xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 0e6f0e2886bc8da263ff35cca55f08c8c57fac2d)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  */
16 
17 /*
18  * this file contains a new buffer I/O scheme implementing a coherent
19  * VM object and buffer cache scheme.  Pains have been taken to make
20  * sure that the performance degradation associated with schemes such
21  * as this is not realized.
22  *
23  * Author:  John S. Dyson
24  * Significant help during the development and debugging phases
25  * had been provided by David Greenman, also of the FreeBSD core team.
26  *
27  * see man buf(9) for more info.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/devicestat.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/dsched.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
58 
59 #include <sys/buf2.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
64 
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
69 
70 /*
71  * Buffer queues.
72  */
73 enum bufq_type {
74 	BQUEUE_NONE,    	/* not on any queue */
75 	BQUEUE_LOCKED,  	/* locked buffers */
76 	BQUEUE_CLEAN,   	/* non-B_DELWRI buffers */
77 	BQUEUE_DIRTY,   	/* B_DELWRI buffers */
78 	BQUEUE_DIRTY_HW,   	/* B_DELWRI buffers - heavy weight */
79 	BQUEUE_EMPTYKVA, 	/* empty buffer headers with KVA assignment */
80 	BQUEUE_EMPTY,    	/* empty buffer headers */
81 
82 	BUFFER_QUEUES		/* number of buffer queues */
83 };
84 
85 typedef enum bufq_type bufq_type_t;
86 
87 #define BD_WAKE_SIZE	16384
88 #define BD_WAKE_MASK	(BD_WAKE_SIZE - 1)
89 
90 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
91 static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
92 static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
93 
94 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
95 
96 struct buf *buf;		/* buffer header pool */
97 
98 static void vfs_clean_pages(struct buf *bp);
99 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
100 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
101 static void vfs_vmio_release(struct buf *bp);
102 static int flushbufqueues(bufq_type_t q);
103 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
104 
105 static void bd_signal(int totalspace);
106 static void buf_daemon(void);
107 static void buf_daemon_hw(void);
108 
109 /*
110  * bogus page -- for I/O to/from partially complete buffers
111  * this is a temporary solution to the problem, but it is not
112  * really that bad.  it would be better to split the buffer
113  * for input in the case of buffers partially already in memory,
114  * but the code is intricate enough already.
115  */
116 vm_page_t bogus_page;
117 
118 /*
119  * These are all static, but make the ones we export globals so we do
120  * not need to use compiler magic.
121  */
122 long bufspace;			/* locked by buffer_map */
123 long maxbufspace;
124 static long bufmallocspace;	/* atomic ops */
125 long maxbufmallocspace, lobufspace, hibufspace;
126 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
127 static long lorunningspace;
128 static long hirunningspace;
129 static int runningbufreq;		/* locked by bufcspin */
130 static long dirtybufspace;		/* locked by bufcspin */
131 static int dirtybufcount;		/* locked by bufcspin */
132 static long dirtybufspacehw;		/* locked by bufcspin */
133 static int dirtybufcounthw;		/* locked by bufcspin */
134 static long runningbufspace;		/* locked by bufcspin */
135 static int runningbufcount;		/* locked by bufcspin */
136 long lodirtybufspace;
137 long hidirtybufspace;
138 static int getnewbufcalls;
139 static int getnewbufrestarts;
140 static int recoverbufcalls;
141 static int needsbuffer;		/* locked by bufcspin */
142 static int bd_request;		/* locked by bufcspin */
143 static int bd_request_hw;	/* locked by bufcspin */
144 static u_int bd_wake_ary[BD_WAKE_SIZE];
145 static u_int bd_wake_index;
146 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
147 static int debug_commit;
148 
149 static struct thread *bufdaemon_td;
150 static struct thread *bufdaemonhw_td;
151 static u_int lowmempgallocs;
152 static u_int lowmempgfails;
153 
154 /*
155  * Sysctls for operational control of the buffer cache.
156  */
157 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
158 	"Number of dirty buffers to flush before bufdaemon becomes inactive");
159 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
160 	"High watermark used to trigger explicit flushing of dirty buffers");
161 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
162 	"Minimum amount of buffer space required for active I/O");
163 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
164 	"Maximum amount of buffer space to usable for active I/O");
165 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
166 	"Page allocations done during periods of very low free memory");
167 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
168 	"Page allocations which failed during periods of very low free memory");
169 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
170 	"Recycle pages to active or inactive queue transition pt 0-64");
171 /*
172  * Sysctls determining current state of the buffer cache.
173  */
174 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
175 	"Total number of buffers in buffer cache");
176 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
177 	"Pending bytes of dirty buffers (all)");
178 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
179 	"Pending bytes of dirty buffers (heavy weight)");
180 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
181 	"Pending number of dirty buffers");
182 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
183 	"Pending number of dirty buffers (heavy weight)");
184 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
185 	"I/O bytes currently in progress due to asynchronous writes");
186 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
187 	"I/O buffers currently in progress due to asynchronous writes");
188 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
189 	"Hard limit on maximum amount of memory usable for buffer space");
190 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
191 	"Soft limit on maximum amount of memory usable for buffer space");
192 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
193 	"Minimum amount of memory to reserve for system buffer space");
194 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
195 	"Amount of memory available for buffers");
196 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
197 	0, "Maximum amount of memory reserved for buffers using malloc");
198 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
199 	"Amount of memory left for buffers using malloc-scheme");
200 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
201 	"New buffer header acquisition requests");
202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
203 	0, "New buffer header acquisition restarts");
204 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
205 	"Recover VM space in an emergency");
206 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
207 	"Buffer acquisition restarts due to fragmented buffer map");
208 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
209 	"Amount of time KVA space was deallocated in an arbitrary buffer");
210 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
211 	"Amount of time buffer re-use operations were successful");
212 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
213 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
214 	"sizeof(struct buf)");
215 
216 char *buf_wmesg = BUF_WMESG;
217 
218 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
219 #define VFS_BIO_NEED_UNUSED02	0x02
220 #define VFS_BIO_NEED_UNUSED04	0x04
221 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
222 
223 /*
224  * bufspacewakeup:
225  *
226  *	Called when buffer space is potentially available for recovery.
227  *	getnewbuf() will block on this flag when it is unable to free
228  *	sufficient buffer space.  Buffer space becomes recoverable when
229  *	bp's get placed back in the queues.
230  */
231 static __inline void
232 bufspacewakeup(void)
233 {
234 	/*
235 	 * If someone is waiting for BUF space, wake them up.  Even
236 	 * though we haven't freed the kva space yet, the waiting
237 	 * process will be able to now.
238 	 */
239 	spin_lock(&bufcspin);
240 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
241 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
242 		spin_unlock(&bufcspin);
243 		wakeup(&needsbuffer);
244 	} else {
245 		spin_unlock(&bufcspin);
246 	}
247 }
248 
249 /*
250  * runningbufwakeup:
251  *
252  *	Accounting for I/O in progress.
253  *
254  */
255 static __inline void
256 runningbufwakeup(struct buf *bp)
257 {
258 	long totalspace;
259 	long limit;
260 
261 	if ((totalspace = bp->b_runningbufspace) != 0) {
262 		spin_lock(&bufcspin);
263 		runningbufspace -= totalspace;
264 		--runningbufcount;
265 		bp->b_runningbufspace = 0;
266 
267 		/*
268 		 * see waitrunningbufspace() for limit test.
269 		 */
270 		limit = hirunningspace * 3 / 6;
271 		if (runningbufreq && runningbufspace <= limit) {
272 			runningbufreq = 0;
273 			spin_unlock(&bufcspin);
274 			wakeup(&runningbufreq);
275 		} else {
276 			spin_unlock(&bufcspin);
277 		}
278 		bd_signal(totalspace);
279 	}
280 }
281 
282 /*
283  * bufcountwakeup:
284  *
285  *	Called when a buffer has been added to one of the free queues to
286  *	account for the buffer and to wakeup anyone waiting for free buffers.
287  *	This typically occurs when large amounts of metadata are being handled
288  *	by the buffer cache ( else buffer space runs out first, usually ).
289  *
290  * MPSAFE
291  */
292 static __inline void
293 bufcountwakeup(void)
294 {
295 	spin_lock(&bufcspin);
296 	if (needsbuffer) {
297 		needsbuffer &= ~VFS_BIO_NEED_ANY;
298 		spin_unlock(&bufcspin);
299 		wakeup(&needsbuffer);
300 	} else {
301 		spin_unlock(&bufcspin);
302 	}
303 }
304 
305 /*
306  * waitrunningbufspace()
307  *
308  * If runningbufspace exceeds 4/6 hirunningspace we block until
309  * runningbufspace drops to 3/6 hirunningspace.  We also block if another
310  * thread blocked here in order to be fair, even if runningbufspace
311  * is now lower than the limit.
312  *
313  * The caller may be using this function to block in a tight loop, we
314  * must block while runningbufspace is greater than at least
315  * hirunningspace * 3 / 6.
316  */
317 void
318 waitrunningbufspace(void)
319 {
320 	long limit = hirunningspace * 4 / 6;
321 
322 	if (runningbufspace > limit || runningbufreq) {
323 		spin_lock(&bufcspin);
324 		while (runningbufspace > limit || runningbufreq) {
325 			runningbufreq = 1;
326 			ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
327 		}
328 		spin_unlock(&bufcspin);
329 	}
330 }
331 
332 /*
333  * buf_dirty_count_severe:
334  *
335  *	Return true if we have too many dirty buffers.
336  */
337 int
338 buf_dirty_count_severe(void)
339 {
340 	return (runningbufspace + dirtybufspace >= hidirtybufspace ||
341 	        dirtybufcount >= nbuf / 2);
342 }
343 
344 /*
345  * Return true if the amount of running I/O is severe and BIOQ should
346  * start bursting.
347  */
348 int
349 buf_runningbufspace_severe(void)
350 {
351 	return (runningbufspace >= hirunningspace * 4 / 6);
352 }
353 
354 /*
355  * vfs_buf_test_cache:
356  *
357  * Called when a buffer is extended.  This function clears the B_CACHE
358  * bit if the newly extended portion of the buffer does not contain
359  * valid data.
360  *
361  * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
362  * cache buffers.  The VM pages remain dirty, as someone had mmap()'d
363  * them while a clean buffer was present.
364  */
365 static __inline__
366 void
367 vfs_buf_test_cache(struct buf *bp,
368 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
369 		  vm_page_t m)
370 {
371 	if (bp->b_flags & B_CACHE) {
372 		int base = (foff + off) & PAGE_MASK;
373 		if (vm_page_is_valid(m, base, size) == 0)
374 			bp->b_flags &= ~B_CACHE;
375 	}
376 }
377 
378 /*
379  * bd_speedup()
380  *
381  * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
382  * low water mark.
383  *
384  * MPSAFE
385  */
386 static __inline__
387 void
388 bd_speedup(void)
389 {
390 	if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
391 		return;
392 
393 	if (bd_request == 0 &&
394 	    (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
395 	     dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
396 		spin_lock(&bufcspin);
397 		bd_request = 1;
398 		spin_unlock(&bufcspin);
399 		wakeup(&bd_request);
400 	}
401 	if (bd_request_hw == 0 &&
402 	    (dirtybufspacehw > lodirtybufspace / 2 ||
403 	     dirtybufcounthw >= nbuf / 2)) {
404 		spin_lock(&bufcspin);
405 		bd_request_hw = 1;
406 		spin_unlock(&bufcspin);
407 		wakeup(&bd_request_hw);
408 	}
409 }
410 
411 /*
412  * bd_heatup()
413  *
414  *	Get the buf_daemon heated up when the number of running and dirty
415  *	buffers exceeds the mid-point.
416  *
417  *	Return the total number of dirty bytes past the second mid point
418  *	as a measure of how much excess dirty data there is in the system.
419  *
420  * MPSAFE
421  */
422 int
423 bd_heatup(void)
424 {
425 	long mid1;
426 	long mid2;
427 	long totalspace;
428 
429 	mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
430 
431 	totalspace = runningbufspace + dirtybufspace;
432 	if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
433 		bd_speedup();
434 		mid2 = mid1 + (hidirtybufspace - mid1) / 2;
435 		if (totalspace >= mid2)
436 			return(totalspace - mid2);
437 	}
438 	return(0);
439 }
440 
441 /*
442  * bd_wait()
443  *
444  *	Wait for the buffer cache to flush (totalspace) bytes worth of
445  *	buffers, then return.
446  *
447  *	Regardless this function blocks while the number of dirty buffers
448  *	exceeds hidirtybufspace.
449  *
450  * MPSAFE
451  */
452 void
453 bd_wait(int totalspace)
454 {
455 	u_int i;
456 	int count;
457 
458 	if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
459 		return;
460 
461 	while (totalspace > 0) {
462 		bd_heatup();
463 		if (totalspace > runningbufspace + dirtybufspace)
464 			totalspace = runningbufspace + dirtybufspace;
465 		count = totalspace / BKVASIZE;
466 		if (count >= BD_WAKE_SIZE)
467 			count = BD_WAKE_SIZE - 1;
468 
469 		spin_lock(&bufcspin);
470 		i = (bd_wake_index + count) & BD_WAKE_MASK;
471 		++bd_wake_ary[i];
472 
473 		/*
474 		 * This is not a strict interlock, so we play a bit loose
475 		 * with locking access to dirtybufspace*
476 		 */
477 		tsleep_interlock(&bd_wake_ary[i], 0);
478 		spin_unlock(&bufcspin);
479 		tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
480 
481 		totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
482 	}
483 }
484 
485 /*
486  * bd_signal()
487  *
488  *	This function is called whenever runningbufspace or dirtybufspace
489  *	is reduced.  Track threads waiting for run+dirty buffer I/O
490  *	complete.
491  *
492  * MPSAFE
493  */
494 static void
495 bd_signal(int totalspace)
496 {
497 	u_int i;
498 
499 	if (totalspace > 0) {
500 		if (totalspace > BKVASIZE * BD_WAKE_SIZE)
501 			totalspace = BKVASIZE * BD_WAKE_SIZE;
502 		spin_lock(&bufcspin);
503 		while (totalspace > 0) {
504 			i = bd_wake_index++;
505 			i &= BD_WAKE_MASK;
506 			if (bd_wake_ary[i]) {
507 				bd_wake_ary[i] = 0;
508 				spin_unlock(&bufcspin);
509 				wakeup(&bd_wake_ary[i]);
510 				spin_lock(&bufcspin);
511 			}
512 			totalspace -= BKVASIZE;
513 		}
514 		spin_unlock(&bufcspin);
515 	}
516 }
517 
518 /*
519  * BIO tracking support routines.
520  *
521  * Release a ref on a bio_track.  Wakeup requests are atomically released
522  * along with the last reference so bk_active will never wind up set to
523  * only 0x80000000.
524  *
525  * MPSAFE
526  */
527 static
528 void
529 bio_track_rel(struct bio_track *track)
530 {
531 	int	active;
532 	int	desired;
533 
534 	/*
535 	 * Shortcut
536 	 */
537 	active = track->bk_active;
538 	if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
539 		return;
540 
541 	/*
542 	 * Full-on.  Note that the wait flag is only atomically released on
543 	 * the 1->0 count transition.
544 	 *
545 	 * We check for a negative count transition using bit 30 since bit 31
546 	 * has a different meaning.
547 	 */
548 	for (;;) {
549 		desired = (active & 0x7FFFFFFF) - 1;
550 		if (desired)
551 			desired |= active & 0x80000000;
552 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
553 			if (desired & 0x40000000)
554 				panic("bio_track_rel: bad count: %p\n", track);
555 			if (active & 0x80000000)
556 				wakeup(track);
557 			break;
558 		}
559 		active = track->bk_active;
560 	}
561 }
562 
563 /*
564  * Wait for the tracking count to reach 0.
565  *
566  * Use atomic ops such that the wait flag is only set atomically when
567  * bk_active is non-zero.
568  *
569  * MPSAFE
570  */
571 int
572 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
573 {
574 	int	active;
575 	int	desired;
576 	int	error;
577 
578 	/*
579 	 * Shortcut
580 	 */
581 	if (track->bk_active == 0)
582 		return(0);
583 
584 	/*
585 	 * Full-on.  Note that the wait flag may only be atomically set if
586 	 * the active count is non-zero.
587 	 *
588 	 * NOTE: We cannot optimize active == desired since a wakeup could
589 	 *	 clear active prior to our tsleep_interlock().
590 	 */
591 	error = 0;
592 	while ((active = track->bk_active) != 0) {
593 		cpu_ccfence();
594 		desired = active | 0x80000000;
595 		tsleep_interlock(track, slp_flags);
596 		if (atomic_cmpset_int(&track->bk_active, active, desired)) {
597 			error = tsleep(track, slp_flags | PINTERLOCKED,
598 				       "trwait", slp_timo);
599 			if (error)
600 				break;
601 		}
602 	}
603 	return (error);
604 }
605 
606 /*
607  * bufinit:
608  *
609  *	Load time initialisation of the buffer cache, called from machine
610  *	dependant initialization code.
611  */
612 void
613 bufinit(void)
614 {
615 	struct buf *bp;
616 	vm_offset_t bogus_offset;
617 	int i;
618 
619 	/* next, make a null set of free lists */
620 	for (i = 0; i < BUFFER_QUEUES; i++)
621 		TAILQ_INIT(&bufqueues[i]);
622 
623 	/* finally, initialize each buffer header and stick on empty q */
624 	for (i = 0; i < nbuf; i++) {
625 		bp = &buf[i];
626 		bzero(bp, sizeof *bp);
627 		bp->b_flags = B_INVAL;	/* we're just an empty header */
628 		bp->b_cmd = BUF_CMD_DONE;
629 		bp->b_qindex = BQUEUE_EMPTY;
630 		initbufbio(bp);
631 		xio_init(&bp->b_xio);
632 		buf_dep_init(bp);
633 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
634 	}
635 
636 	/*
637 	 * maxbufspace is the absolute maximum amount of buffer space we are
638 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
639 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
640 	 * used by most other processes.  The differential is required to
641 	 * ensure that buf_daemon is able to run when other processes might
642 	 * be blocked waiting for buffer space.
643 	 *
644 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
645 	 * this may result in KVM fragmentation which is not handled optimally
646 	 * by the system.
647 	 */
648 	maxbufspace = (long)nbuf * BKVASIZE;
649 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
650 	lobufspace = hibufspace - MAXBSIZE;
651 
652 	lorunningspace = 512 * 1024;
653 	/* hirunningspace -- see below */
654 
655 	/*
656 	 * Limit the amount of malloc memory since it is wired permanently
657 	 * into the kernel space.  Even though this is accounted for in
658 	 * the buffer allocation, we don't want the malloced region to grow
659 	 * uncontrolled.  The malloc scheme improves memory utilization
660 	 * significantly on average (small) directories.
661 	 */
662 	maxbufmallocspace = hibufspace / 20;
663 
664 	/*
665 	 * Reduce the chance of a deadlock occuring by limiting the number
666 	 * of delayed-write dirty buffers we allow to stack up.
667 	 *
668 	 * We don't want too much actually queued to the device at once
669 	 * (XXX this needs to be per-mount!), because the buffers will
670 	 * wind up locked for a very long period of time while the I/O
671 	 * drains.
672 	 */
673 	hidirtybufspace = hibufspace / 2;	/* dirty + running */
674 	hirunningspace = hibufspace / 16;	/* locked & queued to device */
675 	if (hirunningspace < 1024 * 1024)
676 		hirunningspace = 1024 * 1024;
677 
678 	dirtybufspace = 0;
679 	dirtybufspacehw = 0;
680 
681 	lodirtybufspace = hidirtybufspace / 2;
682 
683 	/*
684 	 * Maximum number of async ops initiated per buf_daemon loop.  This is
685 	 * somewhat of a hack at the moment, we really need to limit ourselves
686 	 * based on the number of bytes of I/O in-transit that were initiated
687 	 * from buf_daemon.
688 	 */
689 
690 	bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
691 	vm_object_hold(&kernel_object);
692 	bogus_page = vm_page_alloc(&kernel_object,
693 				   (bogus_offset >> PAGE_SHIFT),
694 				   VM_ALLOC_NORMAL);
695 	vm_object_drop(&kernel_object);
696 	vmstats.v_wire_count++;
697 
698 }
699 
700 /*
701  * Initialize the embedded bio structures, typically used by
702  * deprecated code which tries to allocate its own struct bufs.
703  */
704 void
705 initbufbio(struct buf *bp)
706 {
707 	bp->b_bio1.bio_buf = bp;
708 	bp->b_bio1.bio_prev = NULL;
709 	bp->b_bio1.bio_offset = NOOFFSET;
710 	bp->b_bio1.bio_next = &bp->b_bio2;
711 	bp->b_bio1.bio_done = NULL;
712 	bp->b_bio1.bio_flags = 0;
713 
714 	bp->b_bio2.bio_buf = bp;
715 	bp->b_bio2.bio_prev = &bp->b_bio1;
716 	bp->b_bio2.bio_offset = NOOFFSET;
717 	bp->b_bio2.bio_next = NULL;
718 	bp->b_bio2.bio_done = NULL;
719 	bp->b_bio2.bio_flags = 0;
720 
721 	BUF_LOCKINIT(bp);
722 }
723 
724 /*
725  * Reinitialize the embedded bio structures as well as any additional
726  * translation cache layers.
727  */
728 void
729 reinitbufbio(struct buf *bp)
730 {
731 	struct bio *bio;
732 
733 	for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
734 		bio->bio_done = NULL;
735 		bio->bio_offset = NOOFFSET;
736 	}
737 }
738 
739 /*
740  * Undo the effects of an initbufbio().
741  */
742 void
743 uninitbufbio(struct buf *bp)
744 {
745 	dsched_exit_buf(bp);
746 	BUF_LOCKFREE(bp);
747 }
748 
749 /*
750  * Push another BIO layer onto an existing BIO and return it.  The new
751  * BIO layer may already exist, holding cached translation data.
752  */
753 struct bio *
754 push_bio(struct bio *bio)
755 {
756 	struct bio *nbio;
757 
758 	if ((nbio = bio->bio_next) == NULL) {
759 		int index = bio - &bio->bio_buf->b_bio_array[0];
760 		if (index >= NBUF_BIO - 1) {
761 			panic("push_bio: too many layers bp %p\n",
762 				bio->bio_buf);
763 		}
764 		nbio = &bio->bio_buf->b_bio_array[index + 1];
765 		bio->bio_next = nbio;
766 		nbio->bio_prev = bio;
767 		nbio->bio_buf = bio->bio_buf;
768 		nbio->bio_offset = NOOFFSET;
769 		nbio->bio_done = NULL;
770 		nbio->bio_next = NULL;
771 	}
772 	KKASSERT(nbio->bio_done == NULL);
773 	return(nbio);
774 }
775 
776 /*
777  * Pop a BIO translation layer, returning the previous layer.  The
778  * must have been previously pushed.
779  */
780 struct bio *
781 pop_bio(struct bio *bio)
782 {
783 	return(bio->bio_prev);
784 }
785 
786 void
787 clearbiocache(struct bio *bio)
788 {
789 	while (bio) {
790 		bio->bio_offset = NOOFFSET;
791 		bio = bio->bio_next;
792 	}
793 }
794 
795 /*
796  * bfreekva:
797  *
798  *	Free the KVA allocation for buffer 'bp'.
799  *
800  *	Must be called from a critical section as this is the only locking for
801  *	buffer_map.
802  *
803  *	Since this call frees up buffer space, we call bufspacewakeup().
804  *
805  * MPALMOSTSAFE
806  */
807 static void
808 bfreekva(struct buf *bp)
809 {
810 	int count;
811 
812 	if (bp->b_kvasize) {
813 		++buffreekvacnt;
814 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
815 		vm_map_lock(&buffer_map);
816 		bufspace -= bp->b_kvasize;
817 		vm_map_delete(&buffer_map,
818 		    (vm_offset_t) bp->b_kvabase,
819 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
820 		    &count
821 		);
822 		vm_map_unlock(&buffer_map);
823 		vm_map_entry_release(count);
824 		bp->b_kvasize = 0;
825 		bp->b_kvabase = NULL;
826 		bufspacewakeup();
827 	}
828 }
829 
830 /*
831  * bremfree:
832  *
833  *	Remove the buffer from the appropriate free list.
834  */
835 static __inline void
836 _bremfree(struct buf *bp)
837 {
838 	if (bp->b_qindex != BQUEUE_NONE) {
839 		KASSERT(BUF_REFCNTNB(bp) == 1,
840 				("bremfree: bp %p not locked",bp));
841 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
842 		bp->b_qindex = BQUEUE_NONE;
843 	} else {
844 		if (BUF_REFCNTNB(bp) <= 1)
845 			panic("bremfree: removing a buffer not on a queue");
846 	}
847 }
848 
849 void
850 bremfree(struct buf *bp)
851 {
852 	spin_lock(&bufqspin);
853 	_bremfree(bp);
854 	spin_unlock(&bufqspin);
855 }
856 
857 static void
858 bremfree_locked(struct buf *bp)
859 {
860 	_bremfree(bp);
861 }
862 
863 /*
864  * This version of bread issues any required I/O asyncnronously and
865  * makes a callback on completion.
866  *
867  * The callback must check whether BIO_DONE is set in the bio and issue
868  * the bpdone(bp, 0) if it isn't.  The callback is responsible for clearing
869  * BIO_DONE and disposing of the I/O (bqrelse()ing it).
870  */
871 void
872 breadcb(struct vnode *vp, off_t loffset, int size,
873 	void (*func)(struct bio *), void *arg)
874 {
875 	struct buf *bp;
876 
877 	bp = getblk(vp, loffset, size, 0, 0);
878 
879 	/* if not found in cache, do some I/O */
880 	if ((bp->b_flags & B_CACHE) == 0) {
881 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
882 		bp->b_cmd = BUF_CMD_READ;
883 		bp->b_bio1.bio_done = func;
884 		bp->b_bio1.bio_caller_info1.ptr = arg;
885 		vfs_busy_pages(vp, bp);
886 		BUF_KERNPROC(bp);
887 		vn_strategy(vp, &bp->b_bio1);
888 	} else if (func) {
889 		/*
890 		 * Since we are issuing the callback synchronously it cannot
891 		 * race the BIO_DONE, so no need for atomic ops here.
892 		 */
893 		/*bp->b_bio1.bio_done = func;*/
894 		bp->b_bio1.bio_caller_info1.ptr = arg;
895 		bp->b_bio1.bio_flags |= BIO_DONE;
896 		func(&bp->b_bio1);
897 	} else {
898 		bqrelse(bp);
899 	}
900 }
901 
902 /*
903  * breadnx() - Terminal function for bread() and breadn().
904  *
905  * This function will start asynchronous I/O on read-ahead blocks as well
906  * as satisfy the primary request.
907  *
908  * We must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE is
909  * set, the buffer is valid and we do not have to do anything.
910  */
911 int
912 breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
913 	int *rabsize, int cnt, struct buf **bpp)
914 {
915 	struct buf *bp, *rabp;
916 	int i;
917 	int rv = 0, readwait = 0;
918 
919 	if (*bpp)
920 		bp = *bpp;
921 	else
922 		*bpp = bp = getblk(vp, loffset, size, 0, 0);
923 
924 	/* if not found in cache, do some I/O */
925 	if ((bp->b_flags & B_CACHE) == 0) {
926 		bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
927 		bp->b_cmd = BUF_CMD_READ;
928 		bp->b_bio1.bio_done = biodone_sync;
929 		bp->b_bio1.bio_flags |= BIO_SYNC;
930 		vfs_busy_pages(vp, bp);
931 		vn_strategy(vp, &bp->b_bio1);
932 		++readwait;
933 	}
934 
935 	for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
936 		if (inmem(vp, *raoffset))
937 			continue;
938 		rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
939 
940 		if ((rabp->b_flags & B_CACHE) == 0) {
941 			rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
942 			rabp->b_cmd = BUF_CMD_READ;
943 			vfs_busy_pages(vp, rabp);
944 			BUF_KERNPROC(rabp);
945 			vn_strategy(vp, &rabp->b_bio1);
946 		} else {
947 			brelse(rabp);
948 		}
949 	}
950 	if (readwait)
951 		rv = biowait(&bp->b_bio1, "biord");
952 	return (rv);
953 }
954 
955 /*
956  * bwrite:
957  *
958  *	Synchronous write, waits for completion.
959  *
960  *	Write, release buffer on completion.  (Done by iodone
961  *	if async).  Do not bother writing anything if the buffer
962  *	is invalid.
963  *
964  *	Note that we set B_CACHE here, indicating that buffer is
965  *	fully valid and thus cacheable.  This is true even of NFS
966  *	now so we set it generally.  This could be set either here
967  *	or in biodone() since the I/O is synchronous.  We put it
968  *	here.
969  */
970 int
971 bwrite(struct buf *bp)
972 {
973 	int error;
974 
975 	if (bp->b_flags & B_INVAL) {
976 		brelse(bp);
977 		return (0);
978 	}
979 	if (BUF_REFCNTNB(bp) == 0)
980 		panic("bwrite: buffer is not busy???");
981 
982 	/* Mark the buffer clean */
983 	bundirty(bp);
984 
985 	bp->b_flags &= ~(B_ERROR | B_EINTR);
986 	bp->b_flags |= B_CACHE;
987 	bp->b_cmd = BUF_CMD_WRITE;
988 	bp->b_bio1.bio_done = biodone_sync;
989 	bp->b_bio1.bio_flags |= BIO_SYNC;
990 	vfs_busy_pages(bp->b_vp, bp);
991 
992 	/*
993 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
994 	 * valid for vnode-backed buffers.
995 	 */
996 	bsetrunningbufspace(bp, bp->b_bufsize);
997 	vn_strategy(bp->b_vp, &bp->b_bio1);
998 	error = biowait(&bp->b_bio1, "biows");
999 	brelse(bp);
1000 
1001 	return (error);
1002 }
1003 
1004 /*
1005  * bawrite:
1006  *
1007  *	Asynchronous write.  Start output on a buffer, but do not wait for
1008  *	it to complete.  The buffer is released when the output completes.
1009  *
1010  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1011  *	B_INVAL buffers.  Not us.
1012  */
1013 void
1014 bawrite(struct buf *bp)
1015 {
1016 	if (bp->b_flags & B_INVAL) {
1017 		brelse(bp);
1018 		return;
1019 	}
1020 	if (BUF_REFCNTNB(bp) == 0)
1021 		panic("bwrite: buffer is not busy???");
1022 
1023 	/* Mark the buffer clean */
1024 	bundirty(bp);
1025 
1026 	bp->b_flags &= ~(B_ERROR | B_EINTR);
1027 	bp->b_flags |= B_CACHE;
1028 	bp->b_cmd = BUF_CMD_WRITE;
1029 	KKASSERT(bp->b_bio1.bio_done == NULL);
1030 	vfs_busy_pages(bp->b_vp, bp);
1031 
1032 	/*
1033 	 * Normal bwrites pipeline writes.  NOTE: b_bufsize is only
1034 	 * valid for vnode-backed buffers.
1035 	 */
1036 	bsetrunningbufspace(bp, bp->b_bufsize);
1037 	BUF_KERNPROC(bp);
1038 	vn_strategy(bp->b_vp, &bp->b_bio1);
1039 }
1040 
1041 /*
1042  * bowrite:
1043  *
1044  *	Ordered write.  Start output on a buffer, and flag it so that the
1045  *	device will write it in the order it was queued.  The buffer is
1046  *	released when the output completes.  bwrite() ( or the VOP routine
1047  *	anyway ) is responsible for handling B_INVAL buffers.
1048  */
1049 int
1050 bowrite(struct buf *bp)
1051 {
1052 	bp->b_flags |= B_ORDERED;
1053 	bawrite(bp);
1054 	return (0);
1055 }
1056 
1057 /*
1058  * bdwrite:
1059  *
1060  *	Delayed write. (Buffer is marked dirty).  Do not bother writing
1061  *	anything if the buffer is marked invalid.
1062  *
1063  *	Note that since the buffer must be completely valid, we can safely
1064  *	set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1065  *	biodone() in order to prevent getblk from writing the buffer
1066  *	out synchronously.
1067  */
1068 void
1069 bdwrite(struct buf *bp)
1070 {
1071 	if (BUF_REFCNTNB(bp) == 0)
1072 		panic("bdwrite: buffer is not busy");
1073 
1074 	if (bp->b_flags & B_INVAL) {
1075 		brelse(bp);
1076 		return;
1077 	}
1078 	bdirty(bp);
1079 
1080 	if (dsched_is_clear_buf_priv(bp))
1081 		dsched_new_buf(bp);
1082 
1083 	/*
1084 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1085 	 * true even of NFS now.
1086 	 */
1087 	bp->b_flags |= B_CACHE;
1088 
1089 	/*
1090 	 * This bmap keeps the system from needing to do the bmap later,
1091 	 * perhaps when the system is attempting to do a sync.  Since it
1092 	 * is likely that the indirect block -- or whatever other datastructure
1093 	 * that the filesystem needs is still in memory now, it is a good
1094 	 * thing to do this.  Note also, that if the pageout daemon is
1095 	 * requesting a sync -- there might not be enough memory to do
1096 	 * the bmap then...  So, this is important to do.
1097 	 */
1098 	if (bp->b_bio2.bio_offset == NOOFFSET) {
1099 		VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1100 			 NULL, NULL, BUF_CMD_WRITE);
1101 	}
1102 
1103 	/*
1104 	 * Because the underlying pages may still be mapped and
1105 	 * writable trying to set the dirty buffer (b_dirtyoff/end)
1106 	 * range here will be inaccurate.
1107 	 *
1108 	 * However, we must still clean the pages to satisfy the
1109 	 * vnode_pager and pageout daemon, so theythink the pages
1110 	 * have been "cleaned".  What has really occured is that
1111 	 * they've been earmarked for later writing by the buffer
1112 	 * cache.
1113 	 *
1114 	 * So we get the b_dirtyoff/end update but will not actually
1115 	 * depend on it (NFS that is) until the pages are busied for
1116 	 * writing later on.
1117 	 */
1118 	vfs_clean_pages(bp);
1119 	bqrelse(bp);
1120 
1121 	/*
1122 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1123 	 * due to the softdep code.
1124 	 */
1125 }
1126 
1127 /*
1128  * Fake write - return pages to VM system as dirty, leave the buffer clean.
1129  * This is used by tmpfs.
1130  *
1131  * It is important for any VFS using this routine to NOT use it for
1132  * IO_SYNC or IO_ASYNC operations which occur when the system really
1133  * wants to flush VM pages to backing store.
1134  */
1135 void
1136 buwrite(struct buf *bp)
1137 {
1138 	vm_page_t m;
1139 	int i;
1140 
1141 	/*
1142 	 * Only works for VMIO buffers.  If the buffer is already
1143 	 * marked for delayed-write we can't avoid the bdwrite().
1144 	 */
1145 	if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1146 		bdwrite(bp);
1147 		return;
1148 	}
1149 
1150 	/*
1151 	 * Set valid & dirty.
1152 	 */
1153 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1154 		m = bp->b_xio.xio_pages[i];
1155 		vfs_dirty_one_page(bp, i, m);
1156 	}
1157 	bqrelse(bp);
1158 }
1159 
1160 /*
1161  * bdirty:
1162  *
1163  *	Turn buffer into delayed write request by marking it B_DELWRI.
1164  *	B_RELBUF and B_NOCACHE must be cleared.
1165  *
1166  *	We reassign the buffer to itself to properly update it in the
1167  *	dirty/clean lists.
1168  *
1169  *	Must be called from a critical section.
1170  *	The buffer must be on BQUEUE_NONE.
1171  */
1172 void
1173 bdirty(struct buf *bp)
1174 {
1175 	KASSERT(bp->b_qindex == BQUEUE_NONE,
1176 		("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1177 	if (bp->b_flags & B_NOCACHE) {
1178 		kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1179 		bp->b_flags &= ~B_NOCACHE;
1180 	}
1181 	if (bp->b_flags & B_INVAL) {
1182 		kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1183 	}
1184 	bp->b_flags &= ~B_RELBUF;
1185 
1186 	if ((bp->b_flags & B_DELWRI) == 0) {
1187 		lwkt_gettoken(&bp->b_vp->v_token);
1188 		bp->b_flags |= B_DELWRI;
1189 		reassignbuf(bp);
1190 		lwkt_reltoken(&bp->b_vp->v_token);
1191 
1192 		spin_lock(&bufcspin);
1193 		++dirtybufcount;
1194 		dirtybufspace += bp->b_bufsize;
1195 		if (bp->b_flags & B_HEAVY) {
1196 			++dirtybufcounthw;
1197 			dirtybufspacehw += bp->b_bufsize;
1198 		}
1199 		spin_unlock(&bufcspin);
1200 
1201 		bd_heatup();
1202 	}
1203 }
1204 
1205 /*
1206  * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1207  * needs to be flushed with a different buf_daemon thread to avoid
1208  * deadlocks.  B_HEAVY also imposes restrictions in getnewbuf().
1209  */
1210 void
1211 bheavy(struct buf *bp)
1212 {
1213 	if ((bp->b_flags & B_HEAVY) == 0) {
1214 		bp->b_flags |= B_HEAVY;
1215 		if (bp->b_flags & B_DELWRI) {
1216 			spin_lock(&bufcspin);
1217 			++dirtybufcounthw;
1218 			dirtybufspacehw += bp->b_bufsize;
1219 			spin_unlock(&bufcspin);
1220 		}
1221 	}
1222 }
1223 
1224 /*
1225  * bundirty:
1226  *
1227  *	Clear B_DELWRI for buffer.
1228  *
1229  *	Must be called from a critical section.
1230  *
1231  *	The buffer is typically on BQUEUE_NONE but there is one case in
1232  *	brelse() that calls this function after placing the buffer on
1233  *	a different queue.
1234  *
1235  * MPSAFE
1236  */
1237 void
1238 bundirty(struct buf *bp)
1239 {
1240 	if (bp->b_flags & B_DELWRI) {
1241 		lwkt_gettoken(&bp->b_vp->v_token);
1242 		bp->b_flags &= ~B_DELWRI;
1243 		reassignbuf(bp);
1244 		lwkt_reltoken(&bp->b_vp->v_token);
1245 
1246 		spin_lock(&bufcspin);
1247 		--dirtybufcount;
1248 		dirtybufspace -= bp->b_bufsize;
1249 		if (bp->b_flags & B_HEAVY) {
1250 			--dirtybufcounthw;
1251 			dirtybufspacehw -= bp->b_bufsize;
1252 		}
1253 		spin_unlock(&bufcspin);
1254 
1255 		bd_signal(bp->b_bufsize);
1256 	}
1257 	/*
1258 	 * Since it is now being written, we can clear its deferred write flag.
1259 	 */
1260 	bp->b_flags &= ~B_DEFERRED;
1261 }
1262 
1263 /*
1264  * Set the b_runningbufspace field, used to track how much I/O is
1265  * in progress at any given moment.
1266  */
1267 void
1268 bsetrunningbufspace(struct buf *bp, int bytes)
1269 {
1270 	bp->b_runningbufspace = bytes;
1271 	if (bytes) {
1272 		spin_lock(&bufcspin);
1273 		runningbufspace += bytes;
1274 		++runningbufcount;
1275 		spin_unlock(&bufcspin);
1276 	}
1277 }
1278 
1279 /*
1280  * brelse:
1281  *
1282  *	Release a busy buffer and, if requested, free its resources.  The
1283  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1284  *	to be accessed later as a cache entity or reused for other purposes.
1285  *
1286  * MPALMOSTSAFE
1287  */
1288 void
1289 brelse(struct buf *bp)
1290 {
1291 #ifdef INVARIANTS
1292 	int saved_flags = bp->b_flags;
1293 #endif
1294 
1295 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1296 
1297 	/*
1298 	 * If B_NOCACHE is set we are being asked to destroy the buffer and
1299 	 * its backing store.  Clear B_DELWRI.
1300 	 *
1301 	 * B_NOCACHE is set in two cases: (1) when the caller really wants
1302 	 * to destroy the buffer and backing store and (2) when the caller
1303 	 * wants to destroy the buffer and backing store after a write
1304 	 * completes.
1305 	 */
1306 	if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1307 		bundirty(bp);
1308 	}
1309 
1310 	if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1311 		/*
1312 		 * A re-dirtied buffer is only subject to destruction
1313 		 * by B_INVAL.  B_ERROR and B_NOCACHE are ignored.
1314 		 */
1315 		/* leave buffer intact */
1316 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1317 		   (bp->b_bufsize <= 0)) {
1318 		/*
1319 		 * Either a failed read or we were asked to free or not
1320 		 * cache the buffer.  This path is reached with B_DELWRI
1321 		 * set only if B_INVAL is already set.  B_NOCACHE governs
1322 		 * backing store destruction.
1323 		 *
1324 		 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1325 		 * buffer cannot be immediately freed.
1326 		 */
1327 		bp->b_flags |= B_INVAL;
1328 		if (LIST_FIRST(&bp->b_dep) != NULL)
1329 			buf_deallocate(bp);
1330 		if (bp->b_flags & B_DELWRI) {
1331 			spin_lock(&bufcspin);
1332 			--dirtybufcount;
1333 			dirtybufspace -= bp->b_bufsize;
1334 			if (bp->b_flags & B_HEAVY) {
1335 				--dirtybufcounthw;
1336 				dirtybufspacehw -= bp->b_bufsize;
1337 			}
1338 			spin_unlock(&bufcspin);
1339 
1340 			bd_signal(bp->b_bufsize);
1341 		}
1342 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1343 	}
1344 
1345 	/*
1346 	 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1347 	 * or if b_refs is non-zero.
1348 	 *
1349 	 * If vfs_vmio_release() is called with either bit set, the
1350 	 * underlying pages may wind up getting freed causing a previous
1351 	 * write (bdwrite()) to get 'lost' because pages associated with
1352 	 * a B_DELWRI bp are marked clean.  Pages associated with a
1353 	 * B_LOCKED buffer may be mapped by the filesystem.
1354 	 *
1355 	 * If we want to release the buffer ourselves (rather then the
1356 	 * originator asking us to release it), give the originator a
1357 	 * chance to countermand the release by setting B_LOCKED.
1358 	 *
1359 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1360 	 * if B_DELWRI is set.
1361 	 *
1362 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1363 	 * on pages to return pages to the VM page queues.
1364 	 */
1365 	if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1366 		bp->b_flags &= ~B_RELBUF;
1367 	} else if (vm_page_count_min(0)) {
1368 		if (LIST_FIRST(&bp->b_dep) != NULL)
1369 			buf_deallocate(bp);		/* can set B_LOCKED */
1370 		if (bp->b_flags & (B_DELWRI | B_LOCKED))
1371 			bp->b_flags &= ~B_RELBUF;
1372 		else
1373 			bp->b_flags |= B_RELBUF;
1374 	}
1375 
1376 	/*
1377 	 * Make sure b_cmd is clear.  It may have already been cleared by
1378 	 * biodone().
1379 	 *
1380 	 * At this point destroying the buffer is governed by the B_INVAL
1381 	 * or B_RELBUF flags.
1382 	 */
1383 	bp->b_cmd = BUF_CMD_DONE;
1384 	dsched_exit_buf(bp);
1385 
1386 	/*
1387 	 * VMIO buffer rundown.  Make sure the VM page array is restored
1388 	 * after an I/O may have replaces some of the pages with bogus pages
1389 	 * in order to not destroy dirty pages in a fill-in read.
1390 	 *
1391 	 * Note that due to the code above, if a buffer is marked B_DELWRI
1392 	 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1393 	 * B_INVAL may still be set, however.
1394 	 *
1395 	 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1396 	 * but not the backing store.   B_NOCACHE will destroy the backing
1397 	 * store.
1398 	 *
1399 	 * Note that dirty NFS buffers contain byte-granular write ranges
1400 	 * and should not be destroyed w/ B_INVAL even if the backing store
1401 	 * is left intact.
1402 	 */
1403 	if (bp->b_flags & B_VMIO) {
1404 		/*
1405 		 * Rundown for VMIO buffers which are not dirty NFS buffers.
1406 		 */
1407 		int i, j, resid;
1408 		vm_page_t m;
1409 		off_t foff;
1410 		vm_pindex_t poff;
1411 		vm_object_t obj;
1412 		struct vnode *vp;
1413 
1414 		vp = bp->b_vp;
1415 
1416 		/*
1417 		 * Get the base offset and length of the buffer.  Note that
1418 		 * in the VMIO case if the buffer block size is not
1419 		 * page-aligned then b_data pointer may not be page-aligned.
1420 		 * But our b_xio.xio_pages array *IS* page aligned.
1421 		 *
1422 		 * block sizes less then DEV_BSIZE (usually 512) are not
1423 		 * supported due to the page granularity bits (m->valid,
1424 		 * m->dirty, etc...).
1425 		 *
1426 		 * See man buf(9) for more information
1427 		 */
1428 
1429 		resid = bp->b_bufsize;
1430 		foff = bp->b_loffset;
1431 
1432 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1433 			m = bp->b_xio.xio_pages[i];
1434 			vm_page_flag_clear(m, PG_ZERO);
1435 			/*
1436 			 * If we hit a bogus page, fixup *all* of them
1437 			 * now.  Note that we left these pages wired
1438 			 * when we removed them so they had better exist,
1439 			 * and they cannot be ripped out from under us so
1440 			 * no critical section protection is necessary.
1441 			 */
1442 			if (m == bogus_page) {
1443 				obj = vp->v_object;
1444 				poff = OFF_TO_IDX(bp->b_loffset);
1445 
1446 				vm_object_hold(obj);
1447 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1448 					vm_page_t mtmp;
1449 
1450 					mtmp = bp->b_xio.xio_pages[j];
1451 					if (mtmp == bogus_page) {
1452 						mtmp = vm_page_lookup(obj, poff + j);
1453 						if (!mtmp) {
1454 							panic("brelse: page missing");
1455 						}
1456 						bp->b_xio.xio_pages[j] = mtmp;
1457 					}
1458 				}
1459 				bp->b_flags &= ~B_HASBOGUS;
1460 				vm_object_drop(obj);
1461 
1462 				if ((bp->b_flags & B_INVAL) == 0) {
1463 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1464 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1465 				}
1466 				m = bp->b_xio.xio_pages[i];
1467 			}
1468 
1469 			/*
1470 			 * Invalidate the backing store if B_NOCACHE is set
1471 			 * (e.g. used with vinvalbuf()).  If this is NFS
1472 			 * we impose a requirement that the block size be
1473 			 * a multiple of PAGE_SIZE and create a temporary
1474 			 * hack to basically invalidate the whole page.  The
1475 			 * problem is that NFS uses really odd buffer sizes
1476 			 * especially when tracking piecemeal writes and
1477 			 * it also vinvalbuf()'s a lot, which would result
1478 			 * in only partial page validation and invalidation
1479 			 * here.  If the file page is mmap()'d, however,
1480 			 * all the valid bits get set so after we invalidate
1481 			 * here we would end up with weird m->valid values
1482 			 * like 0xfc.  nfs_getpages() can't handle this so
1483 			 * we clear all the valid bits for the NFS case
1484 			 * instead of just some of them.
1485 			 *
1486 			 * The real bug is the VM system having to set m->valid
1487 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1488 			 * itself is an artifact of the whole 512-byte
1489 			 * granular mess that exists to support odd block
1490 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1491 			 * A complete rewrite is required.
1492 			 *
1493 			 * XXX
1494 			 */
1495 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1496 				int poffset = foff & PAGE_MASK;
1497 				int presid;
1498 
1499 				presid = PAGE_SIZE - poffset;
1500 				if (bp->b_vp->v_tag == VT_NFS &&
1501 				    bp->b_vp->v_type == VREG) {
1502 					; /* entire page */
1503 				} else if (presid > resid) {
1504 					presid = resid;
1505 				}
1506 				KASSERT(presid >= 0, ("brelse: extra page"));
1507 				vm_page_set_invalid(m, poffset, presid);
1508 
1509 				/*
1510 				 * Also make sure any swap cache is removed
1511 				 * as it is now stale (HAMMER in particular
1512 				 * uses B_NOCACHE to deal with buffer
1513 				 * aliasing).
1514 				 */
1515 				swap_pager_unswapped(m);
1516 			}
1517 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1518 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1519 		}
1520 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1521 			vfs_vmio_release(bp);
1522 	} else {
1523 		/*
1524 		 * Rundown for non-VMIO buffers.
1525 		 */
1526 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1527 			if (bp->b_bufsize)
1528 				allocbuf(bp, 0);
1529 			KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1530 			if (bp->b_vp)
1531 				brelvp(bp);
1532 		}
1533 	}
1534 
1535 	if (bp->b_qindex != BQUEUE_NONE)
1536 		panic("brelse: free buffer onto another queue???");
1537 	if (BUF_REFCNTNB(bp) > 1) {
1538 		/* Temporary panic to verify exclusive locking */
1539 		/* This panic goes away when we allow shared refs */
1540 		panic("brelse: multiple refs");
1541 		/* NOT REACHED */
1542 		return;
1543 	}
1544 
1545 	/*
1546 	 * Figure out the correct queue to place the cleaned up buffer on.
1547 	 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1548 	 * disassociated from their vnode.
1549 	 */
1550 	spin_lock(&bufqspin);
1551 	if (bp->b_flags & B_LOCKED) {
1552 		/*
1553 		 * Buffers that are locked are placed in the locked queue
1554 		 * immediately, regardless of their state.
1555 		 */
1556 		bp->b_qindex = BQUEUE_LOCKED;
1557 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1558 	} else if (bp->b_bufsize == 0) {
1559 		/*
1560 		 * Buffers with no memory.  Due to conditionals near the top
1561 		 * of brelse() such buffers should probably already be
1562 		 * marked B_INVAL and disassociated from their vnode.
1563 		 */
1564 		bp->b_flags |= B_INVAL;
1565 		KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1566 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1567 		if (bp->b_kvasize) {
1568 			bp->b_qindex = BQUEUE_EMPTYKVA;
1569 		} else {
1570 			bp->b_qindex = BQUEUE_EMPTY;
1571 		}
1572 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1573 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1574 		/*
1575 		 * Buffers with junk contents.   Again these buffers had better
1576 		 * already be disassociated from their vnode.
1577 		 */
1578 		KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1579 		KKASSERT((bp->b_flags & B_HASHED) == 0);
1580 		bp->b_flags |= B_INVAL;
1581 		bp->b_qindex = BQUEUE_CLEAN;
1582 		TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1583 	} else {
1584 		/*
1585 		 * Remaining buffers.  These buffers are still associated with
1586 		 * their vnode.
1587 		 */
1588 		switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1589 		case B_DELWRI:
1590 		    bp->b_qindex = BQUEUE_DIRTY;
1591 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1592 		    break;
1593 		case B_DELWRI | B_HEAVY:
1594 		    bp->b_qindex = BQUEUE_DIRTY_HW;
1595 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1596 				      b_freelist);
1597 		    break;
1598 		default:
1599 		    /*
1600 		     * NOTE: Buffers are always placed at the end of the
1601 		     * queue.  If B_AGE is not set the buffer will cycle
1602 		     * through the queue twice.
1603 		     */
1604 		    bp->b_qindex = BQUEUE_CLEAN;
1605 		    TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1606 		    break;
1607 		}
1608 	}
1609 	spin_unlock(&bufqspin);
1610 
1611 	/*
1612 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1613 	 * on the correct queue.
1614 	 */
1615 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1616 		bundirty(bp);
1617 
1618 	/*
1619 	 * The bp is on an appropriate queue unless locked.  If it is not
1620 	 * locked or dirty we can wakeup threads waiting for buffer space.
1621 	 *
1622 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1623 	 * if B_INVAL is set ).
1624 	 */
1625 	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1626 		bufcountwakeup();
1627 
1628 	/*
1629 	 * Something we can maybe free or reuse
1630 	 */
1631 	if (bp->b_bufsize || bp->b_kvasize)
1632 		bufspacewakeup();
1633 
1634 	/*
1635 	 * Clean up temporary flags and unlock the buffer.
1636 	 */
1637 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1638 	BUF_UNLOCK(bp);
1639 }
1640 
1641 /*
1642  * bqrelse:
1643  *
1644  *	Release a buffer back to the appropriate queue but do not try to free
1645  *	it.  The buffer is expected to be used again soon.
1646  *
1647  *	bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1648  *	biodone() to requeue an async I/O on completion.  It is also used when
1649  *	known good buffers need to be requeued but we think we may need the data
1650  *	again soon.
1651  *
1652  *	XXX we should be able to leave the B_RELBUF hint set on completion.
1653  *
1654  * MPSAFE
1655  */
1656 void
1657 bqrelse(struct buf *bp)
1658 {
1659 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1660 
1661 	if (bp->b_qindex != BQUEUE_NONE)
1662 		panic("bqrelse: free buffer onto another queue???");
1663 	if (BUF_REFCNTNB(bp) > 1) {
1664 		/* do not release to free list */
1665 		panic("bqrelse: multiple refs");
1666 		return;
1667 	}
1668 
1669 	buf_act_advance(bp);
1670 
1671 	spin_lock(&bufqspin);
1672 	if (bp->b_flags & B_LOCKED) {
1673 		/*
1674 		 * Locked buffers are released to the locked queue.  However,
1675 		 * if the buffer is dirty it will first go into the dirty
1676 		 * queue and later on after the I/O completes successfully it
1677 		 * will be released to the locked queue.
1678 		 */
1679 		bp->b_qindex = BQUEUE_LOCKED;
1680 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1681 	} else if (bp->b_flags & B_DELWRI) {
1682 		bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1683 			       BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1684 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1685 	} else if (vm_page_count_min(0)) {
1686 		/*
1687 		 * We are too low on memory, we have to try to free the
1688 		 * buffer (most importantly: the wired pages making up its
1689 		 * backing store) *now*.
1690 		 */
1691 		spin_unlock(&bufqspin);
1692 		brelse(bp);
1693 		return;
1694 	} else {
1695 		bp->b_qindex = BQUEUE_CLEAN;
1696 		TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1697 	}
1698 	spin_unlock(&bufqspin);
1699 
1700 	if ((bp->b_flags & B_LOCKED) == 0 &&
1701 	    ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1702 		bufcountwakeup();
1703 	}
1704 
1705 	/*
1706 	 * Something we can maybe free or reuse.
1707 	 */
1708 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1709 		bufspacewakeup();
1710 
1711 	/*
1712 	 * Final cleanup and unlock.  Clear bits that are only used while a
1713 	 * buffer is actively locked.
1714 	 */
1715 	bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1716 	dsched_exit_buf(bp);
1717 	BUF_UNLOCK(bp);
1718 }
1719 
1720 /*
1721  * Hold a buffer, preventing it from being reused.  This will prevent
1722  * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1723  * operations.  If a B_INVAL operation occurs the buffer will remain held
1724  * but the underlying pages may get ripped out.
1725  *
1726  * These functions are typically used in VOP_READ/VOP_WRITE functions
1727  * to hold a buffer during a copyin or copyout, preventing deadlocks
1728  * or recursive lock panics when read()/write() is used over mmap()'d
1729  * space.
1730  *
1731  * NOTE: bqhold() requires that the buffer be locked at the time of the
1732  *	 hold.  bqdrop() has no requirements other than the buffer having
1733  *	 previously been held.
1734  */
1735 void
1736 bqhold(struct buf *bp)
1737 {
1738 	atomic_add_int(&bp->b_refs, 1);
1739 }
1740 
1741 void
1742 bqdrop(struct buf *bp)
1743 {
1744 	KKASSERT(bp->b_refs > 0);
1745 	atomic_add_int(&bp->b_refs, -1);
1746 }
1747 
1748 /*
1749  * Return backing pages held by the buffer 'bp' back to the VM system.
1750  * This routine is called when the bp is invalidated, released, or
1751  * reused.
1752  *
1753  * The KVA mapping (b_data) for the underlying pages is removed by
1754  * this function.
1755  *
1756  * WARNING! This routine is integral to the low memory critical path
1757  *          when a buffer is B_RELBUF'd.  If the system has a severe page
1758  *          deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1759  *          queues so they can be reused in the current pageout daemon
1760  *          pass.
1761  */
1762 static void
1763 vfs_vmio_release(struct buf *bp)
1764 {
1765 	int i;
1766 	vm_page_t m;
1767 
1768 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1769 		m = bp->b_xio.xio_pages[i];
1770 		bp->b_xio.xio_pages[i] = NULL;
1771 
1772 		/*
1773 		 * We need to own the page in order to safely unwire it.
1774 		 */
1775 		vm_page_busy_wait(m, FALSE, "vmiopg");
1776 
1777 		/*
1778 		 * The VFS is telling us this is not a meta-data buffer
1779 		 * even if it is backed by a block device.
1780 		 */
1781 		if (bp->b_flags & B_NOTMETA)
1782 			vm_page_flag_set(m, PG_NOTMETA);
1783 
1784 		/*
1785 		 * This is a very important bit of code.  We try to track
1786 		 * VM page use whether the pages are wired into the buffer
1787 		 * cache or not.  While wired into the buffer cache the
1788 		 * bp tracks the act_count.
1789 		 *
1790 		 * We can choose to place unwired pages on the inactive
1791 		 * queue (0) or active queue (1).  If we place too many
1792 		 * on the active queue the queue will cycle the act_count
1793 		 * on pages we'd like to keep, just from single-use pages
1794 		 * (such as when doing a tar-up or file scan).
1795 		 */
1796 		if (bp->b_act_count < vm_cycle_point)
1797 			vm_page_unwire(m, 0);
1798 		else
1799 			vm_page_unwire(m, 1);
1800 
1801 		/*
1802 		 * If the wire_count has dropped to 0 we may need to take
1803 		 * further action before unbusying the page
1804 		 */
1805 		if (m->wire_count == 0) {
1806 			vm_page_flag_clear(m, PG_ZERO);
1807 
1808 			if (bp->b_flags & B_DIRECT) {
1809 				/*
1810 				 * Attempt to free the page if B_DIRECT is
1811 				 * set, the caller does not desire the page
1812 				 * to be cached.
1813 				 */
1814 				vm_page_wakeup(m);
1815 				vm_page_try_to_free(m);
1816 			} else if ((bp->b_flags & B_NOTMETA) ||
1817 				   vm_page_count_min(0)) {
1818 				/*
1819 				 * Attempt to move the page to PQ_CACHE
1820 				 * if B_NOTMETA is set.  This flag is set
1821 				 * by HAMMER to remove one of the two pages
1822 				 * present when double buffering is enabled.
1823 				 *
1824 				 * Attempt to move the page to PQ_CACHE
1825 				 * If we have a severe page deficit.  This
1826 				 * will cause buffer cache operations related
1827 				 * to pageouts to recycle the related pages
1828 				 * in order to avoid a low memory deadlock.
1829 				 */
1830 				m->act_count = bp->b_act_count;
1831 				vm_page_wakeup(m);
1832 				vm_page_try_to_cache(m);
1833 			} else {
1834 				/*
1835 				 * Nominal case, leave the page on the
1836 				 * queue the original unwiring placed it on
1837 				 * (active or inactive).
1838 				 */
1839 				m->act_count = bp->b_act_count;
1840 				vm_page_wakeup(m);
1841 			}
1842 		} else {
1843 			vm_page_wakeup(m);
1844 		}
1845 	}
1846 
1847 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1848 		     bp->b_xio.xio_npages);
1849 	if (bp->b_bufsize) {
1850 		bufspacewakeup();
1851 		bp->b_bufsize = 0;
1852 	}
1853 	bp->b_xio.xio_npages = 0;
1854 	bp->b_flags &= ~B_VMIO;
1855 	KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1856 	if (bp->b_vp)
1857 		brelvp(bp);
1858 }
1859 
1860 /*
1861  * vfs_bio_awrite:
1862  *
1863  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1864  *	This is much better then the old way of writing only one buffer at
1865  *	a time.  Note that we may not be presented with the buffers in the
1866  *	correct order, so we search for the cluster in both directions.
1867  *
1868  *	The buffer is locked on call.
1869  */
1870 int
1871 vfs_bio_awrite(struct buf *bp)
1872 {
1873 	int i;
1874 	int j;
1875 	off_t loffset = bp->b_loffset;
1876 	struct vnode *vp = bp->b_vp;
1877 	int nbytes;
1878 	struct buf *bpa;
1879 	int nwritten;
1880 	int size;
1881 
1882 	/*
1883 	 * right now we support clustered writing only to regular files.  If
1884 	 * we find a clusterable block we could be in the middle of a cluster
1885 	 * rather then at the beginning.
1886 	 *
1887 	 * NOTE: b_bio1 contains the logical loffset and is aliased
1888 	 * to b_loffset.  b_bio2 contains the translated block number.
1889 	 */
1890 	if ((vp->v_type == VREG) &&
1891 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1892 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1893 
1894 		size = vp->v_mount->mnt_stat.f_iosize;
1895 
1896 		for (i = size; i < MAXPHYS; i += size) {
1897 			if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1898 			    BUF_REFCNT(bpa) == 0 &&
1899 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1900 			    (B_DELWRI | B_CLUSTEROK)) &&
1901 			    (bpa->b_bufsize == size)) {
1902 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1903 				    (bpa->b_bio2.bio_offset !=
1904 				     bp->b_bio2.bio_offset + i))
1905 					break;
1906 			} else {
1907 				break;
1908 			}
1909 		}
1910 		for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1911 			if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1912 			    BUF_REFCNT(bpa) == 0 &&
1913 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1914 			    (B_DELWRI | B_CLUSTEROK)) &&
1915 			    (bpa->b_bufsize == size)) {
1916 				if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1917 				    (bpa->b_bio2.bio_offset !=
1918 				     bp->b_bio2.bio_offset - j))
1919 					break;
1920 			} else {
1921 				break;
1922 			}
1923 		}
1924 		j -= size;
1925 		nbytes = (i + j);
1926 
1927 		/*
1928 		 * this is a possible cluster write
1929 		 */
1930 		if (nbytes != size) {
1931 			BUF_UNLOCK(bp);
1932 			nwritten = cluster_wbuild(vp, size,
1933 						  loffset - j, nbytes);
1934 			return nwritten;
1935 		}
1936 	}
1937 
1938 	/*
1939 	 * default (old) behavior, writing out only one block
1940 	 *
1941 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1942 	 */
1943 	nwritten = bp->b_bufsize;
1944 	bremfree(bp);
1945 	bawrite(bp);
1946 
1947 	return nwritten;
1948 }
1949 
1950 /*
1951  * getnewbuf:
1952  *
1953  *	Find and initialize a new buffer header, freeing up existing buffers
1954  *	in the bufqueues as necessary.  The new buffer is returned locked.
1955  *
1956  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1957  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1958  *
1959  *	We block if:
1960  *		We have insufficient buffer headers
1961  *		We have insufficient buffer space
1962  *		buffer_map is too fragmented ( space reservation fails )
1963  *		If we have to flush dirty buffers ( but we try to avoid this )
1964  *
1965  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1966  *	Instead we ask the buf daemon to do it for us.  We attempt to
1967  *	avoid piecemeal wakeups of the pageout daemon.
1968  *
1969  * MPALMOSTSAFE
1970  */
1971 struct buf *
1972 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1973 {
1974 	struct buf *bp;
1975 	struct buf *nbp;
1976 	int defrag = 0;
1977 	int nqindex;
1978 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1979 	static int flushingbufs;
1980 
1981 	/*
1982 	 * We can't afford to block since we might be holding a vnode lock,
1983 	 * which may prevent system daemons from running.  We deal with
1984 	 * low-memory situations by proactively returning memory and running
1985 	 * async I/O rather then sync I/O.
1986 	 */
1987 
1988 	++getnewbufcalls;
1989 	--getnewbufrestarts;
1990 restart:
1991 	++getnewbufrestarts;
1992 
1993 	/*
1994 	 * Setup for scan.  If we do not have enough free buffers,
1995 	 * we setup a degenerate case that immediately fails.  Note
1996 	 * that if we are specially marked process, we are allowed to
1997 	 * dip into our reserves.
1998 	 *
1999 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
2000 	 *
2001 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2002 	 * However, there are a number of cases (defragging, reusing, ...)
2003 	 * where we cannot backup.
2004 	 */
2005 	nqindex = BQUEUE_EMPTYKVA;
2006 	spin_lock(&bufqspin);
2007 	nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
2008 
2009 	if (nbp == NULL) {
2010 		/*
2011 		 * If no EMPTYKVA buffers and we are either
2012 		 * defragging or reusing, locate a CLEAN buffer
2013 		 * to free or reuse.  If bufspace useage is low
2014 		 * skip this step so we can allocate a new buffer.
2015 		 */
2016 		if (defrag || bufspace >= lobufspace) {
2017 			nqindex = BQUEUE_CLEAN;
2018 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2019 		}
2020 
2021 		/*
2022 		 * If we could not find or were not allowed to reuse a
2023 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
2024 		 * buffer.  We can only use an EMPTY buffer if allocating
2025 		 * its KVA would not otherwise run us out of buffer space.
2026 		 */
2027 		if (nbp == NULL && defrag == 0 &&
2028 		    bufspace + maxsize < hibufspace) {
2029 			nqindex = BQUEUE_EMPTY;
2030 			nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
2031 		}
2032 	}
2033 
2034 	/*
2035 	 * Run scan, possibly freeing data and/or kva mappings on the fly
2036 	 * depending.
2037 	 *
2038 	 * WARNING!  bufqspin is held!
2039 	 */
2040 	while ((bp = nbp) != NULL) {
2041 		int qindex = nqindex;
2042 
2043 		nbp = TAILQ_NEXT(bp, b_freelist);
2044 
2045 		/*
2046 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2047 		 * cycles through the queue twice before being selected.
2048 		 */
2049 		if (qindex == BQUEUE_CLEAN &&
2050 		    (bp->b_flags & B_AGE) == 0 && nbp) {
2051 			bp->b_flags |= B_AGE;
2052 			TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
2053 			TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
2054 			continue;
2055 		}
2056 
2057 		/*
2058 		 * Calculate next bp ( we can only use it if we do not block
2059 		 * or do other fancy things ).
2060 		 */
2061 		if (nbp == NULL) {
2062 			switch(qindex) {
2063 			case BQUEUE_EMPTY:
2064 				nqindex = BQUEUE_EMPTYKVA;
2065 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
2066 					break;
2067 				/* fall through */
2068 			case BQUEUE_EMPTYKVA:
2069 				nqindex = BQUEUE_CLEAN;
2070 				if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
2071 					break;
2072 				/* fall through */
2073 			case BQUEUE_CLEAN:
2074 				/*
2075 				 * nbp is NULL.
2076 				 */
2077 				break;
2078 			}
2079 		}
2080 
2081 		/*
2082 		 * Sanity Checks
2083 		 */
2084 		KASSERT(bp->b_qindex == qindex,
2085 			("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2086 
2087 		/*
2088 		 * Note: we no longer distinguish between VMIO and non-VMIO
2089 		 * buffers.
2090 		 */
2091 		KASSERT((bp->b_flags & B_DELWRI) == 0,
2092 			("delwri buffer %p found in queue %d", bp, qindex));
2093 
2094 		/*
2095 		 * Do not try to reuse a buffer with a non-zero b_refs.
2096 		 * This is an unsynchronized test.  A synchronized test
2097 		 * is also performed after we lock the buffer.
2098 		 */
2099 		if (bp->b_refs)
2100 			continue;
2101 
2102 		/*
2103 		 * If we are defragging then we need a buffer with
2104 		 * b_kvasize != 0.  XXX this situation should no longer
2105 		 * occur, if defrag is non-zero the buffer's b_kvasize
2106 		 * should also be non-zero at this point.  XXX
2107 		 */
2108 		if (defrag && bp->b_kvasize == 0) {
2109 			kprintf("Warning: defrag empty buffer %p\n", bp);
2110 			continue;
2111 		}
2112 
2113 		/*
2114 		 * Start freeing the bp.  This is somewhat involved.  nbp
2115 		 * remains valid only for BQUEUE_EMPTY[KVA] bp's.  Buffers
2116 		 * on the clean list must be disassociated from their
2117 		 * current vnode.  Buffers on the empty[kva] lists have
2118 		 * already been disassociated.
2119 		 *
2120 		 * b_refs is checked after locking along with queue changes.
2121 		 * We must check here to deal with zero->nonzero transitions
2122 		 * made by the owner of the buffer lock, which is used by
2123 		 * VFS's to hold the buffer while issuing an unlocked
2124 		 * uiomove()s.  We cannot invalidate the buffer's pages
2125 		 * for this case.  Once we successfully lock a buffer the
2126 		 * only 0->1 transitions of b_refs will occur via findblk().
2127 		 *
2128 		 * We must also check for queue changes after successful
2129 		 * locking as the current lock holder may dispose of the
2130 		 * buffer and change its queue.
2131 		 */
2132 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2133 			spin_unlock(&bufqspin);
2134 			tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2135 			goto restart;
2136 		}
2137 		if (bp->b_qindex != qindex || bp->b_refs) {
2138 			spin_unlock(&bufqspin);
2139 			BUF_UNLOCK(bp);
2140 			goto restart;
2141 		}
2142 		bremfree_locked(bp);
2143 		spin_unlock(&bufqspin);
2144 
2145 		/*
2146 		 * Dependancies must be handled before we disassociate the
2147 		 * vnode.
2148 		 *
2149 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2150 		 * be immediately disassociated.  HAMMER then becomes
2151 		 * responsible for releasing the buffer.
2152 		 *
2153 		 * NOTE: bufqspin is UNLOCKED now.
2154 		 */
2155 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2156 			buf_deallocate(bp);
2157 			if (bp->b_flags & B_LOCKED) {
2158 				bqrelse(bp);
2159 				goto restart;
2160 			}
2161 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2162 		}
2163 
2164 		if (qindex == BQUEUE_CLEAN) {
2165 			if (bp->b_flags & B_VMIO)
2166 				vfs_vmio_release(bp);
2167 			if (bp->b_vp)
2168 				brelvp(bp);
2169 		}
2170 
2171 		/*
2172 		 * NOTE:  nbp is now entirely invalid.  We can only restart
2173 		 * the scan from this point on.
2174 		 *
2175 		 * Get the rest of the buffer freed up.  b_kva* is still
2176 		 * valid after this operation.
2177 		 */
2178 		KASSERT(bp->b_vp == NULL,
2179 			("bp3 %p flags %08x vnode %p qindex %d "
2180 			 "unexpectededly still associated!",
2181 			 bp, bp->b_flags, bp->b_vp, qindex));
2182 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2183 
2184 		/*
2185 		 * critical section protection is not required when
2186 		 * scrapping a buffer's contents because it is already
2187 		 * wired.
2188 		 */
2189 		if (bp->b_bufsize)
2190 			allocbuf(bp, 0);
2191 
2192 		bp->b_flags = B_BNOCLIP;
2193 		bp->b_cmd = BUF_CMD_DONE;
2194 		bp->b_vp = NULL;
2195 		bp->b_error = 0;
2196 		bp->b_resid = 0;
2197 		bp->b_bcount = 0;
2198 		bp->b_xio.xio_npages = 0;
2199 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2200 		bp->b_act_count = ACT_INIT;
2201 		reinitbufbio(bp);
2202 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2203 		buf_dep_init(bp);
2204 		if (blkflags & GETBLK_BHEAVY)
2205 			bp->b_flags |= B_HEAVY;
2206 
2207 		/*
2208 		 * If we are defragging then free the buffer.
2209 		 */
2210 		if (defrag) {
2211 			bp->b_flags |= B_INVAL;
2212 			bfreekva(bp);
2213 			brelse(bp);
2214 			defrag = 0;
2215 			goto restart;
2216 		}
2217 
2218 		/*
2219 		 * If we are overcomitted then recover the buffer and its
2220 		 * KVM space.  This occurs in rare situations when multiple
2221 		 * processes are blocked in getnewbuf() or allocbuf().
2222 		 */
2223 		if (bufspace >= hibufspace)
2224 			flushingbufs = 1;
2225 		if (flushingbufs && bp->b_kvasize != 0) {
2226 			bp->b_flags |= B_INVAL;
2227 			bfreekva(bp);
2228 			brelse(bp);
2229 			goto restart;
2230 		}
2231 		if (bufspace < lobufspace)
2232 			flushingbufs = 0;
2233 
2234 		/*
2235 		 * b_refs can transition to a non-zero value while we hold
2236 		 * the buffer locked due to a findblk().  Our brelvp() above
2237 		 * interlocked any future possible transitions due to
2238 		 * findblk()s.
2239 		 *
2240 		 * If we find b_refs to be non-zero we can destroy the
2241 		 * buffer's contents but we cannot yet reuse the buffer.
2242 		 */
2243 		if (bp->b_refs) {
2244 			bp->b_flags |= B_INVAL;
2245 			bfreekva(bp);
2246 			brelse(bp);
2247 			goto restart;
2248 		}
2249 		break;
2250 		/* NOT REACHED, bufqspin not held */
2251 	}
2252 
2253 	/*
2254 	 * If we exhausted our list, sleep as appropriate.  We may have to
2255 	 * wakeup various daemons and write out some dirty buffers.
2256 	 *
2257 	 * Generally we are sleeping due to insufficient buffer space.
2258 	 *
2259 	 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2260 	 */
2261 	if (bp == NULL) {
2262 		int flags;
2263 		char *waitmsg;
2264 
2265 		spin_unlock(&bufqspin);
2266 		if (defrag) {
2267 			flags = VFS_BIO_NEED_BUFSPACE;
2268 			waitmsg = "nbufkv";
2269 		} else if (bufspace >= hibufspace) {
2270 			waitmsg = "nbufbs";
2271 			flags = VFS_BIO_NEED_BUFSPACE;
2272 		} else {
2273 			waitmsg = "newbuf";
2274 			flags = VFS_BIO_NEED_ANY;
2275 		}
2276 
2277 		bd_speedup();	/* heeeelp */
2278 		spin_lock(&bufcspin);
2279 		needsbuffer |= flags;
2280 		while (needsbuffer & flags) {
2281 			if (ssleep(&needsbuffer, &bufcspin,
2282 				   slpflags, waitmsg, slptimeo)) {
2283 				spin_unlock(&bufcspin);
2284 				return (NULL);
2285 			}
2286 		}
2287 		spin_unlock(&bufcspin);
2288 	} else {
2289 		/*
2290 		 * We finally have a valid bp.  We aren't quite out of the
2291 		 * woods, we still have to reserve kva space.  In order
2292 		 * to keep fragmentation sane we only allocate kva in
2293 		 * BKVASIZE chunks.
2294 		 *
2295 		 * (bufqspin is not held)
2296 		 */
2297 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2298 
2299 		if (maxsize != bp->b_kvasize) {
2300 			vm_offset_t addr = 0;
2301 			int count;
2302 
2303 			bfreekva(bp);
2304 
2305 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2306 			vm_map_lock(&buffer_map);
2307 
2308 			if (vm_map_findspace(&buffer_map,
2309 				    vm_map_min(&buffer_map), maxsize,
2310 				    maxsize, 0, &addr)) {
2311 				/*
2312 				 * Uh oh.  Buffer map is too fragmented.  We
2313 				 * must defragment the map.
2314 				 */
2315 				vm_map_unlock(&buffer_map);
2316 				vm_map_entry_release(count);
2317 				++bufdefragcnt;
2318 				defrag = 1;
2319 				bp->b_flags |= B_INVAL;
2320 				brelse(bp);
2321 				goto restart;
2322 			}
2323 			if (addr) {
2324 				vm_map_insert(&buffer_map, &count,
2325 					NULL, 0,
2326 					addr, addr + maxsize,
2327 					VM_MAPTYPE_NORMAL,
2328 					VM_PROT_ALL, VM_PROT_ALL,
2329 					MAP_NOFAULT);
2330 
2331 				bp->b_kvabase = (caddr_t) addr;
2332 				bp->b_kvasize = maxsize;
2333 				bufspace += bp->b_kvasize;
2334 				++bufreusecnt;
2335 			}
2336 			vm_map_unlock(&buffer_map);
2337 			vm_map_entry_release(count);
2338 		}
2339 		bp->b_data = bp->b_kvabase;
2340 	}
2341 	return(bp);
2342 }
2343 
2344 #if 0
2345 /*
2346  * This routine is called in an emergency to recover VM pages from the
2347  * buffer cache by cashing in clean buffers.  The idea is to recover
2348  * enough pages to be able to satisfy a stuck bio_page_alloc().
2349  *
2350  * XXX Currently not implemented.  This function can wind up deadlocking
2351  * against another thread holding one or more of the backing pages busy.
2352  */
2353 static int
2354 recoverbufpages(void)
2355 {
2356 	struct buf *bp;
2357 	int bytes = 0;
2358 
2359 	++recoverbufcalls;
2360 
2361 	spin_lock(&bufqspin);
2362 	while (bytes < MAXBSIZE) {
2363 		bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2364 		if (bp == NULL)
2365 			break;
2366 
2367 		/*
2368 		 * BQUEUE_CLEAN - B_AGE special case.  If not set the bp
2369 		 * cycles through the queue twice before being selected.
2370 		 */
2371 		if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2372 			bp->b_flags |= B_AGE;
2373 			TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2374 			TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2375 					  bp, b_freelist);
2376 			continue;
2377 		}
2378 
2379 		/*
2380 		 * Sanity Checks
2381 		 */
2382 		KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2383 		KKASSERT((bp->b_flags & B_DELWRI) == 0);
2384 
2385 		/*
2386 		 * Start freeing the bp.  This is somewhat involved.
2387 		 *
2388 		 * Buffers on the clean list must be disassociated from
2389 		 * their current vnode
2390 		 */
2391 
2392 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2393 			kprintf("recoverbufpages: warning, locked buf %p, "
2394 				"race corrected\n",
2395 				bp);
2396 			ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2397 			continue;
2398 		}
2399 		if (bp->b_qindex != BQUEUE_CLEAN) {
2400 			kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2401 				"unexpectedly on buf %p index %d, race "
2402 				"corrected\n",
2403 				bp, bp->b_qindex);
2404 			BUF_UNLOCK(bp);
2405 			continue;
2406 		}
2407 		bremfree_locked(bp);
2408 		spin_unlock(&bufqspin);
2409 
2410 		/*
2411 		 * Dependancies must be handled before we disassociate the
2412 		 * vnode.
2413 		 *
2414 		 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2415 		 * be immediately disassociated.  HAMMER then becomes
2416 		 * responsible for releasing the buffer.
2417 		 */
2418 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2419 			buf_deallocate(bp);
2420 			if (bp->b_flags & B_LOCKED) {
2421 				bqrelse(bp);
2422 				spin_lock(&bufqspin);
2423 				continue;
2424 			}
2425 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2426 		}
2427 
2428 		bytes += bp->b_bufsize;
2429 
2430 		if (bp->b_flags & B_VMIO) {
2431 			bp->b_flags |= B_DIRECT;    /* try to free pages */
2432 			vfs_vmio_release(bp);
2433 		}
2434 		if (bp->b_vp)
2435 			brelvp(bp);
2436 
2437 		KKASSERT(bp->b_vp == NULL);
2438 		KKASSERT((bp->b_flags & B_HASHED) == 0);
2439 
2440 		/*
2441 		 * critical section protection is not required when
2442 		 * scrapping a buffer's contents because it is already
2443 		 * wired.
2444 		 */
2445 		if (bp->b_bufsize)
2446 			allocbuf(bp, 0);
2447 
2448 		bp->b_flags = B_BNOCLIP;
2449 		bp->b_cmd = BUF_CMD_DONE;
2450 		bp->b_vp = NULL;
2451 		bp->b_error = 0;
2452 		bp->b_resid = 0;
2453 		bp->b_bcount = 0;
2454 		bp->b_xio.xio_npages = 0;
2455 		bp->b_dirtyoff = bp->b_dirtyend = 0;
2456 		reinitbufbio(bp);
2457 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2458 		buf_dep_init(bp);
2459 		bp->b_flags |= B_INVAL;
2460 		/* bfreekva(bp); */
2461 		brelse(bp);
2462 		spin_lock(&bufqspin);
2463 	}
2464 	spin_unlock(&bufqspin);
2465 	return(bytes);
2466 }
2467 #endif
2468 
2469 /*
2470  * buf_daemon:
2471  *
2472  *	Buffer flushing daemon.  Buffers are normally flushed by the
2473  *	update daemon but if it cannot keep up this process starts to
2474  *	take the load in an attempt to prevent getnewbuf() from blocking.
2475  *
2476  *	Once a flush is initiated it does not stop until the number
2477  *	of buffers falls below lodirtybuffers, but we will wake up anyone
2478  *	waiting at the mid-point.
2479  */
2480 static struct kproc_desc buf_kp = {
2481 	"bufdaemon",
2482 	buf_daemon,
2483 	&bufdaemon_td
2484 };
2485 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2486 	kproc_start, &buf_kp)
2487 
2488 static struct kproc_desc bufhw_kp = {
2489 	"bufdaemon_hw",
2490 	buf_daemon_hw,
2491 	&bufdaemonhw_td
2492 };
2493 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2494 	kproc_start, &bufhw_kp)
2495 
2496 /*
2497  * MPSAFE thread
2498  */
2499 static void
2500 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2501 	    int *bd_req)
2502 {
2503 	long limit;
2504 
2505 	/*
2506 	 * This process needs to be suspended prior to shutdown sync.
2507 	 */
2508 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2509 			      td, SHUTDOWN_PRI_LAST);
2510 	curthread->td_flags |= TDF_SYSTHREAD;
2511 
2512 	/*
2513 	 * This process is allowed to take the buffer cache to the limit
2514 	 */
2515 	for (;;) {
2516 		kproc_suspend_loop();
2517 
2518 		/*
2519 		 * Do the flush as long as the number of dirty buffers
2520 		 * (including those running) exceeds lodirtybufspace.
2521 		 *
2522 		 * When flushing limit running I/O to hirunningspace
2523 		 * Do the flush.  Limit the amount of in-transit I/O we
2524 		 * allow to build up, otherwise we would completely saturate
2525 		 * the I/O system.  Wakeup any waiting processes before we
2526 		 * normally would so they can run in parallel with our drain.
2527 		 *
2528 		 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2529 		 * but because we split the operation into two threads we
2530 		 * have to cut it in half for each thread.
2531 		 */
2532 		waitrunningbufspace();
2533 		limit = lodirtybufspace / 2;
2534 		while (buf_limit_fn(limit)) {
2535 			if (flushbufqueues(queue) == 0)
2536 				break;
2537 			if (runningbufspace < hirunningspace)
2538 				continue;
2539 			waitrunningbufspace();
2540 		}
2541 
2542 		/*
2543 		 * We reached our low water mark, reset the
2544 		 * request and sleep until we are needed again.
2545 		 * The sleep is just so the suspend code works.
2546 		 */
2547 		spin_lock(&bufcspin);
2548 		if (*bd_req == 0)
2549 			ssleep(bd_req, &bufcspin, 0, "psleep", hz);
2550 		*bd_req = 0;
2551 		spin_unlock(&bufcspin);
2552 	}
2553 }
2554 
2555 static int
2556 buf_daemon_limit(long limit)
2557 {
2558 	return (runningbufspace + dirtybufspace > limit ||
2559 		dirtybufcount - dirtybufcounthw >= nbuf / 2);
2560 }
2561 
2562 static int
2563 buf_daemon_hw_limit(long limit)
2564 {
2565 	return (runningbufspace + dirtybufspacehw > limit ||
2566 		dirtybufcounthw >= nbuf / 2);
2567 }
2568 
2569 static void
2570 buf_daemon(void)
2571 {
2572 	buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2573 		    &bd_request);
2574 }
2575 
2576 static void
2577 buf_daemon_hw(void)
2578 {
2579 	buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2580 		    &bd_request_hw);
2581 }
2582 
2583 /*
2584  * flushbufqueues:
2585  *
2586  *	Try to flush a buffer in the dirty queue.  We must be careful to
2587  *	free up B_INVAL buffers instead of write them, which NFS is
2588  *	particularly sensitive to.
2589  *
2590  *	B_RELBUF may only be set by VFSs.  We do set B_AGE to indicate
2591  *	that we really want to try to get the buffer out and reuse it
2592  *	due to the write load on the machine.
2593  *
2594  *	We must lock the buffer in order to check its validity before we
2595  *	can mess with its contents.  bufqspin isn't enough.
2596  */
2597 static int
2598 flushbufqueues(bufq_type_t q)
2599 {
2600 	struct buf *bp;
2601 	int r = 0;
2602 	int spun;
2603 
2604 	spin_lock(&bufqspin);
2605 	spun = 1;
2606 
2607 	bp = TAILQ_FIRST(&bufqueues[q]);
2608 	while (bp) {
2609 		if ((bp->b_flags & B_DELWRI) == 0) {
2610 			kprintf("Unexpected clean buffer %p\n", bp);
2611 			bp = TAILQ_NEXT(bp, b_freelist);
2612 			continue;
2613 		}
2614 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2615 			bp = TAILQ_NEXT(bp, b_freelist);
2616 			continue;
2617 		}
2618 		KKASSERT(bp->b_qindex == q);
2619 
2620 		/*
2621 		 * Must recheck B_DELWRI after successfully locking
2622 		 * the buffer.
2623 		 */
2624 		if ((bp->b_flags & B_DELWRI) == 0) {
2625 			BUF_UNLOCK(bp);
2626 			bp = TAILQ_NEXT(bp, b_freelist);
2627 			continue;
2628 		}
2629 
2630 		if (bp->b_flags & B_INVAL) {
2631 			_bremfree(bp);
2632 			spin_unlock(&bufqspin);
2633 			spun = 0;
2634 			brelse(bp);
2635 			++r;
2636 			break;
2637 		}
2638 
2639 		spin_unlock(&bufqspin);
2640 		lwkt_yield();
2641 		spun = 0;
2642 
2643 		if (LIST_FIRST(&bp->b_dep) != NULL &&
2644 		    (bp->b_flags & B_DEFERRED) == 0 &&
2645 		    buf_countdeps(bp, 0)) {
2646 			spin_lock(&bufqspin);
2647 			spun = 1;
2648 			TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2649 			TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2650 			bp->b_flags |= B_DEFERRED;
2651 			BUF_UNLOCK(bp);
2652 			bp = TAILQ_FIRST(&bufqueues[q]);
2653 			continue;
2654 		}
2655 
2656 		/*
2657 		 * If the buffer has a dependancy, buf_checkwrite() must
2658 		 * also return 0 for us to be able to initate the write.
2659 		 *
2660 		 * If the buffer is flagged B_ERROR it may be requeued
2661 		 * over and over again, we try to avoid a live lock.
2662 		 *
2663 		 * NOTE: buf_checkwrite is MPSAFE.
2664 		 */
2665 		if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2666 			bremfree(bp);
2667 			brelse(bp);
2668 		} else if (bp->b_flags & B_ERROR) {
2669 			tsleep(bp, 0, "bioer", 1);
2670 			bp->b_flags &= ~B_AGE;
2671 			vfs_bio_awrite(bp);
2672 		} else {
2673 			bp->b_flags |= B_AGE;
2674 			vfs_bio_awrite(bp);
2675 		}
2676 		++r;
2677 		break;
2678 	}
2679 	if (spun)
2680 		spin_unlock(&bufqspin);
2681 	return (r);
2682 }
2683 
2684 /*
2685  * inmem:
2686  *
2687  *	Returns true if no I/O is needed to access the associated VM object.
2688  *	This is like findblk except it also hunts around in the VM system for
2689  *	the data.
2690  *
2691  *	Note that we ignore vm_page_free() races from interrupts against our
2692  *	lookup, since if the caller is not protected our return value will not
2693  *	be any more valid then otherwise once we exit the critical section.
2694  */
2695 int
2696 inmem(struct vnode *vp, off_t loffset)
2697 {
2698 	vm_object_t obj;
2699 	vm_offset_t toff, tinc, size;
2700 	vm_page_t m;
2701 	int res = 1;
2702 
2703 	if (findblk(vp, loffset, FINDBLK_TEST))
2704 		return 1;
2705 	if (vp->v_mount == NULL)
2706 		return 0;
2707 	if ((obj = vp->v_object) == NULL)
2708 		return 0;
2709 
2710 	size = PAGE_SIZE;
2711 	if (size > vp->v_mount->mnt_stat.f_iosize)
2712 		size = vp->v_mount->mnt_stat.f_iosize;
2713 
2714 	vm_object_hold(obj);
2715 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2716 		m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2717 		if (m == NULL) {
2718 			res = 0;
2719 			break;
2720 		}
2721 		tinc = size;
2722 		if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2723 			tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2724 		if (vm_page_is_valid(m,
2725 		    (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2726 			res = 0;
2727 			break;
2728 		}
2729 	}
2730 	vm_object_drop(obj);
2731 	return (res);
2732 }
2733 
2734 /*
2735  * findblk:
2736  *
2737  *	Locate and return the specified buffer.  Unless flagged otherwise,
2738  *	a locked buffer will be returned if it exists or NULL if it does not.
2739  *
2740  *	findblk()'d buffers are still on the bufqueues and if you intend
2741  *	to use your (locked NON-TEST) buffer you need to bremfree(bp)
2742  *	and possibly do other stuff to it.
2743  *
2744  *	FINDBLK_TEST	- Do not lock the buffer.  The caller is responsible
2745  *			  for locking the buffer and ensuring that it remains
2746  *			  the desired buffer after locking.
2747  *
2748  *	FINDBLK_NBLOCK	- Lock the buffer non-blocking.  If we are unable
2749  *			  to acquire the lock we return NULL, even if the
2750  *			  buffer exists.
2751  *
2752  *	FINDBLK_REF	- Returns the buffer ref'd, which prevents normal
2753  *			  reuse by getnewbuf() but does not prevent
2754  *			  disassociation (B_INVAL).  Used to avoid deadlocks
2755  *			  against random (vp,loffset)s due to reassignment.
2756  *
2757  *	(0)		- Lock the buffer blocking.
2758  *
2759  * MPSAFE
2760  */
2761 struct buf *
2762 findblk(struct vnode *vp, off_t loffset, int flags)
2763 {
2764 	struct buf *bp;
2765 	int lkflags;
2766 
2767 	lkflags = LK_EXCLUSIVE;
2768 	if (flags & FINDBLK_NBLOCK)
2769 		lkflags |= LK_NOWAIT;
2770 
2771 	for (;;) {
2772 		/*
2773 		 * Lookup.  Ref the buf while holding v_token to prevent
2774 		 * reuse (but does not prevent diassociation).
2775 		 */
2776 		lwkt_gettoken_shared(&vp->v_token);
2777 		bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2778 		if (bp == NULL) {
2779 			lwkt_reltoken(&vp->v_token);
2780 			return(NULL);
2781 		}
2782 		bqhold(bp);
2783 		lwkt_reltoken(&vp->v_token);
2784 
2785 		/*
2786 		 * If testing only break and return bp, do not lock.
2787 		 */
2788 		if (flags & FINDBLK_TEST)
2789 			break;
2790 
2791 		/*
2792 		 * Lock the buffer, return an error if the lock fails.
2793 		 * (only FINDBLK_NBLOCK can cause the lock to fail).
2794 		 */
2795 		if (BUF_LOCK(bp, lkflags)) {
2796 			atomic_subtract_int(&bp->b_refs, 1);
2797 			/* bp = NULL; not needed */
2798 			return(NULL);
2799 		}
2800 
2801 		/*
2802 		 * Revalidate the locked buf before allowing it to be
2803 		 * returned.
2804 		 */
2805 		if (bp->b_vp == vp && bp->b_loffset == loffset)
2806 			break;
2807 		atomic_subtract_int(&bp->b_refs, 1);
2808 		BUF_UNLOCK(bp);
2809 	}
2810 
2811 	/*
2812 	 * Success
2813 	 */
2814 	if ((flags & FINDBLK_REF) == 0)
2815 		atomic_subtract_int(&bp->b_refs, 1);
2816 	return(bp);
2817 }
2818 
2819 /*
2820  * getcacheblk:
2821  *
2822  *	Similar to getblk() except only returns the buffer if it is
2823  *	B_CACHE and requires no other manipulation.  Otherwise NULL
2824  *	is returned.
2825  *
2826  *	If B_RAM is set the buffer might be just fine, but we return
2827  *	NULL anyway because we want the code to fall through to the
2828  *	cluster read.  Otherwise read-ahead breaks.
2829  *
2830  *	If blksize is 0 the buffer cache buffer must already be fully
2831  *	cached.
2832  *
2833  *	If blksize is non-zero getblk() will be used, allowing a buffer
2834  *	to be reinstantiated from its VM backing store.  The buffer must
2835  *	still be fully cached after reinstantiation to be returned.
2836  */
2837 struct buf *
2838 getcacheblk(struct vnode *vp, off_t loffset, int blksize)
2839 {
2840 	struct buf *bp;
2841 
2842 	if (blksize) {
2843 		bp = getblk(vp, loffset, blksize, 0, 0);
2844 		if (bp) {
2845 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2846 			    B_CACHE) {
2847 				bp->b_flags &= ~B_AGE;
2848 			} else {
2849 				brelse(bp);
2850 				bp = NULL;
2851 			}
2852 		}
2853 	} else {
2854 		bp = findblk(vp, loffset, 0);
2855 		if (bp) {
2856 			if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2857 			    B_CACHE) {
2858 				bp->b_flags &= ~B_AGE;
2859 				bremfree(bp);
2860 			} else {
2861 				BUF_UNLOCK(bp);
2862 				bp = NULL;
2863 			}
2864 		}
2865 	}
2866 	return (bp);
2867 }
2868 
2869 /*
2870  * getblk:
2871  *
2872  *	Get a block given a specified block and offset into a file/device.
2873  * 	B_INVAL may or may not be set on return.  The caller should clear
2874  *	B_INVAL prior to initiating a READ.
2875  *
2876  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2877  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2878  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2879  *	without doing any of those things the system will likely believe
2880  *	the buffer to be valid (especially if it is not B_VMIO), and the
2881  *	next getblk() will return the buffer with B_CACHE set.
2882  *
2883  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2884  *	an existing buffer.
2885  *
2886  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2887  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2888  *	and then cleared based on the backing VM.  If the previous buffer is
2889  *	non-0-sized but invalid, B_CACHE will be cleared.
2890  *
2891  *	If getblk() must create a new buffer, the new buffer is returned with
2892  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2893  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2894  *	backing VM.
2895  *
2896  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2897  *	B_CACHE bit is clear.
2898  *
2899  *	What this means, basically, is that the caller should use B_CACHE to
2900  *	determine whether the buffer is fully valid or not and should clear
2901  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2902  *	the buffer by loading its data area with something, the caller needs
2903  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2904  *	the caller should set B_CACHE ( as an optimization ), else the caller
2905  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2906  *	a write attempt or if it was a successfull read.  If the caller
2907  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2908  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2909  *
2910  *	getblk flags:
2911  *
2912  *	GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2913  *	GETBLK_BHEAVY - heavy-weight buffer cache buffer
2914  *
2915  * MPALMOSTSAFE
2916  */
2917 struct buf *
2918 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2919 {
2920 	struct buf *bp;
2921 	int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2922 	int error;
2923 	int lkflags;
2924 
2925 	if (size > MAXBSIZE)
2926 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2927 	if (vp->v_object == NULL)
2928 		panic("getblk: vnode %p has no object!", vp);
2929 
2930 loop:
2931 	if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2932 		/*
2933 		 * The buffer was found in the cache, but we need to lock it.
2934 		 * We must acquire a ref on the bp to prevent reuse, but
2935 		 * this will not prevent disassociation (brelvp()) so we
2936 		 * must recheck (vp,loffset) after acquiring the lock.
2937 		 *
2938 		 * Without the ref the buffer could potentially be reused
2939 		 * before we acquire the lock and create a deadlock
2940 		 * situation between the thread trying to reuse the buffer
2941 		 * and us due to the fact that we would wind up blocking
2942 		 * on a random (vp,loffset).
2943 		 */
2944 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2945 			if (blkflags & GETBLK_NOWAIT) {
2946 				bqdrop(bp);
2947 				return(NULL);
2948 			}
2949 			lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2950 			if (blkflags & GETBLK_PCATCH)
2951 				lkflags |= LK_PCATCH;
2952 			error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2953 			if (error) {
2954 				bqdrop(bp);
2955 				if (error == ENOLCK)
2956 					goto loop;
2957 				return (NULL);
2958 			}
2959 			/* buffer may have changed on us */
2960 		}
2961 		bqdrop(bp);
2962 
2963 		/*
2964 		 * Once the buffer has been locked, make sure we didn't race
2965 		 * a buffer recyclement.  Buffers that are no longer hashed
2966 		 * will have b_vp == NULL, so this takes care of that check
2967 		 * as well.
2968 		 */
2969 		if (bp->b_vp != vp || bp->b_loffset != loffset) {
2970 			kprintf("Warning buffer %p (vp %p loffset %lld) "
2971 				"was recycled\n",
2972 				bp, vp, (long long)loffset);
2973 			BUF_UNLOCK(bp);
2974 			goto loop;
2975 		}
2976 
2977 		/*
2978 		 * If SZMATCH any pre-existing buffer must be of the requested
2979 		 * size or NULL is returned.  The caller absolutely does not
2980 		 * want getblk() to bwrite() the buffer on a size mismatch.
2981 		 */
2982 		if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2983 			BUF_UNLOCK(bp);
2984 			return(NULL);
2985 		}
2986 
2987 		/*
2988 		 * All vnode-based buffers must be backed by a VM object.
2989 		 */
2990 		KKASSERT(bp->b_flags & B_VMIO);
2991 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2992 		bp->b_flags &= ~B_AGE;
2993 
2994 		/*
2995 		 * Make sure that B_INVAL buffers do not have a cached
2996 		 * block number translation.
2997 		 */
2998 		if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2999 			kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
3000 				" did not have cleared bio_offset cache\n",
3001 				bp, vp, (long long)loffset);
3002 			clearbiocache(&bp->b_bio2);
3003 		}
3004 
3005 		/*
3006 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3007 		 * invalid.
3008 		 */
3009 		if (bp->b_flags & B_INVAL)
3010 			bp->b_flags &= ~B_CACHE;
3011 		bremfree(bp);
3012 
3013 		/*
3014 		 * Any size inconsistancy with a dirty buffer or a buffer
3015 		 * with a softupdates dependancy must be resolved.  Resizing
3016 		 * the buffer in such circumstances can lead to problems.
3017 		 *
3018 		 * Dirty or dependant buffers are written synchronously.
3019 		 * Other types of buffers are simply released and
3020 		 * reconstituted as they may be backed by valid, dirty VM
3021 		 * pages (but not marked B_DELWRI).
3022 		 *
3023 		 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
3024 		 * and may be left over from a prior truncation (and thus
3025 		 * no longer represent the actual EOF point), so we
3026 		 * definitely do not want to B_NOCACHE the backing store.
3027 		 */
3028 		if (size != bp->b_bcount) {
3029 			if (bp->b_flags & B_DELWRI) {
3030 				bp->b_flags |= B_RELBUF;
3031 				bwrite(bp);
3032 			} else if (LIST_FIRST(&bp->b_dep)) {
3033 				bp->b_flags |= B_RELBUF;
3034 				bwrite(bp);
3035 			} else {
3036 				bp->b_flags |= B_RELBUF;
3037 				brelse(bp);
3038 			}
3039 			goto loop;
3040 		}
3041 		KKASSERT(size <= bp->b_kvasize);
3042 		KASSERT(bp->b_loffset != NOOFFSET,
3043 			("getblk: no buffer offset"));
3044 
3045 		/*
3046 		 * A buffer with B_DELWRI set and B_CACHE clear must
3047 		 * be committed before we can return the buffer in
3048 		 * order to prevent the caller from issuing a read
3049 		 * ( due to B_CACHE not being set ) and overwriting
3050 		 * it.
3051 		 *
3052 		 * Most callers, including NFS and FFS, need this to
3053 		 * operate properly either because they assume they
3054 		 * can issue a read if B_CACHE is not set, or because
3055 		 * ( for example ) an uncached B_DELWRI might loop due
3056 		 * to softupdates re-dirtying the buffer.  In the latter
3057 		 * case, B_CACHE is set after the first write completes,
3058 		 * preventing further loops.
3059 		 *
3060 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3061 		 * above while extending the buffer, we cannot allow the
3062 		 * buffer to remain with B_CACHE set after the write
3063 		 * completes or it will represent a corrupt state.  To
3064 		 * deal with this we set B_NOCACHE to scrap the buffer
3065 		 * after the write.
3066 		 *
3067 		 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3068 		 *     I'm not even sure this state is still possible
3069 		 *     now that getblk() writes out any dirty buffers
3070 		 *     on size changes.
3071 		 *
3072 		 * We might be able to do something fancy, like setting
3073 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3074 		 * so the below call doesn't set B_CACHE, but that gets real
3075 		 * confusing.  This is much easier.
3076 		 */
3077 
3078 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3079 			kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3080 				"and CACHE clear, b_flags %08x\n",
3081 				bp, (intmax_t)bp->b_loffset, bp->b_flags);
3082 			bp->b_flags |= B_NOCACHE;
3083 			bwrite(bp);
3084 			goto loop;
3085 		}
3086 	} else {
3087 		/*
3088 		 * Buffer is not in-core, create new buffer.  The buffer
3089 		 * returned by getnewbuf() is locked.  Note that the returned
3090 		 * buffer is also considered valid (not marked B_INVAL).
3091 		 *
3092 		 * Calculating the offset for the I/O requires figuring out
3093 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
3094 		 * the mount's f_iosize otherwise.  If the vnode does not
3095 		 * have an associated mount we assume that the passed size is
3096 		 * the block size.
3097 		 *
3098 		 * Note that vn_isdisk() cannot be used here since it may
3099 		 * return a failure for numerous reasons.   Note that the
3100 		 * buffer size may be larger then the block size (the caller
3101 		 * will use block numbers with the proper multiple).  Beware
3102 		 * of using any v_* fields which are part of unions.  In
3103 		 * particular, in DragonFly the mount point overloading
3104 		 * mechanism uses the namecache only and the underlying
3105 		 * directory vnode is not a special case.
3106 		 */
3107 		int bsize, maxsize;
3108 
3109 		if (vp->v_type == VBLK || vp->v_type == VCHR)
3110 			bsize = DEV_BSIZE;
3111 		else if (vp->v_mount)
3112 			bsize = vp->v_mount->mnt_stat.f_iosize;
3113 		else
3114 			bsize = size;
3115 
3116 		maxsize = size + (loffset & PAGE_MASK);
3117 		maxsize = imax(maxsize, bsize);
3118 
3119 		bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3120 		if (bp == NULL) {
3121 			if (slpflags || slptimeo)
3122 				return NULL;
3123 			goto loop;
3124 		}
3125 
3126 		/*
3127 		 * Atomically insert the buffer into the hash, so that it can
3128 		 * be found by findblk().
3129 		 *
3130 		 * If bgetvp() returns non-zero a collision occured, and the
3131 		 * bp will not be associated with the vnode.
3132 		 *
3133 		 * Make sure the translation layer has been cleared.
3134 		 */
3135 		bp->b_loffset = loffset;
3136 		bp->b_bio2.bio_offset = NOOFFSET;
3137 		/* bp->b_bio2.bio_next = NULL; */
3138 
3139 		if (bgetvp(vp, bp, size)) {
3140 			bp->b_flags |= B_INVAL;
3141 			brelse(bp);
3142 			goto loop;
3143 		}
3144 
3145 		/*
3146 		 * All vnode-based buffers must be backed by a VM object.
3147 		 */
3148 		KKASSERT(vp->v_object != NULL);
3149 		bp->b_flags |= B_VMIO;
3150 		KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3151 
3152 		allocbuf(bp, size);
3153 	}
3154 	KKASSERT(dsched_is_clear_buf_priv(bp));
3155 	return (bp);
3156 }
3157 
3158 /*
3159  * regetblk(bp)
3160  *
3161  * Reacquire a buffer that was previously released to the locked queue,
3162  * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3163  * set B_LOCKED (which handles the acquisition race).
3164  *
3165  * To this end, either B_LOCKED must be set or the dependancy list must be
3166  * non-empty.
3167  *
3168  * MPSAFE
3169  */
3170 void
3171 regetblk(struct buf *bp)
3172 {
3173 	KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3174 	BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3175 	bremfree(bp);
3176 }
3177 
3178 /*
3179  * geteblk:
3180  *
3181  *	Get an empty, disassociated buffer of given size.  The buffer is
3182  *	initially set to B_INVAL.
3183  *
3184  *	critical section protection is not required for the allocbuf()
3185  *	call because races are impossible here.
3186  *
3187  * MPALMOSTSAFE
3188  */
3189 struct buf *
3190 geteblk(int size)
3191 {
3192 	struct buf *bp;
3193 	int maxsize;
3194 
3195 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3196 
3197 	while ((bp = getnewbuf(0, 0, size, maxsize)) == NULL)
3198 		;
3199 	allocbuf(bp, size);
3200 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3201 	KKASSERT(dsched_is_clear_buf_priv(bp));
3202 	return (bp);
3203 }
3204 
3205 
3206 /*
3207  * allocbuf:
3208  *
3209  *	This code constitutes the buffer memory from either anonymous system
3210  *	memory (in the case of non-VMIO operations) or from an associated
3211  *	VM object (in the case of VMIO operations).  This code is able to
3212  *	resize a buffer up or down.
3213  *
3214  *	Note that this code is tricky, and has many complications to resolve
3215  *	deadlock or inconsistant data situations.  Tread lightly!!!
3216  *	There are B_CACHE and B_DELWRI interactions that must be dealt with by
3217  *	the caller.  Calling this code willy nilly can result in the loss of
3218  *	data.
3219  *
3220  *	allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3221  *	B_CACHE for the non-VMIO case.
3222  *
3223  *	This routine does not need to be called from a critical section but you
3224  *	must own the buffer.
3225  *
3226  * MPSAFE
3227  */
3228 int
3229 allocbuf(struct buf *bp, int size)
3230 {
3231 	int newbsize, mbsize;
3232 	int i;
3233 
3234 	if (BUF_REFCNT(bp) == 0)
3235 		panic("allocbuf: buffer not busy");
3236 
3237 	if (bp->b_kvasize < size)
3238 		panic("allocbuf: buffer too small");
3239 
3240 	if ((bp->b_flags & B_VMIO) == 0) {
3241 		caddr_t origbuf;
3242 		int origbufsize;
3243 		/*
3244 		 * Just get anonymous memory from the kernel.  Don't
3245 		 * mess with B_CACHE.
3246 		 */
3247 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3248 		if (bp->b_flags & B_MALLOC)
3249 			newbsize = mbsize;
3250 		else
3251 			newbsize = round_page(size);
3252 
3253 		if (newbsize < bp->b_bufsize) {
3254 			/*
3255 			 * Malloced buffers are not shrunk
3256 			 */
3257 			if (bp->b_flags & B_MALLOC) {
3258 				if (newbsize) {
3259 					bp->b_bcount = size;
3260 				} else {
3261 					kfree(bp->b_data, M_BIOBUF);
3262 					if (bp->b_bufsize) {
3263 						atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3264 						bufspacewakeup();
3265 						bp->b_bufsize = 0;
3266 					}
3267 					bp->b_data = bp->b_kvabase;
3268 					bp->b_bcount = 0;
3269 					bp->b_flags &= ~B_MALLOC;
3270 				}
3271 				return 1;
3272 			}
3273 			vm_hold_free_pages(
3274 			    bp,
3275 			    (vm_offset_t) bp->b_data + newbsize,
3276 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
3277 		} else if (newbsize > bp->b_bufsize) {
3278 			/*
3279 			 * We only use malloced memory on the first allocation.
3280 			 * and revert to page-allocated memory when the buffer
3281 			 * grows.
3282 			 */
3283 			if ((bufmallocspace < maxbufmallocspace) &&
3284 				(bp->b_bufsize == 0) &&
3285 				(mbsize <= PAGE_SIZE/2)) {
3286 
3287 				bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3288 				bp->b_bufsize = mbsize;
3289 				bp->b_bcount = size;
3290 				bp->b_flags |= B_MALLOC;
3291 				atomic_add_long(&bufmallocspace, mbsize);
3292 				return 1;
3293 			}
3294 			origbuf = NULL;
3295 			origbufsize = 0;
3296 			/*
3297 			 * If the buffer is growing on its other-than-first
3298 			 * allocation, then we revert to the page-allocation
3299 			 * scheme.
3300 			 */
3301 			if (bp->b_flags & B_MALLOC) {
3302 				origbuf = bp->b_data;
3303 				origbufsize = bp->b_bufsize;
3304 				bp->b_data = bp->b_kvabase;
3305 				if (bp->b_bufsize) {
3306 					atomic_subtract_long(&bufmallocspace,
3307 							     bp->b_bufsize);
3308 					bufspacewakeup();
3309 					bp->b_bufsize = 0;
3310 				}
3311 				bp->b_flags &= ~B_MALLOC;
3312 				newbsize = round_page(newbsize);
3313 			}
3314 			vm_hold_load_pages(
3315 			    bp,
3316 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3317 			    (vm_offset_t) bp->b_data + newbsize);
3318 			if (origbuf) {
3319 				bcopy(origbuf, bp->b_data, origbufsize);
3320 				kfree(origbuf, M_BIOBUF);
3321 			}
3322 		}
3323 	} else {
3324 		vm_page_t m;
3325 		int desiredpages;
3326 
3327 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3328 		desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3329 				newbsize + PAGE_MASK) >> PAGE_SHIFT;
3330 		KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3331 
3332 		if (bp->b_flags & B_MALLOC)
3333 			panic("allocbuf: VMIO buffer can't be malloced");
3334 		/*
3335 		 * Set B_CACHE initially if buffer is 0 length or will become
3336 		 * 0-length.
3337 		 */
3338 		if (size == 0 || bp->b_bufsize == 0)
3339 			bp->b_flags |= B_CACHE;
3340 
3341 		if (newbsize < bp->b_bufsize) {
3342 			/*
3343 			 * DEV_BSIZE aligned new buffer size is less then the
3344 			 * DEV_BSIZE aligned existing buffer size.  Figure out
3345 			 * if we have to remove any pages.
3346 			 */
3347 			if (desiredpages < bp->b_xio.xio_npages) {
3348 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3349 					/*
3350 					 * the page is not freed here -- it
3351 					 * is the responsibility of
3352 					 * vnode_pager_setsize
3353 					 */
3354 					m = bp->b_xio.xio_pages[i];
3355 					KASSERT(m != bogus_page,
3356 					    ("allocbuf: bogus page found"));
3357 					vm_page_busy_wait(m, TRUE, "biodep");
3358 					bp->b_xio.xio_pages[i] = NULL;
3359 					vm_page_unwire(m, 0);
3360 					vm_page_wakeup(m);
3361 				}
3362 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3363 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3364 				bp->b_xio.xio_npages = desiredpages;
3365 			}
3366 		} else if (size > bp->b_bcount) {
3367 			/*
3368 			 * We are growing the buffer, possibly in a
3369 			 * byte-granular fashion.
3370 			 */
3371 			struct vnode *vp;
3372 			vm_object_t obj;
3373 			vm_offset_t toff;
3374 			vm_offset_t tinc;
3375 
3376 			/*
3377 			 * Step 1, bring in the VM pages from the object,
3378 			 * allocating them if necessary.  We must clear
3379 			 * B_CACHE if these pages are not valid for the
3380 			 * range covered by the buffer.
3381 			 *
3382 			 * critical section protection is required to protect
3383 			 * against interrupts unbusying and freeing pages
3384 			 * between our vm_page_lookup() and our
3385 			 * busycheck/wiring call.
3386 			 */
3387 			vp = bp->b_vp;
3388 			obj = vp->v_object;
3389 
3390 			vm_object_hold(obj);
3391 			while (bp->b_xio.xio_npages < desiredpages) {
3392 				vm_page_t m;
3393 				vm_pindex_t pi;
3394 				int error;
3395 
3396 				pi = OFF_TO_IDX(bp->b_loffset) +
3397 				     bp->b_xio.xio_npages;
3398 
3399 				/*
3400 				 * Blocking on m->busy might lead to a
3401 				 * deadlock:
3402 				 *
3403 				 *  vm_fault->getpages->cluster_read->allocbuf
3404 				 */
3405 				m = vm_page_lookup_busy_try(obj, pi, FALSE,
3406 							    &error);
3407 				if (error) {
3408 					vm_page_sleep_busy(m, FALSE, "pgtblk");
3409 					continue;
3410 				}
3411 				if (m == NULL) {
3412 					/*
3413 					 * note: must allocate system pages
3414 					 * since blocking here could intefere
3415 					 * with paging I/O, no matter which
3416 					 * process we are.
3417 					 */
3418 					m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3419 					if (m) {
3420 						vm_page_wire(m);
3421 						vm_page_flag_clear(m, PG_ZERO);
3422 						vm_page_wakeup(m);
3423 						bp->b_flags &= ~B_CACHE;
3424 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3425 						++bp->b_xio.xio_npages;
3426 					}
3427 					continue;
3428 				}
3429 
3430 				/*
3431 				 * We found a page and were able to busy it.
3432 				 */
3433 				vm_page_flag_clear(m, PG_ZERO);
3434 				vm_page_wire(m);
3435 				vm_page_wakeup(m);
3436 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3437 				++bp->b_xio.xio_npages;
3438 				if (bp->b_act_count < m->act_count)
3439 					bp->b_act_count = m->act_count;
3440 			}
3441 			vm_object_drop(obj);
3442 
3443 			/*
3444 			 * Step 2.  We've loaded the pages into the buffer,
3445 			 * we have to figure out if we can still have B_CACHE
3446 			 * set.  Note that B_CACHE is set according to the
3447 			 * byte-granular range ( bcount and size ), not the
3448 			 * aligned range ( newbsize ).
3449 			 *
3450 			 * The VM test is against m->valid, which is DEV_BSIZE
3451 			 * aligned.  Needless to say, the validity of the data
3452 			 * needs to also be DEV_BSIZE aligned.  Note that this
3453 			 * fails with NFS if the server or some other client
3454 			 * extends the file's EOF.  If our buffer is resized,
3455 			 * B_CACHE may remain set! XXX
3456 			 */
3457 
3458 			toff = bp->b_bcount;
3459 			tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3460 
3461 			while ((bp->b_flags & B_CACHE) && toff < size) {
3462 				vm_pindex_t pi;
3463 
3464 				if (tinc > (size - toff))
3465 					tinc = size - toff;
3466 
3467 				pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3468 				    PAGE_SHIFT;
3469 
3470 				vfs_buf_test_cache(
3471 				    bp,
3472 				    bp->b_loffset,
3473 				    toff,
3474 				    tinc,
3475 				    bp->b_xio.xio_pages[pi]
3476 				);
3477 				toff += tinc;
3478 				tinc = PAGE_SIZE;
3479 			}
3480 
3481 			/*
3482 			 * Step 3, fixup the KVM pmap.  Remember that
3483 			 * bp->b_data is relative to bp->b_loffset, but
3484 			 * bp->b_loffset may be offset into the first page.
3485 			 */
3486 
3487 			bp->b_data = (caddr_t)
3488 			    trunc_page((vm_offset_t)bp->b_data);
3489 			pmap_qenter(
3490 			    (vm_offset_t)bp->b_data,
3491 			    bp->b_xio.xio_pages,
3492 			    bp->b_xio.xio_npages
3493 			);
3494 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3495 			    (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3496 		}
3497 	}
3498 
3499 	/* adjust space use on already-dirty buffer */
3500 	if (bp->b_flags & B_DELWRI) {
3501 		spin_lock(&bufcspin);
3502 		dirtybufspace += newbsize - bp->b_bufsize;
3503 		if (bp->b_flags & B_HEAVY)
3504 			dirtybufspacehw += newbsize - bp->b_bufsize;
3505 		spin_unlock(&bufcspin);
3506 	}
3507 	if (newbsize < bp->b_bufsize)
3508 		bufspacewakeup();
3509 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3510 	bp->b_bcount = size;		/* requested buffer size	*/
3511 	return 1;
3512 }
3513 
3514 /*
3515  * biowait:
3516  *
3517  *	Wait for buffer I/O completion, returning error status. B_EINTR
3518  *	is converted into an EINTR error but not cleared (since a chain
3519  *	of biowait() calls may occur).
3520  *
3521  *	On return bpdone() will have been called but the buffer will remain
3522  *	locked and will not have been brelse()'d.
3523  *
3524  *	NOTE!  If a timeout is specified and ETIMEDOUT occurs the I/O is
3525  *	likely still in progress on return.
3526  *
3527  *	NOTE!  This operation is on a BIO, not a BUF.
3528  *
3529  *	NOTE!  BIO_DONE is cleared by vn_strategy()
3530  *
3531  * MPSAFE
3532  */
3533 static __inline int
3534 _biowait(struct bio *bio, const char *wmesg, int to)
3535 {
3536 	struct buf *bp = bio->bio_buf;
3537 	u_int32_t flags;
3538 	u_int32_t nflags;
3539 	int error;
3540 
3541 	KKASSERT(bio == &bp->b_bio1);
3542 	for (;;) {
3543 		flags = bio->bio_flags;
3544 		if (flags & BIO_DONE)
3545 			break;
3546 		nflags = flags | BIO_WANT;
3547 		tsleep_interlock(bio, 0);
3548 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3549 			if (wmesg)
3550 				error = tsleep(bio, PINTERLOCKED, wmesg, to);
3551 			else if (bp->b_cmd == BUF_CMD_READ)
3552 				error = tsleep(bio, PINTERLOCKED, "biord", to);
3553 			else
3554 				error = tsleep(bio, PINTERLOCKED, "biowr", to);
3555 			if (error) {
3556 				kprintf("tsleep error biowait %d\n", error);
3557 				return (error);
3558 			}
3559 		}
3560 	}
3561 
3562 	/*
3563 	 * Finish up.
3564 	 */
3565 	KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3566 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3567 	if (bp->b_flags & B_EINTR)
3568 		return (EINTR);
3569 	if (bp->b_flags & B_ERROR)
3570 		return (bp->b_error ? bp->b_error : EIO);
3571 	return (0);
3572 }
3573 
3574 int
3575 biowait(struct bio *bio, const char *wmesg)
3576 {
3577 	return(_biowait(bio, wmesg, 0));
3578 }
3579 
3580 int
3581 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3582 {
3583 	return(_biowait(bio, wmesg, to));
3584 }
3585 
3586 /*
3587  * This associates a tracking count with an I/O.  vn_strategy() and
3588  * dev_dstrategy() do this automatically but there are a few cases
3589  * where a vnode or device layer is bypassed when a block translation
3590  * is cached.  In such cases bio_start_transaction() may be called on
3591  * the bypassed layers so the system gets an I/O in progress indication
3592  * for those higher layers.
3593  */
3594 void
3595 bio_start_transaction(struct bio *bio, struct bio_track *track)
3596 {
3597 	bio->bio_track = track;
3598 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3599 		dsched_new_buf(bio->bio_buf);
3600 	bio_track_ref(track);
3601 }
3602 
3603 /*
3604  * Initiate I/O on a vnode.
3605  *
3606  * SWAPCACHE OPERATION:
3607  *
3608  *	Real buffer cache buffers have a non-NULL bp->b_vp.  Unfortunately
3609  *	devfs also uses b_vp for fake buffers so we also have to check
3610  *	that B_PAGING is 0.  In this case the passed 'vp' is probably the
3611  *	underlying block device.  The swap assignments are related to the
3612  *	buffer cache buffer's b_vp, not the passed vp.
3613  *
3614  *	The passed vp == bp->b_vp only in the case where the strategy call
3615  *	is made on the vp itself for its own buffers (a regular file or
3616  *	block device vp).  The filesystem usually then re-calls vn_strategy()
3617  *	after translating the request to an underlying device.
3618  *
3619  *	Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3620  *	underlying buffer cache buffers.
3621  *
3622  *	We can only deal with page-aligned buffers at the moment, because
3623  *	we can't tell what the real dirty state for pages straddling a buffer
3624  *	are.
3625  *
3626  *	In order to call swap_pager_strategy() we must provide the VM object
3627  *	and base offset for the underlying buffer cache pages so it can find
3628  *	the swap blocks.
3629  */
3630 void
3631 vn_strategy(struct vnode *vp, struct bio *bio)
3632 {
3633 	struct bio_track *track;
3634 	struct buf *bp = bio->bio_buf;
3635 
3636 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3637 
3638 	/*
3639 	 * Set when an I/O is issued on the bp.  Cleared by consumers
3640 	 * (aka HAMMER), allowing the consumer to determine if I/O had
3641 	 * actually occurred.
3642 	 */
3643 	bp->b_flags |= B_IODEBUG;
3644 
3645 	/*
3646 	 * Handle the swap cache intercept.
3647 	 */
3648 	if (vn_cache_strategy(vp, bio))
3649 		return;
3650 
3651 	/*
3652 	 * Otherwise do the operation through the filesystem
3653 	 */
3654         if (bp->b_cmd == BUF_CMD_READ)
3655                 track = &vp->v_track_read;
3656         else
3657                 track = &vp->v_track_write;
3658 	KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3659 	bio->bio_track = track;
3660 	if (dsched_is_clear_buf_priv(bio->bio_buf))
3661 		dsched_new_buf(bio->bio_buf);
3662 	bio_track_ref(track);
3663         vop_strategy(*vp->v_ops, vp, bio);
3664 }
3665 
3666 static void vn_cache_strategy_callback(struct bio *bio);
3667 
3668 int
3669 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3670 {
3671 	struct buf *bp = bio->bio_buf;
3672 	struct bio *nbio;
3673 	vm_object_t object;
3674 	vm_page_t m;
3675 	int i;
3676 
3677 	/*
3678 	 * Is this buffer cache buffer suitable for reading from
3679 	 * the swap cache?
3680 	 */
3681 	if (vm_swapcache_read_enable == 0 ||
3682 	    bp->b_cmd != BUF_CMD_READ ||
3683 	    ((bp->b_flags & B_CLUSTER) == 0 &&
3684 	     (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3685 	    ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3686 	    (bp->b_bcount & PAGE_MASK) != 0) {
3687 		return(0);
3688 	}
3689 
3690 	/*
3691 	 * Figure out the original VM object (it will match the underlying
3692 	 * VM pages).  Note that swap cached data uses page indices relative
3693 	 * to that object, not relative to bio->bio_offset.
3694 	 */
3695 	if (bp->b_flags & B_CLUSTER)
3696 		object = vp->v_object;
3697 	else
3698 		object = bp->b_vp->v_object;
3699 
3700 	/*
3701 	 * In order to be able to use the swap cache all underlying VM
3702 	 * pages must be marked as such, and we can't have any bogus pages.
3703 	 */
3704 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3705 		m = bp->b_xio.xio_pages[i];
3706 		if ((m->flags & PG_SWAPPED) == 0)
3707 			break;
3708 		if (m == bogus_page)
3709 			break;
3710 	}
3711 
3712 	/*
3713 	 * If we are good then issue the I/O using swap_pager_strategy().
3714 	 *
3715 	 * We can only do this if the buffer actually supports object-backed
3716 	 * I/O.  If it doesn't npages will be 0.
3717 	 */
3718 	if (i && i == bp->b_xio.xio_npages) {
3719 		m = bp->b_xio.xio_pages[0];
3720 		nbio = push_bio(bio);
3721 		nbio->bio_done = vn_cache_strategy_callback;
3722 		nbio->bio_offset = ptoa(m->pindex);
3723 		KKASSERT(m->object == object);
3724 		swap_pager_strategy(object, nbio);
3725 		return(1);
3726 	}
3727 	return(0);
3728 }
3729 
3730 /*
3731  * This is a bit of a hack but since the vn_cache_strategy() function can
3732  * override a VFS's strategy function we must make sure that the bio, which
3733  * is probably bio2, doesn't leak an unexpected offset value back to the
3734  * filesystem.  The filesystem (e.g. UFS) might otherwise assume that the
3735  * bio went through its own file strategy function and the the bio2 offset
3736  * is a cached disk offset when, in fact, it isn't.
3737  */
3738 static void
3739 vn_cache_strategy_callback(struct bio *bio)
3740 {
3741 	bio->bio_offset = NOOFFSET;
3742 	biodone(pop_bio(bio));
3743 }
3744 
3745 /*
3746  * bpdone:
3747  *
3748  *	Finish I/O on a buffer after all BIOs have been processed.
3749  *	Called when the bio chain is exhausted or by biowait.  If called
3750  *	by biowait, elseit is typically 0.
3751  *
3752  *	bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3753  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3754  *	assuming B_INVAL is clear.
3755  *
3756  *	For the VMIO case, we set B_CACHE if the op was a read and no
3757  *	read error occured, or if the op was a write.  B_CACHE is never
3758  *	set if the buffer is invalid or otherwise uncacheable.
3759  *
3760  *	bpdone does not mess with B_INVAL, allowing the I/O routine or the
3761  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3762  *	in the biodone routine.
3763  */
3764 void
3765 bpdone(struct buf *bp, int elseit)
3766 {
3767 	buf_cmd_t cmd;
3768 
3769 	KASSERT(BUF_REFCNTNB(bp) > 0,
3770 		("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3771 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
3772 		("biodone: bp %p already done!", bp));
3773 
3774 	/*
3775 	 * No more BIOs are left.  All completion functions have been dealt
3776 	 * with, now we clean up the buffer.
3777 	 */
3778 	cmd = bp->b_cmd;
3779 	bp->b_cmd = BUF_CMD_DONE;
3780 
3781 	/*
3782 	 * Only reads and writes are processed past this point.
3783 	 */
3784 	if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3785 		if (cmd == BUF_CMD_FREEBLKS)
3786 			bp->b_flags |= B_NOCACHE;
3787 		if (elseit)
3788 			brelse(bp);
3789 		return;
3790 	}
3791 
3792 	/*
3793 	 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3794 	 * a lot worse.  XXX - move this above the clearing of b_cmd
3795 	 */
3796 	if (LIST_FIRST(&bp->b_dep) != NULL)
3797 		buf_complete(bp);	/* MPSAFE */
3798 
3799 	/*
3800 	 * A failed write must re-dirty the buffer unless B_INVAL
3801 	 * was set.  Only applicable to normal buffers (with VPs).
3802 	 * vinum buffers may not have a vp.
3803 	 */
3804 	if (cmd == BUF_CMD_WRITE &&
3805 	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3806 		bp->b_flags &= ~B_NOCACHE;
3807 		if (bp->b_vp)
3808 			bdirty(bp);
3809 	}
3810 
3811 	if (bp->b_flags & B_VMIO) {
3812 		int i;
3813 		vm_ooffset_t foff;
3814 		vm_page_t m;
3815 		vm_object_t obj;
3816 		int iosize;
3817 		struct vnode *vp = bp->b_vp;
3818 
3819 		obj = vp->v_object;
3820 
3821 #if defined(VFS_BIO_DEBUG)
3822 		if (vp->v_auxrefs == 0)
3823 			panic("biodone: zero vnode hold count");
3824 		if ((vp->v_flag & VOBJBUF) == 0)
3825 			panic("biodone: vnode is not setup for merged cache");
3826 #endif
3827 
3828 		foff = bp->b_loffset;
3829 		KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3830 		KASSERT(obj != NULL, ("biodone: missing VM object"));
3831 
3832 #if defined(VFS_BIO_DEBUG)
3833 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3834 			kprintf("biodone: paging in progress(%d) < "
3835 				"bp->b_xio.xio_npages(%d)\n",
3836 				obj->paging_in_progress,
3837 				bp->b_xio.xio_npages);
3838 		}
3839 #endif
3840 
3841 		/*
3842 		 * Set B_CACHE if the op was a normal read and no error
3843 		 * occured.  B_CACHE is set for writes in the b*write()
3844 		 * routines.
3845 		 */
3846 		iosize = bp->b_bcount - bp->b_resid;
3847 		if (cmd == BUF_CMD_READ &&
3848 		    (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3849 			bp->b_flags |= B_CACHE;
3850 		}
3851 
3852 		vm_object_hold(obj);
3853 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3854 			int bogusflag = 0;
3855 			int resid;
3856 
3857 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3858 			if (resid > iosize)
3859 				resid = iosize;
3860 
3861 			/*
3862 			 * cleanup bogus pages, restoring the originals.  Since
3863 			 * the originals should still be wired, we don't have
3864 			 * to worry about interrupt/freeing races destroying
3865 			 * the VM object association.
3866 			 */
3867 			m = bp->b_xio.xio_pages[i];
3868 			if (m == bogus_page) {
3869 				bogusflag = 1;
3870 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3871 				if (m == NULL)
3872 					panic("biodone: page disappeared");
3873 				bp->b_xio.xio_pages[i] = m;
3874 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3875 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3876 			}
3877 #if defined(VFS_BIO_DEBUG)
3878 			if (OFF_TO_IDX(foff) != m->pindex) {
3879 				kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3880 					"mismatch\n",
3881 					(unsigned long)foff, (long)m->pindex);
3882 			}
3883 #endif
3884 
3885 			/*
3886 			 * In the write case, the valid and clean bits are
3887 			 * already changed correctly (see bdwrite()), so we
3888 			 * only need to do this here in the read case.
3889 			 */
3890 			vm_page_busy_wait(m, FALSE, "bpdpgw");
3891 			if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3892 				vfs_clean_one_page(bp, i, m);
3893 			}
3894 			vm_page_flag_clear(m, PG_ZERO);
3895 
3896 			/*
3897 			 * when debugging new filesystems or buffer I/O
3898 			 * methods, this is the most common error that pops
3899 			 * up.  if you see this, you have not set the page
3900 			 * busy flag correctly!!!
3901 			 */
3902 			if (m->busy == 0) {
3903 				kprintf("biodone: page busy < 0, "
3904 				    "pindex: %d, foff: 0x(%x,%x), "
3905 				    "resid: %d, index: %d\n",
3906 				    (int) m->pindex, (int)(foff >> 32),
3907 						(int) foff & 0xffffffff, resid, i);
3908 				if (!vn_isdisk(vp, NULL))
3909 					kprintf(" iosize: %ld, loffset: %lld, "
3910 						"flags: 0x%08x, npages: %d\n",
3911 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
3912 					    (long long)bp->b_loffset,
3913 					    bp->b_flags, bp->b_xio.xio_npages);
3914 				else
3915 					kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3916 					    (long long)bp->b_loffset,
3917 					    bp->b_flags, bp->b_xio.xio_npages);
3918 				kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3919 				    m->valid, m->dirty, m->wire_count);
3920 				panic("biodone: page busy < 0");
3921 			}
3922 			vm_page_io_finish(m);
3923 			vm_page_wakeup(m);
3924 			vm_object_pip_wakeup(obj);
3925 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3926 			iosize -= resid;
3927 		}
3928 		bp->b_flags &= ~B_HASBOGUS;
3929 		vm_object_drop(obj);
3930 	}
3931 
3932 	/*
3933 	 * Finish up by releasing the buffer.  There are no more synchronous
3934 	 * or asynchronous completions, those were handled by bio_done
3935 	 * callbacks.
3936 	 */
3937 	if (elseit) {
3938 		if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3939 			brelse(bp);
3940 		else
3941 			bqrelse(bp);
3942 	}
3943 }
3944 
3945 /*
3946  * Normal biodone.
3947  */
3948 void
3949 biodone(struct bio *bio)
3950 {
3951 	struct buf *bp = bio->bio_buf;
3952 
3953 	runningbufwakeup(bp);
3954 
3955 	/*
3956 	 * Run up the chain of BIO's.   Leave b_cmd intact for the duration.
3957 	 */
3958 	while (bio) {
3959 		biodone_t *done_func;
3960 		struct bio_track *track;
3961 
3962 		/*
3963 		 * BIO tracking.  Most but not all BIOs are tracked.
3964 		 */
3965 		if ((track = bio->bio_track) != NULL) {
3966 			bio_track_rel(track);
3967 			bio->bio_track = NULL;
3968 		}
3969 
3970 		/*
3971 		 * A bio_done function terminates the loop.  The function
3972 		 * will be responsible for any further chaining and/or
3973 		 * buffer management.
3974 		 *
3975 		 * WARNING!  The done function can deallocate the buffer!
3976 		 */
3977 		if ((done_func = bio->bio_done) != NULL) {
3978 			bio->bio_done = NULL;
3979 			done_func(bio);
3980 			return;
3981 		}
3982 		bio = bio->bio_prev;
3983 	}
3984 
3985 	/*
3986 	 * If we've run out of bio's do normal [a]synchronous completion.
3987 	 */
3988 	bpdone(bp, 1);
3989 }
3990 
3991 /*
3992  * Synchronous biodone - this terminates a synchronous BIO.
3993  *
3994  * bpdone() is called with elseit=FALSE, leaving the buffer completed
3995  * but still locked.  The caller must brelse() the buffer after waiting
3996  * for completion.
3997  */
3998 void
3999 biodone_sync(struct bio *bio)
4000 {
4001 	struct buf *bp = bio->bio_buf;
4002 	int flags;
4003 	int nflags;
4004 
4005 	KKASSERT(bio == &bp->b_bio1);
4006 	bpdone(bp, 0);
4007 
4008 	for (;;) {
4009 		flags = bio->bio_flags;
4010 		nflags = (flags | BIO_DONE) & ~BIO_WANT;
4011 
4012 		if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4013 			if (flags & BIO_WANT)
4014 				wakeup(bio);
4015 			break;
4016 		}
4017 	}
4018 }
4019 
4020 /*
4021  * vfs_unbusy_pages:
4022  *
4023  *	This routine is called in lieu of iodone in the case of
4024  *	incomplete I/O.  This keeps the busy status for pages
4025  *	consistant.
4026  */
4027 void
4028 vfs_unbusy_pages(struct buf *bp)
4029 {
4030 	int i;
4031 
4032 	runningbufwakeup(bp);
4033 
4034 	if (bp->b_flags & B_VMIO) {
4035 		struct vnode *vp = bp->b_vp;
4036 		vm_object_t obj;
4037 
4038 		obj = vp->v_object;
4039 		vm_object_hold(obj);
4040 
4041 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4042 			vm_page_t m = bp->b_xio.xio_pages[i];
4043 
4044 			/*
4045 			 * When restoring bogus changes the original pages
4046 			 * should still be wired, so we are in no danger of
4047 			 * losing the object association and do not need
4048 			 * critical section protection particularly.
4049 			 */
4050 			if (m == bogus_page) {
4051 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4052 				if (!m) {
4053 					panic("vfs_unbusy_pages: page missing");
4054 				}
4055 				bp->b_xio.xio_pages[i] = m;
4056 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4057 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4058 			}
4059 			vm_page_busy_wait(m, FALSE, "bpdpgw");
4060 			vm_page_flag_clear(m, PG_ZERO);
4061 			vm_page_io_finish(m);
4062 			vm_page_wakeup(m);
4063 			vm_object_pip_wakeup(obj);
4064 		}
4065 		bp->b_flags &= ~B_HASBOGUS;
4066 		vm_object_drop(obj);
4067 	}
4068 }
4069 
4070 /*
4071  * vfs_busy_pages:
4072  *
4073  *	This routine is called before a device strategy routine.
4074  *	It is used to tell the VM system that paging I/O is in
4075  *	progress, and treat the pages associated with the buffer
4076  *	almost as being PG_BUSY.  Also the object 'paging_in_progress'
4077  *	flag is handled to make sure that the object doesn't become
4078  *	inconsistant.
4079  *
4080  *	Since I/O has not been initiated yet, certain buffer flags
4081  *	such as B_ERROR or B_INVAL may be in an inconsistant state
4082  *	and should be ignored.
4083  *
4084  * MPSAFE
4085  */
4086 void
4087 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4088 {
4089 	int i, bogus;
4090 	struct lwp *lp = curthread->td_lwp;
4091 
4092 	/*
4093 	 * The buffer's I/O command must already be set.  If reading,
4094 	 * B_CACHE must be 0 (double check against callers only doing
4095 	 * I/O when B_CACHE is 0).
4096 	 */
4097 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4098 	KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4099 
4100 	if (bp->b_flags & B_VMIO) {
4101 		vm_object_t obj;
4102 
4103 		obj = vp->v_object;
4104 		KASSERT(bp->b_loffset != NOOFFSET,
4105 			("vfs_busy_pages: no buffer offset"));
4106 
4107 		/*
4108 		 * Busy all the pages.  We have to busy them all at once
4109 		 * to avoid deadlocks.
4110 		 */
4111 retry:
4112 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4113 			vm_page_t m = bp->b_xio.xio_pages[i];
4114 
4115 			if (vm_page_busy_try(m, FALSE)) {
4116 				vm_page_sleep_busy(m, FALSE, "vbpage");
4117 				while (--i >= 0)
4118 					vm_page_wakeup(bp->b_xio.xio_pages[i]);
4119 				goto retry;
4120 			}
4121 		}
4122 
4123 		/*
4124 		 * Setup for I/O, soft-busy the page right now because
4125 		 * the next loop may block.
4126 		 */
4127 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4128 			vm_page_t m = bp->b_xio.xio_pages[i];
4129 
4130 			vm_page_flag_clear(m, PG_ZERO);
4131 			if ((bp->b_flags & B_CLUSTER) == 0) {
4132 				vm_object_pip_add(obj, 1);
4133 				vm_page_io_start(m);
4134 			}
4135 		}
4136 
4137 		/*
4138 		 * Adjust protections for I/O and do bogus-page mapping.
4139 		 * Assume that vm_page_protect() can block (it can block
4140 		 * if VM_PROT_NONE, don't take any chances regardless).
4141 		 *
4142 		 * In particular note that for writes we must incorporate
4143 		 * page dirtyness from the VM system into the buffer's
4144 		 * dirty range.
4145 		 *
4146 		 * For reads we theoretically must incorporate page dirtyness
4147 		 * from the VM system to determine if the page needs bogus
4148 		 * replacement, but we shortcut the test by simply checking
4149 		 * that all m->valid bits are set, indicating that the page
4150 		 * is fully valid and does not need to be re-read.  For any
4151 		 * VM system dirtyness the page will also be fully valid
4152 		 * since it was mapped at one point.
4153 		 */
4154 		bogus = 0;
4155 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4156 			vm_page_t m = bp->b_xio.xio_pages[i];
4157 
4158 			vm_page_flag_clear(m, PG_ZERO);	/* XXX */
4159 			if (bp->b_cmd == BUF_CMD_WRITE) {
4160 				/*
4161 				 * When readying a vnode-backed buffer for
4162 				 * a write we must zero-fill any invalid
4163 				 * portions of the backing VM pages, mark
4164 				 * it valid and clear related dirty bits.
4165 				 *
4166 				 * vfs_clean_one_page() incorporates any
4167 				 * VM dirtyness and updates the b_dirtyoff
4168 				 * range (after we've made the page RO).
4169 				 *
4170 				 * It is also expected that the pmap modified
4171 				 * bit has already been cleared by the
4172 				 * vm_page_protect().  We may not be able
4173 				 * to clear all dirty bits for a page if it
4174 				 * was also memory mapped (NFS).
4175 				 *
4176 				 * Finally be sure to unassign any swap-cache
4177 				 * backing store as it is now stale.
4178 				 */
4179 				vm_page_protect(m, VM_PROT_READ);
4180 				vfs_clean_one_page(bp, i, m);
4181 				swap_pager_unswapped(m);
4182 			} else if (m->valid == VM_PAGE_BITS_ALL) {
4183 				/*
4184 				 * When readying a vnode-backed buffer for
4185 				 * read we must replace any dirty pages with
4186 				 * a bogus page so dirty data is not destroyed
4187 				 * when filling gaps.
4188 				 *
4189 				 * To avoid testing whether the page is
4190 				 * dirty we instead test that the page was
4191 				 * at some point mapped (m->valid fully
4192 				 * valid) with the understanding that
4193 				 * this also covers the dirty case.
4194 				 */
4195 				bp->b_xio.xio_pages[i] = bogus_page;
4196 				bp->b_flags |= B_HASBOGUS;
4197 				bogus++;
4198 			} else if (m->valid & m->dirty) {
4199 				/*
4200 				 * This case should not occur as partial
4201 				 * dirtyment can only happen if the buffer
4202 				 * is B_CACHE, and this code is not entered
4203 				 * if the buffer is B_CACHE.
4204 				 */
4205 				kprintf("Warning: vfs_busy_pages - page not "
4206 					"fully valid! loff=%jx bpf=%08x "
4207 					"idx=%d val=%02x dir=%02x\n",
4208 					(intmax_t)bp->b_loffset, bp->b_flags,
4209 					i, m->valid, m->dirty);
4210 				vm_page_protect(m, VM_PROT_NONE);
4211 			} else {
4212 				/*
4213 				 * The page is not valid and can be made
4214 				 * part of the read.
4215 				 */
4216 				vm_page_protect(m, VM_PROT_NONE);
4217 			}
4218 			vm_page_wakeup(m);
4219 		}
4220 		if (bogus) {
4221 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4222 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4223 		}
4224 	}
4225 
4226 	/*
4227 	 * This is the easiest place to put the process accounting for the I/O
4228 	 * for now.
4229 	 */
4230 	if (lp != NULL) {
4231 		if (bp->b_cmd == BUF_CMD_READ)
4232 			lp->lwp_ru.ru_inblock++;
4233 		else
4234 			lp->lwp_ru.ru_oublock++;
4235 	}
4236 }
4237 
4238 /*
4239  * Tell the VM system that the pages associated with this buffer
4240  * are clean.  This is used for delayed writes where the data is
4241  * going to go to disk eventually without additional VM intevention.
4242  *
4243  * NOTE: While we only really need to clean through to b_bcount, we
4244  *	 just go ahead and clean through to b_bufsize.
4245  */
4246 static void
4247 vfs_clean_pages(struct buf *bp)
4248 {
4249 	vm_page_t m;
4250 	int i;
4251 
4252 	if ((bp->b_flags & B_VMIO) == 0)
4253 		return;
4254 
4255 	KASSERT(bp->b_loffset != NOOFFSET,
4256 		("vfs_clean_pages: no buffer offset"));
4257 
4258 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
4259 		m = bp->b_xio.xio_pages[i];
4260 		vfs_clean_one_page(bp, i, m);
4261 	}
4262 }
4263 
4264 /*
4265  * vfs_clean_one_page:
4266  *
4267  *	Set the valid bits and clear the dirty bits in a page within a
4268  *	buffer.  The range is restricted to the buffer's size and the
4269  *	buffer's logical offset might index into the first page.
4270  *
4271  *	The caller has busied or soft-busied the page and it is not mapped,
4272  *	test and incorporate the dirty bits into b_dirtyoff/end before
4273  *	clearing them.  Note that we need to clear the pmap modified bits
4274  *	after determining the the page was dirty, vm_page_set_validclean()
4275  *	does not do it for us.
4276  *
4277  *	This routine is typically called after a read completes (dirty should
4278  *	be zero in that case as we are not called on bogus-replace pages),
4279  *	or before a write is initiated.
4280  */
4281 static void
4282 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4283 {
4284 	int bcount;
4285 	int xoff;
4286 	int soff;
4287 	int eoff;
4288 
4289 	/*
4290 	 * Calculate offset range within the page but relative to buffer's
4291 	 * loffset.  loffset might be offset into the first page.
4292 	 */
4293 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4294 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4295 
4296 	if (pageno == 0) {
4297 		soff = xoff;
4298 		eoff = PAGE_SIZE;
4299 	} else {
4300 		soff = (pageno << PAGE_SHIFT);
4301 		eoff = soff + PAGE_SIZE;
4302 	}
4303 	if (eoff > bcount)
4304 		eoff = bcount;
4305 	if (soff >= eoff)
4306 		return;
4307 
4308 	/*
4309 	 * Test dirty bits and adjust b_dirtyoff/end.
4310 	 *
4311 	 * If dirty pages are incorporated into the bp any prior
4312 	 * B_NEEDCOMMIT state (NFS) must be cleared because the
4313 	 * caller has not taken into account the new dirty data.
4314 	 *
4315 	 * If the page was memory mapped the dirty bits might go beyond the
4316 	 * end of the buffer, but we can't really make the assumption that
4317 	 * a file EOF straddles the buffer (even though this is the case for
4318 	 * NFS if B_NEEDCOMMIT is also set).  So for the purposes of clearing
4319 	 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4320 	 * This also saves some console spam.
4321 	 *
4322 	 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4323 	 * NFS can handle huge commits but not huge writes.
4324 	 */
4325 	vm_page_test_dirty(m);
4326 	if (m->dirty) {
4327 		if ((bp->b_flags & B_NEEDCOMMIT) &&
4328 		    (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4329 			if (debug_commit)
4330 			kprintf("Warning: vfs_clean_one_page: bp %p "
4331 				"loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4332 				" cmd %d vd %02x/%02x x/s/e %d %d %d "
4333 				"doff/end %d %d\n",
4334 				bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4335 				bp->b_flags, bp->b_cmd,
4336 				m->valid, m->dirty, xoff, soff, eoff,
4337 				bp->b_dirtyoff, bp->b_dirtyend);
4338 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4339 			if (debug_commit)
4340 				print_backtrace(-1);
4341 		}
4342 		/*
4343 		 * Only clear the pmap modified bits if ALL the dirty bits
4344 		 * are set, otherwise the system might mis-clear portions
4345 		 * of a page.
4346 		 */
4347 		if (m->dirty == VM_PAGE_BITS_ALL &&
4348 		    (bp->b_flags & B_NEEDCOMMIT) == 0) {
4349 			pmap_clear_modify(m);
4350 		}
4351 		if (bp->b_dirtyoff > soff - xoff)
4352 			bp->b_dirtyoff = soff - xoff;
4353 		if (bp->b_dirtyend < eoff - xoff)
4354 			bp->b_dirtyend = eoff - xoff;
4355 	}
4356 
4357 	/*
4358 	 * Set related valid bits, clear related dirty bits.
4359 	 * Does not mess with the pmap modified bit.
4360 	 *
4361 	 * WARNING!  We cannot just clear all of m->dirty here as the
4362 	 *	     buffer cache buffers may use a DEV_BSIZE'd aligned
4363 	 *	     block size, or have an odd size (e.g. NFS at file EOF).
4364 	 *	     The putpages code can clear m->dirty to 0.
4365 	 *
4366 	 *	     If a VOP_WRITE generates a buffer cache buffer which
4367 	 *	     covers the same space as mapped writable pages the
4368 	 *	     buffer flush might not be able to clear all the dirty
4369 	 *	     bits and still require a putpages from the VM system
4370 	 *	     to finish it off.
4371 	 *
4372 	 * WARNING!  vm_page_set_validclean() currently assumes vm_token
4373 	 *	     is held.  The page might not be busied (bdwrite() case).
4374 	 *	     XXX remove this comment once we've validated that this
4375 	 *	     is no longer an issue.
4376 	 */
4377 	vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4378 }
4379 
4380 /*
4381  * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4382  * The page data is assumed to be valid (there is no zeroing here).
4383  */
4384 static void
4385 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4386 {
4387 	int bcount;
4388 	int xoff;
4389 	int soff;
4390 	int eoff;
4391 
4392 	/*
4393 	 * Calculate offset range within the page but relative to buffer's
4394 	 * loffset.  loffset might be offset into the first page.
4395 	 */
4396 	xoff = (int)bp->b_loffset & PAGE_MASK;	/* loffset offset into pg 0 */
4397 	bcount = bp->b_bcount + xoff;		/* offset adjusted */
4398 
4399 	if (pageno == 0) {
4400 		soff = xoff;
4401 		eoff = PAGE_SIZE;
4402 	} else {
4403 		soff = (pageno << PAGE_SHIFT);
4404 		eoff = soff + PAGE_SIZE;
4405 	}
4406 	if (eoff > bcount)
4407 		eoff = bcount;
4408 	if (soff >= eoff)
4409 		return;
4410 	vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4411 }
4412 
4413 /*
4414  * vfs_bio_clrbuf:
4415  *
4416  *	Clear a buffer.  This routine essentially fakes an I/O, so we need
4417  *	to clear B_ERROR and B_INVAL.
4418  *
4419  *	Note that while we only theoretically need to clear through b_bcount,
4420  *	we go ahead and clear through b_bufsize.
4421  */
4422 
4423 void
4424 vfs_bio_clrbuf(struct buf *bp)
4425 {
4426 	int i, mask = 0;
4427 	caddr_t sa, ea;
4428 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4429 		bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4430 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4431 		    (bp->b_loffset & PAGE_MASK) == 0) {
4432 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4433 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4434 				bp->b_resid = 0;
4435 				return;
4436 			}
4437 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4438 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4439 				bzero(bp->b_data, bp->b_bufsize);
4440 				bp->b_xio.xio_pages[0]->valid |= mask;
4441 				bp->b_resid = 0;
4442 				return;
4443 			}
4444 		}
4445 		sa = bp->b_data;
4446 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4447 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4448 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4449 			ea = (caddr_t)(vm_offset_t)ulmin(
4450 			    (u_long)(vm_offset_t)ea,
4451 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4452 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4453 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4454 				continue;
4455 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4456 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4457 					bzero(sa, ea - sa);
4458 				}
4459 			} else {
4460 				for (; sa < ea; sa += DEV_BSIZE, j++) {
4461 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4462 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4463 						bzero(sa, DEV_BSIZE);
4464 				}
4465 			}
4466 			bp->b_xio.xio_pages[i]->valid |= mask;
4467 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4468 		}
4469 		bp->b_resid = 0;
4470 	} else {
4471 		clrbuf(bp);
4472 	}
4473 }
4474 
4475 /*
4476  * vm_hold_load_pages:
4477  *
4478  *	Load pages into the buffer's address space.  The pages are
4479  *	allocated from the kernel object in order to reduce interference
4480  *	with the any VM paging I/O activity.  The range of loaded
4481  *	pages will be wired.
4482  *
4483  *	If a page cannot be allocated, the 'pagedaemon' is woken up to
4484  *	retrieve the full range (to - from) of pages.
4485  *
4486  * MPSAFE
4487  */
4488 void
4489 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4490 {
4491 	vm_offset_t pg;
4492 	vm_page_t p;
4493 	int index;
4494 
4495 	to = round_page(to);
4496 	from = round_page(from);
4497 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4498 
4499 	pg = from;
4500 	while (pg < to) {
4501 		/*
4502 		 * Note: must allocate system pages since blocking here
4503 		 * could intefere with paging I/O, no matter which
4504 		 * process we are.
4505 		 */
4506 		vm_object_hold(&kernel_object);
4507 		p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4508 				   (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4509 		vm_object_drop(&kernel_object);
4510 		if (p) {
4511 			vm_page_wire(p);
4512 			p->valid = VM_PAGE_BITS_ALL;
4513 			vm_page_flag_clear(p, PG_ZERO);
4514 			pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4515 			bp->b_xio.xio_pages[index] = p;
4516 			vm_page_wakeup(p);
4517 
4518 			pg += PAGE_SIZE;
4519 			++index;
4520 		}
4521 	}
4522 	bp->b_xio.xio_npages = index;
4523 }
4524 
4525 /*
4526  * Allocate a page for a buffer cache buffer.
4527  *
4528  * If NULL is returned the caller is expected to retry (typically check if
4529  * the page already exists on retry before trying to allocate one).
4530  *
4531  * NOTE! Low-memory handling is dealt with in b[q]relse(), not here.  This
4532  *	 function will use the system reserve with the hope that the page
4533  *	 allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4534  *	 is done with the buffer.
4535  */
4536 static
4537 vm_page_t
4538 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4539 {
4540 	int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4541 	vm_page_t p;
4542 
4543 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4544 
4545 	/*
4546 	 * Try a normal allocation first.
4547 	 */
4548 	p = vm_page_alloc(obj, pg, vmflags);
4549 	if (p)
4550 		return(p);
4551 	if (vm_page_lookup(obj, pg))
4552 		return(NULL);
4553 	vm_pageout_deficit += deficit;
4554 
4555 	/*
4556 	 * Try again, digging into the system reserve.
4557 	 *
4558 	 * Trying to recover pages from the buffer cache here can deadlock
4559 	 * against other threads trying to busy underlying pages so we
4560 	 * depend on the code in brelse() and bqrelse() to free/cache the
4561 	 * underlying buffer cache pages when memory is low.
4562 	 */
4563 	if (curthread->td_flags & TDF_SYSTHREAD)
4564 		vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4565 	else
4566 		vmflags |= VM_ALLOC_SYSTEM;
4567 
4568 	/*recoverbufpages();*/
4569 	p = vm_page_alloc(obj, pg, vmflags);
4570 	if (p)
4571 		return(p);
4572 	if (vm_page_lookup(obj, pg))
4573 		return(NULL);
4574 
4575 	/*
4576 	 * Wait for memory to free up and try again
4577 	 */
4578 	if (vm_page_count_severe())
4579 		++lowmempgallocs;
4580 	vm_wait(hz / 20 + 1);
4581 
4582 	p = vm_page_alloc(obj, pg, vmflags);
4583 	if (p)
4584 		return(p);
4585 	if (vm_page_lookup(obj, pg))
4586 		return(NULL);
4587 
4588 	/*
4589 	 * Ok, now we are really in trouble.
4590 	 */
4591 	{
4592 		static struct krate biokrate = { .freq = 1 };
4593 		krateprintf(&biokrate,
4594 			    "Warning: bio_page_alloc: memory exhausted "
4595 			    "during bufcache page allocation from %s\n",
4596 			    curthread->td_comm);
4597 	}
4598 	if (curthread->td_flags & TDF_SYSTHREAD)
4599 		vm_wait(hz / 20 + 1);
4600 	else
4601 		vm_wait(hz / 2 + 1);
4602 	return (NULL);
4603 }
4604 
4605 /*
4606  * vm_hold_free_pages:
4607  *
4608  *	Return pages associated with the buffer back to the VM system.
4609  *
4610  *	The range of pages underlying the buffer's address space will
4611  *	be unmapped and un-wired.
4612  *
4613  * MPSAFE
4614  */
4615 void
4616 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4617 {
4618 	vm_offset_t pg;
4619 	vm_page_t p;
4620 	int index, newnpages;
4621 
4622 	from = round_page(from);
4623 	to = round_page(to);
4624 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4625 	newnpages = index;
4626 
4627 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4628 		p = bp->b_xio.xio_pages[index];
4629 		if (p && (index < bp->b_xio.xio_npages)) {
4630 			if (p->busy) {
4631 				kprintf("vm_hold_free_pages: doffset: %lld, "
4632 					"loffset: %lld\n",
4633 					(long long)bp->b_bio2.bio_offset,
4634 					(long long)bp->b_loffset);
4635 			}
4636 			bp->b_xio.xio_pages[index] = NULL;
4637 			pmap_kremove(pg);
4638 			vm_page_busy_wait(p, FALSE, "vmhldpg");
4639 			vm_page_unwire(p, 0);
4640 			vm_page_free(p);
4641 		}
4642 	}
4643 	bp->b_xio.xio_npages = newnpages;
4644 }
4645 
4646 /*
4647  * vmapbuf:
4648  *
4649  *	Map a user buffer into KVM via a pbuf.  On return the buffer's
4650  *	b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4651  *	initialized.
4652  */
4653 int
4654 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4655 {
4656 	caddr_t addr;
4657 	vm_offset_t va;
4658 	vm_page_t m;
4659 	int vmprot;
4660 	int error;
4661 	int pidx;
4662 	int i;
4663 
4664 	/*
4665 	 * bp had better have a command and it better be a pbuf.
4666 	 */
4667 	KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4668 	KKASSERT(bp->b_flags & B_PAGING);
4669 	KKASSERT(bp->b_kvabase);
4670 
4671 	if (bytes < 0)
4672 		return (-1);
4673 
4674 	/*
4675 	 * Map the user data into KVM.  Mappings have to be page-aligned.
4676 	 */
4677 	addr = (caddr_t)trunc_page((vm_offset_t)udata);
4678 	pidx = 0;
4679 
4680 	vmprot = VM_PROT_READ;
4681 	if (bp->b_cmd == BUF_CMD_READ)
4682 		vmprot |= VM_PROT_WRITE;
4683 
4684 	while (addr < udata + bytes) {
4685 		/*
4686 		 * Do the vm_fault if needed; do the copy-on-write thing
4687 		 * when reading stuff off device into memory.
4688 		 *
4689 		 * vm_fault_page*() returns a held VM page.
4690 		 */
4691 		va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4692 		va = trunc_page(va);
4693 
4694 		m = vm_fault_page_quick(va, vmprot, &error);
4695 		if (m == NULL) {
4696 			for (i = 0; i < pidx; ++i) {
4697 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
4698 			    bp->b_xio.xio_pages[i] = NULL;
4699 			}
4700 			return(-1);
4701 		}
4702 		bp->b_xio.xio_pages[pidx] = m;
4703 		addr += PAGE_SIZE;
4704 		++pidx;
4705 	}
4706 
4707 	/*
4708 	 * Map the page array and set the buffer fields to point to
4709 	 * the mapped data buffer.
4710 	 */
4711 	if (pidx > btoc(MAXPHYS))
4712 		panic("vmapbuf: mapped more than MAXPHYS");
4713 	pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4714 
4715 	bp->b_xio.xio_npages = pidx;
4716 	bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4717 	bp->b_bcount = bytes;
4718 	bp->b_bufsize = bytes;
4719 	return(0);
4720 }
4721 
4722 /*
4723  * vunmapbuf:
4724  *
4725  *	Free the io map PTEs associated with this IO operation.
4726  *	We also invalidate the TLB entries and restore the original b_addr.
4727  */
4728 void
4729 vunmapbuf(struct buf *bp)
4730 {
4731 	int pidx;
4732 	int npages;
4733 
4734 	KKASSERT(bp->b_flags & B_PAGING);
4735 
4736 	npages = bp->b_xio.xio_npages;
4737 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4738 	for (pidx = 0; pidx < npages; ++pidx) {
4739 		vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4740 		bp->b_xio.xio_pages[pidx] = NULL;
4741 	}
4742 	bp->b_xio.xio_npages = 0;
4743 	bp->b_data = bp->b_kvabase;
4744 }
4745 
4746 /*
4747  * Scan all buffers in the system and issue the callback.
4748  */
4749 int
4750 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4751 {
4752 	int count = 0;
4753 	int error;
4754 	int n;
4755 
4756 	for (n = 0; n < nbuf; ++n) {
4757 		if ((error = callback(&buf[n], info)) < 0) {
4758 			count = error;
4759 			break;
4760 		}
4761 		count += error;
4762 	}
4763 	return (count);
4764 }
4765 
4766 /*
4767  * nestiobuf_iodone: biodone callback for nested buffers and propagate
4768  * completion to the master buffer.
4769  */
4770 static void
4771 nestiobuf_iodone(struct bio *bio)
4772 {
4773 	struct bio *mbio;
4774 	struct buf *mbp, *bp;
4775 	struct devstat *stats;
4776 	int error;
4777 	int donebytes;
4778 
4779 	bp = bio->bio_buf;
4780 	mbio = bio->bio_caller_info1.ptr;
4781 	stats = bio->bio_caller_info2.ptr;
4782 	mbp = mbio->bio_buf;
4783 
4784 	KKASSERT(bp->b_bcount <= bp->b_bufsize);
4785 	KKASSERT(mbp != bp);
4786 
4787 	error = bp->b_error;
4788 	if (bp->b_error == 0 &&
4789 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4790 		/*
4791 		 * Not all got transfered, raise an error. We have no way to
4792 		 * propagate these conditions to mbp.
4793 		 */
4794 		error = EIO;
4795 	}
4796 
4797 	donebytes = bp->b_bufsize;
4798 
4799 	relpbuf(bp, NULL);
4800 
4801 	nestiobuf_done(mbio, donebytes, error, stats);
4802 }
4803 
4804 void
4805 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4806 {
4807 	struct buf *mbp;
4808 
4809 	mbp = mbio->bio_buf;
4810 
4811 	KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4812 
4813 	/*
4814 	 * If an error occured, propagate it to the master buffer.
4815 	 *
4816 	 * Several biodone()s may wind up running concurrently so
4817 	 * use an atomic op to adjust b_flags.
4818 	 */
4819 	if (error) {
4820 		mbp->b_error = error;
4821 		atomic_set_int(&mbp->b_flags, B_ERROR);
4822 	}
4823 
4824 	/*
4825 	 * Decrement the operations in progress counter and terminate the
4826 	 * I/O if this was the last bit.
4827 	 */
4828 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4829 		mbp->b_resid = 0;
4830 		if (stats)
4831 			devstat_end_transaction_buf(stats, mbp);
4832 		biodone(mbio);
4833 	}
4834 }
4835 
4836 /*
4837  * Initialize a nestiobuf for use.  Set an initial count of 1 to prevent
4838  * the mbio from being biodone()'d while we are still adding sub-bios to
4839  * it.
4840  */
4841 void
4842 nestiobuf_init(struct bio *bio)
4843 {
4844 	bio->bio_driver_info = (void *)1;
4845 }
4846 
4847 /*
4848  * The BIOs added to the nestedio have already been started, remove the
4849  * count that placeheld our mbio and biodone() it if the count would
4850  * transition to 0.
4851  */
4852 void
4853 nestiobuf_start(struct bio *mbio)
4854 {
4855 	struct buf *mbp = mbio->bio_buf;
4856 
4857 	/*
4858 	 * Decrement the operations in progress counter and terminate the
4859 	 * I/O if this was the last bit.
4860 	 */
4861 	if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4862 		if (mbp->b_flags & B_ERROR)
4863 			mbp->b_resid = mbp->b_bcount;
4864 		else
4865 			mbp->b_resid = 0;
4866 		biodone(mbio);
4867 	}
4868 }
4869 
4870 /*
4871  * Set an intermediate error prior to calling nestiobuf_start()
4872  */
4873 void
4874 nestiobuf_error(struct bio *mbio, int error)
4875 {
4876 	struct buf *mbp = mbio->bio_buf;
4877 
4878 	if (error) {
4879 		mbp->b_error = error;
4880 		atomic_set_int(&mbp->b_flags, B_ERROR);
4881 	}
4882 }
4883 
4884 /*
4885  * nestiobuf_add: setup a "nested" buffer.
4886  *
4887  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4888  * => 'bp' should be a buffer allocated by getiobuf.
4889  * => 'offset' is a byte offset in the master buffer.
4890  * => 'size' is a size in bytes of this nested buffer.
4891  */
4892 void
4893 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4894 {
4895 	struct buf *mbp = mbio->bio_buf;
4896 	struct vnode *vp = mbp->b_vp;
4897 
4898 	KKASSERT(mbp->b_bcount >= offset + size);
4899 
4900 	atomic_add_int((int *)&mbio->bio_driver_info, 1);
4901 
4902 	/* kernel needs to own the lock for it to be released in biodone */
4903 	BUF_KERNPROC(bp);
4904 	bp->b_vp = vp;
4905 	bp->b_cmd = mbp->b_cmd;
4906 	bp->b_bio1.bio_done = nestiobuf_iodone;
4907 	bp->b_data = (char *)mbp->b_data + offset;
4908 	bp->b_resid = bp->b_bcount = size;
4909 	bp->b_bufsize = bp->b_bcount;
4910 
4911 	bp->b_bio1.bio_track = NULL;
4912 	bp->b_bio1.bio_caller_info1.ptr = mbio;
4913 	bp->b_bio1.bio_caller_info2.ptr = stats;
4914 }
4915 
4916 /*
4917  * print out statistics from the current status of the buffer pool
4918  * this can be toggeled by the system control option debug.syncprt
4919  */
4920 #ifdef DEBUG
4921 void
4922 vfs_bufstats(void)
4923 {
4924         int i, j, count;
4925         struct buf *bp;
4926         struct bqueues *dp;
4927         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4928         static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4929 
4930         for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4931                 count = 0;
4932                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4933                         counts[j] = 0;
4934 
4935 		spin_lock(&bufqspin);
4936                 TAILQ_FOREACH(bp, dp, b_freelist) {
4937                         counts[bp->b_bufsize/PAGE_SIZE]++;
4938                         count++;
4939                 }
4940 		spin_unlock(&bufqspin);
4941 
4942                 kprintf("%s: total-%d", bname[i], count);
4943                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4944                         if (counts[j] != 0)
4945                                 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4946                 kprintf("\n");
4947         }
4948 }
4949 #endif
4950 
4951 #ifdef DDB
4952 
4953 DB_SHOW_COMMAND(buffer, db_show_buffer)
4954 {
4955 	/* get args */
4956 	struct buf *bp = (struct buf *)addr;
4957 
4958 	if (!have_addr) {
4959 		db_printf("usage: show buffer <addr>\n");
4960 		return;
4961 	}
4962 
4963 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4964 	db_printf("b_cmd = %d\n", bp->b_cmd);
4965 	db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4966 		  "b_resid = %d\n, b_data = %p, "
4967 		  "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4968 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4969 		  bp->b_data,
4970 		  (long long)bp->b_bio2.bio_offset,
4971 		  (long long)(bp->b_bio2.bio_next ?
4972 				bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4973 	if (bp->b_xio.xio_npages) {
4974 		int i;
4975 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4976 			bp->b_xio.xio_npages);
4977 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
4978 			vm_page_t m;
4979 			m = bp->b_xio.xio_pages[i];
4980 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4981 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4982 			if ((i + 1) < bp->b_xio.xio_npages)
4983 				db_printf(",");
4984 		}
4985 		db_printf("\n");
4986 	}
4987 }
4988 #endif /* DDB */
4989