xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 21d8bc42f570abe46007647277c2c8d68cf8b55a)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.96 2008/01/10 07:34:01 dillon Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
61 
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 /*
68  * Buffer queues.
69  */
70 enum bufq_type {
71 	BQUEUE_NONE,    	/* not on any queue */
72 	BQUEUE_LOCKED,  	/* locked buffers */
73 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
74 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
75 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
76 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
77 	BQUEUE_EMPTY,    	/* empty buffer headers */
78 
79 	BUFFER_QUEUES		/* number of buffer queues */
80 };
81 
82 typedef enum bufq_type bufq_type_t;
83 
84 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
85 
86 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
87 
88 struct buf *buf;		/* buffer header pool */
89 
90 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
91 		vm_offset_t to);
92 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
93 		vm_offset_t to);
94 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
95 			       int pageno, vm_page_t m);
96 static void vfs_clean_pages(struct buf *bp);
97 static void vfs_setdirty(struct buf *bp);
98 static void vfs_vmio_release(struct buf *bp);
99 static int flushbufqueues(bufq_type_t q);
100 
101 static void buf_daemon(void);
102 static void buf_daemon_hw(void);
103 /*
104  * bogus page -- for I/O to/from partially complete buffers
105  * this is a temporary solution to the problem, but it is not
106  * really that bad.  it would be better to split the buffer
107  * for input in the case of buffers partially already in memory,
108  * but the code is intricate enough already.
109  */
110 vm_page_t bogus_page;
111 int runningbufspace;
112 
113 /*
114  * These are all static, but make the ones we export globals so we do
115  * not need to use compiler magic.
116  */
117 int bufspace, maxbufspace,
118 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
119 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
120 static int lorunningspace, hirunningspace, runningbufreq;
121 int numdirtybuffers, numdirtybuffershw, lodirtybuffers, hidirtybuffers;
122 static int numfreebuffers, lofreebuffers, hifreebuffers;
123 static int getnewbufcalls;
124 static int getnewbufrestarts;
125 
126 static int needsbuffer;		/* locked by needsbuffer_spin */
127 static int bd_request;		/* locked by needsbuffer_spin */
128 static int bd_request_hw;	/* locked by needsbuffer_spin */
129 static struct spinlock needsbuffer_spin;
130 
131 /*
132  * Sysctls for operational control of the buffer cache.
133  */
134 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
135 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
136 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
137 	"High watermark used to trigger explicit flushing of dirty buffers");
138 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
139 	"Low watermark for special reserve in low-memory situations");
140 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
141 	"High watermark for special reserve in low-memory situations");
142 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
143 	"Minimum amount of buffer space required for active I/O");
144 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
145 	"Maximum amount of buffer space to usable for active I/O");
146 /*
147  * Sysctls determining current state of the buffer cache.
148  */
149 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
150 	"Pending number of dirty buffers (all)");
151 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffershw, CTLFLAG_RD, &numdirtybuffershw, 0,
152 	"Pending number of dirty buffers (heavy weight)");
153 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
154 	"Number of free buffers on the buffer cache free list");
155 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
156 	"I/O bytes currently in progress due to asynchronous writes");
157 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
158 	"Hard limit on maximum amount of memory usable for buffer space");
159 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
160 	"Soft limit on maximum amount of memory usable for buffer space");
161 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
162 	"Minimum amount of memory to reserve for system buffer space");
163 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
164 	"Amount of memory available for buffers");
165 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
166 	0, "Maximum amount of memory reserved for buffers using malloc");
167 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
168 	"Amount of memory left for buffers using malloc-scheme");
169 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
170 	"New buffer header acquisition requests");
171 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
172 	0, "New buffer header acquisition restarts");
173 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
174 	"Buffer acquisition restarts due to fragmented buffer map");
175 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
176 	"Amount of time KVA space was deallocated in an arbitrary buffer");
177 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
178 	"Amount of time buffer re-use operations were successful");
179 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
180 	"sizeof(struct buf)");
181 
182 char *buf_wmesg = BUF_WMESG;
183 
184 extern int vm_swap_size;
185 
186 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
187 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
188 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
189 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
190 
191 /*
192  * numdirtywakeup:
193  *
194  *	If someone is blocked due to there being too many dirty buffers,
195  *	and numdirtybuffers is now reasonable, wake them up.
196  */
197 static __inline void
198 numdirtywakeup(void)
199 {
200 	if (numdirtybuffers <= (lodirtybuffers + hidirtybuffers) / 2) {
201 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
202 			spin_lock_wr(&needsbuffer_spin);
203 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
204 			spin_unlock_wr(&needsbuffer_spin);
205 			wakeup(&needsbuffer);
206 		}
207 	}
208 }
209 
210 /*
211  * bufspacewakeup:
212  *
213  *	Called when buffer space is potentially available for recovery.
214  *	getnewbuf() will block on this flag when it is unable to free
215  *	sufficient buffer space.  Buffer space becomes recoverable when
216  *	bp's get placed back in the queues.
217  */
218 
219 static __inline void
220 bufspacewakeup(void)
221 {
222 	/*
223 	 * If someone is waiting for BUF space, wake them up.  Even
224 	 * though we haven't freed the kva space yet, the waiting
225 	 * process will be able to now.
226 	 */
227 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
228 		spin_lock_wr(&needsbuffer_spin);
229 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
230 		spin_unlock_wr(&needsbuffer_spin);
231 		wakeup(&needsbuffer);
232 	}
233 }
234 
235 /*
236  * runningbufwakeup:
237  *
238  *	Accounting for I/O in progress.
239  *
240  */
241 static __inline void
242 runningbufwakeup(struct buf *bp)
243 {
244 	if (bp->b_runningbufspace) {
245 		runningbufspace -= bp->b_runningbufspace;
246 		bp->b_runningbufspace = 0;
247 		if (runningbufreq && runningbufspace <= lorunningspace) {
248 			runningbufreq = 0;
249 			wakeup(&runningbufreq);
250 		}
251 	}
252 }
253 
254 /*
255  * bufcountwakeup:
256  *
257  *	Called when a buffer has been added to one of the free queues to
258  *	account for the buffer and to wakeup anyone waiting for free buffers.
259  *	This typically occurs when large amounts of metadata are being handled
260  *	by the buffer cache ( else buffer space runs out first, usually ).
261  */
262 
263 static __inline void
264 bufcountwakeup(void)
265 {
266 	++numfreebuffers;
267 	if (needsbuffer) {
268 		spin_lock_wr(&needsbuffer_spin);
269 		needsbuffer &= ~VFS_BIO_NEED_ANY;
270 		if (numfreebuffers >= hifreebuffers)
271 			needsbuffer &= ~VFS_BIO_NEED_FREE;
272 		spin_unlock_wr(&needsbuffer_spin);
273 		wakeup(&needsbuffer);
274 	}
275 }
276 
277 /*
278  * waitrunningbufspace()
279  *
280  *	runningbufspace is a measure of the amount of I/O currently
281  *	running.  This routine is used in async-write situations to
282  *	prevent creating huge backups of pending writes to a device.
283  *	Only asynchronous writes are governed by this function.
284  *
285  *	Reads will adjust runningbufspace, but will not block based on it.
286  *	The read load has a side effect of reducing the allowed write load.
287  *
288  *	This does NOT turn an async write into a sync write.  It waits
289  *	for earlier writes to complete and generally returns before the
290  *	caller's write has reached the device.
291  */
292 static __inline void
293 waitrunningbufspace(void)
294 {
295 	if (runningbufspace > hirunningspace) {
296 		crit_enter();
297 		while (runningbufspace > hirunningspace) {
298 			++runningbufreq;
299 			tsleep(&runningbufreq, 0, "wdrain", 0);
300 		}
301 		crit_exit();
302 	}
303 }
304 
305 /*
306  * vfs_buf_test_cache:
307  *
308  *	Called when a buffer is extended.  This function clears the B_CACHE
309  *	bit if the newly extended portion of the buffer does not contain
310  *	valid data.
311  */
312 static __inline__
313 void
314 vfs_buf_test_cache(struct buf *bp,
315 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
316 		  vm_page_t m)
317 {
318 	if (bp->b_flags & B_CACHE) {
319 		int base = (foff + off) & PAGE_MASK;
320 		if (vm_page_is_valid(m, base, size) == 0)
321 			bp->b_flags &= ~B_CACHE;
322 	}
323 }
324 
325 /*
326  * bd_wakeup:
327  *
328  *	Wake up the buffer daemon if the number of outstanding dirty buffers
329  *	is above specified threshold 'dirtybuflevel'.
330  *
331  *	The buffer daemons are explicitly woken up when (a) the pending number
332  *	of dirty buffers exceeds the recovery and stall mid-point value,
333  *	(b) during bwillwrite() or (c) buf freelist was exhausted.
334  *
335  *	The buffer daemons will generally not stop flushing until the dirty
336  *	buffer count goes below lodirtybuffers.
337  */
338 static __inline__
339 void
340 bd_wakeup(int dirtybuflevel)
341 {
342 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
343 		spin_lock_wr(&needsbuffer_spin);
344 		bd_request = 1;
345 		spin_unlock_wr(&needsbuffer_spin);
346 		wakeup(&bd_request);
347 	}
348 	if (bd_request_hw == 0 && numdirtybuffershw >= dirtybuflevel) {
349 		spin_lock_wr(&needsbuffer_spin);
350 		bd_request_hw = 1;
351 		spin_unlock_wr(&needsbuffer_spin);
352 		wakeup(&bd_request_hw);
353 	}
354 }
355 
356 /*
357  * bd_speedup:
358  *
359  *	Speed up the buffer cache flushing process.
360  */
361 
362 static __inline__
363 void
364 bd_speedup(void)
365 {
366 	bd_wakeup(1);
367 }
368 
369 /*
370  * bufinit:
371  *
372  *	Load time initialisation of the buffer cache, called from machine
373  *	dependant initialization code.
374  */
375 void
376 bufinit(void)
377 {
378 	struct buf *bp;
379 	vm_offset_t bogus_offset;
380 	int i;
381 
382 	spin_init(&needsbuffer_spin);
383 
384 	/* next, make a null set of free lists */
385 	for (i = 0; i < BUFFER_QUEUES; i++)
386 		TAILQ_INIT(&bufqueues[i]);
387 
388 	/* finally, initialize each buffer header and stick on empty q */
389 	for (i = 0; i < nbuf; i++) {
390 		bp = &buf[i];
391 		bzero(bp, sizeof *bp);
392 		bp->b_flags = B_INVAL;	/* we're just an empty header */
393 		bp->b_cmd = BUF_CMD_DONE;
394 		bp->b_qindex = BQUEUE_EMPTY;
395 		initbufbio(bp);
396 		xio_init(&bp->b_xio);
397 		buf_dep_init(bp);
398 		BUF_LOCKINIT(bp);
399 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
400 	}
401 
402 	/*
403 	 * maxbufspace is the absolute maximum amount of buffer space we are
404 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
405 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
406 	 * used by most other processes.  The differential is required to
407 	 * ensure that buf_daemon is able to run when other processes might
408 	 * be blocked waiting for buffer space.
409 	 *
410 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
411 	 * this may result in KVM fragmentation which is not handled optimally
412 	 * by the system.
413 	 */
414 	maxbufspace = nbuf * BKVASIZE;
415 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
416 	lobufspace = hibufspace - MAXBSIZE;
417 
418 	lorunningspace = 512 * 1024;
419 	hirunningspace = 1024 * 1024;
420 
421 /*
422  * Limit the amount of malloc memory since it is wired permanently into
423  * the kernel space.  Even though this is accounted for in the buffer
424  * allocation, we don't want the malloced region to grow uncontrolled.
425  * The malloc scheme improves memory utilization significantly on average
426  * (small) directories.
427  */
428 	maxbufmallocspace = hibufspace / 20;
429 
430 /*
431  * Reduce the chance of a deadlock occuring by limiting the number
432  * of delayed-write dirty buffers we allow to stack up.
433  */
434 	hidirtybuffers = nbuf / 4 + 20;
435 	numdirtybuffers = 0;
436 	numdirtybuffershw = 0;
437 /*
438  * To support extreme low-memory systems, make sure hidirtybuffers cannot
439  * eat up all available buffer space.  This occurs when our minimum cannot
440  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
441  * BKVASIZE'd (8K) buffers.
442  */
443 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
444 		hidirtybuffers >>= 1;
445 	}
446 	lodirtybuffers = hidirtybuffers / 2;
447 
448 /*
449  * Try to keep the number of free buffers in the specified range,
450  * and give special processes (e.g. like buf_daemon) access to an
451  * emergency reserve.
452  */
453 	lofreebuffers = nbuf / 18 + 5;
454 	hifreebuffers = 2 * lofreebuffers;
455 	numfreebuffers = nbuf;
456 
457 /*
458  * Maximum number of async ops initiated per buf_daemon loop.  This is
459  * somewhat of a hack at the moment, we really need to limit ourselves
460  * based on the number of bytes of I/O in-transit that were initiated
461  * from buf_daemon.
462  */
463 
464 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
465 	bogus_page = vm_page_alloc(&kernel_object,
466 				   (bogus_offset >> PAGE_SHIFT),
467 				   VM_ALLOC_NORMAL);
468 	vmstats.v_wire_count++;
469 
470 }
471 
472 /*
473  * Initialize the embedded bio structures
474  */
475 void
476 initbufbio(struct buf *bp)
477 {
478 	bp->b_bio1.bio_buf = bp;
479 	bp->b_bio1.bio_prev = NULL;
480 	bp->b_bio1.bio_offset = NOOFFSET;
481 	bp->b_bio1.bio_next = &bp->b_bio2;
482 	bp->b_bio1.bio_done = NULL;
483 
484 	bp->b_bio2.bio_buf = bp;
485 	bp->b_bio2.bio_prev = &bp->b_bio1;
486 	bp->b_bio2.bio_offset = NOOFFSET;
487 	bp->b_bio2.bio_next = NULL;
488 	bp->b_bio2.bio_done = NULL;
489 }
490 
491 /*
492  * Reinitialize the embedded bio structures as well as any additional
493  * translation cache layers.
494  */
495 void
496 reinitbufbio(struct buf *bp)
497 {
498 	struct bio *bio;
499 
500 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
501 		bio->bio_done = NULL;
502 		bio->bio_offset = NOOFFSET;
503 	}
504 }
505 
506 /*
507  * Push another BIO layer onto an existing BIO and return it.  The new
508  * BIO layer may already exist, holding cached translation data.
509  */
510 struct bio *
511 push_bio(struct bio *bio)
512 {
513 	struct bio *nbio;
514 
515 	if ((nbio = bio->bio_next) == NULL) {
516 		int index = bio - &bio->bio_buf->b_bio_array[0];
517 		if (index >= NBUF_BIO - 1) {
518 			panic("push_bio: too many layers bp %p\n",
519 				bio->bio_buf);
520 		}
521 		nbio = &bio->bio_buf->b_bio_array[index + 1];
522 		bio->bio_next = nbio;
523 		nbio->bio_prev = bio;
524 		nbio->bio_buf = bio->bio_buf;
525 		nbio->bio_offset = NOOFFSET;
526 		nbio->bio_done = NULL;
527 		nbio->bio_next = NULL;
528 	}
529 	KKASSERT(nbio->bio_done == NULL);
530 	return(nbio);
531 }
532 
533 void
534 pop_bio(struct bio *bio)
535 {
536 	/* NOP */
537 }
538 
539 void
540 clearbiocache(struct bio *bio)
541 {
542 	while (bio) {
543 		bio->bio_offset = NOOFFSET;
544 		bio = bio->bio_next;
545 	}
546 }
547 
548 /*
549  * bfreekva:
550  *
551  *	Free the KVA allocation for buffer 'bp'.
552  *
553  *	Must be called from a critical section as this is the only locking for
554  *	buffer_map.
555  *
556  *	Since this call frees up buffer space, we call bufspacewakeup().
557  */
558 static void
559 bfreekva(struct buf *bp)
560 {
561 	int count;
562 
563 	if (bp->b_kvasize) {
564 		++buffreekvacnt;
565 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
566 		vm_map_lock(&buffer_map);
567 		bufspace -= bp->b_kvasize;
568 		vm_map_delete(&buffer_map,
569 		    (vm_offset_t) bp->b_kvabase,
570 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
571 		    &count
572 		);
573 		vm_map_unlock(&buffer_map);
574 		vm_map_entry_release(count);
575 		bp->b_kvasize = 0;
576 		bufspacewakeup();
577 	}
578 }
579 
580 /*
581  * bremfree:
582  *
583  *	Remove the buffer from the appropriate free list.
584  */
585 void
586 bremfree(struct buf *bp)
587 {
588 	int old_qindex;
589 
590 	crit_enter();
591 	old_qindex = bp->b_qindex;
592 
593 	if (bp->b_qindex != BQUEUE_NONE) {
594 		KASSERT(BUF_REFCNTNB(bp) == 1,
595 				("bremfree: bp %p not locked",bp));
596 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
597 		bp->b_qindex = BQUEUE_NONE;
598 	} else {
599 		if (BUF_REFCNTNB(bp) <= 1)
600 			panic("bremfree: removing a buffer not on a queue");
601 	}
602 
603 	/*
604 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
605 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
606 	 * the buffer was free and we must decrement numfreebuffers.
607 	 */
608 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
609 		switch(old_qindex) {
610 		case BQUEUE_DIRTY:
611 		case BQUEUE_DIRTY_HW:
612 		case BQUEUE_CLEAN:
613 		case BQUEUE_EMPTY:
614 		case BQUEUE_EMPTYKVA:
615 			--numfreebuffers;
616 			break;
617 		default:
618 			break;
619 		}
620 	}
621 	crit_exit();
622 }
623 
624 
625 /*
626  * bread:
627  *
628  *	Get a buffer with the specified data.  Look in the cache first.  We
629  *	must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
630  *	is set, the buffer is valid and we do not have to do anything ( see
631  *	getblk() ).
632  */
633 int
634 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
635 {
636 	struct buf *bp;
637 
638 	bp = getblk(vp, loffset, size, 0, 0);
639 	*bpp = bp;
640 
641 	/* if not found in cache, do some I/O */
642 	if ((bp->b_flags & B_CACHE) == 0) {
643 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
644 		bp->b_flags &= ~(B_ERROR | B_INVAL);
645 		bp->b_cmd = BUF_CMD_READ;
646 		vfs_busy_pages(vp, bp);
647 		vn_strategy(vp, &bp->b_bio1);
648 		return (biowait(bp));
649 	}
650 	return (0);
651 }
652 
653 /*
654  * breadn:
655  *
656  *	Operates like bread, but also starts asynchronous I/O on
657  *	read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
658  *	to initiating I/O . If B_CACHE is set, the buffer is valid
659  *	and we do not have to do anything.
660  */
661 int
662 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
663 	int *rabsize, int cnt, struct buf **bpp)
664 {
665 	struct buf *bp, *rabp;
666 	int i;
667 	int rv = 0, readwait = 0;
668 
669 	*bpp = bp = getblk(vp, loffset, size, 0, 0);
670 
671 	/* if not found in cache, do some I/O */
672 	if ((bp->b_flags & B_CACHE) == 0) {
673 		bp->b_flags &= ~(B_ERROR | B_INVAL);
674 		bp->b_cmd = BUF_CMD_READ;
675 		vfs_busy_pages(vp, bp);
676 		vn_strategy(vp, &bp->b_bio1);
677 		++readwait;
678 	}
679 
680 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
681 		if (inmem(vp, *raoffset))
682 			continue;
683 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
684 
685 		if ((rabp->b_flags & B_CACHE) == 0) {
686 			rabp->b_flags |= B_ASYNC;
687 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
688 			rabp->b_cmd = BUF_CMD_READ;
689 			vfs_busy_pages(vp, rabp);
690 			BUF_KERNPROC(rabp);
691 			vn_strategy(vp, &rabp->b_bio1);
692 		} else {
693 			brelse(rabp);
694 		}
695 	}
696 
697 	if (readwait) {
698 		rv = biowait(bp);
699 	}
700 	return (rv);
701 }
702 
703 /*
704  * bwrite:
705  *
706  *	Write, release buffer on completion.  (Done by iodone
707  *	if async).  Do not bother writing anything if the buffer
708  *	is invalid.
709  *
710  *	Note that we set B_CACHE here, indicating that buffer is
711  *	fully valid and thus cacheable.  This is true even of NFS
712  *	now so we set it generally.  This could be set either here
713  *	or in biodone() since the I/O is synchronous.  We put it
714  *	here.
715  */
716 int
717 bwrite(struct buf *bp)
718 {
719 	int oldflags;
720 
721 	if (bp->b_flags & B_INVAL) {
722 		brelse(bp);
723 		return (0);
724 	}
725 
726 	oldflags = bp->b_flags;
727 
728 	if (BUF_REFCNTNB(bp) == 0)
729 		panic("bwrite: buffer is not busy???");
730 	crit_enter();
731 
732 	/* Mark the buffer clean */
733 	bundirty(bp);
734 
735 	bp->b_flags &= ~B_ERROR;
736 	bp->b_flags |= B_CACHE;
737 	bp->b_cmd = BUF_CMD_WRITE;
738 	vfs_busy_pages(bp->b_vp, bp);
739 
740 	/*
741 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
742 	 * valid for vnode-backed buffers.
743 	 */
744 	bp->b_runningbufspace = bp->b_bufsize;
745 	runningbufspace += bp->b_runningbufspace;
746 
747 	crit_exit();
748 	if (oldflags & B_ASYNC)
749 		BUF_KERNPROC(bp);
750 	vn_strategy(bp->b_vp, &bp->b_bio1);
751 
752 	if ((oldflags & B_ASYNC) == 0) {
753 		int rtval = biowait(bp);
754 		brelse(bp);
755 		return (rtval);
756 	} else if ((oldflags & B_NOWDRAIN) == 0) {
757 		/*
758 		 * don't allow the async write to saturate the I/O
759 		 * system.  Deadlocks can occur only if a device strategy
760 		 * routine (like in VN) turns around and issues another
761 		 * high-level write, in which case B_NOWDRAIN is expected
762 		 * to be set.   Otherwise we will not deadlock here because
763 		 * we are blocking waiting for I/O that is already in-progress
764 		 * to complete.
765 		 */
766 		waitrunningbufspace();
767 	}
768 
769 	return (0);
770 }
771 
772 /*
773  * bdwrite:
774  *
775  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
776  *	anything if the buffer is marked invalid.
777  *
778  *	Note that since the buffer must be completely valid, we can safely
779  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
780  *	biodone() in order to prevent getblk from writing the buffer
781  *	out synchronously.
782  */
783 void
784 bdwrite(struct buf *bp)
785 {
786 	if (BUF_REFCNTNB(bp) == 0)
787 		panic("bdwrite: buffer is not busy");
788 
789 	if (bp->b_flags & B_INVAL) {
790 		brelse(bp);
791 		return;
792 	}
793 	bdirty(bp);
794 
795 	/*
796 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
797 	 * true even of NFS now.
798 	 */
799 	bp->b_flags |= B_CACHE;
800 
801 	/*
802 	 * This bmap keeps the system from needing to do the bmap later,
803 	 * perhaps when the system is attempting to do a sync.  Since it
804 	 * is likely that the indirect block -- or whatever other datastructure
805 	 * that the filesystem needs is still in memory now, it is a good
806 	 * thing to do this.  Note also, that if the pageout daemon is
807 	 * requesting a sync -- there might not be enough memory to do
808 	 * the bmap then...  So, this is important to do.
809 	 */
810 	if (bp->b_bio2.bio_offset == NOOFFSET) {
811 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
812 			 NULL, NULL);
813 	}
814 
815 	/*
816 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
817 	 */
818 	vfs_setdirty(bp);
819 
820 	/*
821 	 * We need to do this here to satisfy the vnode_pager and the
822 	 * pageout daemon, so that it thinks that the pages have been
823 	 * "cleaned".  Note that since the pages are in a delayed write
824 	 * buffer -- the VFS layer "will" see that the pages get written
825 	 * out on the next sync, or perhaps the cluster will be completed.
826 	 */
827 	vfs_clean_pages(bp);
828 	bqrelse(bp);
829 
830 	/*
831 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
832 	 * buffers (midpoint between our recovery point and our stall
833 	 * point).
834 	 */
835 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
836 
837 	/*
838 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
839 	 * due to the softdep code.
840 	 */
841 }
842 
843 /*
844  * bdirty:
845  *
846  *	Turn buffer into delayed write request by marking it B_DELWRI.
847  *	B_RELBUF and B_NOCACHE must be cleared.
848  *
849  *	We reassign the buffer to itself to properly update it in the
850  *	dirty/clean lists.
851  *
852  *	Since the buffer is not on a queue, we do not update the
853  *	numfreebuffers count.
854  *
855  *	Must be called from a critical section.
856  *	The buffer must be on BQUEUE_NONE.
857  */
858 void
859 bdirty(struct buf *bp)
860 {
861 	KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
862 	if (bp->b_flags & B_NOCACHE) {
863 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
864 		bp->b_flags &= ~B_NOCACHE;
865 	}
866 	if (bp->b_flags & B_INVAL) {
867 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
868 	}
869 	bp->b_flags &= ~B_RELBUF;
870 
871 	if ((bp->b_flags & B_DELWRI) == 0) {
872 		bp->b_flags |= B_DELWRI;
873 		reassignbuf(bp);
874 		++numdirtybuffers;
875 		if (bp->b_flags & B_HEAVY)
876 			++numdirtybuffershw;
877 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
878 	}
879 }
880 
881 /*
882  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
883  * needs to be flushed with a different buf_daemon thread to avoid
884  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
885  */
886 void
887 bheavy(struct buf *bp)
888 {
889 	if ((bp->b_flags & B_HEAVY) == 0) {
890 		bp->b_flags |= B_HEAVY;
891 		if (bp->b_flags & B_DELWRI)
892 			++numdirtybuffershw;
893 	}
894 }
895 
896 /*
897  * bundirty:
898  *
899  *	Clear B_DELWRI for buffer.
900  *
901  *	Since the buffer is not on a queue, we do not update the numfreebuffers
902  *	count.
903  *
904  *	Must be called from a critical section.
905  *
906  *	The buffer is typically on BQUEUE_NONE but there is one case in
907  *	brelse() that calls this function after placing the buffer on
908  *	a different queue.
909  */
910 
911 void
912 bundirty(struct buf *bp)
913 {
914 	if (bp->b_flags & B_DELWRI) {
915 		bp->b_flags &= ~B_DELWRI;
916 		reassignbuf(bp);
917 		--numdirtybuffers;
918 		if (bp->b_flags & B_HEAVY)
919 			--numdirtybuffershw;
920 		numdirtywakeup();
921 	}
922 	/*
923 	 * Since it is now being written, we can clear its deferred write flag.
924 	 */
925 	bp->b_flags &= ~B_DEFERRED;
926 }
927 
928 /*
929  * bawrite:
930  *
931  *	Asynchronous write.  Start output on a buffer, but do not wait for
932  *	it to complete.  The buffer is released when the output completes.
933  *
934  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
935  *	B_INVAL buffers.  Not us.
936  */
937 void
938 bawrite(struct buf *bp)
939 {
940 	bp->b_flags |= B_ASYNC;
941 	bwrite(bp);
942 }
943 
944 /*
945  * bowrite:
946  *
947  *	Ordered write.  Start output on a buffer, and flag it so that the
948  *	device will write it in the order it was queued.  The buffer is
949  *	released when the output completes.  bwrite() ( or the VOP routine
950  *	anyway ) is responsible for handling B_INVAL buffers.
951  */
952 int
953 bowrite(struct buf *bp)
954 {
955 	bp->b_flags |= B_ORDERED | B_ASYNC;
956 	return (bwrite(bp));
957 }
958 
959 /*
960  * bwillwrite:
961  *
962  *	Called prior to the locking of any vnodes when we are expecting to
963  *	write.  We do not want to starve the buffer cache with too many
964  *	dirty buffers so we block here.  By blocking prior to the locking
965  *	of any vnodes we attempt to avoid the situation where a locked vnode
966  *	prevents the various system daemons from flushing related buffers.
967  */
968 void
969 bwillwrite(void)
970 {
971 	if (numdirtybuffers >= hidirtybuffers) {
972 		while (numdirtybuffers >= hidirtybuffers) {
973 			bd_wakeup(1);
974 			spin_lock_wr(&needsbuffer_spin);
975 			if (numdirtybuffers >= hidirtybuffers) {
976 				needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
977 				msleep(&needsbuffer, &needsbuffer_spin, 0,
978 				       "flswai", 0);
979 			}
980 			spin_unlock_wr(&needsbuffer_spin);
981 		}
982 	}
983 }
984 
985 /*
986  * buf_dirty_count_severe:
987  *
988  *	Return true if we have too many dirty buffers.
989  */
990 int
991 buf_dirty_count_severe(void)
992 {
993 	return(numdirtybuffers >= hidirtybuffers);
994 }
995 
996 /*
997  * brelse:
998  *
999  *	Release a busy buffer and, if requested, free its resources.  The
1000  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1001  *	to be accessed later as a cache entity or reused for other purposes.
1002  */
1003 void
1004 brelse(struct buf *bp)
1005 {
1006 #ifdef INVARIANTS
1007 	int saved_flags = bp->b_flags;
1008 #endif
1009 
1010 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1011 
1012 	crit_enter();
1013 
1014 	/*
1015 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1016 	 * its backing store.  Clear B_DELWRI.
1017 	 *
1018 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1019 	 * to destroy the buffer and backing store and (2) when the caller
1020 	 * wants to destroy the buffer and backing store after a write
1021 	 * completes.
1022 	 */
1023 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1024 		bundirty(bp);
1025 	}
1026 
1027 	if (bp->b_flags & B_LOCKED)
1028 		bp->b_flags &= ~B_ERROR;
1029 
1030 	/*
1031 	 * If a write error occurs and the caller does not want to throw
1032 	 * away the buffer, redirty the buffer.  This will also clear
1033 	 * B_NOCACHE.
1034 	 */
1035 	if (bp->b_cmd == BUF_CMD_WRITE &&
1036 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
1037 		/*
1038 		 * Failed write, redirty.  Must clear B_ERROR to prevent
1039 		 * pages from being scrapped.  If B_INVAL is set then
1040 		 * this case is not run and the next case is run to
1041 		 * destroy the buffer.  B_INVAL can occur if the buffer
1042 		 * is outside the range supported by the underlying device.
1043 		 */
1044 		bp->b_flags &= ~B_ERROR;
1045 		bdirty(bp);
1046 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1047 		   (bp->b_bufsize <= 0) || bp->b_cmd == BUF_CMD_FREEBLKS) {
1048 		/*
1049 		 * Either a failed I/O or we were asked to free or not
1050 		 * cache the buffer.
1051 		 *
1052 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1053 		 * buffer cannot be immediately freed.
1054 		 */
1055 		bp->b_flags |= B_INVAL;
1056 		if (LIST_FIRST(&bp->b_dep) != NULL)
1057 			buf_deallocate(bp);
1058 		if (bp->b_flags & B_DELWRI) {
1059 			--numdirtybuffers;
1060 			if (bp->b_flags & B_HEAVY)
1061 				--numdirtybuffershw;
1062 			numdirtywakeup();
1063 		}
1064 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1065 	}
1066 
1067 	/*
1068 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1069 	 * If vfs_vmio_release() is called with either bit set, the
1070 	 * underlying pages may wind up getting freed causing a previous
1071 	 * write (bdwrite()) to get 'lost' because pages associated with
1072 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1073 	 * B_LOCKED buffer may be mapped by the filesystem.
1074 	 *
1075 	 * If we want to release the buffer ourselves (rather then the
1076 	 * originator asking us to release it), give the originator a
1077 	 * chance to countermand the release by setting B_LOCKED.
1078 	 *
1079 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1080 	 * if B_DELWRI is set.
1081 	 *
1082 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1083 	 * on pages to return pages to the VM page queues.
1084 	 */
1085 	if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1086 		bp->b_flags &= ~B_RELBUF;
1087 	} else if (vm_page_count_severe()) {
1088 		buf_deallocate(bp);
1089 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1090 			bp->b_flags &= ~B_RELBUF;
1091 		else
1092 			bp->b_flags |= B_RELBUF;
1093 	}
1094 
1095 	/*
1096 	 * At this point destroying the buffer is governed by the B_INVAL
1097 	 * or B_RELBUF flags.
1098 	 */
1099 	bp->b_cmd = BUF_CMD_DONE;
1100 
1101 	/*
1102 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1103 	 * after an I/O may have replaces some of the pages with bogus pages
1104 	 * in order to not destroy dirty pages in a fill-in read.
1105 	 *
1106 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1107 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1108 	 * B_INVAL may still be set, however.
1109 	 *
1110 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1111 	 * but not the backing store.   B_NOCACHE will destroy the backing
1112 	 * store.
1113 	 *
1114 	 * Note that dirty NFS buffers contain byte-granular write ranges
1115 	 * and should not be destroyed w/ B_INVAL even if the backing store
1116 	 * is left intact.
1117 	 */
1118 	if (bp->b_flags & B_VMIO) {
1119 		/*
1120 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1121 		 */
1122 		int i, j, resid;
1123 		vm_page_t m;
1124 		off_t foff;
1125 		vm_pindex_t poff;
1126 		vm_object_t obj;
1127 		struct vnode *vp;
1128 
1129 		vp = bp->b_vp;
1130 
1131 		/*
1132 		 * Get the base offset and length of the buffer.  Note that
1133 		 * in the VMIO case if the buffer block size is not
1134 		 * page-aligned then b_data pointer may not be page-aligned.
1135 		 * But our b_xio.xio_pages array *IS* page aligned.
1136 		 *
1137 		 * block sizes less then DEV_BSIZE (usually 512) are not
1138 		 * supported due to the page granularity bits (m->valid,
1139 		 * m->dirty, etc...).
1140 		 *
1141 		 * See man buf(9) for more information
1142 		 */
1143 
1144 		resid = bp->b_bufsize;
1145 		foff = bp->b_loffset;
1146 
1147 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1148 			m = bp->b_xio.xio_pages[i];
1149 			vm_page_flag_clear(m, PG_ZERO);
1150 			/*
1151 			 * If we hit a bogus page, fixup *all* of them
1152 			 * now.  Note that we left these pages wired
1153 			 * when we removed them so they had better exist,
1154 			 * and they cannot be ripped out from under us so
1155 			 * no critical section protection is necessary.
1156 			 */
1157 			if (m == bogus_page) {
1158 				obj = vp->v_object;
1159 				poff = OFF_TO_IDX(bp->b_loffset);
1160 
1161 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1162 					vm_page_t mtmp;
1163 
1164 					mtmp = bp->b_xio.xio_pages[j];
1165 					if (mtmp == bogus_page) {
1166 						mtmp = vm_page_lookup(obj, poff + j);
1167 						if (!mtmp) {
1168 							panic("brelse: page missing");
1169 						}
1170 						bp->b_xio.xio_pages[j] = mtmp;
1171 					}
1172 				}
1173 
1174 				if ((bp->b_flags & B_INVAL) == 0) {
1175 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1176 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1177 				}
1178 				m = bp->b_xio.xio_pages[i];
1179 			}
1180 
1181 			/*
1182 			 * Invalidate the backing store if B_NOCACHE is set
1183 			 * (e.g. used with vinvalbuf()).  If this is NFS
1184 			 * we impose a requirement that the block size be
1185 			 * a multiple of PAGE_SIZE and create a temporary
1186 			 * hack to basically invalidate the whole page.  The
1187 			 * problem is that NFS uses really odd buffer sizes
1188 			 * especially when tracking piecemeal writes and
1189 			 * it also vinvalbuf()'s a lot, which would result
1190 			 * in only partial page validation and invalidation
1191 			 * here.  If the file page is mmap()'d, however,
1192 			 * all the valid bits get set so after we invalidate
1193 			 * here we would end up with weird m->valid values
1194 			 * like 0xfc.  nfs_getpages() can't handle this so
1195 			 * we clear all the valid bits for the NFS case
1196 			 * instead of just some of them.
1197 			 *
1198 			 * The real bug is the VM system having to set m->valid
1199 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1200 			 * itself is an artifact of the whole 512-byte
1201 			 * granular mess that exists to support odd block
1202 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1203 			 * A complete rewrite is required.
1204 			 */
1205 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1206 				int poffset = foff & PAGE_MASK;
1207 				int presid;
1208 
1209 				presid = PAGE_SIZE - poffset;
1210 				if (bp->b_vp->v_tag == VT_NFS &&
1211 				    bp->b_vp->v_type == VREG) {
1212 					; /* entire page */
1213 				} else if (presid > resid) {
1214 					presid = resid;
1215 				}
1216 				KASSERT(presid >= 0, ("brelse: extra page"));
1217 				vm_page_set_invalid(m, poffset, presid);
1218 			}
1219 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1220 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1221 		}
1222 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1223 			vfs_vmio_release(bp);
1224 	} else {
1225 		/*
1226 		 * Rundown for non-VMIO buffers.
1227 		 */
1228 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1229 #if 0
1230 			if (bp->b_vp)
1231 				kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1232 #endif
1233 			if (bp->b_bufsize)
1234 				allocbuf(bp, 0);
1235 			if (bp->b_vp)
1236 				brelvp(bp);
1237 		}
1238 	}
1239 
1240 	if (bp->b_qindex != BQUEUE_NONE)
1241 		panic("brelse: free buffer onto another queue???");
1242 	if (BUF_REFCNTNB(bp) > 1) {
1243 		/* Temporary panic to verify exclusive locking */
1244 		/* This panic goes away when we allow shared refs */
1245 		panic("brelse: multiple refs");
1246 		/* do not release to free list */
1247 		BUF_UNLOCK(bp);
1248 		crit_exit();
1249 		return;
1250 	}
1251 
1252 	/*
1253 	 * Figure out the correct queue to place the cleaned up buffer on.
1254 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1255 	 * disassociated from their vnode.
1256 	 */
1257 	if (bp->b_flags & B_LOCKED) {
1258 		/*
1259 		 * Buffers that are locked are placed in the locked queue
1260 		 * immediately, regardless of their state.
1261 		 */
1262 		bp->b_qindex = BQUEUE_LOCKED;
1263 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1264 	} else if (bp->b_bufsize == 0) {
1265 		/*
1266 		 * Buffers with no memory.  Due to conditionals near the top
1267 		 * of brelse() such buffers should probably already be
1268 		 * marked B_INVAL and disassociated from their vnode.
1269 		 */
1270 		bp->b_flags |= B_INVAL;
1271 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1272 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1273 		if (bp->b_kvasize) {
1274 			bp->b_qindex = BQUEUE_EMPTYKVA;
1275 		} else {
1276 			bp->b_qindex = BQUEUE_EMPTY;
1277 		}
1278 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1279 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1280 		/*
1281 		 * Buffers with junk contents.   Again these buffers had better
1282 		 * already be disassociated from their vnode.
1283 		 */
1284 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1285 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1286 		bp->b_flags |= B_INVAL;
1287 		bp->b_qindex = BQUEUE_CLEAN;
1288 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1289 	} else {
1290 		/*
1291 		 * Remaining buffers.  These buffers are still associated with
1292 		 * their vnode.
1293 		 */
1294 		switch(bp->b_flags & (B_DELWRI|B_HEAVY|B_AGE)) {
1295 		case B_DELWRI | B_AGE:
1296 		    bp->b_qindex = BQUEUE_DIRTY;
1297 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1298 		    break;
1299 		case B_DELWRI:
1300 		    bp->b_qindex = BQUEUE_DIRTY;
1301 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1302 		    break;
1303 		case B_DELWRI | B_HEAVY | B_AGE:
1304 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1305 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY_HW], bp,
1306 				      b_freelist);
1307 		    break;
1308 		case B_DELWRI | B_HEAVY:
1309 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1310 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1311 				      b_freelist);
1312 		    break;
1313 		case B_HEAVY | B_AGE:
1314 		case B_AGE:
1315 		    bp->b_qindex = BQUEUE_CLEAN;
1316 		    TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1317 		    break;
1318 		default:
1319 		    bp->b_qindex = BQUEUE_CLEAN;
1320 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1321 		    break;
1322 		}
1323 	}
1324 
1325 	/*
1326 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1327 	 * on the correct queue.
1328 	 */
1329 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1330 		bundirty(bp);
1331 
1332 	/*
1333 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1334 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1335 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1336 	 * if B_INVAL is set ).
1337 	 */
1338 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1339 		bufcountwakeup();
1340 
1341 	/*
1342 	 * Something we can maybe free or reuse
1343 	 */
1344 	if (bp->b_bufsize || bp->b_kvasize)
1345 		bufspacewakeup();
1346 
1347 	/*
1348 	 * Clean up temporary flags and unlock the buffer.
1349 	 */
1350 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1351 			B_DIRECT | B_NOWDRAIN);
1352 	BUF_UNLOCK(bp);
1353 	crit_exit();
1354 }
1355 
1356 /*
1357  * bqrelse:
1358  *
1359  *	Release a buffer back to the appropriate queue but do not try to free
1360  *	it.  The buffer is expected to be used again soon.
1361  *
1362  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1363  *	biodone() to requeue an async I/O on completion.  It is also used when
1364  *	known good buffers need to be requeued but we think we may need the data
1365  *	again soon.
1366  *
1367  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1368  */
1369 void
1370 bqrelse(struct buf *bp)
1371 {
1372 	crit_enter();
1373 
1374 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1375 
1376 	if (bp->b_qindex != BQUEUE_NONE)
1377 		panic("bqrelse: free buffer onto another queue???");
1378 	if (BUF_REFCNTNB(bp) > 1) {
1379 		/* do not release to free list */
1380 		panic("bqrelse: multiple refs");
1381 		BUF_UNLOCK(bp);
1382 		crit_exit();
1383 		return;
1384 	}
1385 	if (bp->b_flags & B_LOCKED) {
1386 		/*
1387 		 * Locked buffers are released to the locked queue.  However,
1388 		 * if the buffer is dirty it will first go into the dirty
1389 		 * queue and later on after the I/O completes successfully it
1390 		 * will be released to the locked queue.
1391 		 */
1392 		bp->b_flags &= ~B_ERROR;
1393 		bp->b_qindex = BQUEUE_LOCKED;
1394 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1395 	} else if (bp->b_flags & B_DELWRI) {
1396 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1397 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1398 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1399 	} else if (vm_page_count_severe()) {
1400 		/*
1401 		 * We are too low on memory, we have to try to free the
1402 		 * buffer (most importantly: the wired pages making up its
1403 		 * backing store) *now*.
1404 		 */
1405 		crit_exit();
1406 		brelse(bp);
1407 		return;
1408 	} else {
1409 		bp->b_qindex = BQUEUE_CLEAN;
1410 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1411 	}
1412 
1413 	if ((bp->b_flags & B_LOCKED) == 0 &&
1414 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1415 		bufcountwakeup();
1416 	}
1417 
1418 	/*
1419 	 * Something we can maybe free or reuse.
1420 	 */
1421 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1422 		bufspacewakeup();
1423 
1424 	/*
1425 	 * Final cleanup and unlock.  Clear bits that are only used while a
1426 	 * buffer is actively locked.
1427 	 */
1428 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1429 	BUF_UNLOCK(bp);
1430 	crit_exit();
1431 }
1432 
1433 /*
1434  * vfs_vmio_release:
1435  *
1436  *	Return backing pages held by the buffer 'bp' back to the VM system
1437  *	if possible.  The pages are freed if they are no longer valid or
1438  *	attempt to free if it was used for direct I/O otherwise they are
1439  *	sent to the page cache.
1440  *
1441  *	Pages that were marked busy are left alone and skipped.
1442  *
1443  *	The KVA mapping (b_data) for the underlying pages is removed by
1444  *	this function.
1445  */
1446 static void
1447 vfs_vmio_release(struct buf *bp)
1448 {
1449 	int i;
1450 	vm_page_t m;
1451 
1452 	crit_enter();
1453 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1454 		m = bp->b_xio.xio_pages[i];
1455 		bp->b_xio.xio_pages[i] = NULL;
1456 		/*
1457 		 * In order to keep page LRU ordering consistent, put
1458 		 * everything on the inactive queue.
1459 		 */
1460 		vm_page_unwire(m, 0);
1461 		/*
1462 		 * We don't mess with busy pages, it is
1463 		 * the responsibility of the process that
1464 		 * busied the pages to deal with them.
1465 		 */
1466 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1467 			continue;
1468 
1469 		if (m->wire_count == 0) {
1470 			vm_page_flag_clear(m, PG_ZERO);
1471 			/*
1472 			 * Might as well free the page if we can and it has
1473 			 * no valid data.  We also free the page if the
1474 			 * buffer was used for direct I/O.
1475 			 */
1476 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1477 					m->hold_count == 0) {
1478 				vm_page_busy(m);
1479 				vm_page_protect(m, VM_PROT_NONE);
1480 				vm_page_free(m);
1481 			} else if (bp->b_flags & B_DIRECT) {
1482 				vm_page_try_to_free(m);
1483 			} else if (vm_page_count_severe()) {
1484 				vm_page_try_to_cache(m);
1485 			}
1486 		}
1487 	}
1488 	crit_exit();
1489 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1490 	if (bp->b_bufsize) {
1491 		bufspacewakeup();
1492 		bp->b_bufsize = 0;
1493 	}
1494 	bp->b_xio.xio_npages = 0;
1495 	bp->b_flags &= ~B_VMIO;
1496 	if (bp->b_vp)
1497 		brelvp(bp);
1498 }
1499 
1500 /*
1501  * vfs_bio_awrite:
1502  *
1503  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1504  *	This is much better then the old way of writing only one buffer at
1505  *	a time.  Note that we may not be presented with the buffers in the
1506  *	correct order, so we search for the cluster in both directions.
1507  *
1508  *	The buffer is locked on call.
1509  */
1510 int
1511 vfs_bio_awrite(struct buf *bp)
1512 {
1513 	int i;
1514 	int j;
1515 	off_t loffset = bp->b_loffset;
1516 	struct vnode *vp = bp->b_vp;
1517 	int nbytes;
1518 	struct buf *bpa;
1519 	int nwritten;
1520 	int size;
1521 
1522 	crit_enter();
1523 	/*
1524 	 * right now we support clustered writing only to regular files.  If
1525 	 * we find a clusterable block we could be in the middle of a cluster
1526 	 * rather then at the beginning.
1527 	 *
1528 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1529 	 * to b_loffset.  b_bio2 contains the translated block number.
1530 	 */
1531 	if ((vp->v_type == VREG) &&
1532 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1533 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1534 
1535 		size = vp->v_mount->mnt_stat.f_iosize;
1536 
1537 		for (i = size; i < MAXPHYS; i += size) {
1538 			if ((bpa = findblk(vp, loffset + i)) &&
1539 			    BUF_REFCNT(bpa) == 0 &&
1540 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1541 			    (B_DELWRI | B_CLUSTEROK)) &&
1542 			    (bpa->b_bufsize == size)) {
1543 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1544 				    (bpa->b_bio2.bio_offset !=
1545 				     bp->b_bio2.bio_offset + i))
1546 					break;
1547 			} else {
1548 				break;
1549 			}
1550 		}
1551 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1552 			if ((bpa = findblk(vp, loffset - j)) &&
1553 			    BUF_REFCNT(bpa) == 0 &&
1554 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1555 			    (B_DELWRI | B_CLUSTEROK)) &&
1556 			    (bpa->b_bufsize == size)) {
1557 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1558 				    (bpa->b_bio2.bio_offset !=
1559 				     bp->b_bio2.bio_offset - j))
1560 					break;
1561 			} else {
1562 				break;
1563 			}
1564 		}
1565 		j -= size;
1566 		nbytes = (i + j);
1567 		/*
1568 		 * this is a possible cluster write
1569 		 */
1570 		if (nbytes != size) {
1571 			BUF_UNLOCK(bp);
1572 			nwritten = cluster_wbuild(vp, size,
1573 						  loffset - j, nbytes);
1574 			crit_exit();
1575 			return nwritten;
1576 		}
1577 	}
1578 
1579 	bremfree(bp);
1580 	bp->b_flags |= B_ASYNC;
1581 
1582 	crit_exit();
1583 	/*
1584 	 * default (old) behavior, writing out only one block
1585 	 *
1586 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1587 	 */
1588 	nwritten = bp->b_bufsize;
1589 	bwrite(bp);
1590 
1591 	return nwritten;
1592 }
1593 
1594 /*
1595  * getnewbuf:
1596  *
1597  *	Find and initialize a new buffer header, freeing up existing buffers
1598  *	in the bufqueues as necessary.  The new buffer is returned locked.
1599  *
1600  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1601  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1602  *
1603  *	We block if:
1604  *		We have insufficient buffer headers
1605  *		We have insufficient buffer space
1606  *		buffer_map is too fragmented ( space reservation fails )
1607  *		If we have to flush dirty buffers ( but we try to avoid this )
1608  *
1609  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1610  *	Instead we ask the buf daemon to do it for us.  We attempt to
1611  *	avoid piecemeal wakeups of the pageout daemon.
1612  */
1613 
1614 static struct buf *
1615 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1616 {
1617 	struct buf *bp;
1618 	struct buf *nbp;
1619 	int defrag = 0;
1620 	int nqindex;
1621 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1622 	static int flushingbufs;
1623 
1624 	/*
1625 	 * We can't afford to block since we might be holding a vnode lock,
1626 	 * which may prevent system daemons from running.  We deal with
1627 	 * low-memory situations by proactively returning memory and running
1628 	 * async I/O rather then sync I/O.
1629 	 */
1630 
1631 	++getnewbufcalls;
1632 	--getnewbufrestarts;
1633 restart:
1634 	++getnewbufrestarts;
1635 
1636 	/*
1637 	 * Setup for scan.  If we do not have enough free buffers,
1638 	 * we setup a degenerate case that immediately fails.  Note
1639 	 * that if we are specially marked process, we are allowed to
1640 	 * dip into our reserves.
1641 	 *
1642 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1643 	 *
1644 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1645 	 * However, there are a number of cases (defragging, reusing, ...)
1646 	 * where we cannot backup.
1647 	 */
1648 	nqindex = BQUEUE_EMPTYKVA;
1649 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1650 
1651 	if (nbp == NULL) {
1652 		/*
1653 		 * If no EMPTYKVA buffers and we are either
1654 		 * defragging or reusing, locate a CLEAN buffer
1655 		 * to free or reuse.  If bufspace useage is low
1656 		 * skip this step so we can allocate a new buffer.
1657 		 */
1658 		if (defrag || bufspace >= lobufspace) {
1659 			nqindex = BQUEUE_CLEAN;
1660 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1661 		}
1662 
1663 		/*
1664 		 * If we could not find or were not allowed to reuse a
1665 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1666 		 * buffer.  We can only use an EMPTY buffer if allocating
1667 		 * its KVA would not otherwise run us out of buffer space.
1668 		 */
1669 		if (nbp == NULL && defrag == 0 &&
1670 		    bufspace + maxsize < hibufspace) {
1671 			nqindex = BQUEUE_EMPTY;
1672 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1678 	 * depending.
1679 	 */
1680 
1681 	while ((bp = nbp) != NULL) {
1682 		int qindex = nqindex;
1683 
1684 		/*
1685 		 * Calculate next bp ( we can only use it if we do not block
1686 		 * or do other fancy things ).
1687 		 */
1688 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1689 			switch(qindex) {
1690 			case BQUEUE_EMPTY:
1691 				nqindex = BQUEUE_EMPTYKVA;
1692 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1693 					break;
1694 				/* fall through */
1695 			case BQUEUE_EMPTYKVA:
1696 				nqindex = BQUEUE_CLEAN;
1697 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1698 					break;
1699 				/* fall through */
1700 			case BQUEUE_CLEAN:
1701 				/*
1702 				 * nbp is NULL.
1703 				 */
1704 				break;
1705 			}
1706 		}
1707 
1708 		/*
1709 		 * Sanity Checks
1710 		 */
1711 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1712 
1713 		/*
1714 		 * Note: we no longer distinguish between VMIO and non-VMIO
1715 		 * buffers.
1716 		 */
1717 
1718 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1719 
1720 		/*
1721 		 * If we are defragging then we need a buffer with
1722 		 * b_kvasize != 0.  XXX this situation should no longer
1723 		 * occur, if defrag is non-zero the buffer's b_kvasize
1724 		 * should also be non-zero at this point.  XXX
1725 		 */
1726 		if (defrag && bp->b_kvasize == 0) {
1727 			kprintf("Warning: defrag empty buffer %p\n", bp);
1728 			continue;
1729 		}
1730 
1731 		/*
1732 		 * Start freeing the bp.  This is somewhat involved.  nbp
1733 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
1734 		 * on the clean list must be disassociated from their
1735 		 * current vnode.  Buffers on the empty[kva] lists have
1736 		 * already been disassociated.
1737 		 */
1738 
1739 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1740 			kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1741 			tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1742 			goto restart;
1743 		}
1744 		if (bp->b_qindex != qindex) {
1745 			kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1746 			BUF_UNLOCK(bp);
1747 			goto restart;
1748 		}
1749 		bremfree(bp);
1750 
1751 		/*
1752 		 * Dependancies must be handled before we disassociate the
1753 		 * vnode.
1754 		 *
1755 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1756 		 * be immediately disassociated.  HAMMER then becomes
1757 		 * responsible for releasing the buffer.
1758 		 */
1759 		if (LIST_FIRST(&bp->b_dep) != NULL) {
1760 			buf_deallocate(bp);
1761 			if (bp->b_flags & B_LOCKED) {
1762 				bqrelse(bp);
1763 				goto restart;
1764 			}
1765 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1766 		}
1767 
1768 		if (qindex == BQUEUE_CLEAN) {
1769 			if (bp->b_flags & B_VMIO) {
1770 				bp->b_flags &= ~B_ASYNC;
1771 				vfs_vmio_release(bp);
1772 			}
1773 			if (bp->b_vp)
1774 				brelvp(bp);
1775 		}
1776 
1777 		/*
1778 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1779 		 * the scan from this point on.
1780 		 *
1781 		 * Get the rest of the buffer freed up.  b_kva* is still
1782 		 * valid after this operation.
1783 		 */
1784 
1785 		KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1786 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1787 
1788 		/*
1789 		 * critical section protection is not required when
1790 		 * scrapping a buffer's contents because it is already
1791 		 * wired.
1792 		 */
1793 		if (bp->b_bufsize)
1794 			allocbuf(bp, 0);
1795 
1796 		bp->b_flags = B_BNOCLIP;
1797 		bp->b_cmd = BUF_CMD_DONE;
1798 		bp->b_vp = NULL;
1799 		bp->b_error = 0;
1800 		bp->b_resid = 0;
1801 		bp->b_bcount = 0;
1802 		bp->b_xio.xio_npages = 0;
1803 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1804 		reinitbufbio(bp);
1805 		buf_dep_init(bp);
1806 		if (blkflags & GETBLK_BHEAVY)
1807 			bp->b_flags |= B_HEAVY;
1808 
1809 		/*
1810 		 * If we are defragging then free the buffer.
1811 		 */
1812 		if (defrag) {
1813 			bp->b_flags |= B_INVAL;
1814 			bfreekva(bp);
1815 			brelse(bp);
1816 			defrag = 0;
1817 			goto restart;
1818 		}
1819 
1820 		/*
1821 		 * If we are overcomitted then recover the buffer and its
1822 		 * KVM space.  This occurs in rare situations when multiple
1823 		 * processes are blocked in getnewbuf() or allocbuf().
1824 		 */
1825 		if (bufspace >= hibufspace)
1826 			flushingbufs = 1;
1827 		if (flushingbufs && bp->b_kvasize != 0) {
1828 			bp->b_flags |= B_INVAL;
1829 			bfreekva(bp);
1830 			brelse(bp);
1831 			goto restart;
1832 		}
1833 		if (bufspace < lobufspace)
1834 			flushingbufs = 0;
1835 		break;
1836 	}
1837 
1838 	/*
1839 	 * If we exhausted our list, sleep as appropriate.  We may have to
1840 	 * wakeup various daemons and write out some dirty buffers.
1841 	 *
1842 	 * Generally we are sleeping due to insufficient buffer space.
1843 	 */
1844 
1845 	if (bp == NULL) {
1846 		int flags;
1847 		char *waitmsg;
1848 
1849 		if (defrag) {
1850 			flags = VFS_BIO_NEED_BUFSPACE;
1851 			waitmsg = "nbufkv";
1852 		} else if (bufspace >= hibufspace) {
1853 			waitmsg = "nbufbs";
1854 			flags = VFS_BIO_NEED_BUFSPACE;
1855 		} else {
1856 			waitmsg = "newbuf";
1857 			flags = VFS_BIO_NEED_ANY;
1858 		}
1859 
1860 		needsbuffer |= flags;
1861 		bd_speedup();	/* heeeelp */
1862 		while (needsbuffer & flags) {
1863 			if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
1864 				return (NULL);
1865 		}
1866 	} else {
1867 		/*
1868 		 * We finally have a valid bp.  We aren't quite out of the
1869 		 * woods, we still have to reserve kva space.  In order
1870 		 * to keep fragmentation sane we only allocate kva in
1871 		 * BKVASIZE chunks.
1872 		 */
1873 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1874 
1875 		if (maxsize != bp->b_kvasize) {
1876 			vm_offset_t addr = 0;
1877 			int count;
1878 
1879 			bfreekva(bp);
1880 
1881 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1882 			vm_map_lock(&buffer_map);
1883 
1884 			if (vm_map_findspace(&buffer_map,
1885 				    vm_map_min(&buffer_map), maxsize,
1886 				    maxsize, &addr)) {
1887 				/*
1888 				 * Uh oh.  Buffer map is too fragmented.  We
1889 				 * must defragment the map.
1890 				 */
1891 				vm_map_unlock(&buffer_map);
1892 				vm_map_entry_release(count);
1893 				++bufdefragcnt;
1894 				defrag = 1;
1895 				bp->b_flags |= B_INVAL;
1896 				brelse(bp);
1897 				goto restart;
1898 			}
1899 			if (addr) {
1900 				vm_map_insert(&buffer_map, &count,
1901 					NULL, 0,
1902 					addr, addr + maxsize,
1903 					VM_MAPTYPE_NORMAL,
1904 					VM_PROT_ALL, VM_PROT_ALL,
1905 					MAP_NOFAULT);
1906 
1907 				bp->b_kvabase = (caddr_t) addr;
1908 				bp->b_kvasize = maxsize;
1909 				bufspace += bp->b_kvasize;
1910 				++bufreusecnt;
1911 			}
1912 			vm_map_unlock(&buffer_map);
1913 			vm_map_entry_release(count);
1914 		}
1915 		bp->b_data = bp->b_kvabase;
1916 	}
1917 	return(bp);
1918 }
1919 
1920 /*
1921  * buf_daemon:
1922  *
1923  *	Buffer flushing daemon.  Buffers are normally flushed by the
1924  *	update daemon but if it cannot keep up this process starts to
1925  *	take the load in an attempt to prevent getnewbuf() from blocking.
1926  *
1927  *	Once a flush is initiated it does not stop until the number
1928  *	of buffers falls below lodirtybuffers, but we will wake up anyone
1929  *	waiting at the mid-point.
1930  */
1931 
1932 static struct thread *bufdaemon_td;
1933 static struct thread *bufdaemonhw_td;
1934 
1935 static struct kproc_desc buf_kp = {
1936 	"bufdaemon",
1937 	buf_daemon,
1938 	&bufdaemon_td
1939 };
1940 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
1941 	kproc_start, &buf_kp)
1942 
1943 static struct kproc_desc bufhw_kp = {
1944 	"bufdaemon_hw",
1945 	buf_daemon_hw,
1946 	&bufdaemonhw_td
1947 };
1948 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
1949 	kproc_start, &bufhw_kp)
1950 
1951 static void
1952 buf_daemon(void)
1953 {
1954 	/*
1955 	 * This process needs to be suspended prior to shutdown sync.
1956 	 */
1957 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1958 			      bufdaemon_td, SHUTDOWN_PRI_LAST);
1959 
1960 	/*
1961 	 * This process is allowed to take the buffer cache to the limit
1962 	 */
1963 	crit_enter();
1964 
1965 	for (;;) {
1966 		kproc_suspend_loop();
1967 
1968 		/*
1969 		 * Do the flush.  Limit the amount of in-transit I/O we
1970 		 * allow to build up, otherwise we would completely saturate
1971 		 * the I/O system.  Wakeup any waiting processes before we
1972 		 * normally would so they can run in parallel with our drain.
1973 		 */
1974 		while (numdirtybuffers > lodirtybuffers) {
1975 			if (flushbufqueues(BQUEUE_DIRTY) == 0)
1976 				break;
1977 			waitrunningbufspace();
1978 			numdirtywakeup();
1979 		}
1980 		numdirtywakeup();
1981 
1982 		/*
1983 		 * Only clear bd_request if we have reached our low water
1984 		 * mark.  The buf_daemon normally waits 5 seconds and
1985 		 * then incrementally flushes any dirty buffers that have
1986 		 * built up, within reason.
1987 		 *
1988 		 * If we were unable to hit our low water mark and couldn't
1989 		 * find any flushable buffers, we sleep half a second.
1990 		 * Otherwise we loop immediately.
1991 		 */
1992 		if (numdirtybuffers <= lodirtybuffers) {
1993 			/*
1994 			 * We reached our low water mark, reset the
1995 			 * request and sleep until we are needed again.
1996 			 * The sleep is just so the suspend code works.
1997 			 */
1998 			spin_lock_wr(&needsbuffer_spin);
1999 			bd_request = 0;
2000 			msleep(&bd_request, &needsbuffer_spin, 0,
2001 			       "psleep", hz);
2002 			spin_unlock_wr(&needsbuffer_spin);
2003 		} else {
2004 			/*
2005 			 * We couldn't find any flushable dirty buffers but
2006 			 * still have too many dirty buffers, we
2007 			 * have to sleep and try again.  (rare)
2008 			 */
2009 			tsleep(&bd_request, 0, "qsleep", hz / 2);
2010 		}
2011 	}
2012 }
2013 
2014 static void
2015 buf_daemon_hw(void)
2016 {
2017 	/*
2018 	 * This process needs to be suspended prior to shutdown sync.
2019 	 */
2020 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2021 			      bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2022 
2023 	/*
2024 	 * This process is allowed to take the buffer cache to the limit
2025 	 */
2026 	crit_enter();
2027 
2028 	for (;;) {
2029 		kproc_suspend_loop();
2030 
2031 		/*
2032 		 * Do the flush.  Limit the amount of in-transit I/O we
2033 		 * allow to build up, otherwise we would completely saturate
2034 		 * the I/O system.  Wakeup any waiting processes before we
2035 		 * normally would so they can run in parallel with our drain.
2036 		 */
2037 		while (numdirtybuffershw > lodirtybuffers) {
2038 			if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2039 				break;
2040 			waitrunningbufspace();
2041 			numdirtywakeup();
2042 		}
2043 
2044 		/*
2045 		 * Only clear bd_request if we have reached our low water
2046 		 * mark.  The buf_daemon normally waits 5 seconds and
2047 		 * then incrementally flushes any dirty buffers that have
2048 		 * built up, within reason.
2049 		 *
2050 		 * If we were unable to hit our low water mark and couldn't
2051 		 * find any flushable buffers, we sleep half a second.
2052 		 * Otherwise we loop immediately.
2053 		 */
2054 		if (numdirtybuffershw <= lodirtybuffers) {
2055 			/*
2056 			 * We reached our low water mark, reset the
2057 			 * request and sleep until we are needed again.
2058 			 * The sleep is just so the suspend code works.
2059 			 */
2060 			spin_lock_wr(&needsbuffer_spin);
2061 			bd_request_hw = 0;
2062 			msleep(&bd_request_hw, &needsbuffer_spin, 0,
2063 			       "psleep", hz);
2064 			spin_unlock_wr(&needsbuffer_spin);
2065 		} else {
2066 			/*
2067 			 * We couldn't find any flushable dirty buffers but
2068 			 * still have too many dirty buffers, we
2069 			 * have to sleep and try again.  (rare)
2070 			 */
2071 			tsleep(&bd_request_hw, 0, "qsleep", hz / 2);
2072 		}
2073 	}
2074 }
2075 
2076 /*
2077  * flushbufqueues:
2078  *
2079  *	Try to flush a buffer in the dirty queue.  We must be careful to
2080  *	free up B_INVAL buffers instead of write them, which NFS is
2081  *	particularly sensitive to.
2082  */
2083 
2084 static int
2085 flushbufqueues(bufq_type_t q)
2086 {
2087 	struct buf *bp;
2088 	int r = 0;
2089 
2090 	bp = TAILQ_FIRST(&bufqueues[q]);
2091 
2092 	while (bp) {
2093 		KASSERT((bp->b_flags & B_DELWRI),
2094 			("unexpected clean buffer %p", bp));
2095 		if (bp->b_flags & B_DELWRI) {
2096 			if (bp->b_flags & B_INVAL) {
2097 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2098 					panic("flushbufqueues: locked buf");
2099 				bremfree(bp);
2100 				brelse(bp);
2101 				++r;
2102 				break;
2103 			}
2104 			if (LIST_FIRST(&bp->b_dep) != NULL &&
2105 			    (bp->b_flags & B_DEFERRED) == 0 &&
2106 			    buf_countdeps(bp, 0)) {
2107 				TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2108 				TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2109 						  b_freelist);
2110 				bp->b_flags |= B_DEFERRED;
2111 				bp = TAILQ_FIRST(&bufqueues[q]);
2112 				continue;
2113 			}
2114 
2115 			/*
2116 			 * Only write it out if we can successfully lock
2117 			 * it.  If the buffer has a dependancy,
2118 			 * buf_checkwrite must also return 0.
2119 			 */
2120 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2121 				if (LIST_FIRST(&bp->b_dep) != NULL &&
2122 				    buf_checkwrite(bp)) {
2123 					bremfree(bp);
2124 					brelse(bp);
2125 				} else {
2126 					vfs_bio_awrite(bp);
2127 				}
2128 				++r;
2129 				break;
2130 			}
2131 		}
2132 		bp = TAILQ_NEXT(bp, b_freelist);
2133 	}
2134 	return (r);
2135 }
2136 
2137 /*
2138  * inmem:
2139  *
2140  *	Returns true if no I/O is needed to access the associated VM object.
2141  *	This is like findblk except it also hunts around in the VM system for
2142  *	the data.
2143  *
2144  *	Note that we ignore vm_page_free() races from interrupts against our
2145  *	lookup, since if the caller is not protected our return value will not
2146  *	be any more valid then otherwise once we exit the critical section.
2147  */
2148 int
2149 inmem(struct vnode *vp, off_t loffset)
2150 {
2151 	vm_object_t obj;
2152 	vm_offset_t toff, tinc, size;
2153 	vm_page_t m;
2154 
2155 	if (findblk(vp, loffset))
2156 		return 1;
2157 	if (vp->v_mount == NULL)
2158 		return 0;
2159 	if ((obj = vp->v_object) == NULL)
2160 		return 0;
2161 
2162 	size = PAGE_SIZE;
2163 	if (size > vp->v_mount->mnt_stat.f_iosize)
2164 		size = vp->v_mount->mnt_stat.f_iosize;
2165 
2166 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2167 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2168 		if (m == NULL)
2169 			return 0;
2170 		tinc = size;
2171 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2172 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2173 		if (vm_page_is_valid(m,
2174 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2175 			return 0;
2176 	}
2177 	return 1;
2178 }
2179 
2180 /*
2181  * vfs_setdirty:
2182  *
2183  *	Sets the dirty range for a buffer based on the status of the dirty
2184  *	bits in the pages comprising the buffer.
2185  *
2186  *	The range is limited to the size of the buffer.
2187  *
2188  *	This routine is primarily used by NFS, but is generalized for the
2189  *	B_VMIO case.
2190  */
2191 static void
2192 vfs_setdirty(struct buf *bp)
2193 {
2194 	int i;
2195 	vm_object_t object;
2196 
2197 	/*
2198 	 * Degenerate case - empty buffer
2199 	 */
2200 
2201 	if (bp->b_bufsize == 0)
2202 		return;
2203 
2204 	/*
2205 	 * We qualify the scan for modified pages on whether the
2206 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2207 	 * is not cleared simply by protecting pages off.
2208 	 */
2209 
2210 	if ((bp->b_flags & B_VMIO) == 0)
2211 		return;
2212 
2213 	object = bp->b_xio.xio_pages[0]->object;
2214 
2215 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2216 		kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2217 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2218 		kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2219 
2220 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2221 		vm_offset_t boffset;
2222 		vm_offset_t eoffset;
2223 
2224 		/*
2225 		 * test the pages to see if they have been modified directly
2226 		 * by users through the VM system.
2227 		 */
2228 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2229 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2230 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2231 		}
2232 
2233 		/*
2234 		 * Calculate the encompassing dirty range, boffset and eoffset,
2235 		 * (eoffset - boffset) bytes.
2236 		 */
2237 
2238 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2239 			if (bp->b_xio.xio_pages[i]->dirty)
2240 				break;
2241 		}
2242 		boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2243 
2244 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2245 			if (bp->b_xio.xio_pages[i]->dirty) {
2246 				break;
2247 			}
2248 		}
2249 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2250 
2251 		/*
2252 		 * Fit it to the buffer.
2253 		 */
2254 
2255 		if (eoffset > bp->b_bcount)
2256 			eoffset = bp->b_bcount;
2257 
2258 		/*
2259 		 * If we have a good dirty range, merge with the existing
2260 		 * dirty range.
2261 		 */
2262 
2263 		if (boffset < eoffset) {
2264 			if (bp->b_dirtyoff > boffset)
2265 				bp->b_dirtyoff = boffset;
2266 			if (bp->b_dirtyend < eoffset)
2267 				bp->b_dirtyend = eoffset;
2268 		}
2269 	}
2270 }
2271 
2272 /*
2273  * findblk:
2274  *
2275  *	Locate and return the specified buffer, or NULL if the buffer does
2276  *	not exist.  Do not attempt to lock the buffer or manipulate it in
2277  *	any way.  The caller must validate that the correct buffer has been
2278  *	obtain after locking it.
2279  */
2280 struct buf *
2281 findblk(struct vnode *vp, off_t loffset)
2282 {
2283 	struct buf *bp;
2284 
2285 	crit_enter();
2286 	bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2287 	crit_exit();
2288 	return(bp);
2289 }
2290 
2291 /*
2292  * getblk:
2293  *
2294  *	Get a block given a specified block and offset into a file/device.
2295  * 	B_INVAL may or may not be set on return.  The caller should clear
2296  *	B_INVAL prior to initiating a READ.
2297  *
2298  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2299  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2300  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2301  *	without doing any of those things the system will likely believe
2302  *	the buffer to be valid (especially if it is not B_VMIO), and the
2303  *	next getblk() will return the buffer with B_CACHE set.
2304  *
2305  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2306  *	an existing buffer.
2307  *
2308  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2309  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2310  *	and then cleared based on the backing VM.  If the previous buffer is
2311  *	non-0-sized but invalid, B_CACHE will be cleared.
2312  *
2313  *	If getblk() must create a new buffer, the new buffer is returned with
2314  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2315  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2316  *	backing VM.
2317  *
2318  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2319  *	B_CACHE bit is clear.
2320  *
2321  *	What this means, basically, is that the caller should use B_CACHE to
2322  *	determine whether the buffer is fully valid or not and should clear
2323  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2324  *	the buffer by loading its data area with something, the caller needs
2325  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2326  *	the caller should set B_CACHE ( as an optimization ), else the caller
2327  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2328  *	a write attempt or if it was a successfull read.  If the caller
2329  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2330  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2331  *
2332  *	getblk flags:
2333  *
2334  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2335  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2336  */
2337 struct buf *
2338 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2339 {
2340 	struct buf *bp;
2341 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2342 
2343 	if (size > MAXBSIZE)
2344 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2345 	if (vp->v_object == NULL)
2346 		panic("getblk: vnode %p has no object!", vp);
2347 
2348 	crit_enter();
2349 loop:
2350 	if ((bp = findblk(vp, loffset))) {
2351 		/*
2352 		 * The buffer was found in the cache, but we need to lock it.
2353 		 * Even with LK_NOWAIT the lockmgr may break our critical
2354 		 * section, so double-check the validity of the buffer
2355 		 * once the lock has been obtained.
2356 		 */
2357 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2358 			int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2359 			if (blkflags & GETBLK_PCATCH)
2360 				lkflags |= LK_PCATCH;
2361 			if (BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo) ==
2362 			    ENOLCK) {
2363 				goto loop;
2364 			}
2365 			crit_exit();
2366 			return (NULL);
2367 		}
2368 
2369 		/*
2370 		 * Once the buffer has been locked, make sure we didn't race
2371 		 * a buffer recyclement.  Buffers that are no longer hashed
2372 		 * will have b_vp == NULL, so this takes care of that check
2373 		 * as well.
2374 		 */
2375 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2376 			kprintf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset);
2377 			BUF_UNLOCK(bp);
2378 			goto loop;
2379 		}
2380 
2381 		/*
2382 		 * All vnode-based buffers must be backed by a VM object.
2383 		 */
2384 		KKASSERT(bp->b_flags & B_VMIO);
2385 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2386 
2387 		/*
2388 		 * Make sure that B_INVAL buffers do not have a cached
2389 		 * block number translation.
2390 		 */
2391 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2392 			kprintf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset);
2393 			clearbiocache(&bp->b_bio2);
2394 		}
2395 
2396 		/*
2397 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2398 		 * invalid.
2399 		 */
2400 		if (bp->b_flags & B_INVAL)
2401 			bp->b_flags &= ~B_CACHE;
2402 		bremfree(bp);
2403 
2404 		/*
2405 		 * Any size inconsistancy with a dirty buffer or a buffer
2406 		 * with a softupdates dependancy must be resolved.  Resizing
2407 		 * the buffer in such circumstances can lead to problems.
2408 		 */
2409 		if (size != bp->b_bcount) {
2410 			if (bp->b_flags & B_DELWRI) {
2411 				bp->b_flags |= B_NOCACHE;
2412 				bwrite(bp);
2413 			} else if (LIST_FIRST(&bp->b_dep)) {
2414 				bp->b_flags |= B_NOCACHE;
2415 				bwrite(bp);
2416 			} else {
2417 				bp->b_flags |= B_RELBUF;
2418 				brelse(bp);
2419 			}
2420 			goto loop;
2421 		}
2422 		KKASSERT(size <= bp->b_kvasize);
2423 		KASSERT(bp->b_loffset != NOOFFSET,
2424 			("getblk: no buffer offset"));
2425 
2426 		/*
2427 		 * A buffer with B_DELWRI set and B_CACHE clear must
2428 		 * be committed before we can return the buffer in
2429 		 * order to prevent the caller from issuing a read
2430 		 * ( due to B_CACHE not being set ) and overwriting
2431 		 * it.
2432 		 *
2433 		 * Most callers, including NFS and FFS, need this to
2434 		 * operate properly either because they assume they
2435 		 * can issue a read if B_CACHE is not set, or because
2436 		 * ( for example ) an uncached B_DELWRI might loop due
2437 		 * to softupdates re-dirtying the buffer.  In the latter
2438 		 * case, B_CACHE is set after the first write completes,
2439 		 * preventing further loops.
2440 		 *
2441 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2442 		 * above while extending the buffer, we cannot allow the
2443 		 * buffer to remain with B_CACHE set after the write
2444 		 * completes or it will represent a corrupt state.  To
2445 		 * deal with this we set B_NOCACHE to scrap the buffer
2446 		 * after the write.
2447 		 *
2448 		 * We might be able to do something fancy, like setting
2449 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2450 		 * so the below call doesn't set B_CACHE, but that gets real
2451 		 * confusing.  This is much easier.
2452 		 */
2453 
2454 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2455 			bp->b_flags |= B_NOCACHE;
2456 			bwrite(bp);
2457 			goto loop;
2458 		}
2459 		crit_exit();
2460 	} else {
2461 		/*
2462 		 * Buffer is not in-core, create new buffer.  The buffer
2463 		 * returned by getnewbuf() is locked.  Note that the returned
2464 		 * buffer is also considered valid (not marked B_INVAL).
2465 		 *
2466 		 * Calculating the offset for the I/O requires figuring out
2467 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2468 		 * the mount's f_iosize otherwise.  If the vnode does not
2469 		 * have an associated mount we assume that the passed size is
2470 		 * the block size.
2471 		 *
2472 		 * Note that vn_isdisk() cannot be used here since it may
2473 		 * return a failure for numerous reasons.   Note that the
2474 		 * buffer size may be larger then the block size (the caller
2475 		 * will use block numbers with the proper multiple).  Beware
2476 		 * of using any v_* fields which are part of unions.  In
2477 		 * particular, in DragonFly the mount point overloading
2478 		 * mechanism uses the namecache only and the underlying
2479 		 * directory vnode is not a special case.
2480 		 */
2481 		int bsize, maxsize;
2482 
2483 		/*
2484 		 * Don't let heavy weight buffers deadlock us.
2485 		 */
2486 		if ((blkflags & GETBLK_BHEAVY) &&
2487 		    numdirtybuffershw > hidirtybuffers) {
2488 			while (numdirtybuffershw > hidirtybuffers) {
2489 				needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
2490 				tsleep(&needsbuffer, slpflags, "newbuf",
2491 				       slptimeo);
2492 			}
2493 			goto loop;
2494 		}
2495 
2496 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2497 			bsize = DEV_BSIZE;
2498 		else if (vp->v_mount)
2499 			bsize = vp->v_mount->mnt_stat.f_iosize;
2500 		else
2501 			bsize = size;
2502 
2503 		maxsize = size + (loffset & PAGE_MASK);
2504 		maxsize = imax(maxsize, bsize);
2505 
2506 		if ((bp = getnewbuf(blkflags, slptimeo, size, maxsize)) == NULL) {
2507 			if (slpflags || slptimeo) {
2508 				crit_exit();
2509 				return NULL;
2510 			}
2511 			goto loop;
2512 		}
2513 
2514 		/*
2515 		 * This code is used to make sure that a buffer is not
2516 		 * created while the getnewbuf routine is blocked.
2517 		 * This can be a problem whether the vnode is locked or not.
2518 		 * If the buffer is created out from under us, we have to
2519 		 * throw away the one we just created.  There is no window
2520 		 * race because we are safely running in a critical section
2521 		 * from the point of the duplicate buffer creation through
2522 		 * to here, and we've locked the buffer.
2523 		 */
2524 		if (findblk(vp, loffset)) {
2525 			bp->b_flags |= B_INVAL;
2526 			brelse(bp);
2527 			goto loop;
2528 		}
2529 
2530 		/*
2531 		 * Insert the buffer into the hash, so that it can
2532 		 * be found by findblk().
2533 		 *
2534 		 * Make sure the translation layer has been cleared.
2535 		 */
2536 		bp->b_loffset = loffset;
2537 		bp->b_bio2.bio_offset = NOOFFSET;
2538 		/* bp->b_bio2.bio_next = NULL; */
2539 
2540 		bgetvp(vp, bp);
2541 
2542 		/*
2543 		 * All vnode-based buffers must be backed by a VM object.
2544 		 */
2545 		KKASSERT(vp->v_object != NULL);
2546 		bp->b_flags |= B_VMIO;
2547 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2548 
2549 		allocbuf(bp, size);
2550 
2551 		crit_exit();
2552 	}
2553 	return (bp);
2554 }
2555 
2556 /*
2557  * regetblk(bp)
2558  *
2559  * Reacquire a buffer that was previously released to the locked queue,
2560  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2561  * set B_LOCKED (which handles the acquisition race).
2562  *
2563  * To this end, either B_LOCKED must be set or the dependancy list must be
2564  * non-empty.
2565  */
2566 void
2567 regetblk(struct buf *bp)
2568 {
2569 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2570 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2571 	crit_enter();
2572 	bremfree(bp);
2573 	crit_exit();
2574 }
2575 
2576 /*
2577  * geteblk:
2578  *
2579  *	Get an empty, disassociated buffer of given size.  The buffer is
2580  *	initially set to B_INVAL.
2581  *
2582  *	critical section protection is not required for the allocbuf()
2583  *	call because races are impossible here.
2584  */
2585 struct buf *
2586 geteblk(int size)
2587 {
2588 	struct buf *bp;
2589 	int maxsize;
2590 
2591 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2592 
2593 	crit_enter();
2594 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2595 		;
2596 	crit_exit();
2597 	allocbuf(bp, size);
2598 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2599 	return (bp);
2600 }
2601 
2602 
2603 /*
2604  * allocbuf:
2605  *
2606  *	This code constitutes the buffer memory from either anonymous system
2607  *	memory (in the case of non-VMIO operations) or from an associated
2608  *	VM object (in the case of VMIO operations).  This code is able to
2609  *	resize a buffer up or down.
2610  *
2611  *	Note that this code is tricky, and has many complications to resolve
2612  *	deadlock or inconsistant data situations.  Tread lightly!!!
2613  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
2614  *	the caller.  Calling this code willy nilly can result in the loss of data.
2615  *
2616  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2617  *	B_CACHE for the non-VMIO case.
2618  *
2619  *	This routine does not need to be called from a critical section but you
2620  *	must own the buffer.
2621  */
2622 int
2623 allocbuf(struct buf *bp, int size)
2624 {
2625 	int newbsize, mbsize;
2626 	int i;
2627 
2628 	if (BUF_REFCNT(bp) == 0)
2629 		panic("allocbuf: buffer not busy");
2630 
2631 	if (bp->b_kvasize < size)
2632 		panic("allocbuf: buffer too small");
2633 
2634 	if ((bp->b_flags & B_VMIO) == 0) {
2635 		caddr_t origbuf;
2636 		int origbufsize;
2637 		/*
2638 		 * Just get anonymous memory from the kernel.  Don't
2639 		 * mess with B_CACHE.
2640 		 */
2641 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2642 		if (bp->b_flags & B_MALLOC)
2643 			newbsize = mbsize;
2644 		else
2645 			newbsize = round_page(size);
2646 
2647 		if (newbsize < bp->b_bufsize) {
2648 			/*
2649 			 * Malloced buffers are not shrunk
2650 			 */
2651 			if (bp->b_flags & B_MALLOC) {
2652 				if (newbsize) {
2653 					bp->b_bcount = size;
2654 				} else {
2655 					kfree(bp->b_data, M_BIOBUF);
2656 					if (bp->b_bufsize) {
2657 						bufmallocspace -= bp->b_bufsize;
2658 						bufspacewakeup();
2659 						bp->b_bufsize = 0;
2660 					}
2661 					bp->b_data = bp->b_kvabase;
2662 					bp->b_bcount = 0;
2663 					bp->b_flags &= ~B_MALLOC;
2664 				}
2665 				return 1;
2666 			}
2667 			vm_hold_free_pages(
2668 			    bp,
2669 			    (vm_offset_t) bp->b_data + newbsize,
2670 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2671 		} else if (newbsize > bp->b_bufsize) {
2672 			/*
2673 			 * We only use malloced memory on the first allocation.
2674 			 * and revert to page-allocated memory when the buffer
2675 			 * grows.
2676 			 */
2677 			if ((bufmallocspace < maxbufmallocspace) &&
2678 				(bp->b_bufsize == 0) &&
2679 				(mbsize <= PAGE_SIZE/2)) {
2680 
2681 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
2682 				bp->b_bufsize = mbsize;
2683 				bp->b_bcount = size;
2684 				bp->b_flags |= B_MALLOC;
2685 				bufmallocspace += mbsize;
2686 				return 1;
2687 			}
2688 			origbuf = NULL;
2689 			origbufsize = 0;
2690 			/*
2691 			 * If the buffer is growing on its other-than-first
2692 			 * allocation, then we revert to the page-allocation
2693 			 * scheme.
2694 			 */
2695 			if (bp->b_flags & B_MALLOC) {
2696 				origbuf = bp->b_data;
2697 				origbufsize = bp->b_bufsize;
2698 				bp->b_data = bp->b_kvabase;
2699 				if (bp->b_bufsize) {
2700 					bufmallocspace -= bp->b_bufsize;
2701 					bufspacewakeup();
2702 					bp->b_bufsize = 0;
2703 				}
2704 				bp->b_flags &= ~B_MALLOC;
2705 				newbsize = round_page(newbsize);
2706 			}
2707 			vm_hold_load_pages(
2708 			    bp,
2709 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2710 			    (vm_offset_t) bp->b_data + newbsize);
2711 			if (origbuf) {
2712 				bcopy(origbuf, bp->b_data, origbufsize);
2713 				kfree(origbuf, M_BIOBUF);
2714 			}
2715 		}
2716 	} else {
2717 		vm_page_t m;
2718 		int desiredpages;
2719 
2720 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2721 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
2722 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
2723 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
2724 
2725 		if (bp->b_flags & B_MALLOC)
2726 			panic("allocbuf: VMIO buffer can't be malloced");
2727 		/*
2728 		 * Set B_CACHE initially if buffer is 0 length or will become
2729 		 * 0-length.
2730 		 */
2731 		if (size == 0 || bp->b_bufsize == 0)
2732 			bp->b_flags |= B_CACHE;
2733 
2734 		if (newbsize < bp->b_bufsize) {
2735 			/*
2736 			 * DEV_BSIZE aligned new buffer size is less then the
2737 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2738 			 * if we have to remove any pages.
2739 			 */
2740 			if (desiredpages < bp->b_xio.xio_npages) {
2741 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2742 					/*
2743 					 * the page is not freed here -- it
2744 					 * is the responsibility of
2745 					 * vnode_pager_setsize
2746 					 */
2747 					m = bp->b_xio.xio_pages[i];
2748 					KASSERT(m != bogus_page,
2749 					    ("allocbuf: bogus page found"));
2750 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2751 						;
2752 
2753 					bp->b_xio.xio_pages[i] = NULL;
2754 					vm_page_unwire(m, 0);
2755 				}
2756 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2757 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2758 				bp->b_xio.xio_npages = desiredpages;
2759 			}
2760 		} else if (size > bp->b_bcount) {
2761 			/*
2762 			 * We are growing the buffer, possibly in a
2763 			 * byte-granular fashion.
2764 			 */
2765 			struct vnode *vp;
2766 			vm_object_t obj;
2767 			vm_offset_t toff;
2768 			vm_offset_t tinc;
2769 
2770 			/*
2771 			 * Step 1, bring in the VM pages from the object,
2772 			 * allocating them if necessary.  We must clear
2773 			 * B_CACHE if these pages are not valid for the
2774 			 * range covered by the buffer.
2775 			 *
2776 			 * critical section protection is required to protect
2777 			 * against interrupts unbusying and freeing pages
2778 			 * between our vm_page_lookup() and our
2779 			 * busycheck/wiring call.
2780 			 */
2781 			vp = bp->b_vp;
2782 			obj = vp->v_object;
2783 
2784 			crit_enter();
2785 			while (bp->b_xio.xio_npages < desiredpages) {
2786 				vm_page_t m;
2787 				vm_pindex_t pi;
2788 
2789 				pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2790 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2791 					/*
2792 					 * note: must allocate system pages
2793 					 * since blocking here could intefere
2794 					 * with paging I/O, no matter which
2795 					 * process we are.
2796 					 */
2797 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2798 					if (m == NULL) {
2799 						vm_wait();
2800 						vm_pageout_deficit += desiredpages -
2801 							bp->b_xio.xio_npages;
2802 					} else {
2803 						vm_page_wire(m);
2804 						vm_page_wakeup(m);
2805 						bp->b_flags &= ~B_CACHE;
2806 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2807 						++bp->b_xio.xio_npages;
2808 					}
2809 					continue;
2810 				}
2811 
2812 				/*
2813 				 * We found a page.  If we have to sleep on it,
2814 				 * retry because it might have gotten freed out
2815 				 * from under us.
2816 				 *
2817 				 * We can only test PG_BUSY here.  Blocking on
2818 				 * m->busy might lead to a deadlock:
2819 				 *
2820 				 *  vm_fault->getpages->cluster_read->allocbuf
2821 				 *
2822 				 */
2823 
2824 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2825 					continue;
2826 
2827 				/*
2828 				 * We have a good page.  Should we wakeup the
2829 				 * page daemon?
2830 				 */
2831 				if ((curthread != pagethread) &&
2832 				    ((m->queue - m->pc) == PQ_CACHE) &&
2833 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2834 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2835 					pagedaemon_wakeup();
2836 				}
2837 				vm_page_flag_clear(m, PG_ZERO);
2838 				vm_page_wire(m);
2839 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2840 				++bp->b_xio.xio_npages;
2841 			}
2842 			crit_exit();
2843 
2844 			/*
2845 			 * Step 2.  We've loaded the pages into the buffer,
2846 			 * we have to figure out if we can still have B_CACHE
2847 			 * set.  Note that B_CACHE is set according to the
2848 			 * byte-granular range ( bcount and size ), not the
2849 			 * aligned range ( newbsize ).
2850 			 *
2851 			 * The VM test is against m->valid, which is DEV_BSIZE
2852 			 * aligned.  Needless to say, the validity of the data
2853 			 * needs to also be DEV_BSIZE aligned.  Note that this
2854 			 * fails with NFS if the server or some other client
2855 			 * extends the file's EOF.  If our buffer is resized,
2856 			 * B_CACHE may remain set! XXX
2857 			 */
2858 
2859 			toff = bp->b_bcount;
2860 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2861 
2862 			while ((bp->b_flags & B_CACHE) && toff < size) {
2863 				vm_pindex_t pi;
2864 
2865 				if (tinc > (size - toff))
2866 					tinc = size - toff;
2867 
2868 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2869 				    PAGE_SHIFT;
2870 
2871 				vfs_buf_test_cache(
2872 				    bp,
2873 				    bp->b_loffset,
2874 				    toff,
2875 				    tinc,
2876 				    bp->b_xio.xio_pages[pi]
2877 				);
2878 				toff += tinc;
2879 				tinc = PAGE_SIZE;
2880 			}
2881 
2882 			/*
2883 			 * Step 3, fixup the KVM pmap.  Remember that
2884 			 * bp->b_data is relative to bp->b_loffset, but
2885 			 * bp->b_loffset may be offset into the first page.
2886 			 */
2887 
2888 			bp->b_data = (caddr_t)
2889 			    trunc_page((vm_offset_t)bp->b_data);
2890 			pmap_qenter(
2891 			    (vm_offset_t)bp->b_data,
2892 			    bp->b_xio.xio_pages,
2893 			    bp->b_xio.xio_npages
2894 			);
2895 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2896 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2897 		}
2898 	}
2899 	if (newbsize < bp->b_bufsize)
2900 		bufspacewakeup();
2901 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2902 	bp->b_bcount = size;		/* requested buffer size	*/
2903 	return 1;
2904 }
2905 
2906 /*
2907  * biowait:
2908  *
2909  *	Wait for buffer I/O completion, returning error status.  The buffer
2910  *	is left locked on return.  B_EINTR is converted into an EINTR error
2911  *	and cleared.
2912  *
2913  *	NOTE!  The original b_cmd is lost on return, since b_cmd will be
2914  *	set to BUF_CMD_DONE.
2915  */
2916 int
2917 biowait(struct buf *bp)
2918 {
2919 	crit_enter();
2920 	while (bp->b_cmd != BUF_CMD_DONE) {
2921 		if (bp->b_cmd == BUF_CMD_READ)
2922 			tsleep(bp, 0, "biord", 0);
2923 		else
2924 			tsleep(bp, 0, "biowr", 0);
2925 	}
2926 	crit_exit();
2927 	if (bp->b_flags & B_EINTR) {
2928 		bp->b_flags &= ~B_EINTR;
2929 		return (EINTR);
2930 	}
2931 	if (bp->b_flags & B_ERROR) {
2932 		return (bp->b_error ? bp->b_error : EIO);
2933 	} else {
2934 		return (0);
2935 	}
2936 }
2937 
2938 /*
2939  * This associates a tracking count with an I/O.  vn_strategy() and
2940  * dev_dstrategy() do this automatically but there are a few cases
2941  * where a vnode or device layer is bypassed when a block translation
2942  * is cached.  In such cases bio_start_transaction() may be called on
2943  * the bypassed layers so the system gets an I/O in progress indication
2944  * for those higher layers.
2945  */
2946 void
2947 bio_start_transaction(struct bio *bio, struct bio_track *track)
2948 {
2949 	bio->bio_track = track;
2950 	atomic_add_int(&track->bk_active, 1);
2951 }
2952 
2953 /*
2954  * Initiate I/O on a vnode.
2955  */
2956 void
2957 vn_strategy(struct vnode *vp, struct bio *bio)
2958 {
2959 	struct bio_track *track;
2960 
2961 	KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
2962         if (bio->bio_buf->b_cmd == BUF_CMD_READ)
2963                 track = &vp->v_track_read;
2964         else
2965                 track = &vp->v_track_write;
2966 	bio->bio_track = track;
2967 	atomic_add_int(&track->bk_active, 1);
2968         vop_strategy(*vp->v_ops, vp, bio);
2969 }
2970 
2971 
2972 /*
2973  * biodone:
2974  *
2975  *	Finish I/O on a buffer, optionally calling a completion function.
2976  *	This is usually called from an interrupt so process blocking is
2977  *	not allowed.
2978  *
2979  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2980  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2981  *	assuming B_INVAL is clear.
2982  *
2983  *	For the VMIO case, we set B_CACHE if the op was a read and no
2984  *	read error occured, or if the op was a write.  B_CACHE is never
2985  *	set if the buffer is invalid or otherwise uncacheable.
2986  *
2987  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2988  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2989  *	in the biodone routine.
2990  */
2991 void
2992 biodone(struct bio *bio)
2993 {
2994 	struct buf *bp = bio->bio_buf;
2995 	buf_cmd_t cmd;
2996 
2997 	crit_enter();
2998 
2999 	KASSERT(BUF_REFCNTNB(bp) > 0,
3000 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3001 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3002 		("biodone: bp %p already done!", bp));
3003 
3004 	runningbufwakeup(bp);
3005 
3006 	/*
3007 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3008 	 */
3009 	while (bio) {
3010 		biodone_t *done_func;
3011 		struct bio_track *track;
3012 
3013 		/*
3014 		 * BIO tracking.  Most but not all BIOs are tracked.
3015 		 */
3016 		if ((track = bio->bio_track) != NULL) {
3017 			atomic_subtract_int(&track->bk_active, 1);
3018 			if (track->bk_active < 0) {
3019 				panic("biodone: bad active count bio %p\n",
3020 				      bio);
3021 			}
3022 			if (track->bk_waitflag) {
3023 				track->bk_waitflag = 0;
3024 				wakeup(track);
3025 			}
3026 			bio->bio_track = NULL;
3027 		}
3028 
3029 		/*
3030 		 * A bio_done function terminates the loop.  The function
3031 		 * will be responsible for any further chaining and/or
3032 		 * buffer management.
3033 		 *
3034 		 * WARNING!  The done function can deallocate the buffer!
3035 		 */
3036 		if ((done_func = bio->bio_done) != NULL) {
3037 			bio->bio_done = NULL;
3038 			done_func(bio);
3039 			crit_exit();
3040 			return;
3041 		}
3042 		bio = bio->bio_prev;
3043 	}
3044 
3045 	cmd = bp->b_cmd;
3046 	bp->b_cmd = BUF_CMD_DONE;
3047 
3048 	/*
3049 	 * Only reads and writes are processed past this point.
3050 	 */
3051 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3052 		brelse(bp);
3053 		crit_exit();
3054 		return;
3055 	}
3056 
3057 	/*
3058 	 * Warning: softupdates may re-dirty the buffer.
3059 	 */
3060 	if (LIST_FIRST(&bp->b_dep) != NULL)
3061 		buf_complete(bp);
3062 
3063 	if (bp->b_flags & B_VMIO) {
3064 		int i;
3065 		vm_ooffset_t foff;
3066 		vm_page_t m;
3067 		vm_object_t obj;
3068 		int iosize;
3069 		struct vnode *vp = bp->b_vp;
3070 
3071 		obj = vp->v_object;
3072 
3073 #if defined(VFS_BIO_DEBUG)
3074 		if (vp->v_auxrefs == 0)
3075 			panic("biodone: zero vnode hold count");
3076 		if ((vp->v_flag & VOBJBUF) == 0)
3077 			panic("biodone: vnode is not setup for merged cache");
3078 #endif
3079 
3080 		foff = bp->b_loffset;
3081 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3082 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3083 
3084 #if defined(VFS_BIO_DEBUG)
3085 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3086 			kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3087 			    obj->paging_in_progress, bp->b_xio.xio_npages);
3088 		}
3089 #endif
3090 
3091 		/*
3092 		 * Set B_CACHE if the op was a normal read and no error
3093 		 * occured.  B_CACHE is set for writes in the b*write()
3094 		 * routines.
3095 		 */
3096 		iosize = bp->b_bcount - bp->b_resid;
3097 		if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3098 			bp->b_flags |= B_CACHE;
3099 		}
3100 
3101 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3102 			int bogusflag = 0;
3103 			int resid;
3104 
3105 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3106 			if (resid > iosize)
3107 				resid = iosize;
3108 
3109 			/*
3110 			 * cleanup bogus pages, restoring the originals.  Since
3111 			 * the originals should still be wired, we don't have
3112 			 * to worry about interrupt/freeing races destroying
3113 			 * the VM object association.
3114 			 */
3115 			m = bp->b_xio.xio_pages[i];
3116 			if (m == bogus_page) {
3117 				bogusflag = 1;
3118 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3119 				if (m == NULL)
3120 					panic("biodone: page disappeared");
3121 				bp->b_xio.xio_pages[i] = m;
3122 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3123 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3124 			}
3125 #if defined(VFS_BIO_DEBUG)
3126 			if (OFF_TO_IDX(foff) != m->pindex) {
3127 				kprintf(
3128 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
3129 				    (unsigned long)foff, m->pindex);
3130 			}
3131 #endif
3132 
3133 			/*
3134 			 * In the write case, the valid and clean bits are
3135 			 * already changed correctly ( see bdwrite() ), so we
3136 			 * only need to do this here in the read case.
3137 			 */
3138 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3139 				vfs_page_set_valid(bp, foff, i, m);
3140 			}
3141 			vm_page_flag_clear(m, PG_ZERO);
3142 
3143 			/*
3144 			 * when debugging new filesystems or buffer I/O methods, this
3145 			 * is the most common error that pops up.  if you see this, you
3146 			 * have not set the page busy flag correctly!!!
3147 			 */
3148 			if (m->busy == 0) {
3149 				kprintf("biodone: page busy < 0, "
3150 				    "pindex: %d, foff: 0x(%x,%x), "
3151 				    "resid: %d, index: %d\n",
3152 				    (int) m->pindex, (int)(foff >> 32),
3153 						(int) foff & 0xffffffff, resid, i);
3154 				if (!vn_isdisk(vp, NULL))
3155 					kprintf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n",
3156 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3157 					    bp->b_loffset,
3158 					    bp->b_flags, bp->b_xio.xio_npages);
3159 				else
3160 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3161 					    bp->b_loffset,
3162 					    bp->b_flags, bp->b_xio.xio_npages);
3163 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3164 				    m->valid, m->dirty, m->wire_count);
3165 				panic("biodone: page busy < 0");
3166 			}
3167 			vm_page_io_finish(m);
3168 			vm_object_pip_subtract(obj, 1);
3169 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3170 			iosize -= resid;
3171 		}
3172 		if (obj)
3173 			vm_object_pip_wakeupn(obj, 0);
3174 	}
3175 
3176 	/*
3177 	 * For asynchronous completions, release the buffer now. The brelse
3178 	 * will do a wakeup there if necessary - so no need to do a wakeup
3179 	 * here in the async case. The sync case always needs to do a wakeup.
3180 	 */
3181 
3182 	if (bp->b_flags & B_ASYNC) {
3183 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
3184 			brelse(bp);
3185 		else
3186 			bqrelse(bp);
3187 	} else {
3188 		wakeup(bp);
3189 	}
3190 	crit_exit();
3191 }
3192 
3193 /*
3194  * vfs_unbusy_pages:
3195  *
3196  *	This routine is called in lieu of iodone in the case of
3197  *	incomplete I/O.  This keeps the busy status for pages
3198  *	consistant.
3199  */
3200 void
3201 vfs_unbusy_pages(struct buf *bp)
3202 {
3203 	int i;
3204 
3205 	runningbufwakeup(bp);
3206 	if (bp->b_flags & B_VMIO) {
3207 		struct vnode *vp = bp->b_vp;
3208 		vm_object_t obj;
3209 
3210 		obj = vp->v_object;
3211 
3212 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3213 			vm_page_t m = bp->b_xio.xio_pages[i];
3214 
3215 			/*
3216 			 * When restoring bogus changes the original pages
3217 			 * should still be wired, so we are in no danger of
3218 			 * losing the object association and do not need
3219 			 * critical section protection particularly.
3220 			 */
3221 			if (m == bogus_page) {
3222 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3223 				if (!m) {
3224 					panic("vfs_unbusy_pages: page missing");
3225 				}
3226 				bp->b_xio.xio_pages[i] = m;
3227 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3228 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3229 			}
3230 			vm_object_pip_subtract(obj, 1);
3231 			vm_page_flag_clear(m, PG_ZERO);
3232 			vm_page_io_finish(m);
3233 		}
3234 		vm_object_pip_wakeupn(obj, 0);
3235 	}
3236 }
3237 
3238 /*
3239  * vfs_page_set_valid:
3240  *
3241  *	Set the valid bits in a page based on the supplied offset.   The
3242  *	range is restricted to the buffer's size.
3243  *
3244  *	This routine is typically called after a read completes.
3245  */
3246 static void
3247 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3248 {
3249 	vm_ooffset_t soff, eoff;
3250 
3251 	/*
3252 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3253 	 * page boundry or cross the end of the buffer.  The end of the
3254 	 * buffer, in this case, is our file EOF, not the allocation size
3255 	 * of the buffer.
3256 	 */
3257 	soff = off;
3258 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3259 	if (eoff > bp->b_loffset + bp->b_bcount)
3260 		eoff = bp->b_loffset + bp->b_bcount;
3261 
3262 	/*
3263 	 * Set valid range.  This is typically the entire buffer and thus the
3264 	 * entire page.
3265 	 */
3266 	if (eoff > soff) {
3267 		vm_page_set_validclean(
3268 		    m,
3269 		   (vm_offset_t) (soff & PAGE_MASK),
3270 		   (vm_offset_t) (eoff - soff)
3271 		);
3272 	}
3273 }
3274 
3275 /*
3276  * vfs_busy_pages:
3277  *
3278  *	This routine is called before a device strategy routine.
3279  *	It is used to tell the VM system that paging I/O is in
3280  *	progress, and treat the pages associated with the buffer
3281  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
3282  *	flag is handled to make sure that the object doesn't become
3283  *	inconsistant.
3284  *
3285  *	Since I/O has not been initiated yet, certain buffer flags
3286  *	such as B_ERROR or B_INVAL may be in an inconsistant state
3287  *	and should be ignored.
3288  */
3289 void
3290 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3291 {
3292 	int i, bogus;
3293 	struct lwp *lp = curthread->td_lwp;
3294 
3295 	/*
3296 	 * The buffer's I/O command must already be set.  If reading,
3297 	 * B_CACHE must be 0 (double check against callers only doing
3298 	 * I/O when B_CACHE is 0).
3299 	 */
3300 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3301 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3302 
3303 	if (bp->b_flags & B_VMIO) {
3304 		vm_object_t obj;
3305 		vm_ooffset_t foff;
3306 
3307 		obj = vp->v_object;
3308 		foff = bp->b_loffset;
3309 		KASSERT(bp->b_loffset != NOOFFSET,
3310 			("vfs_busy_pages: no buffer offset"));
3311 		vfs_setdirty(bp);
3312 
3313 retry:
3314 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3315 			vm_page_t m = bp->b_xio.xio_pages[i];
3316 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3317 				goto retry;
3318 		}
3319 
3320 		bogus = 0;
3321 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3322 			vm_page_t m = bp->b_xio.xio_pages[i];
3323 
3324 			vm_page_flag_clear(m, PG_ZERO);
3325 			if ((bp->b_flags & B_CLUSTER) == 0) {
3326 				vm_object_pip_add(obj, 1);
3327 				vm_page_io_start(m);
3328 			}
3329 
3330 			/*
3331 			 * When readying a vnode-backed buffer for a write
3332 			 * we must zero-fill any invalid portions of the
3333 			 * backing VM pages.
3334 			 *
3335 			 * When readying a vnode-backed buffer for a read
3336 			 * we must replace any dirty pages with a bogus
3337 			 * page so we do not destroy dirty data when
3338 			 * filling in gaps.  Dirty pages might not
3339 			 * necessarily be marked dirty yet, so use m->valid
3340 			 * as a reasonable test.
3341 			 *
3342 			 * Bogus page replacement is, uh, bogus.  We need
3343 			 * to find a better way.
3344 			 */
3345 			vm_page_protect(m, VM_PROT_NONE);
3346 			if (bp->b_cmd == BUF_CMD_WRITE) {
3347 				vfs_page_set_valid(bp, foff, i, m);
3348 			} else if (m->valid == VM_PAGE_BITS_ALL) {
3349 				bp->b_xio.xio_pages[i] = bogus_page;
3350 				bogus++;
3351 			}
3352 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3353 		}
3354 		if (bogus)
3355 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3356 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3357 	}
3358 
3359 	/*
3360 	 * This is the easiest place to put the process accounting for the I/O
3361 	 * for now.
3362 	 */
3363 	if (lp != NULL) {
3364 		if (bp->b_cmd == BUF_CMD_READ)
3365 			lp->lwp_ru.ru_inblock++;
3366 		else
3367 			lp->lwp_ru.ru_oublock++;
3368 	}
3369 }
3370 
3371 /*
3372  * vfs_clean_pages:
3373  *
3374  *	Tell the VM system that the pages associated with this buffer
3375  *	are clean.  This is used for delayed writes where the data is
3376  *	going to go to disk eventually without additional VM intevention.
3377  *
3378  *	Note that while we only really need to clean through to b_bcount, we
3379  *	just go ahead and clean through to b_bufsize.
3380  */
3381 static void
3382 vfs_clean_pages(struct buf *bp)
3383 {
3384 	int i;
3385 
3386 	if (bp->b_flags & B_VMIO) {
3387 		vm_ooffset_t foff;
3388 
3389 		foff = bp->b_loffset;
3390 		KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3391 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3392 			vm_page_t m = bp->b_xio.xio_pages[i];
3393 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3394 			vm_ooffset_t eoff = noff;
3395 
3396 			if (eoff > bp->b_loffset + bp->b_bufsize)
3397 				eoff = bp->b_loffset + bp->b_bufsize;
3398 			vfs_page_set_valid(bp, foff, i, m);
3399 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3400 			foff = noff;
3401 		}
3402 	}
3403 }
3404 
3405 /*
3406  * vfs_bio_set_validclean:
3407  *
3408  *	Set the range within the buffer to valid and clean.  The range is
3409  *	relative to the beginning of the buffer, b_loffset.  Note that
3410  *	b_loffset itself may be offset from the beginning of the first page.
3411  */
3412 
3413 void
3414 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3415 {
3416 	if (bp->b_flags & B_VMIO) {
3417 		int i;
3418 		int n;
3419 
3420 		/*
3421 		 * Fixup base to be relative to beginning of first page.
3422 		 * Set initial n to be the maximum number of bytes in the
3423 		 * first page that can be validated.
3424 		 */
3425 
3426 		base += (bp->b_loffset & PAGE_MASK);
3427 		n = PAGE_SIZE - (base & PAGE_MASK);
3428 
3429 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3430 			vm_page_t m = bp->b_xio.xio_pages[i];
3431 
3432 			if (n > size)
3433 				n = size;
3434 
3435 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3436 			base += n;
3437 			size -= n;
3438 			n = PAGE_SIZE;
3439 		}
3440 	}
3441 }
3442 
3443 /*
3444  * vfs_bio_clrbuf:
3445  *
3446  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
3447  *	to clear B_ERROR and B_INVAL.
3448  *
3449  *	Note that while we only theoretically need to clear through b_bcount,
3450  *	we go ahead and clear through b_bufsize.
3451  */
3452 
3453 void
3454 vfs_bio_clrbuf(struct buf *bp)
3455 {
3456 	int i, mask = 0;
3457 	caddr_t sa, ea;
3458 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3459 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3460 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3461 		    (bp->b_loffset & PAGE_MASK) == 0) {
3462 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3463 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3464 				bp->b_resid = 0;
3465 				return;
3466 			}
3467 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3468 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3469 				bzero(bp->b_data, bp->b_bufsize);
3470 				bp->b_xio.xio_pages[0]->valid |= mask;
3471 				bp->b_resid = 0;
3472 				return;
3473 			}
3474 		}
3475 		ea = sa = bp->b_data;
3476 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3477 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3478 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3479 			ea = (caddr_t)(vm_offset_t)ulmin(
3480 			    (u_long)(vm_offset_t)ea,
3481 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3482 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3483 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3484 				continue;
3485 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3486 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3487 					bzero(sa, ea - sa);
3488 				}
3489 			} else {
3490 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3491 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3492 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3493 						bzero(sa, DEV_BSIZE);
3494 				}
3495 			}
3496 			bp->b_xio.xio_pages[i]->valid |= mask;
3497 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3498 		}
3499 		bp->b_resid = 0;
3500 	} else {
3501 		clrbuf(bp);
3502 	}
3503 }
3504 
3505 /*
3506  * vm_hold_load_pages:
3507  *
3508  *	Load pages into the buffer's address space.  The pages are
3509  *	allocated from the kernel object in order to reduce interference
3510  *	with the any VM paging I/O activity.  The range of loaded
3511  *	pages will be wired.
3512  *
3513  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
3514  *	retrieve the full range (to - from) of pages.
3515  *
3516  */
3517 void
3518 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3519 {
3520 	vm_offset_t pg;
3521 	vm_page_t p;
3522 	int index;
3523 
3524 	to = round_page(to);
3525 	from = round_page(from);
3526 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3527 
3528 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3529 
3530 tryagain:
3531 
3532 		/*
3533 		 * Note: must allocate system pages since blocking here
3534 		 * could intefere with paging I/O, no matter which
3535 		 * process we are.
3536 		 */
3537 		p = vm_page_alloc(&kernel_object,
3538 				  (pg >> PAGE_SHIFT),
3539 				  VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3540 		if (!p) {
3541 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3542 			vm_wait();
3543 			goto tryagain;
3544 		}
3545 		vm_page_wire(p);
3546 		p->valid = VM_PAGE_BITS_ALL;
3547 		vm_page_flag_clear(p, PG_ZERO);
3548 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3549 		bp->b_xio.xio_pages[index] = p;
3550 		vm_page_wakeup(p);
3551 	}
3552 	bp->b_xio.xio_npages = index;
3553 }
3554 
3555 /*
3556  * vm_hold_free_pages:
3557  *
3558  *	Return pages associated with the buffer back to the VM system.
3559  *
3560  *	The range of pages underlying the buffer's address space will
3561  *	be unmapped and un-wired.
3562  */
3563 void
3564 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3565 {
3566 	vm_offset_t pg;
3567 	vm_page_t p;
3568 	int index, newnpages;
3569 
3570 	from = round_page(from);
3571 	to = round_page(to);
3572 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3573 
3574 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3575 		p = bp->b_xio.xio_pages[index];
3576 		if (p && (index < bp->b_xio.xio_npages)) {
3577 			if (p->busy) {
3578 				kprintf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n",
3579 					bp->b_bio2.bio_offset, bp->b_loffset);
3580 			}
3581 			bp->b_xio.xio_pages[index] = NULL;
3582 			pmap_kremove(pg);
3583 			vm_page_busy(p);
3584 			vm_page_unwire(p, 0);
3585 			vm_page_free(p);
3586 		}
3587 	}
3588 	bp->b_xio.xio_npages = newnpages;
3589 }
3590 
3591 /*
3592  * vmapbuf:
3593  *
3594  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
3595  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
3596  *	initialized.
3597  */
3598 int
3599 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
3600 {
3601 	caddr_t addr;
3602 	vm_offset_t va;
3603 	vm_page_t m;
3604 	int vmprot;
3605 	int error;
3606 	int pidx;
3607 	int i;
3608 
3609 	/*
3610 	 * bp had better have a command and it better be a pbuf.
3611 	 */
3612 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3613 	KKASSERT(bp->b_flags & B_PAGING);
3614 
3615 	if (bytes < 0)
3616 		return (-1);
3617 
3618 	/*
3619 	 * Map the user data into KVM.  Mappings have to be page-aligned.
3620 	 */
3621 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
3622 	pidx = 0;
3623 
3624 	vmprot = VM_PROT_READ;
3625 	if (bp->b_cmd == BUF_CMD_READ)
3626 		vmprot |= VM_PROT_WRITE;
3627 
3628 	while (addr < udata + bytes) {
3629 		/*
3630 		 * Do the vm_fault if needed; do the copy-on-write thing
3631 		 * when reading stuff off device into memory.
3632 		 *
3633 		 * vm_fault_page*() returns a held VM page.
3634 		 */
3635 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
3636 		va = trunc_page(va);
3637 
3638 		m = vm_fault_page_quick(va, vmprot, &error);
3639 		if (m == NULL) {
3640 			for (i = 0; i < pidx; ++i) {
3641 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3642 			    bp->b_xio.xio_pages[i] = NULL;
3643 			}
3644 			return(-1);
3645 		}
3646 		bp->b_xio.xio_pages[pidx] = m;
3647 		addr += PAGE_SIZE;
3648 		++pidx;
3649 	}
3650 
3651 	/*
3652 	 * Map the page array and set the buffer fields to point to
3653 	 * the mapped data buffer.
3654 	 */
3655 	if (pidx > btoc(MAXPHYS))
3656 		panic("vmapbuf: mapped more than MAXPHYS");
3657 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
3658 
3659 	bp->b_xio.xio_npages = pidx;
3660 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
3661 	bp->b_bcount = bytes;
3662 	bp->b_bufsize = bytes;
3663 	return(0);
3664 }
3665 
3666 /*
3667  * vunmapbuf:
3668  *
3669  *	Free the io map PTEs associated with this IO operation.
3670  *	We also invalidate the TLB entries and restore the original b_addr.
3671  */
3672 void
3673 vunmapbuf(struct buf *bp)
3674 {
3675 	int pidx;
3676 	int npages;
3677 
3678 	KKASSERT(bp->b_flags & B_PAGING);
3679 
3680 	npages = bp->b_xio.xio_npages;
3681 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3682 	for (pidx = 0; pidx < npages; ++pidx) {
3683 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
3684 		bp->b_xio.xio_pages[pidx] = NULL;
3685 	}
3686 	bp->b_xio.xio_npages = 0;
3687 	bp->b_data = bp->b_kvabase;
3688 }
3689 
3690 /*
3691  * Scan all buffers in the system and issue the callback.
3692  */
3693 int
3694 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
3695 {
3696 	int count = 0;
3697 	int error;
3698 	int n;
3699 
3700 	for (n = 0; n < nbuf; ++n) {
3701 		if ((error = callback(&buf[n], info)) < 0) {
3702 			count = error;
3703 			break;
3704 		}
3705 		count += error;
3706 	}
3707 	return (count);
3708 }
3709 
3710 /*
3711  * print out statistics from the current status of the buffer pool
3712  * this can be toggeled by the system control option debug.syncprt
3713  */
3714 #ifdef DEBUG
3715 void
3716 vfs_bufstats(void)
3717 {
3718         int i, j, count;
3719         struct buf *bp;
3720         struct bqueues *dp;
3721         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3722         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3723 
3724         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3725                 count = 0;
3726                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3727                         counts[j] = 0;
3728 		crit_enter();
3729                 TAILQ_FOREACH(bp, dp, b_freelist) {
3730                         counts[bp->b_bufsize/PAGE_SIZE]++;
3731                         count++;
3732                 }
3733 		crit_exit();
3734                 kprintf("%s: total-%d", bname[i], count);
3735                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3736                         if (counts[j] != 0)
3737                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
3738                 kprintf("\n");
3739         }
3740 }
3741 #endif
3742 
3743 #ifdef DDB
3744 
3745 DB_SHOW_COMMAND(buffer, db_show_buffer)
3746 {
3747 	/* get args */
3748 	struct buf *bp = (struct buf *)addr;
3749 
3750 	if (!have_addr) {
3751 		db_printf("usage: show buffer <addr>\n");
3752 		return;
3753 	}
3754 
3755 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3756 	db_printf("b_cmd = %d\n", bp->b_cmd);
3757 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3758 		  "b_resid = %d\n, b_data = %p, "
3759 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3760 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3761 		  bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1));
3762 	if (bp->b_xio.xio_npages) {
3763 		int i;
3764 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3765 			bp->b_xio.xio_npages);
3766 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3767 			vm_page_t m;
3768 			m = bp->b_xio.xio_pages[i];
3769 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3770 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3771 			if ((i + 1) < bp->b_xio.xio_npages)
3772 				db_printf(",");
3773 		}
3774 		db_printf("\n");
3775 	}
3776 }
3777 #endif /* DDB */
3778