1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $ 15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.113 2008/07/18 00:01:11 dillon Exp $ 16 */ 17 18 /* 19 * this file contains a new buffer I/O scheme implementing a coherent 20 * VM object and buffer cache scheme. Pains have been taken to make 21 * sure that the performance degradation associated with schemes such 22 * as this is not realized. 23 * 24 * Author: John S. Dyson 25 * Significant help during the development and debugging phases 26 * had been provided by David Greenman, also of the FreeBSD core team. 27 * 28 * see man buf(9) for more info. 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/eventhandler.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mount.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/proc.h> 42 #include <sys/reboot.h> 43 #include <sys/resourcevar.h> 44 #include <sys/sysctl.h> 45 #include <sys/vmmeter.h> 46 #include <sys/vnode.h> 47 #include <sys/proc.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 #include <sys/buf2.h> 58 #include <sys/thread2.h> 59 #include <sys/spinlock2.h> 60 #include <vm/vm_page2.h> 61 62 #include "opt_ddb.h" 63 #ifdef DDB 64 #include <ddb/ddb.h> 65 #endif 66 67 /* 68 * Buffer queues. 69 */ 70 enum bufq_type { 71 BQUEUE_NONE, /* not on any queue */ 72 BQUEUE_LOCKED, /* locked buffers */ 73 BQUEUE_CLEAN, /* non-B_DELWRI buffers */ 74 BQUEUE_DIRTY, /* B_DELWRI buffers */ 75 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */ 76 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */ 77 BQUEUE_EMPTY, /* empty buffer headers */ 78 79 BUFFER_QUEUES /* number of buffer queues */ 80 }; 81 82 typedef enum bufq_type bufq_type_t; 83 84 #define BD_WAKE_SIZE 128 85 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1) 86 87 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES]; 88 89 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 90 91 struct buf *buf; /* buffer header pool */ 92 93 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from, 94 vm_offset_t to); 95 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from, 96 vm_offset_t to); 97 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 98 int pageno, vm_page_t m); 99 static void vfs_clean_pages(struct buf *bp); 100 static void vfs_setdirty(struct buf *bp); 101 static void vfs_vmio_release(struct buf *bp); 102 static int flushbufqueues(bufq_type_t q); 103 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit); 104 105 static void bd_signal(int totalspace); 106 static void buf_daemon(void); 107 static void buf_daemon_hw(void); 108 109 /* 110 * bogus page -- for I/O to/from partially complete buffers 111 * this is a temporary solution to the problem, but it is not 112 * really that bad. it would be better to split the buffer 113 * for input in the case of buffers partially already in memory, 114 * but the code is intricate enough already. 115 */ 116 vm_page_t bogus_page; 117 118 /* 119 * These are all static, but make the ones we export globals so we do 120 * not need to use compiler magic. 121 */ 122 int bufspace, maxbufspace, 123 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 124 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 125 static int lorunningspace, hirunningspace, runningbufreq; 126 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace; 127 int dirtybufcount, dirtybufcounthw; 128 int runningbufspace, runningbufcount; 129 static int getnewbufcalls; 130 static int getnewbufrestarts; 131 static int recoverbufcalls; 132 static int needsbuffer; /* locked by needsbuffer_spin */ 133 static int bd_request; /* locked by needsbuffer_spin */ 134 static int bd_request_hw; /* locked by needsbuffer_spin */ 135 static u_int bd_wake_ary[BD_WAKE_SIZE]; 136 static u_int bd_wake_index; 137 static struct spinlock needsbuffer_spin; 138 139 static struct thread *bufdaemon_td; 140 static struct thread *bufdaemonhw_td; 141 142 143 /* 144 * Sysctls for operational control of the buffer cache. 145 */ 146 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0, 147 "Number of dirty buffers to flush before bufdaemon becomes inactive"); 148 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0, 149 "High watermark used to trigger explicit flushing of dirty buffers"); 150 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 151 "Minimum amount of buffer space required for active I/O"); 152 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 153 "Maximum amount of buffer space to usable for active I/O"); 154 /* 155 * Sysctls determining current state of the buffer cache. 156 */ 157 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0, 158 "Total number of buffers in buffer cache"); 159 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0, 160 "Pending bytes of dirty buffers (all)"); 161 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0, 162 "Pending bytes of dirty buffers (heavy weight)"); 163 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0, 164 "Pending number of dirty buffers"); 165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0, 166 "Pending number of dirty buffers (heavy weight)"); 167 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 168 "I/O bytes currently in progress due to asynchronous writes"); 169 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0, 170 "I/O buffers currently in progress due to asynchronous writes"); 171 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 172 "Hard limit on maximum amount of memory usable for buffer space"); 173 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 174 "Soft limit on maximum amount of memory usable for buffer space"); 175 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 176 "Minimum amount of memory to reserve for system buffer space"); 177 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 178 "Amount of memory available for buffers"); 179 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace, 180 0, "Maximum amount of memory reserved for buffers using malloc"); 181 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 182 "Amount of memory left for buffers using malloc-scheme"); 183 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0, 184 "New buffer header acquisition requests"); 185 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts, 186 0, "New buffer header acquisition restarts"); 187 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0, 188 "Recover VM space in an emergency"); 189 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0, 190 "Buffer acquisition restarts due to fragmented buffer map"); 191 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0, 192 "Amount of time KVA space was deallocated in an arbitrary buffer"); 193 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0, 194 "Amount of time buffer re-use operations were successful"); 195 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf), 196 "sizeof(struct buf)"); 197 198 char *buf_wmesg = BUF_WMESG; 199 200 extern int vm_swap_size; 201 202 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 203 #define VFS_BIO_NEED_UNUSED02 0x02 204 #define VFS_BIO_NEED_UNUSED04 0x04 205 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 206 207 /* 208 * bufspacewakeup: 209 * 210 * Called when buffer space is potentially available for recovery. 211 * getnewbuf() will block on this flag when it is unable to free 212 * sufficient buffer space. Buffer space becomes recoverable when 213 * bp's get placed back in the queues. 214 */ 215 216 static __inline void 217 bufspacewakeup(void) 218 { 219 /* 220 * If someone is waiting for BUF space, wake them up. Even 221 * though we haven't freed the kva space yet, the waiting 222 * process will be able to now. 223 */ 224 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 225 spin_lock_wr(&needsbuffer_spin); 226 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 227 spin_unlock_wr(&needsbuffer_spin); 228 wakeup(&needsbuffer); 229 } 230 } 231 232 /* 233 * runningbufwakeup: 234 * 235 * Accounting for I/O in progress. 236 * 237 */ 238 static __inline void 239 runningbufwakeup(struct buf *bp) 240 { 241 int totalspace; 242 243 if ((totalspace = bp->b_runningbufspace) != 0) { 244 runningbufspace -= totalspace; 245 --runningbufcount; 246 bp->b_runningbufspace = 0; 247 if (runningbufreq && runningbufspace <= lorunningspace) { 248 runningbufreq = 0; 249 wakeup(&runningbufreq); 250 } 251 bd_signal(totalspace); 252 } 253 } 254 255 /* 256 * bufcountwakeup: 257 * 258 * Called when a buffer has been added to one of the free queues to 259 * account for the buffer and to wakeup anyone waiting for free buffers. 260 * This typically occurs when large amounts of metadata are being handled 261 * by the buffer cache ( else buffer space runs out first, usually ). 262 */ 263 264 static __inline void 265 bufcountwakeup(void) 266 { 267 if (needsbuffer) { 268 spin_lock_wr(&needsbuffer_spin); 269 needsbuffer &= ~VFS_BIO_NEED_ANY; 270 spin_unlock_wr(&needsbuffer_spin); 271 wakeup(&needsbuffer); 272 } 273 } 274 275 /* 276 * waitrunningbufspace() 277 * 278 * Wait for the amount of running I/O to drop to a reasonable level. 279 * 280 * The caller may be using this function to block in a tight loop, we 281 * must block of runningbufspace is greater then the passed limit. 282 * And even with that it may not be enough, due to the presence of 283 * B_LOCKED dirty buffers, so also wait for at least one running buffer 284 * to complete. 285 */ 286 static __inline void 287 waitrunningbufspace(int limit) 288 { 289 int lorun; 290 291 if (lorunningspace < limit) 292 lorun = lorunningspace; 293 else 294 lorun = limit; 295 296 crit_enter(); 297 if (runningbufspace > lorun) { 298 while (runningbufspace > lorun) { 299 ++runningbufreq; 300 tsleep(&runningbufreq, 0, "wdrain", 0); 301 } 302 } else if (runningbufspace) { 303 ++runningbufreq; 304 tsleep(&runningbufreq, 0, "wdrain2", 1); 305 } 306 crit_exit(); 307 } 308 309 /* 310 * vfs_buf_test_cache: 311 * 312 * Called when a buffer is extended. This function clears the B_CACHE 313 * bit if the newly extended portion of the buffer does not contain 314 * valid data. 315 */ 316 static __inline__ 317 void 318 vfs_buf_test_cache(struct buf *bp, 319 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 320 vm_page_t m) 321 { 322 if (bp->b_flags & B_CACHE) { 323 int base = (foff + off) & PAGE_MASK; 324 if (vm_page_is_valid(m, base, size) == 0) 325 bp->b_flags &= ~B_CACHE; 326 } 327 } 328 329 /* 330 * bd_speedup() 331 * 332 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the 333 * low water mark. 334 */ 335 static __inline__ 336 void 337 bd_speedup(void) 338 { 339 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2) 340 return; 341 342 if (bd_request == 0 && 343 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 || 344 dirtybufcount - dirtybufcounthw >= nbuf / 2)) { 345 spin_lock_wr(&needsbuffer_spin); 346 bd_request = 1; 347 spin_unlock_wr(&needsbuffer_spin); 348 wakeup(&bd_request); 349 } 350 if (bd_request_hw == 0 && 351 (dirtybufspacehw > lodirtybufspace / 2 || 352 dirtybufcounthw >= nbuf / 2)) { 353 spin_lock_wr(&needsbuffer_spin); 354 bd_request_hw = 1; 355 spin_unlock_wr(&needsbuffer_spin); 356 wakeup(&bd_request_hw); 357 } 358 } 359 360 /* 361 * bd_heatup() 362 * 363 * Get the buf_daemon heated up when the number of running and dirty 364 * buffers exceeds the mid-point. 365 */ 366 int 367 bd_heatup(void) 368 { 369 int mid1; 370 int mid2; 371 int totalspace; 372 373 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2; 374 375 totalspace = runningbufspace + dirtybufspace; 376 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) { 377 bd_speedup(); 378 mid2 = mid1 + (hidirtybufspace - mid1) / 2; 379 if (totalspace >= mid2) 380 return(totalspace - mid2); 381 } 382 return(0); 383 } 384 385 /* 386 * bd_wait() 387 * 388 * Wait for the buffer cache to flush (totalspace) bytes worth of 389 * buffers, then return. 390 * 391 * Regardless this function blocks while the number of dirty buffers 392 * exceeds hidirtybufspace. 393 */ 394 void 395 bd_wait(int totalspace) 396 { 397 u_int i; 398 int count; 399 400 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td) 401 return; 402 403 while (totalspace > 0) { 404 bd_heatup(); 405 crit_enter(); 406 if (totalspace > runningbufspace + dirtybufspace) 407 totalspace = runningbufspace + dirtybufspace; 408 count = totalspace / BKVASIZE; 409 if (count >= BD_WAKE_SIZE) 410 count = BD_WAKE_SIZE - 1; 411 i = (bd_wake_index + count) & BD_WAKE_MASK; 412 ++bd_wake_ary[i]; 413 tsleep(&bd_wake_ary[i], 0, "flstik", hz); 414 crit_exit(); 415 416 totalspace = runningbufspace + dirtybufspace - hidirtybufspace; 417 } 418 } 419 420 /* 421 * bd_signal() 422 * 423 * This function is called whenever runningbufspace or dirtybufspace 424 * is reduced. Track threads waiting for run+dirty buffer I/O 425 * complete. 426 */ 427 static void 428 bd_signal(int totalspace) 429 { 430 u_int i; 431 432 while (totalspace > 0) { 433 i = atomic_fetchadd_int(&bd_wake_index, 1); 434 i &= BD_WAKE_MASK; 435 if (bd_wake_ary[i]) { 436 bd_wake_ary[i] = 0; 437 wakeup(&bd_wake_ary[i]); 438 } 439 totalspace -= BKVASIZE; 440 } 441 } 442 443 /* 444 * bufinit: 445 * 446 * Load time initialisation of the buffer cache, called from machine 447 * dependant initialization code. 448 */ 449 void 450 bufinit(void) 451 { 452 struct buf *bp; 453 vm_offset_t bogus_offset; 454 int i; 455 456 spin_init(&needsbuffer_spin); 457 458 /* next, make a null set of free lists */ 459 for (i = 0; i < BUFFER_QUEUES; i++) 460 TAILQ_INIT(&bufqueues[i]); 461 462 /* finally, initialize each buffer header and stick on empty q */ 463 for (i = 0; i < nbuf; i++) { 464 bp = &buf[i]; 465 bzero(bp, sizeof *bp); 466 bp->b_flags = B_INVAL; /* we're just an empty header */ 467 bp->b_cmd = BUF_CMD_DONE; 468 bp->b_qindex = BQUEUE_EMPTY; 469 initbufbio(bp); 470 xio_init(&bp->b_xio); 471 buf_dep_init(bp); 472 BUF_LOCKINIT(bp); 473 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist); 474 } 475 476 /* 477 * maxbufspace is the absolute maximum amount of buffer space we are 478 * allowed to reserve in KVM and in real terms. The absolute maximum 479 * is nominally used by buf_daemon. hibufspace is the nominal maximum 480 * used by most other processes. The differential is required to 481 * ensure that buf_daemon is able to run when other processes might 482 * be blocked waiting for buffer space. 483 * 484 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 485 * this may result in KVM fragmentation which is not handled optimally 486 * by the system. 487 */ 488 maxbufspace = nbuf * BKVASIZE; 489 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 490 lobufspace = hibufspace - MAXBSIZE; 491 492 lorunningspace = 512 * 1024; 493 hirunningspace = 1024 * 1024; 494 495 /* 496 * Limit the amount of malloc memory since it is wired permanently 497 * into the kernel space. Even though this is accounted for in 498 * the buffer allocation, we don't want the malloced region to grow 499 * uncontrolled. The malloc scheme improves memory utilization 500 * significantly on average (small) directories. 501 */ 502 maxbufmallocspace = hibufspace / 20; 503 504 /* 505 * Reduce the chance of a deadlock occuring by limiting the number 506 * of delayed-write dirty buffers we allow to stack up. 507 */ 508 hidirtybufspace = hibufspace / 2; 509 dirtybufspace = 0; 510 dirtybufspacehw = 0; 511 512 lodirtybufspace = hidirtybufspace / 2; 513 514 /* 515 * Maximum number of async ops initiated per buf_daemon loop. This is 516 * somewhat of a hack at the moment, we really need to limit ourselves 517 * based on the number of bytes of I/O in-transit that were initiated 518 * from buf_daemon. 519 */ 520 521 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE); 522 bogus_page = vm_page_alloc(&kernel_object, 523 (bogus_offset >> PAGE_SHIFT), 524 VM_ALLOC_NORMAL); 525 vmstats.v_wire_count++; 526 527 } 528 529 /* 530 * Initialize the embedded bio structures 531 */ 532 void 533 initbufbio(struct buf *bp) 534 { 535 bp->b_bio1.bio_buf = bp; 536 bp->b_bio1.bio_prev = NULL; 537 bp->b_bio1.bio_offset = NOOFFSET; 538 bp->b_bio1.bio_next = &bp->b_bio2; 539 bp->b_bio1.bio_done = NULL; 540 541 bp->b_bio2.bio_buf = bp; 542 bp->b_bio2.bio_prev = &bp->b_bio1; 543 bp->b_bio2.bio_offset = NOOFFSET; 544 bp->b_bio2.bio_next = NULL; 545 bp->b_bio2.bio_done = NULL; 546 } 547 548 /* 549 * Reinitialize the embedded bio structures as well as any additional 550 * translation cache layers. 551 */ 552 void 553 reinitbufbio(struct buf *bp) 554 { 555 struct bio *bio; 556 557 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) { 558 bio->bio_done = NULL; 559 bio->bio_offset = NOOFFSET; 560 } 561 } 562 563 /* 564 * Push another BIO layer onto an existing BIO and return it. The new 565 * BIO layer may already exist, holding cached translation data. 566 */ 567 struct bio * 568 push_bio(struct bio *bio) 569 { 570 struct bio *nbio; 571 572 if ((nbio = bio->bio_next) == NULL) { 573 int index = bio - &bio->bio_buf->b_bio_array[0]; 574 if (index >= NBUF_BIO - 1) { 575 panic("push_bio: too many layers bp %p\n", 576 bio->bio_buf); 577 } 578 nbio = &bio->bio_buf->b_bio_array[index + 1]; 579 bio->bio_next = nbio; 580 nbio->bio_prev = bio; 581 nbio->bio_buf = bio->bio_buf; 582 nbio->bio_offset = NOOFFSET; 583 nbio->bio_done = NULL; 584 nbio->bio_next = NULL; 585 } 586 KKASSERT(nbio->bio_done == NULL); 587 return(nbio); 588 } 589 590 /* 591 * Pop a BIO translation layer, returning the previous layer. The 592 * must have been previously pushed. 593 */ 594 struct bio * 595 pop_bio(struct bio *bio) 596 { 597 return(bio->bio_prev); 598 } 599 600 void 601 clearbiocache(struct bio *bio) 602 { 603 while (bio) { 604 bio->bio_offset = NOOFFSET; 605 bio = bio->bio_next; 606 } 607 } 608 609 /* 610 * bfreekva: 611 * 612 * Free the KVA allocation for buffer 'bp'. 613 * 614 * Must be called from a critical section as this is the only locking for 615 * buffer_map. 616 * 617 * Since this call frees up buffer space, we call bufspacewakeup(). 618 */ 619 static void 620 bfreekva(struct buf *bp) 621 { 622 int count; 623 624 if (bp->b_kvasize) { 625 ++buffreekvacnt; 626 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 627 vm_map_lock(&buffer_map); 628 bufspace -= bp->b_kvasize; 629 vm_map_delete(&buffer_map, 630 (vm_offset_t) bp->b_kvabase, 631 (vm_offset_t) bp->b_kvabase + bp->b_kvasize, 632 &count 633 ); 634 vm_map_unlock(&buffer_map); 635 vm_map_entry_release(count); 636 bp->b_kvasize = 0; 637 bufspacewakeup(); 638 } 639 } 640 641 /* 642 * bremfree: 643 * 644 * Remove the buffer from the appropriate free list. 645 */ 646 void 647 bremfree(struct buf *bp) 648 { 649 int old_qindex; 650 651 crit_enter(); 652 old_qindex = bp->b_qindex; 653 654 if (bp->b_qindex != BQUEUE_NONE) { 655 KASSERT(BUF_REFCNTNB(bp) == 1, 656 ("bremfree: bp %p not locked",bp)); 657 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 658 bp->b_qindex = BQUEUE_NONE; 659 } else { 660 if (BUF_REFCNTNB(bp) <= 1) 661 panic("bremfree: removing a buffer not on a queue"); 662 } 663 664 crit_exit(); 665 } 666 667 668 /* 669 * bread: 670 * 671 * Get a buffer with the specified data. Look in the cache first. We 672 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 673 * is set, the buffer is valid and we do not have to do anything ( see 674 * getblk() ). 675 */ 676 int 677 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp) 678 { 679 struct buf *bp; 680 681 bp = getblk(vp, loffset, size, 0, 0); 682 *bpp = bp; 683 684 /* if not found in cache, do some I/O */ 685 if ((bp->b_flags & B_CACHE) == 0) { 686 KASSERT(!(bp->b_flags & B_ASYNC), 687 ("bread: illegal async bp %p", bp)); 688 bp->b_flags &= ~(B_ERROR | B_INVAL); 689 bp->b_cmd = BUF_CMD_READ; 690 vfs_busy_pages(vp, bp); 691 vn_strategy(vp, &bp->b_bio1); 692 return (biowait(bp)); 693 } 694 return (0); 695 } 696 697 /* 698 * breadn: 699 * 700 * Operates like bread, but also starts asynchronous I/O on 701 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior 702 * to initiating I/O . If B_CACHE is set, the buffer is valid 703 * and we do not have to do anything. 704 */ 705 int 706 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset, 707 int *rabsize, int cnt, struct buf **bpp) 708 { 709 struct buf *bp, *rabp; 710 int i; 711 int rv = 0, readwait = 0; 712 713 *bpp = bp = getblk(vp, loffset, size, 0, 0); 714 715 /* if not found in cache, do some I/O */ 716 if ((bp->b_flags & B_CACHE) == 0) { 717 bp->b_flags &= ~(B_ERROR | B_INVAL); 718 bp->b_cmd = BUF_CMD_READ; 719 vfs_busy_pages(vp, bp); 720 vn_strategy(vp, &bp->b_bio1); 721 ++readwait; 722 } 723 724 for (i = 0; i < cnt; i++, raoffset++, rabsize++) { 725 if (inmem(vp, *raoffset)) 726 continue; 727 rabp = getblk(vp, *raoffset, *rabsize, 0, 0); 728 729 if ((rabp->b_flags & B_CACHE) == 0) { 730 rabp->b_flags |= B_ASYNC; 731 rabp->b_flags &= ~(B_ERROR | B_INVAL); 732 rabp->b_cmd = BUF_CMD_READ; 733 vfs_busy_pages(vp, rabp); 734 BUF_KERNPROC(rabp); 735 vn_strategy(vp, &rabp->b_bio1); 736 } else { 737 brelse(rabp); 738 } 739 } 740 741 if (readwait) { 742 rv = biowait(bp); 743 } 744 return (rv); 745 } 746 747 /* 748 * bwrite: 749 * 750 * Write, release buffer on completion. (Done by iodone 751 * if async). Do not bother writing anything if the buffer 752 * is invalid. 753 * 754 * Note that we set B_CACHE here, indicating that buffer is 755 * fully valid and thus cacheable. This is true even of NFS 756 * now so we set it generally. This could be set either here 757 * or in biodone() since the I/O is synchronous. We put it 758 * here. 759 */ 760 int 761 bwrite(struct buf *bp) 762 { 763 int oldflags; 764 765 if (bp->b_flags & B_INVAL) { 766 brelse(bp); 767 return (0); 768 } 769 770 oldflags = bp->b_flags; 771 772 if (BUF_REFCNTNB(bp) == 0) 773 panic("bwrite: buffer is not busy???"); 774 crit_enter(); 775 776 /* Mark the buffer clean */ 777 bundirty(bp); 778 779 bp->b_flags &= ~B_ERROR; 780 bp->b_flags |= B_CACHE; 781 bp->b_cmd = BUF_CMD_WRITE; 782 vfs_busy_pages(bp->b_vp, bp); 783 784 /* 785 * Normal bwrites pipeline writes. NOTE: b_bufsize is only 786 * valid for vnode-backed buffers. 787 */ 788 bp->b_runningbufspace = bp->b_bufsize; 789 if (bp->b_runningbufspace) { 790 runningbufspace += bp->b_runningbufspace; 791 ++runningbufcount; 792 } 793 794 crit_exit(); 795 if (oldflags & B_ASYNC) 796 BUF_KERNPROC(bp); 797 vn_strategy(bp->b_vp, &bp->b_bio1); 798 799 if ((oldflags & B_ASYNC) == 0) { 800 int rtval = biowait(bp); 801 brelse(bp); 802 return (rtval); 803 } 804 return (0); 805 } 806 807 /* 808 * bdwrite: 809 * 810 * Delayed write. (Buffer is marked dirty). Do not bother writing 811 * anything if the buffer is marked invalid. 812 * 813 * Note that since the buffer must be completely valid, we can safely 814 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 815 * biodone() in order to prevent getblk from writing the buffer 816 * out synchronously. 817 */ 818 void 819 bdwrite(struct buf *bp) 820 { 821 if (BUF_REFCNTNB(bp) == 0) 822 panic("bdwrite: buffer is not busy"); 823 824 if (bp->b_flags & B_INVAL) { 825 brelse(bp); 826 return; 827 } 828 bdirty(bp); 829 830 /* 831 * Set B_CACHE, indicating that the buffer is fully valid. This is 832 * true even of NFS now. 833 */ 834 bp->b_flags |= B_CACHE; 835 836 /* 837 * This bmap keeps the system from needing to do the bmap later, 838 * perhaps when the system is attempting to do a sync. Since it 839 * is likely that the indirect block -- or whatever other datastructure 840 * that the filesystem needs is still in memory now, it is a good 841 * thing to do this. Note also, that if the pageout daemon is 842 * requesting a sync -- there might not be enough memory to do 843 * the bmap then... So, this is important to do. 844 */ 845 if (bp->b_bio2.bio_offset == NOOFFSET) { 846 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset, 847 NULL, NULL, BUF_CMD_WRITE); 848 } 849 850 /* 851 * Set the *dirty* buffer range based upon the VM system dirty pages. 852 */ 853 vfs_setdirty(bp); 854 855 /* 856 * We need to do this here to satisfy the vnode_pager and the 857 * pageout daemon, so that it thinks that the pages have been 858 * "cleaned". Note that since the pages are in a delayed write 859 * buffer -- the VFS layer "will" see that the pages get written 860 * out on the next sync, or perhaps the cluster will be completed. 861 */ 862 vfs_clean_pages(bp); 863 bqrelse(bp); 864 865 /* 866 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 867 * due to the softdep code. 868 */ 869 } 870 871 /* 872 * bdirty: 873 * 874 * Turn buffer into delayed write request by marking it B_DELWRI. 875 * B_RELBUF and B_NOCACHE must be cleared. 876 * 877 * We reassign the buffer to itself to properly update it in the 878 * dirty/clean lists. 879 * 880 * Must be called from a critical section. 881 * The buffer must be on BQUEUE_NONE. 882 */ 883 void 884 bdirty(struct buf *bp) 885 { 886 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 887 if (bp->b_flags & B_NOCACHE) { 888 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp); 889 bp->b_flags &= ~B_NOCACHE; 890 } 891 if (bp->b_flags & B_INVAL) { 892 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp); 893 } 894 bp->b_flags &= ~B_RELBUF; 895 896 if ((bp->b_flags & B_DELWRI) == 0) { 897 bp->b_flags |= B_DELWRI; 898 reassignbuf(bp); 899 ++dirtybufcount; 900 dirtybufspace += bp->b_bufsize; 901 if (bp->b_flags & B_HEAVY) { 902 ++dirtybufcounthw; 903 dirtybufspacehw += bp->b_bufsize; 904 } 905 bd_heatup(); 906 } 907 } 908 909 /* 910 * Set B_HEAVY, indicating that this is a heavy-weight buffer that 911 * needs to be flushed with a different buf_daemon thread to avoid 912 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf(). 913 */ 914 void 915 bheavy(struct buf *bp) 916 { 917 if ((bp->b_flags & B_HEAVY) == 0) { 918 bp->b_flags |= B_HEAVY; 919 if (bp->b_flags & B_DELWRI) { 920 ++dirtybufcounthw; 921 dirtybufspacehw += bp->b_bufsize; 922 } 923 } 924 } 925 926 /* 927 * bundirty: 928 * 929 * Clear B_DELWRI for buffer. 930 * 931 * Must be called from a critical section. 932 * 933 * The buffer is typically on BQUEUE_NONE but there is one case in 934 * brelse() that calls this function after placing the buffer on 935 * a different queue. 936 */ 937 938 void 939 bundirty(struct buf *bp) 940 { 941 if (bp->b_flags & B_DELWRI) { 942 bp->b_flags &= ~B_DELWRI; 943 reassignbuf(bp); 944 --dirtybufcount; 945 dirtybufspace -= bp->b_bufsize; 946 if (bp->b_flags & B_HEAVY) { 947 --dirtybufcounthw; 948 dirtybufspacehw -= bp->b_bufsize; 949 } 950 bd_signal(bp->b_bufsize); 951 } 952 /* 953 * Since it is now being written, we can clear its deferred write flag. 954 */ 955 bp->b_flags &= ~B_DEFERRED; 956 } 957 958 /* 959 * bawrite: 960 * 961 * Asynchronous write. Start output on a buffer, but do not wait for 962 * it to complete. The buffer is released when the output completes. 963 * 964 * bwrite() ( or the VOP routine anyway ) is responsible for handling 965 * B_INVAL buffers. Not us. 966 */ 967 void 968 bawrite(struct buf *bp) 969 { 970 bp->b_flags |= B_ASYNC; 971 bwrite(bp); 972 } 973 974 /* 975 * bowrite: 976 * 977 * Ordered write. Start output on a buffer, and flag it so that the 978 * device will write it in the order it was queued. The buffer is 979 * released when the output completes. bwrite() ( or the VOP routine 980 * anyway ) is responsible for handling B_INVAL buffers. 981 */ 982 int 983 bowrite(struct buf *bp) 984 { 985 bp->b_flags |= B_ORDERED | B_ASYNC; 986 return (bwrite(bp)); 987 } 988 989 /* 990 * buf_dirty_count_severe: 991 * 992 * Return true if we have too many dirty buffers. 993 */ 994 int 995 buf_dirty_count_severe(void) 996 { 997 return (runningbufspace + dirtybufspace >= hidirtybufspace || 998 dirtybufcount >= nbuf / 2); 999 } 1000 1001 /* 1002 * brelse: 1003 * 1004 * Release a busy buffer and, if requested, free its resources. The 1005 * buffer will be stashed in the appropriate bufqueue[] allowing it 1006 * to be accessed later as a cache entity or reused for other purposes. 1007 */ 1008 void 1009 brelse(struct buf *bp) 1010 { 1011 #ifdef INVARIANTS 1012 int saved_flags = bp->b_flags; 1013 #endif 1014 1015 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1016 1017 crit_enter(); 1018 1019 /* 1020 * If B_NOCACHE is set we are being asked to destroy the buffer and 1021 * its backing store. Clear B_DELWRI. 1022 * 1023 * B_NOCACHE is set in two cases: (1) when the caller really wants 1024 * to destroy the buffer and backing store and (2) when the caller 1025 * wants to destroy the buffer and backing store after a write 1026 * completes. 1027 */ 1028 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) { 1029 bundirty(bp); 1030 } 1031 1032 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) { 1033 /* 1034 * A re-dirtied buffer is only subject to destruction 1035 * by B_INVAL. B_ERROR and B_NOCACHE are ignored. 1036 */ 1037 /* leave buffer intact */ 1038 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) || 1039 (bp->b_bufsize <= 0)) { 1040 /* 1041 * Either a failed read or we were asked to free or not 1042 * cache the buffer. This path is reached with B_DELWRI 1043 * set only if B_INVAL is already set. B_NOCACHE governs 1044 * backing store destruction. 1045 * 1046 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the 1047 * buffer cannot be immediately freed. 1048 */ 1049 bp->b_flags |= B_INVAL; 1050 if (LIST_FIRST(&bp->b_dep) != NULL) 1051 buf_deallocate(bp); 1052 if (bp->b_flags & B_DELWRI) { 1053 --dirtybufcount; 1054 dirtybufspace -= bp->b_bufsize; 1055 if (bp->b_flags & B_HEAVY) { 1056 --dirtybufcounthw; 1057 dirtybufspacehw -= bp->b_bufsize; 1058 } 1059 bd_signal(bp->b_bufsize); 1060 } 1061 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1062 } 1063 1064 /* 1065 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set. 1066 * If vfs_vmio_release() is called with either bit set, the 1067 * underlying pages may wind up getting freed causing a previous 1068 * write (bdwrite()) to get 'lost' because pages associated with 1069 * a B_DELWRI bp are marked clean. Pages associated with a 1070 * B_LOCKED buffer may be mapped by the filesystem. 1071 * 1072 * If we want to release the buffer ourselves (rather then the 1073 * originator asking us to release it), give the originator a 1074 * chance to countermand the release by setting B_LOCKED. 1075 * 1076 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1077 * if B_DELWRI is set. 1078 * 1079 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1080 * on pages to return pages to the VM page queues. 1081 */ 1082 if (bp->b_flags & (B_DELWRI | B_LOCKED)) { 1083 bp->b_flags &= ~B_RELBUF; 1084 } else if (vm_page_count_severe()) { 1085 if (LIST_FIRST(&bp->b_dep) != NULL) 1086 buf_deallocate(bp); /* can set B_LOCKED */ 1087 if (bp->b_flags & (B_DELWRI | B_LOCKED)) 1088 bp->b_flags &= ~B_RELBUF; 1089 else 1090 bp->b_flags |= B_RELBUF; 1091 } 1092 1093 /* 1094 * Make sure b_cmd is clear. It may have already been cleared by 1095 * biodone(). 1096 * 1097 * At this point destroying the buffer is governed by the B_INVAL 1098 * or B_RELBUF flags. 1099 */ 1100 bp->b_cmd = BUF_CMD_DONE; 1101 1102 /* 1103 * VMIO buffer rundown. Make sure the VM page array is restored 1104 * after an I/O may have replaces some of the pages with bogus pages 1105 * in order to not destroy dirty pages in a fill-in read. 1106 * 1107 * Note that due to the code above, if a buffer is marked B_DELWRI 1108 * then the B_RELBUF and B_NOCACHE bits will always be clear. 1109 * B_INVAL may still be set, however. 1110 * 1111 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer 1112 * but not the backing store. B_NOCACHE will destroy the backing 1113 * store. 1114 * 1115 * Note that dirty NFS buffers contain byte-granular write ranges 1116 * and should not be destroyed w/ B_INVAL even if the backing store 1117 * is left intact. 1118 */ 1119 if (bp->b_flags & B_VMIO) { 1120 /* 1121 * Rundown for VMIO buffers which are not dirty NFS buffers. 1122 */ 1123 int i, j, resid; 1124 vm_page_t m; 1125 off_t foff; 1126 vm_pindex_t poff; 1127 vm_object_t obj; 1128 struct vnode *vp; 1129 1130 vp = bp->b_vp; 1131 1132 /* 1133 * Get the base offset and length of the buffer. Note that 1134 * in the VMIO case if the buffer block size is not 1135 * page-aligned then b_data pointer may not be page-aligned. 1136 * But our b_xio.xio_pages array *IS* page aligned. 1137 * 1138 * block sizes less then DEV_BSIZE (usually 512) are not 1139 * supported due to the page granularity bits (m->valid, 1140 * m->dirty, etc...). 1141 * 1142 * See man buf(9) for more information 1143 */ 1144 1145 resid = bp->b_bufsize; 1146 foff = bp->b_loffset; 1147 1148 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1149 m = bp->b_xio.xio_pages[i]; 1150 vm_page_flag_clear(m, PG_ZERO); 1151 /* 1152 * If we hit a bogus page, fixup *all* of them 1153 * now. Note that we left these pages wired 1154 * when we removed them so they had better exist, 1155 * and they cannot be ripped out from under us so 1156 * no critical section protection is necessary. 1157 */ 1158 if (m == bogus_page) { 1159 obj = vp->v_object; 1160 poff = OFF_TO_IDX(bp->b_loffset); 1161 1162 for (j = i; j < bp->b_xio.xio_npages; j++) { 1163 vm_page_t mtmp; 1164 1165 mtmp = bp->b_xio.xio_pages[j]; 1166 if (mtmp == bogus_page) { 1167 mtmp = vm_page_lookup(obj, poff + j); 1168 if (!mtmp) { 1169 panic("brelse: page missing"); 1170 } 1171 bp->b_xio.xio_pages[j] = mtmp; 1172 } 1173 } 1174 1175 if ((bp->b_flags & B_INVAL) == 0) { 1176 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 1177 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 1178 } 1179 m = bp->b_xio.xio_pages[i]; 1180 } 1181 1182 /* 1183 * Invalidate the backing store if B_NOCACHE is set 1184 * (e.g. used with vinvalbuf()). If this is NFS 1185 * we impose a requirement that the block size be 1186 * a multiple of PAGE_SIZE and create a temporary 1187 * hack to basically invalidate the whole page. The 1188 * problem is that NFS uses really odd buffer sizes 1189 * especially when tracking piecemeal writes and 1190 * it also vinvalbuf()'s a lot, which would result 1191 * in only partial page validation and invalidation 1192 * here. If the file page is mmap()'d, however, 1193 * all the valid bits get set so after we invalidate 1194 * here we would end up with weird m->valid values 1195 * like 0xfc. nfs_getpages() can't handle this so 1196 * we clear all the valid bits for the NFS case 1197 * instead of just some of them. 1198 * 1199 * The real bug is the VM system having to set m->valid 1200 * to VM_PAGE_BITS_ALL for faulted-in pages, which 1201 * itself is an artifact of the whole 512-byte 1202 * granular mess that exists to support odd block 1203 * sizes and UFS meta-data block sizes (e.g. 6144). 1204 * A complete rewrite is required. 1205 */ 1206 if (bp->b_flags & (B_NOCACHE|B_ERROR)) { 1207 int poffset = foff & PAGE_MASK; 1208 int presid; 1209 1210 presid = PAGE_SIZE - poffset; 1211 if (bp->b_vp->v_tag == VT_NFS && 1212 bp->b_vp->v_type == VREG) { 1213 ; /* entire page */ 1214 } else if (presid > resid) { 1215 presid = resid; 1216 } 1217 KASSERT(presid >= 0, ("brelse: extra page")); 1218 vm_page_set_invalid(m, poffset, presid); 1219 } 1220 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1221 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1222 } 1223 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1224 vfs_vmio_release(bp); 1225 } else { 1226 /* 1227 * Rundown for non-VMIO buffers. 1228 */ 1229 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1230 #if 0 1231 if (bp->b_vp) 1232 kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags); 1233 #endif 1234 if (bp->b_bufsize) 1235 allocbuf(bp, 0); 1236 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1237 if (bp->b_vp) 1238 brelvp(bp); 1239 } 1240 } 1241 1242 if (bp->b_qindex != BQUEUE_NONE) 1243 panic("brelse: free buffer onto another queue???"); 1244 if (BUF_REFCNTNB(bp) > 1) { 1245 /* Temporary panic to verify exclusive locking */ 1246 /* This panic goes away when we allow shared refs */ 1247 panic("brelse: multiple refs"); 1248 /* do not release to free list */ 1249 BUF_UNLOCK(bp); 1250 crit_exit(); 1251 return; 1252 } 1253 1254 /* 1255 * Figure out the correct queue to place the cleaned up buffer on. 1256 * Buffers placed in the EMPTY or EMPTYKVA had better already be 1257 * disassociated from their vnode. 1258 */ 1259 if (bp->b_flags & B_LOCKED) { 1260 /* 1261 * Buffers that are locked are placed in the locked queue 1262 * immediately, regardless of their state. 1263 */ 1264 bp->b_qindex = BQUEUE_LOCKED; 1265 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1266 } else if (bp->b_bufsize == 0) { 1267 /* 1268 * Buffers with no memory. Due to conditionals near the top 1269 * of brelse() such buffers should probably already be 1270 * marked B_INVAL and disassociated from their vnode. 1271 */ 1272 bp->b_flags |= B_INVAL; 1273 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1274 KKASSERT((bp->b_flags & B_HASHED) == 0); 1275 if (bp->b_kvasize) { 1276 bp->b_qindex = BQUEUE_EMPTYKVA; 1277 } else { 1278 bp->b_qindex = BQUEUE_EMPTY; 1279 } 1280 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1281 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) { 1282 /* 1283 * Buffers with junk contents. Again these buffers had better 1284 * already be disassociated from their vnode. 1285 */ 1286 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp)); 1287 KKASSERT((bp->b_flags & B_HASHED) == 0); 1288 bp->b_flags |= B_INVAL; 1289 bp->b_qindex = BQUEUE_CLEAN; 1290 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1291 } else { 1292 /* 1293 * Remaining buffers. These buffers are still associated with 1294 * their vnode. 1295 */ 1296 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) { 1297 case B_DELWRI: 1298 bp->b_qindex = BQUEUE_DIRTY; 1299 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist); 1300 break; 1301 case B_DELWRI | B_HEAVY: 1302 bp->b_qindex = BQUEUE_DIRTY_HW; 1303 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp, 1304 b_freelist); 1305 break; 1306 default: 1307 /* 1308 * NOTE: Buffers are always placed at the end of the 1309 * queue. If B_AGE is not set the buffer will cycle 1310 * through the queue twice. 1311 */ 1312 bp->b_qindex = BQUEUE_CLEAN; 1313 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1314 break; 1315 } 1316 } 1317 1318 /* 1319 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1320 * on the correct queue. 1321 */ 1322 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) 1323 bundirty(bp); 1324 1325 /* 1326 * The bp is on an appropriate queue unless locked. If it is not 1327 * locked or dirty we can wakeup threads waiting for buffer space. 1328 * 1329 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1330 * if B_INVAL is set ). 1331 */ 1332 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) 1333 bufcountwakeup(); 1334 1335 /* 1336 * Something we can maybe free or reuse 1337 */ 1338 if (bp->b_bufsize || bp->b_kvasize) 1339 bufspacewakeup(); 1340 1341 /* 1342 * Clean up temporary flags and unlock the buffer. 1343 */ 1344 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT); 1345 BUF_UNLOCK(bp); 1346 crit_exit(); 1347 } 1348 1349 /* 1350 * bqrelse: 1351 * 1352 * Release a buffer back to the appropriate queue but do not try to free 1353 * it. The buffer is expected to be used again soon. 1354 * 1355 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1356 * biodone() to requeue an async I/O on completion. It is also used when 1357 * known good buffers need to be requeued but we think we may need the data 1358 * again soon. 1359 * 1360 * XXX we should be able to leave the B_RELBUF hint set on completion. 1361 */ 1362 void 1363 bqrelse(struct buf *bp) 1364 { 1365 crit_enter(); 1366 1367 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1368 1369 if (bp->b_qindex != BQUEUE_NONE) 1370 panic("bqrelse: free buffer onto another queue???"); 1371 if (BUF_REFCNTNB(bp) > 1) { 1372 /* do not release to free list */ 1373 panic("bqrelse: multiple refs"); 1374 BUF_UNLOCK(bp); 1375 crit_exit(); 1376 return; 1377 } 1378 if (bp->b_flags & B_LOCKED) { 1379 /* 1380 * Locked buffers are released to the locked queue. However, 1381 * if the buffer is dirty it will first go into the dirty 1382 * queue and later on after the I/O completes successfully it 1383 * will be released to the locked queue. 1384 */ 1385 bp->b_qindex = BQUEUE_LOCKED; 1386 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist); 1387 } else if (bp->b_flags & B_DELWRI) { 1388 bp->b_qindex = (bp->b_flags & B_HEAVY) ? 1389 BQUEUE_DIRTY_HW : BQUEUE_DIRTY; 1390 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1391 } else if (vm_page_count_severe()) { 1392 /* 1393 * We are too low on memory, we have to try to free the 1394 * buffer (most importantly: the wired pages making up its 1395 * backing store) *now*. 1396 */ 1397 crit_exit(); 1398 brelse(bp); 1399 return; 1400 } else { 1401 bp->b_qindex = BQUEUE_CLEAN; 1402 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1403 } 1404 1405 if ((bp->b_flags & B_LOCKED) == 0 && 1406 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) { 1407 bufcountwakeup(); 1408 } 1409 1410 /* 1411 * Something we can maybe free or reuse. 1412 */ 1413 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1414 bufspacewakeup(); 1415 1416 /* 1417 * Final cleanup and unlock. Clear bits that are only used while a 1418 * buffer is actively locked. 1419 */ 1420 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_RELBUF); 1421 BUF_UNLOCK(bp); 1422 crit_exit(); 1423 } 1424 1425 /* 1426 * vfs_vmio_release: 1427 * 1428 * Return backing pages held by the buffer 'bp' back to the VM system 1429 * if possible. The pages are freed if they are no longer valid or 1430 * attempt to free if it was used for direct I/O otherwise they are 1431 * sent to the page cache. 1432 * 1433 * Pages that were marked busy are left alone and skipped. 1434 * 1435 * The KVA mapping (b_data) for the underlying pages is removed by 1436 * this function. 1437 */ 1438 static void 1439 vfs_vmio_release(struct buf *bp) 1440 { 1441 int i; 1442 vm_page_t m; 1443 1444 crit_enter(); 1445 for (i = 0; i < bp->b_xio.xio_npages; i++) { 1446 m = bp->b_xio.xio_pages[i]; 1447 bp->b_xio.xio_pages[i] = NULL; 1448 /* 1449 * In order to keep page LRU ordering consistent, put 1450 * everything on the inactive queue. 1451 */ 1452 vm_page_unwire(m, 0); 1453 /* 1454 * We don't mess with busy pages, it is 1455 * the responsibility of the process that 1456 * busied the pages to deal with them. 1457 */ 1458 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1459 continue; 1460 1461 if (m->wire_count == 0) { 1462 vm_page_flag_clear(m, PG_ZERO); 1463 /* 1464 * Might as well free the page if we can and it has 1465 * no valid data. We also free the page if the 1466 * buffer was used for direct I/O. 1467 */ 1468 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && 1469 m->hold_count == 0) { 1470 vm_page_busy(m); 1471 vm_page_protect(m, VM_PROT_NONE); 1472 vm_page_free(m); 1473 } else if (bp->b_flags & B_DIRECT) { 1474 vm_page_try_to_free(m); 1475 } else if (vm_page_count_severe()) { 1476 vm_page_try_to_cache(m); 1477 } 1478 } 1479 } 1480 crit_exit(); 1481 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages); 1482 if (bp->b_bufsize) { 1483 bufspacewakeup(); 1484 bp->b_bufsize = 0; 1485 } 1486 bp->b_xio.xio_npages = 0; 1487 bp->b_flags &= ~B_VMIO; 1488 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL); 1489 if (bp->b_vp) 1490 brelvp(bp); 1491 } 1492 1493 /* 1494 * vfs_bio_awrite: 1495 * 1496 * Implement clustered async writes for clearing out B_DELWRI buffers. 1497 * This is much better then the old way of writing only one buffer at 1498 * a time. Note that we may not be presented with the buffers in the 1499 * correct order, so we search for the cluster in both directions. 1500 * 1501 * The buffer is locked on call. 1502 */ 1503 int 1504 vfs_bio_awrite(struct buf *bp) 1505 { 1506 int i; 1507 int j; 1508 off_t loffset = bp->b_loffset; 1509 struct vnode *vp = bp->b_vp; 1510 int nbytes; 1511 struct buf *bpa; 1512 int nwritten; 1513 int size; 1514 1515 crit_enter(); 1516 /* 1517 * right now we support clustered writing only to regular files. If 1518 * we find a clusterable block we could be in the middle of a cluster 1519 * rather then at the beginning. 1520 * 1521 * NOTE: b_bio1 contains the logical loffset and is aliased 1522 * to b_loffset. b_bio2 contains the translated block number. 1523 */ 1524 if ((vp->v_type == VREG) && 1525 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1526 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1527 1528 size = vp->v_mount->mnt_stat.f_iosize; 1529 1530 for (i = size; i < MAXPHYS; i += size) { 1531 if ((bpa = findblk(vp, loffset + i)) && 1532 BUF_REFCNT(bpa) == 0 && 1533 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1534 (B_DELWRI | B_CLUSTEROK)) && 1535 (bpa->b_bufsize == size)) { 1536 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1537 (bpa->b_bio2.bio_offset != 1538 bp->b_bio2.bio_offset + i)) 1539 break; 1540 } else { 1541 break; 1542 } 1543 } 1544 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) { 1545 if ((bpa = findblk(vp, loffset - j)) && 1546 BUF_REFCNT(bpa) == 0 && 1547 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1548 (B_DELWRI | B_CLUSTEROK)) && 1549 (bpa->b_bufsize == size)) { 1550 if ((bpa->b_bio2.bio_offset == NOOFFSET) || 1551 (bpa->b_bio2.bio_offset != 1552 bp->b_bio2.bio_offset - j)) 1553 break; 1554 } else { 1555 break; 1556 } 1557 } 1558 j -= size; 1559 nbytes = (i + j); 1560 /* 1561 * this is a possible cluster write 1562 */ 1563 if (nbytes != size) { 1564 BUF_UNLOCK(bp); 1565 nwritten = cluster_wbuild(vp, size, 1566 loffset - j, nbytes); 1567 crit_exit(); 1568 return nwritten; 1569 } 1570 } 1571 1572 bremfree(bp); 1573 bp->b_flags |= B_ASYNC; 1574 1575 crit_exit(); 1576 /* 1577 * default (old) behavior, writing out only one block 1578 * 1579 * XXX returns b_bufsize instead of b_bcount for nwritten? 1580 */ 1581 nwritten = bp->b_bufsize; 1582 bwrite(bp); 1583 1584 return nwritten; 1585 } 1586 1587 /* 1588 * getnewbuf: 1589 * 1590 * Find and initialize a new buffer header, freeing up existing buffers 1591 * in the bufqueues as necessary. The new buffer is returned locked. 1592 * 1593 * Important: B_INVAL is not set. If the caller wishes to throw the 1594 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1595 * 1596 * We block if: 1597 * We have insufficient buffer headers 1598 * We have insufficient buffer space 1599 * buffer_map is too fragmented ( space reservation fails ) 1600 * If we have to flush dirty buffers ( but we try to avoid this ) 1601 * 1602 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1603 * Instead we ask the buf daemon to do it for us. We attempt to 1604 * avoid piecemeal wakeups of the pageout daemon. 1605 */ 1606 1607 static struct buf * 1608 getnewbuf(int blkflags, int slptimeo, int size, int maxsize) 1609 { 1610 struct buf *bp; 1611 struct buf *nbp; 1612 int defrag = 0; 1613 int nqindex; 1614 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 1615 static int flushingbufs; 1616 1617 /* 1618 * We can't afford to block since we might be holding a vnode lock, 1619 * which may prevent system daemons from running. We deal with 1620 * low-memory situations by proactively returning memory and running 1621 * async I/O rather then sync I/O. 1622 */ 1623 1624 ++getnewbufcalls; 1625 --getnewbufrestarts; 1626 restart: 1627 ++getnewbufrestarts; 1628 1629 /* 1630 * Setup for scan. If we do not have enough free buffers, 1631 * we setup a degenerate case that immediately fails. Note 1632 * that if we are specially marked process, we are allowed to 1633 * dip into our reserves. 1634 * 1635 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1636 * 1637 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1638 * However, there are a number of cases (defragging, reusing, ...) 1639 * where we cannot backup. 1640 */ 1641 nqindex = BQUEUE_EMPTYKVA; 1642 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]); 1643 1644 if (nbp == NULL) { 1645 /* 1646 * If no EMPTYKVA buffers and we are either 1647 * defragging or reusing, locate a CLEAN buffer 1648 * to free or reuse. If bufspace useage is low 1649 * skip this step so we can allocate a new buffer. 1650 */ 1651 if (defrag || bufspace >= lobufspace) { 1652 nqindex = BQUEUE_CLEAN; 1653 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1654 } 1655 1656 /* 1657 * If we could not find or were not allowed to reuse a 1658 * CLEAN buffer, check to see if it is ok to use an EMPTY 1659 * buffer. We can only use an EMPTY buffer if allocating 1660 * its KVA would not otherwise run us out of buffer space. 1661 */ 1662 if (nbp == NULL && defrag == 0 && 1663 bufspace + maxsize < hibufspace) { 1664 nqindex = BQUEUE_EMPTY; 1665 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]); 1666 } 1667 } 1668 1669 /* 1670 * Run scan, possibly freeing data and/or kva mappings on the fly 1671 * depending. 1672 */ 1673 1674 while ((bp = nbp) != NULL) { 1675 int qindex = nqindex; 1676 1677 nbp = TAILQ_NEXT(bp, b_freelist); 1678 1679 /* 1680 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1681 * cycles through the queue twice before being selected. 1682 */ 1683 if (qindex == BQUEUE_CLEAN && 1684 (bp->b_flags & B_AGE) == 0 && nbp) { 1685 bp->b_flags |= B_AGE; 1686 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist); 1687 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist); 1688 continue; 1689 } 1690 1691 /* 1692 * Calculate next bp ( we can only use it if we do not block 1693 * or do other fancy things ). 1694 */ 1695 if (nbp == NULL) { 1696 switch(qindex) { 1697 case BQUEUE_EMPTY: 1698 nqindex = BQUEUE_EMPTYKVA; 1699 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]))) 1700 break; 1701 /* fall through */ 1702 case BQUEUE_EMPTYKVA: 1703 nqindex = BQUEUE_CLEAN; 1704 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]))) 1705 break; 1706 /* fall through */ 1707 case BQUEUE_CLEAN: 1708 /* 1709 * nbp is NULL. 1710 */ 1711 break; 1712 } 1713 } 1714 1715 /* 1716 * Sanity Checks 1717 */ 1718 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 1719 1720 /* 1721 * Note: we no longer distinguish between VMIO and non-VMIO 1722 * buffers. 1723 */ 1724 1725 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1726 1727 /* 1728 * If we are defragging then we need a buffer with 1729 * b_kvasize != 0. XXX this situation should no longer 1730 * occur, if defrag is non-zero the buffer's b_kvasize 1731 * should also be non-zero at this point. XXX 1732 */ 1733 if (defrag && bp->b_kvasize == 0) { 1734 kprintf("Warning: defrag empty buffer %p\n", bp); 1735 continue; 1736 } 1737 1738 /* 1739 * Start freeing the bp. This is somewhat involved. nbp 1740 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers 1741 * on the clean list must be disassociated from their 1742 * current vnode. Buffers on the empty[kva] lists have 1743 * already been disassociated. 1744 */ 1745 1746 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1747 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp); 1748 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 1749 goto restart; 1750 } 1751 if (bp->b_qindex != qindex) { 1752 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex); 1753 BUF_UNLOCK(bp); 1754 goto restart; 1755 } 1756 bremfree(bp); 1757 1758 /* 1759 * Dependancies must be handled before we disassociate the 1760 * vnode. 1761 * 1762 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 1763 * be immediately disassociated. HAMMER then becomes 1764 * responsible for releasing the buffer. 1765 */ 1766 if (LIST_FIRST(&bp->b_dep) != NULL) { 1767 buf_deallocate(bp); 1768 if (bp->b_flags & B_LOCKED) { 1769 bqrelse(bp); 1770 goto restart; 1771 } 1772 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 1773 } 1774 1775 if (qindex == BQUEUE_CLEAN) { 1776 if (bp->b_flags & B_VMIO) { 1777 bp->b_flags &= ~B_ASYNC; 1778 vfs_vmio_release(bp); 1779 } 1780 if (bp->b_vp) 1781 brelvp(bp); 1782 } 1783 1784 /* 1785 * NOTE: nbp is now entirely invalid. We can only restart 1786 * the scan from this point on. 1787 * 1788 * Get the rest of the buffer freed up. b_kva* is still 1789 * valid after this operation. 1790 */ 1791 1792 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex)); 1793 KKASSERT((bp->b_flags & B_HASHED) == 0); 1794 1795 /* 1796 * critical section protection is not required when 1797 * scrapping a buffer's contents because it is already 1798 * wired. 1799 */ 1800 if (bp->b_bufsize) 1801 allocbuf(bp, 0); 1802 1803 bp->b_flags = B_BNOCLIP; 1804 bp->b_cmd = BUF_CMD_DONE; 1805 bp->b_vp = NULL; 1806 bp->b_error = 0; 1807 bp->b_resid = 0; 1808 bp->b_bcount = 0; 1809 bp->b_xio.xio_npages = 0; 1810 bp->b_dirtyoff = bp->b_dirtyend = 0; 1811 reinitbufbio(bp); 1812 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 1813 buf_dep_init(bp); 1814 if (blkflags & GETBLK_BHEAVY) 1815 bp->b_flags |= B_HEAVY; 1816 1817 /* 1818 * If we are defragging then free the buffer. 1819 */ 1820 if (defrag) { 1821 bp->b_flags |= B_INVAL; 1822 bfreekva(bp); 1823 brelse(bp); 1824 defrag = 0; 1825 goto restart; 1826 } 1827 1828 /* 1829 * If we are overcomitted then recover the buffer and its 1830 * KVM space. This occurs in rare situations when multiple 1831 * processes are blocked in getnewbuf() or allocbuf(). 1832 */ 1833 if (bufspace >= hibufspace) 1834 flushingbufs = 1; 1835 if (flushingbufs && bp->b_kvasize != 0) { 1836 bp->b_flags |= B_INVAL; 1837 bfreekva(bp); 1838 brelse(bp); 1839 goto restart; 1840 } 1841 if (bufspace < lobufspace) 1842 flushingbufs = 0; 1843 break; 1844 } 1845 1846 /* 1847 * If we exhausted our list, sleep as appropriate. We may have to 1848 * wakeup various daemons and write out some dirty buffers. 1849 * 1850 * Generally we are sleeping due to insufficient buffer space. 1851 */ 1852 1853 if (bp == NULL) { 1854 int flags; 1855 char *waitmsg; 1856 1857 if (defrag) { 1858 flags = VFS_BIO_NEED_BUFSPACE; 1859 waitmsg = "nbufkv"; 1860 } else if (bufspace >= hibufspace) { 1861 waitmsg = "nbufbs"; 1862 flags = VFS_BIO_NEED_BUFSPACE; 1863 } else { 1864 waitmsg = "newbuf"; 1865 flags = VFS_BIO_NEED_ANY; 1866 } 1867 1868 needsbuffer |= flags; 1869 bd_speedup(); /* heeeelp */ 1870 while (needsbuffer & flags) { 1871 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo)) 1872 return (NULL); 1873 } 1874 } else { 1875 /* 1876 * We finally have a valid bp. We aren't quite out of the 1877 * woods, we still have to reserve kva space. In order 1878 * to keep fragmentation sane we only allocate kva in 1879 * BKVASIZE chunks. 1880 */ 1881 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1882 1883 if (maxsize != bp->b_kvasize) { 1884 vm_offset_t addr = 0; 1885 int count; 1886 1887 bfreekva(bp); 1888 1889 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1890 vm_map_lock(&buffer_map); 1891 1892 if (vm_map_findspace(&buffer_map, 1893 vm_map_min(&buffer_map), maxsize, 1894 maxsize, &addr)) { 1895 /* 1896 * Uh oh. Buffer map is too fragmented. We 1897 * must defragment the map. 1898 */ 1899 vm_map_unlock(&buffer_map); 1900 vm_map_entry_release(count); 1901 ++bufdefragcnt; 1902 defrag = 1; 1903 bp->b_flags |= B_INVAL; 1904 brelse(bp); 1905 goto restart; 1906 } 1907 if (addr) { 1908 vm_map_insert(&buffer_map, &count, 1909 NULL, 0, 1910 addr, addr + maxsize, 1911 VM_MAPTYPE_NORMAL, 1912 VM_PROT_ALL, VM_PROT_ALL, 1913 MAP_NOFAULT); 1914 1915 bp->b_kvabase = (caddr_t) addr; 1916 bp->b_kvasize = maxsize; 1917 bufspace += bp->b_kvasize; 1918 ++bufreusecnt; 1919 } 1920 vm_map_unlock(&buffer_map); 1921 vm_map_entry_release(count); 1922 } 1923 bp->b_data = bp->b_kvabase; 1924 } 1925 return(bp); 1926 } 1927 1928 /* 1929 * This routine is called in an emergency to recover VM pages from the 1930 * buffer cache by cashing in clean buffers. The idea is to recover 1931 * enough pages to be able to satisfy a stuck bio_page_alloc(). 1932 */ 1933 static int 1934 recoverbufpages(void) 1935 { 1936 struct buf *bp; 1937 int bytes = 0; 1938 1939 ++recoverbufcalls; 1940 1941 while (bytes < MAXBSIZE) { 1942 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]); 1943 if (bp == NULL) 1944 break; 1945 1946 /* 1947 * BQUEUE_CLEAN - B_AGE special case. If not set the bp 1948 * cycles through the queue twice before being selected. 1949 */ 1950 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) { 1951 bp->b_flags |= B_AGE; 1952 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist); 1953 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], 1954 bp, b_freelist); 1955 continue; 1956 } 1957 1958 /* 1959 * Sanity Checks 1960 */ 1961 KKASSERT(bp->b_qindex == BQUEUE_CLEAN); 1962 KKASSERT((bp->b_flags & B_DELWRI) == 0); 1963 1964 /* 1965 * Start freeing the bp. This is somewhat involved. 1966 * 1967 * Buffers on the clean list must be disassociated from 1968 * their current vnode 1969 */ 1970 1971 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1972 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp); 1973 tsleep(&bd_request, 0, "gnbxxx", hz / 100); 1974 continue; 1975 } 1976 if (bp->b_qindex != BQUEUE_CLEAN) { 1977 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex); 1978 BUF_UNLOCK(bp); 1979 continue; 1980 } 1981 bremfree(bp); 1982 1983 /* 1984 * Dependancies must be handled before we disassociate the 1985 * vnode. 1986 * 1987 * NOTE: HAMMER will set B_LOCKED if the buffer cannot 1988 * be immediately disassociated. HAMMER then becomes 1989 * responsible for releasing the buffer. 1990 */ 1991 if (LIST_FIRST(&bp->b_dep) != NULL) { 1992 buf_deallocate(bp); 1993 if (bp->b_flags & B_LOCKED) { 1994 bqrelse(bp); 1995 continue; 1996 } 1997 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 1998 } 1999 2000 bytes += bp->b_bufsize; 2001 2002 if (bp->b_flags & B_VMIO) { 2003 bp->b_flags &= ~B_ASYNC; 2004 bp->b_flags |= B_DIRECT; /* try to free pages */ 2005 vfs_vmio_release(bp); 2006 } 2007 if (bp->b_vp) 2008 brelvp(bp); 2009 2010 KKASSERT(bp->b_vp == NULL); 2011 KKASSERT((bp->b_flags & B_HASHED) == 0); 2012 2013 /* 2014 * critical section protection is not required when 2015 * scrapping a buffer's contents because it is already 2016 * wired. 2017 */ 2018 if (bp->b_bufsize) 2019 allocbuf(bp, 0); 2020 2021 bp->b_flags = B_BNOCLIP; 2022 bp->b_cmd = BUF_CMD_DONE; 2023 bp->b_vp = NULL; 2024 bp->b_error = 0; 2025 bp->b_resid = 0; 2026 bp->b_bcount = 0; 2027 bp->b_xio.xio_npages = 0; 2028 bp->b_dirtyoff = bp->b_dirtyend = 0; 2029 reinitbufbio(bp); 2030 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 2031 buf_dep_init(bp); 2032 bp->b_flags |= B_INVAL; 2033 /* bfreekva(bp); */ 2034 brelse(bp); 2035 } 2036 return(bytes); 2037 } 2038 2039 /* 2040 * buf_daemon: 2041 * 2042 * Buffer flushing daemon. Buffers are normally flushed by the 2043 * update daemon but if it cannot keep up this process starts to 2044 * take the load in an attempt to prevent getnewbuf() from blocking. 2045 * 2046 * Once a flush is initiated it does not stop until the number 2047 * of buffers falls below lodirtybuffers, but we will wake up anyone 2048 * waiting at the mid-point. 2049 */ 2050 2051 static struct kproc_desc buf_kp = { 2052 "bufdaemon", 2053 buf_daemon, 2054 &bufdaemon_td 2055 }; 2056 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2057 kproc_start, &buf_kp) 2058 2059 static struct kproc_desc bufhw_kp = { 2060 "bufdaemon_hw", 2061 buf_daemon_hw, 2062 &bufdaemonhw_td 2063 }; 2064 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, 2065 kproc_start, &bufhw_kp) 2066 2067 static void 2068 buf_daemon(void) 2069 { 2070 int limit; 2071 2072 /* 2073 * This process needs to be suspended prior to shutdown sync. 2074 */ 2075 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2076 bufdaemon_td, SHUTDOWN_PRI_LAST); 2077 curthread->td_flags |= TDF_SYSTHREAD; 2078 2079 /* 2080 * This process is allowed to take the buffer cache to the limit 2081 */ 2082 crit_enter(); 2083 2084 for (;;) { 2085 kproc_suspend_loop(); 2086 2087 /* 2088 * Do the flush. Limit the amount of in-transit I/O we 2089 * allow to build up, otherwise we would completely saturate 2090 * the I/O system. Wakeup any waiting processes before we 2091 * normally would so they can run in parallel with our drain. 2092 * 2093 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2094 * but because we split the operation into two threads we 2095 * have to cut it in half for each thread. 2096 */ 2097 limit = lodirtybufspace / 2; 2098 waitrunningbufspace(limit); 2099 while (runningbufspace + dirtybufspace > limit || 2100 dirtybufcount - dirtybufcounthw >= nbuf / 2) { 2101 if (flushbufqueues(BQUEUE_DIRTY) == 0) 2102 break; 2103 waitrunningbufspace(limit); 2104 } 2105 2106 /* 2107 * We reached our low water mark, reset the 2108 * request and sleep until we are needed again. 2109 * The sleep is just so the suspend code works. 2110 */ 2111 spin_lock_wr(&needsbuffer_spin); 2112 if (bd_request == 0) { 2113 msleep(&bd_request, &needsbuffer_spin, 0, 2114 "psleep", hz); 2115 } 2116 bd_request = 0; 2117 spin_unlock_wr(&needsbuffer_spin); 2118 } 2119 } 2120 2121 static void 2122 buf_daemon_hw(void) 2123 { 2124 int limit; 2125 2126 /* 2127 * This process needs to be suspended prior to shutdown sync. 2128 */ 2129 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, 2130 bufdaemonhw_td, SHUTDOWN_PRI_LAST); 2131 curthread->td_flags |= TDF_SYSTHREAD; 2132 2133 /* 2134 * This process is allowed to take the buffer cache to the limit 2135 */ 2136 crit_enter(); 2137 2138 for (;;) { 2139 kproc_suspend_loop(); 2140 2141 /* 2142 * Do the flush. Limit the amount of in-transit I/O we 2143 * allow to build up, otherwise we would completely saturate 2144 * the I/O system. Wakeup any waiting processes before we 2145 * normally would so they can run in parallel with our drain. 2146 * 2147 * Our aggregate normal+HW lo water mark is lodirtybufspace, 2148 * but because we split the operation into two threads we 2149 * have to cut it in half for each thread. 2150 */ 2151 limit = lodirtybufspace / 2; 2152 waitrunningbufspace(limit); 2153 while (runningbufspace + dirtybufspacehw > limit || 2154 dirtybufcounthw >= nbuf / 2) { 2155 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0) 2156 break; 2157 waitrunningbufspace(limit); 2158 } 2159 2160 /* 2161 * We reached our low water mark, reset the 2162 * request and sleep until we are needed again. 2163 * The sleep is just so the suspend code works. 2164 */ 2165 spin_lock_wr(&needsbuffer_spin); 2166 if (bd_request_hw == 0) { 2167 msleep(&bd_request_hw, &needsbuffer_spin, 0, 2168 "psleep", hz); 2169 } 2170 bd_request_hw = 0; 2171 spin_unlock_wr(&needsbuffer_spin); 2172 } 2173 } 2174 2175 /* 2176 * flushbufqueues: 2177 * 2178 * Try to flush a buffer in the dirty queue. We must be careful to 2179 * free up B_INVAL buffers instead of write them, which NFS is 2180 * particularly sensitive to. 2181 * 2182 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate 2183 * that we really want to try to get the buffer out and reuse it 2184 * due to the write load on the machine. 2185 */ 2186 2187 static int 2188 flushbufqueues(bufq_type_t q) 2189 { 2190 struct buf *bp; 2191 int r = 0; 2192 2193 bp = TAILQ_FIRST(&bufqueues[q]); 2194 while (bp) { 2195 KASSERT((bp->b_flags & B_DELWRI), 2196 ("unexpected clean buffer %p", bp)); 2197 2198 if (bp->b_flags & B_DELWRI) { 2199 if (bp->b_flags & B_INVAL) { 2200 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 2201 panic("flushbufqueues: locked buf"); 2202 bremfree(bp); 2203 brelse(bp); 2204 ++r; 2205 break; 2206 } 2207 if (LIST_FIRST(&bp->b_dep) != NULL && 2208 (bp->b_flags & B_DEFERRED) == 0 && 2209 buf_countdeps(bp, 0)) { 2210 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist); 2211 TAILQ_INSERT_TAIL(&bufqueues[q], bp, 2212 b_freelist); 2213 bp->b_flags |= B_DEFERRED; 2214 bp = TAILQ_FIRST(&bufqueues[q]); 2215 continue; 2216 } 2217 2218 /* 2219 * Only write it out if we can successfully lock 2220 * it. If the buffer has a dependancy, 2221 * buf_checkwrite must also return 0 for us to 2222 * be able to initate the write. 2223 * 2224 * If the buffer is flagged B_ERROR it may be 2225 * requeued over and over again, we try to 2226 * avoid a live lock. 2227 */ 2228 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 2229 if (LIST_FIRST(&bp->b_dep) != NULL && 2230 buf_checkwrite(bp)) { 2231 bremfree(bp); 2232 brelse(bp); 2233 } else if (bp->b_flags & B_ERROR) { 2234 tsleep(bp, 0, "bioer", 1); 2235 bp->b_flags &= ~B_AGE; 2236 vfs_bio_awrite(bp); 2237 } else { 2238 bp->b_flags |= B_AGE; 2239 vfs_bio_awrite(bp); 2240 } 2241 ++r; 2242 break; 2243 } 2244 } 2245 bp = TAILQ_NEXT(bp, b_freelist); 2246 } 2247 return (r); 2248 } 2249 2250 /* 2251 * inmem: 2252 * 2253 * Returns true if no I/O is needed to access the associated VM object. 2254 * This is like findblk except it also hunts around in the VM system for 2255 * the data. 2256 * 2257 * Note that we ignore vm_page_free() races from interrupts against our 2258 * lookup, since if the caller is not protected our return value will not 2259 * be any more valid then otherwise once we exit the critical section. 2260 */ 2261 int 2262 inmem(struct vnode *vp, off_t loffset) 2263 { 2264 vm_object_t obj; 2265 vm_offset_t toff, tinc, size; 2266 vm_page_t m; 2267 2268 if (findblk(vp, loffset)) 2269 return 1; 2270 if (vp->v_mount == NULL) 2271 return 0; 2272 if ((obj = vp->v_object) == NULL) 2273 return 0; 2274 2275 size = PAGE_SIZE; 2276 if (size > vp->v_mount->mnt_stat.f_iosize) 2277 size = vp->v_mount->mnt_stat.f_iosize; 2278 2279 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2280 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff)); 2281 if (m == NULL) 2282 return 0; 2283 tinc = size; 2284 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK)) 2285 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK); 2286 if (vm_page_is_valid(m, 2287 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) 2288 return 0; 2289 } 2290 return 1; 2291 } 2292 2293 /* 2294 * vfs_setdirty: 2295 * 2296 * Sets the dirty range for a buffer based on the status of the dirty 2297 * bits in the pages comprising the buffer. 2298 * 2299 * The range is limited to the size of the buffer. 2300 * 2301 * This routine is primarily used by NFS, but is generalized for the 2302 * B_VMIO case. 2303 */ 2304 static void 2305 vfs_setdirty(struct buf *bp) 2306 { 2307 int i; 2308 vm_object_t object; 2309 2310 /* 2311 * Degenerate case - empty buffer 2312 */ 2313 2314 if (bp->b_bufsize == 0) 2315 return; 2316 2317 /* 2318 * We qualify the scan for modified pages on whether the 2319 * object has been flushed yet. The OBJ_WRITEABLE flag 2320 * is not cleared simply by protecting pages off. 2321 */ 2322 2323 if ((bp->b_flags & B_VMIO) == 0) 2324 return; 2325 2326 object = bp->b_xio.xio_pages[0]->object; 2327 2328 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2329 kprintf("Warning: object %p writeable but not mightbedirty\n", object); 2330 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2331 kprintf("Warning: object %p mightbedirty but not writeable\n", object); 2332 2333 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2334 vm_offset_t boffset; 2335 vm_offset_t eoffset; 2336 2337 /* 2338 * test the pages to see if they have been modified directly 2339 * by users through the VM system. 2340 */ 2341 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2342 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 2343 vm_page_test_dirty(bp->b_xio.xio_pages[i]); 2344 } 2345 2346 /* 2347 * Calculate the encompassing dirty range, boffset and eoffset, 2348 * (eoffset - boffset) bytes. 2349 */ 2350 2351 for (i = 0; i < bp->b_xio.xio_npages; i++) { 2352 if (bp->b_xio.xio_pages[i]->dirty) 2353 break; 2354 } 2355 boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK); 2356 2357 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) { 2358 if (bp->b_xio.xio_pages[i]->dirty) { 2359 break; 2360 } 2361 } 2362 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK); 2363 2364 /* 2365 * Fit it to the buffer. 2366 */ 2367 2368 if (eoffset > bp->b_bcount) 2369 eoffset = bp->b_bcount; 2370 2371 /* 2372 * If we have a good dirty range, merge with the existing 2373 * dirty range. 2374 */ 2375 2376 if (boffset < eoffset) { 2377 if (bp->b_dirtyoff > boffset) 2378 bp->b_dirtyoff = boffset; 2379 if (bp->b_dirtyend < eoffset) 2380 bp->b_dirtyend = eoffset; 2381 } 2382 } 2383 } 2384 2385 /* 2386 * findblk: 2387 * 2388 * Locate and return the specified buffer, or NULL if the buffer does 2389 * not exist. Do not attempt to lock the buffer or manipulate it in 2390 * any way. The caller must validate that the correct buffer has been 2391 * obtain after locking it. 2392 */ 2393 struct buf * 2394 findblk(struct vnode *vp, off_t loffset) 2395 { 2396 struct buf *bp; 2397 2398 crit_enter(); 2399 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset); 2400 crit_exit(); 2401 return(bp); 2402 } 2403 2404 /* 2405 * getblk: 2406 * 2407 * Get a block given a specified block and offset into a file/device. 2408 * B_INVAL may or may not be set on return. The caller should clear 2409 * B_INVAL prior to initiating a READ. 2410 * 2411 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE 2412 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ, 2413 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer 2414 * without doing any of those things the system will likely believe 2415 * the buffer to be valid (especially if it is not B_VMIO), and the 2416 * next getblk() will return the buffer with B_CACHE set. 2417 * 2418 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2419 * an existing buffer. 2420 * 2421 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2422 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2423 * and then cleared based on the backing VM. If the previous buffer is 2424 * non-0-sized but invalid, B_CACHE will be cleared. 2425 * 2426 * If getblk() must create a new buffer, the new buffer is returned with 2427 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2428 * case it is returned with B_INVAL clear and B_CACHE set based on the 2429 * backing VM. 2430 * 2431 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 2432 * B_CACHE bit is clear. 2433 * 2434 * What this means, basically, is that the caller should use B_CACHE to 2435 * determine whether the buffer is fully valid or not and should clear 2436 * B_INVAL prior to issuing a read. If the caller intends to validate 2437 * the buffer by loading its data area with something, the caller needs 2438 * to clear B_INVAL. If the caller does this without issuing an I/O, 2439 * the caller should set B_CACHE ( as an optimization ), else the caller 2440 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2441 * a write attempt or if it was a successfull read. If the caller 2442 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR 2443 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2444 * 2445 * getblk flags: 2446 * 2447 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return 2448 * GETBLK_BHEAVY - heavy-weight buffer cache buffer 2449 */ 2450 struct buf * 2451 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo) 2452 { 2453 struct buf *bp; 2454 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0; 2455 int error; 2456 2457 if (size > MAXBSIZE) 2458 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE); 2459 if (vp->v_object == NULL) 2460 panic("getblk: vnode %p has no object!", vp); 2461 2462 crit_enter(); 2463 loop: 2464 if ((bp = findblk(vp, loffset))) { 2465 /* 2466 * The buffer was found in the cache, but we need to lock it. 2467 * Even with LK_NOWAIT the lockmgr may break our critical 2468 * section, so double-check the validity of the buffer 2469 * once the lock has been obtained. 2470 */ 2471 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2472 if (blkflags & GETBLK_NOWAIT) { 2473 crit_exit(); 2474 return(NULL); 2475 } 2476 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 2477 if (blkflags & GETBLK_PCATCH) 2478 lkflags |= LK_PCATCH; 2479 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo); 2480 if (error) { 2481 if (error == ENOLCK) 2482 goto loop; 2483 crit_exit(); 2484 return (NULL); 2485 } 2486 } 2487 2488 /* 2489 * Once the buffer has been locked, make sure we didn't race 2490 * a buffer recyclement. Buffers that are no longer hashed 2491 * will have b_vp == NULL, so this takes care of that check 2492 * as well. 2493 */ 2494 if (bp->b_vp != vp || bp->b_loffset != loffset) { 2495 kprintf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset); 2496 BUF_UNLOCK(bp); 2497 goto loop; 2498 } 2499 2500 /* 2501 * If SZMATCH any pre-existing buffer must be of the requested 2502 * size or NULL is returned. The caller absolutely does not 2503 * want getblk() to bwrite() the buffer on a size mismatch. 2504 */ 2505 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) { 2506 BUF_UNLOCK(bp); 2507 crit_exit(); 2508 return(NULL); 2509 } 2510 2511 /* 2512 * All vnode-based buffers must be backed by a VM object. 2513 */ 2514 KKASSERT(bp->b_flags & B_VMIO); 2515 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2516 bp->b_flags &= ~B_AGE; 2517 2518 /* 2519 * Make sure that B_INVAL buffers do not have a cached 2520 * block number translation. 2521 */ 2522 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) { 2523 kprintf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset); 2524 clearbiocache(&bp->b_bio2); 2525 } 2526 2527 /* 2528 * The buffer is locked. B_CACHE is cleared if the buffer is 2529 * invalid. 2530 */ 2531 if (bp->b_flags & B_INVAL) 2532 bp->b_flags &= ~B_CACHE; 2533 bremfree(bp); 2534 2535 /* 2536 * Any size inconsistancy with a dirty buffer or a buffer 2537 * with a softupdates dependancy must be resolved. Resizing 2538 * the buffer in such circumstances can lead to problems. 2539 */ 2540 if (size != bp->b_bcount) { 2541 if (bp->b_flags & B_DELWRI) { 2542 bp->b_flags |= B_NOCACHE; 2543 bwrite(bp); 2544 } else if (LIST_FIRST(&bp->b_dep)) { 2545 bp->b_flags |= B_NOCACHE; 2546 bwrite(bp); 2547 } else { 2548 bp->b_flags |= B_RELBUF; 2549 brelse(bp); 2550 } 2551 goto loop; 2552 } 2553 KKASSERT(size <= bp->b_kvasize); 2554 KASSERT(bp->b_loffset != NOOFFSET, 2555 ("getblk: no buffer offset")); 2556 2557 /* 2558 * A buffer with B_DELWRI set and B_CACHE clear must 2559 * be committed before we can return the buffer in 2560 * order to prevent the caller from issuing a read 2561 * ( due to B_CACHE not being set ) and overwriting 2562 * it. 2563 * 2564 * Most callers, including NFS and FFS, need this to 2565 * operate properly either because they assume they 2566 * can issue a read if B_CACHE is not set, or because 2567 * ( for example ) an uncached B_DELWRI might loop due 2568 * to softupdates re-dirtying the buffer. In the latter 2569 * case, B_CACHE is set after the first write completes, 2570 * preventing further loops. 2571 * 2572 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 2573 * above while extending the buffer, we cannot allow the 2574 * buffer to remain with B_CACHE set after the write 2575 * completes or it will represent a corrupt state. To 2576 * deal with this we set B_NOCACHE to scrap the buffer 2577 * after the write. 2578 * 2579 * We might be able to do something fancy, like setting 2580 * B_CACHE in bwrite() except if B_DELWRI is already set, 2581 * so the below call doesn't set B_CACHE, but that gets real 2582 * confusing. This is much easier. 2583 */ 2584 2585 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2586 bp->b_flags |= B_NOCACHE; 2587 bwrite(bp); 2588 goto loop; 2589 } 2590 crit_exit(); 2591 } else { 2592 /* 2593 * Buffer is not in-core, create new buffer. The buffer 2594 * returned by getnewbuf() is locked. Note that the returned 2595 * buffer is also considered valid (not marked B_INVAL). 2596 * 2597 * Calculating the offset for the I/O requires figuring out 2598 * the block size. We use DEV_BSIZE for VBLK or VCHR and 2599 * the mount's f_iosize otherwise. If the vnode does not 2600 * have an associated mount we assume that the passed size is 2601 * the block size. 2602 * 2603 * Note that vn_isdisk() cannot be used here since it may 2604 * return a failure for numerous reasons. Note that the 2605 * buffer size may be larger then the block size (the caller 2606 * will use block numbers with the proper multiple). Beware 2607 * of using any v_* fields which are part of unions. In 2608 * particular, in DragonFly the mount point overloading 2609 * mechanism uses the namecache only and the underlying 2610 * directory vnode is not a special case. 2611 */ 2612 int bsize, maxsize; 2613 2614 if (vp->v_type == VBLK || vp->v_type == VCHR) 2615 bsize = DEV_BSIZE; 2616 else if (vp->v_mount) 2617 bsize = vp->v_mount->mnt_stat.f_iosize; 2618 else 2619 bsize = size; 2620 2621 maxsize = size + (loffset & PAGE_MASK); 2622 maxsize = imax(maxsize, bsize); 2623 2624 if ((bp = getnewbuf(blkflags, slptimeo, size, maxsize)) == NULL) { 2625 if (slpflags || slptimeo) { 2626 crit_exit(); 2627 return NULL; 2628 } 2629 goto loop; 2630 } 2631 2632 /* 2633 * This code is used to make sure that a buffer is not 2634 * created while the getnewbuf routine is blocked. 2635 * This can be a problem whether the vnode is locked or not. 2636 * If the buffer is created out from under us, we have to 2637 * throw away the one we just created. There is no window 2638 * race because we are safely running in a critical section 2639 * from the point of the duplicate buffer creation through 2640 * to here, and we've locked the buffer. 2641 */ 2642 if (findblk(vp, loffset)) { 2643 bp->b_flags |= B_INVAL; 2644 brelse(bp); 2645 goto loop; 2646 } 2647 2648 /* 2649 * Insert the buffer into the hash, so that it can 2650 * be found by findblk(). 2651 * 2652 * Make sure the translation layer has been cleared. 2653 */ 2654 bp->b_loffset = loffset; 2655 bp->b_bio2.bio_offset = NOOFFSET; 2656 /* bp->b_bio2.bio_next = NULL; */ 2657 2658 bgetvp(vp, bp); 2659 2660 /* 2661 * All vnode-based buffers must be backed by a VM object. 2662 */ 2663 KKASSERT(vp->v_object != NULL); 2664 bp->b_flags |= B_VMIO; 2665 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 2666 2667 allocbuf(bp, size); 2668 2669 crit_exit(); 2670 } 2671 return (bp); 2672 } 2673 2674 /* 2675 * regetblk(bp) 2676 * 2677 * Reacquire a buffer that was previously released to the locked queue, 2678 * or reacquire a buffer which is interlocked by having bioops->io_deallocate 2679 * set B_LOCKED (which handles the acquisition race). 2680 * 2681 * To this end, either B_LOCKED must be set or the dependancy list must be 2682 * non-empty. 2683 */ 2684 void 2685 regetblk(struct buf *bp) 2686 { 2687 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL); 2688 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY); 2689 crit_enter(); 2690 bremfree(bp); 2691 crit_exit(); 2692 } 2693 2694 /* 2695 * geteblk: 2696 * 2697 * Get an empty, disassociated buffer of given size. The buffer is 2698 * initially set to B_INVAL. 2699 * 2700 * critical section protection is not required for the allocbuf() 2701 * call because races are impossible here. 2702 */ 2703 struct buf * 2704 geteblk(int size) 2705 { 2706 struct buf *bp; 2707 int maxsize; 2708 2709 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2710 2711 crit_enter(); 2712 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0) 2713 ; 2714 crit_exit(); 2715 allocbuf(bp, size); 2716 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2717 return (bp); 2718 } 2719 2720 2721 /* 2722 * allocbuf: 2723 * 2724 * This code constitutes the buffer memory from either anonymous system 2725 * memory (in the case of non-VMIO operations) or from an associated 2726 * VM object (in the case of VMIO operations). This code is able to 2727 * resize a buffer up or down. 2728 * 2729 * Note that this code is tricky, and has many complications to resolve 2730 * deadlock or inconsistant data situations. Tread lightly!!! 2731 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2732 * the caller. Calling this code willy nilly can result in the loss of data. 2733 * 2734 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2735 * B_CACHE for the non-VMIO case. 2736 * 2737 * This routine does not need to be called from a critical section but you 2738 * must own the buffer. 2739 */ 2740 int 2741 allocbuf(struct buf *bp, int size) 2742 { 2743 int newbsize, mbsize; 2744 int i; 2745 2746 if (BUF_REFCNT(bp) == 0) 2747 panic("allocbuf: buffer not busy"); 2748 2749 if (bp->b_kvasize < size) 2750 panic("allocbuf: buffer too small"); 2751 2752 if ((bp->b_flags & B_VMIO) == 0) { 2753 caddr_t origbuf; 2754 int origbufsize; 2755 /* 2756 * Just get anonymous memory from the kernel. Don't 2757 * mess with B_CACHE. 2758 */ 2759 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2760 if (bp->b_flags & B_MALLOC) 2761 newbsize = mbsize; 2762 else 2763 newbsize = round_page(size); 2764 2765 if (newbsize < bp->b_bufsize) { 2766 /* 2767 * Malloced buffers are not shrunk 2768 */ 2769 if (bp->b_flags & B_MALLOC) { 2770 if (newbsize) { 2771 bp->b_bcount = size; 2772 } else { 2773 kfree(bp->b_data, M_BIOBUF); 2774 if (bp->b_bufsize) { 2775 bufmallocspace -= bp->b_bufsize; 2776 bufspacewakeup(); 2777 bp->b_bufsize = 0; 2778 } 2779 bp->b_data = bp->b_kvabase; 2780 bp->b_bcount = 0; 2781 bp->b_flags &= ~B_MALLOC; 2782 } 2783 return 1; 2784 } 2785 vm_hold_free_pages( 2786 bp, 2787 (vm_offset_t) bp->b_data + newbsize, 2788 (vm_offset_t) bp->b_data + bp->b_bufsize); 2789 } else if (newbsize > bp->b_bufsize) { 2790 /* 2791 * We only use malloced memory on the first allocation. 2792 * and revert to page-allocated memory when the buffer 2793 * grows. 2794 */ 2795 if ((bufmallocspace < maxbufmallocspace) && 2796 (bp->b_bufsize == 0) && 2797 (mbsize <= PAGE_SIZE/2)) { 2798 2799 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK); 2800 bp->b_bufsize = mbsize; 2801 bp->b_bcount = size; 2802 bp->b_flags |= B_MALLOC; 2803 bufmallocspace += mbsize; 2804 return 1; 2805 } 2806 origbuf = NULL; 2807 origbufsize = 0; 2808 /* 2809 * If the buffer is growing on its other-than-first 2810 * allocation, then we revert to the page-allocation 2811 * scheme. 2812 */ 2813 if (bp->b_flags & B_MALLOC) { 2814 origbuf = bp->b_data; 2815 origbufsize = bp->b_bufsize; 2816 bp->b_data = bp->b_kvabase; 2817 if (bp->b_bufsize) { 2818 bufmallocspace -= bp->b_bufsize; 2819 bufspacewakeup(); 2820 bp->b_bufsize = 0; 2821 } 2822 bp->b_flags &= ~B_MALLOC; 2823 newbsize = round_page(newbsize); 2824 } 2825 vm_hold_load_pages( 2826 bp, 2827 (vm_offset_t) bp->b_data + bp->b_bufsize, 2828 (vm_offset_t) bp->b_data + newbsize); 2829 if (origbuf) { 2830 bcopy(origbuf, bp->b_data, origbufsize); 2831 kfree(origbuf, M_BIOBUF); 2832 } 2833 } 2834 } else { 2835 vm_page_t m; 2836 int desiredpages; 2837 2838 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2839 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) + 2840 newbsize + PAGE_MASK) >> PAGE_SHIFT; 2841 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES); 2842 2843 if (bp->b_flags & B_MALLOC) 2844 panic("allocbuf: VMIO buffer can't be malloced"); 2845 /* 2846 * Set B_CACHE initially if buffer is 0 length or will become 2847 * 0-length. 2848 */ 2849 if (size == 0 || bp->b_bufsize == 0) 2850 bp->b_flags |= B_CACHE; 2851 2852 if (newbsize < bp->b_bufsize) { 2853 /* 2854 * DEV_BSIZE aligned new buffer size is less then the 2855 * DEV_BSIZE aligned existing buffer size. Figure out 2856 * if we have to remove any pages. 2857 */ 2858 if (desiredpages < bp->b_xio.xio_npages) { 2859 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) { 2860 /* 2861 * the page is not freed here -- it 2862 * is the responsibility of 2863 * vnode_pager_setsize 2864 */ 2865 m = bp->b_xio.xio_pages[i]; 2866 KASSERT(m != bogus_page, 2867 ("allocbuf: bogus page found")); 2868 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2869 ; 2870 2871 bp->b_xio.xio_pages[i] = NULL; 2872 vm_page_unwire(m, 0); 2873 } 2874 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2875 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages)); 2876 bp->b_xio.xio_npages = desiredpages; 2877 } 2878 } else if (size > bp->b_bcount) { 2879 /* 2880 * We are growing the buffer, possibly in a 2881 * byte-granular fashion. 2882 */ 2883 struct vnode *vp; 2884 vm_object_t obj; 2885 vm_offset_t toff; 2886 vm_offset_t tinc; 2887 2888 /* 2889 * Step 1, bring in the VM pages from the object, 2890 * allocating them if necessary. We must clear 2891 * B_CACHE if these pages are not valid for the 2892 * range covered by the buffer. 2893 * 2894 * critical section protection is required to protect 2895 * against interrupts unbusying and freeing pages 2896 * between our vm_page_lookup() and our 2897 * busycheck/wiring call. 2898 */ 2899 vp = bp->b_vp; 2900 obj = vp->v_object; 2901 2902 crit_enter(); 2903 while (bp->b_xio.xio_npages < desiredpages) { 2904 vm_page_t m; 2905 vm_pindex_t pi; 2906 2907 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages; 2908 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2909 /* 2910 * note: must allocate system pages 2911 * since blocking here could intefere 2912 * with paging I/O, no matter which 2913 * process we are. 2914 */ 2915 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages); 2916 if (m) { 2917 vm_page_wire(m); 2918 vm_page_wakeup(m); 2919 bp->b_flags &= ~B_CACHE; 2920 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 2921 ++bp->b_xio.xio_npages; 2922 } 2923 continue; 2924 } 2925 2926 /* 2927 * We found a page. If we have to sleep on it, 2928 * retry because it might have gotten freed out 2929 * from under us. 2930 * 2931 * We can only test PG_BUSY here. Blocking on 2932 * m->busy might lead to a deadlock: 2933 * 2934 * vm_fault->getpages->cluster_read->allocbuf 2935 * 2936 */ 2937 2938 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2939 continue; 2940 2941 /* 2942 * We have a good page. Should we wakeup the 2943 * page daemon? 2944 */ 2945 if ((curthread != pagethread) && 2946 ((m->queue - m->pc) == PQ_CACHE) && 2947 ((vmstats.v_free_count + vmstats.v_cache_count) < 2948 (vmstats.v_free_min + vmstats.v_cache_min))) { 2949 pagedaemon_wakeup(); 2950 } 2951 vm_page_flag_clear(m, PG_ZERO); 2952 vm_page_wire(m); 2953 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m; 2954 ++bp->b_xio.xio_npages; 2955 } 2956 crit_exit(); 2957 2958 /* 2959 * Step 2. We've loaded the pages into the buffer, 2960 * we have to figure out if we can still have B_CACHE 2961 * set. Note that B_CACHE is set according to the 2962 * byte-granular range ( bcount and size ), not the 2963 * aligned range ( newbsize ). 2964 * 2965 * The VM test is against m->valid, which is DEV_BSIZE 2966 * aligned. Needless to say, the validity of the data 2967 * needs to also be DEV_BSIZE aligned. Note that this 2968 * fails with NFS if the server or some other client 2969 * extends the file's EOF. If our buffer is resized, 2970 * B_CACHE may remain set! XXX 2971 */ 2972 2973 toff = bp->b_bcount; 2974 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK); 2975 2976 while ((bp->b_flags & B_CACHE) && toff < size) { 2977 vm_pindex_t pi; 2978 2979 if (tinc > (size - toff)) 2980 tinc = size - toff; 2981 2982 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> 2983 PAGE_SHIFT; 2984 2985 vfs_buf_test_cache( 2986 bp, 2987 bp->b_loffset, 2988 toff, 2989 tinc, 2990 bp->b_xio.xio_pages[pi] 2991 ); 2992 toff += tinc; 2993 tinc = PAGE_SIZE; 2994 } 2995 2996 /* 2997 * Step 3, fixup the KVM pmap. Remember that 2998 * bp->b_data is relative to bp->b_loffset, but 2999 * bp->b_loffset may be offset into the first page. 3000 */ 3001 3002 bp->b_data = (caddr_t) 3003 trunc_page((vm_offset_t)bp->b_data); 3004 pmap_qenter( 3005 (vm_offset_t)bp->b_data, 3006 bp->b_xio.xio_pages, 3007 bp->b_xio.xio_npages 3008 ); 3009 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 3010 (vm_offset_t)(bp->b_loffset & PAGE_MASK)); 3011 } 3012 } 3013 3014 /* adjust space use on already-dirty buffer */ 3015 if (bp->b_flags & B_DELWRI) { 3016 dirtybufspace += newbsize - bp->b_bufsize; 3017 if (bp->b_flags & B_HEAVY) 3018 dirtybufspacehw += newbsize - bp->b_bufsize; 3019 } 3020 if (newbsize < bp->b_bufsize) 3021 bufspacewakeup(); 3022 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3023 bp->b_bcount = size; /* requested buffer size */ 3024 return 1; 3025 } 3026 3027 /* 3028 * biowait: 3029 * 3030 * Wait for buffer I/O completion, returning error status. The buffer 3031 * is left locked on return. B_EINTR is converted into an EINTR error 3032 * and cleared. 3033 * 3034 * NOTE! The original b_cmd is lost on return, since b_cmd will be 3035 * set to BUF_CMD_DONE. 3036 */ 3037 int 3038 biowait(struct buf *bp) 3039 { 3040 crit_enter(); 3041 while (bp->b_cmd != BUF_CMD_DONE) { 3042 if (bp->b_cmd == BUF_CMD_READ) 3043 tsleep(bp, 0, "biord", 0); 3044 else 3045 tsleep(bp, 0, "biowr", 0); 3046 } 3047 crit_exit(); 3048 if (bp->b_flags & B_EINTR) { 3049 bp->b_flags &= ~B_EINTR; 3050 return (EINTR); 3051 } 3052 if (bp->b_flags & B_ERROR) { 3053 return (bp->b_error ? bp->b_error : EIO); 3054 } else { 3055 return (0); 3056 } 3057 } 3058 3059 /* 3060 * This associates a tracking count with an I/O. vn_strategy() and 3061 * dev_dstrategy() do this automatically but there are a few cases 3062 * where a vnode or device layer is bypassed when a block translation 3063 * is cached. In such cases bio_start_transaction() may be called on 3064 * the bypassed layers so the system gets an I/O in progress indication 3065 * for those higher layers. 3066 */ 3067 void 3068 bio_start_transaction(struct bio *bio, struct bio_track *track) 3069 { 3070 bio->bio_track = track; 3071 atomic_add_int(&track->bk_active, 1); 3072 } 3073 3074 /* 3075 * Initiate I/O on a vnode. 3076 */ 3077 void 3078 vn_strategy(struct vnode *vp, struct bio *bio) 3079 { 3080 struct bio_track *track; 3081 3082 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE); 3083 if (bio->bio_buf->b_cmd == BUF_CMD_READ) 3084 track = &vp->v_track_read; 3085 else 3086 track = &vp->v_track_write; 3087 bio->bio_track = track; 3088 atomic_add_int(&track->bk_active, 1); 3089 vop_strategy(*vp->v_ops, vp, bio); 3090 } 3091 3092 3093 /* 3094 * biodone: 3095 * 3096 * Finish I/O on a buffer, optionally calling a completion function. 3097 * This is usually called from an interrupt so process blocking is 3098 * not allowed. 3099 * 3100 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 3101 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3102 * assuming B_INVAL is clear. 3103 * 3104 * For the VMIO case, we set B_CACHE if the op was a read and no 3105 * read error occured, or if the op was a write. B_CACHE is never 3106 * set if the buffer is invalid or otherwise uncacheable. 3107 * 3108 * biodone does not mess with B_INVAL, allowing the I/O routine or the 3109 * initiator to leave B_INVAL set to brelse the buffer out of existance 3110 * in the biodone routine. 3111 */ 3112 void 3113 biodone(struct bio *bio) 3114 { 3115 struct buf *bp = bio->bio_buf; 3116 buf_cmd_t cmd; 3117 3118 crit_enter(); 3119 3120 KASSERT(BUF_REFCNTNB(bp) > 0, 3121 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp))); 3122 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3123 ("biodone: bp %p already done!", bp)); 3124 3125 runningbufwakeup(bp); 3126 3127 /* 3128 * Run up the chain of BIO's. Leave b_cmd intact for the duration. 3129 */ 3130 while (bio) { 3131 biodone_t *done_func; 3132 struct bio_track *track; 3133 3134 /* 3135 * BIO tracking. Most but not all BIOs are tracked. 3136 */ 3137 if ((track = bio->bio_track) != NULL) { 3138 atomic_subtract_int(&track->bk_active, 1); 3139 if (track->bk_active < 0) { 3140 panic("biodone: bad active count bio %p\n", 3141 bio); 3142 } 3143 if (track->bk_waitflag) { 3144 track->bk_waitflag = 0; 3145 wakeup(track); 3146 } 3147 bio->bio_track = NULL; 3148 } 3149 3150 /* 3151 * A bio_done function terminates the loop. The function 3152 * will be responsible for any further chaining and/or 3153 * buffer management. 3154 * 3155 * WARNING! The done function can deallocate the buffer! 3156 */ 3157 if ((done_func = bio->bio_done) != NULL) { 3158 bio->bio_done = NULL; 3159 done_func(bio); 3160 crit_exit(); 3161 return; 3162 } 3163 bio = bio->bio_prev; 3164 } 3165 3166 cmd = bp->b_cmd; 3167 bp->b_cmd = BUF_CMD_DONE; 3168 3169 /* 3170 * Only reads and writes are processed past this point. 3171 */ 3172 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) { 3173 if (cmd == BUF_CMD_FREEBLKS) 3174 bp->b_flags |= B_NOCACHE; 3175 brelse(bp); 3176 crit_exit(); 3177 return; 3178 } 3179 3180 /* 3181 * Warning: softupdates may re-dirty the buffer, and HAMMER can do 3182 * a lot worse. XXX - move this above the clearing of b_cmd 3183 */ 3184 if (LIST_FIRST(&bp->b_dep) != NULL) 3185 buf_complete(bp); 3186 3187 /* 3188 * A failed write must re-dirty the buffer unless B_INVAL 3189 * was set. 3190 */ 3191 if (cmd == BUF_CMD_WRITE && 3192 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) { 3193 bp->b_flags &= ~B_NOCACHE; 3194 bdirty(bp); 3195 } 3196 3197 3198 if (bp->b_flags & B_VMIO) { 3199 int i; 3200 vm_ooffset_t foff; 3201 vm_page_t m; 3202 vm_object_t obj; 3203 int iosize; 3204 struct vnode *vp = bp->b_vp; 3205 3206 obj = vp->v_object; 3207 3208 #if defined(VFS_BIO_DEBUG) 3209 if (vp->v_auxrefs == 0) 3210 panic("biodone: zero vnode hold count"); 3211 if ((vp->v_flag & VOBJBUF) == 0) 3212 panic("biodone: vnode is not setup for merged cache"); 3213 #endif 3214 3215 foff = bp->b_loffset; 3216 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset")); 3217 KASSERT(obj != NULL, ("biodone: missing VM object")); 3218 3219 #if defined(VFS_BIO_DEBUG) 3220 if (obj->paging_in_progress < bp->b_xio.xio_npages) { 3221 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n", 3222 obj->paging_in_progress, bp->b_xio.xio_npages); 3223 } 3224 #endif 3225 3226 /* 3227 * Set B_CACHE if the op was a normal read and no error 3228 * occured. B_CACHE is set for writes in the b*write() 3229 * routines. 3230 */ 3231 iosize = bp->b_bcount - bp->b_resid; 3232 if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) { 3233 bp->b_flags |= B_CACHE; 3234 } 3235 3236 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3237 int bogusflag = 0; 3238 int resid; 3239 3240 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3241 if (resid > iosize) 3242 resid = iosize; 3243 3244 /* 3245 * cleanup bogus pages, restoring the originals. Since 3246 * the originals should still be wired, we don't have 3247 * to worry about interrupt/freeing races destroying 3248 * the VM object association. 3249 */ 3250 m = bp->b_xio.xio_pages[i]; 3251 if (m == bogus_page) { 3252 bogusflag = 1; 3253 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3254 if (m == NULL) 3255 panic("biodone: page disappeared"); 3256 bp->b_xio.xio_pages[i] = m; 3257 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3258 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3259 } 3260 #if defined(VFS_BIO_DEBUG) 3261 if (OFF_TO_IDX(foff) != m->pindex) { 3262 kprintf( 3263 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 3264 (unsigned long)foff, m->pindex); 3265 } 3266 #endif 3267 3268 /* 3269 * In the write case, the valid and clean bits are 3270 * already changed correctly ( see bdwrite() ), so we 3271 * only need to do this here in the read case. 3272 */ 3273 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) { 3274 vfs_page_set_valid(bp, foff, i, m); 3275 } 3276 vm_page_flag_clear(m, PG_ZERO); 3277 3278 /* 3279 * when debugging new filesystems or buffer I/O methods, this 3280 * is the most common error that pops up. if you see this, you 3281 * have not set the page busy flag correctly!!! 3282 */ 3283 if (m->busy == 0) { 3284 kprintf("biodone: page busy < 0, " 3285 "pindex: %d, foff: 0x(%x,%x), " 3286 "resid: %d, index: %d\n", 3287 (int) m->pindex, (int)(foff >> 32), 3288 (int) foff & 0xffffffff, resid, i); 3289 if (!vn_isdisk(vp, NULL)) 3290 kprintf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n", 3291 bp->b_vp->v_mount->mnt_stat.f_iosize, 3292 bp->b_loffset, 3293 bp->b_flags, bp->b_xio.xio_npages); 3294 else 3295 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n", 3296 bp->b_loffset, 3297 bp->b_flags, bp->b_xio.xio_npages); 3298 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 3299 m->valid, m->dirty, m->wire_count); 3300 panic("biodone: page busy < 0"); 3301 } 3302 vm_page_io_finish(m); 3303 vm_object_pip_subtract(obj, 1); 3304 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3305 iosize -= resid; 3306 } 3307 if (obj) 3308 vm_object_pip_wakeupn(obj, 0); 3309 } 3310 3311 /* 3312 * For asynchronous completions, release the buffer now. The brelse 3313 * will do a wakeup there if necessary - so no need to do a wakeup 3314 * here in the async case. The sync case always needs to do a wakeup. 3315 */ 3316 3317 if (bp->b_flags & B_ASYNC) { 3318 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0) 3319 brelse(bp); 3320 else 3321 bqrelse(bp); 3322 } else { 3323 wakeup(bp); 3324 } 3325 crit_exit(); 3326 } 3327 3328 /* 3329 * vfs_unbusy_pages: 3330 * 3331 * This routine is called in lieu of iodone in the case of 3332 * incomplete I/O. This keeps the busy status for pages 3333 * consistant. 3334 */ 3335 void 3336 vfs_unbusy_pages(struct buf *bp) 3337 { 3338 int i; 3339 3340 runningbufwakeup(bp); 3341 if (bp->b_flags & B_VMIO) { 3342 struct vnode *vp = bp->b_vp; 3343 vm_object_t obj; 3344 3345 obj = vp->v_object; 3346 3347 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3348 vm_page_t m = bp->b_xio.xio_pages[i]; 3349 3350 /* 3351 * When restoring bogus changes the original pages 3352 * should still be wired, so we are in no danger of 3353 * losing the object association and do not need 3354 * critical section protection particularly. 3355 */ 3356 if (m == bogus_page) { 3357 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i); 3358 if (!m) { 3359 panic("vfs_unbusy_pages: page missing"); 3360 } 3361 bp->b_xio.xio_pages[i] = m; 3362 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3363 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3364 } 3365 vm_object_pip_subtract(obj, 1); 3366 vm_page_flag_clear(m, PG_ZERO); 3367 vm_page_io_finish(m); 3368 } 3369 vm_object_pip_wakeupn(obj, 0); 3370 } 3371 } 3372 3373 /* 3374 * vfs_page_set_valid: 3375 * 3376 * Set the valid bits in a page based on the supplied offset. The 3377 * range is restricted to the buffer's size. 3378 * 3379 * This routine is typically called after a read completes. 3380 */ 3381 static void 3382 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 3383 { 3384 vm_ooffset_t soff, eoff; 3385 3386 /* 3387 * Start and end offsets in buffer. eoff - soff may not cross a 3388 * page boundry or cross the end of the buffer. The end of the 3389 * buffer, in this case, is our file EOF, not the allocation size 3390 * of the buffer. 3391 */ 3392 soff = off; 3393 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3394 if (eoff > bp->b_loffset + bp->b_bcount) 3395 eoff = bp->b_loffset + bp->b_bcount; 3396 3397 /* 3398 * Set valid range. This is typically the entire buffer and thus the 3399 * entire page. 3400 */ 3401 if (eoff > soff) { 3402 vm_page_set_validclean( 3403 m, 3404 (vm_offset_t) (soff & PAGE_MASK), 3405 (vm_offset_t) (eoff - soff) 3406 ); 3407 } 3408 } 3409 3410 /* 3411 * vfs_busy_pages: 3412 * 3413 * This routine is called before a device strategy routine. 3414 * It is used to tell the VM system that paging I/O is in 3415 * progress, and treat the pages associated with the buffer 3416 * almost as being PG_BUSY. Also the object 'paging_in_progress' 3417 * flag is handled to make sure that the object doesn't become 3418 * inconsistant. 3419 * 3420 * Since I/O has not been initiated yet, certain buffer flags 3421 * such as B_ERROR or B_INVAL may be in an inconsistant state 3422 * and should be ignored. 3423 */ 3424 void 3425 vfs_busy_pages(struct vnode *vp, struct buf *bp) 3426 { 3427 int i, bogus; 3428 struct lwp *lp = curthread->td_lwp; 3429 3430 /* 3431 * The buffer's I/O command must already be set. If reading, 3432 * B_CACHE must be 0 (double check against callers only doing 3433 * I/O when B_CACHE is 0). 3434 */ 3435 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3436 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0); 3437 3438 if (bp->b_flags & B_VMIO) { 3439 vm_object_t obj; 3440 vm_ooffset_t foff; 3441 3442 obj = vp->v_object; 3443 foff = bp->b_loffset; 3444 KASSERT(bp->b_loffset != NOOFFSET, 3445 ("vfs_busy_pages: no buffer offset")); 3446 vfs_setdirty(bp); 3447 3448 /* 3449 * Loop until none of the pages are busy. 3450 */ 3451 retry: 3452 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3453 vm_page_t m = bp->b_xio.xio_pages[i]; 3454 3455 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3456 goto retry; 3457 } 3458 3459 /* 3460 * Setup for I/O, soft-busy the page right now because 3461 * the next loop may block. 3462 */ 3463 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3464 vm_page_t m = bp->b_xio.xio_pages[i]; 3465 3466 vm_page_flag_clear(m, PG_ZERO); 3467 if ((bp->b_flags & B_CLUSTER) == 0) { 3468 vm_object_pip_add(obj, 1); 3469 vm_page_io_start(m); 3470 } 3471 } 3472 3473 /* 3474 * Adjust protections for I/O and do bogus-page mapping. 3475 * Assume that vm_page_protect() can block (it can block 3476 * if VM_PROT_NONE, don't take any chances regardless). 3477 */ 3478 bogus = 0; 3479 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3480 vm_page_t m = bp->b_xio.xio_pages[i]; 3481 3482 /* 3483 * When readying a vnode-backed buffer for a write 3484 * we must zero-fill any invalid portions of the 3485 * backing VM pages. 3486 * 3487 * When readying a vnode-backed buffer for a read 3488 * we must replace any dirty pages with a bogus 3489 * page so we do not destroy dirty data when 3490 * filling in gaps. Dirty pages might not 3491 * necessarily be marked dirty yet, so use m->valid 3492 * as a reasonable test. 3493 * 3494 * Bogus page replacement is, uh, bogus. We need 3495 * to find a better way. 3496 */ 3497 if (bp->b_cmd == BUF_CMD_WRITE) { 3498 vm_page_protect(m, VM_PROT_READ); 3499 vfs_page_set_valid(bp, foff, i, m); 3500 } else if (m->valid == VM_PAGE_BITS_ALL) { 3501 bp->b_xio.xio_pages[i] = bogus_page; 3502 bogus++; 3503 } else { 3504 vm_page_protect(m, VM_PROT_NONE); 3505 } 3506 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3507 } 3508 if (bogus) 3509 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3510 bp->b_xio.xio_pages, bp->b_xio.xio_npages); 3511 } 3512 3513 /* 3514 * This is the easiest place to put the process accounting for the I/O 3515 * for now. 3516 */ 3517 if (lp != NULL) { 3518 if (bp->b_cmd == BUF_CMD_READ) 3519 lp->lwp_ru.ru_inblock++; 3520 else 3521 lp->lwp_ru.ru_oublock++; 3522 } 3523 } 3524 3525 /* 3526 * vfs_clean_pages: 3527 * 3528 * Tell the VM system that the pages associated with this buffer 3529 * are clean. This is used for delayed writes where the data is 3530 * going to go to disk eventually without additional VM intevention. 3531 * 3532 * Note that while we only really need to clean through to b_bcount, we 3533 * just go ahead and clean through to b_bufsize. 3534 */ 3535 static void 3536 vfs_clean_pages(struct buf *bp) 3537 { 3538 int i; 3539 3540 if (bp->b_flags & B_VMIO) { 3541 vm_ooffset_t foff; 3542 3543 foff = bp->b_loffset; 3544 KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset")); 3545 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3546 vm_page_t m = bp->b_xio.xio_pages[i]; 3547 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3548 vm_ooffset_t eoff = noff; 3549 3550 if (eoff > bp->b_loffset + bp->b_bufsize) 3551 eoff = bp->b_loffset + bp->b_bufsize; 3552 vfs_page_set_valid(bp, foff, i, m); 3553 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3554 foff = noff; 3555 } 3556 } 3557 } 3558 3559 /* 3560 * vfs_bio_set_validclean: 3561 * 3562 * Set the range within the buffer to valid and clean. The range is 3563 * relative to the beginning of the buffer, b_loffset. Note that 3564 * b_loffset itself may be offset from the beginning of the first page. 3565 */ 3566 3567 void 3568 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3569 { 3570 if (bp->b_flags & B_VMIO) { 3571 int i; 3572 int n; 3573 3574 /* 3575 * Fixup base to be relative to beginning of first page. 3576 * Set initial n to be the maximum number of bytes in the 3577 * first page that can be validated. 3578 */ 3579 3580 base += (bp->b_loffset & PAGE_MASK); 3581 n = PAGE_SIZE - (base & PAGE_MASK); 3582 3583 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) { 3584 vm_page_t m = bp->b_xio.xio_pages[i]; 3585 3586 if (n > size) 3587 n = size; 3588 3589 vm_page_set_validclean(m, base & PAGE_MASK, n); 3590 base += n; 3591 size -= n; 3592 n = PAGE_SIZE; 3593 } 3594 } 3595 } 3596 3597 /* 3598 * vfs_bio_clrbuf: 3599 * 3600 * Clear a buffer. This routine essentially fakes an I/O, so we need 3601 * to clear B_ERROR and B_INVAL. 3602 * 3603 * Note that while we only theoretically need to clear through b_bcount, 3604 * we go ahead and clear through b_bufsize. 3605 */ 3606 3607 void 3608 vfs_bio_clrbuf(struct buf *bp) 3609 { 3610 int i, mask = 0; 3611 caddr_t sa, ea; 3612 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3613 bp->b_flags &= ~(B_INVAL|B_ERROR); 3614 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3615 (bp->b_loffset & PAGE_MASK) == 0) { 3616 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3617 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) { 3618 bp->b_resid = 0; 3619 return; 3620 } 3621 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) && 3622 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) { 3623 bzero(bp->b_data, bp->b_bufsize); 3624 bp->b_xio.xio_pages[0]->valid |= mask; 3625 bp->b_resid = 0; 3626 return; 3627 } 3628 } 3629 ea = sa = bp->b_data; 3630 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) { 3631 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3632 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3633 ea = (caddr_t)(vm_offset_t)ulmin( 3634 (u_long)(vm_offset_t)ea, 3635 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3636 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3637 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask) 3638 continue; 3639 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) { 3640 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) { 3641 bzero(sa, ea - sa); 3642 } 3643 } else { 3644 for (; sa < ea; sa += DEV_BSIZE, j++) { 3645 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) && 3646 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0) 3647 bzero(sa, DEV_BSIZE); 3648 } 3649 } 3650 bp->b_xio.xio_pages[i]->valid |= mask; 3651 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO); 3652 } 3653 bp->b_resid = 0; 3654 } else { 3655 clrbuf(bp); 3656 } 3657 } 3658 3659 /* 3660 * vm_hold_load_pages: 3661 * 3662 * Load pages into the buffer's address space. The pages are 3663 * allocated from the kernel object in order to reduce interference 3664 * with the any VM paging I/O activity. The range of loaded 3665 * pages will be wired. 3666 * 3667 * If a page cannot be allocated, the 'pagedaemon' is woken up to 3668 * retrieve the full range (to - from) of pages. 3669 * 3670 */ 3671 void 3672 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 3673 { 3674 vm_offset_t pg; 3675 vm_page_t p; 3676 int index; 3677 3678 to = round_page(to); 3679 from = round_page(from); 3680 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3681 3682 pg = from; 3683 while (pg < to) { 3684 /* 3685 * Note: must allocate system pages since blocking here 3686 * could intefere with paging I/O, no matter which 3687 * process we are. 3688 */ 3689 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT, 3690 (vm_pindex_t)((to - pg) >> PAGE_SHIFT)); 3691 if (p) { 3692 vm_page_wire(p); 3693 p->valid = VM_PAGE_BITS_ALL; 3694 vm_page_flag_clear(p, PG_ZERO); 3695 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 3696 bp->b_xio.xio_pages[index] = p; 3697 vm_page_wakeup(p); 3698 3699 pg += PAGE_SIZE; 3700 ++index; 3701 } 3702 } 3703 bp->b_xio.xio_npages = index; 3704 } 3705 3706 /* 3707 * Allocate pages for a buffer cache buffer. 3708 * 3709 * Under extremely severe memory conditions even allocating out of the 3710 * system reserve can fail. If this occurs we must allocate out of the 3711 * interrupt reserve to avoid a deadlock with the pageout daemon. 3712 * 3713 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf). 3714 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock 3715 * against the pageout daemon if pages are not freed from other sources. 3716 */ 3717 static 3718 vm_page_t 3719 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit) 3720 { 3721 vm_page_t p; 3722 3723 /* 3724 * Try a normal allocation, allow use of system reserve. 3725 */ 3726 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM); 3727 if (p) 3728 return(p); 3729 3730 /* 3731 * The normal allocation failed and we clearly have a page 3732 * deficit. Try to reclaim some clean VM pages directly 3733 * from the buffer cache. 3734 */ 3735 vm_pageout_deficit += deficit; 3736 recoverbufpages(); 3737 3738 /* 3739 * We may have blocked, the caller will know what to do if the 3740 * page now exists. 3741 */ 3742 if (vm_page_lookup(obj, pg)) 3743 return(NULL); 3744 3745 /* 3746 * Allocate and allow use of the interrupt reserve. 3747 * 3748 * If after all that we still can't allocate a VM page we are 3749 * in real trouble, but we slog on anyway hoping that the system 3750 * won't deadlock. 3751 */ 3752 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | 3753 VM_ALLOC_INTERRUPT); 3754 if (p) { 3755 if (vm_page_count_severe()) { 3756 kprintf("bio_page_alloc: WARNING emergency page " 3757 "allocation\n"); 3758 vm_wait(hz / 20); 3759 } 3760 } else { 3761 kprintf("bio_page_alloc: WARNING emergency page " 3762 "allocation failed\n"); 3763 vm_wait(hz * 5); 3764 } 3765 return(p); 3766 } 3767 3768 /* 3769 * vm_hold_free_pages: 3770 * 3771 * Return pages associated with the buffer back to the VM system. 3772 * 3773 * The range of pages underlying the buffer's address space will 3774 * be unmapped and un-wired. 3775 */ 3776 void 3777 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 3778 { 3779 vm_offset_t pg; 3780 vm_page_t p; 3781 int index, newnpages; 3782 3783 from = round_page(from); 3784 to = round_page(to); 3785 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3786 3787 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3788 p = bp->b_xio.xio_pages[index]; 3789 if (p && (index < bp->b_xio.xio_npages)) { 3790 if (p->busy) { 3791 kprintf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n", 3792 bp->b_bio2.bio_offset, bp->b_loffset); 3793 } 3794 bp->b_xio.xio_pages[index] = NULL; 3795 pmap_kremove(pg); 3796 vm_page_busy(p); 3797 vm_page_unwire(p, 0); 3798 vm_page_free(p); 3799 } 3800 } 3801 bp->b_xio.xio_npages = newnpages; 3802 } 3803 3804 /* 3805 * vmapbuf: 3806 * 3807 * Map a user buffer into KVM via a pbuf. On return the buffer's 3808 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array 3809 * initialized. 3810 */ 3811 int 3812 vmapbuf(struct buf *bp, caddr_t udata, int bytes) 3813 { 3814 caddr_t addr; 3815 vm_offset_t va; 3816 vm_page_t m; 3817 int vmprot; 3818 int error; 3819 int pidx; 3820 int i; 3821 3822 /* 3823 * bp had better have a command and it better be a pbuf. 3824 */ 3825 KKASSERT(bp->b_cmd != BUF_CMD_DONE); 3826 KKASSERT(bp->b_flags & B_PAGING); 3827 3828 if (bytes < 0) 3829 return (-1); 3830 3831 /* 3832 * Map the user data into KVM. Mappings have to be page-aligned. 3833 */ 3834 addr = (caddr_t)trunc_page((vm_offset_t)udata); 3835 pidx = 0; 3836 3837 vmprot = VM_PROT_READ; 3838 if (bp->b_cmd == BUF_CMD_READ) 3839 vmprot |= VM_PROT_WRITE; 3840 3841 while (addr < udata + bytes) { 3842 /* 3843 * Do the vm_fault if needed; do the copy-on-write thing 3844 * when reading stuff off device into memory. 3845 * 3846 * vm_fault_page*() returns a held VM page. 3847 */ 3848 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata; 3849 va = trunc_page(va); 3850 3851 m = vm_fault_page_quick(va, vmprot, &error); 3852 if (m == NULL) { 3853 for (i = 0; i < pidx; ++i) { 3854 vm_page_unhold(bp->b_xio.xio_pages[i]); 3855 bp->b_xio.xio_pages[i] = NULL; 3856 } 3857 return(-1); 3858 } 3859 bp->b_xio.xio_pages[pidx] = m; 3860 addr += PAGE_SIZE; 3861 ++pidx; 3862 } 3863 3864 /* 3865 * Map the page array and set the buffer fields to point to 3866 * the mapped data buffer. 3867 */ 3868 if (pidx > btoc(MAXPHYS)) 3869 panic("vmapbuf: mapped more than MAXPHYS"); 3870 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx); 3871 3872 bp->b_xio.xio_npages = pidx; 3873 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK); 3874 bp->b_bcount = bytes; 3875 bp->b_bufsize = bytes; 3876 return(0); 3877 } 3878 3879 /* 3880 * vunmapbuf: 3881 * 3882 * Free the io map PTEs associated with this IO operation. 3883 * We also invalidate the TLB entries and restore the original b_addr. 3884 */ 3885 void 3886 vunmapbuf(struct buf *bp) 3887 { 3888 int pidx; 3889 int npages; 3890 3891 KKASSERT(bp->b_flags & B_PAGING); 3892 3893 npages = bp->b_xio.xio_npages; 3894 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 3895 for (pidx = 0; pidx < npages; ++pidx) { 3896 vm_page_unhold(bp->b_xio.xio_pages[pidx]); 3897 bp->b_xio.xio_pages[pidx] = NULL; 3898 } 3899 bp->b_xio.xio_npages = 0; 3900 bp->b_data = bp->b_kvabase; 3901 } 3902 3903 /* 3904 * Scan all buffers in the system and issue the callback. 3905 */ 3906 int 3907 scan_all_buffers(int (*callback)(struct buf *, void *), void *info) 3908 { 3909 int count = 0; 3910 int error; 3911 int n; 3912 3913 for (n = 0; n < nbuf; ++n) { 3914 if ((error = callback(&buf[n], info)) < 0) { 3915 count = error; 3916 break; 3917 } 3918 count += error; 3919 } 3920 return (count); 3921 } 3922 3923 /* 3924 * print out statistics from the current status of the buffer pool 3925 * this can be toggeled by the system control option debug.syncprt 3926 */ 3927 #ifdef DEBUG 3928 void 3929 vfs_bufstats(void) 3930 { 3931 int i, j, count; 3932 struct buf *bp; 3933 struct bqueues *dp; 3934 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 3935 static char *bname[3] = { "LOCKED", "LRU", "AGE" }; 3936 3937 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) { 3938 count = 0; 3939 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 3940 counts[j] = 0; 3941 crit_enter(); 3942 TAILQ_FOREACH(bp, dp, b_freelist) { 3943 counts[bp->b_bufsize/PAGE_SIZE]++; 3944 count++; 3945 } 3946 crit_exit(); 3947 kprintf("%s: total-%d", bname[i], count); 3948 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 3949 if (counts[j] != 0) 3950 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]); 3951 kprintf("\n"); 3952 } 3953 } 3954 #endif 3955 3956 #ifdef DDB 3957 3958 DB_SHOW_COMMAND(buffer, db_show_buffer) 3959 { 3960 /* get args */ 3961 struct buf *bp = (struct buf *)addr; 3962 3963 if (!have_addr) { 3964 db_printf("usage: show buffer <addr>\n"); 3965 return; 3966 } 3967 3968 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3969 db_printf("b_cmd = %d\n", bp->b_cmd); 3970 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, " 3971 "b_resid = %d\n, b_data = %p, " 3972 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n", 3973 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3974 bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1)); 3975 if (bp->b_xio.xio_npages) { 3976 int i; 3977 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ", 3978 bp->b_xio.xio_npages); 3979 for (i = 0; i < bp->b_xio.xio_npages; i++) { 3980 vm_page_t m; 3981 m = bp->b_xio.xio_pages[i]; 3982 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3983 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3984 if ((i + 1) < bp->b_xio.xio_npages) 3985 db_printf(","); 3986 } 3987 db_printf("\n"); 3988 } 3989 } 3990 #endif /* DDB */ 3991