xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 2a53016d85f1096c9234a62db3a55aebc5227f1c)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
58 
59 #include <sys/buf2.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
69 
70 /*
71  * Buffer queues.
72  */
73 enum bufq_type {
74 	BQUEUE_NONE,    	/* not on any queue */
75 	BQUEUE_LOCKED,  	/* locked buffers */
76 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
77 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
78 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
79 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
80 	BQUEUE_EMPTY,    	/* empty buffer headers */
81 
82 	BUFFER_QUEUES		/* number of buffer queues */
83 };
84 
85 typedef enum bufq_type bufq_type_t;
86 
87 #define BD_WAKE_SIZE	16384
88 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
89 
90 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
91 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
92 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
93 
94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
95 
96 struct buf *buf;		/* buffer header pool */
97 
98 static void vfs_clean_pages(struct buf *bp);
99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
100 #if 0
101 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
102 #endif
103 static void vfs_vmio_release(struct buf *bp);
104 static int flushbufqueues(bufq_type_t q);
105 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
106 
107 static void bd_signal(int totalspace);
108 static void buf_daemon(void);
109 static void buf_daemon_hw(void);
110 
111 /*
112  * bogus page -- for I/O to/from partially complete buffers
113  * this is a temporary solution to the problem, but it is not
114  * really that bad.  it would be better to split the buffer
115  * for input in the case of buffers partially already in memory,
116  * but the code is intricate enough already.
117  */
118 vm_page_t bogus_page;
119 
120 /*
121  * These are all static, but make the ones we export globals so we do
122  * not need to use compiler magic.
123  */
124 long bufspace;			/* locked by buffer_map */
125 long maxbufspace;
126 static long bufmallocspace;	/* atomic ops */
127 long maxbufmallocspace, lobufspace, hibufspace;
128 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
129 static long lorunningspace;
130 static long hirunningspace;
131 static int runningbufreq;		/* locked by bufcspin */
132 static long dirtybufspace;		/* locked by bufcspin */
133 static int dirtybufcount;		/* locked by bufcspin */
134 static long dirtybufspacehw;		/* locked by bufcspin */
135 static int dirtybufcounthw;		/* locked by bufcspin */
136 static long runningbufspace;		/* locked by bufcspin */
137 static int runningbufcount;		/* locked by bufcspin */
138 long lodirtybufspace;
139 long hidirtybufspace;
140 static int getnewbufcalls;
141 static int getnewbufrestarts;
142 static int recoverbufcalls;
143 static int needsbuffer;		/* locked by bufcspin */
144 static int bd_request;		/* locked by bufcspin */
145 static int bd_request_hw;	/* locked by bufcspin */
146 static u_int bd_wake_ary[BD_WAKE_SIZE];
147 static u_int bd_wake_index;
148 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
149 static int debug_commit;
150 
151 static struct thread *bufdaemon_td;
152 static struct thread *bufdaemonhw_td;
153 static u_int lowmempgallocs;
154 static u_int lowmempgfails;
155 
156 /*
157  * Sysctls for operational control of the buffer cache.
158  */
159 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
160 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
161 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
162 	"High watermark used to trigger explicit flushing of dirty buffers");
163 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
164 	"Minimum amount of buffer space required for active I/O");
165 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
166 	"Maximum amount of buffer space to usable for active I/O");
167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
168 	"Page allocations done during periods of very low free memory");
169 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
170 	"Page allocations which failed during periods of very low free memory");
171 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
172 	"Recycle pages to active or inactive queue transition pt 0-64");
173 /*
174  * Sysctls determining current state of the buffer cache.
175  */
176 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
177 	"Total number of buffers in buffer cache");
178 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
179 	"Pending bytes of dirty buffers (all)");
180 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
181 	"Pending bytes of dirty buffers (heavy weight)");
182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
183 	"Pending number of dirty buffers");
184 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
185 	"Pending number of dirty buffers (heavy weight)");
186 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
187 	"I/O bytes currently in progress due to asynchronous writes");
188 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
189 	"I/O buffers currently in progress due to asynchronous writes");
190 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
191 	"Hard limit on maximum amount of memory usable for buffer space");
192 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
193 	"Soft limit on maximum amount of memory usable for buffer space");
194 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
195 	"Minimum amount of memory to reserve for system buffer space");
196 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
197 	"Amount of memory available for buffers");
198 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
199 	0, "Maximum amount of memory reserved for buffers using malloc");
200 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
201 	"Amount of memory left for buffers using malloc-scheme");
202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
203 	"New buffer header acquisition requests");
204 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
205 	0, "New buffer header acquisition restarts");
206 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
207 	"Recover VM space in an emergency");
208 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
209 	"Buffer acquisition restarts due to fragmented buffer map");
210 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
211 	"Amount of time KVA space was deallocated in an arbitrary buffer");
212 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
213 	"Amount of time buffer re-use operations were successful");
214 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
215 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
216 	"sizeof(struct buf)");
217 
218 char *buf_wmesg = BUF_WMESG;
219 
220 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
221 #define VFS_BIO_NEED_UNUSED02	0x02
222 #define VFS_BIO_NEED_UNUSED04	0x04
223 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
224 
225 /*
226  * bufspacewakeup:
227  *
228  *	Called when buffer space is potentially available for recovery.
229  *	getnewbuf() will block on this flag when it is unable to free
230  *	sufficient buffer space.  Buffer space becomes recoverable when
231  *	bp's get placed back in the queues.
232  */
233 static __inline void
234 bufspacewakeup(void)
235 {
236 	/*
237 	 * If someone is waiting for BUF space, wake them up.  Even
238 	 * though we haven't freed the kva space yet, the waiting
239 	 * process will be able to now.
240 	 */
241 	spin_lock(&bufcspin);
242 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
243 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
244 		spin_unlock(&bufcspin);
245 		wakeup(&needsbuffer);
246 	} else {
247 		spin_unlock(&bufcspin);
248 	}
249 }
250 
251 /*
252  * runningbufwakeup:
253  *
254  *	Accounting for I/O in progress.
255  *
256  */
257 static __inline void
258 runningbufwakeup(struct buf *bp)
259 {
260 	long totalspace;
261 	long limit;
262 
263 	if ((totalspace = bp->b_runningbufspace) != 0) {
264 		spin_lock(&bufcspin);
265 		runningbufspace -= totalspace;
266 		--runningbufcount;
267 		bp->b_runningbufspace = 0;
268 
269 		/*
270 		 * see waitrunningbufspace() for limit test.
271 		 */
272 		limit = hirunningspace * 3 / 6;
273 		if (runningbufreq && runningbufspace <= limit) {
274 			runningbufreq = 0;
275 			spin_unlock(&bufcspin);
276 			wakeup(&runningbufreq);
277 		} else {
278 			spin_unlock(&bufcspin);
279 		}
280 		bd_signal(totalspace);
281 	}
282 }
283 
284 /*
285  * bufcountwakeup:
286  *
287  *	Called when a buffer has been added to one of the free queues to
288  *	account for the buffer and to wakeup anyone waiting for free buffers.
289  *	This typically occurs when large amounts of metadata are being handled
290  *	by the buffer cache ( else buffer space runs out first, usually ).
291  *
292  * MPSAFE
293  */
294 static __inline void
295 bufcountwakeup(void)
296 {
297 	spin_lock(&bufcspin);
298 	if (needsbuffer) {
299 		needsbuffer &= ~VFS_BIO_NEED_ANY;
300 		spin_unlock(&bufcspin);
301 		wakeup(&needsbuffer);
302 	} else {
303 		spin_unlock(&bufcspin);
304 	}
305 }
306 
307 /*
308  * waitrunningbufspace()
309  *
310  * If runningbufspace exceeds 4/6 hirunningspace we block until
311  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
312  * thread blocked here in order to be fair, even if runningbufspace
313  * is now lower than the limit.
314  *
315  * The caller may be using this function to block in a tight loop, we
316  * must block while runningbufspace is greater than at least
317  * hirunningspace * 3 / 6.
318  */
319 void
320 waitrunningbufspace(void)
321 {
322 	long limit = hirunningspace * 4 / 6;
323 
324 	if (runningbufspace > limit || runningbufreq) {
325 		spin_lock(&bufcspin);
326 		while (runningbufspace > limit || runningbufreq) {
327 			runningbufreq = 1;
328 			ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
329 		}
330 		spin_unlock(&bufcspin);
331 	}
332 }
333 
334 /*
335  * buf_dirty_count_severe:
336  *
337  *	Return true if we have too many dirty buffers.
338  */
339 int
340 buf_dirty_count_severe(void)
341 {
342 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
343 	        dirtybufcount >= nbuf / 2);
344 }
345 
346 /*
347  * Return true if the amount of running I/O is severe and BIOQ should
348  * start bursting.
349  */
350 int
351 buf_runningbufspace_severe(void)
352 {
353 	return (runningbufspace >= hirunningspace * 4 / 6);
354 }
355 
356 /*
357  * vfs_buf_test_cache:
358  *
359  * Called when a buffer is extended.  This function clears the B_CACHE
360  * bit if the newly extended portion of the buffer does not contain
361  * valid data.
362  *
363  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
364  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
365  * them while a clean buffer was present.
366  */
367 static __inline__
368 void
369 vfs_buf_test_cache(struct buf *bp,
370 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
371 		  vm_page_t m)
372 {
373 	if (bp->b_flags & B_CACHE) {
374 		int base = (foff + off) & PAGE_MASK;
375 		if (vm_page_is_valid(m, base, size) == 0)
376 			bp->b_flags &= ~B_CACHE;
377 	}
378 }
379 
380 /*
381  * bd_speedup()
382  *
383  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
384  * low water mark.
385  *
386  * MPSAFE
387  */
388 static __inline__
389 void
390 bd_speedup(void)
391 {
392 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
393 		return;
394 
395 	if (bd_request == 0 &&
396 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
397 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
398 		spin_lock(&bufcspin);
399 		bd_request = 1;
400 		spin_unlock(&bufcspin);
401 		wakeup(&bd_request);
402 	}
403 	if (bd_request_hw == 0 &&
404 	    (dirtybufspacehw > lodirtybufspace / 2 ||
405 	     dirtybufcounthw >= nbuf / 2)) {
406 		spin_lock(&bufcspin);
407 		bd_request_hw = 1;
408 		spin_unlock(&bufcspin);
409 		wakeup(&bd_request_hw);
410 	}
411 }
412 
413 /*
414  * bd_heatup()
415  *
416  *	Get the buf_daemon heated up when the number of running and dirty
417  *	buffers exceeds the mid-point.
418  *
419  *	Return the total number of dirty bytes past the second mid point
420  *	as a measure of how much excess dirty data there is in the system.
421  *
422  * MPSAFE
423  */
424 int
425 bd_heatup(void)
426 {
427 	long mid1;
428 	long mid2;
429 	long totalspace;
430 
431 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
432 
433 	totalspace = runningbufspace + dirtybufspace;
434 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
435 		bd_speedup();
436 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
437 		if (totalspace >= mid2)
438 			return(totalspace - mid2);
439 	}
440 	return(0);
441 }
442 
443 /*
444  * bd_wait()
445  *
446  *	Wait for the buffer cache to flush (totalspace) bytes worth of
447  *	buffers, then return.
448  *
449  *	Regardless this function blocks while the number of dirty buffers
450  *	exceeds hidirtybufspace.
451  *
452  * MPSAFE
453  */
454 void
455 bd_wait(int totalspace)
456 {
457 	u_int i;
458 	int count;
459 
460 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
461 		return;
462 
463 	while (totalspace > 0) {
464 		bd_heatup();
465 		if (totalspace > runningbufspace + dirtybufspace)
466 			totalspace = runningbufspace + dirtybufspace;
467 		count = totalspace / BKVASIZE;
468 		if (count >= BD_WAKE_SIZE)
469 			count = BD_WAKE_SIZE - 1;
470 
471 		spin_lock(&bufcspin);
472 		i = (bd_wake_index + count) & BD_WAKE_MASK;
473 		++bd_wake_ary[i];
474 
475 		/*
476 		 * This is not a strict interlock, so we play a bit loose
477 		 * with locking access to dirtybufspace*
478 		 */
479 		tsleep_interlock(&bd_wake_ary[i], 0);
480 		spin_unlock(&bufcspin);
481 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
482 
483 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
484 	}
485 }
486 
487 /*
488  * bd_signal()
489  *
490  *	This function is called whenever runningbufspace or dirtybufspace
491  *	is reduced.  Track threads waiting for run+dirty buffer I/O
492  *	complete.
493  *
494  * MPSAFE
495  */
496 static void
497 bd_signal(int totalspace)
498 {
499 	u_int i;
500 
501 	if (totalspace > 0) {
502 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
503 			totalspace = BKVASIZE * BD_WAKE_SIZE;
504 		spin_lock(&bufcspin);
505 		while (totalspace > 0) {
506 			i = bd_wake_index++;
507 			i &= BD_WAKE_MASK;
508 			if (bd_wake_ary[i]) {
509 				bd_wake_ary[i] = 0;
510 				spin_unlock(&bufcspin);
511 				wakeup(&bd_wake_ary[i]);
512 				spin_lock(&bufcspin);
513 			}
514 			totalspace -= BKVASIZE;
515 		}
516 		spin_unlock(&bufcspin);
517 	}
518 }
519 
520 /*
521  * BIO tracking support routines.
522  *
523  * Release a ref on a bio_track.  Wakeup requests are atomically released
524  * along with the last reference so bk_active will never wind up set to
525  * only 0x80000000.
526  *
527  * MPSAFE
528  */
529 static
530 void
531 bio_track_rel(struct bio_track *track)
532 {
533 	int	active;
534 	int	desired;
535 
536 	/*
537 	 * Shortcut
538 	 */
539 	active = track->bk_active;
540 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
541 		return;
542 
543 	/*
544 	 * Full-on.  Note that the wait flag is only atomically released on
545 	 * the 1->0 count transition.
546 	 *
547 	 * We check for a negative count transition using bit 30 since bit 31
548 	 * has a different meaning.
549 	 */
550 	for (;;) {
551 		desired = (active & 0x7FFFFFFF) - 1;
552 		if (desired)
553 			desired |= active & 0x80000000;
554 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
555 			if (desired & 0x40000000)
556 				panic("bio_track_rel: bad count: %p\n", track);
557 			if (active & 0x80000000)
558 				wakeup(track);
559 			break;
560 		}
561 		active = track->bk_active;
562 	}
563 }
564 
565 /*
566  * Wait for the tracking count to reach 0.
567  *
568  * Use atomic ops such that the wait flag is only set atomically when
569  * bk_active is non-zero.
570  *
571  * MPSAFE
572  */
573 int
574 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
575 {
576 	int	active;
577 	int	desired;
578 	int	error;
579 
580 	/*
581 	 * Shortcut
582 	 */
583 	if (track->bk_active == 0)
584 		return(0);
585 
586 	/*
587 	 * Full-on.  Note that the wait flag may only be atomically set if
588 	 * the active count is non-zero.
589 	 *
590 	 * NOTE: We cannot optimize active == desired since a wakeup could
591 	 *	 clear active prior to our tsleep_interlock().
592 	 */
593 	error = 0;
594 	while ((active = track->bk_active) != 0) {
595 		cpu_ccfence();
596 		desired = active | 0x80000000;
597 		tsleep_interlock(track, slp_flags);
598 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
599 			error = tsleep(track, slp_flags | PINTERLOCKED,
600 				       "trwait", slp_timo);
601 			if (error)
602 				break;
603 		}
604 	}
605 	return (error);
606 }
607 
608 /*
609  * bufinit:
610  *
611  *	Load time initialisation of the buffer cache, called from machine
612  *	dependant initialization code.
613  */
614 void
615 bufinit(void)
616 {
617 	struct buf *bp;
618 	vm_offset_t bogus_offset;
619 	int i;
620 
621 	/* next, make a null set of free lists */
622 	for (i = 0; i < BUFFER_QUEUES; i++)
623 		TAILQ_INIT(&bufqueues[i]);
624 
625 	/* finally, initialize each buffer header and stick on empty q */
626 	for (i = 0; i < nbuf; i++) {
627 		bp = &buf[i];
628 		bzero(bp, sizeof *bp);
629 		bp->b_flags = B_INVAL;	/* we're just an empty header */
630 		bp->b_cmd = BUF_CMD_DONE;
631 		bp->b_qindex = BQUEUE_EMPTY;
632 		initbufbio(bp);
633 		xio_init(&bp->b_xio);
634 		buf_dep_init(bp);
635 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
636 	}
637 
638 	/*
639 	 * maxbufspace is the absolute maximum amount of buffer space we are
640 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
641 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
642 	 * used by most other processes.  The differential is required to
643 	 * ensure that buf_daemon is able to run when other processes might
644 	 * be blocked waiting for buffer space.
645 	 *
646 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
647 	 * this may result in KVM fragmentation which is not handled optimally
648 	 * by the system.
649 	 */
650 	maxbufspace = (long)nbuf * BKVASIZE;
651 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
652 	lobufspace = hibufspace - MAXBSIZE;
653 
654 	lorunningspace = 512 * 1024;
655 	/* hirunningspace -- see below */
656 
657 	/*
658 	 * Limit the amount of malloc memory since it is wired permanently
659 	 * into the kernel space.  Even though this is accounted for in
660 	 * the buffer allocation, we don't want the malloced region to grow
661 	 * uncontrolled.  The malloc scheme improves memory utilization
662 	 * significantly on average (small) directories.
663 	 */
664 	maxbufmallocspace = hibufspace / 20;
665 
666 	/*
667 	 * Reduce the chance of a deadlock occuring by limiting the number
668 	 * of delayed-write dirty buffers we allow to stack up.
669 	 *
670 	 * We don't want too much actually queued to the device at once
671 	 * (XXX this needs to be per-mount!), because the buffers will
672 	 * wind up locked for a very long period of time while the I/O
673 	 * drains.
674 	 */
675 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
676 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
677 	if (hirunningspace < 1024 * 1024)
678 		hirunningspace = 1024 * 1024;
679 
680 	dirtybufspace = 0;
681 	dirtybufspacehw = 0;
682 
683 	lodirtybufspace = hidirtybufspace / 2;
684 
685 	/*
686 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
687 	 * somewhat of a hack at the moment, we really need to limit ourselves
688 	 * based on the number of bytes of I/O in-transit that were initiated
689 	 * from buf_daemon.
690 	 */
691 
692 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
693 	vm_object_hold(&kernel_object);
694 	bogus_page = vm_page_alloc(&kernel_object,
695 				   (bogus_offset >> PAGE_SHIFT),
696 				   VM_ALLOC_NORMAL);
697 	vm_object_drop(&kernel_object);
698 	vmstats.v_wire_count++;
699 
700 }
701 
702 /*
703  * Initialize the embedded bio structures, typically used by
704  * deprecated code which tries to allocate its own struct bufs.
705  */
706 void
707 initbufbio(struct buf *bp)
708 {
709 	bp->b_bio1.bio_buf = bp;
710 	bp->b_bio1.bio_prev = NULL;
711 	bp->b_bio1.bio_offset = NOOFFSET;
712 	bp->b_bio1.bio_next = &bp->b_bio2;
713 	bp->b_bio1.bio_done = NULL;
714 	bp->b_bio1.bio_flags = 0;
715 
716 	bp->b_bio2.bio_buf = bp;
717 	bp->b_bio2.bio_prev = &bp->b_bio1;
718 	bp->b_bio2.bio_offset = NOOFFSET;
719 	bp->b_bio2.bio_next = NULL;
720 	bp->b_bio2.bio_done = NULL;
721 	bp->b_bio2.bio_flags = 0;
722 
723 	BUF_LOCKINIT(bp);
724 }
725 
726 /*
727  * Reinitialize the embedded bio structures as well as any additional
728  * translation cache layers.
729  */
730 void
731 reinitbufbio(struct buf *bp)
732 {
733 	struct bio *bio;
734 
735 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
736 		bio->bio_done = NULL;
737 		bio->bio_offset = NOOFFSET;
738 	}
739 }
740 
741 /*
742  * Undo the effects of an initbufbio().
743  */
744 void
745 uninitbufbio(struct buf *bp)
746 {
747 	dsched_exit_buf(bp);
748 	BUF_LOCKFREE(bp);
749 }
750 
751 /*
752  * Push another BIO layer onto an existing BIO and return it.  The new
753  * BIO layer may already exist, holding cached translation data.
754  */
755 struct bio *
756 push_bio(struct bio *bio)
757 {
758 	struct bio *nbio;
759 
760 	if ((nbio = bio->bio_next) == NULL) {
761 		int index = bio - &bio->bio_buf->b_bio_array[0];
762 		if (index >= NBUF_BIO - 1) {
763 			panic("push_bio: too many layers bp %p\n",
764 				bio->bio_buf);
765 		}
766 		nbio = &bio->bio_buf->b_bio_array[index + 1];
767 		bio->bio_next = nbio;
768 		nbio->bio_prev = bio;
769 		nbio->bio_buf = bio->bio_buf;
770 		nbio->bio_offset = NOOFFSET;
771 		nbio->bio_done = NULL;
772 		nbio->bio_next = NULL;
773 	}
774 	KKASSERT(nbio->bio_done == NULL);
775 	return(nbio);
776 }
777 
778 /*
779  * Pop a BIO translation layer, returning the previous layer.  The
780  * must have been previously pushed.
781  */
782 struct bio *
783 pop_bio(struct bio *bio)
784 {
785 	return(bio->bio_prev);
786 }
787 
788 void
789 clearbiocache(struct bio *bio)
790 {
791 	while (bio) {
792 		bio->bio_offset = NOOFFSET;
793 		bio = bio->bio_next;
794 	}
795 }
796 
797 /*
798  * bfreekva:
799  *
800  *	Free the KVA allocation for buffer 'bp'.
801  *
802  *	Must be called from a critical section as this is the only locking for
803  *	buffer_map.
804  *
805  *	Since this call frees up buffer space, we call bufspacewakeup().
806  *
807  * MPALMOSTSAFE
808  */
809 static void
810 bfreekva(struct buf *bp)
811 {
812 	int count;
813 
814 	if (bp->b_kvasize) {
815 		++buffreekvacnt;
816 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
817 		vm_map_lock(&buffer_map);
818 		bufspace -= bp->b_kvasize;
819 		vm_map_delete(&buffer_map,
820 		    (vm_offset_t) bp->b_kvabase,
821 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
822 		    &count
823 		);
824 		vm_map_unlock(&buffer_map);
825 		vm_map_entry_release(count);
826 		bp->b_kvasize = 0;
827 		bp->b_kvabase = NULL;
828 		bufspacewakeup();
829 	}
830 }
831 
832 /*
833  * bremfree:
834  *
835  *	Remove the buffer from the appropriate free list.
836  */
837 static __inline void
838 _bremfree(struct buf *bp)
839 {
840 	if (bp->b_qindex != BQUEUE_NONE) {
841 		KASSERT(BUF_REFCNTNB(bp) == 1,
842 				("bremfree: bp %p not locked",bp));
843 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
844 		bp->b_qindex = BQUEUE_NONE;
845 	} else {
846 		if (BUF_REFCNTNB(bp) <= 1)
847 			panic("bremfree: removing a buffer not on a queue");
848 	}
849 }
850 
851 void
852 bremfree(struct buf *bp)
853 {
854 	spin_lock(&bufqspin);
855 	_bremfree(bp);
856 	spin_unlock(&bufqspin);
857 }
858 
859 static void
860 bremfree_locked(struct buf *bp)
861 {
862 	_bremfree(bp);
863 }
864 
865 /*
866  * This version of bread issues any required I/O asyncnronously and
867  * makes a callback on completion.
868  *
869  * The callback must check whether BIO_DONE is set in the bio and issue
870  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
871  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
872  */
873 void
874 breadcb(struct vnode *vp, off_t loffset, int size,
875 	void (*func)(struct bio *), void *arg)
876 {
877 	struct buf *bp;
878 
879 	bp = getblk(vp, loffset, size, 0, 0);
880 
881 	/* if not found in cache, do some I/O */
882 	if ((bp->b_flags & B_CACHE) == 0) {
883 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
884 		bp->b_cmd = BUF_CMD_READ;
885 		bp->b_bio1.bio_done = func;
886 		bp->b_bio1.bio_caller_info1.ptr = arg;
887 		vfs_busy_pages(vp, bp);
888 		BUF_KERNPROC(bp);
889 		vn_strategy(vp, &bp->b_bio1);
890 	} else if (func) {
891 		/*
892 		 * Since we are issuing the callback synchronously it cannot
893 		 * race the BIO_DONE, so no need for atomic ops here.
894 		 */
895 		/*bp->b_bio1.bio_done = func;*/
896 		bp->b_bio1.bio_caller_info1.ptr = arg;
897 		bp->b_bio1.bio_flags |= BIO_DONE;
898 		func(&bp->b_bio1);
899 	} else {
900 		bqrelse(bp);
901 	}
902 }
903 
904 /*
905  * breadnx() - Terminal function for bread() and breadn().
906  *
907  * This function will start asynchronous I/O on read-ahead blocks as well
908  * as satisfy the primary request.
909  *
910  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
911  * set, the buffer is valid and we do not have to do anything.
912  */
913 int
914 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
915 	int *rabsize, int cnt, struct buf **bpp)
916 {
917 	struct buf *bp, *rabp;
918 	int i;
919 	int rv = 0, readwait = 0;
920 
921 	if (*bpp)
922 		bp = *bpp;
923 	else
924 		*bpp = bp = getblk(vp, loffset, size, 0, 0);
925 
926 	/* if not found in cache, do some I/O */
927 	if ((bp->b_flags & B_CACHE) == 0) {
928 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
929 		bp->b_cmd = BUF_CMD_READ;
930 		bp->b_bio1.bio_done = biodone_sync;
931 		bp->b_bio1.bio_flags |= BIO_SYNC;
932 		vfs_busy_pages(vp, bp);
933 		vn_strategy(vp, &bp->b_bio1);
934 		++readwait;
935 	}
936 
937 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
938 		if (inmem(vp, *raoffset))
939 			continue;
940 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
941 
942 		if ((rabp->b_flags & B_CACHE) == 0) {
943 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
944 			rabp->b_cmd = BUF_CMD_READ;
945 			vfs_busy_pages(vp, rabp);
946 			BUF_KERNPROC(rabp);
947 			vn_strategy(vp, &rabp->b_bio1);
948 		} else {
949 			brelse(rabp);
950 		}
951 	}
952 	if (readwait)
953 		rv = biowait(&bp->b_bio1, "biord");
954 	return (rv);
955 }
956 
957 /*
958  * bwrite:
959  *
960  *	Synchronous write, waits for completion.
961  *
962  *	Write, release buffer on completion.  (Done by iodone
963  *	if async).  Do not bother writing anything if the buffer
964  *	is invalid.
965  *
966  *	Note that we set B_CACHE here, indicating that buffer is
967  *	fully valid and thus cacheable.  This is true even of NFS
968  *	now so we set it generally.  This could be set either here
969  *	or in biodone() since the I/O is synchronous.  We put it
970  *	here.
971  */
972 int
973 bwrite(struct buf *bp)
974 {
975 	int error;
976 
977 	if (bp->b_flags & B_INVAL) {
978 		brelse(bp);
979 		return (0);
980 	}
981 	if (BUF_REFCNTNB(bp) == 0)
982 		panic("bwrite: buffer is not busy???");
983 
984 	/* Mark the buffer clean */
985 	bundirty(bp);
986 
987 	bp->b_flags &= ~(B_ERROR | B_EINTR);
988 	bp->b_flags |= B_CACHE;
989 	bp->b_cmd = BUF_CMD_WRITE;
990 	bp->b_bio1.bio_done = biodone_sync;
991 	bp->b_bio1.bio_flags |= BIO_SYNC;
992 	vfs_busy_pages(bp->b_vp, bp);
993 
994 	/*
995 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
996 	 * valid for vnode-backed buffers.
997 	 */
998 	bsetrunningbufspace(bp, bp->b_bufsize);
999 	vn_strategy(bp->b_vp, &bp->b_bio1);
1000 	error = biowait(&bp->b_bio1, "biows");
1001 	brelse(bp);
1002 
1003 	return (error);
1004 }
1005 
1006 /*
1007  * bawrite:
1008  *
1009  *	Asynchronous write.  Start output on a buffer, but do not wait for
1010  *	it to complete.  The buffer is released when the output completes.
1011  *
1012  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1013  *	B_INVAL buffers.  Not us.
1014  */
1015 void
1016 bawrite(struct buf *bp)
1017 {
1018 	if (bp->b_flags & B_INVAL) {
1019 		brelse(bp);
1020 		return;
1021 	}
1022 	if (BUF_REFCNTNB(bp) == 0)
1023 		panic("bwrite: buffer is not busy???");
1024 
1025 	/* Mark the buffer clean */
1026 	bundirty(bp);
1027 
1028 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1029 	bp->b_flags |= B_CACHE;
1030 	bp->b_cmd = BUF_CMD_WRITE;
1031 	KKASSERT(bp->b_bio1.bio_done == NULL);
1032 	vfs_busy_pages(bp->b_vp, bp);
1033 
1034 	/*
1035 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1036 	 * valid for vnode-backed buffers.
1037 	 */
1038 	bsetrunningbufspace(bp, bp->b_bufsize);
1039 	BUF_KERNPROC(bp);
1040 	vn_strategy(bp->b_vp, &bp->b_bio1);
1041 }
1042 
1043 /*
1044  * bowrite:
1045  *
1046  *	Ordered write.  Start output on a buffer, and flag it so that the
1047  *	device will write it in the order it was queued.  The buffer is
1048  *	released when the output completes.  bwrite() ( or the VOP routine
1049  *	anyway ) is responsible for handling B_INVAL buffers.
1050  */
1051 int
1052 bowrite(struct buf *bp)
1053 {
1054 	bp->b_flags |= B_ORDERED;
1055 	bawrite(bp);
1056 	return (0);
1057 }
1058 
1059 /*
1060  * bdwrite:
1061  *
1062  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1063  *	anything if the buffer is marked invalid.
1064  *
1065  *	Note that since the buffer must be completely valid, we can safely
1066  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1067  *	biodone() in order to prevent getblk from writing the buffer
1068  *	out synchronously.
1069  */
1070 void
1071 bdwrite(struct buf *bp)
1072 {
1073 	if (BUF_REFCNTNB(bp) == 0)
1074 		panic("bdwrite: buffer is not busy");
1075 
1076 	if (bp->b_flags & B_INVAL) {
1077 		brelse(bp);
1078 		return;
1079 	}
1080 	bdirty(bp);
1081 
1082 	if (dsched_is_clear_buf_priv(bp))
1083 		dsched_new_buf(bp);
1084 
1085 	/*
1086 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1087 	 * true even of NFS now.
1088 	 */
1089 	bp->b_flags |= B_CACHE;
1090 
1091 	/*
1092 	 * This bmap keeps the system from needing to do the bmap later,
1093 	 * perhaps when the system is attempting to do a sync.  Since it
1094 	 * is likely that the indirect block -- or whatever other datastructure
1095 	 * that the filesystem needs is still in memory now, it is a good
1096 	 * thing to do this.  Note also, that if the pageout daemon is
1097 	 * requesting a sync -- there might not be enough memory to do
1098 	 * the bmap then...  So, this is important to do.
1099 	 */
1100 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1101 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1102 			 NULL, NULL, BUF_CMD_WRITE);
1103 	}
1104 
1105 	/*
1106 	 * Because the underlying pages may still be mapped and
1107 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1108 	 * range here will be inaccurate.
1109 	 *
1110 	 * However, we must still clean the pages to satisfy the
1111 	 * vnode_pager and pageout daemon, so theythink the pages
1112 	 * have been "cleaned".  What has really occured is that
1113 	 * they've been earmarked for later writing by the buffer
1114 	 * cache.
1115 	 *
1116 	 * So we get the b_dirtyoff/end update but will not actually
1117 	 * depend on it (NFS that is) until the pages are busied for
1118 	 * writing later on.
1119 	 */
1120 	vfs_clean_pages(bp);
1121 	bqrelse(bp);
1122 
1123 	/*
1124 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1125 	 * due to the softdep code.
1126 	 */
1127 }
1128 
1129 /*
1130  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1131  * This is used by tmpfs.
1132  *
1133  * It is important for any VFS using this routine to NOT use it for
1134  * IO_SYNC or IO_ASYNC operations which occur when the system really
1135  * wants to flush VM pages to backing store.
1136  */
1137 void
1138 buwrite(struct buf *bp)
1139 {
1140 	vm_page_t m;
1141 	int i;
1142 
1143 	/*
1144 	 * Only works for VMIO buffers.  If the buffer is already
1145 	 * marked for delayed-write we can't avoid the bdwrite().
1146 	 */
1147 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1148 		bdwrite(bp);
1149 		return;
1150 	}
1151 
1152 	/*
1153 	 * Mark as needing a commit.
1154 	 */
1155 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1156 		m = bp->b_xio.xio_pages[i];
1157 		vm_page_need_commit(m);
1158 	}
1159 	bqrelse(bp);
1160 }
1161 
1162 /*
1163  * bdirty:
1164  *
1165  *	Turn buffer into delayed write request by marking it B_DELWRI.
1166  *	B_RELBUF and B_NOCACHE must be cleared.
1167  *
1168  *	We reassign the buffer to itself to properly update it in the
1169  *	dirty/clean lists.
1170  *
1171  *	Must be called from a critical section.
1172  *	The buffer must be on BQUEUE_NONE.
1173  */
1174 void
1175 bdirty(struct buf *bp)
1176 {
1177 	KASSERT(bp->b_qindex == BQUEUE_NONE,
1178 		("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1179 	if (bp->b_flags & B_NOCACHE) {
1180 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1181 		bp->b_flags &= ~B_NOCACHE;
1182 	}
1183 	if (bp->b_flags & B_INVAL) {
1184 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1185 	}
1186 	bp->b_flags &= ~B_RELBUF;
1187 
1188 	if ((bp->b_flags & B_DELWRI) == 0) {
1189 		lwkt_gettoken(&bp->b_vp->v_token);
1190 		bp->b_flags |= B_DELWRI;
1191 		reassignbuf(bp);
1192 		lwkt_reltoken(&bp->b_vp->v_token);
1193 
1194 		spin_lock(&bufcspin);
1195 		++dirtybufcount;
1196 		dirtybufspace += bp->b_bufsize;
1197 		if (bp->b_flags & B_HEAVY) {
1198 			++dirtybufcounthw;
1199 			dirtybufspacehw += bp->b_bufsize;
1200 		}
1201 		spin_unlock(&bufcspin);
1202 
1203 		bd_heatup();
1204 	}
1205 }
1206 
1207 /*
1208  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1209  * needs to be flushed with a different buf_daemon thread to avoid
1210  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1211  */
1212 void
1213 bheavy(struct buf *bp)
1214 {
1215 	if ((bp->b_flags & B_HEAVY) == 0) {
1216 		bp->b_flags |= B_HEAVY;
1217 		if (bp->b_flags & B_DELWRI) {
1218 			spin_lock(&bufcspin);
1219 			++dirtybufcounthw;
1220 			dirtybufspacehw += bp->b_bufsize;
1221 			spin_unlock(&bufcspin);
1222 		}
1223 	}
1224 }
1225 
1226 /*
1227  * bundirty:
1228  *
1229  *	Clear B_DELWRI for buffer.
1230  *
1231  *	Must be called from a critical section.
1232  *
1233  *	The buffer is typically on BQUEUE_NONE but there is one case in
1234  *	brelse() that calls this function after placing the buffer on
1235  *	a different queue.
1236  *
1237  * MPSAFE
1238  */
1239 void
1240 bundirty(struct buf *bp)
1241 {
1242 	if (bp->b_flags & B_DELWRI) {
1243 		lwkt_gettoken(&bp->b_vp->v_token);
1244 		bp->b_flags &= ~B_DELWRI;
1245 		reassignbuf(bp);
1246 		lwkt_reltoken(&bp->b_vp->v_token);
1247 
1248 		spin_lock(&bufcspin);
1249 		--dirtybufcount;
1250 		dirtybufspace -= bp->b_bufsize;
1251 		if (bp->b_flags & B_HEAVY) {
1252 			--dirtybufcounthw;
1253 			dirtybufspacehw -= bp->b_bufsize;
1254 		}
1255 		spin_unlock(&bufcspin);
1256 
1257 		bd_signal(bp->b_bufsize);
1258 	}
1259 	/*
1260 	 * Since it is now being written, we can clear its deferred write flag.
1261 	 */
1262 	bp->b_flags &= ~B_DEFERRED;
1263 }
1264 
1265 /*
1266  * Set the b_runningbufspace field, used to track how much I/O is
1267  * in progress at any given moment.
1268  */
1269 void
1270 bsetrunningbufspace(struct buf *bp, int bytes)
1271 {
1272 	bp->b_runningbufspace = bytes;
1273 	if (bytes) {
1274 		spin_lock(&bufcspin);
1275 		runningbufspace += bytes;
1276 		++runningbufcount;
1277 		spin_unlock(&bufcspin);
1278 	}
1279 }
1280 
1281 /*
1282  * brelse:
1283  *
1284  *	Release a busy buffer and, if requested, free its resources.  The
1285  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1286  *	to be accessed later as a cache entity or reused for other purposes.
1287  *
1288  * MPALMOSTSAFE
1289  */
1290 void
1291 brelse(struct buf *bp)
1292 {
1293 #ifdef INVARIANTS
1294 	int saved_flags = bp->b_flags;
1295 #endif
1296 
1297 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1298 
1299 	/*
1300 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1301 	 * its backing store.  Clear B_DELWRI.
1302 	 *
1303 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1304 	 * to destroy the buffer and backing store and (2) when the caller
1305 	 * wants to destroy the buffer and backing store after a write
1306 	 * completes.
1307 	 */
1308 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1309 		bundirty(bp);
1310 	}
1311 
1312 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1313 		/*
1314 		 * A re-dirtied buffer is only subject to destruction
1315 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1316 		 */
1317 		/* leave buffer intact */
1318 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1319 		   (bp->b_bufsize <= 0)) {
1320 		/*
1321 		 * Either a failed read or we were asked to free or not
1322 		 * cache the buffer.  This path is reached with B_DELWRI
1323 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1324 		 * backing store destruction.
1325 		 *
1326 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1327 		 * buffer cannot be immediately freed.
1328 		 */
1329 		bp->b_flags |= B_INVAL;
1330 		if (LIST_FIRST(&bp->b_dep) != NULL)
1331 			buf_deallocate(bp);
1332 		if (bp->b_flags & B_DELWRI) {
1333 			spin_lock(&bufcspin);
1334 			--dirtybufcount;
1335 			dirtybufspace -= bp->b_bufsize;
1336 			if (bp->b_flags & B_HEAVY) {
1337 				--dirtybufcounthw;
1338 				dirtybufspacehw -= bp->b_bufsize;
1339 			}
1340 			spin_unlock(&bufcspin);
1341 
1342 			bd_signal(bp->b_bufsize);
1343 		}
1344 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1345 	}
1346 
1347 	/*
1348 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1349 	 * or if b_refs is non-zero.
1350 	 *
1351 	 * If vfs_vmio_release() is called with either bit set, the
1352 	 * underlying pages may wind up getting freed causing a previous
1353 	 * write (bdwrite()) to get 'lost' because pages associated with
1354 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1355 	 * B_LOCKED buffer may be mapped by the filesystem.
1356 	 *
1357 	 * If we want to release the buffer ourselves (rather then the
1358 	 * originator asking us to release it), give the originator a
1359 	 * chance to countermand the release by setting B_LOCKED.
1360 	 *
1361 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1362 	 * if B_DELWRI is set.
1363 	 *
1364 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1365 	 * on pages to return pages to the VM page queues.
1366 	 */
1367 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1368 		bp->b_flags &= ~B_RELBUF;
1369 	} else if (vm_page_count_min(0)) {
1370 		if (LIST_FIRST(&bp->b_dep) != NULL)
1371 			buf_deallocate(bp);		/* can set B_LOCKED */
1372 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1373 			bp->b_flags &= ~B_RELBUF;
1374 		else
1375 			bp->b_flags |= B_RELBUF;
1376 	}
1377 
1378 	/*
1379 	 * Make sure b_cmd is clear.  It may have already been cleared by
1380 	 * biodone().
1381 	 *
1382 	 * At this point destroying the buffer is governed by the B_INVAL
1383 	 * or B_RELBUF flags.
1384 	 */
1385 	bp->b_cmd = BUF_CMD_DONE;
1386 	dsched_exit_buf(bp);
1387 
1388 	/*
1389 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1390 	 * after an I/O may have replaces some of the pages with bogus pages
1391 	 * in order to not destroy dirty pages in a fill-in read.
1392 	 *
1393 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1394 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1395 	 * B_INVAL may still be set, however.
1396 	 *
1397 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1398 	 * but not the backing store.   B_NOCACHE will destroy the backing
1399 	 * store.
1400 	 *
1401 	 * Note that dirty NFS buffers contain byte-granular write ranges
1402 	 * and should not be destroyed w/ B_INVAL even if the backing store
1403 	 * is left intact.
1404 	 */
1405 	if (bp->b_flags & B_VMIO) {
1406 		/*
1407 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1408 		 */
1409 		int i, j, resid;
1410 		vm_page_t m;
1411 		off_t foff;
1412 		vm_pindex_t poff;
1413 		vm_object_t obj;
1414 		struct vnode *vp;
1415 
1416 		vp = bp->b_vp;
1417 
1418 		/*
1419 		 * Get the base offset and length of the buffer.  Note that
1420 		 * in the VMIO case if the buffer block size is not
1421 		 * page-aligned then b_data pointer may not be page-aligned.
1422 		 * But our b_xio.xio_pages array *IS* page aligned.
1423 		 *
1424 		 * block sizes less then DEV_BSIZE (usually 512) are not
1425 		 * supported due to the page granularity bits (m->valid,
1426 		 * m->dirty, etc...).
1427 		 *
1428 		 * See man buf(9) for more information
1429 		 */
1430 
1431 		resid = bp->b_bufsize;
1432 		foff = bp->b_loffset;
1433 
1434 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1435 			m = bp->b_xio.xio_pages[i];
1436 			vm_page_flag_clear(m, PG_ZERO);
1437 			/*
1438 			 * If we hit a bogus page, fixup *all* of them
1439 			 * now.  Note that we left these pages wired
1440 			 * when we removed them so they had better exist,
1441 			 * and they cannot be ripped out from under us so
1442 			 * no critical section protection is necessary.
1443 			 */
1444 			if (m == bogus_page) {
1445 				obj = vp->v_object;
1446 				poff = OFF_TO_IDX(bp->b_loffset);
1447 
1448 				vm_object_hold(obj);
1449 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1450 					vm_page_t mtmp;
1451 
1452 					mtmp = bp->b_xio.xio_pages[j];
1453 					if (mtmp == bogus_page) {
1454 						mtmp = vm_page_lookup(obj, poff + j);
1455 						if (!mtmp) {
1456 							panic("brelse: page missing");
1457 						}
1458 						bp->b_xio.xio_pages[j] = mtmp;
1459 					}
1460 				}
1461 				bp->b_flags &= ~B_HASBOGUS;
1462 				vm_object_drop(obj);
1463 
1464 				if ((bp->b_flags & B_INVAL) == 0) {
1465 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1466 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1467 				}
1468 				m = bp->b_xio.xio_pages[i];
1469 			}
1470 
1471 			/*
1472 			 * Invalidate the backing store if B_NOCACHE is set
1473 			 * (e.g. used with vinvalbuf()).  If this is NFS
1474 			 * we impose a requirement that the block size be
1475 			 * a multiple of PAGE_SIZE and create a temporary
1476 			 * hack to basically invalidate the whole page.  The
1477 			 * problem is that NFS uses really odd buffer sizes
1478 			 * especially when tracking piecemeal writes and
1479 			 * it also vinvalbuf()'s a lot, which would result
1480 			 * in only partial page validation and invalidation
1481 			 * here.  If the file page is mmap()'d, however,
1482 			 * all the valid bits get set so after we invalidate
1483 			 * here we would end up with weird m->valid values
1484 			 * like 0xfc.  nfs_getpages() can't handle this so
1485 			 * we clear all the valid bits for the NFS case
1486 			 * instead of just some of them.
1487 			 *
1488 			 * The real bug is the VM system having to set m->valid
1489 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1490 			 * itself is an artifact of the whole 512-byte
1491 			 * granular mess that exists to support odd block
1492 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1493 			 * A complete rewrite is required.
1494 			 *
1495 			 * XXX
1496 			 */
1497 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1498 				int poffset = foff & PAGE_MASK;
1499 				int presid;
1500 
1501 				presid = PAGE_SIZE - poffset;
1502 				if (bp->b_vp->v_tag == VT_NFS &&
1503 				    bp->b_vp->v_type == VREG) {
1504 					; /* entire page */
1505 				} else if (presid > resid) {
1506 					presid = resid;
1507 				}
1508 				KASSERT(presid >= 0, ("brelse: extra page"));
1509 				vm_page_set_invalid(m, poffset, presid);
1510 
1511 				/*
1512 				 * Also make sure any swap cache is removed
1513 				 * as it is now stale (HAMMER in particular
1514 				 * uses B_NOCACHE to deal with buffer
1515 				 * aliasing).
1516 				 */
1517 				swap_pager_unswapped(m);
1518 			}
1519 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1520 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1521 		}
1522 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1523 			vfs_vmio_release(bp);
1524 	} else {
1525 		/*
1526 		 * Rundown for non-VMIO buffers.
1527 		 */
1528 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1529 			if (bp->b_bufsize)
1530 				allocbuf(bp, 0);
1531 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1532 			if (bp->b_vp)
1533 				brelvp(bp);
1534 		}
1535 	}
1536 
1537 	if (bp->b_qindex != BQUEUE_NONE)
1538 		panic("brelse: free buffer onto another queue???");
1539 	if (BUF_REFCNTNB(bp) > 1) {
1540 		/* Temporary panic to verify exclusive locking */
1541 		/* This panic goes away when we allow shared refs */
1542 		panic("brelse: multiple refs");
1543 		/* NOT REACHED */
1544 		return;
1545 	}
1546 
1547 	/*
1548 	 * Figure out the correct queue to place the cleaned up buffer on.
1549 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1550 	 * disassociated from their vnode.
1551 	 */
1552 	spin_lock(&bufqspin);
1553 	if (bp->b_flags & B_LOCKED) {
1554 		/*
1555 		 * Buffers that are locked are placed in the locked queue
1556 		 * immediately, regardless of their state.
1557 		 */
1558 		bp->b_qindex = BQUEUE_LOCKED;
1559 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1560 	} else if (bp->b_bufsize == 0) {
1561 		/*
1562 		 * Buffers with no memory.  Due to conditionals near the top
1563 		 * of brelse() such buffers should probably already be
1564 		 * marked B_INVAL and disassociated from their vnode.
1565 		 */
1566 		bp->b_flags |= B_INVAL;
1567 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1568 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1569 		if (bp->b_kvasize) {
1570 			bp->b_qindex = BQUEUE_EMPTYKVA;
1571 		} else {
1572 			bp->b_qindex = BQUEUE_EMPTY;
1573 		}
1574 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1575 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1576 		/*
1577 		 * Buffers with junk contents.   Again these buffers had better
1578 		 * already be disassociated from their vnode.
1579 		 */
1580 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1581 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1582 		bp->b_flags |= B_INVAL;
1583 		bp->b_qindex = BQUEUE_CLEAN;
1584 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1585 	} else {
1586 		/*
1587 		 * Remaining buffers.  These buffers are still associated with
1588 		 * their vnode.
1589 		 */
1590 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1591 		case B_DELWRI:
1592 		    bp->b_qindex = BQUEUE_DIRTY;
1593 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1594 		    break;
1595 		case B_DELWRI | B_HEAVY:
1596 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1597 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1598 				      b_freelist);
1599 		    break;
1600 		default:
1601 		    /*
1602 		     * NOTE: Buffers are always placed at the end of the
1603 		     * queue.  If B_AGE is not set the buffer will cycle
1604 		     * through the queue twice.
1605 		     */
1606 		    bp->b_qindex = BQUEUE_CLEAN;
1607 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1608 		    break;
1609 		}
1610 	}
1611 	spin_unlock(&bufqspin);
1612 
1613 	/*
1614 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1615 	 * on the correct queue.
1616 	 */
1617 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1618 		bundirty(bp);
1619 
1620 	/*
1621 	 * The bp is on an appropriate queue unless locked.  If it is not
1622 	 * locked or dirty we can wakeup threads waiting for buffer space.
1623 	 *
1624 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1625 	 * if B_INVAL is set ).
1626 	 */
1627 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1628 		bufcountwakeup();
1629 
1630 	/*
1631 	 * Something we can maybe free or reuse
1632 	 */
1633 	if (bp->b_bufsize || bp->b_kvasize)
1634 		bufspacewakeup();
1635 
1636 	/*
1637 	 * Clean up temporary flags and unlock the buffer.
1638 	 */
1639 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1640 	BUF_UNLOCK(bp);
1641 }
1642 
1643 /*
1644  * bqrelse:
1645  *
1646  *	Release a buffer back to the appropriate queue but do not try to free
1647  *	it.  The buffer is expected to be used again soon.
1648  *
1649  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1650  *	biodone() to requeue an async I/O on completion.  It is also used when
1651  *	known good buffers need to be requeued but we think we may need the data
1652  *	again soon.
1653  *
1654  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1655  *
1656  * MPSAFE
1657  */
1658 void
1659 bqrelse(struct buf *bp)
1660 {
1661 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1662 
1663 	if (bp->b_qindex != BQUEUE_NONE)
1664 		panic("bqrelse: free buffer onto another queue???");
1665 	if (BUF_REFCNTNB(bp) > 1) {
1666 		/* do not release to free list */
1667 		panic("bqrelse: multiple refs");
1668 		return;
1669 	}
1670 
1671 	buf_act_advance(bp);
1672 
1673 	spin_lock(&bufqspin);
1674 	if (bp->b_flags & B_LOCKED) {
1675 		/*
1676 		 * Locked buffers are released to the locked queue.  However,
1677 		 * if the buffer is dirty it will first go into the dirty
1678 		 * queue and later on after the I/O completes successfully it
1679 		 * will be released to the locked queue.
1680 		 */
1681 		bp->b_qindex = BQUEUE_LOCKED;
1682 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1683 	} else if (bp->b_flags & B_DELWRI) {
1684 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1685 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1686 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1687 	} else if (vm_page_count_min(0)) {
1688 		/*
1689 		 * We are too low on memory, we have to try to free the
1690 		 * buffer (most importantly: the wired pages making up its
1691 		 * backing store) *now*.
1692 		 */
1693 		spin_unlock(&bufqspin);
1694 		brelse(bp);
1695 		return;
1696 	} else {
1697 		bp->b_qindex = BQUEUE_CLEAN;
1698 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1699 	}
1700 	spin_unlock(&bufqspin);
1701 
1702 	if ((bp->b_flags & B_LOCKED) == 0 &&
1703 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1704 		bufcountwakeup();
1705 	}
1706 
1707 	/*
1708 	 * Something we can maybe free or reuse.
1709 	 */
1710 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1711 		bufspacewakeup();
1712 
1713 	/*
1714 	 * Final cleanup and unlock.  Clear bits that are only used while a
1715 	 * buffer is actively locked.
1716 	 */
1717 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1718 	dsched_exit_buf(bp);
1719 	BUF_UNLOCK(bp);
1720 }
1721 
1722 /*
1723  * Hold a buffer, preventing it from being reused.  This will prevent
1724  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1725  * operations.  If a B_INVAL operation occurs the buffer will remain held
1726  * but the underlying pages may get ripped out.
1727  *
1728  * These functions are typically used in VOP_READ/VOP_WRITE functions
1729  * to hold a buffer during a copyin or copyout, preventing deadlocks
1730  * or recursive lock panics when read()/write() is used over mmap()'d
1731  * space.
1732  *
1733  * NOTE: bqhold() requires that the buffer be locked at the time of the
1734  *	 hold.  bqdrop() has no requirements other than the buffer having
1735  *	 previously been held.
1736  */
1737 void
1738 bqhold(struct buf *bp)
1739 {
1740 	atomic_add_int(&bp->b_refs, 1);
1741 }
1742 
1743 void
1744 bqdrop(struct buf *bp)
1745 {
1746 	KKASSERT(bp->b_refs > 0);
1747 	atomic_add_int(&bp->b_refs, -1);
1748 }
1749 
1750 /*
1751  * Return backing pages held by the buffer 'bp' back to the VM system.
1752  * This routine is called when the bp is invalidated, released, or
1753  * reused.
1754  *
1755  * The KVA mapping (b_data) for the underlying pages is removed by
1756  * this function.
1757  *
1758  * WARNING! This routine is integral to the low memory critical path
1759  *          when a buffer is B_RELBUF'd.  If the system has a severe page
1760  *          deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1761  *          queues so they can be reused in the current pageout daemon
1762  *          pass.
1763  */
1764 static void
1765 vfs_vmio_release(struct buf *bp)
1766 {
1767 	int i;
1768 	vm_page_t m;
1769 
1770 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1771 		m = bp->b_xio.xio_pages[i];
1772 		bp->b_xio.xio_pages[i] = NULL;
1773 
1774 		/*
1775 		 * We need to own the page in order to safely unwire it.
1776 		 */
1777 		vm_page_busy_wait(m, FALSE, "vmiopg");
1778 
1779 		/*
1780 		 * The VFS is telling us this is not a meta-data buffer
1781 		 * even if it is backed by a block device.
1782 		 */
1783 		if (bp->b_flags & B_NOTMETA)
1784 			vm_page_flag_set(m, PG_NOTMETA);
1785 
1786 		/*
1787 		 * This is a very important bit of code.  We try to track
1788 		 * VM page use whether the pages are wired into the buffer
1789 		 * cache or not.  While wired into the buffer cache the
1790 		 * bp tracks the act_count.
1791 		 *
1792 		 * We can choose to place unwired pages on the inactive
1793 		 * queue (0) or active queue (1).  If we place too many
1794 		 * on the active queue the queue will cycle the act_count
1795 		 * on pages we'd like to keep, just from single-use pages
1796 		 * (such as when doing a tar-up or file scan).
1797 		 */
1798 		if (bp->b_act_count < vm_cycle_point)
1799 			vm_page_unwire(m, 0);
1800 		else
1801 			vm_page_unwire(m, 1);
1802 
1803 		/*
1804 		 * If the wire_count has dropped to 0 we may need to take
1805 		 * further action before unbusying the page.
1806 		 *
1807 		 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1808 		 */
1809 		if (m->wire_count == 0) {
1810 			vm_page_flag_clear(m, PG_ZERO);
1811 
1812 			if (bp->b_flags & B_DIRECT) {
1813 				/*
1814 				 * Attempt to free the page if B_DIRECT is
1815 				 * set, the caller does not desire the page
1816 				 * to be cached.
1817 				 */
1818 				vm_page_wakeup(m);
1819 				vm_page_try_to_free(m);
1820 			} else if ((bp->b_flags & B_NOTMETA) ||
1821 				   vm_page_count_min(0)) {
1822 				/*
1823 				 * Attempt to move the page to PQ_CACHE
1824 				 * if B_NOTMETA is set.  This flag is set
1825 				 * by HAMMER to remove one of the two pages
1826 				 * present when double buffering is enabled.
1827 				 *
1828 				 * Attempt to move the page to PQ_CACHE
1829 				 * If we have a severe page deficit.  This
1830 				 * will cause buffer cache operations related
1831 				 * to pageouts to recycle the related pages
1832 				 * in order to avoid a low memory deadlock.
1833 				 */
1834 				m->act_count = bp->b_act_count;
1835 				vm_page_wakeup(m);
1836 				vm_page_try_to_cache(m);
1837 			} else {
1838 				/*
1839 				 * Nominal case, leave the page on the
1840 				 * queue the original unwiring placed it on
1841 				 * (active or inactive).
1842 				 */
1843 				m->act_count = bp->b_act_count;
1844 				vm_page_wakeup(m);
1845 			}
1846 		} else {
1847 			vm_page_wakeup(m);
1848 		}
1849 	}
1850 
1851 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1852 		     bp->b_xio.xio_npages);
1853 	if (bp->b_bufsize) {
1854 		bufspacewakeup();
1855 		bp->b_bufsize = 0;
1856 	}
1857 	bp->b_xio.xio_npages = 0;
1858 	bp->b_flags &= ~B_VMIO;
1859 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1860 	if (bp->b_vp)
1861 		brelvp(bp);
1862 }
1863 
1864 /*
1865  * vfs_bio_awrite:
1866  *
1867  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1868  *	This is much better then the old way of writing only one buffer at
1869  *	a time.  Note that we may not be presented with the buffers in the
1870  *	correct order, so we search for the cluster in both directions.
1871  *
1872  *	The buffer is locked on call.
1873  */
1874 int
1875 vfs_bio_awrite(struct buf *bp)
1876 {
1877 	int i;
1878 	int j;
1879 	off_t loffset = bp->b_loffset;
1880 	struct vnode *vp = bp->b_vp;
1881 	int nbytes;
1882 	struct buf *bpa;
1883 	int nwritten;
1884 	int size;
1885 
1886 	/*
1887 	 * right now we support clustered writing only to regular files.  If
1888 	 * we find a clusterable block we could be in the middle of a cluster
1889 	 * rather then at the beginning.
1890 	 *
1891 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1892 	 * to b_loffset.  b_bio2 contains the translated block number.
1893 	 */
1894 	if ((vp->v_type == VREG) &&
1895 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1896 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1897 
1898 		size = vp->v_mount->mnt_stat.f_iosize;
1899 
1900 		for (i = size; i < MAXPHYS; i += size) {
1901 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1902 			    BUF_REFCNT(bpa) == 0 &&
1903 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1904 			    (B_DELWRI | B_CLUSTEROK)) &&
1905 			    (bpa->b_bufsize == size)) {
1906 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1907 				    (bpa->b_bio2.bio_offset !=
1908 				     bp->b_bio2.bio_offset + i))
1909 					break;
1910 			} else {
1911 				break;
1912 			}
1913 		}
1914 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1915 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1916 			    BUF_REFCNT(bpa) == 0 &&
1917 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1918 			    (B_DELWRI | B_CLUSTEROK)) &&
1919 			    (bpa->b_bufsize == size)) {
1920 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1921 				    (bpa->b_bio2.bio_offset !=
1922 				     bp->b_bio2.bio_offset - j))
1923 					break;
1924 			} else {
1925 				break;
1926 			}
1927 		}
1928 		j -= size;
1929 		nbytes = (i + j);
1930 
1931 		/*
1932 		 * this is a possible cluster write
1933 		 */
1934 		if (nbytes != size) {
1935 			BUF_UNLOCK(bp);
1936 			nwritten = cluster_wbuild(vp, size,
1937 						  loffset - j, nbytes);
1938 			return nwritten;
1939 		}
1940 	}
1941 
1942 	/*
1943 	 * default (old) behavior, writing out only one block
1944 	 *
1945 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1946 	 */
1947 	nwritten = bp->b_bufsize;
1948 	bremfree(bp);
1949 	bawrite(bp);
1950 
1951 	return nwritten;
1952 }
1953 
1954 /*
1955  * getnewbuf:
1956  *
1957  *	Find and initialize a new buffer header, freeing up existing buffers
1958  *	in the bufqueues as necessary.  The new buffer is returned locked.
1959  *
1960  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1961  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1962  *
1963  *	We block if:
1964  *		We have insufficient buffer headers
1965  *		We have insufficient buffer space
1966  *		buffer_map is too fragmented ( space reservation fails )
1967  *		If we have to flush dirty buffers ( but we try to avoid this )
1968  *
1969  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1970  *	Instead we ask the buf daemon to do it for us.  We attempt to
1971  *	avoid piecemeal wakeups of the pageout daemon.
1972  *
1973  * MPALMOSTSAFE
1974  */
1975 struct buf *
1976 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1977 {
1978 	struct buf *bp;
1979 	struct buf *nbp;
1980 	int defrag = 0;
1981 	int nqindex;
1982 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1983 	static int flushingbufs;
1984 
1985 	/*
1986 	 * We can't afford to block since we might be holding a vnode lock,
1987 	 * which may prevent system daemons from running.  We deal with
1988 	 * low-memory situations by proactively returning memory and running
1989 	 * async I/O rather then sync I/O.
1990 	 */
1991 
1992 	++getnewbufcalls;
1993 	--getnewbufrestarts;
1994 restart:
1995 	++getnewbufrestarts;
1996 
1997 	/*
1998 	 * Setup for scan.  If we do not have enough free buffers,
1999 	 * we setup a degenerate case that immediately fails.  Note
2000 	 * that if we are specially marked process, we are allowed to
2001 	 * dip into our reserves.
2002 	 *
2003 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
2004 	 *
2005 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2006 	 * However, there are a number of cases (defragging, reusing, ...)
2007 	 * where we cannot backup.
2008 	 */
2009 	nqindex = BQUEUE_EMPTYKVA;
2010 	spin_lock(&bufqspin);
2011 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
2012 
2013 	if (nbp == NULL) {
2014 		/*
2015 		 * If no EMPTYKVA buffers and we are either
2016 		 * defragging or reusing, locate a CLEAN buffer
2017 		 * to free or reuse.  If bufspace useage is low
2018 		 * skip this step so we can allocate a new buffer.
2019 		 */
2020 		if (defrag || bufspace >= lobufspace) {
2021 			nqindex = BQUEUE_CLEAN;
2022 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2023 		}
2024 
2025 		/*
2026 		 * If we could not find or were not allowed to reuse a
2027 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
2028 		 * buffer.  We can only use an EMPTY buffer if allocating
2029 		 * its KVA would not otherwise run us out of buffer space.
2030 		 */
2031 		if (nbp == NULL && defrag == 0 &&
2032 		    bufspace + maxsize < hibufspace) {
2033 			nqindex = BQUEUE_EMPTY;
2034 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
2035 		}
2036 	}
2037 
2038 	/*
2039 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2040 	 * depending.
2041 	 *
2042 	 * WARNING!  bufqspin is held!
2043 	 */
2044 	while ((bp = nbp) != NULL) {
2045 		int qindex = nqindex;
2046 
2047 		nbp = TAILQ_NEXT(bp, b_freelist);
2048 
2049 		/*
2050 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2051 		 * cycles through the queue twice before being selected.
2052 		 */
2053 		if (qindex == BQUEUE_CLEAN &&
2054 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2055 			bp->b_flags |= B_AGE;
2056 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
2057 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
2058 			continue;
2059 		}
2060 
2061 		/*
2062 		 * Calculate next bp ( we can only use it if we do not block
2063 		 * or do other fancy things ).
2064 		 */
2065 		if (nbp == NULL) {
2066 			switch(qindex) {
2067 			case BQUEUE_EMPTY:
2068 				nqindex = BQUEUE_EMPTYKVA;
2069 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
2070 					break;
2071 				/* fall through */
2072 			case BQUEUE_EMPTYKVA:
2073 				nqindex = BQUEUE_CLEAN;
2074 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
2075 					break;
2076 				/* fall through */
2077 			case BQUEUE_CLEAN:
2078 				/*
2079 				 * nbp is NULL.
2080 				 */
2081 				break;
2082 			}
2083 		}
2084 
2085 		/*
2086 		 * Sanity Checks
2087 		 */
2088 		KASSERT(bp->b_qindex == qindex,
2089 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2090 
2091 		/*
2092 		 * Note: we no longer distinguish between VMIO and non-VMIO
2093 		 * buffers.
2094 		 */
2095 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2096 			("delwri buffer %p found in queue %d", bp, qindex));
2097 
2098 		/*
2099 		 * Do not try to reuse a buffer with a non-zero b_refs.
2100 		 * This is an unsynchronized test.  A synchronized test
2101 		 * is also performed after we lock the buffer.
2102 		 */
2103 		if (bp->b_refs)
2104 			continue;
2105 
2106 		/*
2107 		 * If we are defragging then we need a buffer with
2108 		 * b_kvasize != 0.  XXX this situation should no longer
2109 		 * occur, if defrag is non-zero the buffer's b_kvasize
2110 		 * should also be non-zero at this point.  XXX
2111 		 */
2112 		if (defrag && bp->b_kvasize == 0) {
2113 			kprintf("Warning: defrag empty buffer %p\n", bp);
2114 			continue;
2115 		}
2116 
2117 		/*
2118 		 * Start freeing the bp.  This is somewhat involved.  nbp
2119 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2120 		 * on the clean list must be disassociated from their
2121 		 * current vnode.  Buffers on the empty[kva] lists have
2122 		 * already been disassociated.
2123 		 *
2124 		 * b_refs is checked after locking along with queue changes.
2125 		 * We must check here to deal with zero->nonzero transitions
2126 		 * made by the owner of the buffer lock, which is used by
2127 		 * VFS's to hold the buffer while issuing an unlocked
2128 		 * uiomove()s.  We cannot invalidate the buffer's pages
2129 		 * for this case.  Once we successfully lock a buffer the
2130 		 * only 0->1 transitions of b_refs will occur via findblk().
2131 		 *
2132 		 * We must also check for queue changes after successful
2133 		 * locking as the current lock holder may dispose of the
2134 		 * buffer and change its queue.
2135 		 */
2136 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2137 			spin_unlock(&bufqspin);
2138 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2139 			goto restart;
2140 		}
2141 		if (bp->b_qindex != qindex || bp->b_refs) {
2142 			spin_unlock(&bufqspin);
2143 			BUF_UNLOCK(bp);
2144 			goto restart;
2145 		}
2146 		bremfree_locked(bp);
2147 		spin_unlock(&bufqspin);
2148 
2149 		/*
2150 		 * Dependancies must be handled before we disassociate the
2151 		 * vnode.
2152 		 *
2153 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2154 		 * be immediately disassociated.  HAMMER then becomes
2155 		 * responsible for releasing the buffer.
2156 		 *
2157 		 * NOTE: bufqspin is UNLOCKED now.
2158 		 */
2159 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2160 			buf_deallocate(bp);
2161 			if (bp->b_flags & B_LOCKED) {
2162 				bqrelse(bp);
2163 				goto restart;
2164 			}
2165 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2166 		}
2167 
2168 		if (qindex == BQUEUE_CLEAN) {
2169 			if (bp->b_flags & B_VMIO)
2170 				vfs_vmio_release(bp);
2171 			if (bp->b_vp)
2172 				brelvp(bp);
2173 		}
2174 
2175 		/*
2176 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2177 		 * the scan from this point on.
2178 		 *
2179 		 * Get the rest of the buffer freed up.  b_kva* is still
2180 		 * valid after this operation.
2181 		 */
2182 		KASSERT(bp->b_vp == NULL,
2183 			("bp3 %p flags %08x vnode %p qindex %d "
2184 			 "unexpectededly still associated!",
2185 			 bp, bp->b_flags, bp->b_vp, qindex));
2186 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2187 
2188 		/*
2189 		 * critical section protection is not required when
2190 		 * scrapping a buffer's contents because it is already
2191 		 * wired.
2192 		 */
2193 		if (bp->b_bufsize)
2194 			allocbuf(bp, 0);
2195 
2196 		bp->b_flags = B_BNOCLIP;
2197 		bp->b_cmd = BUF_CMD_DONE;
2198 		bp->b_vp = NULL;
2199 		bp->b_error = 0;
2200 		bp->b_resid = 0;
2201 		bp->b_bcount = 0;
2202 		bp->b_xio.xio_npages = 0;
2203 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2204 		bp->b_act_count = ACT_INIT;
2205 		reinitbufbio(bp);
2206 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2207 		buf_dep_init(bp);
2208 		if (blkflags & GETBLK_BHEAVY)
2209 			bp->b_flags |= B_HEAVY;
2210 
2211 		/*
2212 		 * If we are defragging then free the buffer.
2213 		 */
2214 		if (defrag) {
2215 			bp->b_flags |= B_INVAL;
2216 			bfreekva(bp);
2217 			brelse(bp);
2218 			defrag = 0;
2219 			goto restart;
2220 		}
2221 
2222 		/*
2223 		 * If we are overcomitted then recover the buffer and its
2224 		 * KVM space.  This occurs in rare situations when multiple
2225 		 * processes are blocked in getnewbuf() or allocbuf().
2226 		 */
2227 		if (bufspace >= hibufspace)
2228 			flushingbufs = 1;
2229 		if (flushingbufs && bp->b_kvasize != 0) {
2230 			bp->b_flags |= B_INVAL;
2231 			bfreekva(bp);
2232 			brelse(bp);
2233 			goto restart;
2234 		}
2235 		if (bufspace < lobufspace)
2236 			flushingbufs = 0;
2237 
2238 		/*
2239 		 * b_refs can transition to a non-zero value while we hold
2240 		 * the buffer locked due to a findblk().  Our brelvp() above
2241 		 * interlocked any future possible transitions due to
2242 		 * findblk()s.
2243 		 *
2244 		 * If we find b_refs to be non-zero we can destroy the
2245 		 * buffer's contents but we cannot yet reuse the buffer.
2246 		 */
2247 		if (bp->b_refs) {
2248 			bp->b_flags |= B_INVAL;
2249 			bfreekva(bp);
2250 			brelse(bp);
2251 			goto restart;
2252 		}
2253 		break;
2254 		/* NOT REACHED, bufqspin not held */
2255 	}
2256 
2257 	/*
2258 	 * If we exhausted our list, sleep as appropriate.  We may have to
2259 	 * wakeup various daemons and write out some dirty buffers.
2260 	 *
2261 	 * Generally we are sleeping due to insufficient buffer space.
2262 	 *
2263 	 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2264 	 */
2265 	if (bp == NULL) {
2266 		int flags;
2267 		char *waitmsg;
2268 
2269 		spin_unlock(&bufqspin);
2270 		if (defrag) {
2271 			flags = VFS_BIO_NEED_BUFSPACE;
2272 			waitmsg = "nbufkv";
2273 		} else if (bufspace >= hibufspace) {
2274 			waitmsg = "nbufbs";
2275 			flags = VFS_BIO_NEED_BUFSPACE;
2276 		} else {
2277 			waitmsg = "newbuf";
2278 			flags = VFS_BIO_NEED_ANY;
2279 		}
2280 
2281 		bd_speedup();	/* heeeelp */
2282 		spin_lock(&bufcspin);
2283 		needsbuffer |= flags;
2284 		while (needsbuffer & flags) {
2285 			if (ssleep(&needsbuffer, &bufcspin,
2286 				   slpflags, waitmsg, slptimeo)) {
2287 				spin_unlock(&bufcspin);
2288 				return (NULL);
2289 			}
2290 		}
2291 		spin_unlock(&bufcspin);
2292 	} else {
2293 		/*
2294 		 * We finally have a valid bp.  We aren't quite out of the
2295 		 * woods, we still have to reserve kva space.  In order
2296 		 * to keep fragmentation sane we only allocate kva in
2297 		 * BKVASIZE chunks.
2298 		 *
2299 		 * (bufqspin is not held)
2300 		 */
2301 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2302 
2303 		if (maxsize != bp->b_kvasize) {
2304 			vm_offset_t addr = 0;
2305 			int count;
2306 
2307 			bfreekva(bp);
2308 
2309 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2310 			vm_map_lock(&buffer_map);
2311 
2312 			if (vm_map_findspace(&buffer_map,
2313 				    vm_map_min(&buffer_map), maxsize,
2314 				    maxsize, 0, &addr)) {
2315 				/*
2316 				 * Uh oh.  Buffer map is too fragmented.  We
2317 				 * must defragment the map.
2318 				 */
2319 				vm_map_unlock(&buffer_map);
2320 				vm_map_entry_release(count);
2321 				++bufdefragcnt;
2322 				defrag = 1;
2323 				bp->b_flags |= B_INVAL;
2324 				brelse(bp);
2325 				goto restart;
2326 			}
2327 			if (addr) {
2328 				vm_map_insert(&buffer_map, &count,
2329 					NULL, 0,
2330 					addr, addr + maxsize,
2331 					VM_MAPTYPE_NORMAL,
2332 					VM_PROT_ALL, VM_PROT_ALL,
2333 					MAP_NOFAULT);
2334 
2335 				bp->b_kvabase = (caddr_t) addr;
2336 				bp->b_kvasize = maxsize;
2337 				bufspace += bp->b_kvasize;
2338 				++bufreusecnt;
2339 			}
2340 			vm_map_unlock(&buffer_map);
2341 			vm_map_entry_release(count);
2342 		}
2343 		bp->b_data = bp->b_kvabase;
2344 	}
2345 	return(bp);
2346 }
2347 
2348 #if 0
2349 /*
2350  * This routine is called in an emergency to recover VM pages from the
2351  * buffer cache by cashing in clean buffers.  The idea is to recover
2352  * enough pages to be able to satisfy a stuck bio_page_alloc().
2353  *
2354  * XXX Currently not implemented.  This function can wind up deadlocking
2355  * against another thread holding one or more of the backing pages busy.
2356  */
2357 static int
2358 recoverbufpages(void)
2359 {
2360 	struct buf *bp;
2361 	int bytes = 0;
2362 
2363 	++recoverbufcalls;
2364 
2365 	spin_lock(&bufqspin);
2366 	while (bytes < MAXBSIZE) {
2367 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2368 		if (bp == NULL)
2369 			break;
2370 
2371 		/*
2372 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2373 		 * cycles through the queue twice before being selected.
2374 		 */
2375 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2376 			bp->b_flags |= B_AGE;
2377 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2378 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2379 					  bp, b_freelist);
2380 			continue;
2381 		}
2382 
2383 		/*
2384 		 * Sanity Checks
2385 		 */
2386 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2387 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2388 
2389 		/*
2390 		 * Start freeing the bp.  This is somewhat involved.
2391 		 *
2392 		 * Buffers on the clean list must be disassociated from
2393 		 * their current vnode
2394 		 */
2395 
2396 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2397 			kprintf("recoverbufpages: warning, locked buf %p, "
2398 				"race corrected\n",
2399 				bp);
2400 			ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2401 			continue;
2402 		}
2403 		if (bp->b_qindex != BQUEUE_CLEAN) {
2404 			kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2405 				"unexpectedly on buf %p index %d, race "
2406 				"corrected\n",
2407 				bp, bp->b_qindex);
2408 			BUF_UNLOCK(bp);
2409 			continue;
2410 		}
2411 		bremfree_locked(bp);
2412 		spin_unlock(&bufqspin);
2413 
2414 		/*
2415 		 * Dependancies must be handled before we disassociate the
2416 		 * vnode.
2417 		 *
2418 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2419 		 * be immediately disassociated.  HAMMER then becomes
2420 		 * responsible for releasing the buffer.
2421 		 */
2422 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2423 			buf_deallocate(bp);
2424 			if (bp->b_flags & B_LOCKED) {
2425 				bqrelse(bp);
2426 				spin_lock(&bufqspin);
2427 				continue;
2428 			}
2429 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2430 		}
2431 
2432 		bytes += bp->b_bufsize;
2433 
2434 		if (bp->b_flags & B_VMIO) {
2435 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2436 			vfs_vmio_release(bp);
2437 		}
2438 		if (bp->b_vp)
2439 			brelvp(bp);
2440 
2441 		KKASSERT(bp->b_vp == NULL);
2442 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2443 
2444 		/*
2445 		 * critical section protection is not required when
2446 		 * scrapping a buffer's contents because it is already
2447 		 * wired.
2448 		 */
2449 		if (bp->b_bufsize)
2450 			allocbuf(bp, 0);
2451 
2452 		bp->b_flags = B_BNOCLIP;
2453 		bp->b_cmd = BUF_CMD_DONE;
2454 		bp->b_vp = NULL;
2455 		bp->b_error = 0;
2456 		bp->b_resid = 0;
2457 		bp->b_bcount = 0;
2458 		bp->b_xio.xio_npages = 0;
2459 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2460 		reinitbufbio(bp);
2461 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2462 		buf_dep_init(bp);
2463 		bp->b_flags |= B_INVAL;
2464 		/* bfreekva(bp); */
2465 		brelse(bp);
2466 		spin_lock(&bufqspin);
2467 	}
2468 	spin_unlock(&bufqspin);
2469 	return(bytes);
2470 }
2471 #endif
2472 
2473 /*
2474  * buf_daemon:
2475  *
2476  *	Buffer flushing daemon.  Buffers are normally flushed by the
2477  *	update daemon but if it cannot keep up this process starts to
2478  *	take the load in an attempt to prevent getnewbuf() from blocking.
2479  *
2480  *	Once a flush is initiated it does not stop until the number
2481  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2482  *	waiting at the mid-point.
2483  */
2484 static struct kproc_desc buf_kp = {
2485 	"bufdaemon",
2486 	buf_daemon,
2487 	&bufdaemon_td
2488 };
2489 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2490 	kproc_start, &buf_kp)
2491 
2492 static struct kproc_desc bufhw_kp = {
2493 	"bufdaemon_hw",
2494 	buf_daemon_hw,
2495 	&bufdaemonhw_td
2496 };
2497 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2498 	kproc_start, &bufhw_kp)
2499 
2500 /*
2501  * MPSAFE thread
2502  */
2503 static void
2504 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2505 	    int *bd_req)
2506 {
2507 	long limit;
2508 
2509 	/*
2510 	 * This process needs to be suspended prior to shutdown sync.
2511 	 */
2512 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2513 			      td, SHUTDOWN_PRI_LAST);
2514 	curthread->td_flags |= TDF_SYSTHREAD;
2515 
2516 	/*
2517 	 * This process is allowed to take the buffer cache to the limit
2518 	 */
2519 	for (;;) {
2520 		kproc_suspend_loop();
2521 
2522 		/*
2523 		 * Do the flush as long as the number of dirty buffers
2524 		 * (including those running) exceeds lodirtybufspace.
2525 		 *
2526 		 * When flushing limit running I/O to hirunningspace
2527 		 * Do the flush.  Limit the amount of in-transit I/O we
2528 		 * allow to build up, otherwise we would completely saturate
2529 		 * the I/O system.  Wakeup any waiting processes before we
2530 		 * normally would so they can run in parallel with our drain.
2531 		 *
2532 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2533 		 * but because we split the operation into two threads we
2534 		 * have to cut it in half for each thread.
2535 		 */
2536 		waitrunningbufspace();
2537 		limit = lodirtybufspace / 2;
2538 		while (buf_limit_fn(limit)) {
2539 			if (flushbufqueues(queue) == 0)
2540 				break;
2541 			if (runningbufspace < hirunningspace)
2542 				continue;
2543 			waitrunningbufspace();
2544 		}
2545 
2546 		/*
2547 		 * We reached our low water mark, reset the
2548 		 * request and sleep until we are needed again.
2549 		 * The sleep is just so the suspend code works.
2550 		 */
2551 		spin_lock(&bufcspin);
2552 		if (*bd_req == 0)
2553 			ssleep(bd_req, &bufcspin, 0, "psleep", hz);
2554 		*bd_req = 0;
2555 		spin_unlock(&bufcspin);
2556 	}
2557 }
2558 
2559 static int
2560 buf_daemon_limit(long limit)
2561 {
2562 	return (runningbufspace + dirtybufspace > limit ||
2563 		dirtybufcount - dirtybufcounthw >= nbuf / 2);
2564 }
2565 
2566 static int
2567 buf_daemon_hw_limit(long limit)
2568 {
2569 	return (runningbufspace + dirtybufspacehw > limit ||
2570 		dirtybufcounthw >= nbuf / 2);
2571 }
2572 
2573 static void
2574 buf_daemon(void)
2575 {
2576 	buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2577 		    &bd_request);
2578 }
2579 
2580 static void
2581 buf_daemon_hw(void)
2582 {
2583 	buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2584 		    &bd_request_hw);
2585 }
2586 
2587 /*
2588  * flushbufqueues:
2589  *
2590  *	Try to flush a buffer in the dirty queue.  We must be careful to
2591  *	free up B_INVAL buffers instead of write them, which NFS is
2592  *	particularly sensitive to.
2593  *
2594  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2595  *	that we really want to try to get the buffer out and reuse it
2596  *	due to the write load on the machine.
2597  *
2598  *	We must lock the buffer in order to check its validity before we
2599  *	can mess with its contents.  bufqspin isn't enough.
2600  */
2601 static int
2602 flushbufqueues(bufq_type_t q)
2603 {
2604 	struct buf *bp;
2605 	int r = 0;
2606 	int spun;
2607 
2608 	spin_lock(&bufqspin);
2609 	spun = 1;
2610 
2611 	bp = TAILQ_FIRST(&bufqueues[q]);
2612 	while (bp) {
2613 		if ((bp->b_flags & B_DELWRI) == 0) {
2614 			kprintf("Unexpected clean buffer %p\n", bp);
2615 			bp = TAILQ_NEXT(bp, b_freelist);
2616 			continue;
2617 		}
2618 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2619 			bp = TAILQ_NEXT(bp, b_freelist);
2620 			continue;
2621 		}
2622 		KKASSERT(bp->b_qindex == q);
2623 
2624 		/*
2625 		 * Must recheck B_DELWRI after successfully locking
2626 		 * the buffer.
2627 		 */
2628 		if ((bp->b_flags & B_DELWRI) == 0) {
2629 			BUF_UNLOCK(bp);
2630 			bp = TAILQ_NEXT(bp, b_freelist);
2631 			continue;
2632 		}
2633 
2634 		if (bp->b_flags & B_INVAL) {
2635 			_bremfree(bp);
2636 			spin_unlock(&bufqspin);
2637 			spun = 0;
2638 			brelse(bp);
2639 			++r;
2640 			break;
2641 		}
2642 
2643 		spin_unlock(&bufqspin);
2644 		lwkt_yield();
2645 		spun = 0;
2646 
2647 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2648 		    (bp->b_flags & B_DEFERRED) == 0 &&
2649 		    buf_countdeps(bp, 0)) {
2650 			spin_lock(&bufqspin);
2651 			spun = 1;
2652 			TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2653 			TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2654 			bp->b_flags |= B_DEFERRED;
2655 			BUF_UNLOCK(bp);
2656 			bp = TAILQ_FIRST(&bufqueues[q]);
2657 			continue;
2658 		}
2659 
2660 		/*
2661 		 * If the buffer has a dependancy, buf_checkwrite() must
2662 		 * also return 0 for us to be able to initate the write.
2663 		 *
2664 		 * If the buffer is flagged B_ERROR it may be requeued
2665 		 * over and over again, we try to avoid a live lock.
2666 		 *
2667 		 * NOTE: buf_checkwrite is MPSAFE.
2668 		 */
2669 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2670 			bremfree(bp);
2671 			brelse(bp);
2672 		} else if (bp->b_flags & B_ERROR) {
2673 			tsleep(bp, 0, "bioer", 1);
2674 			bp->b_flags &= ~B_AGE;
2675 			vfs_bio_awrite(bp);
2676 		} else {
2677 			bp->b_flags |= B_AGE;
2678 			vfs_bio_awrite(bp);
2679 		}
2680 		++r;
2681 		break;
2682 	}
2683 	if (spun)
2684 		spin_unlock(&bufqspin);
2685 	return (r);
2686 }
2687 
2688 /*
2689  * inmem:
2690  *
2691  *	Returns true if no I/O is needed to access the associated VM object.
2692  *	This is like findblk except it also hunts around in the VM system for
2693  *	the data.
2694  *
2695  *	Note that we ignore vm_page_free() races from interrupts against our
2696  *	lookup, since if the caller is not protected our return value will not
2697  *	be any more valid then otherwise once we exit the critical section.
2698  */
2699 int
2700 inmem(struct vnode *vp, off_t loffset)
2701 {
2702 	vm_object_t obj;
2703 	vm_offset_t toff, tinc, size;
2704 	vm_page_t m;
2705 	int res = 1;
2706 
2707 	if (findblk(vp, loffset, FINDBLK_TEST))
2708 		return 1;
2709 	if (vp->v_mount == NULL)
2710 		return 0;
2711 	if ((obj = vp->v_object) == NULL)
2712 		return 0;
2713 
2714 	size = PAGE_SIZE;
2715 	if (size > vp->v_mount->mnt_stat.f_iosize)
2716 		size = vp->v_mount->mnt_stat.f_iosize;
2717 
2718 	vm_object_hold(obj);
2719 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2720 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2721 		if (m == NULL) {
2722 			res = 0;
2723 			break;
2724 		}
2725 		tinc = size;
2726 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2727 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2728 		if (vm_page_is_valid(m,
2729 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2730 			res = 0;
2731 			break;
2732 		}
2733 	}
2734 	vm_object_drop(obj);
2735 	return (res);
2736 }
2737 
2738 /*
2739  * findblk:
2740  *
2741  *	Locate and return the specified buffer.  Unless flagged otherwise,
2742  *	a locked buffer will be returned if it exists or NULL if it does not.
2743  *
2744  *	findblk()'d buffers are still on the bufqueues and if you intend
2745  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2746  *	and possibly do other stuff to it.
2747  *
2748  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2749  *			  for locking the buffer and ensuring that it remains
2750  *			  the desired buffer after locking.
2751  *
2752  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2753  *			  to acquire the lock we return NULL, even if the
2754  *			  buffer exists.
2755  *
2756  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2757  *			  reuse by getnewbuf() but does not prevent
2758  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2759  *			  against random (vp,loffset)s due to reassignment.
2760  *
2761  *	(0)		- Lock the buffer blocking.
2762  *
2763  * MPSAFE
2764  */
2765 struct buf *
2766 findblk(struct vnode *vp, off_t loffset, int flags)
2767 {
2768 	struct buf *bp;
2769 	int lkflags;
2770 
2771 	lkflags = LK_EXCLUSIVE;
2772 	if (flags & FINDBLK_NBLOCK)
2773 		lkflags |= LK_NOWAIT;
2774 
2775 	for (;;) {
2776 		/*
2777 		 * Lookup.  Ref the buf while holding v_token to prevent
2778 		 * reuse (but does not prevent diassociation).
2779 		 */
2780 		lwkt_gettoken_shared(&vp->v_token);
2781 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2782 		if (bp == NULL) {
2783 			lwkt_reltoken(&vp->v_token);
2784 			return(NULL);
2785 		}
2786 		bqhold(bp);
2787 		lwkt_reltoken(&vp->v_token);
2788 
2789 		/*
2790 		 * If testing only break and return bp, do not lock.
2791 		 */
2792 		if (flags & FINDBLK_TEST)
2793 			break;
2794 
2795 		/*
2796 		 * Lock the buffer, return an error if the lock fails.
2797 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2798 		 */
2799 		if (BUF_LOCK(bp, lkflags)) {
2800 			atomic_subtract_int(&bp->b_refs, 1);
2801 			/* bp = NULL; not needed */
2802 			return(NULL);
2803 		}
2804 
2805 		/*
2806 		 * Revalidate the locked buf before allowing it to be
2807 		 * returned.
2808 		 */
2809 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2810 			break;
2811 		atomic_subtract_int(&bp->b_refs, 1);
2812 		BUF_UNLOCK(bp);
2813 	}
2814 
2815 	/*
2816 	 * Success
2817 	 */
2818 	if ((flags & FINDBLK_REF) == 0)
2819 		atomic_subtract_int(&bp->b_refs, 1);
2820 	return(bp);
2821 }
2822 
2823 /*
2824  * getcacheblk:
2825  *
2826  *	Similar to getblk() except only returns the buffer if it is
2827  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2828  *	is returned.
2829  *
2830  *	If B_RAM is set the buffer might be just fine, but we return
2831  *	NULL anyway because we want the code to fall through to the
2832  *	cluster read.  Otherwise read-ahead breaks.
2833  *
2834  *	If blksize is 0 the buffer cache buffer must already be fully
2835  *	cached.
2836  *
2837  *	If blksize is non-zero getblk() will be used, allowing a buffer
2838  *	to be reinstantiated from its VM backing store.  The buffer must
2839  *	still be fully cached after reinstantiation to be returned.
2840  */
2841 struct buf *
2842 getcacheblk(struct vnode *vp, off_t loffset, int blksize)
2843 {
2844 	struct buf *bp;
2845 
2846 	if (blksize) {
2847 		bp = getblk(vp, loffset, blksize, 0, 0);
2848 		if (bp) {
2849 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2850 			    B_CACHE) {
2851 				bp->b_flags &= ~B_AGE;
2852 			} else {
2853 				brelse(bp);
2854 				bp = NULL;
2855 			}
2856 		}
2857 	} else {
2858 		bp = findblk(vp, loffset, 0);
2859 		if (bp) {
2860 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2861 			    B_CACHE) {
2862 				bp->b_flags &= ~B_AGE;
2863 				bremfree(bp);
2864 			} else {
2865 				BUF_UNLOCK(bp);
2866 				bp = NULL;
2867 			}
2868 		}
2869 	}
2870 	return (bp);
2871 }
2872 
2873 /*
2874  * getblk:
2875  *
2876  *	Get a block given a specified block and offset into a file/device.
2877  * 	B_INVAL may or may not be set on return.  The caller should clear
2878  *	B_INVAL prior to initiating a READ.
2879  *
2880  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2881  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2882  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2883  *	without doing any of those things the system will likely believe
2884  *	the buffer to be valid (especially if it is not B_VMIO), and the
2885  *	next getblk() will return the buffer with B_CACHE set.
2886  *
2887  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2888  *	an existing buffer.
2889  *
2890  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2891  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2892  *	and then cleared based on the backing VM.  If the previous buffer is
2893  *	non-0-sized but invalid, B_CACHE will be cleared.
2894  *
2895  *	If getblk() must create a new buffer, the new buffer is returned with
2896  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2897  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2898  *	backing VM.
2899  *
2900  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2901  *	B_CACHE bit is clear.
2902  *
2903  *	What this means, basically, is that the caller should use B_CACHE to
2904  *	determine whether the buffer is fully valid or not and should clear
2905  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2906  *	the buffer by loading its data area with something, the caller needs
2907  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2908  *	the caller should set B_CACHE ( as an optimization ), else the caller
2909  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2910  *	a write attempt or if it was a successfull read.  If the caller
2911  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2912  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2913  *
2914  *	getblk flags:
2915  *
2916  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2917  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2918  *
2919  * MPALMOSTSAFE
2920  */
2921 struct buf *
2922 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2923 {
2924 	struct buf *bp;
2925 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2926 	int error;
2927 	int lkflags;
2928 
2929 	if (size > MAXBSIZE)
2930 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2931 	if (vp->v_object == NULL)
2932 		panic("getblk: vnode %p has no object!", vp);
2933 
2934 loop:
2935 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2936 		/*
2937 		 * The buffer was found in the cache, but we need to lock it.
2938 		 * We must acquire a ref on the bp to prevent reuse, but
2939 		 * this will not prevent disassociation (brelvp()) so we
2940 		 * must recheck (vp,loffset) after acquiring the lock.
2941 		 *
2942 		 * Without the ref the buffer could potentially be reused
2943 		 * before we acquire the lock and create a deadlock
2944 		 * situation between the thread trying to reuse the buffer
2945 		 * and us due to the fact that we would wind up blocking
2946 		 * on a random (vp,loffset).
2947 		 */
2948 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2949 			if (blkflags & GETBLK_NOWAIT) {
2950 				bqdrop(bp);
2951 				return(NULL);
2952 			}
2953 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2954 			if (blkflags & GETBLK_PCATCH)
2955 				lkflags |= LK_PCATCH;
2956 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2957 			if (error) {
2958 				bqdrop(bp);
2959 				if (error == ENOLCK)
2960 					goto loop;
2961 				return (NULL);
2962 			}
2963 			/* buffer may have changed on us */
2964 		}
2965 		bqdrop(bp);
2966 
2967 		/*
2968 		 * Once the buffer has been locked, make sure we didn't race
2969 		 * a buffer recyclement.  Buffers that are no longer hashed
2970 		 * will have b_vp == NULL, so this takes care of that check
2971 		 * as well.
2972 		 */
2973 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2974 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2975 				"was recycled\n",
2976 				bp, vp, (long long)loffset);
2977 			BUF_UNLOCK(bp);
2978 			goto loop;
2979 		}
2980 
2981 		/*
2982 		 * If SZMATCH any pre-existing buffer must be of the requested
2983 		 * size or NULL is returned.  The caller absolutely does not
2984 		 * want getblk() to bwrite() the buffer on a size mismatch.
2985 		 */
2986 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2987 			BUF_UNLOCK(bp);
2988 			return(NULL);
2989 		}
2990 
2991 		/*
2992 		 * All vnode-based buffers must be backed by a VM object.
2993 		 */
2994 		KKASSERT(bp->b_flags & B_VMIO);
2995 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2996 		bp->b_flags &= ~B_AGE;
2997 
2998 		/*
2999 		 * Make sure that B_INVAL buffers do not have a cached
3000 		 * block number translation.
3001 		 */
3002 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
3003 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
3004 				" did not have cleared bio_offset cache\n",
3005 				bp, vp, (long long)loffset);
3006 			clearbiocache(&bp->b_bio2);
3007 		}
3008 
3009 		/*
3010 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3011 		 * invalid.
3012 		 */
3013 		if (bp->b_flags & B_INVAL)
3014 			bp->b_flags &= ~B_CACHE;
3015 		bremfree(bp);
3016 
3017 		/*
3018 		 * Any size inconsistancy with a dirty buffer or a buffer
3019 		 * with a softupdates dependancy must be resolved.  Resizing
3020 		 * the buffer in such circumstances can lead to problems.
3021 		 *
3022 		 * Dirty or dependant buffers are written synchronously.
3023 		 * Other types of buffers are simply released and
3024 		 * reconstituted as they may be backed by valid, dirty VM
3025 		 * pages (but not marked B_DELWRI).
3026 		 *
3027 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
3028 		 * and may be left over from a prior truncation (and thus
3029 		 * no longer represent the actual EOF point), so we
3030 		 * definitely do not want to B_NOCACHE the backing store.
3031 		 */
3032 		if (size != bp->b_bcount) {
3033 			if (bp->b_flags & B_DELWRI) {
3034 				bp->b_flags |= B_RELBUF;
3035 				bwrite(bp);
3036 			} else if (LIST_FIRST(&bp->b_dep)) {
3037 				bp->b_flags |= B_RELBUF;
3038 				bwrite(bp);
3039 			} else {
3040 				bp->b_flags |= B_RELBUF;
3041 				brelse(bp);
3042 			}
3043 			goto loop;
3044 		}
3045 		KKASSERT(size <= bp->b_kvasize);
3046 		KASSERT(bp->b_loffset != NOOFFSET,
3047 			("getblk: no buffer offset"));
3048 
3049 		/*
3050 		 * A buffer with B_DELWRI set and B_CACHE clear must
3051 		 * be committed before we can return the buffer in
3052 		 * order to prevent the caller from issuing a read
3053 		 * ( due to B_CACHE not being set ) and overwriting
3054 		 * it.
3055 		 *
3056 		 * Most callers, including NFS and FFS, need this to
3057 		 * operate properly either because they assume they
3058 		 * can issue a read if B_CACHE is not set, or because
3059 		 * ( for example ) an uncached B_DELWRI might loop due
3060 		 * to softupdates re-dirtying the buffer.  In the latter
3061 		 * case, B_CACHE is set after the first write completes,
3062 		 * preventing further loops.
3063 		 *
3064 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3065 		 * above while extending the buffer, we cannot allow the
3066 		 * buffer to remain with B_CACHE set after the write
3067 		 * completes or it will represent a corrupt state.  To
3068 		 * deal with this we set B_NOCACHE to scrap the buffer
3069 		 * after the write.
3070 		 *
3071 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3072 		 *     I'm not even sure this state is still possible
3073 		 *     now that getblk() writes out any dirty buffers
3074 		 *     on size changes.
3075 		 *
3076 		 * We might be able to do something fancy, like setting
3077 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3078 		 * so the below call doesn't set B_CACHE, but that gets real
3079 		 * confusing.  This is much easier.
3080 		 */
3081 
3082 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3083 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3084 				"and CACHE clear, b_flags %08x\n",
3085 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
3086 			bp->b_flags |= B_NOCACHE;
3087 			bwrite(bp);
3088 			goto loop;
3089 		}
3090 	} else {
3091 		/*
3092 		 * Buffer is not in-core, create new buffer.  The buffer
3093 		 * returned by getnewbuf() is locked.  Note that the returned
3094 		 * buffer is also considered valid (not marked B_INVAL).
3095 		 *
3096 		 * Calculating the offset for the I/O requires figuring out
3097 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3098 		 * the mount's f_iosize otherwise.  If the vnode does not
3099 		 * have an associated mount we assume that the passed size is
3100 		 * the block size.
3101 		 *
3102 		 * Note that vn_isdisk() cannot be used here since it may
3103 		 * return a failure for numerous reasons.   Note that the
3104 		 * buffer size may be larger then the block size (the caller
3105 		 * will use block numbers with the proper multiple).  Beware
3106 		 * of using any v_* fields which are part of unions.  In
3107 		 * particular, in DragonFly the mount point overloading
3108 		 * mechanism uses the namecache only and the underlying
3109 		 * directory vnode is not a special case.
3110 		 */
3111 		int bsize, maxsize;
3112 
3113 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3114 			bsize = DEV_BSIZE;
3115 		else if (vp->v_mount)
3116 			bsize = vp->v_mount->mnt_stat.f_iosize;
3117 		else
3118 			bsize = size;
3119 
3120 		maxsize = size + (loffset & PAGE_MASK);
3121 		maxsize = imax(maxsize, bsize);
3122 
3123 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3124 		if (bp == NULL) {
3125 			if (slpflags || slptimeo)
3126 				return NULL;
3127 			goto loop;
3128 		}
3129 
3130 		/*
3131 		 * Atomically insert the buffer into the hash, so that it can
3132 		 * be found by findblk().
3133 		 *
3134 		 * If bgetvp() returns non-zero a collision occured, and the
3135 		 * bp will not be associated with the vnode.
3136 		 *
3137 		 * Make sure the translation layer has been cleared.
3138 		 */
3139 		bp->b_loffset = loffset;
3140 		bp->b_bio2.bio_offset = NOOFFSET;
3141 		/* bp->b_bio2.bio_next = NULL; */
3142 
3143 		if (bgetvp(vp, bp, size)) {
3144 			bp->b_flags |= B_INVAL;
3145 			brelse(bp);
3146 			goto loop;
3147 		}
3148 
3149 		/*
3150 		 * All vnode-based buffers must be backed by a VM object.
3151 		 */
3152 		KKASSERT(vp->v_object != NULL);
3153 		bp->b_flags |= B_VMIO;
3154 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3155 
3156 		allocbuf(bp, size);
3157 	}
3158 	KKASSERT(dsched_is_clear_buf_priv(bp));
3159 	return (bp);
3160 }
3161 
3162 /*
3163  * regetblk(bp)
3164  *
3165  * Reacquire a buffer that was previously released to the locked queue,
3166  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3167  * set B_LOCKED (which handles the acquisition race).
3168  *
3169  * To this end, either B_LOCKED must be set or the dependancy list must be
3170  * non-empty.
3171  *
3172  * MPSAFE
3173  */
3174 void
3175 regetblk(struct buf *bp)
3176 {
3177 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3178 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3179 	bremfree(bp);
3180 }
3181 
3182 /*
3183  * geteblk:
3184  *
3185  *	Get an empty, disassociated buffer of given size.  The buffer is
3186  *	initially set to B_INVAL.
3187  *
3188  *	critical section protection is not required for the allocbuf()
3189  *	call because races are impossible here.
3190  *
3191  * MPALMOSTSAFE
3192  */
3193 struct buf *
3194 geteblk(int size)
3195 {
3196 	struct buf *bp;
3197 	int maxsize;
3198 
3199 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3200 
3201 	while ((bp = getnewbuf(0, 0, size, maxsize)) == NULL)
3202 		;
3203 	allocbuf(bp, size);
3204 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3205 	KKASSERT(dsched_is_clear_buf_priv(bp));
3206 	return (bp);
3207 }
3208 
3209 
3210 /*
3211  * allocbuf:
3212  *
3213  *	This code constitutes the buffer memory from either anonymous system
3214  *	memory (in the case of non-VMIO operations) or from an associated
3215  *	VM object (in the case of VMIO operations).  This code is able to
3216  *	resize a buffer up or down.
3217  *
3218  *	Note that this code is tricky, and has many complications to resolve
3219  *	deadlock or inconsistant data situations.  Tread lightly!!!
3220  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3221  *	the caller.  Calling this code willy nilly can result in the loss of
3222  *	data.
3223  *
3224  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3225  *	B_CACHE for the non-VMIO case.
3226  *
3227  *	This routine does not need to be called from a critical section but you
3228  *	must own the buffer.
3229  *
3230  * MPSAFE
3231  */
3232 int
3233 allocbuf(struct buf *bp, int size)
3234 {
3235 	int newbsize, mbsize;
3236 	int i;
3237 
3238 	if (BUF_REFCNT(bp) == 0)
3239 		panic("allocbuf: buffer not busy");
3240 
3241 	if (bp->b_kvasize < size)
3242 		panic("allocbuf: buffer too small");
3243 
3244 	if ((bp->b_flags & B_VMIO) == 0) {
3245 		caddr_t origbuf;
3246 		int origbufsize;
3247 		/*
3248 		 * Just get anonymous memory from the kernel.  Don't
3249 		 * mess with B_CACHE.
3250 		 */
3251 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3252 		if (bp->b_flags & B_MALLOC)
3253 			newbsize = mbsize;
3254 		else
3255 			newbsize = round_page(size);
3256 
3257 		if (newbsize < bp->b_bufsize) {
3258 			/*
3259 			 * Malloced buffers are not shrunk
3260 			 */
3261 			if (bp->b_flags & B_MALLOC) {
3262 				if (newbsize) {
3263 					bp->b_bcount = size;
3264 				} else {
3265 					kfree(bp->b_data, M_BIOBUF);
3266 					if (bp->b_bufsize) {
3267 						atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3268 						bufspacewakeup();
3269 						bp->b_bufsize = 0;
3270 					}
3271 					bp->b_data = bp->b_kvabase;
3272 					bp->b_bcount = 0;
3273 					bp->b_flags &= ~B_MALLOC;
3274 				}
3275 				return 1;
3276 			}
3277 			vm_hold_free_pages(
3278 			    bp,
3279 			    (vm_offset_t) bp->b_data + newbsize,
3280 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3281 		} else if (newbsize > bp->b_bufsize) {
3282 			/*
3283 			 * We only use malloced memory on the first allocation.
3284 			 * and revert to page-allocated memory when the buffer
3285 			 * grows.
3286 			 */
3287 			if ((bufmallocspace < maxbufmallocspace) &&
3288 				(bp->b_bufsize == 0) &&
3289 				(mbsize <= PAGE_SIZE/2)) {
3290 
3291 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3292 				bp->b_bufsize = mbsize;
3293 				bp->b_bcount = size;
3294 				bp->b_flags |= B_MALLOC;
3295 				atomic_add_long(&bufmallocspace, mbsize);
3296 				return 1;
3297 			}
3298 			origbuf = NULL;
3299 			origbufsize = 0;
3300 			/*
3301 			 * If the buffer is growing on its other-than-first
3302 			 * allocation, then we revert to the page-allocation
3303 			 * scheme.
3304 			 */
3305 			if (bp->b_flags & B_MALLOC) {
3306 				origbuf = bp->b_data;
3307 				origbufsize = bp->b_bufsize;
3308 				bp->b_data = bp->b_kvabase;
3309 				if (bp->b_bufsize) {
3310 					atomic_subtract_long(&bufmallocspace,
3311 							     bp->b_bufsize);
3312 					bufspacewakeup();
3313 					bp->b_bufsize = 0;
3314 				}
3315 				bp->b_flags &= ~B_MALLOC;
3316 				newbsize = round_page(newbsize);
3317 			}
3318 			vm_hold_load_pages(
3319 			    bp,
3320 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3321 			    (vm_offset_t) bp->b_data + newbsize);
3322 			if (origbuf) {
3323 				bcopy(origbuf, bp->b_data, origbufsize);
3324 				kfree(origbuf, M_BIOBUF);
3325 			}
3326 		}
3327 	} else {
3328 		vm_page_t m;
3329 		int desiredpages;
3330 
3331 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3332 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3333 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3334 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3335 
3336 		if (bp->b_flags & B_MALLOC)
3337 			panic("allocbuf: VMIO buffer can't be malloced");
3338 		/*
3339 		 * Set B_CACHE initially if buffer is 0 length or will become
3340 		 * 0-length.
3341 		 */
3342 		if (size == 0 || bp->b_bufsize == 0)
3343 			bp->b_flags |= B_CACHE;
3344 
3345 		if (newbsize < bp->b_bufsize) {
3346 			/*
3347 			 * DEV_BSIZE aligned new buffer size is less then the
3348 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3349 			 * if we have to remove any pages.
3350 			 */
3351 			if (desiredpages < bp->b_xio.xio_npages) {
3352 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3353 					/*
3354 					 * the page is not freed here -- it
3355 					 * is the responsibility of
3356 					 * vnode_pager_setsize
3357 					 */
3358 					m = bp->b_xio.xio_pages[i];
3359 					KASSERT(m != bogus_page,
3360 					    ("allocbuf: bogus page found"));
3361 					vm_page_busy_wait(m, TRUE, "biodep");
3362 					bp->b_xio.xio_pages[i] = NULL;
3363 					vm_page_unwire(m, 0);
3364 					vm_page_wakeup(m);
3365 				}
3366 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3367 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3368 				bp->b_xio.xio_npages = desiredpages;
3369 			}
3370 		} else if (size > bp->b_bcount) {
3371 			/*
3372 			 * We are growing the buffer, possibly in a
3373 			 * byte-granular fashion.
3374 			 */
3375 			struct vnode *vp;
3376 			vm_object_t obj;
3377 			vm_offset_t toff;
3378 			vm_offset_t tinc;
3379 
3380 			/*
3381 			 * Step 1, bring in the VM pages from the object,
3382 			 * allocating them if necessary.  We must clear
3383 			 * B_CACHE if these pages are not valid for the
3384 			 * range covered by the buffer.
3385 			 *
3386 			 * critical section protection is required to protect
3387 			 * against interrupts unbusying and freeing pages
3388 			 * between our vm_page_lookup() and our
3389 			 * busycheck/wiring call.
3390 			 */
3391 			vp = bp->b_vp;
3392 			obj = vp->v_object;
3393 
3394 			vm_object_hold(obj);
3395 			while (bp->b_xio.xio_npages < desiredpages) {
3396 				vm_page_t m;
3397 				vm_pindex_t pi;
3398 				int error;
3399 
3400 				pi = OFF_TO_IDX(bp->b_loffset) +
3401 				     bp->b_xio.xio_npages;
3402 
3403 				/*
3404 				 * Blocking on m->busy might lead to a
3405 				 * deadlock:
3406 				 *
3407 				 *  vm_fault->getpages->cluster_read->allocbuf
3408 				 */
3409 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3410 							    &error);
3411 				if (error) {
3412 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3413 					continue;
3414 				}
3415 				if (m == NULL) {
3416 					/*
3417 					 * note: must allocate system pages
3418 					 * since blocking here could intefere
3419 					 * with paging I/O, no matter which
3420 					 * process we are.
3421 					 */
3422 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3423 					if (m) {
3424 						vm_page_wire(m);
3425 						vm_page_flag_clear(m, PG_ZERO);
3426 						vm_page_wakeup(m);
3427 						bp->b_flags &= ~B_CACHE;
3428 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3429 						++bp->b_xio.xio_npages;
3430 					}
3431 					continue;
3432 				}
3433 
3434 				/*
3435 				 * We found a page and were able to busy it.
3436 				 */
3437 				vm_page_flag_clear(m, PG_ZERO);
3438 				vm_page_wire(m);
3439 				vm_page_wakeup(m);
3440 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3441 				++bp->b_xio.xio_npages;
3442 				if (bp->b_act_count < m->act_count)
3443 					bp->b_act_count = m->act_count;
3444 			}
3445 			vm_object_drop(obj);
3446 
3447 			/*
3448 			 * Step 2.  We've loaded the pages into the buffer,
3449 			 * we have to figure out if we can still have B_CACHE
3450 			 * set.  Note that B_CACHE is set according to the
3451 			 * byte-granular range ( bcount and size ), not the
3452 			 * aligned range ( newbsize ).
3453 			 *
3454 			 * The VM test is against m->valid, which is DEV_BSIZE
3455 			 * aligned.  Needless to say, the validity of the data
3456 			 * needs to also be DEV_BSIZE aligned.  Note that this
3457 			 * fails with NFS if the server or some other client
3458 			 * extends the file's EOF.  If our buffer is resized,
3459 			 * B_CACHE may remain set! XXX
3460 			 */
3461 
3462 			toff = bp->b_bcount;
3463 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3464 
3465 			while ((bp->b_flags & B_CACHE) && toff < size) {
3466 				vm_pindex_t pi;
3467 
3468 				if (tinc > (size - toff))
3469 					tinc = size - toff;
3470 
3471 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3472 				    PAGE_SHIFT;
3473 
3474 				vfs_buf_test_cache(
3475 				    bp,
3476 				    bp->b_loffset,
3477 				    toff,
3478 				    tinc,
3479 				    bp->b_xio.xio_pages[pi]
3480 				);
3481 				toff += tinc;
3482 				tinc = PAGE_SIZE;
3483 			}
3484 
3485 			/*
3486 			 * Step 3, fixup the KVM pmap.  Remember that
3487 			 * bp->b_data is relative to bp->b_loffset, but
3488 			 * bp->b_loffset may be offset into the first page.
3489 			 */
3490 
3491 			bp->b_data = (caddr_t)
3492 			    trunc_page((vm_offset_t)bp->b_data);
3493 			pmap_qenter(
3494 			    (vm_offset_t)bp->b_data,
3495 			    bp->b_xio.xio_pages,
3496 			    bp->b_xio.xio_npages
3497 			);
3498 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3499 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3500 		}
3501 	}
3502 
3503 	/* adjust space use on already-dirty buffer */
3504 	if (bp->b_flags & B_DELWRI) {
3505 		spin_lock(&bufcspin);
3506 		dirtybufspace += newbsize - bp->b_bufsize;
3507 		if (bp->b_flags & B_HEAVY)
3508 			dirtybufspacehw += newbsize - bp->b_bufsize;
3509 		spin_unlock(&bufcspin);
3510 	}
3511 	if (newbsize < bp->b_bufsize)
3512 		bufspacewakeup();
3513 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3514 	bp->b_bcount = size;		/* requested buffer size	*/
3515 	return 1;
3516 }
3517 
3518 /*
3519  * biowait:
3520  *
3521  *	Wait for buffer I/O completion, returning error status. B_EINTR
3522  *	is converted into an EINTR error but not cleared (since a chain
3523  *	of biowait() calls may occur).
3524  *
3525  *	On return bpdone() will have been called but the buffer will remain
3526  *	locked and will not have been brelse()'d.
3527  *
3528  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3529  *	likely still in progress on return.
3530  *
3531  *	NOTE!  This operation is on a BIO, not a BUF.
3532  *
3533  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3534  *
3535  * MPSAFE
3536  */
3537 static __inline int
3538 _biowait(struct bio *bio, const char *wmesg, int to)
3539 {
3540 	struct buf *bp = bio->bio_buf;
3541 	u_int32_t flags;
3542 	u_int32_t nflags;
3543 	int error;
3544 
3545 	KKASSERT(bio == &bp->b_bio1);
3546 	for (;;) {
3547 		flags = bio->bio_flags;
3548 		if (flags & BIO_DONE)
3549 			break;
3550 		nflags = flags | BIO_WANT;
3551 		tsleep_interlock(bio, 0);
3552 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3553 			if (wmesg)
3554 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3555 			else if (bp->b_cmd == BUF_CMD_READ)
3556 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3557 			else
3558 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3559 			if (error) {
3560 				kprintf("tsleep error biowait %d\n", error);
3561 				return (error);
3562 			}
3563 		}
3564 	}
3565 
3566 	/*
3567 	 * Finish up.
3568 	 */
3569 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3570 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3571 	if (bp->b_flags & B_EINTR)
3572 		return (EINTR);
3573 	if (bp->b_flags & B_ERROR)
3574 		return (bp->b_error ? bp->b_error : EIO);
3575 	return (0);
3576 }
3577 
3578 int
3579 biowait(struct bio *bio, const char *wmesg)
3580 {
3581 	return(_biowait(bio, wmesg, 0));
3582 }
3583 
3584 int
3585 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3586 {
3587 	return(_biowait(bio, wmesg, to));
3588 }
3589 
3590 /*
3591  * This associates a tracking count with an I/O.  vn_strategy() and
3592  * dev_dstrategy() do this automatically but there are a few cases
3593  * where a vnode or device layer is bypassed when a block translation
3594  * is cached.  In such cases bio_start_transaction() may be called on
3595  * the bypassed layers so the system gets an I/O in progress indication
3596  * for those higher layers.
3597  */
3598 void
3599 bio_start_transaction(struct bio *bio, struct bio_track *track)
3600 {
3601 	bio->bio_track = track;
3602 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3603 		dsched_new_buf(bio->bio_buf);
3604 	bio_track_ref(track);
3605 }
3606 
3607 /*
3608  * Initiate I/O on a vnode.
3609  *
3610  * SWAPCACHE OPERATION:
3611  *
3612  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3613  *	devfs also uses b_vp for fake buffers so we also have to check
3614  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3615  *	underlying block device.  The swap assignments are related to the
3616  *	buffer cache buffer's b_vp, not the passed vp.
3617  *
3618  *	The passed vp == bp->b_vp only in the case where the strategy call
3619  *	is made on the vp itself for its own buffers (a regular file or
3620  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3621  *	after translating the request to an underlying device.
3622  *
3623  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3624  *	underlying buffer cache buffers.
3625  *
3626  *	We can only deal with page-aligned buffers at the moment, because
3627  *	we can't tell what the real dirty state for pages straddling a buffer
3628  *	are.
3629  *
3630  *	In order to call swap_pager_strategy() we must provide the VM object
3631  *	and base offset for the underlying buffer cache pages so it can find
3632  *	the swap blocks.
3633  */
3634 void
3635 vn_strategy(struct vnode *vp, struct bio *bio)
3636 {
3637 	struct bio_track *track;
3638 	struct buf *bp = bio->bio_buf;
3639 
3640 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3641 
3642 	/*
3643 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3644 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3645 	 * actually occurred.
3646 	 */
3647 	bp->b_flags |= B_IODEBUG;
3648 
3649 	/*
3650 	 * Handle the swap cache intercept.
3651 	 */
3652 	if (vn_cache_strategy(vp, bio))
3653 		return;
3654 
3655 	/*
3656 	 * Otherwise do the operation through the filesystem
3657 	 */
3658         if (bp->b_cmd == BUF_CMD_READ)
3659                 track = &vp->v_track_read;
3660         else
3661                 track = &vp->v_track_write;
3662 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3663 	bio->bio_track = track;
3664 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3665 		dsched_new_buf(bio->bio_buf);
3666 	bio_track_ref(track);
3667         vop_strategy(*vp->v_ops, vp, bio);
3668 }
3669 
3670 static void vn_cache_strategy_callback(struct bio *bio);
3671 
3672 int
3673 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3674 {
3675 	struct buf *bp = bio->bio_buf;
3676 	struct bio *nbio;
3677 	vm_object_t object;
3678 	vm_page_t m;
3679 	int i;
3680 
3681 	/*
3682 	 * Is this buffer cache buffer suitable for reading from
3683 	 * the swap cache?
3684 	 */
3685 	if (vm_swapcache_read_enable == 0 ||
3686 	    bp->b_cmd != BUF_CMD_READ ||
3687 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3688 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3689 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3690 	    (bp->b_bcount & PAGE_MASK) != 0) {
3691 		return(0);
3692 	}
3693 
3694 	/*
3695 	 * Figure out the original VM object (it will match the underlying
3696 	 * VM pages).  Note that swap cached data uses page indices relative
3697 	 * to that object, not relative to bio->bio_offset.
3698 	 */
3699 	if (bp->b_flags & B_CLUSTER)
3700 		object = vp->v_object;
3701 	else
3702 		object = bp->b_vp->v_object;
3703 
3704 	/*
3705 	 * In order to be able to use the swap cache all underlying VM
3706 	 * pages must be marked as such, and we can't have any bogus pages.
3707 	 */
3708 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3709 		m = bp->b_xio.xio_pages[i];
3710 		if ((m->flags & PG_SWAPPED) == 0)
3711 			break;
3712 		if (m == bogus_page)
3713 			break;
3714 	}
3715 
3716 	/*
3717 	 * If we are good then issue the I/O using swap_pager_strategy().
3718 	 *
3719 	 * We can only do this if the buffer actually supports object-backed
3720 	 * I/O.  If it doesn't npages will be 0.
3721 	 */
3722 	if (i && i == bp->b_xio.xio_npages) {
3723 		m = bp->b_xio.xio_pages[0];
3724 		nbio = push_bio(bio);
3725 		nbio->bio_done = vn_cache_strategy_callback;
3726 		nbio->bio_offset = ptoa(m->pindex);
3727 		KKASSERT(m->object == object);
3728 		swap_pager_strategy(object, nbio);
3729 		return(1);
3730 	}
3731 	return(0);
3732 }
3733 
3734 /*
3735  * This is a bit of a hack but since the vn_cache_strategy() function can
3736  * override a VFS's strategy function we must make sure that the bio, which
3737  * is probably bio2, doesn't leak an unexpected offset value back to the
3738  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3739  * bio went through its own file strategy function and the the bio2 offset
3740  * is a cached disk offset when, in fact, it isn't.
3741  */
3742 static void
3743 vn_cache_strategy_callback(struct bio *bio)
3744 {
3745 	bio->bio_offset = NOOFFSET;
3746 	biodone(pop_bio(bio));
3747 }
3748 
3749 /*
3750  * bpdone:
3751  *
3752  *	Finish I/O on a buffer after all BIOs have been processed.
3753  *	Called when the bio chain is exhausted or by biowait.  If called
3754  *	by biowait, elseit is typically 0.
3755  *
3756  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3757  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3758  *	assuming B_INVAL is clear.
3759  *
3760  *	For the VMIO case, we set B_CACHE if the op was a read and no
3761  *	read error occured, or if the op was a write.  B_CACHE is never
3762  *	set if the buffer is invalid or otherwise uncacheable.
3763  *
3764  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3765  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3766  *	in the biodone routine.
3767  */
3768 void
3769 bpdone(struct buf *bp, int elseit)
3770 {
3771 	buf_cmd_t cmd;
3772 
3773 	KASSERT(BUF_REFCNTNB(bp) > 0,
3774 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3775 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3776 		("biodone: bp %p already done!", bp));
3777 
3778 	/*
3779 	 * No more BIOs are left.  All completion functions have been dealt
3780 	 * with, now we clean up the buffer.
3781 	 */
3782 	cmd = bp->b_cmd;
3783 	bp->b_cmd = BUF_CMD_DONE;
3784 
3785 	/*
3786 	 * Only reads and writes are processed past this point.
3787 	 */
3788 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3789 		if (cmd == BUF_CMD_FREEBLKS)
3790 			bp->b_flags |= B_NOCACHE;
3791 		if (elseit)
3792 			brelse(bp);
3793 		return;
3794 	}
3795 
3796 	/*
3797 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3798 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3799 	 */
3800 	if (LIST_FIRST(&bp->b_dep) != NULL)
3801 		buf_complete(bp);	/* MPSAFE */
3802 
3803 	/*
3804 	 * A failed write must re-dirty the buffer unless B_INVAL
3805 	 * was set.  Only applicable to normal buffers (with VPs).
3806 	 * vinum buffers may not have a vp.
3807 	 */
3808 	if (cmd == BUF_CMD_WRITE &&
3809 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3810 		bp->b_flags &= ~B_NOCACHE;
3811 		if (bp->b_vp)
3812 			bdirty(bp);
3813 	}
3814 
3815 	if (bp->b_flags & B_VMIO) {
3816 		int i;
3817 		vm_ooffset_t foff;
3818 		vm_page_t m;
3819 		vm_object_t obj;
3820 		int iosize;
3821 		struct vnode *vp = bp->b_vp;
3822 
3823 		obj = vp->v_object;
3824 
3825 #if defined(VFS_BIO_DEBUG)
3826 		if (vp->v_auxrefs == 0)
3827 			panic("biodone: zero vnode hold count");
3828 		if ((vp->v_flag & VOBJBUF) == 0)
3829 			panic("biodone: vnode is not setup for merged cache");
3830 #endif
3831 
3832 		foff = bp->b_loffset;
3833 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3834 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3835 
3836 #if defined(VFS_BIO_DEBUG)
3837 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3838 			kprintf("biodone: paging in progress(%d) < "
3839 				"bp->b_xio.xio_npages(%d)\n",
3840 				obj->paging_in_progress,
3841 				bp->b_xio.xio_npages);
3842 		}
3843 #endif
3844 
3845 		/*
3846 		 * Set B_CACHE if the op was a normal read and no error
3847 		 * occured.  B_CACHE is set for writes in the b*write()
3848 		 * routines.
3849 		 */
3850 		iosize = bp->b_bcount - bp->b_resid;
3851 		if (cmd == BUF_CMD_READ &&
3852 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3853 			bp->b_flags |= B_CACHE;
3854 		}
3855 
3856 		vm_object_hold(obj);
3857 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3858 			int bogusflag = 0;
3859 			int resid;
3860 
3861 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3862 			if (resid > iosize)
3863 				resid = iosize;
3864 
3865 			/*
3866 			 * cleanup bogus pages, restoring the originals.  Since
3867 			 * the originals should still be wired, we don't have
3868 			 * to worry about interrupt/freeing races destroying
3869 			 * the VM object association.
3870 			 */
3871 			m = bp->b_xio.xio_pages[i];
3872 			if (m == bogus_page) {
3873 				bogusflag = 1;
3874 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3875 				if (m == NULL)
3876 					panic("biodone: page disappeared");
3877 				bp->b_xio.xio_pages[i] = m;
3878 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3879 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3880 			}
3881 #if defined(VFS_BIO_DEBUG)
3882 			if (OFF_TO_IDX(foff) != m->pindex) {
3883 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3884 					"mismatch\n",
3885 					(unsigned long)foff, (long)m->pindex);
3886 			}
3887 #endif
3888 
3889 			/*
3890 			 * In the write case, the valid and clean bits are
3891 			 * already changed correctly (see bdwrite()), so we
3892 			 * only need to do this here in the read case.
3893 			 */
3894 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3895 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3896 				vfs_clean_one_page(bp, i, m);
3897 			}
3898 			vm_page_flag_clear(m, PG_ZERO);
3899 
3900 			/*
3901 			 * when debugging new filesystems or buffer I/O
3902 			 * methods, this is the most common error that pops
3903 			 * up.  if you see this, you have not set the page
3904 			 * busy flag correctly!!!
3905 			 */
3906 			if (m->busy == 0) {
3907 				kprintf("biodone: page busy < 0, "
3908 				    "pindex: %d, foff: 0x(%x,%x), "
3909 				    "resid: %d, index: %d\n",
3910 				    (int) m->pindex, (int)(foff >> 32),
3911 						(int) foff & 0xffffffff, resid, i);
3912 				if (!vn_isdisk(vp, NULL))
3913 					kprintf(" iosize: %ld, loffset: %lld, "
3914 						"flags: 0x%08x, npages: %d\n",
3915 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3916 					    (long long)bp->b_loffset,
3917 					    bp->b_flags, bp->b_xio.xio_npages);
3918 				else
3919 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3920 					    (long long)bp->b_loffset,
3921 					    bp->b_flags, bp->b_xio.xio_npages);
3922 				kprintf(" valid: 0x%x, dirty: 0x%x, "
3923 					"wired: %d\n",
3924 					m->valid, m->dirty,
3925 					m->wire_count);
3926 				panic("biodone: page busy < 0");
3927 			}
3928 			vm_page_io_finish(m);
3929 			vm_page_wakeup(m);
3930 			vm_object_pip_wakeup(obj);
3931 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3932 			iosize -= resid;
3933 		}
3934 		bp->b_flags &= ~B_HASBOGUS;
3935 		vm_object_drop(obj);
3936 	}
3937 
3938 	/*
3939 	 * Finish up by releasing the buffer.  There are no more synchronous
3940 	 * or asynchronous completions, those were handled by bio_done
3941 	 * callbacks.
3942 	 */
3943 	if (elseit) {
3944 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3945 			brelse(bp);
3946 		else
3947 			bqrelse(bp);
3948 	}
3949 }
3950 
3951 /*
3952  * Normal biodone.
3953  */
3954 void
3955 biodone(struct bio *bio)
3956 {
3957 	struct buf *bp = bio->bio_buf;
3958 
3959 	runningbufwakeup(bp);
3960 
3961 	/*
3962 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3963 	 */
3964 	while (bio) {
3965 		biodone_t *done_func;
3966 		struct bio_track *track;
3967 
3968 		/*
3969 		 * BIO tracking.  Most but not all BIOs are tracked.
3970 		 */
3971 		if ((track = bio->bio_track) != NULL) {
3972 			bio_track_rel(track);
3973 			bio->bio_track = NULL;
3974 		}
3975 
3976 		/*
3977 		 * A bio_done function terminates the loop.  The function
3978 		 * will be responsible for any further chaining and/or
3979 		 * buffer management.
3980 		 *
3981 		 * WARNING!  The done function can deallocate the buffer!
3982 		 */
3983 		if ((done_func = bio->bio_done) != NULL) {
3984 			bio->bio_done = NULL;
3985 			done_func(bio);
3986 			return;
3987 		}
3988 		bio = bio->bio_prev;
3989 	}
3990 
3991 	/*
3992 	 * If we've run out of bio's do normal [a]synchronous completion.
3993 	 */
3994 	bpdone(bp, 1);
3995 }
3996 
3997 /*
3998  * Synchronous biodone - this terminates a synchronous BIO.
3999  *
4000  * bpdone() is called with elseit=FALSE, leaving the buffer completed
4001  * but still locked.  The caller must brelse() the buffer after waiting
4002  * for completion.
4003  */
4004 void
4005 biodone_sync(struct bio *bio)
4006 {
4007 	struct buf *bp = bio->bio_buf;
4008 	int flags;
4009 	int nflags;
4010 
4011 	KKASSERT(bio == &bp->b_bio1);
4012 	bpdone(bp, 0);
4013 
4014 	for (;;) {
4015 		flags = bio->bio_flags;
4016 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
4017 
4018 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4019 			if (flags & BIO_WANT)
4020 				wakeup(bio);
4021 			break;
4022 		}
4023 	}
4024 }
4025 
4026 /*
4027  * vfs_unbusy_pages:
4028  *
4029  *	This routine is called in lieu of iodone in the case of
4030  *	incomplete I/O.  This keeps the busy status for pages
4031  *	consistant.
4032  */
4033 void
4034 vfs_unbusy_pages(struct buf *bp)
4035 {
4036 	int i;
4037 
4038 	runningbufwakeup(bp);
4039 
4040 	if (bp->b_flags & B_VMIO) {
4041 		struct vnode *vp = bp->b_vp;
4042 		vm_object_t obj;
4043 
4044 		obj = vp->v_object;
4045 		vm_object_hold(obj);
4046 
4047 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4048 			vm_page_t m = bp->b_xio.xio_pages[i];
4049 
4050 			/*
4051 			 * When restoring bogus changes the original pages
4052 			 * should still be wired, so we are in no danger of
4053 			 * losing the object association and do not need
4054 			 * critical section protection particularly.
4055 			 */
4056 			if (m == bogus_page) {
4057 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4058 				if (!m) {
4059 					panic("vfs_unbusy_pages: page missing");
4060 				}
4061 				bp->b_xio.xio_pages[i] = m;
4062 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4063 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4064 			}
4065 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4066 			vm_page_flag_clear(m, PG_ZERO);
4067 			vm_page_io_finish(m);
4068 			vm_page_wakeup(m);
4069 			vm_object_pip_wakeup(obj);
4070 		}
4071 		bp->b_flags &= ~B_HASBOGUS;
4072 		vm_object_drop(obj);
4073 	}
4074 }
4075 
4076 /*
4077  * vfs_busy_pages:
4078  *
4079  *	This routine is called before a device strategy routine.
4080  *	It is used to tell the VM system that paging I/O is in
4081  *	progress, and treat the pages associated with the buffer
4082  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4083  *	flag is handled to make sure that the object doesn't become
4084  *	inconsistant.
4085  *
4086  *	Since I/O has not been initiated yet, certain buffer flags
4087  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4088  *	and should be ignored.
4089  *
4090  * MPSAFE
4091  */
4092 void
4093 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4094 {
4095 	int i, bogus;
4096 	struct lwp *lp = curthread->td_lwp;
4097 
4098 	/*
4099 	 * The buffer's I/O command must already be set.  If reading,
4100 	 * B_CACHE must be 0 (double check against callers only doing
4101 	 * I/O when B_CACHE is 0).
4102 	 */
4103 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4104 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4105 
4106 	if (bp->b_flags & B_VMIO) {
4107 		vm_object_t obj;
4108 
4109 		obj = vp->v_object;
4110 		KASSERT(bp->b_loffset != NOOFFSET,
4111 			("vfs_busy_pages: no buffer offset"));
4112 
4113 		/*
4114 		 * Busy all the pages.  We have to busy them all at once
4115 		 * to avoid deadlocks.
4116 		 */
4117 retry:
4118 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4119 			vm_page_t m = bp->b_xio.xio_pages[i];
4120 
4121 			if (vm_page_busy_try(m, FALSE)) {
4122 				vm_page_sleep_busy(m, FALSE, "vbpage");
4123 				while (--i >= 0)
4124 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4125 				goto retry;
4126 			}
4127 		}
4128 
4129 		/*
4130 		 * Setup for I/O, soft-busy the page right now because
4131 		 * the next loop may block.
4132 		 */
4133 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4134 			vm_page_t m = bp->b_xio.xio_pages[i];
4135 
4136 			vm_page_flag_clear(m, PG_ZERO);
4137 			if ((bp->b_flags & B_CLUSTER) == 0) {
4138 				vm_object_pip_add(obj, 1);
4139 				vm_page_io_start(m);
4140 			}
4141 		}
4142 
4143 		/*
4144 		 * Adjust protections for I/O and do bogus-page mapping.
4145 		 * Assume that vm_page_protect() can block (it can block
4146 		 * if VM_PROT_NONE, don't take any chances regardless).
4147 		 *
4148 		 * In particular note that for writes we must incorporate
4149 		 * page dirtyness from the VM system into the buffer's
4150 		 * dirty range.
4151 		 *
4152 		 * For reads we theoretically must incorporate page dirtyness
4153 		 * from the VM system to determine if the page needs bogus
4154 		 * replacement, but we shortcut the test by simply checking
4155 		 * that all m->valid bits are set, indicating that the page
4156 		 * is fully valid and does not need to be re-read.  For any
4157 		 * VM system dirtyness the page will also be fully valid
4158 		 * since it was mapped at one point.
4159 		 */
4160 		bogus = 0;
4161 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4162 			vm_page_t m = bp->b_xio.xio_pages[i];
4163 
4164 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4165 			if (bp->b_cmd == BUF_CMD_WRITE) {
4166 				/*
4167 				 * When readying a vnode-backed buffer for
4168 				 * a write we must zero-fill any invalid
4169 				 * portions of the backing VM pages, mark
4170 				 * it valid and clear related dirty bits.
4171 				 *
4172 				 * vfs_clean_one_page() incorporates any
4173 				 * VM dirtyness and updates the b_dirtyoff
4174 				 * range (after we've made the page RO).
4175 				 *
4176 				 * It is also expected that the pmap modified
4177 				 * bit has already been cleared by the
4178 				 * vm_page_protect().  We may not be able
4179 				 * to clear all dirty bits for a page if it
4180 				 * was also memory mapped (NFS).
4181 				 *
4182 				 * Finally be sure to unassign any swap-cache
4183 				 * backing store as it is now stale.
4184 				 */
4185 				vm_page_protect(m, VM_PROT_READ);
4186 				vfs_clean_one_page(bp, i, m);
4187 				swap_pager_unswapped(m);
4188 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4189 				/*
4190 				 * When readying a vnode-backed buffer for
4191 				 * read we must replace any dirty pages with
4192 				 * a bogus page so dirty data is not destroyed
4193 				 * when filling gaps.
4194 				 *
4195 				 * To avoid testing whether the page is
4196 				 * dirty we instead test that the page was
4197 				 * at some point mapped (m->valid fully
4198 				 * valid) with the understanding that
4199 				 * this also covers the dirty case.
4200 				 */
4201 				bp->b_xio.xio_pages[i] = bogus_page;
4202 				bp->b_flags |= B_HASBOGUS;
4203 				bogus++;
4204 			} else if (m->valid & m->dirty) {
4205 				/*
4206 				 * This case should not occur as partial
4207 				 * dirtyment can only happen if the buffer
4208 				 * is B_CACHE, and this code is not entered
4209 				 * if the buffer is B_CACHE.
4210 				 */
4211 				kprintf("Warning: vfs_busy_pages - page not "
4212 					"fully valid! loff=%jx bpf=%08x "
4213 					"idx=%d val=%02x dir=%02x\n",
4214 					(intmax_t)bp->b_loffset, bp->b_flags,
4215 					i, m->valid, m->dirty);
4216 				vm_page_protect(m, VM_PROT_NONE);
4217 			} else {
4218 				/*
4219 				 * The page is not valid and can be made
4220 				 * part of the read.
4221 				 */
4222 				vm_page_protect(m, VM_PROT_NONE);
4223 			}
4224 			vm_page_wakeup(m);
4225 		}
4226 		if (bogus) {
4227 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4228 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4229 		}
4230 	}
4231 
4232 	/*
4233 	 * This is the easiest place to put the process accounting for the I/O
4234 	 * for now.
4235 	 */
4236 	if (lp != NULL) {
4237 		if (bp->b_cmd == BUF_CMD_READ)
4238 			lp->lwp_ru.ru_inblock++;
4239 		else
4240 			lp->lwp_ru.ru_oublock++;
4241 	}
4242 }
4243 
4244 /*
4245  * Tell the VM system that the pages associated with this buffer
4246  * are clean.  This is used for delayed writes where the data is
4247  * going to go to disk eventually without additional VM intevention.
4248  *
4249  * NOTE: While we only really need to clean through to b_bcount, we
4250  *	 just go ahead and clean through to b_bufsize.
4251  */
4252 static void
4253 vfs_clean_pages(struct buf *bp)
4254 {
4255 	vm_page_t m;
4256 	int i;
4257 
4258 	if ((bp->b_flags & B_VMIO) == 0)
4259 		return;
4260 
4261 	KASSERT(bp->b_loffset != NOOFFSET,
4262 		("vfs_clean_pages: no buffer offset"));
4263 
4264 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4265 		m = bp->b_xio.xio_pages[i];
4266 		vfs_clean_one_page(bp, i, m);
4267 	}
4268 }
4269 
4270 /*
4271  * vfs_clean_one_page:
4272  *
4273  *	Set the valid bits and clear the dirty bits in a page within a
4274  *	buffer.  The range is restricted to the buffer's size and the
4275  *	buffer's logical offset might index into the first page.
4276  *
4277  *	The caller has busied or soft-busied the page and it is not mapped,
4278  *	test and incorporate the dirty bits into b_dirtyoff/end before
4279  *	clearing them.  Note that we need to clear the pmap modified bits
4280  *	after determining the the page was dirty, vm_page_set_validclean()
4281  *	does not do it for us.
4282  *
4283  *	This routine is typically called after a read completes (dirty should
4284  *	be zero in that case as we are not called on bogus-replace pages),
4285  *	or before a write is initiated.
4286  */
4287 static void
4288 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4289 {
4290 	int bcount;
4291 	int xoff;
4292 	int soff;
4293 	int eoff;
4294 
4295 	/*
4296 	 * Calculate offset range within the page but relative to buffer's
4297 	 * loffset.  loffset might be offset into the first page.
4298 	 */
4299 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4300 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4301 
4302 	if (pageno == 0) {
4303 		soff = xoff;
4304 		eoff = PAGE_SIZE;
4305 	} else {
4306 		soff = (pageno << PAGE_SHIFT);
4307 		eoff = soff + PAGE_SIZE;
4308 	}
4309 	if (eoff > bcount)
4310 		eoff = bcount;
4311 	if (soff >= eoff)
4312 		return;
4313 
4314 	/*
4315 	 * Test dirty bits and adjust b_dirtyoff/end.
4316 	 *
4317 	 * If dirty pages are incorporated into the bp any prior
4318 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4319 	 * caller has not taken into account the new dirty data.
4320 	 *
4321 	 * If the page was memory mapped the dirty bits might go beyond the
4322 	 * end of the buffer, but we can't really make the assumption that
4323 	 * a file EOF straddles the buffer (even though this is the case for
4324 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4325 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4326 	 * This also saves some console spam.
4327 	 *
4328 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4329 	 * NFS can handle huge commits but not huge writes.
4330 	 */
4331 	vm_page_test_dirty(m);
4332 	if (m->dirty) {
4333 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4334 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4335 			if (debug_commit)
4336 			kprintf("Warning: vfs_clean_one_page: bp %p "
4337 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4338 				" cmd %d vd %02x/%02x x/s/e %d %d %d "
4339 				"doff/end %d %d\n",
4340 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4341 				bp->b_flags, bp->b_cmd,
4342 				m->valid, m->dirty, xoff, soff, eoff,
4343 				bp->b_dirtyoff, bp->b_dirtyend);
4344 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4345 			if (debug_commit)
4346 				print_backtrace(-1);
4347 		}
4348 		/*
4349 		 * Only clear the pmap modified bits if ALL the dirty bits
4350 		 * are set, otherwise the system might mis-clear portions
4351 		 * of a page.
4352 		 */
4353 		if (m->dirty == VM_PAGE_BITS_ALL &&
4354 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4355 			pmap_clear_modify(m);
4356 		}
4357 		if (bp->b_dirtyoff > soff - xoff)
4358 			bp->b_dirtyoff = soff - xoff;
4359 		if (bp->b_dirtyend < eoff - xoff)
4360 			bp->b_dirtyend = eoff - xoff;
4361 	}
4362 
4363 	/*
4364 	 * Set related valid bits, clear related dirty bits.
4365 	 * Does not mess with the pmap modified bit.
4366 	 *
4367 	 * WARNING!  We cannot just clear all of m->dirty here as the
4368 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4369 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4370 	 *	     The putpages code can clear m->dirty to 0.
4371 	 *
4372 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4373 	 *	     covers the same space as mapped writable pages the
4374 	 *	     buffer flush might not be able to clear all the dirty
4375 	 *	     bits and still require a putpages from the VM system
4376 	 *	     to finish it off.
4377 	 *
4378 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4379 	 *	     is held.  The page might not be busied (bdwrite() case).
4380 	 *	     XXX remove this comment once we've validated that this
4381 	 *	     is no longer an issue.
4382 	 */
4383 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4384 }
4385 
4386 #if 0
4387 /*
4388  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4389  * The page data is assumed to be valid (there is no zeroing here).
4390  */
4391 static void
4392 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4393 {
4394 	int bcount;
4395 	int xoff;
4396 	int soff;
4397 	int eoff;
4398 
4399 	/*
4400 	 * Calculate offset range within the page but relative to buffer's
4401 	 * loffset.  loffset might be offset into the first page.
4402 	 */
4403 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4404 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4405 
4406 	if (pageno == 0) {
4407 		soff = xoff;
4408 		eoff = PAGE_SIZE;
4409 	} else {
4410 		soff = (pageno << PAGE_SHIFT);
4411 		eoff = soff + PAGE_SIZE;
4412 	}
4413 	if (eoff > bcount)
4414 		eoff = bcount;
4415 	if (soff >= eoff)
4416 		return;
4417 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4418 }
4419 #endif
4420 
4421 /*
4422  * vfs_bio_clrbuf:
4423  *
4424  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4425  *	to clear B_ERROR and B_INVAL.
4426  *
4427  *	Note that while we only theoretically need to clear through b_bcount,
4428  *	we go ahead and clear through b_bufsize.
4429  */
4430 
4431 void
4432 vfs_bio_clrbuf(struct buf *bp)
4433 {
4434 	int i, mask = 0;
4435 	caddr_t sa, ea;
4436 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4437 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4438 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4439 		    (bp->b_loffset & PAGE_MASK) == 0) {
4440 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4441 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4442 				bp->b_resid = 0;
4443 				return;
4444 			}
4445 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4446 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4447 				bzero(bp->b_data, bp->b_bufsize);
4448 				bp->b_xio.xio_pages[0]->valid |= mask;
4449 				bp->b_resid = 0;
4450 				return;
4451 			}
4452 		}
4453 		sa = bp->b_data;
4454 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4455 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4456 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4457 			ea = (caddr_t)(vm_offset_t)ulmin(
4458 			    (u_long)(vm_offset_t)ea,
4459 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4460 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4461 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4462 				continue;
4463 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4464 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4465 					bzero(sa, ea - sa);
4466 				}
4467 			} else {
4468 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4469 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4470 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4471 						bzero(sa, DEV_BSIZE);
4472 				}
4473 			}
4474 			bp->b_xio.xio_pages[i]->valid |= mask;
4475 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4476 		}
4477 		bp->b_resid = 0;
4478 	} else {
4479 		clrbuf(bp);
4480 	}
4481 }
4482 
4483 /*
4484  * vm_hold_load_pages:
4485  *
4486  *	Load pages into the buffer's address space.  The pages are
4487  *	allocated from the kernel object in order to reduce interference
4488  *	with the any VM paging I/O activity.  The range of loaded
4489  *	pages will be wired.
4490  *
4491  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4492  *	retrieve the full range (to - from) of pages.
4493  *
4494  * MPSAFE
4495  */
4496 void
4497 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4498 {
4499 	vm_offset_t pg;
4500 	vm_page_t p;
4501 	int index;
4502 
4503 	to = round_page(to);
4504 	from = round_page(from);
4505 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4506 
4507 	pg = from;
4508 	while (pg < to) {
4509 		/*
4510 		 * Note: must allocate system pages since blocking here
4511 		 * could intefere with paging I/O, no matter which
4512 		 * process we are.
4513 		 */
4514 		vm_object_hold(&kernel_object);
4515 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4516 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4517 		vm_object_drop(&kernel_object);
4518 		if (p) {
4519 			vm_page_wire(p);
4520 			p->valid = VM_PAGE_BITS_ALL;
4521 			vm_page_flag_clear(p, PG_ZERO);
4522 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4523 			bp->b_xio.xio_pages[index] = p;
4524 			vm_page_wakeup(p);
4525 
4526 			pg += PAGE_SIZE;
4527 			++index;
4528 		}
4529 	}
4530 	bp->b_xio.xio_npages = index;
4531 }
4532 
4533 /*
4534  * Allocate a page for a buffer cache buffer.
4535  *
4536  * If NULL is returned the caller is expected to retry (typically check if
4537  * the page already exists on retry before trying to allocate one).
4538  *
4539  * NOTE! Low-memory handling is dealt with in b[q]relse(), not here.  This
4540  *	 function will use the system reserve with the hope that the page
4541  *	 allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4542  *	 is done with the buffer.
4543  */
4544 static
4545 vm_page_t
4546 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4547 {
4548 	int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4549 	vm_page_t p;
4550 
4551 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4552 
4553 	/*
4554 	 * Try a normal allocation first.
4555 	 */
4556 	p = vm_page_alloc(obj, pg, vmflags);
4557 	if (p)
4558 		return(p);
4559 	if (vm_page_lookup(obj, pg))
4560 		return(NULL);
4561 	vm_pageout_deficit += deficit;
4562 
4563 	/*
4564 	 * Try again, digging into the system reserve.
4565 	 *
4566 	 * Trying to recover pages from the buffer cache here can deadlock
4567 	 * against other threads trying to busy underlying pages so we
4568 	 * depend on the code in brelse() and bqrelse() to free/cache the
4569 	 * underlying buffer cache pages when memory is low.
4570 	 */
4571 	if (curthread->td_flags & TDF_SYSTHREAD)
4572 		vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4573 	else
4574 		vmflags |= VM_ALLOC_SYSTEM;
4575 
4576 	/*recoverbufpages();*/
4577 	p = vm_page_alloc(obj, pg, vmflags);
4578 	if (p)
4579 		return(p);
4580 	if (vm_page_lookup(obj, pg))
4581 		return(NULL);
4582 
4583 	/*
4584 	 * Wait for memory to free up and try again
4585 	 */
4586 	if (vm_page_count_severe())
4587 		++lowmempgallocs;
4588 	vm_wait(hz / 20 + 1);
4589 
4590 	p = vm_page_alloc(obj, pg, vmflags);
4591 	if (p)
4592 		return(p);
4593 	if (vm_page_lookup(obj, pg))
4594 		return(NULL);
4595 
4596 	/*
4597 	 * Ok, now we are really in trouble.
4598 	 */
4599 	{
4600 		static struct krate biokrate = { .freq = 1 };
4601 		krateprintf(&biokrate,
4602 			    "Warning: bio_page_alloc: memory exhausted "
4603 			    "during bufcache page allocation from %s\n",
4604 			    curthread->td_comm);
4605 	}
4606 	if (curthread->td_flags & TDF_SYSTHREAD)
4607 		vm_wait(hz / 20 + 1);
4608 	else
4609 		vm_wait(hz / 2 + 1);
4610 	return (NULL);
4611 }
4612 
4613 /*
4614  * vm_hold_free_pages:
4615  *
4616  *	Return pages associated with the buffer back to the VM system.
4617  *
4618  *	The range of pages underlying the buffer's address space will
4619  *	be unmapped and un-wired.
4620  *
4621  * MPSAFE
4622  */
4623 void
4624 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4625 {
4626 	vm_offset_t pg;
4627 	vm_page_t p;
4628 	int index, newnpages;
4629 
4630 	from = round_page(from);
4631 	to = round_page(to);
4632 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4633 	newnpages = index;
4634 
4635 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4636 		p = bp->b_xio.xio_pages[index];
4637 		if (p && (index < bp->b_xio.xio_npages)) {
4638 			if (p->busy) {
4639 				kprintf("vm_hold_free_pages: doffset: %lld, "
4640 					"loffset: %lld\n",
4641 					(long long)bp->b_bio2.bio_offset,
4642 					(long long)bp->b_loffset);
4643 			}
4644 			bp->b_xio.xio_pages[index] = NULL;
4645 			pmap_kremove(pg);
4646 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4647 			vm_page_unwire(p, 0);
4648 			vm_page_free(p);
4649 		}
4650 	}
4651 	bp->b_xio.xio_npages = newnpages;
4652 }
4653 
4654 /*
4655  * vmapbuf:
4656  *
4657  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4658  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4659  *	initialized.
4660  */
4661 int
4662 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4663 {
4664 	caddr_t addr;
4665 	vm_offset_t va;
4666 	vm_page_t m;
4667 	int vmprot;
4668 	int error;
4669 	int pidx;
4670 	int i;
4671 
4672 	/*
4673 	 * bp had better have a command and it better be a pbuf.
4674 	 */
4675 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4676 	KKASSERT(bp->b_flags & B_PAGING);
4677 	KKASSERT(bp->b_kvabase);
4678 
4679 	if (bytes < 0)
4680 		return (-1);
4681 
4682 	/*
4683 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4684 	 */
4685 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4686 	pidx = 0;
4687 
4688 	vmprot = VM_PROT_READ;
4689 	if (bp->b_cmd == BUF_CMD_READ)
4690 		vmprot |= VM_PROT_WRITE;
4691 
4692 	while (addr < udata + bytes) {
4693 		/*
4694 		 * Do the vm_fault if needed; do the copy-on-write thing
4695 		 * when reading stuff off device into memory.
4696 		 *
4697 		 * vm_fault_page*() returns a held VM page.
4698 		 */
4699 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4700 		va = trunc_page(va);
4701 
4702 		m = vm_fault_page_quick(va, vmprot, &error);
4703 		if (m == NULL) {
4704 			for (i = 0; i < pidx; ++i) {
4705 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4706 			    bp->b_xio.xio_pages[i] = NULL;
4707 			}
4708 			return(-1);
4709 		}
4710 		bp->b_xio.xio_pages[pidx] = m;
4711 		addr += PAGE_SIZE;
4712 		++pidx;
4713 	}
4714 
4715 	/*
4716 	 * Map the page array and set the buffer fields to point to
4717 	 * the mapped data buffer.
4718 	 */
4719 	if (pidx > btoc(MAXPHYS))
4720 		panic("vmapbuf: mapped more than MAXPHYS");
4721 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4722 
4723 	bp->b_xio.xio_npages = pidx;
4724 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4725 	bp->b_bcount = bytes;
4726 	bp->b_bufsize = bytes;
4727 	return(0);
4728 }
4729 
4730 /*
4731  * vunmapbuf:
4732  *
4733  *	Free the io map PTEs associated with this IO operation.
4734  *	We also invalidate the TLB entries and restore the original b_addr.
4735  */
4736 void
4737 vunmapbuf(struct buf *bp)
4738 {
4739 	int pidx;
4740 	int npages;
4741 
4742 	KKASSERT(bp->b_flags & B_PAGING);
4743 
4744 	npages = bp->b_xio.xio_npages;
4745 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4746 	for (pidx = 0; pidx < npages; ++pidx) {
4747 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4748 		bp->b_xio.xio_pages[pidx] = NULL;
4749 	}
4750 	bp->b_xio.xio_npages = 0;
4751 	bp->b_data = bp->b_kvabase;
4752 }
4753 
4754 /*
4755  * Scan all buffers in the system and issue the callback.
4756  */
4757 int
4758 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4759 {
4760 	int count = 0;
4761 	int error;
4762 	int n;
4763 
4764 	for (n = 0; n < nbuf; ++n) {
4765 		if ((error = callback(&buf[n], info)) < 0) {
4766 			count = error;
4767 			break;
4768 		}
4769 		count += error;
4770 	}
4771 	return (count);
4772 }
4773 
4774 /*
4775  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4776  * completion to the master buffer.
4777  */
4778 static void
4779 nestiobuf_iodone(struct bio *bio)
4780 {
4781 	struct bio *mbio;
4782 	struct buf *mbp, *bp;
4783 	struct devstat *stats;
4784 	int error;
4785 	int donebytes;
4786 
4787 	bp = bio->bio_buf;
4788 	mbio = bio->bio_caller_info1.ptr;
4789 	stats = bio->bio_caller_info2.ptr;
4790 	mbp = mbio->bio_buf;
4791 
4792 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4793 	KKASSERT(mbp != bp);
4794 
4795 	error = bp->b_error;
4796 	if (bp->b_error == 0 &&
4797 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4798 		/*
4799 		 * Not all got transfered, raise an error. We have no way to
4800 		 * propagate these conditions to mbp.
4801 		 */
4802 		error = EIO;
4803 	}
4804 
4805 	donebytes = bp->b_bufsize;
4806 
4807 	relpbuf(bp, NULL);
4808 
4809 	nestiobuf_done(mbio, donebytes, error, stats);
4810 }
4811 
4812 void
4813 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4814 {
4815 	struct buf *mbp;
4816 
4817 	mbp = mbio->bio_buf;
4818 
4819 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4820 
4821 	/*
4822 	 * If an error occured, propagate it to the master buffer.
4823 	 *
4824 	 * Several biodone()s may wind up running concurrently so
4825 	 * use an atomic op to adjust b_flags.
4826 	 */
4827 	if (error) {
4828 		mbp->b_error = error;
4829 		atomic_set_int(&mbp->b_flags, B_ERROR);
4830 	}
4831 
4832 	/*
4833 	 * Decrement the operations in progress counter and terminate the
4834 	 * I/O if this was the last bit.
4835 	 */
4836 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4837 		mbp->b_resid = 0;
4838 		if (stats)
4839 			devstat_end_transaction_buf(stats, mbp);
4840 		biodone(mbio);
4841 	}
4842 }
4843 
4844 /*
4845  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4846  * the mbio from being biodone()'d while we are still adding sub-bios to
4847  * it.
4848  */
4849 void
4850 nestiobuf_init(struct bio *bio)
4851 {
4852 	bio->bio_driver_info = (void *)1;
4853 }
4854 
4855 /*
4856  * The BIOs added to the nestedio have already been started, remove the
4857  * count that placeheld our mbio and biodone() it if the count would
4858  * transition to 0.
4859  */
4860 void
4861 nestiobuf_start(struct bio *mbio)
4862 {
4863 	struct buf *mbp = mbio->bio_buf;
4864 
4865 	/*
4866 	 * Decrement the operations in progress counter and terminate the
4867 	 * I/O if this was the last bit.
4868 	 */
4869 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4870 		if (mbp->b_flags & B_ERROR)
4871 			mbp->b_resid = mbp->b_bcount;
4872 		else
4873 			mbp->b_resid = 0;
4874 		biodone(mbio);
4875 	}
4876 }
4877 
4878 /*
4879  * Set an intermediate error prior to calling nestiobuf_start()
4880  */
4881 void
4882 nestiobuf_error(struct bio *mbio, int error)
4883 {
4884 	struct buf *mbp = mbio->bio_buf;
4885 
4886 	if (error) {
4887 		mbp->b_error = error;
4888 		atomic_set_int(&mbp->b_flags, B_ERROR);
4889 	}
4890 }
4891 
4892 /*
4893  * nestiobuf_add: setup a "nested" buffer.
4894  *
4895  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4896  * => 'bp' should be a buffer allocated by getiobuf.
4897  * => 'offset' is a byte offset in the master buffer.
4898  * => 'size' is a size in bytes of this nested buffer.
4899  */
4900 void
4901 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4902 {
4903 	struct buf *mbp = mbio->bio_buf;
4904 	struct vnode *vp = mbp->b_vp;
4905 
4906 	KKASSERT(mbp->b_bcount >= offset + size);
4907 
4908 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4909 
4910 	/* kernel needs to own the lock for it to be released in biodone */
4911 	BUF_KERNPROC(bp);
4912 	bp->b_vp = vp;
4913 	bp->b_cmd = mbp->b_cmd;
4914 	bp->b_bio1.bio_done = nestiobuf_iodone;
4915 	bp->b_data = (char *)mbp->b_data + offset;
4916 	bp->b_resid = bp->b_bcount = size;
4917 	bp->b_bufsize = bp->b_bcount;
4918 
4919 	bp->b_bio1.bio_track = NULL;
4920 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4921 	bp->b_bio1.bio_caller_info2.ptr = stats;
4922 }
4923 
4924 /*
4925  * print out statistics from the current status of the buffer pool
4926  * this can be toggeled by the system control option debug.syncprt
4927  */
4928 #ifdef DEBUG
4929 void
4930 vfs_bufstats(void)
4931 {
4932         int i, j, count;
4933         struct buf *bp;
4934         struct bqueues *dp;
4935         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4936         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4937 
4938         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4939                 count = 0;
4940                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4941                         counts[j] = 0;
4942 
4943 		spin_lock(&bufqspin);
4944                 TAILQ_FOREACH(bp, dp, b_freelist) {
4945                         counts[bp->b_bufsize/PAGE_SIZE]++;
4946                         count++;
4947                 }
4948 		spin_unlock(&bufqspin);
4949 
4950                 kprintf("%s: total-%d", bname[i], count);
4951                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4952                         if (counts[j] != 0)
4953                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4954                 kprintf("\n");
4955         }
4956 }
4957 #endif
4958 
4959 #ifdef DDB
4960 
4961 DB_SHOW_COMMAND(buffer, db_show_buffer)
4962 {
4963 	/* get args */
4964 	struct buf *bp = (struct buf *)addr;
4965 
4966 	if (!have_addr) {
4967 		db_printf("usage: show buffer <addr>\n");
4968 		return;
4969 	}
4970 
4971 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4972 	db_printf("b_cmd = %d\n", bp->b_cmd);
4973 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4974 		  "b_resid = %d\n, b_data = %p, "
4975 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4976 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4977 		  bp->b_data,
4978 		  (long long)bp->b_bio2.bio_offset,
4979 		  (long long)(bp->b_bio2.bio_next ?
4980 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4981 	if (bp->b_xio.xio_npages) {
4982 		int i;
4983 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4984 			bp->b_xio.xio_npages);
4985 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4986 			vm_page_t m;
4987 			m = bp->b_xio.xio_pages[i];
4988 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4989 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4990 			if ((i + 1) < bp->b_xio.xio_npages)
4991 				db_printf(",");
4992 		}
4993 		db_printf("\n");
4994 	}
4995 }
4996 #endif /* DDB */
4997