an async I/O on completion. It is also used when 1651 * known good buffers need to be requeued but we think we may need the data 1652 * again soon. 1653 * 1654 * XXX we should be able to leave the B_RELBUF hint set on completion. 1655 * 1656 * MPSAFE 1657 */ 1658 void 1659 bqrelse(struct buf *bp) 1660 { 1661 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1662 1663 if (bp->b_qindex != BQUEUE_NONE) 1664 panic("bqrelse: free buffer onto another queue???"); 1665 if (BUF_REFCNTNB(bp) > 1) { 1666 /* do not release to free list */ 1667 panic("bqrelse: multiple refs"); 1668 return; 1669 } 1670 1671 buf_act_advance(bp); 1672 1673 spin_lock(&bufqspin); 1674 if (bp->b_flags & B_LOCKED) { 1675 /* 1676 * Locked buffers are released to the locked queue. However, 1677 * if the buffer is dirty it will first go into the dirty 1678 * queue and later on after the I/O completes successfully it 1679 * will be released to the locked queue. 1680 */ 1681 bp->b_qindex = BQUEUE_LOCKED; 1682 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1683 } else if (bp->b_flags & B_DELWRI) { 1684 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1685 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1686 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1687 } else if (vm_page_count_min(0)) { 1688 /* 1689 * We are too low on memory, we have to try to free the 1690 * buffer (most importantly: the wired pages making up its 1691 * backing store) *now*. 1692 */ 1693 spin_unlock(&bufqspin); 1694 brelse(bp); 1695 return; 1696 } else { 1697 bp->b_qindex = BQUEUE_CLEAN; 1698 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1699 } 1700 spin_unlock(&bufqspin); 1701 1702 if ((bp->b_flags & B_LOCKED) == 0 && 1703 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1704 bufcountwakeup(); 1705 } 1706 1707 /* 1708 * Something we can maybe free or reuse. 1709 */ 1710 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1711 bufspacewakeup(); 1712 1713 /* 1714 * Final cleanup and unlock. Clear bits that are only used while a 1715 * buffer is actively locked. 1716 */ 1717 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF); 1718 dsched_exit_buf(bp); 1719 BUF_UNLOCK(bp); 1720 } 1721 1722 /* 1723 * Hold a buffer, preventing it from being reused. This will prevent 1724 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL 1725 * operations. If a B_INVAL operation occurs the buffer will remain held 1726 * but the underlying pages may get ripped out. 1727 * 1728 * These functions are typically used in VOP_READ/VOP_WRITE functions 1729 * to hold a buffer during a copyin or copyout, preventing deadlocks 1730 * or recursive lock panics when read()/write() is used over mmap()'d 1731 * space. 1732 * 1733 * NOTE: bqhold() requires that the buffer be locked at the time of the 1734 * hold. bqdrop() has no requirements other than the buffer having 1735 * previously been held. 1736 */ 1737 void 1738 bqhold(struct buf *bp) 1739 { 1740 atomic_add_int(&bp->b_refs, 1); 1741 } 1742 1743 void 1744 bqdrop(struct buf *bp) 1745 { 1746 KKASSERT(bp->b_refs > 0); 1747 atomic_add_int(&bp->b_refs, -1); 1748 } 1749 1750 /* 1751 * Return backing pages held by the buffer 'bp' back to the VM system. 1752 * This routine is called when the bp is invalidated, released, or 1753 * reused. 1754 * 1755 * The KVA mapping (b_data) for the underlying pages is removed by 1756 * this function. 1757 * 1758 * WARNING! This routine is integral to the low memory critical path 1759 * when a buffer is B_RELBUF'd. If the system has a severe page 1760 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE 1761 * queues so they can be reused in the current pageout daemon 1762 * pass. 1763 */ 1764 static void 1765 vfs_vmio_release(struct buf *bp) 1766 { 1767 int i; 1768 vm_page_t m; 1769 1770 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1771 m = bp->b_xio.xio_pages[i]; 1772 bp->b_xio.xio_pages[i] = NULL; 1773 1774 /* 1775 * We need to own the page in order to safely unwire it. 1776 */ 1777 vm_page_busy_wait(m, FALSE, "vmiopg"); 1778 1779 /* 1780 * The VFS is telling us this is not a meta-data buffer 1781 * even if it is backed by a block device. 1782 */ 1783 if (bp->b_flags & B_NOTMETA) 1784 vm_page_flag_set(m, PG_NOTMETA); 1785 1786 /* 1787 * This is a very important bit of code. We try to track 1788 * VM page use whether the pages are wired into the buffer 1789 * cache or not. While wired into the buffer cache the 1790 * bp tracks the act_count. 1791 * 1792 * We can choose to place unwired pages on the inactive 1793 * queue (0) or active queue (1). If we place too many 1794 * on the active queue the queue will cycle the act_count 1795 * on pages we'd like to keep, just from single-use pages 1796 * (such as when doing a tar-up or file scan). 1797 */ 1798 if (bp->b_act_count < vm_cycle_point) 1799 vm_page_unwire(m, 0); 1800 else 1801 vm_page_unwire(m, 1); 1802 1803 /* 1804 * If the wire_count has dropped to 0 we may need to take 1805 * further action before unbusying the page. 1806 * 1807 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us. 1808 */ 1809 if (m->wire_count == 0) { 1810 vm_page_flag_clear(m, PG_ZERO); 1811 1812 if (bp->b_flags & B_DIRECT) { 1813 /* 1814 * Attempt to free the page if B_DIRECT is 1815 * set, the caller does not desire the page 1816 * to be cached. 1817 */ 1818 vm_page_wakeup(m); 1819 vm_page_try_to_free(m); 1820 } else if ((bp->b_flags & B_NOTMETA) || 1821 vm_page_count_min(0)) { 1822 /* 1823 * Attempt to move the page to PQ_CACHE 1824 * if B_NOTMETA is set. This flag is set 1825 * by HAMMER to remove one of the two pages 1826 * present when double buffering is enabled. 1827 * 1828 * Attempt to move the page to PQ_CACHE 1829 * If we have a severe page deficit. This 1830 * will cause buffer cache operations related 1831 * to pageouts to recycle the related pages 1832 * in order to avoid a low memory deadlock. 1833 */ 1834 m->act_count = bp->b_act_count; 1835 vm_page_wakeup(m); 1836 vm_page_try_to_cache(m); 1837 } else { 1838 /* 1839 * Nominal case, leave the page on the 1840 * queue the original unwiring placed it on 1841 * (active or inactive). 1842 */ 1843 m->act_count = bp->b_act_count; 1844 vm_page_wakeup(m); 1845 } 1846 } else { 1847 vm_page_wakeup(m); 1848 } 1849 } 1850 1851 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), 1852 bp->b_xio.xio_npages); 1853 if (bp->b_bufsize) { 1854 bufspacewakeup(); 1855 bp->b_bufsize = 0; 1856 } 1857 bp->b_xio.xio_npages = 0; 1858 bp->b_flags &= ~B_VMIO; 1859 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1860 if (bp->b_vp) 1861 brelvp(bp); 1862 } 1863 1864 /* 1865 * vfs_bio_awrite: 1866 * 1867 * Implement clustered async writes for clearing out B_DELWRI buffers. 1868 * This is much better then the old way of writing only one buffer at 1869 * a time. Note that we may not be presented with the buffers in the 1870 * correct order, so we search for the cluster in both directions. 1871 * 1872 * The buffer is locked on call. 1873 */ 1874 int 1875 vfs_bio_awrite(struct buf *bp) 1876 { 1877 int i; 1878 int j; 1879 off_t loffset = bp->b_loffset; 1880 struct vnode *vp = bp->b_vp; 1881 int nbytes; 1882 struct buf *bpa; 1883 int nwritten; 1884 int size; 1885 1886 /* 1887 * right now we support clustered writing only to regular files. If 1888 * we find a clusterable block we could be in the middle of a cluster 1889 * rather then at the beginning. 1890 * 1891 * NOTE: b_bio1 contains the logical loffset and is aliased 1892 * to b_loffset. b_bio2 contains the translated block number. 1893 */ 1894 if ((vp->v_type == VREG) && 1895 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1896 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1897 1898 size = vp->v_mount->mnt_stat.f_iosize; 1899 1900 for (i = size; i < MAXPHYS; i += size) { 1901 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) && 1902 BUF_REFCNT(bpa) == 0 && 1903 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1904 (B_DELWRI | B_CLUSTEROK)) && 1905 (bpa->b_bufsize == size)) { 1906 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1907 (bpa->b_bio2.bio_offset != 1908 bp->b_bio2.bio_offset + i)) 1909 break; 1910 } else { 1911 break; 1912 } 1913 } 1914 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1915 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) && 1916 BUF_REFCNT(bpa) == 0 && 1917 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1918 (B_DELWRI | B_CLUSTEROK)) && 1919 (bpa->b_bufsize == size)) { 1920 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1921 (bpa->b_bio2.bio_offset != 1922 bp->b_bio2.bio_offset - j)) 1923 break; 1924 } else { 1925 break; 1926 } 1927 } 1928 j -= size; 1929 nbytes = (i + j); 1930 1931 /* 1932 * this is a possible cluster write 1933 */ 1934 if (nbytes != size) { 1935 BUF_UNLOCK(bp); 1936 nwritten = cluster_wbuild(vp, size, 1937 loffset - j, nbytes); 1938 return nwritten; 1939 } 1940 } 1941 1942 /* 1943 * default (old) behavior, writing out only one block 1944 * 1945 * XXX returns b_bufsize instead of b_bcount for nwritten? 1946 */ 1947 nwritten = bp->b_bufsize; 1948 bremfree(bp); 1949 bawrite(bp); 1950 1951 return nwritten; 1952 } 1953 1954 /* 1955 * getnewbuf: 1956 * 1957 * Find and initialize a new buffer header, freeing up existing buffers 1958 * in the bufqueues as necessary. The new buffer is returned locked. 1959 * 1960 * Important: B_INVAL is not set. If the caller wishes to throw the 1961 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1962 * 1963 * We block if: 1964 * We have insufficient buffer headers 1965 * We have insufficient buffer space 1966 * buffer_map is too fragmented ( space reservation fails ) 1967 * If we have to flush dirty buffers ( but we try to avoid this ) 1968 * 1969 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1970 * Instead we ask the buf daemon to do it for us. We attempt to 1971 * avoid piecemeal wakeups of the pageout daemon. 1972 * 1973 * MPALMOSTSAFE 1974 */ 1975 struct buf * 1976 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1977 { 1978 struct buf *bp; 1979 struct buf *nbp; 1980 int defrag = 0; 1981 int nqindex; 1982 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1983 static int flushingbufs; 1984 1985 /* 1986 * We can't afford to block since we might be holding a vnode lock, 1987 * which may prevent system daemons from running. We deal with 1988 * low-memory situations by proactively returning memory and running 1989 * async I/O rather then sync I/O. 1990 */ 1991 1992 ++getnewbufcalls; 1993 --getnewbufrestarts; 1994 restart: 1995 ++getnewbufrestarts; 1996 1997 /* 1998 * Setup for scan. If we do not have enough free buffers, 1999 * we setup a degenerate case that immediately fails. Note 2000 * that if we are specially marked process, we are allowed to 2001 * dip into our reserves. 2002 * 2003 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 2004 * 2005 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 2006 * However, there are a number of cases (defragging, reusing, ...) 2007 * where we cannot backup. 2008 */ 2009 nqindex = BQUEUE_EMPTYKVA; 2010 spin_lock(&bufqspin); 2011 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 2012 2013 if (nbp == NULL) { 2014 /* 2015 * If no EMPTYKVA buffers and we are either 2016 * defragging or reusing, locate a CLEAN buffer 2017 * to free or reuse. If bufspace useage is low 2018 * skip this step so we can allocate a new buffer. 2019 */ 2020 if (defrag || bufspace >= lobufspace) { 2021 nqindex = BQUEUE_CLEAN; 2022 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2023 } 2024 2025 /* 2026 * If we could not find or were not allowed to reuse a 2027 * CLEAN buffer, check to see if it is ok to use an EMPTY 2028 * buffer. We can only use an EMPTY buffer if allocating 2029 * its KVA would not otherwise run us out of buffer space. 2030 */ 2031 if (nbp == NULL && defrag == 0 && 2032 bufspace + maxsize < hibufspace) { 2033 nqindex = BQUEUE_EMPTY; 2034 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 2035 } 2036 } 2037 2038 /* 2039 * Run scan, possibly freeing data and/or kva mappings on the fly 2040 * depending. 2041 * 2042 * WARNING! bufqspin is held! 2043 */ 2044 while ((bp = nbp) != NULL) { 2045 int qindex = nqindex; 2046 2047 nbp = TAILQ_NEXT(bp, b_freelist); 2048 2049 /* 2050 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2051 * cycles through the queue twice before being selected. 2052 */ 2053 if (qindex == BQUEUE_CLEAN && 2054 (bp->b_flags & B_AGE) == 0 && nbp) { 2055 bp->b_flags |= B_AGE; 2056 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 2057 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 2058 continue; 2059 } 2060 2061 /* 2062 * Calculate next bp ( we can only use it if we do not block 2063 * or do other fancy things ). 2064 */ 2065 if (nbp == NULL) { 2066 switch(qindex) { 2067 case BQUEUE_EMPTY: 2068 nqindex = BQUEUE_EMPTYKVA; 2069 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 2070 break; 2071 /* fall through */ 2072 case BQUEUE_EMPTYKVA: 2073 nqindex = BQUEUE_CLEAN; 2074 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 2075 break; 2076 /* fall through */ 2077 case BQUEUE_CLEAN: 2078 /* 2079 * nbp is NULL. 2080 */ 2081 break; 2082 } 2083 } 2084 2085 /* 2086 * Sanity Checks 2087 */ 2088 KASSERT(bp->b_qindex == qindex, 2089 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 2090 2091 /* 2092 * Note: we no longer distinguish between VMIO and non-VMIO 2093 * buffers. 2094 */ 2095 KASSERT((bp->b_flags & B_DELWRI) == 0, 2096 ("delwri buffer %p found in queue %d", bp, qindex)); 2097 2098 /* 2099 * Do not try to reuse a buffer with a non-zero b_refs. 2100 * This is an unsynchronized test. A synchronized test 2101 * is also performed after we lock the buffer. 2102 */ 2103 if (bp->b_refs) 2104 continue; 2105 2106 /* 2107 * If we are defragging then we need a buffer with 2108 * b_kvasize != 0. XXX this situation should no longer 2109 * occur, if defrag is non-zero the buffer's b_kvasize 2110 * should also be non-zero at this point. XXX 2111 */ 2112 if (defrag && bp->b_kvasize == 0) { 2113 kprintf("Warning: defrag empty buffer %p\n", bp); 2114 continue; 2115 } 2116 2117 /* 2118 * Start freeing the bp. This is somewhat involved. nbp 2119 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 2120 * on the clean list must be disassociated from their 2121 * current vnode. Buffers on the empty[kva] lists have 2122 * already been disassociated. 2123 * 2124 * b_refs is checked after locking along with queue changes. 2125 * We must check here to deal with zero->nonzero transitions 2126 * made by the owner of the buffer lock, which is used by 2127 * VFS's to hold the buffer while issuing an unlocked 2128 * uiomove()s. We cannot invalidate the buffer's pages 2129 * for this case. Once we successfully lock a buffer the 2130 * only 0->1 transitions of b_refs will occur via findblk(). 2131 * 2132 * We must also check for queue changes after successful 2133 * locking as the current lock holder may dispose of the 2134 * buffer and change its queue. 2135 */ 2136 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2137 spin_unlock(&bufqspin); 2138 tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100); 2139 goto restart; 2140 } 2141 if (bp->b_qindex != qindex || bp->b_refs) { 2142 spin_unlock(&bufqspin); 2143 BUF_UNLOCK(bp); 2144 goto restart; 2145 } 2146 bremfree_locked(bp); 2147 spin_unlock(&bufqspin); 2148 2149 /* 2150 * Dependancies must be handled before we disassociate the 2151 * vnode. 2152 * 2153 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2154 * be immediately disassociated. HAMMER then becomes 2155 * responsible for releasing the buffer. 2156 * 2157 * NOTE: bufqspin is UNLOCKED now. 2158 */ 2159 if (LIST_FIRST(&bp->b_dep) != NULL) { 2160 buf_deallocate(bp); 2161 if (bp->b_flags & B_LOCKED) { 2162 bqrelse(bp); 2163 goto restart; 2164 } 2165 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2166 } 2167 2168 if (qindex == BQUEUE_CLEAN) { 2169 if (bp->b_flags & B_VMIO) 2170 vfs_vmio_release(bp); 2171 if (bp->b_vp) 2172 brelvp(bp); 2173 } 2174 2175 /* 2176 * NOTE: nbp is now entirely invalid. We can only restart 2177 * the scan from this point on. 2178 * 2179 * Get the rest of the buffer freed up. b_kva* is still 2180 * valid after this operation. 2181 */ 2182 KASSERT(bp->b_vp == NULL, 2183 ("bp3 %p flags %08x vnode %p qindex %d " 2184 "unexpectededly still associated!", 2185 bp, bp->b_flags, bp->b_vp, qindex)); 2186 KKASSERT((bp->b_flags & B_HASHED) == 0); 2187 2188 /* 2189 * critical section protection is not required when 2190 * scrapping a buffer's contents because it is already 2191 * wired. 2192 */ 2193 if (bp->b_bufsize) 2194 allocbuf(bp, 0); 2195 2196 bp->b_flags = B_BNOCLIP; 2197 bp->b_cmd = BUF_CMD_DONE; 2198 bp->b_vp = NULL; 2199 bp->b_error = 0; 2200 bp->b_resid = 0; 2201 bp->b_bcount = 0; 2202 bp->b_xio.xio_npages = 0; 2203 bp->b_dirtyoff = bp->b_dirtyend = 0; 2204 bp->b_act_count = ACT_INIT; 2205 reinitbufbio(bp); 2206 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2207 buf_dep_init(bp); 2208 if (blkflags & GETBLK_BHEAVY) 2209 bp->b_flags |= B_HEAVY; 2210 2211 /* 2212 * If we are defragging then free the buffer. 2213 */ 2214 if (defrag) { 2215 bp->b_flags |= B_INVAL; 2216 bfreekva(bp); 2217 brelse(bp); 2218 defrag = 0; 2219 goto restart; 2220 } 2221 2222 /* 2223 * If we are overcomitted then recover the buffer and its 2224 * KVM space. This occurs in rare situations when multiple 2225 * processes are blocked in getnewbuf() or allocbuf(). 2226 */ 2227 if (bufspace >= hibufspace) 2228 flushingbufs = 1; 2229 if (flushingbufs && bp->b_kvasize != 0) { 2230 bp->b_flags |= B_INVAL; 2231 bfreekva(bp); 2232 brelse(bp); 2233 goto restart; 2234 } 2235 if (bufspace < lobufspace) 2236 flushingbufs = 0; 2237 2238 /* 2239 * b_refs can transition to a non-zero value while we hold 2240 * the buffer locked due to a findblk(). Our brelvp() above 2241 * interlocked any future possible transitions due to 2242 * findblk()s. 2243 * 2244 * If we find b_refs to be non-zero we can destroy the 2245 * buffer's contents but we cannot yet reuse the buffer. 2246 */ 2247 if (bp->b_refs) { 2248 bp->b_flags |= B_INVAL; 2249 bfreekva(bp); 2250 brelse(bp); 2251 goto restart; 2252 } 2253 break; 2254 /* NOT REACHED, bufqspin not held */ 2255 } 2256 2257 /* 2258 * If we exhausted our list, sleep as appropriate. We may have to 2259 * wakeup various daemons and write out some dirty buffers. 2260 * 2261 * Generally we are sleeping due to insufficient buffer space. 2262 * 2263 * NOTE: bufqspin is held if bp is NULL, else it is not held. 2264 */ 2265 if (bp == NULL) { 2266 int flags; 2267 char *waitmsg; 2268 2269 spin_unlock(&bufqspin); 2270 if (defrag) { 2271 flags = VFS_BIO_NEED_BUFSPACE; 2272 waitmsg = "nbufkv"; 2273 } else if (bufspace >= hibufspace) { 2274 waitmsg = "nbufbs"; 2275 flags = VFS_BIO_NEED_BUFSPACE; 2276 } else { 2277 waitmsg = "newbuf"; 2278 flags = VFS_BIO_NEED_ANY; 2279 } 2280 2281 bd_speedup(); /* heeeelp */ 2282 spin_lock(&bufcspin); 2283 needsbuffer |= flags; 2284 while (needsbuffer & flags) { 2285 if (ssleep(&needsbuffer, &bufcspin, 2286 slpflags, waitmsg, slptimeo)) { 2287 spin_unlock(&bufcspin); 2288 return (NULL); 2289 } 2290 } 2291 spin_unlock(&bufcspin); 2292 } else { 2293 /* 2294 * We finally have a valid bp. We aren't quite out of the 2295 * woods, we still have to reserve kva space. In order 2296 * to keep fragmentation sane we only allocate kva in 2297 * BKVASIZE chunks. 2298 * 2299 * (bufqspin is not held) 2300 */ 2301 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2302 2303 if (maxsize != bp->b_kvasize) { 2304 vm_offset_t addr = 0; 2305 int count; 2306 2307 bfreekva(bp); 2308 2309 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2310 vm_map_lock(&buffer_map); 2311 2312 if (vm_map_findspace(&buffer_map, 2313 vm_map_min(&buffer_map), maxsize, 2314 maxsize, 0, &addr)) { 2315 /* 2316 * Uh oh. Buffer map is too fragmented. We 2317 * must defragment the map. 2318 */ 2319 vm_map_unlock(&buffer_map); 2320 vm_map_entry_release(count); 2321 ++bufdefragcnt; 2322 defrag = 1; 2323 bp->b_flags |= B_INVAL; 2324 brelse(bp); 2325 goto restart; 2326 } 2327 if (addr) { 2328 vm_map_insert(&buffer_map, &count, 2329 NULL, 0, 2330 addr, addr + maxsize, 2331 VM_MAPTYPE_NORMAL, 2332 VM_PROT_ALL, VM_PROT_ALL, 2333 MAP_NOFAULT); 2334 2335 bp->b_kvabase = (caddr_t) addr; 2336 bp->b_kvasize = maxsize; 2337 bufspace += bp->b_kvasize; 2338 ++bufreusecnt; 2339 } 2340 vm_map_unlock(&buffer_map); 2341 vm_map_entry_release(count); 2342 } 2343 bp->b_data = bp->b_kvabase; 2344 } 2345 return(bp); 2346 } 2347 2348 #if 0 2349 /* 2350 * This routine is called in an emergency to recover VM pages from the 2351 * buffer cache by cashing in clean buffers. The idea is to recover 2352 * enough pages to be able to satisfy a stuck bio_page_alloc(). 2353 * 2354 * XXX Currently not implemented. This function can wind up deadlocking 2355 * against another thread holding one or more of the backing pages busy. 2356 */ 2357 static int 2358 recoverbufpages(void) 2359 { 2360 struct buf *bp; 2361 int bytes = 0; 2362 2363 ++recoverbufcalls; 2364 2365 spin_lock(&bufqspin); 2366 while (bytes < MAXBSIZE) { 2367 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 2368 if (bp == NULL) 2369 break; 2370 2371 /* 2372 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 2373 * cycles through the queue twice before being selected. 2374 */ 2375 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 2376 bp->b_flags |= B_AGE; 2377 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 2378 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 2379 bp, b_freelist); 2380 continue; 2381 } 2382 2383 /* 2384 * Sanity Checks 2385 */ 2386 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 2387 KKASSERT((bp->b_flags & B_DELWRI) == 0); 2388 2389 /* 2390 * Start freeing the bp. This is somewhat involved. 2391 * 2392 * Buffers on the clean list must be disassociated from 2393 * their current vnode 2394 */ 2395 2396 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 2397 kprintf("recoverbufpages: warning, locked buf %p, " 2398 "race corrected\n", 2399 bp); 2400 ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100); 2401 continue; 2402 } 2403 if (bp->b_qindex != BQUEUE_CLEAN) { 2404 kprintf("recoverbufpages: warning, BUF_LOCK blocked " 2405 "unexpectedly on buf %p index %d, race " 2406 "corrected\n", 2407 bp, bp->b_qindex); 2408 BUF_UNLOCK(bp); 2409 continue; 2410 } 2411 bremfree_locked(bp); 2412 spin_unlock(&bufqspin); 2413 2414 /* 2415 * Dependancies must be handled before we disassociate the 2416 * vnode. 2417 * 2418 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 2419 * be immediately disassociated. HAMMER then becomes 2420 * responsible for releasing the buffer. 2421 */ 2422 if (LIST_FIRST(&bp->b_dep) != NULL) { 2423 buf_deallocate(bp); 2424 if (bp->b_flags & B_LOCKED) { 2425 bqrelse(bp); 2426 spin_lock(&bufqspin); 2427 continue; 2428 } 2429 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2430 } 2431 2432 bytes += bp->b_bufsize; 2433 2434 if (bp->b_flags & B_VMIO) { 2435 bp->b_flags |= B_DIRECT; /* try to free pages */ 2436 vfs_vmio_release(bp); 2437 } 2438 if (bp->b_vp) 2439 brelvp(bp); 2440 2441 KKASSERT(bp->b_vp == NULL); 2442 KKASSERT((bp->b_flags & B_HASHED) == 0); 2443 2444 /* 2445 * critical section protection is not required when 2446 * scrapping a buffer's contents because it is already 2447 * wired. 2448 */ 2449 if (bp->b_bufsize) 2450 allocbuf(bp, 0); 2451 2452 bp->b_flags = B_BNOCLIP; 2453 bp->b_cmd = BUF_CMD_DONE; 2454 bp->b_vp = NULL; 2455 bp->b_error = 0; 2456 bp->b_resid = 0; 2457 bp->b_bcount = 0; 2458 bp->b_xio.xio_npages = 0; 2459 bp->b_dirtyoff = bp->b_dirtyend = 0; 2460 reinitbufbio(bp); 2461 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2462 buf_dep_init(bp); 2463 bp->b_flags |= B_INVAL; 2464 /* bfreekva(bp); */ 2465 brelse(bp); 2466 spin_lock(&bufqspin); 2467 } 2468 spin_unlock(&bufqspin); 2469 return(bytes); 2470 } 2471 #endif 2472 2473 /* 2474 * buf_daemon: 2475 * 2476 * Buffer flushing daemon. Buffers are normally flushed by the 2477 * update daemon but if it cannot keep up this process starts to 2478 * take the load in an attempt to prevent getnewbuf() from blocking. 2479 * 2480 * Once a flush is initiated it does not stop until the number 2481 * of buffers falls below lodirtybuffers, but we will wake up anyone 2482 * waiting at the mid-point. 2483 */ 2484 static struct kproc_desc buf_kp = { 2485 "bufdaemon", 2486 buf_daemon, 2487 &bufdaemon_td 2488 }; 2489 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2490 kproc_start, &buf_kp) 2491 2492 static struct kproc_desc bufhw_kp = { 2493 "bufdaemon_hw", 2494 buf_daemon_hw, 2495 &bufdaemonhw_td 2496 }; 2497 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2498 kproc_start, &bufhw_kp) 2499 2500 /* 2501 * MPSAFE thread 2502 */ 2503 static void 2504 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long), 2505 int *bd_req) 2506 { 2507 long limit; 2508 2509 /* 2510 * This process needs to be suspended prior to shutdown sync. 2511 */ 2512 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2513 td, SHUTDOWN_PRI_LAST); 2514 curthread->td_flags |= TDF_SYSTHREAD; 2515 2516 /* 2517 * This process is allowed to take the buffer cache to the limit 2518 */ 2519 for (;;) { 2520 kproc_suspend_loop(); 2521 2522 /* 2523 * Do the flush as long as the number of dirty buffers 2524 * (including those running) exceeds lodirtybufspace. 2525 * 2526 * When flushing limit running I/O to hirunningspace 2527 * Do the flush. Limit the amount of in-transit I/O we 2528 * allow to build up, otherwise we would completely saturate 2529 * the I/O system. Wakeup any waiting processes before we 2530 * normally would so they can run in parallel with our drain. 2531 * 2532 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2533 * but because we split the operation into two threads we 2534 * have to cut it in half for each thread. 2535 */ 2536 waitrunningbufspace(); 2537 limit = lodirtybufspace / 2; 2538 while (buf_limit_fn(limit)) { 2539 if (flushbufqueues(queue) == 0) 2540 break; 2541 if (runningbufspace < hirunningspace) 2542 continue; 2543 waitrunningbufspace(); 2544 } 2545 2546 /* 2547 * We reached our low water mark, reset the 2548 * request and sleep until we are needed again. 2549 * The sleep is just so the suspend code works. 2550 */ 2551 spin_lock(&bufcspin); 2552 if (*bd_req == 0) 2553 ssleep(bd_req, &bufcspin, 0, "psleep", hz); 2554 *bd_req = 0; 2555 spin_unlock(&bufcspin); 2556 } 2557 } 2558 2559 static int 2560 buf_daemon_limit(long limit) 2561 { 2562 return (runningbufspace + dirtybufspace > limit || 2563 dirtybufcount - dirtybufcounthw >= nbuf / 2); 2564 } 2565 2566 static int 2567 buf_daemon_hw_limit(long limit) 2568 { 2569 return (runningbufspace + dirtybufspacehw > limit || 2570 dirtybufcounthw >= nbuf / 2); 2571 } 2572 2573 static void 2574 buf_daemon(void) 2575 { 2576 buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit, 2577 &bd_request); 2578 } 2579 2580 static void 2581 buf_daemon_hw(void) 2582 { 2583 buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit, 2584 &bd_request_hw); 2585 } 2586 2587 /* 2588 * flushbufqueues: 2589 * 2590 * Try to flush a buffer in the dirty queue. We must be careful to 2591 * free up B_INVAL buffers instead of write them, which NFS is 2592 * particularly sensitive to. 2593 * 2594 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2595 * that we really want to try to get the buffer out and reuse it 2596 * due to the write load on the machine. 2597 * 2598 * We must lock the buffer in order to check its validity before we 2599 * can mess with its contents. bufqspin isn't enough. 2600 */ 2601 static int 2602 flushbufqueues(bufq_type_t q) 2603 { 2604 struct buf *bp; 2605 int r = 0; 2606 int spun; 2607 2608 spin_lock(&bufqspin); 2609 spun = 1; 2610 2611 bp = TAILQ_FIRST(&bufqueues[q]); 2612 while (bp) { 2613 if ((bp->b_flags & B_DELWRI) == 0) { 2614 kprintf("Unexpected clean buffer %p\n", bp); 2615 bp = TAILQ_NEXT(bp, b_freelist); 2616 continue; 2617 } 2618 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2619 bp = TAILQ_NEXT(bp, b_freelist); 2620 continue; 2621 } 2622 KKASSERT(bp->b_qindex == q); 2623 2624 /* 2625 * Must recheck B_DELWRI after successfully locking 2626 * the buffer. 2627 */ 2628 if ((bp->b_flags & B_DELWRI) == 0) { 2629 BUF_UNLOCK(bp); 2630 bp = TAILQ_NEXT(bp, b_freelist); 2631 continue; 2632 } 2633 2634 if (bp->b_flags & B_INVAL) { 2635 _bremfree(bp); 2636 spin_unlock(&bufqspin); 2637 spun = 0; 2638 brelse(bp); 2639 ++r; 2640 break; 2641 } 2642 2643 spin_unlock(&bufqspin); 2644 lwkt_yield(); 2645 spun = 0; 2646 2647 if (LIST_FIRST(&bp->b_dep) != NULL && 2648 (bp->b_flags & B_DEFERRED) == 0 && 2649 buf_countdeps(bp, 0)) { 2650 spin_lock(&bufqspin); 2651 spun = 1; 2652 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2653 TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist); 2654 bp->b_flags |= B_DEFERRED; 2655 BUF_UNLOCK(bp); 2656 bp = TAILQ_FIRST(&bufqueues[q]); 2657 continue; 2658 } 2659 2660 /* 2661 * If the buffer has a dependancy, buf_checkwrite() must 2662 * also return 0 for us to be able to initate the write. 2663 * 2664 * If the buffer is flagged B_ERROR it may be requeued 2665 * over and over again, we try to avoid a live lock. 2666 * 2667 * NOTE: buf_checkwrite is MPSAFE. 2668 */ 2669 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) { 2670 bremfree(bp); 2671 brelse(bp); 2672 } else if (bp->b_flags & B_ERROR) { 2673 tsleep(bp, 0, "bioer", 1); 2674 bp->b_flags &= ~B_AGE; 2675 vfs_bio_awrite(bp); 2676 } else { 2677 bp->b_flags |= B_AGE; 2678 vfs_bio_awrite(bp); 2679 } 2680 ++r; 2681 break; 2682 } 2683 if (spun) 2684 spin_unlock(&bufqspin); 2685 return (r); 2686 } 2687 2688 /* 2689 * inmem: 2690 * 2691 * Returns true if no I/O is needed to access the associated VM object. 2692 * This is like findblk except it also hunts around in the VM system for 2693 * the data. 2694 * 2695 * Note that we ignore vm_page_free() races from interrupts against our 2696 * lookup, since if the caller is not protected our return value will not 2697 * be any more valid then otherwise once we exit the critical section. 2698 */ 2699 int 2700 inmem(struct vnode *vp, off_t loffset) 2701 { 2702 vm_object_t obj; 2703 vm_offset_t toff, tinc, size; 2704 vm_page_t m; 2705 int res = 1; 2706 2707 if (findblk(vp, loffset, FINDBLK_TEST)) 2708 return 1; 2709 if (vp->v_mount == NULL) 2710 return 0; 2711 if ((obj = vp->v_object) == NULL) 2712 return 0; 2713 2714 size = PAGE_SIZE; 2715 if (size > vp->v_mount->mnt_stat.f_iosize) 2716 size = vp->v_mount->mnt_stat.f_iosize; 2717 2718 vm_object_hold(obj); 2719 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2720 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2721 if (m == NULL) { 2722 res = 0; 2723 break; 2724 } 2725 tinc = size; 2726 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2727 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2728 if (vm_page_is_valid(m, 2729 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) { 2730 res = 0; 2731 break; 2732 } 2733 } 2734 vm_object_drop(obj); 2735 return (res); 2736 } 2737 2738 /* 2739 * findblk: 2740 * 2741 * Locate and return the specified buffer. Unless flagged otherwise, 2742 * a locked buffer will be returned if it exists or NULL if it does not. 2743 * 2744 * findblk()'d buffers are still on the bufqueues and if you intend 2745 * to use your (locked NON-TEST) buffer you need to bremfree(bp) 2746 * and possibly do other stuff to it. 2747 * 2748 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible 2749 * for locking the buffer and ensuring that it remains 2750 * the desired buffer after locking. 2751 * 2752 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable 2753 * to acquire the lock we return NULL, even if the 2754 * buffer exists. 2755 * 2756 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal 2757 * reuse by getnewbuf() but does not prevent 2758 * disassociation (B_INVAL). Used to avoid deadlocks 2759 * against random (vp,loffset)s due to reassignment. 2760 * 2761 * (0) - Lock the buffer blocking. 2762 * 2763 * MPSAFE 2764 */ 2765 struct buf * 2766 findblk(struct vnode *vp, off_t loffset, int flags) 2767 { 2768 struct buf *bp; 2769 int lkflags; 2770 2771 lkflags = LK_EXCLUSIVE; 2772 if (flags & FINDBLK_NBLOCK) 2773 lkflags |= LK_NOWAIT; 2774 2775 for (;;) { 2776 /* 2777 * Lookup. Ref the buf while holding v_token to prevent 2778 * reuse (but does not prevent diassociation). 2779 */ 2780 lwkt_gettoken_shared(&vp->v_token); 2781 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2782 if (bp == NULL) { 2783 lwkt_reltoken(&vp->v_token); 2784 return(NULL); 2785 } 2786 bqhold(bp); 2787 lwkt_reltoken(&vp->v_token); 2788 2789 /* 2790 * If testing only break and return bp, do not lock. 2791 */ 2792 if (flags & FINDBLK_TEST) 2793 break; 2794 2795 /* 2796 * Lock the buffer, return an error if the lock fails. 2797 * (only FINDBLK_NBLOCK can cause the lock to fail). 2798 */ 2799 if (BUF_LOCK(bp, lkflags)) { 2800 atomic_subtract_int(&bp->b_refs, 1); 2801 /* bp = NULL; not needed */ 2802 return(NULL); 2803 } 2804 2805 /* 2806 * Revalidate the locked buf before allowing it to be 2807 * returned. 2808 */ 2809 if (bp->b_vp == vp && bp->b_loffset == loffset) 2810 break; 2811 atomic_subtract_int(&bp->b_refs, 1); 2812 BUF_UNLOCK(bp); 2813 } 2814 2815 /* 2816 * Success 2817 */ 2818 if ((flags & FINDBLK_REF) == 0) 2819 atomic_subtract_int(&bp->b_refs, 1); 2820 return(bp); 2821 } 2822 2823 /* 2824 * getcacheblk: 2825 * 2826 * Similar to getblk() except only returns the buffer if it is 2827 * B_CACHE and requires no other manipulation. Otherwise NULL 2828 * is returned. 2829 * 2830 * If B_RAM is set the buffer might be just fine, but we return 2831 * NULL anyway because we want the code to fall through to the 2832 * cluster read. Otherwise read-ahead breaks. 2833 * 2834 * If blksize is 0 the buffer cache buffer must already be fully 2835 * cached. 2836 * 2837 * If blksize is non-zero getblk() will be used, allowing a buffer 2838 * to be reinstantiated from its VM backing store. The buffer must 2839 * still be fully cached after reinstantiation to be returned. 2840 */ 2841 struct buf * 2842 getcacheblk(struct vnode *vp, off_t loffset, int blksize) 2843 { 2844 struct buf *bp; 2845 2846 if (blksize) { 2847 bp = getblk(vp, loffset, blksize, 0, 0); 2848 if (bp) { 2849 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == 2850 B_CACHE) { 2851 bp->b_flags &= ~B_AGE; 2852 } else { 2853 brelse(bp); 2854 bp = NULL; 2855 } 2856 } 2857 } else { 2858 bp = findblk(vp, loffset, 0); 2859 if (bp) { 2860 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == 2861 B_CACHE) { 2862 bp->b_flags &= ~B_AGE; 2863 bremfree(bp); 2864 } else { 2865 BUF_UNLOCK(bp); 2866 bp = NULL; 2867 } 2868 } 2869 } 2870 return (bp); 2871 } 2872 2873 /* 2874 * getblk: 2875 * 2876 * Get a block given a specified block and offset into a file/device. 2877 * B_INVAL may or may not be set on return. The caller should clear 2878 * B_INVAL prior to initiating a READ. 2879 * 2880 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2881 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2882 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2883 * without doing any of those things the system will likely believe 2884 * the buffer to be valid (especially if it is not B_VMIO), and the 2885 * next getblk() will return the buffer with B_CACHE set. 2886 * 2887 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2888 * an existing buffer. 2889 * 2890 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2891 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2892 * and then cleared based on the backing VM. If the previous buffer is 2893 * non-0-sized but invalid, B_CACHE will be cleared. 2894 * 2895 * If getblk() must create a new buffer, the new buffer is returned with 2896 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2897 * case it is returned with B_INVAL clear and B_CACHE set based on the 2898 * backing VM. 2899 * 2900 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2901 * B_CACHE bit is clear. 2902 * 2903 * What this means, basically, is that the caller should use B_CACHE to 2904 * determine whether the buffer is fully valid or not and should clear 2905 * B_INVAL prior to issuing a read. If the caller intends to validate 2906 * the buffer by loading its data area with something, the caller needs 2907 * to clear B_INVAL. If the caller does this without issuing an I/O, 2908 * the caller should set B_CACHE ( as an optimization ), else the caller 2909 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2910 * a write attempt or if it was a successfull read. If the caller 2911 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2912 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2913 * 2914 * getblk flags: 2915 * 2916 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2917 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2918 * 2919 * MPALMOSTSAFE 2920 */ 2921 struct buf * 2922 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2923 { 2924 struct buf *bp; 2925 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2926 int error; 2927 int lkflags; 2928 2929 if (size > MAXBSIZE) 2930 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2931 if (vp->v_object == NULL) 2932 panic("getblk: vnode %p has no object!", vp); 2933 2934 loop: 2935 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) { 2936 /* 2937 * The buffer was found in the cache, but we need to lock it. 2938 * We must acquire a ref on the bp to prevent reuse, but 2939 * this will not prevent disassociation (brelvp()) so we 2940 * must recheck (vp,loffset) after acquiring the lock. 2941 * 2942 * Without the ref the buffer could potentially be reused 2943 * before we acquire the lock and create a deadlock 2944 * situation between the thread trying to reuse the buffer 2945 * and us due to the fact that we would wind up blocking 2946 * on a random (vp,loffset). 2947 */ 2948 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2949 if (blkflags & GETBLK_NOWAIT) { 2950 bqdrop(bp); 2951 return(NULL); 2952 } 2953 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2954 if (blkflags & GETBLK_PCATCH) 2955 lkflags |= LK_PCATCH; 2956 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2957 if (error) { 2958 bqdrop(bp); 2959 if (error == ENOLCK) 2960 goto loop; 2961 return (NULL); 2962 } 2963 /* buffer may have changed on us */ 2964 } 2965 bqdrop(bp); 2966 2967 /* 2968 * Once the buffer has been locked, make sure we didn't race 2969 * a buffer recyclement. Buffers that are no longer hashed 2970 * will have b_vp == NULL, so this takes care of that check 2971 * as well. 2972 */ 2973 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2974 kprintf("Warning buffer %p (vp %p loffset %lld) " 2975 "was recycled\n", 2976 bp, vp, (long long)loffset); 2977 BUF_UNLOCK(bp); 2978 goto loop; 2979 } 2980 2981 /* 2982 * If SZMATCH any pre-existing buffer must be of the requested 2983 * size or NULL is returned. The caller absolutely does not 2984 * want getblk() to bwrite() the buffer on a size mismatch. 2985 */ 2986 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2987 BUF_UNLOCK(bp); 2988 return(NULL); 2989 } 2990 2991 /* 2992 * All vnode-based buffers must be backed by a VM object. 2993 */ 2994 KKASSERT(bp->b_flags & B_VMIO); 2995 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2996 bp->b_flags &= ~B_AGE; 2997 2998 /* 2999 * Make sure that B_INVAL buffers do not have a cached 3000 * block number translation. 3001 */ 3002 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 3003 kprintf("Warning invalid buffer %p (vp %p loffset %lld)" 3004 " did not have cleared bio_offset cache\n", 3005 bp, vp, (long long)loffset); 3006 clearbiocache(&bp->b_bio2); 3007 } 3008 3009 /* 3010 * The buffer is locked. B_CACHE is cleared if the buffer is 3011 * invalid. 3012 */ 3013 if (bp->b_flags & B_INVAL) 3014 bp->b_flags &= ~B_CACHE; 3015 bremfree(bp); 3016 3017 /* 3018 * Any size inconsistancy with a dirty buffer or a buffer 3019 * with a softupdates dependancy must be resolved. Resizing 3020 * the buffer in such circumstances can lead to problems. 3021 * 3022 * Dirty or dependant buffers are written synchronously. 3023 * Other types of buffers are simply released and 3024 * reconstituted as they may be backed by valid, dirty VM 3025 * pages (but not marked B_DELWRI). 3026 * 3027 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized 3028 * and may be left over from a prior truncation (and thus 3029 * no longer represent the actual EOF point), so we 3030 * definitely do not want to B_NOCACHE the backing store. 3031 */ 3032 if (size != bp->b_bcount) { 3033 if (bp->b_flags & B_DELWRI) { 3034 bp->b_flags |= B_RELBUF; 3035 bwrite(bp); 3036 } else if (LIST_FIRST(&bp->b_dep)) { 3037 bp->b_flags |= B_RELBUF; 3038 bwrite(bp); 3039 } else { 3040 bp->b_flags |= B_RELBUF; 3041 brelse(bp); 3042 } 3043 goto loop; 3044 } 3045 KKASSERT(size <= bp->b_kvasize); 3046 KASSERT(bp->b_loffset != NOOFFSET, 3047 ("getblk: no buffer offset")); 3048 3049 /* 3050 * A buffer with B_DELWRI set and B_CACHE clear must 3051 * be committed before we can return the buffer in 3052 * order to prevent the caller from issuing a read 3053 * ( due to B_CACHE not being set ) and overwriting 3054 * it. 3055 * 3056 * Most callers, including NFS and FFS, need this to 3057 * operate properly either because they assume they 3058 * can issue a read if B_CACHE is not set, or because 3059 * ( for example ) an uncached B_DELWRI might loop due 3060 * to softupdates re-dirtying the buffer. In the latter 3061 * case, B_CACHE is set after the first write completes, 3062 * preventing further loops. 3063 * 3064 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 3065 * above while extending the buffer, we cannot allow the 3066 * buffer to remain with B_CACHE set after the write 3067 * completes or it will represent a corrupt state. To 3068 * deal with this we set B_NOCACHE to scrap the buffer 3069 * after the write. 3070 * 3071 * XXX Should this be B_RELBUF instead of B_NOCACHE? 3072 * I'm not even sure this state is still possible 3073 * now that getblk() writes out any dirty buffers 3074 * on size changes. 3075 * 3076 * We might be able to do something fancy, like setting 3077 * B_CACHE in bwrite() except if B_DELWRI is already set, 3078 * so the below call doesn't set B_CACHE, but that gets real 3079 * confusing. This is much easier. 3080 */ 3081 3082 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 3083 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set " 3084 "and CACHE clear, b_flags %08x\n", 3085 bp, (intmax_t)bp->b_loffset, bp->b_flags); 3086 bp->b_flags |= B_NOCACHE; 3087 bwrite(bp); 3088 goto loop; 3089 } 3090 } else { 3091 /* 3092 * Buffer is not in-core, create new buffer. The buffer 3093 * returned by getnewbuf() is locked. Note that the returned 3094 * buffer is also considered valid (not marked B_INVAL). 3095 * 3096 * Calculating the offset for the I/O requires figuring out 3097 * the block size. We use DEV_BSIZE for VBLK or VCHR and 3098 * the mount's f_iosize otherwise. If the vnode does not 3099 * have an associated mount we assume that the passed size is 3100 * the block size. 3101 * 3102 * Note that vn_isdisk() cannot be used here since it may 3103 * return a failure for numerous reasons. Note that the 3104 * buffer size may be larger then the block size (the caller 3105 * will use block numbers with the proper multiple). Beware 3106 * of using any v_* fields which are part of unions. In 3107 * particular, in DragonFly the mount point overloading 3108 * mechanism uses the namecache only and the underlying 3109 * directory vnode is not a special case. 3110 */ 3111 int bsize, maxsize; 3112 3113 if (vp->v_type == VBLK || vp->v_type == VCHR) 3114 bsize = DEV_BSIZE; 3115 else if (vp->v_mount) 3116 bsize = vp->v_mount->mnt_stat.f_iosize; 3117 else 3118 bsize = size; 3119 3120 maxsize = size + (loffset & PAGE_MASK); 3121 maxsize = imax(maxsize, bsize); 3122 3123 bp = getnewbuf(blkflags, slptimeo, size, maxsize); 3124 if (bp == NULL) { 3125 if (slpflags || slptimeo) 3126 return NULL; 3127 goto loop; 3128 } 3129 3130 /* 3131 * Atomically insert the buffer into the hash, so that it can 3132 * be found by findblk(). 3133 * 3134 * If bgetvp() returns non-zero a collision occured, and the 3135 * bp will not be associated with the vnode. 3136 * 3137 * Make sure the translation layer has been cleared. 3138 */ 3139 bp->b_loffset = loffset; 3140 bp->b_bio2.bio_offset = NOOFFSET; 3141 /* bp->b_bio2.bio_next = NULL; */ 3142 3143 if (bgetvp(vp, bp, size)) { 3144 bp->b_flags |= B_INVAL; 3145 brelse(bp); 3146 goto loop; 3147 } 3148 3149 /* 3150 * All vnode-based buffers must be backed by a VM object. 3151 */ 3152 KKASSERT(vp->v_object != NULL); 3153 bp->b_flags |= B_VMIO; 3154 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3155 3156 allocbuf(bp, size); 3157 } 3158 KKASSERT(dsched_is_clear_buf_priv(bp)); 3159 return (bp); 3160 } 3161 3162 /* 3163 * regetblk(bp) 3164 * 3165 * Reacquire a buffer that was previously released to the locked queue, 3166 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 3167 * set B_LOCKED (which handles the acquisition race). 3168 * 3169 * To this end, either B_LOCKED must be set or the dependancy list must be 3170 * non-empty. 3171 * 3172 * MPSAFE 3173 */ 3174 void 3175 regetblk(struct buf *bp) 3176 { 3177 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 3178 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 3179 bremfree(bp); 3180 } 3181 3182 /* 3183 * geteblk: 3184 * 3185 * Get an empty, disassociated buffer of given size. The buffer is 3186 * initially set to B_INVAL. 3187 * 3188 * critical section protection is not required for the allocbuf() 3189 * call because races are impossible here. 3190 * 3191 * MPALMOSTSAFE 3192 */ 3193 struct buf * 3194 geteblk(int size) 3195 { 3196 struct buf *bp; 3197 int maxsize; 3198 3199 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3200 3201 while ((bp = getnewbuf(0, 0, size, maxsize)) == NULL) 3202 ; 3203 allocbuf(bp, size); 3204 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3205 KKASSERT(dsched_is_clear_buf_priv(bp)); 3206 return (bp); 3207 } 3208 3209 3210 /* 3211 * allocbuf: 3212 * 3213 * This code constitutes the buffer memory from either anonymous system 3214 * memory (in the case of non-VMIO operations) or from an associated 3215 * VM object (in the case of VMIO operations). This code is able to 3216 * resize a buffer up or down. 3217 * 3218 * Note that this code is tricky, and has many complications to resolve 3219 * deadlock or inconsistant data situations. Tread lightly!!! 3220 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3221 * the caller. Calling this code willy nilly can result in the loss of 3222 * data. 3223 * 3224 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3225 * B_CACHE for the non-VMIO case. 3226 * 3227 * This routine does not need to be called from a critical section but you 3228 * must own the buffer. 3229 * 3230 * MPSAFE 3231 */ 3232 int 3233 allocbuf(struct buf *bp, int size) 3234 { 3235 int newbsize, mbsize; 3236 int i; 3237 3238 if (BUF_REFCNT(bp) == 0) 3239 panic("allocbuf: buffer not busy"); 3240 3241 if (bp->b_kvasize < size) 3242 panic("allocbuf: buffer too small"); 3243 3244 if ((bp->b_flags & B_VMIO) == 0) { 3245 caddr_t origbuf; 3246 int origbufsize; 3247 /* 3248 * Just get anonymous memory from the kernel. Don't 3249 * mess with B_CACHE. 3250 */ 3251 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3252 if (bp->b_flags & B_MALLOC) 3253 newbsize = mbsize; 3254 else 3255 newbsize = round_page(size); 3256 3257 if (newbsize < bp->b_bufsize) { 3258 /* 3259 * Malloced buffers are not shrunk 3260 */ 3261 if (bp->b_flags & B_MALLOC) { 3262 if (newbsize) { 3263 bp->b_bcount = size; 3264 } else { 3265 kfree(bp->b_data, M_BIOBUF); 3266 if (bp->b_bufsize) { 3267 atomic_subtract_long(&bufmallocspace, bp->b_bufsize); 3268 bufspacewakeup(); 3269 bp->b_bufsize = 0; 3270 } 3271 bp->b_data = bp->b_kvabase; 3272 bp->b_bcount = 0; 3273 bp->b_flags &= ~B_MALLOC; 3274 } 3275 return 1; 3276 } 3277 vm_hold_free_pages( 3278 bp, 3279 (vm_offset_t) bp->b_data + newbsize, 3280 (vm_offset_t) bp->b_data + bp->b_bufsize); 3281 } else if (newbsize > bp->b_bufsize) { 3282 /* 3283 * We only use malloced memory on the first allocation. 3284 * and revert to page-allocated memory when the buffer 3285 * grows. 3286 */ 3287 if ((bufmallocspace < maxbufmallocspace) && 3288 (bp->b_bufsize == 0) && 3289 (mbsize <= PAGE_SIZE/2)) { 3290 3291 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 3292 bp->b_bufsize = mbsize; 3293 bp->b_bcount = size; 3294 bp->b_flags |= B_MALLOC; 3295 atomic_add_long(&bufmallocspace, mbsize); 3296 return 1; 3297 } 3298 origbuf = NULL; 3299 origbufsize = 0; 3300 /* 3301 * If the buffer is growing on its other-than-first 3302 * allocation, then we revert to the page-allocation 3303 * scheme. 3304 */ 3305 if (bp->b_flags & B_MALLOC) { 3306 origbuf = bp->b_data; 3307 origbufsize = bp->b_bufsize; 3308 bp->b_data = bp->b_kvabase; 3309 if (bp->b_bufsize) { 3310 atomic_subtract_long(&bufmallocspace, 3311 bp->b_bufsize); 3312 bufspacewakeup(); 3313 bp->b_bufsize = 0; 3314 } 3315 bp->b_flags &= ~B_MALLOC; 3316 newbsize = round_page(newbsize); 3317 } 3318 vm_hold_load_pages( 3319 bp, 3320 (vm_offset_t) bp->b_data + bp->b_bufsize, 3321 (vm_offset_t) bp->b_data + newbsize); 3322 if (origbuf) { 3323 bcopy(origbuf, bp->b_data, origbufsize); 3324 kfree(origbuf, M_BIOBUF); 3325 } 3326 } 3327 } else { 3328 vm_page_t m; 3329 int desiredpages; 3330 3331 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3332 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 3333 newbsize + PAGE_MASK) >> PAGE_SHIFT; 3334 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 3335 3336 if (bp->b_flags & B_MALLOC) 3337 panic("allocbuf: VMIO buffer can't be malloced"); 3338 /* 3339 * Set B_CACHE initially if buffer is 0 length or will become 3340 * 0-length. 3341 */ 3342 if (size == 0 || bp->b_bufsize == 0) 3343 bp->b_flags |= B_CACHE; 3344 3345 if (newbsize < bp->b_bufsize) { 3346 /* 3347 * DEV_BSIZE aligned new buffer size is less then the 3348 * DEV_BSIZE aligned existing buffer size. Figure out 3349 * if we have to remove any pages. 3350 */ 3351 if (desiredpages < bp->b_xio.xio_npages) { 3352 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 3353 /* 3354 * the page is not freed here -- it 3355 * is the responsibility of 3356 * vnode_pager_setsize 3357 */ 3358 m = bp->b_xio.xio_pages[i]; 3359 KASSERT(m != bogus_page, 3360 ("allocbuf: bogus page found")); 3361 vm_page_busy_wait(m, TRUE, "biodep"); 3362 bp->b_xio.xio_pages[i] = NULL; 3363 vm_page_unwire(m, 0); 3364 vm_page_wakeup(m); 3365 } 3366 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 3367 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 3368 bp->b_xio.xio_npages = desiredpages; 3369 } 3370 } else if (size > bp->b_bcount) { 3371 /* 3372 * We are growing the buffer, possibly in a 3373 * byte-granular fashion. 3374 */ 3375 struct vnode *vp; 3376 vm_object_t obj; 3377 vm_offset_t toff; 3378 vm_offset_t tinc; 3379 3380 /* 3381 * Step 1, bring in the VM pages from the object, 3382 * allocating them if necessary. We must clear 3383 * B_CACHE if these pages are not valid for the 3384 * range covered by the buffer. 3385 * 3386 * critical section protection is required to protect 3387 * against interrupts unbusying and freeing pages 3388 * between our vm_page_lookup() and our 3389 * busycheck/wiring call. 3390 */ 3391 vp = bp->b_vp; 3392 obj = vp->v_object; 3393 3394 vm_object_hold(obj); 3395 while (bp->b_xio.xio_npages < desiredpages) { 3396 vm_page_t m; 3397 vm_pindex_t pi; 3398 int error; 3399 3400 pi = OFF_TO_IDX(bp->b_loffset) + 3401 bp->b_xio.xio_npages; 3402 3403 /* 3404 * Blocking on m->busy might lead to a 3405 * deadlock: 3406 * 3407 * vm_fault->getpages->cluster_read->allocbuf 3408 */ 3409 m = vm_page_lookup_busy_try(obj, pi, FALSE, 3410 &error); 3411 if (error) { 3412 vm_page_sleep_busy(m, FALSE, "pgtblk"); 3413 continue; 3414 } 3415 if (m == NULL) { 3416 /* 3417 * note: must allocate system pages 3418 * since blocking here could intefere 3419 * with paging I/O, no matter which 3420 * process we are. 3421 */ 3422 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 3423 if (m) { 3424 vm_page_wire(m); 3425 vm_page_flag_clear(m, PG_ZERO); 3426 vm_page_wakeup(m); 3427 bp->b_flags &= ~B_CACHE; 3428 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3429 ++bp->b_xio.xio_npages; 3430 } 3431 continue; 3432 } 3433 3434 /* 3435 * We found a page and were able to busy it. 3436 */ 3437 vm_page_flag_clear(m, PG_ZERO); 3438 vm_page_wire(m); 3439 vm_page_wakeup(m); 3440 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 3441 ++bp->b_xio.xio_npages; 3442 if (bp->b_act_count < m->act_count) 3443 bp->b_act_count = m->act_count; 3444 } 3445 vm_object_drop(obj); 3446 3447 /* 3448 * Step 2. We've loaded the pages into the buffer, 3449 * we have to figure out if we can still have B_CACHE 3450 * set. Note that B_CACHE is set according to the 3451 * byte-granular range ( bcount and size ), not the 3452 * aligned range ( newbsize ). 3453 * 3454 * The VM test is against m->valid, which is DEV_BSIZE 3455 * aligned. Needless to say, the validity of the data 3456 * needs to also be DEV_BSIZE aligned. Note that this 3457 * fails with NFS if the server or some other client 3458 * extends the file's EOF. If our buffer is resized, 3459 * B_CACHE may remain set! XXX 3460 */ 3461 3462 toff = bp->b_bcount; 3463 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 3464 3465 while ((bp->b_flags & B_CACHE) && toff < size) { 3466 vm_pindex_t pi; 3467 3468 if (tinc > (size - toff)) 3469 tinc = size - toff; 3470 3471 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 3472 PAGE_SHIFT; 3473 3474 vfs_buf_test_cache( 3475 bp, 3476 bp->b_loffset, 3477 toff, 3478 tinc, 3479 bp->b_xio.xio_pages[pi] 3480 ); 3481 toff += tinc; 3482 tinc = PAGE_SIZE; 3483 } 3484 3485 /* 3486 * Step 3, fixup the KVM pmap. Remember that 3487 * bp->b_data is relative to bp->b_loffset, but 3488 * bp->b_loffset may be offset into the first page. 3489 */ 3490 3491 bp->b_data = (caddr_t) 3492 trunc_page((vm_offset_t)bp->b_data); 3493 pmap_qenter( 3494 (vm_offset_t)bp->b_data, 3495 bp->b_xio.xio_pages, 3496 bp->b_xio.xio_npages 3497 ); 3498 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3499 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3500 } 3501 } 3502 3503 /* adjust space use on already-dirty buffer */ 3504 if (bp->b_flags & B_DELWRI) { 3505 spin_lock(&bufcspin); 3506 dirtybufspace += newbsize - bp->b_bufsize; 3507 if (bp->b_flags & B_HEAVY) 3508 dirtybufspacehw += newbsize - bp->b_bufsize; 3509 spin_unlock(&bufcspin); 3510 } 3511 if (newbsize < bp->b_bufsize) 3512 bufspacewakeup(); 3513 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3514 bp->b_bcount = size; /* requested buffer size */ 3515 return 1; 3516 } 3517 3518 /* 3519 * biowait: 3520 * 3521 * Wait for buffer I/O completion, returning error status. B_EINTR 3522 * is converted into an EINTR error but not cleared (since a chain 3523 * of biowait() calls may occur). 3524 * 3525 * On return bpdone() will have been called but the buffer will remain 3526 * locked and will not have been brelse()'d. 3527 * 3528 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is 3529 * likely still in progress on return. 3530 * 3531 * NOTE! This operation is on a BIO, not a BUF. 3532 * 3533 * NOTE! BIO_DONE is cleared by vn_strategy() 3534 * 3535 * MPSAFE 3536 */ 3537 static __inline int 3538 _biowait(struct bio *bio, const char *wmesg, int to) 3539 { 3540 struct buf *bp = bio->bio_buf; 3541 u_int32_t flags; 3542 u_int32_t nflags; 3543 int error; 3544 3545 KKASSERT(bio == &bp->b_bio1); 3546 for (;;) { 3547 flags = bio->bio_flags; 3548 if (flags & BIO_DONE) 3549 break; 3550 nflags = flags | BIO_WANT; 3551 tsleep_interlock(bio, 0); 3552 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 3553 if (wmesg) 3554 error = tsleep(bio, PINTERLOCKED, wmesg, to); 3555 else if (bp->b_cmd == BUF_CMD_READ) 3556 error = tsleep(bio, PINTERLOCKED, "biord", to); 3557 else 3558 error = tsleep(bio, PINTERLOCKED, "biowr", to); 3559 if (error) { 3560 kprintf("tsleep error biowait %d\n", error); 3561 return (error); 3562 } 3563 } 3564 } 3565 3566 /* 3567 * Finish up. 3568 */ 3569 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 3570 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 3571 if (bp->b_flags & B_EINTR) 3572 return (EINTR); 3573 if (bp->b_flags & B_ERROR) 3574 return (bp->b_error ? bp->b_error : EIO); 3575 return (0); 3576 } 3577 3578 int 3579 biowait(struct bio *bio, const char *wmesg) 3580 { 3581 return(_biowait(bio, wmesg, 0)); 3582 } 3583 3584 int 3585 biowait_timeout(struct bio *bio, const char *wmesg, int to) 3586 { 3587 return(_biowait(bio, wmesg, to)); 3588 } 3589 3590 /* 3591 * This associates a tracking count with an I/O. vn_strategy() and 3592 * dev_dstrategy() do this automatically but there are a few cases 3593 * where a vnode or device layer is bypassed when a block translation 3594 * is cached. In such cases bio_start_transaction() may be called on 3595 * the bypassed layers so the system gets an I/O in progress indication 3596 * for those higher layers. 3597 */ 3598 void 3599 bio_start_transaction(struct bio *bio, struct bio_track *track) 3600 { 3601 bio->bio_track = track; 3602 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3603 dsched_new_buf(bio->bio_buf); 3604 bio_track_ref(track); 3605 } 3606 3607 /* 3608 * Initiate I/O on a vnode. 3609 * 3610 * SWAPCACHE OPERATION: 3611 * 3612 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately 3613 * devfs also uses b_vp for fake buffers so we also have to check 3614 * that B_PAGING is 0. In this case the passed 'vp' is probably the 3615 * underlying block device. The swap assignments are related to the 3616 * buffer cache buffer's b_vp, not the passed vp. 3617 * 3618 * The passed vp == bp->b_vp only in the case where the strategy call 3619 * is made on the vp itself for its own buffers (a regular file or 3620 * block device vp). The filesystem usually then re-calls vn_strategy() 3621 * after translating the request to an underlying device. 3622 * 3623 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the 3624 * underlying buffer cache buffers. 3625 * 3626 * We can only deal with page-aligned buffers at the moment, because 3627 * we can't tell what the real dirty state for pages straddling a buffer 3628 * are. 3629 * 3630 * In order to call swap_pager_strategy() we must provide the VM object 3631 * and base offset for the underlying buffer cache pages so it can find 3632 * the swap blocks. 3633 */ 3634 void 3635 vn_strategy(struct vnode *vp, struct bio *bio) 3636 { 3637 struct bio_track *track; 3638 struct buf *bp = bio->bio_buf; 3639 3640 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3641 3642 /* 3643 * Set when an I/O is issued on the bp. Cleared by consumers 3644 * (aka HAMMER), allowing the consumer to determine if I/O had 3645 * actually occurred. 3646 */ 3647 bp->b_flags |= B_IODEBUG; 3648 3649 /* 3650 * Handle the swap cache intercept. 3651 */ 3652 if (vn_cache_strategy(vp, bio)) 3653 return; 3654 3655 /* 3656 * Otherwise do the operation through the filesystem 3657 */ 3658 if (bp->b_cmd == BUF_CMD_READ) 3659 track = &vp->v_track_read; 3660 else 3661 track = &vp->v_track_write; 3662 KKASSERT((bio->bio_flags & BIO_DONE) == 0); 3663 bio->bio_track = track; 3664 if (dsched_is_clear_buf_priv(bio->bio_buf)) 3665 dsched_new_buf(bio->bio_buf); 3666 bio_track_ref(track); 3667 vop_strategy(*vp->v_ops, vp, bio); 3668 } 3669 3670 static void vn_cache_strategy_callback(struct bio *bio); 3671 3672 int 3673 vn_cache_strategy(struct vnode *vp, struct bio *bio) 3674 { 3675 struct buf *bp = bio->bio_buf; 3676 struct bio *nbio; 3677 vm_object_t object; 3678 vm_page_t m; 3679 int i; 3680 3681 /* 3682 * Is this buffer cache buffer suitable for reading from 3683 * the swap cache? 3684 */ 3685 if (vm_swapcache_read_enable == 0 || 3686 bp->b_cmd != BUF_CMD_READ || 3687 ((bp->b_flags & B_CLUSTER) == 0 && 3688 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) || 3689 ((int)bp->b_loffset & PAGE_MASK) != 0 || 3690 (bp->b_bcount & PAGE_MASK) != 0) { 3691 return(0); 3692 } 3693 3694 /* 3695 * Figure out the original VM object (it will match the underlying 3696 * VM pages). Note that swap cached data uses page indices relative 3697 * to that object, not relative to bio->bio_offset. 3698 */ 3699 if (bp->b_flags & B_CLUSTER) 3700 object = vp->v_object; 3701 else 3702 object = bp->b_vp->v_object; 3703 3704 /* 3705 * In order to be able to use the swap cache all underlying VM 3706 * pages must be marked as such, and we can't have any bogus pages. 3707 */ 3708 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 3709 m = bp->b_xio.xio_pages[i]; 3710 if ((m->flags & PG_SWAPPED) == 0) 3711 break; 3712 if (m == bogus_page) 3713 break; 3714 } 3715 3716 /* 3717 * If we are good then issue the I/O using swap_pager_strategy(). 3718 * 3719 * We can only do this if the buffer actually supports object-backed 3720 * I/O. If it doesn't npages will be 0. 3721 */ 3722 if (i && i == bp->b_xio.xio_npages) { 3723 m = bp->b_xio.xio_pages[0]; 3724 nbio = push_bio(bio); 3725 nbio->bio_done = vn_cache_strategy_callback; 3726 nbio->bio_offset = ptoa(m->pindex); 3727 KKASSERT(m->object == object); 3728 swap_pager_strategy(object, nbio); 3729 return(1); 3730 } 3731 return(0); 3732 } 3733 3734 /* 3735 * This is a bit of a hack but since the vn_cache_strategy() function can 3736 * override a VFS's strategy function we must make sure that the bio, which 3737 * is probably bio2, doesn't leak an unexpected offset value back to the 3738 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the 3739 * bio went through its own file strategy function and the the bio2 offset 3740 * is a cached disk offset when, in fact, it isn't. 3741 */ 3742 static void 3743 vn_cache_strategy_callback(struct bio *bio) 3744 { 3745 bio->bio_offset = NOOFFSET; 3746 biodone(pop_bio(bio)); 3747 } 3748 3749 /* 3750 * bpdone: 3751 * 3752 * Finish I/O on a buffer after all BIOs have been processed. 3753 * Called when the bio chain is exhausted or by biowait. If called 3754 * by biowait, elseit is typically 0. 3755 * 3756 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp. 3757 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3758 * assuming B_INVAL is clear. 3759 * 3760 * For the VMIO case, we set B_CACHE if the op was a read and no 3761 * read error occured, or if the op was a write. B_CACHE is never 3762 * set if the buffer is invalid or otherwise uncacheable. 3763 * 3764 * bpdone does not mess with B_INVAL, allowing the I/O routine or the 3765 * initiator to leave B_INVAL set to brelse the buffer out of existance 3766 * in the biodone routine. 3767 */ 3768 void 3769 bpdone(struct buf *bp, int elseit) 3770 { 3771 buf_cmd_t cmd; 3772 3773 KASSERT(BUF_REFCNTNB(bp) > 0, 3774 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3775 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3776 ("biodone: bp %p already done!", bp)); 3777 3778 /* 3779 * No more BIOs are left. All completion functions have been dealt 3780 * with, now we clean up the buffer. 3781 */ 3782 cmd = bp->b_cmd; 3783 bp->b_cmd = BUF_CMD_DONE; 3784 3785 /* 3786 * Only reads and writes are processed past this point. 3787 */ 3788 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3789 if (cmd == BUF_CMD_FREEBLKS) 3790 bp->b_flags |= B_NOCACHE; 3791 if (elseit) 3792 brelse(bp); 3793 return; 3794 } 3795 3796 /* 3797 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3798 * a lot worse. XXX - move this above the clearing of b_cmd 3799 */ 3800 if (LIST_FIRST(&bp->b_dep) != NULL) 3801 buf_complete(bp); /* MPSAFE */ 3802 3803 /* 3804 * A failed write must re-dirty the buffer unless B_INVAL 3805 * was set. Only applicable to normal buffers (with VPs). 3806 * vinum buffers may not have a vp. 3807 */ 3808 if (cmd == BUF_CMD_WRITE && 3809 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3810 bp->b_flags &= ~B_NOCACHE; 3811 if (bp->b_vp) 3812 bdirty(bp); 3813 } 3814 3815 if (bp->b_flags & B_VMIO) { 3816 int i; 3817 vm_ooffset_t foff; 3818 vm_page_t m; 3819 vm_object_t obj; 3820 int iosize; 3821 struct vnode *vp = bp->b_vp; 3822 3823 obj = vp->v_object; 3824 3825 #if defined(VFS_BIO_DEBUG) 3826 if (vp->v_auxrefs == 0) 3827 panic("biodone: zero vnode hold count"); 3828 if ((vp->v_flag & VOBJBUF) == 0) 3829 panic("biodone: vnode is not setup for merged cache"); 3830 #endif 3831 3832 foff = bp->b_loffset; 3833 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3834 KASSERT(obj != NULL, ("biodone: missing VM object")); 3835 3836 #if defined(VFS_BIO_DEBUG) 3837 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3838 kprintf("biodone: paging in progress(%d) < " 3839 "bp->b_xio.xio_npages(%d)\n", 3840 obj->paging_in_progress, 3841 bp->b_xio.xio_npages); 3842 } 3843 #endif 3844 3845 /* 3846 * Set B_CACHE if the op was a normal read and no error 3847 * occured. B_CACHE is set for writes in the b*write() 3848 * routines. 3849 */ 3850 iosize = bp->b_bcount - bp->b_resid; 3851 if (cmd == BUF_CMD_READ && 3852 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3853 bp->b_flags |= B_CACHE; 3854 } 3855 3856 vm_object_hold(obj); 3857 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3858 int bogusflag = 0; 3859 int resid; 3860 3861 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3862 if (resid > iosize) 3863 resid = iosize; 3864 3865 /* 3866 * cleanup bogus pages, restoring the originals. Since 3867 * the originals should still be wired, we don't have 3868 * to worry about interrupt/freeing races destroying 3869 * the VM object association. 3870 */ 3871 m = bp->b_xio.xio_pages[i]; 3872 if (m == bogus_page) { 3873 bogusflag = 1; 3874 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3875 if (m == NULL) 3876 panic("biodone: page disappeared"); 3877 bp->b_xio.xio_pages[i] = m; 3878 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3879 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3880 } 3881 #if defined(VFS_BIO_DEBUG) 3882 if (OFF_TO_IDX(foff) != m->pindex) { 3883 kprintf("biodone: foff(%lu)/m->pindex(%ld) " 3884 "mismatch\n", 3885 (unsigned long)foff, (long)m->pindex); 3886 } 3887 #endif 3888 3889 /* 3890 * In the write case, the valid and clean bits are 3891 * already changed correctly (see bdwrite()), so we 3892 * only need to do this here in the read case. 3893 */ 3894 vm_page_busy_wait(m, FALSE, "bpdpgw"); 3895 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3896 vfs_clean_one_page(bp, i, m); 3897 } 3898 vm_page_flag_clear(m, PG_ZERO); 3899 3900 /* 3901 * when debugging new filesystems or buffer I/O 3902 * methods, this is the most common error that pops 3903 * up. if you see this, you have not set the page 3904 * busy flag correctly!!! 3905 */ 3906 if (m->busy == 0) { 3907 kprintf("biodone: page busy < 0, " 3908 "pindex: %d, foff: 0x(%x,%x), " 3909 "resid: %d, index: %d\n", 3910 (int) m->pindex, (int)(foff >> 32), 3911 (int) foff & 0xffffffff, resid, i); 3912 if (!vn_isdisk(vp, NULL)) 3913 kprintf(" iosize: %ld, loffset: %lld, " 3914 "flags: 0x%08x, npages: %d\n", 3915 bp->b_vp->v_mount->mnt_stat.f_iosize, 3916 (long long)bp->b_loffset, 3917 bp->b_flags, bp->b_xio.xio_npages); 3918 else 3919 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3920 (long long)bp->b_loffset, 3921 bp->b_flags, bp->b_xio.xio_npages); 3922 kprintf(" valid: 0x%x, dirty: 0x%x, " 3923 "wired: %d\n", 3924 m->valid, m->dirty, 3925 m->wire_count); 3926 panic("biodone: page busy < 0"); 3927 } 3928 vm_page_io_finish(m); 3929 vm_page_wakeup(m); 3930 vm_object_pip_wakeup(obj); 3931 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3932 iosize -= resid; 3933 } 3934 bp->b_flags &= ~B_HASBOGUS; 3935 vm_object_drop(obj); 3936 } 3937 3938 /* 3939 * Finish up by releasing the buffer. There are no more synchronous 3940 * or asynchronous completions, those were handled by bio_done 3941 * callbacks. 3942 */ 3943 if (elseit) { 3944 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF)) 3945 brelse(bp); 3946 else 3947 bqrelse(bp); 3948 } 3949 } 3950 3951 /* 3952 * Normal biodone. 3953 */ 3954 void 3955 biodone(struct bio *bio) 3956 { 3957 struct buf *bp = bio->bio_buf; 3958 3959 runningbufwakeup(bp); 3960 3961 /* 3962 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3963 */ 3964 while (bio) { 3965 biodone_t *done_func; 3966 struct bio_track *track; 3967 3968 /* 3969 * BIO tracking. Most but not all BIOs are tracked. 3970 */ 3971 if ((track = bio->bio_track) != NULL) { 3972 bio_track_rel(track); 3973 bio->bio_track = NULL; 3974 } 3975 3976 /* 3977 * A bio_done function terminates the loop. The function 3978 * will be responsible for any further chaining and/or 3979 * buffer management. 3980 * 3981 * WARNING! The done function can deallocate the buffer! 3982 */ 3983 if ((done_func = bio->bio_done) != NULL) { 3984 bio->bio_done = NULL; 3985 done_func(bio); 3986 return; 3987 } 3988 bio = bio->bio_prev; 3989 } 3990 3991 /* 3992 * If we've run out of bio's do normal [a]synchronous completion. 3993 */ 3994 bpdone(bp, 1); 3995 } 3996 3997 /* 3998 * Synchronous biodone - this terminates a synchronous BIO. 3999 * 4000 * bpdone() is called with elseit=FALSE, leaving the buffer completed 4001 * but still locked. The caller must brelse() the buffer after waiting 4002 * for completion. 4003 */ 4004 void 4005 biodone_sync(struct bio *bio) 4006 { 4007 struct buf *bp = bio->bio_buf; 4008 int flags; 4009 int nflags; 4010 4011 KKASSERT(bio == &bp->b_bio1); 4012 bpdone(bp, 0); 4013 4014 for (;;) { 4015 flags = bio->bio_flags; 4016 nflags = (flags | BIO_DONE) & ~BIO_WANT; 4017 4018 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) { 4019 if (flags & BIO_WANT) 4020 wakeup(bio); 4021 break; 4022 } 4023 } 4024 } 4025 4026 /* 4027 * vfs_unbusy_pages: 4028 * 4029 * This routine is called in lieu of iodone in the case of 4030 * incomplete I/O. This keeps the busy status for pages 4031 * consistant. 4032 */ 4033 void 4034 vfs_unbusy_pages(struct buf *bp) 4035 { 4036 int i; 4037 4038 runningbufwakeup(bp); 4039 4040 if (bp->b_flags & B_VMIO) { 4041 struct vnode *vp = bp->b_vp; 4042 vm_object_t obj; 4043 4044 obj = vp->v_object; 4045 vm_object_hold(obj); 4046 4047 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4048 vm_page_t m = bp->b_xio.xio_pages[i]; 4049 4050 /* 4051 * When restoring bogus changes the original pages 4052 * should still be wired, so we are in no danger of 4053 * losing the object association and do not need 4054 * critical section protection particularly. 4055 */ 4056 if (m == bogus_page) { 4057 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 4058 if (!m) { 4059 panic("vfs_unbusy_pages: page missing"); 4060 } 4061 bp->b_xio.xio_pages[i] = m; 4062 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4063 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 4064 } 4065 vm_page_busy_wait(m, FALSE, "bpdpgw"); 4066 vm_page_flag_clear(m, PG_ZERO); 4067 vm_page_io_finish(m); 4068 vm_page_wakeup(m); 4069 vm_object_pip_wakeup(obj); 4070 } 4071 bp->b_flags &= ~B_HASBOGUS; 4072 vm_object_drop(obj); 4073 } 4074 } 4075 4076 /* 4077 * vfs_busy_pages: 4078 * 4079 * This routine is called before a device strategy routine. 4080 * It is used to tell the VM system that paging I/O is in 4081 * progress, and treat the pages associated with the buffer 4082 * almost as being PG_BUSY. Also the object 'paging_in_progress' 4083 * flag is handled to make sure that the object doesn't become 4084 * inconsistant. 4085 * 4086 * Since I/O has not been initiated yet, certain buffer flags 4087 * such as B_ERROR or B_INVAL may be in an inconsistant state 4088 * and should be ignored. 4089 * 4090 * MPSAFE 4091 */ 4092 void 4093 vfs_busy_pages(struct vnode *vp, struct buf *bp) 4094 { 4095 int i, bogus; 4096 struct lwp *lp = curthread->td_lwp; 4097 4098 /* 4099 * The buffer's I/O command must already be set. If reading, 4100 * B_CACHE must be 0 (double check against callers only doing 4101 * I/O when B_CACHE is 0). 4102 */ 4103 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4104 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 4105 4106 if (bp->b_flags & B_VMIO) { 4107 vm_object_t obj; 4108 4109 obj = vp->v_object; 4110 KASSERT(bp->b_loffset != NOOFFSET, 4111 ("vfs_busy_pages: no buffer offset")); 4112 4113 /* 4114 * Busy all the pages. We have to busy them all at once 4115 * to avoid deadlocks. 4116 */ 4117 retry: 4118 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4119 vm_page_t m = bp->b_xio.xio_pages[i]; 4120 4121 if (vm_page_busy_try(m, FALSE)) { 4122 vm_page_sleep_busy(m, FALSE, "vbpage"); 4123 while (--i >= 0) 4124 vm_page_wakeup(bp->b_xio.xio_pages[i]); 4125 goto retry; 4126 } 4127 } 4128 4129 /* 4130 * Setup for I/O, soft-busy the page right now because 4131 * the next loop may block. 4132 */ 4133 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4134 vm_page_t m = bp->b_xio.xio_pages[i]; 4135 4136 vm_page_flag_clear(m, PG_ZERO); 4137 if ((bp->b_flags & B_CLUSTER) == 0) { 4138 vm_object_pip_add(obj, 1); 4139 vm_page_io_start(m); 4140 } 4141 } 4142 4143 /* 4144 * Adjust protections for I/O and do bogus-page mapping. 4145 * Assume that vm_page_protect() can block (it can block 4146 * if VM_PROT_NONE, don't take any chances regardless). 4147 * 4148 * In particular note that for writes we must incorporate 4149 * page dirtyness from the VM system into the buffer's 4150 * dirty range. 4151 * 4152 * For reads we theoretically must incorporate page dirtyness 4153 * from the VM system to determine if the page needs bogus 4154 * replacement, but we shortcut the test by simply checking 4155 * that all m->valid bits are set, indicating that the page 4156 * is fully valid and does not need to be re-read. For any 4157 * VM system dirtyness the page will also be fully valid 4158 * since it was mapped at one point. 4159 */ 4160 bogus = 0; 4161 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4162 vm_page_t m = bp->b_xio.xio_pages[i]; 4163 4164 vm_page_flag_clear(m, PG_ZERO); /* XXX */ 4165 if (bp->b_cmd == BUF_CMD_WRITE) { 4166 /* 4167 * When readying a vnode-backed buffer for 4168 * a write we must zero-fill any invalid 4169 * portions of the backing VM pages, mark 4170 * it valid and clear related dirty bits. 4171 * 4172 * vfs_clean_one_page() incorporates any 4173 * VM dirtyness and updates the b_dirtyoff 4174 * range (after we've made the page RO). 4175 * 4176 * It is also expected that the pmap modified 4177 * bit has already been cleared by the 4178 * vm_page_protect(). We may not be able 4179 * to clear all dirty bits for a page if it 4180 * was also memory mapped (NFS). 4181 * 4182 * Finally be sure to unassign any swap-cache 4183 * backing store as it is now stale. 4184 */ 4185 vm_page_protect(m, VM_PROT_READ); 4186 vfs_clean_one_page(bp, i, m); 4187 swap_pager_unswapped(m); 4188 } else if (m->valid == VM_PAGE_BITS_ALL) { 4189 /* 4190 * When readying a vnode-backed buffer for 4191 * read we must replace any dirty pages with 4192 * a bogus page so dirty data is not destroyed 4193 * when filling gaps. 4194 * 4195 * To avoid testing whether the page is 4196 * dirty we instead test that the page was 4197 * at some point mapped (m->valid fully 4198 * valid) with the understanding that 4199 * this also covers the dirty case. 4200 */ 4201 bp->b_xio.xio_pages[i] = bogus_page; 4202 bp->b_flags |= B_HASBOGUS; 4203 bogus++; 4204 } else if (m->valid & m->dirty) { 4205 /* 4206 * This case should not occur as partial 4207 * dirtyment can only happen if the buffer 4208 * is B_CACHE, and this code is not entered 4209 * if the buffer is B_CACHE. 4210 */ 4211 kprintf("Warning: vfs_busy_pages - page not " 4212 "fully valid! loff=%jx bpf=%08x " 4213 "idx=%d val=%02x dir=%02x\n", 4214 (intmax_t)bp->b_loffset, bp->b_flags, 4215 i, m->valid, m->dirty); 4216 vm_page_protect(m, VM_PROT_NONE); 4217 } else { 4218 /* 4219 * The page is not valid and can be made 4220 * part of the read. 4221 */ 4222 vm_page_protect(m, VM_PROT_NONE); 4223 } 4224 vm_page_wakeup(m); 4225 } 4226 if (bogus) { 4227 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4228 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 4229 } 4230 } 4231 4232 /* 4233 * This is the easiest place to put the process accounting for the I/O 4234 * for now. 4235 */ 4236 if (lp != NULL) { 4237 if (bp->b_cmd == BUF_CMD_READ) 4238 lp->lwp_ru.ru_inblock++; 4239 else 4240 lp->lwp_ru.ru_oublock++; 4241 } 4242 } 4243 4244 /* 4245 * Tell the VM system that the pages associated with this buffer 4246 * are clean. This is used for delayed writes where the data is 4247 * going to go to disk eventually without additional VM intevention. 4248 * 4249 * NOTE: While we only really need to clean through to b_bcount, we 4250 * just go ahead and clean through to b_bufsize. 4251 */ 4252 static void 4253 vfs_clean_pages(struct buf *bp) 4254 { 4255 vm_page_t m; 4256 int i; 4257 4258 if ((bp->b_flags & B_VMIO) == 0) 4259 return; 4260 4261 KASSERT(bp->b_loffset != NOOFFSET, 4262 ("vfs_clean_pages: no buffer offset")); 4263 4264 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4265 m = bp->b_xio.xio_pages[i]; 4266 vfs_clean_one_page(bp, i, m); 4267 } 4268 } 4269 4270 /* 4271 * vfs_clean_one_page: 4272 * 4273 * Set the valid bits and clear the dirty bits in a page within a 4274 * buffer. The range is restricted to the buffer's size and the 4275 * buffer's logical offset might index into the first page. 4276 * 4277 * The caller has busied or soft-busied the page and it is not mapped, 4278 * test and incorporate the dirty bits into b_dirtyoff/end before 4279 * clearing them. Note that we need to clear the pmap modified bits 4280 * after determining the the page was dirty, vm_page_set_validclean() 4281 * does not do it for us. 4282 * 4283 * This routine is typically called after a read completes (dirty should 4284 * be zero in that case as we are not called on bogus-replace pages), 4285 * or before a write is initiated. 4286 */ 4287 static void 4288 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m) 4289 { 4290 int bcount; 4291 int xoff; 4292 int soff; 4293 int eoff; 4294 4295 /* 4296 * Calculate offset range within the page but relative to buffer's 4297 * loffset. loffset might be offset into the first page. 4298 */ 4299 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4300 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4301 4302 if (pageno == 0) { 4303 soff = xoff; 4304 eoff = PAGE_SIZE; 4305 } else { 4306 soff = (pageno << PAGE_SHIFT); 4307 eoff = soff + PAGE_SIZE; 4308 } 4309 if (eoff > bcount) 4310 eoff = bcount; 4311 if (soff >= eoff) 4312 return; 4313 4314 /* 4315 * Test dirty bits and adjust b_dirtyoff/end. 4316 * 4317 * If dirty pages are incorporated into the bp any prior 4318 * B_NEEDCOMMIT state (NFS) must be cleared because the 4319 * caller has not taken into account the new dirty data. 4320 * 4321 * If the page was memory mapped the dirty bits might go beyond the 4322 * end of the buffer, but we can't really make the assumption that 4323 * a file EOF straddles the buffer (even though this is the case for 4324 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing 4325 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer. 4326 * This also saves some console spam. 4327 * 4328 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK, 4329 * NFS can handle huge commits but not huge writes. 4330 */ 4331 vm_page_test_dirty(m); 4332 if (m->dirty) { 4333 if ((bp->b_flags & B_NEEDCOMMIT) && 4334 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) { 4335 if (debug_commit) 4336 kprintf("Warning: vfs_clean_one_page: bp %p " 4337 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT" 4338 " cmd %d vd %02x/%02x x/s/e %d %d %d " 4339 "doff/end %d %d\n", 4340 bp, (intmax_t)bp->b_loffset, bp->b_bcount, 4341 bp->b_flags, bp->b_cmd, 4342 m->valid, m->dirty, xoff, soff, eoff, 4343 bp->b_dirtyoff, bp->b_dirtyend); 4344 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 4345 if (debug_commit) 4346 print_backtrace(-1); 4347 } 4348 /* 4349 * Only clear the pmap modified bits if ALL the dirty bits 4350 * are set, otherwise the system might mis-clear portions 4351 * of a page. 4352 */ 4353 if (m->dirty == VM_PAGE_BITS_ALL && 4354 (bp->b_flags & B_NEEDCOMMIT) == 0) { 4355 pmap_clear_modify(m); 4356 } 4357 if (bp->b_dirtyoff > soff - xoff) 4358 bp->b_dirtyoff = soff - xoff; 4359 if (bp->b_dirtyend < eoff - xoff) 4360 bp->b_dirtyend = eoff - xoff; 4361 } 4362 4363 /* 4364 * Set related valid bits, clear related dirty bits. 4365 * Does not mess with the pmap modified bit. 4366 * 4367 * WARNING! We cannot just clear all of m->dirty here as the 4368 * buffer cache buffers may use a DEV_BSIZE'd aligned 4369 * block size, or have an odd size (e.g. NFS at file EOF). 4370 * The putpages code can clear m->dirty to 0. 4371 * 4372 * If a VOP_WRITE generates a buffer cache buffer which 4373 * covers the same space as mapped writable pages the 4374 * buffer flush might not be able to clear all the dirty 4375 * bits and still require a putpages from the VM system 4376 * to finish it off. 4377 * 4378 * WARNING! vm_page_set_validclean() currently assumes vm_token 4379 * is held. The page might not be busied (bdwrite() case). 4380 * XXX remove this comment once we've validated that this 4381 * is no longer an issue. 4382 */ 4383 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff); 4384 } 4385 4386 #if 0 4387 /* 4388 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty. 4389 * The page data is assumed to be valid (there is no zeroing here). 4390 */ 4391 static void 4392 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m) 4393 { 4394 int bcount; 4395 int xoff; 4396 int soff; 4397 int eoff; 4398 4399 /* 4400 * Calculate offset range within the page but relative to buffer's 4401 * loffset. loffset might be offset into the first page. 4402 */ 4403 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */ 4404 bcount = bp->b_bcount + xoff; /* offset adjusted */ 4405 4406 if (pageno == 0) { 4407 soff = xoff; 4408 eoff = PAGE_SIZE; 4409 } else { 4410 soff = (pageno << PAGE_SHIFT); 4411 eoff = soff + PAGE_SIZE; 4412 } 4413 if (eoff > bcount) 4414 eoff = bcount; 4415 if (soff >= eoff) 4416 return; 4417 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff); 4418 } 4419 #endif 4420 4421 /* 4422 * vfs_bio_clrbuf: 4423 * 4424 * Clear a buffer. This routine essentially fakes an I/O, so we need 4425 * to clear B_ERROR and B_INVAL. 4426 * 4427 * Note that while we only theoretically need to clear through b_bcount, 4428 * we go ahead and clear through b_bufsize. 4429 */ 4430 4431 void 4432 vfs_bio_clrbuf(struct buf *bp) 4433 { 4434 int i, mask = 0; 4435 caddr_t sa, ea; 4436 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 4437 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR); 4438 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4439 (bp->b_loffset & PAGE_MASK) == 0) { 4440 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4441 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 4442 bp->b_resid = 0; 4443 return; 4444 } 4445 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 4446 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 4447 bzero(bp->b_data, bp->b_bufsize); 4448 bp->b_xio.xio_pages[0]->valid |= mask; 4449 bp->b_resid = 0; 4450 return; 4451 } 4452 } 4453 sa = bp->b_data; 4454 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 4455 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 4456 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 4457 ea = (caddr_t)(vm_offset_t)ulmin( 4458 (u_long)(vm_offset_t)ea, 4459 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 4460 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4461 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 4462 continue; 4463 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 4464 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 4465 bzero(sa, ea - sa); 4466 } 4467 } else { 4468 for (; sa < ea; sa += DEV_BSIZE, j++) { 4469 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 4470 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 4471 bzero(sa, DEV_BSIZE); 4472 } 4473 } 4474 bp->b_xio.xio_pages[i]->valid |= mask; 4475 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 4476 } 4477 bp->b_resid = 0; 4478 } else { 4479 clrbuf(bp); 4480 } 4481 } 4482 4483 /* 4484 * vm_hold_load_pages: 4485 * 4486 * Load pages into the buffer's address space. The pages are 4487 * allocated from the kernel object in order to reduce interference 4488 * with the any VM paging I/O activity. The range of loaded 4489 * pages will be wired. 4490 * 4491 * If a page cannot be allocated, the 'pagedaemon' is woken up to 4492 * retrieve the full range (to - from) of pages. 4493 * 4494 * MPSAFE 4495 */ 4496 void 4497 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4498 { 4499 vm_offset_t pg; 4500 vm_page_t p; 4501 int index; 4502 4503 to = round_page(to); 4504 from = round_page(from); 4505 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4506 4507 pg = from; 4508 while (pg < to) { 4509 /* 4510 * Note: must allocate system pages since blocking here 4511 * could intefere with paging I/O, no matter which 4512 * process we are. 4513 */ 4514 vm_object_hold(&kernel_object); 4515 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 4516 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 4517 vm_object_drop(&kernel_object); 4518 if (p) { 4519 vm_page_wire(p); 4520 p->valid = VM_PAGE_BITS_ALL; 4521 vm_page_flag_clear(p, PG_ZERO); 4522 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 4523 bp->b_xio.xio_pages[index] = p; 4524 vm_page_wakeup(p); 4525 4526 pg += PAGE_SIZE; 4527 ++index; 4528 } 4529 } 4530 bp->b_xio.xio_npages = index; 4531 } 4532 4533 /* 4534 * Allocate a page for a buffer cache buffer. 4535 * 4536 * If NULL is returned the caller is expected to retry (typically check if 4537 * the page already exists on retry before trying to allocate one). 4538 * 4539 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This 4540 * function will use the system reserve with the hope that the page 4541 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller 4542 * is done with the buffer. 4543 */ 4544 static 4545 vm_page_t 4546 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 4547 { 4548 int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK; 4549 vm_page_t p; 4550 4551 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj)); 4552 4553 /* 4554 * Try a normal allocation first. 4555 */ 4556 p = vm_page_alloc(obj, pg, vmflags); 4557 if (p) 4558 return(p); 4559 if (vm_page_lookup(obj, pg)) 4560 return(NULL); 4561 vm_pageout_deficit += deficit; 4562 4563 /* 4564 * Try again, digging into the system reserve. 4565 * 4566 * Trying to recover pages from the buffer cache here can deadlock 4567 * against other threads trying to busy underlying pages so we 4568 * depend on the code in brelse() and bqrelse() to free/cache the 4569 * underlying buffer cache pages when memory is low. 4570 */ 4571 if (curthread->td_flags & TDF_SYSTHREAD) 4572 vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT; 4573 else 4574 vmflags |= VM_ALLOC_SYSTEM; 4575 4576 /*recoverbufpages();*/ 4577 p = vm_page_alloc(obj, pg, vmflags); 4578 if (p) 4579 return(p); 4580 if (vm_page_lookup(obj, pg)) 4581 return(NULL); 4582 4583 /* 4584 * Wait for memory to free up and try again 4585 */ 4586 if (vm_page_count_severe()) 4587 ++lowmempgallocs; 4588 vm_wait(hz / 20 + 1); 4589 4590 p = vm_page_alloc(obj, pg, vmflags); 4591 if (p) 4592 return(p); 4593 if (vm_page_lookup(obj, pg)) 4594 return(NULL); 4595 4596 /* 4597 * Ok, now we are really in trouble. 4598 */ 4599 { 4600 static struct krate biokrate = { .freq = 1 }; 4601 krateprintf(&biokrate, 4602 "Warning: bio_page_alloc: memory exhausted " 4603 "during bufcache page allocation from %s\n", 4604 curthread->td_comm); 4605 } 4606 if (curthread->td_flags & TDF_SYSTHREAD) 4607 vm_wait(hz / 20 + 1); 4608 else 4609 vm_wait(hz / 2 + 1); 4610 return (NULL); 4611 } 4612 4613 /* 4614 * vm_hold_free_pages: 4615 * 4616 * Return pages associated with the buffer back to the VM system. 4617 * 4618 * The range of pages underlying the buffer's address space will 4619 * be unmapped and un-wired. 4620 * 4621 * MPSAFE 4622 */ 4623 void 4624 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4625 { 4626 vm_offset_t pg; 4627 vm_page_t p; 4628 int index, newnpages; 4629 4630 from = round_page(from); 4631 to = round_page(to); 4632 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4633 newnpages = index; 4634 4635 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4636 p = bp->b_xio.xio_pages[index]; 4637 if (p && (index < bp->b_xio.xio_npages)) { 4638 if (p->busy) { 4639 kprintf("vm_hold_free_pages: doffset: %lld, " 4640 "loffset: %lld\n", 4641 (long long)bp->b_bio2.bio_offset, 4642 (long long)bp->b_loffset); 4643 } 4644 bp->b_xio.xio_pages[index] = NULL; 4645 pmap_kremove(pg); 4646 vm_page_busy_wait(p, FALSE, "vmhldpg"); 4647 vm_page_unwire(p, 0); 4648 vm_page_free(p); 4649 } 4650 } 4651 bp->b_xio.xio_npages = newnpages; 4652 } 4653 4654 /* 4655 * vmapbuf: 4656 * 4657 * Map a user buffer into KVM via a pbuf. On return the buffer's 4658 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 4659 * initialized. 4660 */ 4661 int 4662 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 4663 { 4664 caddr_t addr; 4665 vm_offset_t va; 4666 vm_page_t m; 4667 int vmprot; 4668 int error; 4669 int pidx; 4670 int i; 4671 4672 /* 4673 * bp had better have a command and it better be a pbuf. 4674 */ 4675 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 4676 KKASSERT(bp->b_flags & B_PAGING); 4677 KKASSERT(bp->b_kvabase); 4678 4679 if (bytes < 0) 4680 return (-1); 4681 4682 /* 4683 * Map the user data into KVM. Mappings have to be page-aligned. 4684 */ 4685 addr = (caddr_t)trunc_page((vm_offset_t)udata); 4686 pidx = 0; 4687 4688 vmprot = VM_PROT_READ; 4689 if (bp->b_cmd == BUF_CMD_READ) 4690 vmprot |= VM_PROT_WRITE; 4691 4692 while (addr < udata + bytes) { 4693 /* 4694 * Do the vm_fault if needed; do the copy-on-write thing 4695 * when reading stuff off device into memory. 4696 * 4697 * vm_fault_page*() returns a held VM page. 4698 */ 4699 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 4700 va = trunc_page(va); 4701 4702 m = vm_fault_page_quick(va, vmprot, &error); 4703 if (m == NULL) { 4704 for (i = 0; i < pidx; ++i) { 4705 vm_page_unhold(bp->b_xio.xio_pages[i]); 4706 bp->b_xio.xio_pages[i] = NULL; 4707 } 4708 return(-1); 4709 } 4710 bp->b_xio.xio_pages[pidx] = m; 4711 addr += PAGE_SIZE; 4712 ++pidx; 4713 } 4714 4715 /* 4716 * Map the page array and set the buffer fields to point to 4717 * the mapped data buffer. 4718 */ 4719 if (pidx > btoc(MAXPHYS)) 4720 panic("vmapbuf: mapped more than MAXPHYS"); 4721 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 4722 4723 bp->b_xio.xio_npages = pidx; 4724 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 4725 bp->b_bcount = bytes; 4726 bp->b_bufsize = bytes; 4727 return(0); 4728 } 4729 4730 /* 4731 * vunmapbuf: 4732 * 4733 * Free the io map PTEs associated with this IO operation. 4734 * We also invalidate the TLB entries and restore the original b_addr. 4735 */ 4736 void 4737 vunmapbuf(struct buf *bp) 4738 { 4739 int pidx; 4740 int npages; 4741 4742 KKASSERT(bp->b_flags & B_PAGING); 4743 4744 npages = bp->b_xio.xio_npages; 4745 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4746 for (pidx = 0; pidx < npages; ++pidx) { 4747 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 4748 bp->b_xio.xio_pages[pidx] = NULL; 4749 } 4750 bp->b_xio.xio_npages = 0; 4751 bp->b_data = bp->b_kvabase; 4752 } 4753 4754 /* 4755 * Scan all buffers in the system and issue the callback. 4756 */ 4757 int 4758 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 4759 { 4760 int count = 0; 4761 int error; 4762 int n; 4763 4764 for (n = 0; n < nbuf; ++n) { 4765 if ((error = callback(&buf[n], info)) < 0) { 4766 count = error; 4767 break; 4768 } 4769 count += error; 4770 } 4771 return (count); 4772 } 4773 4774 /* 4775 * nestiobuf_iodone: biodone callback for nested buffers and propagate 4776 * completion to the master buffer. 4777 */ 4778 static void 4779 nestiobuf_iodone(struct bio *bio) 4780 { 4781 struct bio *mbio; 4782 struct buf *mbp, *bp; 4783 struct devstat *stats; 4784 int error; 4785 int donebytes; 4786 4787 bp = bio->bio_buf; 4788 mbio = bio->bio_caller_info1.ptr; 4789 stats = bio->bio_caller_info2.ptr; 4790 mbp = mbio->bio_buf; 4791 4792 KKASSERT(bp->b_bcount <= bp->b_bufsize); 4793 KKASSERT(mbp != bp); 4794 4795 error = bp->b_error; 4796 if (bp->b_error == 0 && 4797 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 4798 /* 4799 * Not all got transfered, raise an error. We have no way to 4800 * propagate these conditions to mbp. 4801 */ 4802 error = EIO; 4803 } 4804 4805 donebytes = bp->b_bufsize; 4806 4807 relpbuf(bp, NULL); 4808 4809 nestiobuf_done(mbio, donebytes, error, stats); 4810 } 4811 4812 void 4813 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats) 4814 { 4815 struct buf *mbp; 4816 4817 mbp = mbio->bio_buf; 4818 4819 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0); 4820 4821 /* 4822 * If an error occured, propagate it to the master buffer. 4823 * 4824 * Several biodone()s may wind up running concurrently so 4825 * use an atomic op to adjust b_flags. 4826 */ 4827 if (error) { 4828 mbp->b_error = error; 4829 atomic_set_int(&mbp->b_flags, B_ERROR); 4830 } 4831 4832 /* 4833 * Decrement the operations in progress counter and terminate the 4834 * I/O if this was the last bit. 4835 */ 4836 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4837 mbp->b_resid = 0; 4838 if (stats) 4839 devstat_end_transaction_buf(stats, mbp); 4840 biodone(mbio); 4841 } 4842 } 4843 4844 /* 4845 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent 4846 * the mbio from being biodone()'d while we are still adding sub-bios to 4847 * it. 4848 */ 4849 void 4850 nestiobuf_init(struct bio *bio) 4851 { 4852 bio->bio_driver_info = (void *)1; 4853 } 4854 4855 /* 4856 * The BIOs added to the nestedio have already been started, remove the 4857 * count that placeheld our mbio and biodone() it if the count would 4858 * transition to 0. 4859 */ 4860 void 4861 nestiobuf_start(struct bio *mbio) 4862 { 4863 struct buf *mbp = mbio->bio_buf; 4864 4865 /* 4866 * Decrement the operations in progress counter and terminate the 4867 * I/O if this was the last bit. 4868 */ 4869 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) { 4870 if (mbp->b_flags & B_ERROR) 4871 mbp->b_resid = mbp->b_bcount; 4872 else 4873 mbp->b_resid = 0; 4874 biodone(mbio); 4875 } 4876 } 4877 4878 /* 4879 * Set an intermediate error prior to calling nestiobuf_start() 4880 */ 4881 void 4882 nestiobuf_error(struct bio *mbio, int error) 4883 { 4884 struct buf *mbp = mbio->bio_buf; 4885 4886 if (error) { 4887 mbp->b_error = error; 4888 atomic_set_int(&mbp->b_flags, B_ERROR); 4889 } 4890 } 4891 4892 /* 4893 * nestiobuf_add: setup a "nested" buffer. 4894 * 4895 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 4896 * => 'bp' should be a buffer allocated by getiobuf. 4897 * => 'offset' is a byte offset in the master buffer. 4898 * => 'size' is a size in bytes of this nested buffer. 4899 */ 4900 void 4901 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats) 4902 { 4903 struct buf *mbp = mbio->bio_buf; 4904 struct vnode *vp = mbp->b_vp; 4905 4906 KKASSERT(mbp->b_bcount >= offset + size); 4907 4908 atomic_add_int((int *)&mbio->bio_driver_info, 1); 4909 4910 /* kernel needs to own the lock for it to be released in biodone */ 4911 BUF_KERNPROC(bp); 4912 bp->b_vp = vp; 4913 bp->b_cmd = mbp->b_cmd; 4914 bp->b_bio1.bio_done = nestiobuf_iodone; 4915 bp->b_data = (char *)mbp->b_data + offset; 4916 bp->b_resid = bp->b_bcount = size; 4917 bp->b_bufsize = bp->b_bcount; 4918 4919 bp->b_bio1.bio_track = NULL; 4920 bp->b_bio1.bio_caller_info1.ptr = mbio; 4921 bp->b_bio1.bio_caller_info2.ptr = stats; 4922 } 4923 4924 /* 4925 * print out statistics from the current status of the buffer pool 4926 * this can be toggeled by the system control option debug.syncprt 4927 */ 4928 #ifdef DEBUG 4929 void 4930 vfs_bufstats(void) 4931 { 4932 int i, j, count; 4933 struct buf *bp; 4934 struct bqueues *dp; 4935 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 4936 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 4937 4938 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 4939 count = 0; 4940 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4941 counts[j] = 0; 4942 4943 spin_lock(&bufqspin); 4944 TAILQ_FOREACH(bp, dp, b_freelist) { 4945 counts[bp->b_bufsize/PAGE_SIZE]++; 4946 count++; 4947 } 4948 spin_unlock(&bufqspin); 4949 4950 kprintf("%s: total-%d", bname[i], count); 4951 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 4952 if (counts[j] != 0) 4953 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 4954 kprintf("\n"); 4955 } 4956 } 4957 #endif 4958 4959 #ifdef DDB 4960 4961 DB_SHOW_COMMAND(buffer, db_show_buffer) 4962 { 4963 /* get args */ 4964 struct buf *bp = (struct buf *)addr; 4965 4966 if (!have_addr) { 4967 db_printf("usage: show buffer <addr>\n"); 4968 return; 4969 } 4970 4971 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 4972 db_printf("b_cmd = %d\n", bp->b_cmd); 4973 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 4974 "b_resid = %d\n, b_data = %p, " 4975 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 4976 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4977 bp->b_data, 4978 (long long)bp->b_bio2.bio_offset, 4979 (long long)(bp->b_bio2.bio_next ? 4980 bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 4981 if (bp->b_xio.xio_npages) { 4982 int i; 4983 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 4984 bp->b_xio.xio_npages); 4985 for (i = 0; i < bp->b_xio.xio_npages; i++) { 4986 vm_page_t m; 4987 m = bp->b_xio.xio_pages[i]; 4988 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4989 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4990 if ((i + 1) < bp->b_xio.xio_npages) 4991 db_printf(","); 4992 } 4993 db_printf("\n"); 4994 } 4995 } 4996 #endif /* DDB */ 4997