xref: /dflybsd-src/sys/kern/vfs_bio.c (revision 0402ebbc7d4b6f34d02791995169d25c4aec3b15)
1 /*
2  * Copyright (c) 1994,1997 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Absolutely no warranty of function or purpose is made by the author
12  *		John S. Dyson.
13  *
14  * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15  * $DragonFly: src/sys/kern/vfs_bio.c,v 1.35 2005/04/15 19:08:11 dillon Exp $
16  */
17 
18 /*
19  * this file contains a new buffer I/O scheme implementing a coherent
20  * VM object and buffer cache scheme.  Pains have been taken to make
21  * sure that the performance degradation associated with schemes such
22  * as this is not realized.
23  *
24  * Author:  John S. Dyson
25  * Significant help during the development and debugging phases
26  * had been provided by David Greenman, also of the FreeBSD core team.
27  *
28  * see man buf(9) for more info.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <vm/vm_page2.h>
60 
61 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
62 
63 struct	bio_ops bioops;		/* I/O operation notification */
64 
65 struct buf *buf;		/* buffer header pool */
66 struct swqueue bswlist;
67 
68 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
69 		vm_offset_t to);
70 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
71 		vm_offset_t to);
72 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
73 			       int pageno, vm_page_t m);
74 static void vfs_clean_pages(struct buf * bp);
75 static void vfs_setdirty(struct buf *bp);
76 static void vfs_vmio_release(struct buf *bp);
77 #if 0
78 static void vfs_backgroundwritedone(struct buf *bp);
79 #endif
80 static int flushbufqueues(void);
81 
82 static int bd_request;
83 
84 static void buf_daemon (void);
85 /*
86  * bogus page -- for I/O to/from partially complete buffers
87  * this is a temporary solution to the problem, but it is not
88  * really that bad.  it would be better to split the buffer
89  * for input in the case of buffers partially already in memory,
90  * but the code is intricate enough already.
91  */
92 vm_page_t bogus_page;
93 int vmiodirenable = TRUE;
94 int runningbufspace;
95 struct lwkt_token buftimetoken;  /* Interlock on setting prio and timo */
96 
97 static vm_offset_t bogus_offset;
98 
99 static int bufspace, maxbufspace,
100 	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
101 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
102 static int needsbuffer;
103 static int lorunningspace, hirunningspace, runningbufreq;
104 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
105 static int numfreebuffers, lofreebuffers, hifreebuffers;
106 static int getnewbufcalls;
107 static int getnewbufrestarts;
108 
109 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
110 	&numdirtybuffers, 0, "");
111 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
112 	&lodirtybuffers, 0, "");
113 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
114 	&hidirtybuffers, 0, "");
115 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
116 	&numfreebuffers, 0, "");
117 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
118 	&lofreebuffers, 0, "");
119 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
120 	&hifreebuffers, 0, "");
121 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
122 	&runningbufspace, 0, "");
123 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
124 	&lorunningspace, 0, "");
125 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
126 	&hirunningspace, 0, "");
127 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
128 	&maxbufspace, 0, "");
129 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
130 	&hibufspace, 0, "");
131 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
132 	&lobufspace, 0, "");
133 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
134 	&bufspace, 0, "");
135 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
136 	&maxbufmallocspace, 0, "");
137 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
138 	&bufmallocspace, 0, "");
139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
140 	&getnewbufcalls, 0, "");
141 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
142 	&getnewbufrestarts, 0, "");
143 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
144 	&vmiodirenable, 0, "");
145 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
146 	&bufdefragcnt, 0, "");
147 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
148 	&buffreekvacnt, 0, "");
149 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
150 	&bufreusecnt, 0, "");
151 
152 #if 0
153 /*
154  * Disable background writes for now.  There appear to be races in the
155  * flags tests and locking operations as well as races in the completion
156  * code modifying the original bp (origbp) without holding a lock, assuming
157  * splbio protection when there might not be splbio protection.
158  *
159  * XXX disable also because the RB tree can't handle multiple blocks with
160  * the same lblkno.
161  */
162 static int dobkgrdwrite = 0;
163 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
164 	"Do background writes (honoring the BV_BKGRDWRITE flag)?");
165 #endif
166 
167 static int bufhashmask;
168 static int bufhashshift;
169 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
170 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
171 char *buf_wmesg = BUF_WMESG;
172 
173 extern int vm_swap_size;
174 
175 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
176 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
177 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
178 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
179 
180 /*
181  * Buffer hash table code.  Note that the logical block scans linearly, which
182  * gives us some L1 cache locality.
183  */
184 
185 static __inline
186 struct bufhashhdr *
187 bufhash(struct vnode *vnp, daddr_t bn)
188 {
189 	u_int64_t hashkey64;
190 	int hashkey;
191 
192 	/*
193 	 * A variation on the Fibonacci hash that Knuth credits to
194 	 * R. W. Floyd, see Knuth's _Art of Computer Programming,
195 	 * Volume 3 / Sorting and Searching_
196 	 *
197          * We reduce the argument to 32 bits before doing the hash to
198 	 * avoid the need for a slow 64x64 multiply on 32 bit platforms.
199 	 *
200 	 * sizeof(struct vnode) is 168 on i386, so toss some of the lower
201 	 * bits of the vnode address to reduce the key range, which
202 	 * improves the distribution of keys across buckets.
203 	 *
204 	 * The file system cylinder group blocks are very heavily
205 	 * used.  They are located at invervals of fbg, which is
206 	 * on the order of 89 to 94 * 2^10, depending on other
207 	 * filesystem parameters, for a 16k block size.  Smaller block
208 	 * sizes will reduce fpg approximately proportionally.  This
209 	 * will cause the cylinder group index to be hashed using the
210 	 * lower bits of the hash multiplier, which will not distribute
211 	 * the keys as uniformly in a classic Fibonacci hash where a
212 	 * relatively small number of the upper bits of the result
213 	 * are used.  Using 2^16 as a close-enough approximation to
214 	 * fpg, split the hash multiplier in half, with the upper 16
215 	 * bits being the inverse of the golden ratio, and the lower
216 	 * 16 bits being a fraction between 1/3 and 3/7 (closer to
217 	 * 3/7 in this case), that gives good experimental results.
218 	 */
219 	hashkey64 = ((u_int64_t)(uintptr_t)vnp >> 3) + (u_int64_t)bn;
220 	hashkey = (((u_int32_t)(hashkey64 + (hashkey64 >> 32)) * 0x9E376DB1u) >>
221 	    bufhashshift) & bufhashmask;
222 	return(&bufhashtbl[hashkey]);
223 }
224 
225 /*
226  *	numdirtywakeup:
227  *
228  *	If someone is blocked due to there being too many dirty buffers,
229  *	and numdirtybuffers is now reasonable, wake them up.
230  */
231 
232 static __inline void
233 numdirtywakeup(int level)
234 {
235 	if (numdirtybuffers <= level) {
236 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
237 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
238 			wakeup(&needsbuffer);
239 		}
240 	}
241 }
242 
243 /*
244  *	bufspacewakeup:
245  *
246  *	Called when buffer space is potentially available for recovery.
247  *	getnewbuf() will block on this flag when it is unable to free
248  *	sufficient buffer space.  Buffer space becomes recoverable when
249  *	bp's get placed back in the queues.
250  */
251 
252 static __inline void
253 bufspacewakeup(void)
254 {
255 	/*
256 	 * If someone is waiting for BUF space, wake them up.  Even
257 	 * though we haven't freed the kva space yet, the waiting
258 	 * process will be able to now.
259 	 */
260 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
261 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
262 		wakeup(&needsbuffer);
263 	}
264 }
265 
266 /*
267  * runningbufwakeup() - in-progress I/O accounting.
268  *
269  */
270 static __inline void
271 runningbufwakeup(struct buf *bp)
272 {
273 	if (bp->b_runningbufspace) {
274 		runningbufspace -= bp->b_runningbufspace;
275 		bp->b_runningbufspace = 0;
276 		if (runningbufreq && runningbufspace <= lorunningspace) {
277 			runningbufreq = 0;
278 			wakeup(&runningbufreq);
279 		}
280 	}
281 }
282 
283 /*
284  *	bufcountwakeup:
285  *
286  *	Called when a buffer has been added to one of the free queues to
287  *	account for the buffer and to wakeup anyone waiting for free buffers.
288  *	This typically occurs when large amounts of metadata are being handled
289  *	by the buffer cache ( else buffer space runs out first, usually ).
290  */
291 
292 static __inline void
293 bufcountwakeup(void)
294 {
295 	++numfreebuffers;
296 	if (needsbuffer) {
297 		needsbuffer &= ~VFS_BIO_NEED_ANY;
298 		if (numfreebuffers >= hifreebuffers)
299 			needsbuffer &= ~VFS_BIO_NEED_FREE;
300 		wakeup(&needsbuffer);
301 	}
302 }
303 
304 /*
305  *	waitrunningbufspace()
306  *
307  *	runningbufspace is a measure of the amount of I/O currently
308  *	running.  This routine is used in async-write situations to
309  *	prevent creating huge backups of pending writes to a device.
310  *	Only asynchronous writes are governed by this function.
311  *
312  *	Reads will adjust runningbufspace, but will not block based on it.
313  *	The read load has a side effect of reducing the allowed write load.
314  *
315  *	This does NOT turn an async write into a sync write.  It waits
316  *	for earlier writes to complete and generally returns before the
317  *	caller's write has reached the device.
318  */
319 static __inline void
320 waitrunningbufspace(void)
321 {
322 	while (runningbufspace > hirunningspace) {
323 		int s;
324 
325 		s = splbio();	/* fix race against interrupt/biodone() */
326 		++runningbufreq;
327 		tsleep(&runningbufreq, 0, "wdrain", 0);
328 		splx(s);
329 	}
330 }
331 
332 /*
333  *	vfs_buf_test_cache:
334  *
335  *	Called when a buffer is extended.  This function clears the B_CACHE
336  *	bit if the newly extended portion of the buffer does not contain
337  *	valid data.
338  */
339 static __inline__
340 void
341 vfs_buf_test_cache(struct buf *bp,
342 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
343 		  vm_page_t m)
344 {
345 	if (bp->b_flags & B_CACHE) {
346 		int base = (foff + off) & PAGE_MASK;
347 		if (vm_page_is_valid(m, base, size) == 0)
348 			bp->b_flags &= ~B_CACHE;
349 	}
350 }
351 
352 static __inline__
353 void
354 bd_wakeup(int dirtybuflevel)
355 {
356 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
357 		bd_request = 1;
358 		wakeup(&bd_request);
359 	}
360 }
361 
362 /*
363  * bd_speedup - speedup the buffer cache flushing code
364  */
365 
366 static __inline__
367 void
368 bd_speedup(void)
369 {
370 	bd_wakeup(1);
371 }
372 
373 /*
374  * Initialize buffer headers and related structures.
375  */
376 
377 caddr_t
378 bufhashinit(caddr_t vaddr)
379 {
380 	/* first, make a null hash table */
381 	bufhashshift = 29;
382 	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
383 		bufhashshift--;
384 	bufhashtbl = (void *)vaddr;
385 	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
386 	--bufhashmask;
387 	return(vaddr);
388 }
389 
390 void
391 bufinit(void)
392 {
393 	struct buf *bp;
394 	int i;
395 
396 	TAILQ_INIT(&bswlist);
397 	LIST_INIT(&invalhash);
398 	lwkt_token_init(&buftimetoken);
399 
400 	for (i = 0; i <= bufhashmask; i++)
401 		LIST_INIT(&bufhashtbl[i]);
402 
403 	/* next, make a null set of free lists */
404 	for (i = 0; i < BUFFER_QUEUES; i++)
405 		TAILQ_INIT(&bufqueues[i]);
406 
407 	/* finally, initialize each buffer header and stick on empty q */
408 	for (i = 0; i < nbuf; i++) {
409 		bp = &buf[i];
410 		bzero(bp, sizeof *bp);
411 		bp->b_flags = B_INVAL;	/* we're just an empty header */
412 		bp->b_dev = NODEV;
413 		bp->b_qindex = QUEUE_EMPTY;
414 		bp->b_xflags = 0;
415 		xio_init(&bp->b_xio);
416 		LIST_INIT(&bp->b_dep);
417 		BUF_LOCKINIT(bp);
418 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
419 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
420 	}
421 
422 	/*
423 	 * maxbufspace is the absolute maximum amount of buffer space we are
424 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
425 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
426 	 * used by most other processes.  The differential is required to
427 	 * ensure that buf_daemon is able to run when other processes might
428 	 * be blocked waiting for buffer space.
429 	 *
430 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
431 	 * this may result in KVM fragmentation which is not handled optimally
432 	 * by the system.
433 	 */
434 	maxbufspace = nbuf * BKVASIZE;
435 	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
436 	lobufspace = hibufspace - MAXBSIZE;
437 
438 	lorunningspace = 512 * 1024;
439 	hirunningspace = 1024 * 1024;
440 
441 /*
442  * Limit the amount of malloc memory since it is wired permanently into
443  * the kernel space.  Even though this is accounted for in the buffer
444  * allocation, we don't want the malloced region to grow uncontrolled.
445  * The malloc scheme improves memory utilization significantly on average
446  * (small) directories.
447  */
448 	maxbufmallocspace = hibufspace / 20;
449 
450 /*
451  * Reduce the chance of a deadlock occuring by limiting the number
452  * of delayed-write dirty buffers we allow to stack up.
453  */
454 	hidirtybuffers = nbuf / 4 + 20;
455 	numdirtybuffers = 0;
456 /*
457  * To support extreme low-memory systems, make sure hidirtybuffers cannot
458  * eat up all available buffer space.  This occurs when our minimum cannot
459  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
460  * BKVASIZE'd (8K) buffers.
461  */
462 	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
463 		hidirtybuffers >>= 1;
464 	}
465 	lodirtybuffers = hidirtybuffers / 2;
466 
467 /*
468  * Try to keep the number of free buffers in the specified range,
469  * and give special processes (e.g. like buf_daemon) access to an
470  * emergency reserve.
471  */
472 	lofreebuffers = nbuf / 18 + 5;
473 	hifreebuffers = 2 * lofreebuffers;
474 	numfreebuffers = nbuf;
475 
476 /*
477  * Maximum number of async ops initiated per buf_daemon loop.  This is
478  * somewhat of a hack at the moment, we really need to limit ourselves
479  * based on the number of bytes of I/O in-transit that were initiated
480  * from buf_daemon.
481  */
482 
483 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
484 	bogus_page = vm_page_alloc(kernel_object,
485 			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
486 			VM_ALLOC_NORMAL);
487 	vmstats.v_wire_count++;
488 
489 }
490 
491 /*
492  * bfreekva() - free the kva allocation for a buffer.
493  *
494  *	Must be called at splbio() or higher as this is the only locking for
495  *	buffer_map.
496  *
497  *	Since this call frees up buffer space, we call bufspacewakeup().
498  */
499 static void
500 bfreekva(struct buf * bp)
501 {
502 	int count;
503 
504 	if (bp->b_kvasize) {
505 		++buffreekvacnt;
506 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
507 		vm_map_lock(buffer_map);
508 		bufspace -= bp->b_kvasize;
509 		vm_map_delete(buffer_map,
510 		    (vm_offset_t) bp->b_kvabase,
511 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
512 		    &count
513 		);
514 		vm_map_unlock(buffer_map);
515 		vm_map_entry_release(count);
516 		bp->b_kvasize = 0;
517 		bufspacewakeup();
518 	}
519 }
520 
521 /*
522  *	bremfree:
523  *
524  *	Remove the buffer from the appropriate free list.
525  */
526 void
527 bremfree(struct buf * bp)
528 {
529 	int s = splbio();
530 	int old_qindex = bp->b_qindex;
531 
532 	if (bp->b_qindex != QUEUE_NONE) {
533 		KASSERT(BUF_REFCNTNB(bp) == 1,
534 				("bremfree: bp %p not locked",bp));
535 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
536 		bp->b_qindex = QUEUE_NONE;
537 	} else {
538 		if (BUF_REFCNTNB(bp) <= 1)
539 			panic("bremfree: removing a buffer not on a queue");
540 	}
541 
542 	/*
543 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
544 	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
545 	 * the buffer was free and we must decrement numfreebuffers.
546 	 */
547 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
548 		switch(old_qindex) {
549 		case QUEUE_DIRTY:
550 		case QUEUE_CLEAN:
551 		case QUEUE_EMPTY:
552 		case QUEUE_EMPTYKVA:
553 			--numfreebuffers;
554 			break;
555 		default:
556 			break;
557 		}
558 	}
559 	splx(s);
560 }
561 
562 
563 /*
564  * Get a buffer with the specified data.  Look in the cache first.  We
565  * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
566  * is set, the buffer is valid and we do not have to do anything ( see
567  * getblk() ).
568  */
569 int
570 bread(struct vnode * vp, daddr_t blkno, int size, struct buf ** bpp)
571 {
572 	struct buf *bp;
573 
574 	bp = getblk(vp, blkno, size, 0, 0);
575 	*bpp = bp;
576 
577 	/* if not found in cache, do some I/O */
578 	if ((bp->b_flags & B_CACHE) == 0) {
579 		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
580 		bp->b_flags |= B_READ;
581 		bp->b_flags &= ~(B_ERROR | B_INVAL);
582 		vfs_busy_pages(bp, 0);
583 		VOP_STRATEGY(vp, bp);
584 		return (biowait(bp));
585 	}
586 	return (0);
587 }
588 
589 /*
590  * Operates like bread, but also starts asynchronous I/O on
591  * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
592  * to initiating I/O . If B_CACHE is set, the buffer is valid
593  * and we do not have to do anything.
594  */
595 int
596 breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno,
597 	int *rabsize, int cnt, struct buf ** bpp)
598 {
599 	struct buf *bp, *rabp;
600 	int i;
601 	int rv = 0, readwait = 0;
602 
603 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
604 
605 	/* if not found in cache, do some I/O */
606 	if ((bp->b_flags & B_CACHE) == 0) {
607 		bp->b_flags |= B_READ;
608 		bp->b_flags &= ~(B_ERROR | B_INVAL);
609 		vfs_busy_pages(bp, 0);
610 		VOP_STRATEGY(vp, bp);
611 		++readwait;
612 	}
613 
614 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
615 		if (inmem(vp, *rablkno))
616 			continue;
617 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
618 
619 		if ((rabp->b_flags & B_CACHE) == 0) {
620 			rabp->b_flags |= B_READ | B_ASYNC;
621 			rabp->b_flags &= ~(B_ERROR | B_INVAL);
622 			vfs_busy_pages(rabp, 0);
623 			BUF_KERNPROC(rabp);
624 			VOP_STRATEGY(vp, rabp);
625 		} else {
626 			brelse(rabp);
627 		}
628 	}
629 
630 	if (readwait) {
631 		rv = biowait(bp);
632 	}
633 	return (rv);
634 }
635 
636 /*
637  * Write, release buffer on completion.  (Done by iodone
638  * if async).  Do not bother writing anything if the buffer
639  * is invalid.
640  *
641  * Note that we set B_CACHE here, indicating that buffer is
642  * fully valid and thus cacheable.  This is true even of NFS
643  * now so we set it generally.  This could be set either here
644  * or in biodone() since the I/O is synchronous.  We put it
645  * here.
646  */
647 int
648 bwrite(struct buf * bp)
649 {
650 	int oldflags, s;
651 #if 0
652 	struct buf *newbp;
653 #endif
654 
655 	if (bp->b_flags & B_INVAL) {
656 		brelse(bp);
657 		return (0);
658 	}
659 
660 	oldflags = bp->b_flags;
661 
662 	if (BUF_REFCNTNB(bp) == 0)
663 		panic("bwrite: buffer is not busy???");
664 	s = splbio();
665 	/*
666 	 * If a background write is already in progress, delay
667 	 * writing this block if it is asynchronous. Otherwise
668 	 * wait for the background write to complete.
669 	 */
670 	if (bp->b_xflags & BX_BKGRDINPROG) {
671 		if (bp->b_flags & B_ASYNC) {
672 			splx(s);
673 			bdwrite(bp);
674 			return (0);
675 		}
676 		bp->b_xflags |= BX_BKGRDWAIT;
677 		tsleep(&bp->b_xflags, 0, "biord", 0);
678 		if (bp->b_xflags & BX_BKGRDINPROG)
679 			panic("bwrite: still writing");
680 	}
681 
682 	/* Mark the buffer clean */
683 	bundirty(bp);
684 
685 #if 0
686 	/*
687 	 * If this buffer is marked for background writing and we
688 	 * do not have to wait for it, make a copy and write the
689 	 * copy so as to leave this buffer ready for further use.
690 	 *
691 	 * This optimization eats a lot of memory.  If we have a page
692 	 * or buffer shortfull we can't do it.
693 	 *
694 	 * XXX DISABLED!  This had to be removed to support the RB_TREE
695 	 * work and, really, this isn't the best place to do this sort
696 	 * of thing anyway.  We really need a device copy-on-write feature.
697 	 */
698 	if (dobkgrdwrite &&
699 	    (bp->b_xflags & BX_BKGRDWRITE) &&
700 	    (bp->b_flags & B_ASYNC) &&
701 	    !vm_page_count_severe() &&
702 	    !buf_dirty_count_severe()) {
703 		if (bp->b_flags & B_CALL)
704 			panic("bwrite: need chained iodone");
705 
706 		/* get a new block */
707 		newbp = geteblk(bp->b_bufsize);
708 
709 		/* set it to be identical to the old block */
710 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
711 		newbp->b_lblkno = bp->b_lblkno;
712 		newbp->b_blkno = bp->b_blkno;
713 		newbp->b_offset = bp->b_offset;
714 		newbp->b_iodone = vfs_backgroundwritedone;
715 		newbp->b_flags |= B_ASYNC | B_CALL;
716 		newbp->b_flags &= ~B_INVAL;
717 		bgetvp(bp->b_vp, newbp);
718 
719 		/* move over the dependencies */
720 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
721 			(*bioops.io_movedeps)(bp, newbp);
722 
723 		/*
724 		 * Initiate write on the copy, release the original to
725 		 * the B_LOCKED queue so that it cannot go away until
726 		 * the background write completes. If not locked it could go
727 		 * away and then be reconstituted while it was being written.
728 		 * If the reconstituted buffer were written, we could end up
729 		 * with two background copies being written at the same time.
730 		 */
731 		bp->b_xflags |= BX_BKGRDINPROG;
732 		bp->b_flags |= B_LOCKED;
733 		bqrelse(bp);
734 		bp = newbp;
735 	}
736 #endif
737 
738 	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
739 	bp->b_flags |= B_CACHE;
740 
741 	bp->b_vp->v_numoutput++;
742 	vfs_busy_pages(bp, 1);
743 
744 	/*
745 	 * Normal bwrites pipeline writes
746 	 */
747 	bp->b_runningbufspace = bp->b_bufsize;
748 	runningbufspace += bp->b_runningbufspace;
749 
750 	splx(s);
751 	if (oldflags & B_ASYNC)
752 		BUF_KERNPROC(bp);
753 	VOP_STRATEGY(bp->b_vp, bp);
754 
755 	if ((oldflags & B_ASYNC) == 0) {
756 		int rtval = biowait(bp);
757 		brelse(bp);
758 		return (rtval);
759 	} else if ((oldflags & B_NOWDRAIN) == 0) {
760 		/*
761 		 * don't allow the async write to saturate the I/O
762 		 * system.  Deadlocks can occur only if a device strategy
763 		 * routine (like in VN) turns around and issues another
764 		 * high-level write, in which case B_NOWDRAIN is expected
765 		 * to be set.   Otherwise we will not deadlock here because
766 		 * we are blocking waiting for I/O that is already in-progress
767 		 * to complete.
768 		 */
769 		waitrunningbufspace();
770 	}
771 
772 	return (0);
773 }
774 
775 #if 0
776 /*
777  * Complete a background write started from bwrite.
778  */
779 static void
780 vfs_backgroundwritedone(struct buf *bp)
781 {
782 	struct buf *origbp;
783 
784 	/*
785 	 * Find the original buffer that we are writing.
786 	 */
787 	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
788 		panic("backgroundwritedone: lost buffer");
789 	/*
790 	 * Process dependencies then return any unfinished ones.
791 	 */
792 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
793 		(*bioops.io_complete)(bp);
794 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
795 		(*bioops.io_movedeps)(bp, origbp);
796 	/*
797 	 * Clear the BX_BKGRDINPROG flag in the original buffer
798 	 * and awaken it if it is waiting for the write to complete.
799 	 * If BX_BKGRDINPROG is not set in the original buffer it must
800 	 * have been released and re-instantiated - which is not legal.
801 	 */
802 	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
803 	origbp->b_xflags &= ~BX_BKGRDINPROG;
804 	if (origbp->b_xflags & BX_BKGRDWAIT) {
805 		origbp->b_xflags &= ~BX_BKGRDWAIT;
806 		wakeup(&origbp->b_xflags);
807 	}
808 	/*
809 	 * Clear the B_LOCKED flag and remove it from the locked
810 	 * queue if it currently resides there.
811 	 */
812 	origbp->b_flags &= ~B_LOCKED;
813 	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
814 		bremfree(origbp);
815 		bqrelse(origbp);
816 	}
817 	/*
818 	 * This buffer is marked B_NOCACHE, so when it is released
819 	 * by biodone, it will be tossed. We mark it with B_READ
820 	 * to avoid biodone doing a second vwakeup.
821 	 */
822 	bp->b_flags |= B_NOCACHE | B_READ;
823 	bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE);
824 	bp->b_iodone = 0;
825 	biodone(bp);
826 }
827 #endif
828 
829 /*
830  * Delayed write. (Buffer is marked dirty).  Do not bother writing
831  * anything if the buffer is marked invalid.
832  *
833  * Note that since the buffer must be completely valid, we can safely
834  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
835  * biodone() in order to prevent getblk from writing the buffer
836  * out synchronously.
837  */
838 void
839 bdwrite(struct buf *bp)
840 {
841 	if (BUF_REFCNTNB(bp) == 0)
842 		panic("bdwrite: buffer is not busy");
843 
844 	if (bp->b_flags & B_INVAL) {
845 		brelse(bp);
846 		return;
847 	}
848 	bdirty(bp);
849 
850 	/*
851 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
852 	 * true even of NFS now.
853 	 */
854 	bp->b_flags |= B_CACHE;
855 
856 	/*
857 	 * This bmap keeps the system from needing to do the bmap later,
858 	 * perhaps when the system is attempting to do a sync.  Since it
859 	 * is likely that the indirect block -- or whatever other datastructure
860 	 * that the filesystem needs is still in memory now, it is a good
861 	 * thing to do this.  Note also, that if the pageout daemon is
862 	 * requesting a sync -- there might not be enough memory to do
863 	 * the bmap then...  So, this is important to do.
864 	 */
865 	if (bp->b_lblkno == bp->b_blkno) {
866 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
867 	}
868 
869 	/*
870 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
871 	 */
872 	vfs_setdirty(bp);
873 
874 	/*
875 	 * We need to do this here to satisfy the vnode_pager and the
876 	 * pageout daemon, so that it thinks that the pages have been
877 	 * "cleaned".  Note that since the pages are in a delayed write
878 	 * buffer -- the VFS layer "will" see that the pages get written
879 	 * out on the next sync, or perhaps the cluster will be completed.
880 	 */
881 	vfs_clean_pages(bp);
882 	bqrelse(bp);
883 
884 	/*
885 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
886 	 * buffers (midpoint between our recovery point and our stall
887 	 * point).
888 	 */
889 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
890 
891 	/*
892 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
893 	 * due to the softdep code.
894 	 */
895 }
896 
897 /*
898  *	bdirty:
899  *
900  *	Turn buffer into delayed write request.  We must clear B_READ and
901  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
902  *	itself to properly update it in the dirty/clean lists.  We mark it
903  *	B_DONE to ensure that any asynchronization of the buffer properly
904  *	clears B_DONE ( else a panic will occur later ).
905  *
906  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
907  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
908  *	should only be called if the buffer is known-good.
909  *
910  *	Since the buffer is not on a queue, we do not update the numfreebuffers
911  *	count.
912  *
913  *	Must be called at splbio().
914  *	The buffer must be on QUEUE_NONE.
915  */
916 void
917 bdirty(struct buf *bp)
918 {
919 	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
920 	bp->b_flags &= ~(B_READ|B_RELBUF);
921 
922 	if ((bp->b_flags & B_DELWRI) == 0) {
923 		bp->b_flags |= B_DONE | B_DELWRI;
924 		reassignbuf(bp, bp->b_vp);
925 		++numdirtybuffers;
926 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
927 	}
928 }
929 
930 /*
931  *	bundirty:
932  *
933  *	Clear B_DELWRI for buffer.
934  *
935  *	Since the buffer is not on a queue, we do not update the numfreebuffers
936  *	count.
937  *
938  *	Must be called at splbio().
939  *
940  *	The buffer is typically on QUEUE_NONE but there is one case in
941  *	brelse() that calls this function after placing the buffer on
942  *	a different queue.
943  */
944 
945 void
946 bundirty(struct buf *bp)
947 {
948 	if (bp->b_flags & B_DELWRI) {
949 		bp->b_flags &= ~B_DELWRI;
950 		reassignbuf(bp, bp->b_vp);
951 		--numdirtybuffers;
952 		numdirtywakeup(lodirtybuffers);
953 	}
954 	/*
955 	 * Since it is now being written, we can clear its deferred write flag.
956 	 */
957 	bp->b_flags &= ~B_DEFERRED;
958 }
959 
960 /*
961  *	bawrite:
962  *
963  *	Asynchronous write.  Start output on a buffer, but do not wait for
964  *	it to complete.  The buffer is released when the output completes.
965  *
966  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
967  *	B_INVAL buffers.  Not us.
968  */
969 void
970 bawrite(struct buf * bp)
971 {
972 	bp->b_flags |= B_ASYNC;
973 	(void) VOP_BWRITE(bp->b_vp, bp);
974 }
975 
976 /*
977  *	bowrite:
978  *
979  *	Ordered write.  Start output on a buffer, and flag it so that the
980  *	device will write it in the order it was queued.  The buffer is
981  *	released when the output completes.  bwrite() ( or the VOP routine
982  *	anyway ) is responsible for handling B_INVAL buffers.
983  */
984 int
985 bowrite(struct buf * bp)
986 {
987 	bp->b_flags |= B_ORDERED | B_ASYNC;
988 	return (VOP_BWRITE(bp->b_vp, bp));
989 }
990 
991 /*
992  *	bwillwrite:
993  *
994  *	Called prior to the locking of any vnodes when we are expecting to
995  *	write.  We do not want to starve the buffer cache with too many
996  *	dirty buffers so we block here.  By blocking prior to the locking
997  *	of any vnodes we attempt to avoid the situation where a locked vnode
998  *	prevents the various system daemons from flushing related buffers.
999  */
1000 
1001 void
1002 bwillwrite(void)
1003 {
1004 	if (numdirtybuffers >= hidirtybuffers) {
1005 		int s;
1006 
1007 		s = splbio();
1008 		while (numdirtybuffers >= hidirtybuffers) {
1009 			bd_wakeup(1);
1010 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1011 			tsleep(&needsbuffer, 0, "flswai", 0);
1012 		}
1013 		splx(s);
1014 	}
1015 }
1016 
1017 /*
1018  * Return true if we have too many dirty buffers.
1019  */
1020 int
1021 buf_dirty_count_severe(void)
1022 {
1023 	return(numdirtybuffers >= hidirtybuffers);
1024 }
1025 
1026 /*
1027  *	brelse:
1028  *
1029  *	Release a busy buffer and, if requested, free its resources.  The
1030  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1031  *	to be accessed later as a cache entity or reused for other purposes.
1032  */
1033 void
1034 brelse(struct buf * bp)
1035 {
1036 	int s;
1037 
1038 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1039 
1040 	s = splbio();
1041 
1042 	if (bp->b_flags & B_LOCKED)
1043 		bp->b_flags &= ~B_ERROR;
1044 
1045 	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
1046 		/*
1047 		 * Failed write, redirty.  Must clear B_ERROR to prevent
1048 		 * pages from being scrapped.  If B_INVAL is set then
1049 		 * this case is not run and the next case is run to
1050 		 * destroy the buffer.  B_INVAL can occur if the buffer
1051 		 * is outside the range supported by the underlying device.
1052 		 */
1053 		bp->b_flags &= ~B_ERROR;
1054 		bdirty(bp);
1055 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
1056 	    (bp->b_bufsize <= 0)) {
1057 		/*
1058 		 * Either a failed I/O or we were asked to free or not
1059 		 * cache the buffer.
1060 		 */
1061 		bp->b_flags |= B_INVAL;
1062 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1063 			(*bioops.io_deallocate)(bp);
1064 		if (bp->b_flags & B_DELWRI) {
1065 			--numdirtybuffers;
1066 			numdirtywakeup(lodirtybuffers);
1067 		}
1068 		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
1069 		if ((bp->b_flags & B_VMIO) == 0) {
1070 			if (bp->b_bufsize)
1071 				allocbuf(bp, 0);
1072 			if (bp->b_vp)
1073 				brelvp(bp);
1074 		}
1075 	}
1076 
1077 	/*
1078 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1079 	 * is called with B_DELWRI set, the underlying pages may wind up
1080 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1081 	 * because pages associated with a B_DELWRI bp are marked clean.
1082 	 *
1083 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1084 	 * if B_DELWRI is set.
1085 	 *
1086 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1087 	 * on pages to return pages to the VM page queues.
1088 	 */
1089 	if (bp->b_flags & B_DELWRI)
1090 		bp->b_flags &= ~B_RELBUF;
1091 	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1092 		bp->b_flags |= B_RELBUF;
1093 
1094 	/*
1095 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1096 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1097 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1098 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1099 	 *
1100 	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1101 	 * invalidated.  B_ERROR cannot be set for a failed write unless the
1102 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1103 	 *
1104 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1105 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1106 	 * the commit state and we cannot afford to lose the buffer. If the
1107 	 * buffer has a background write in progress, we need to keep it
1108 	 * around to prevent it from being reconstituted and starting a second
1109 	 * background write.
1110 	 */
1111 	if ((bp->b_flags & B_VMIO)
1112 	    && !(bp->b_vp->v_tag == VT_NFS &&
1113 		 !vn_isdisk(bp->b_vp, NULL) &&
1114 		 (bp->b_flags & B_DELWRI))
1115 	    ) {
1116 
1117 		int i, j, resid;
1118 		vm_page_t m;
1119 		off_t foff;
1120 		vm_pindex_t poff;
1121 		vm_object_t obj;
1122 		struct vnode *vp;
1123 
1124 		vp = bp->b_vp;
1125 
1126 		/*
1127 		 * Get the base offset and length of the buffer.  Note that
1128 		 * in the VMIO case if the buffer block size is not
1129 		 * page-aligned then b_data pointer may not be page-aligned.
1130 		 * But our b_xio.xio_pages array *IS* page aligned.
1131 		 *
1132 		 * block sizes less then DEV_BSIZE (usually 512) are not
1133 		 * supported due to the page granularity bits (m->valid,
1134 		 * m->dirty, etc...).
1135 		 *
1136 		 * See man buf(9) for more information
1137 		 */
1138 
1139 		resid = bp->b_bufsize;
1140 		foff = bp->b_offset;
1141 
1142 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
1143 			m = bp->b_xio.xio_pages[i];
1144 			vm_page_flag_clear(m, PG_ZERO);
1145 			/*
1146 			 * If we hit a bogus page, fixup *all* of them
1147 			 * now.  Note that we left these pages wired
1148 			 * when we removed them so they had better exist,
1149 			 * and they cannot be ripped out from under us so
1150 			 * no splvm() protection is necessary.
1151 			 */
1152 			if (m == bogus_page) {
1153 				VOP_GETVOBJECT(vp, &obj);
1154 				poff = OFF_TO_IDX(bp->b_offset);
1155 
1156 				for (j = i; j < bp->b_xio.xio_npages; j++) {
1157 					vm_page_t mtmp;
1158 
1159 					mtmp = bp->b_xio.xio_pages[j];
1160 					if (mtmp == bogus_page) {
1161 						mtmp = vm_page_lookup(obj, poff + j);
1162 						if (!mtmp) {
1163 							panic("brelse: page missing");
1164 						}
1165 						bp->b_xio.xio_pages[j] = mtmp;
1166 					}
1167 				}
1168 
1169 				if ((bp->b_flags & B_INVAL) == 0) {
1170 					pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1171 						bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1172 				}
1173 				m = bp->b_xio.xio_pages[i];
1174 			}
1175 
1176 			/*
1177 			 * Invalidate the backing store if B_NOCACHE is set
1178 			 * (e.g. used with vinvalbuf()).  If this is NFS
1179 			 * we impose a requirement that the block size be
1180 			 * a multiple of PAGE_SIZE and create a temporary
1181 			 * hack to basically invalidate the whole page.  The
1182 			 * problem is that NFS uses really odd buffer sizes
1183 			 * especially when tracking piecemeal writes and
1184 			 * it also vinvalbuf()'s a lot, which would result
1185 			 * in only partial page validation and invalidation
1186 			 * here.  If the file page is mmap()'d, however,
1187 			 * all the valid bits get set so after we invalidate
1188 			 * here we would end up with weird m->valid values
1189 			 * like 0xfc.  nfs_getpages() can't handle this so
1190 			 * we clear all the valid bits for the NFS case
1191 			 * instead of just some of them.
1192 			 *
1193 			 * The real bug is the VM system having to set m->valid
1194 			 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1195 			 * itself is an artifact of the whole 512-byte
1196 			 * granular mess that exists to support odd block
1197 			 * sizes and UFS meta-data block sizes (e.g. 6144).
1198 			 * A complete rewrite is required.
1199 			 */
1200 			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1201 				int poffset = foff & PAGE_MASK;
1202 				int presid;
1203 
1204 				presid = PAGE_SIZE - poffset;
1205 				if (bp->b_vp->v_tag == VT_NFS &&
1206 				    bp->b_vp->v_type == VREG) {
1207 					; /* entire page */
1208 				} else if (presid > resid) {
1209 					presid = resid;
1210 				}
1211 				KASSERT(presid >= 0, ("brelse: extra page"));
1212 				vm_page_set_invalid(m, poffset, presid);
1213 			}
1214 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1215 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1216 		}
1217 
1218 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1219 			vfs_vmio_release(bp);
1220 
1221 	} else if (bp->b_flags & B_VMIO) {
1222 
1223 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1224 			vfs_vmio_release(bp);
1225 
1226 	}
1227 
1228 	if (bp->b_qindex != QUEUE_NONE)
1229 		panic("brelse: free buffer onto another queue???");
1230 	if (BUF_REFCNTNB(bp) > 1) {
1231 		/* Temporary panic to verify exclusive locking */
1232 		/* This panic goes away when we allow shared refs */
1233 		panic("brelse: multiple refs");
1234 		/* do not release to free list */
1235 		BUF_UNLOCK(bp);
1236 		splx(s);
1237 		return;
1238 	}
1239 
1240 	/* enqueue */
1241 
1242 	/* buffers with no memory */
1243 	if (bp->b_bufsize == 0) {
1244 		bp->b_flags |= B_INVAL;
1245 		bp->b_xflags &= ~BX_BKGRDWRITE;
1246 		if (bp->b_xflags & BX_BKGRDINPROG)
1247 			panic("losing buffer 1");
1248 		if (bp->b_kvasize) {
1249 			bp->b_qindex = QUEUE_EMPTYKVA;
1250 		} else {
1251 			bp->b_qindex = QUEUE_EMPTY;
1252 		}
1253 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1254 		LIST_REMOVE(bp, b_hash);
1255 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1256 		bp->b_dev = NODEV;
1257 	/* buffers with junk contents */
1258 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1259 		bp->b_flags |= B_INVAL;
1260 		bp->b_xflags &= ~BX_BKGRDWRITE;
1261 		if (bp->b_xflags & BX_BKGRDINPROG)
1262 			panic("losing buffer 2");
1263 		bp->b_qindex = QUEUE_CLEAN;
1264 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1265 		LIST_REMOVE(bp, b_hash);
1266 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1267 		bp->b_dev = NODEV;
1268 
1269 	/* buffers that are locked */
1270 	} else if (bp->b_flags & B_LOCKED) {
1271 		bp->b_qindex = QUEUE_LOCKED;
1272 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1273 
1274 	/* remaining buffers */
1275 	} else {
1276 		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1277 		case B_DELWRI | B_AGE:
1278 		    bp->b_qindex = QUEUE_DIRTY;
1279 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1280 		    break;
1281 		case B_DELWRI:
1282 		    bp->b_qindex = QUEUE_DIRTY;
1283 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1284 		    break;
1285 		case B_AGE:
1286 		    bp->b_qindex = QUEUE_CLEAN;
1287 		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1288 		    break;
1289 		default:
1290 		    bp->b_qindex = QUEUE_CLEAN;
1291 		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1292 		    break;
1293 		}
1294 	}
1295 
1296 	/*
1297 	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1298 	 * on the correct queue.
1299 	 */
1300 	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1301 		bundirty(bp);
1302 
1303 	/*
1304 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1305 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1306 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1307 	 * if B_INVAL is set ).
1308 	 */
1309 
1310 	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1311 		bufcountwakeup();
1312 
1313 	/*
1314 	 * Something we can maybe free or reuse
1315 	 */
1316 	if (bp->b_bufsize || bp->b_kvasize)
1317 		bufspacewakeup();
1318 
1319 	/* unlock */
1320 	BUF_UNLOCK(bp);
1321 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1322 			B_DIRECT | B_NOWDRAIN);
1323 	splx(s);
1324 }
1325 
1326 /*
1327  * Release a buffer back to the appropriate queue but do not try to free
1328  * it.  The buffer is expected to be used again soon.
1329  *
1330  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1331  * biodone() to requeue an async I/O on completion.  It is also used when
1332  * known good buffers need to be requeued but we think we may need the data
1333  * again soon.
1334  *
1335  * XXX we should be able to leave the B_RELBUF hint set on completion.
1336  */
1337 void
1338 bqrelse(struct buf * bp)
1339 {
1340 	int s;
1341 
1342 	s = splbio();
1343 
1344 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1345 
1346 	if (bp->b_qindex != QUEUE_NONE)
1347 		panic("bqrelse: free buffer onto another queue???");
1348 	if (BUF_REFCNTNB(bp) > 1) {
1349 		/* do not release to free list */
1350 		panic("bqrelse: multiple refs");
1351 		BUF_UNLOCK(bp);
1352 		splx(s);
1353 		return;
1354 	}
1355 	if (bp->b_flags & B_LOCKED) {
1356 		bp->b_flags &= ~B_ERROR;
1357 		bp->b_qindex = QUEUE_LOCKED;
1358 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1359 		/* buffers with stale but valid contents */
1360 	} else if (bp->b_flags & B_DELWRI) {
1361 		bp->b_qindex = QUEUE_DIRTY;
1362 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1363 	} else if (vm_page_count_severe()) {
1364 		/*
1365 		 * We are too low on memory, we have to try to free the
1366 		 * buffer (most importantly: the wired pages making up its
1367 		 * backing store) *now*.
1368 		 */
1369 		splx(s);
1370 		brelse(bp);
1371 		return;
1372 	} else {
1373 		bp->b_qindex = QUEUE_CLEAN;
1374 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1375 	}
1376 
1377 	if ((bp->b_flags & B_LOCKED) == 0 &&
1378 	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1379 		bufcountwakeup();
1380 	}
1381 
1382 	/*
1383 	 * Something we can maybe free or reuse.
1384 	 */
1385 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1386 		bufspacewakeup();
1387 
1388 	/* unlock */
1389 	BUF_UNLOCK(bp);
1390 	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1391 	splx(s);
1392 }
1393 
1394 static void
1395 vfs_vmio_release(struct buf *bp)
1396 {
1397 	int i, s;
1398 	vm_page_t m;
1399 
1400 	s = splvm();
1401 	for (i = 0; i < bp->b_xio.xio_npages; i++) {
1402 		m = bp->b_xio.xio_pages[i];
1403 		bp->b_xio.xio_pages[i] = NULL;
1404 		/*
1405 		 * In order to keep page LRU ordering consistent, put
1406 		 * everything on the inactive queue.
1407 		 */
1408 		vm_page_unwire(m, 0);
1409 		/*
1410 		 * We don't mess with busy pages, it is
1411 		 * the responsibility of the process that
1412 		 * busied the pages to deal with them.
1413 		 */
1414 		if ((m->flags & PG_BUSY) || (m->busy != 0))
1415 			continue;
1416 
1417 		if (m->wire_count == 0) {
1418 			vm_page_flag_clear(m, PG_ZERO);
1419 			/*
1420 			 * Might as well free the page if we can and it has
1421 			 * no valid data.  We also free the page if the
1422 			 * buffer was used for direct I/O.
1423 			 */
1424 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1425 				vm_page_busy(m);
1426 				vm_page_protect(m, VM_PROT_NONE);
1427 				vm_page_free(m);
1428 			} else if (bp->b_flags & B_DIRECT) {
1429 				vm_page_try_to_free(m);
1430 			} else if (vm_page_count_severe()) {
1431 				vm_page_try_to_cache(m);
1432 			}
1433 		}
1434 	}
1435 	splx(s);
1436 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1437 	if (bp->b_bufsize) {
1438 		bufspacewakeup();
1439 		bp->b_bufsize = 0;
1440 	}
1441 	bp->b_xio.xio_npages = 0;
1442 	bp->b_flags &= ~B_VMIO;
1443 	if (bp->b_vp)
1444 		brelvp(bp);
1445 }
1446 
1447 /*
1448  * Check to see if a block is currently memory resident.
1449  */
1450 struct buf *
1451 gbincore(struct vnode * vp, daddr_t blkno)
1452 {
1453 	struct buf *bp;
1454 	struct bufhashhdr *bh;
1455 
1456 	bh = bufhash(vp, blkno);
1457 
1458 	/* Search hash chain */
1459 	LIST_FOREACH(bp, bh, b_hash) {
1460 		/* hit */
1461 		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1462 		    (bp->b_flags & B_INVAL) == 0) {
1463 			break;
1464 		}
1465 	}
1466 	return (bp);
1467 }
1468 
1469 /*
1470  *	vfs_bio_awrite:
1471  *
1472  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1473  *	This is much better then the old way of writing only one buffer at
1474  *	a time.  Note that we may not be presented with the buffers in the
1475  *	correct order, so we search for the cluster in both directions.
1476  */
1477 int
1478 vfs_bio_awrite(struct buf * bp)
1479 {
1480 	int i;
1481 	int j;
1482 	daddr_t lblkno = bp->b_lblkno;
1483 	struct vnode *vp = bp->b_vp;
1484 	int s;
1485 	int ncl;
1486 	struct buf *bpa;
1487 	int nwritten;
1488 	int size;
1489 	int maxcl;
1490 
1491 	s = splbio();
1492 	/*
1493 	 * right now we support clustered writing only to regular files.  If
1494 	 * we find a clusterable block we could be in the middle of a cluster
1495 	 * rather then at the beginning.
1496 	 */
1497 	if ((vp->v_type == VREG) &&
1498 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1499 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1500 
1501 		size = vp->v_mount->mnt_stat.f_iosize;
1502 		maxcl = MAXPHYS / size;
1503 
1504 		for (i = 1; i < maxcl; i++) {
1505 			if ((bpa = gbincore(vp, lblkno + i)) &&
1506 			    BUF_REFCNT(bpa) == 0 &&
1507 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1508 			    (B_DELWRI | B_CLUSTEROK)) &&
1509 			    (bpa->b_bufsize == size)) {
1510 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1511 				    (bpa->b_blkno !=
1512 				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1513 					break;
1514 			} else {
1515 				break;
1516 			}
1517 		}
1518 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1519 			if ((bpa = gbincore(vp, lblkno - j)) &&
1520 			    BUF_REFCNT(bpa) == 0 &&
1521 			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1522 			    (B_DELWRI | B_CLUSTEROK)) &&
1523 			    (bpa->b_bufsize == size)) {
1524 				if ((bpa->b_blkno == bpa->b_lblkno) ||
1525 				    (bpa->b_blkno !=
1526 				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1527 					break;
1528 			} else {
1529 				break;
1530 			}
1531 		}
1532 		--j;
1533 		ncl = i + j;
1534 		/*
1535 		 * this is a possible cluster write
1536 		 */
1537 		if (ncl != 1) {
1538 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1539 			splx(s);
1540 			return nwritten;
1541 		}
1542 	}
1543 
1544 	BUF_LOCK(bp, LK_EXCLUSIVE);
1545 	bremfree(bp);
1546 	bp->b_flags |= B_ASYNC;
1547 
1548 	splx(s);
1549 	/*
1550 	 * default (old) behavior, writing out only one block
1551 	 *
1552 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1553 	 */
1554 	nwritten = bp->b_bufsize;
1555 	(void) VOP_BWRITE(bp->b_vp, bp);
1556 
1557 	return nwritten;
1558 }
1559 
1560 /*
1561  *	getnewbuf:
1562  *
1563  *	Find and initialize a new buffer header, freeing up existing buffers
1564  *	in the bufqueues as necessary.  The new buffer is returned locked.
1565  *
1566  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1567  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1568  *
1569  *	We block if:
1570  *		We have insufficient buffer headers
1571  *		We have insufficient buffer space
1572  *		buffer_map is too fragmented ( space reservation fails )
1573  *		If we have to flush dirty buffers ( but we try to avoid this )
1574  *
1575  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1576  *	Instead we ask the buf daemon to do it for us.  We attempt to
1577  *	avoid piecemeal wakeups of the pageout daemon.
1578  */
1579 
1580 static struct buf *
1581 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1582 {
1583 	struct buf *bp;
1584 	struct buf *nbp;
1585 	int defrag = 0;
1586 	int nqindex;
1587 	static int flushingbufs;
1588 
1589 	/*
1590 	 * We can't afford to block since we might be holding a vnode lock,
1591 	 * which may prevent system daemons from running.  We deal with
1592 	 * low-memory situations by proactively returning memory and running
1593 	 * async I/O rather then sync I/O.
1594 	 */
1595 
1596 	++getnewbufcalls;
1597 	--getnewbufrestarts;
1598 restart:
1599 	++getnewbufrestarts;
1600 
1601 	/*
1602 	 * Setup for scan.  If we do not have enough free buffers,
1603 	 * we setup a degenerate case that immediately fails.  Note
1604 	 * that if we are specially marked process, we are allowed to
1605 	 * dip into our reserves.
1606 	 *
1607 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1608 	 *
1609 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1610 	 * However, there are a number of cases (defragging, reusing, ...)
1611 	 * where we cannot backup.
1612 	 */
1613 	nqindex = QUEUE_EMPTYKVA;
1614 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1615 
1616 	if (nbp == NULL) {
1617 		/*
1618 		 * If no EMPTYKVA buffers and we are either
1619 		 * defragging or reusing, locate a CLEAN buffer
1620 		 * to free or reuse.  If bufspace useage is low
1621 		 * skip this step so we can allocate a new buffer.
1622 		 */
1623 		if (defrag || bufspace >= lobufspace) {
1624 			nqindex = QUEUE_CLEAN;
1625 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1626 		}
1627 
1628 		/*
1629 		 * If we could not find or were not allowed to reuse a
1630 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1631 		 * buffer.  We can only use an EMPTY buffer if allocating
1632 		 * its KVA would not otherwise run us out of buffer space.
1633 		 */
1634 		if (nbp == NULL && defrag == 0 &&
1635 		    bufspace + maxsize < hibufspace) {
1636 			nqindex = QUEUE_EMPTY;
1637 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1638 		}
1639 	}
1640 
1641 	/*
1642 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1643 	 * depending.
1644 	 */
1645 
1646 	while ((bp = nbp) != NULL) {
1647 		int qindex = nqindex;
1648 
1649 		/*
1650 		 * Calculate next bp ( we can only use it if we do not block
1651 		 * or do other fancy things ).
1652 		 */
1653 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1654 			switch(qindex) {
1655 			case QUEUE_EMPTY:
1656 				nqindex = QUEUE_EMPTYKVA;
1657 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1658 					break;
1659 				/* fall through */
1660 			case QUEUE_EMPTYKVA:
1661 				nqindex = QUEUE_CLEAN;
1662 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1663 					break;
1664 				/* fall through */
1665 			case QUEUE_CLEAN:
1666 				/*
1667 				 * nbp is NULL.
1668 				 */
1669 				break;
1670 			}
1671 		}
1672 
1673 		/*
1674 		 * Sanity Checks
1675 		 */
1676 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1677 
1678 		/*
1679 		 * Note: we no longer distinguish between VMIO and non-VMIO
1680 		 * buffers.
1681 		 */
1682 
1683 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1684 
1685 		/*
1686 		 * If we are defragging then we need a buffer with
1687 		 * b_kvasize != 0.  XXX this situation should no longer
1688 		 * occur, if defrag is non-zero the buffer's b_kvasize
1689 		 * should also be non-zero at this point.  XXX
1690 		 */
1691 		if (defrag && bp->b_kvasize == 0) {
1692 			printf("Warning: defrag empty buffer %p\n", bp);
1693 			continue;
1694 		}
1695 
1696 		/*
1697 		 * Start freeing the bp.  This is somewhat involved.  nbp
1698 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1699 		 */
1700 
1701 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1702 			panic("getnewbuf: locked buf");
1703 		bremfree(bp);
1704 
1705 		if (qindex == QUEUE_CLEAN) {
1706 			if (bp->b_flags & B_VMIO) {
1707 				bp->b_flags &= ~B_ASYNC;
1708 				vfs_vmio_release(bp);
1709 			}
1710 			if (bp->b_vp)
1711 				brelvp(bp);
1712 		}
1713 
1714 		/*
1715 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1716 		 * the scan from this point on.
1717 		 *
1718 		 * Get the rest of the buffer freed up.  b_kva* is still
1719 		 * valid after this operation.
1720 		 */
1721 
1722 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1723 			(*bioops.io_deallocate)(bp);
1724 		if (bp->b_xflags & BX_BKGRDINPROG)
1725 			panic("losing buffer 3");
1726 		LIST_REMOVE(bp, b_hash);
1727 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1728 
1729 		/*
1730 		 * spl protection not required when scrapping a buffer's
1731 		 * contents because it is already wired.
1732 		 */
1733 		if (bp->b_bufsize)
1734 			allocbuf(bp, 0);
1735 
1736 		bp->b_flags = 0;
1737 		bp->b_xflags = 0;
1738 		bp->b_dev = NODEV;
1739 		bp->b_vp = NULL;
1740 		bp->b_blkno = bp->b_lblkno = 0;
1741 		bp->b_offset = NOOFFSET;
1742 		bp->b_iodone = 0;
1743 		bp->b_error = 0;
1744 		bp->b_resid = 0;
1745 		bp->b_bcount = 0;
1746 		bp->b_xio.xio_npages = 0;
1747 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1748 
1749 		LIST_INIT(&bp->b_dep);
1750 
1751 		/*
1752 		 * If we are defragging then free the buffer.
1753 		 */
1754 		if (defrag) {
1755 			bp->b_flags |= B_INVAL;
1756 			bfreekva(bp);
1757 			brelse(bp);
1758 			defrag = 0;
1759 			goto restart;
1760 		}
1761 
1762 		/*
1763 		 * If we are overcomitted then recover the buffer and its
1764 		 * KVM space.  This occurs in rare situations when multiple
1765 		 * processes are blocked in getnewbuf() or allocbuf().
1766 		 */
1767 		if (bufspace >= hibufspace)
1768 			flushingbufs = 1;
1769 		if (flushingbufs && bp->b_kvasize != 0) {
1770 			bp->b_flags |= B_INVAL;
1771 			bfreekva(bp);
1772 			brelse(bp);
1773 			goto restart;
1774 		}
1775 		if (bufspace < lobufspace)
1776 			flushingbufs = 0;
1777 		break;
1778 	}
1779 
1780 	/*
1781 	 * If we exhausted our list, sleep as appropriate.  We may have to
1782 	 * wakeup various daemons and write out some dirty buffers.
1783 	 *
1784 	 * Generally we are sleeping due to insufficient buffer space.
1785 	 */
1786 
1787 	if (bp == NULL) {
1788 		int flags;
1789 		char *waitmsg;
1790 
1791 		if (defrag) {
1792 			flags = VFS_BIO_NEED_BUFSPACE;
1793 			waitmsg = "nbufkv";
1794 		} else if (bufspace >= hibufspace) {
1795 			waitmsg = "nbufbs";
1796 			flags = VFS_BIO_NEED_BUFSPACE;
1797 		} else {
1798 			waitmsg = "newbuf";
1799 			flags = VFS_BIO_NEED_ANY;
1800 		}
1801 
1802 		bd_speedup();	/* heeeelp */
1803 
1804 		needsbuffer |= flags;
1805 		while (needsbuffer & flags) {
1806 			if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1807 				return (NULL);
1808 		}
1809 	} else {
1810 		/*
1811 		 * We finally have a valid bp.  We aren't quite out of the
1812 		 * woods, we still have to reserve kva space.  In order
1813 		 * to keep fragmentation sane we only allocate kva in
1814 		 * BKVASIZE chunks.
1815 		 */
1816 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1817 
1818 		if (maxsize != bp->b_kvasize) {
1819 			vm_offset_t addr = 0;
1820 			int count;
1821 
1822 			bfreekva(bp);
1823 
1824 			count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1825 			vm_map_lock(buffer_map);
1826 
1827 			if (vm_map_findspace(buffer_map,
1828 				    vm_map_min(buffer_map), maxsize,
1829 				    maxsize, &addr)) {
1830 				/*
1831 				 * Uh oh.  Buffer map is to fragmented.  We
1832 				 * must defragment the map.
1833 				 */
1834 				vm_map_unlock(buffer_map);
1835 				vm_map_entry_release(count);
1836 				++bufdefragcnt;
1837 				defrag = 1;
1838 				bp->b_flags |= B_INVAL;
1839 				brelse(bp);
1840 				goto restart;
1841 			}
1842 			if (addr) {
1843 				vm_map_insert(buffer_map, &count,
1844 					NULL, 0,
1845 					addr, addr + maxsize,
1846 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1847 
1848 				bp->b_kvabase = (caddr_t) addr;
1849 				bp->b_kvasize = maxsize;
1850 				bufspace += bp->b_kvasize;
1851 				++bufreusecnt;
1852 			}
1853 			vm_map_unlock(buffer_map);
1854 			vm_map_entry_release(count);
1855 		}
1856 		bp->b_data = bp->b_kvabase;
1857 	}
1858 	return(bp);
1859 }
1860 
1861 /*
1862  *	buf_daemon:
1863  *
1864  *	buffer flushing daemon.  Buffers are normally flushed by the
1865  *	update daemon but if it cannot keep up this process starts to
1866  *	take the load in an attempt to prevent getnewbuf() from blocking.
1867  */
1868 
1869 static struct thread *bufdaemonthread;
1870 
1871 static struct kproc_desc buf_kp = {
1872 	"bufdaemon",
1873 	buf_daemon,
1874 	&bufdaemonthread
1875 };
1876 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1877 
1878 static void
1879 buf_daemon()
1880 {
1881 	int s;
1882 
1883 	/*
1884 	 * This process needs to be suspended prior to shutdown sync.
1885 	 */
1886 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1887 	    bufdaemonthread, SHUTDOWN_PRI_LAST);
1888 
1889 	/*
1890 	 * This process is allowed to take the buffer cache to the limit
1891 	 */
1892 	s = splbio();
1893 
1894 	for (;;) {
1895 		kproc_suspend_loop();
1896 
1897 		/*
1898 		 * Do the flush.  Limit the amount of in-transit I/O we
1899 		 * allow to build up, otherwise we would completely saturate
1900 		 * the I/O system.  Wakeup any waiting processes before we
1901 		 * normally would so they can run in parallel with our drain.
1902 		 */
1903 		while (numdirtybuffers > lodirtybuffers) {
1904 			if (flushbufqueues() == 0)
1905 				break;
1906 			waitrunningbufspace();
1907 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1908 		}
1909 
1910 		/*
1911 		 * Only clear bd_request if we have reached our low water
1912 		 * mark.  The buf_daemon normally waits 5 seconds and
1913 		 * then incrementally flushes any dirty buffers that have
1914 		 * built up, within reason.
1915 		 *
1916 		 * If we were unable to hit our low water mark and couldn't
1917 		 * find any flushable buffers, we sleep half a second.
1918 		 * Otherwise we loop immediately.
1919 		 */
1920 		if (numdirtybuffers <= lodirtybuffers) {
1921 			/*
1922 			 * We reached our low water mark, reset the
1923 			 * request and sleep until we are needed again.
1924 			 * The sleep is just so the suspend code works.
1925 			 */
1926 			bd_request = 0;
1927 			tsleep(&bd_request, 0, "psleep", hz);
1928 		} else {
1929 			/*
1930 			 * We couldn't find any flushable dirty buffers but
1931 			 * still have too many dirty buffers, we
1932 			 * have to sleep and try again.  (rare)
1933 			 */
1934 			tsleep(&bd_request, 0, "qsleep", hz / 2);
1935 		}
1936 	}
1937 }
1938 
1939 /*
1940  *	flushbufqueues:
1941  *
1942  *	Try to flush a buffer in the dirty queue.  We must be careful to
1943  *	free up B_INVAL buffers instead of write them, which NFS is
1944  *	particularly sensitive to.
1945  */
1946 
1947 static int
1948 flushbufqueues(void)
1949 {
1950 	struct buf *bp;
1951 	int r = 0;
1952 
1953 	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1954 
1955 	while (bp) {
1956 		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1957 		if ((bp->b_flags & B_DELWRI) != 0 &&
1958 		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1959 			if (bp->b_flags & B_INVAL) {
1960 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1961 					panic("flushbufqueues: locked buf");
1962 				bremfree(bp);
1963 				brelse(bp);
1964 				++r;
1965 				break;
1966 			}
1967 			if (LIST_FIRST(&bp->b_dep) != NULL &&
1968 			    bioops.io_countdeps &&
1969 			    (bp->b_flags & B_DEFERRED) == 0 &&
1970 			    (*bioops.io_countdeps)(bp, 0)) {
1971 				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1972 				    bp, b_freelist);
1973 				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1974 				    bp, b_freelist);
1975 				bp->b_flags |= B_DEFERRED;
1976 				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1977 				continue;
1978 			}
1979 			vfs_bio_awrite(bp);
1980 			++r;
1981 			break;
1982 		}
1983 		bp = TAILQ_NEXT(bp, b_freelist);
1984 	}
1985 	return (r);
1986 }
1987 
1988 /*
1989  * Check to see if a block is currently memory resident.
1990  */
1991 struct buf *
1992 incore(struct vnode * vp, daddr_t blkno)
1993 {
1994 	struct buf *bp;
1995 
1996 	crit_enter();
1997 	bp = gbincore(vp, blkno);
1998 	crit_exit();
1999 	return (bp);
2000 }
2001 
2002 /*
2003  * Returns true if no I/O is needed to access the associated VM object.
2004  * This is like incore except it also hunts around in the VM system for
2005  * the data.
2006  *
2007  * Note that we ignore vm_page_free() races from interrupts against our
2008  * lookup, since if the caller is not protected our return value will not
2009  * be any more valid then otherwise once we splx().
2010  */
2011 int
2012 inmem(struct vnode * vp, daddr_t blkno)
2013 {
2014 	vm_object_t obj;
2015 	vm_offset_t toff, tinc, size;
2016 	vm_page_t m;
2017 	vm_ooffset_t off;
2018 
2019 	if (incore(vp, blkno))
2020 		return 1;
2021 	if (vp->v_mount == NULL)
2022 		return 0;
2023 	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2024  		return 0;
2025 
2026 	size = PAGE_SIZE;
2027 	if (size > vp->v_mount->mnt_stat.f_iosize)
2028 		size = vp->v_mount->mnt_stat.f_iosize;
2029 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2030 
2031 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2032 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2033 		if (!m)
2034 			return 0;
2035 		tinc = size;
2036 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2037 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2038 		if (vm_page_is_valid(m,
2039 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2040 			return 0;
2041 	}
2042 	return 1;
2043 }
2044 
2045 /*
2046  *	vfs_setdirty:
2047  *
2048  *	Sets the dirty range for a buffer based on the status of the dirty
2049  *	bits in the pages comprising the buffer.
2050  *
2051  *	The range is limited to the size of the buffer.
2052  *
2053  *	This routine is primarily used by NFS, but is generalized for the
2054  *	B_VMIO case.
2055  */
2056 static void
2057 vfs_setdirty(struct buf *bp)
2058 {
2059 	int i;
2060 	vm_object_t object;
2061 
2062 	/*
2063 	 * Degenerate case - empty buffer
2064 	 */
2065 
2066 	if (bp->b_bufsize == 0)
2067 		return;
2068 
2069 	/*
2070 	 * We qualify the scan for modified pages on whether the
2071 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2072 	 * is not cleared simply by protecting pages off.
2073 	 */
2074 
2075 	if ((bp->b_flags & B_VMIO) == 0)
2076 		return;
2077 
2078 	object = bp->b_xio.xio_pages[0]->object;
2079 
2080 	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2081 		printf("Warning: object %p writeable but not mightbedirty\n", object);
2082 	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2083 		printf("Warning: object %p mightbedirty but not writeable\n", object);
2084 
2085 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2086 		vm_offset_t boffset;
2087 		vm_offset_t eoffset;
2088 
2089 		/*
2090 		 * test the pages to see if they have been modified directly
2091 		 * by users through the VM system.
2092 		 */
2093 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2094 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2095 			vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2096 		}
2097 
2098 		/*
2099 		 * Calculate the encompassing dirty range, boffset and eoffset,
2100 		 * (eoffset - boffset) bytes.
2101 		 */
2102 
2103 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2104 			if (bp->b_xio.xio_pages[i]->dirty)
2105 				break;
2106 		}
2107 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2108 
2109 		for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2110 			if (bp->b_xio.xio_pages[i]->dirty) {
2111 				break;
2112 			}
2113 		}
2114 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2115 
2116 		/*
2117 		 * Fit it to the buffer.
2118 		 */
2119 
2120 		if (eoffset > bp->b_bcount)
2121 			eoffset = bp->b_bcount;
2122 
2123 		/*
2124 		 * If we have a good dirty range, merge with the existing
2125 		 * dirty range.
2126 		 */
2127 
2128 		if (boffset < eoffset) {
2129 			if (bp->b_dirtyoff > boffset)
2130 				bp->b_dirtyoff = boffset;
2131 			if (bp->b_dirtyend < eoffset)
2132 				bp->b_dirtyend = eoffset;
2133 		}
2134 	}
2135 }
2136 
2137 /*
2138  *	getblk:
2139  *
2140  *	Get a block given a specified block and offset into a file/device.
2141  *	The buffers B_DONE bit will be cleared on return, making it almost
2142  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2143  *	return.  The caller should clear B_INVAL prior to initiating a
2144  *	READ.
2145  *
2146  *	IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2147  *	IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2148  *	OR SET B_INVAL BEFORE RETIRING IT.  If you retire a getblk'd buffer
2149  *	without doing any of those things the system will likely believe
2150  *	the buffer to be valid (especially if it is not B_VMIO), and the
2151  *	next getblk() will return the buffer with B_CACHE set.
2152  *
2153  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2154  *	an existing buffer.
2155  *
2156  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2157  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2158  *	and then cleared based on the backing VM.  If the previous buffer is
2159  *	non-0-sized but invalid, B_CACHE will be cleared.
2160  *
2161  *	If getblk() must create a new buffer, the new buffer is returned with
2162  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2163  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2164  *	backing VM.
2165  *
2166  *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2167  *	B_CACHE bit is clear.
2168  *
2169  *	What this means, basically, is that the caller should use B_CACHE to
2170  *	determine whether the buffer is fully valid or not and should clear
2171  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2172  *	the buffer by loading its data area with something, the caller needs
2173  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2174  *	the caller should set B_CACHE ( as an optimization ), else the caller
2175  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2176  *	a write attempt or if it was a successfull read.  If the caller
2177  *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2178  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2179  */
2180 struct buf *
2181 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2182 {
2183 	struct buf *bp;
2184 	int s;
2185 	struct bufhashhdr *bh;
2186 
2187 	if (size > MAXBSIZE)
2188 		panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2189 
2190 	s = splbio();
2191 loop:
2192 	/*
2193 	 * Block if we are low on buffers.   Certain processes are allowed
2194 	 * to completely exhaust the buffer cache.
2195          *
2196          * If this check ever becomes a bottleneck it may be better to
2197          * move it into the else, when gbincore() fails.  At the moment
2198          * it isn't a problem.
2199 	 *
2200 	 * XXX remove, we cannot afford to block anywhere if holding a vnode
2201 	 * lock in low-memory situation, so take it to the max.
2202          */
2203 	if (numfreebuffers == 0) {
2204 		if (!curproc)
2205 			return NULL;
2206 		needsbuffer |= VFS_BIO_NEED_ANY;
2207 		tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2208 	}
2209 
2210 	if ((bp = gbincore(vp, blkno))) {
2211 		/*
2212 		 * Buffer is in-core.  If the buffer is not busy, it must
2213 		 * be on a queue.
2214 		 */
2215 
2216 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2217 			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2218 			    "getblk", slpflag, slptimeo) == ENOLCK)
2219 				goto loop;
2220 			splx(s);
2221 			return (struct buf *) NULL;
2222 		}
2223 
2224 		/*
2225 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2226 		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2227 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2228 		 * backing VM cache.
2229 		 */
2230 		if (bp->b_flags & B_INVAL)
2231 			bp->b_flags &= ~B_CACHE;
2232 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2233 			bp->b_flags |= B_CACHE;
2234 		bremfree(bp);
2235 
2236 		/*
2237 		 * check for size inconsistancies for non-VMIO case.
2238 		 */
2239 
2240 		if (bp->b_bcount != size) {
2241 			if ((bp->b_flags & B_VMIO) == 0 ||
2242 			    (size > bp->b_kvasize)) {
2243 				if (bp->b_flags & B_DELWRI) {
2244 					bp->b_flags |= B_NOCACHE;
2245 					VOP_BWRITE(bp->b_vp, bp);
2246 				} else {
2247 					if ((bp->b_flags & B_VMIO) &&
2248 					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2249 						bp->b_flags |= B_RELBUF;
2250 						brelse(bp);
2251 					} else {
2252 						bp->b_flags |= B_NOCACHE;
2253 						VOP_BWRITE(bp->b_vp, bp);
2254 					}
2255 				}
2256 				goto loop;
2257 			}
2258 		}
2259 
2260 		/*
2261 		 * If the size is inconsistant in the VMIO case, we can resize
2262 		 * the buffer.  This might lead to B_CACHE getting set or
2263 		 * cleared.  If the size has not changed, B_CACHE remains
2264 		 * unchanged from its previous state.
2265 		 */
2266 
2267 		if (bp->b_bcount != size)
2268 			allocbuf(bp, size);
2269 
2270 		KASSERT(bp->b_offset != NOOFFSET,
2271 		    ("getblk: no buffer offset"));
2272 
2273 		/*
2274 		 * A buffer with B_DELWRI set and B_CACHE clear must
2275 		 * be committed before we can return the buffer in
2276 		 * order to prevent the caller from issuing a read
2277 		 * ( due to B_CACHE not being set ) and overwriting
2278 		 * it.
2279 		 *
2280 		 * Most callers, including NFS and FFS, need this to
2281 		 * operate properly either because they assume they
2282 		 * can issue a read if B_CACHE is not set, or because
2283 		 * ( for example ) an uncached B_DELWRI might loop due
2284 		 * to softupdates re-dirtying the buffer.  In the latter
2285 		 * case, B_CACHE is set after the first write completes,
2286 		 * preventing further loops.
2287 		 *
2288 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2289 		 * above while extending the buffer, we cannot allow the
2290 		 * buffer to remain with B_CACHE set after the write
2291 		 * completes or it will represent a corrupt state.  To
2292 		 * deal with this we set B_NOCACHE to scrap the buffer
2293 		 * after the write.
2294 		 *
2295 		 * We might be able to do something fancy, like setting
2296 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2297 		 * so the below call doesn't set B_CACHE, but that gets real
2298 		 * confusing.  This is much easier.
2299 		 */
2300 
2301 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2302 			bp->b_flags |= B_NOCACHE;
2303 			VOP_BWRITE(bp->b_vp, bp);
2304 			goto loop;
2305 		}
2306 
2307 		splx(s);
2308 		bp->b_flags &= ~B_DONE;
2309 	} else {
2310 		/*
2311 		 * Buffer is not in-core, create new buffer.  The buffer
2312 		 * returned by getnewbuf() is locked.  Note that the returned
2313 		 * buffer is also considered valid (not marked B_INVAL).
2314 		 *
2315 		 * Calculating the offset for the I/O requires figuring out
2316 		 * the block size.  We use DEV_BSIZE for VBLK or VCHR and
2317 		 * the mount's f_iosize otherwise.  If the vnode does not
2318 		 * have an associated mount we assume that the passed size is
2319 		 * the block size.
2320 		 *
2321 		 * Note that vn_isdisk() cannot be used here since it may
2322 		 * return a failure for numerous reasons.   Note that the
2323 		 * buffer size may be larger then the block size (the caller
2324 		 * will use block numbers with the proper multiple).  Beware
2325 		 * of using any v_* fields which are part of unions.  In
2326 		 * particular, in DragonFly the mount point overloading
2327 		 * mechanism is such that the underlying directory (with a
2328 		 * non-NULL v_mountedhere) is not a special case.
2329 		 */
2330 		int bsize, maxsize, vmio;
2331 		off_t offset;
2332 
2333 		if (vp->v_type == VBLK || vp->v_type == VCHR)
2334 			bsize = DEV_BSIZE;
2335 		else if (vp->v_mount)
2336 			bsize = vp->v_mount->mnt_stat.f_iosize;
2337 		else
2338 			bsize = size;
2339 
2340 		offset = (off_t)blkno * bsize;
2341 		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2342 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2343 		maxsize = imax(maxsize, bsize);
2344 
2345 		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2346 			if (slpflag || slptimeo) {
2347 				splx(s);
2348 				return NULL;
2349 			}
2350 			goto loop;
2351 		}
2352 
2353 		/*
2354 		 * This code is used to make sure that a buffer is not
2355 		 * created while the getnewbuf routine is blocked.
2356 		 * This can be a problem whether the vnode is locked or not.
2357 		 * If the buffer is created out from under us, we have to
2358 		 * throw away the one we just created.  There is now window
2359 		 * race because we are safely running at splbio() from the
2360 		 * point of the duplicate buffer creation through to here,
2361 		 * and we've locked the buffer.
2362 		 */
2363 		if (gbincore(vp, blkno)) {
2364 			bp->b_flags |= B_INVAL;
2365 			brelse(bp);
2366 			goto loop;
2367 		}
2368 
2369 		/*
2370 		 * Insert the buffer into the hash, so that it can
2371 		 * be found by incore.
2372 		 */
2373 		bp->b_blkno = bp->b_lblkno = blkno;
2374 		bp->b_offset = offset;
2375 
2376 		bgetvp(vp, bp);
2377 		LIST_REMOVE(bp, b_hash);
2378 		bh = bufhash(vp, blkno);
2379 		LIST_INSERT_HEAD(bh, bp, b_hash);
2380 
2381 		/*
2382 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2383 		 * buffer size starts out as 0, B_CACHE will be set by
2384 		 * allocbuf() for the VMIO case prior to it testing the
2385 		 * backing store for validity.
2386 		 */
2387 
2388 		if (vmio) {
2389 			bp->b_flags |= B_VMIO;
2390 #if defined(VFS_BIO_DEBUG)
2391 			if (vn_canvmio(vp) != TRUE)
2392 				printf("getblk: vmioing file type %d???\n", vp->v_type);
2393 #endif
2394 		} else {
2395 			bp->b_flags &= ~B_VMIO;
2396 		}
2397 
2398 		allocbuf(bp, size);
2399 
2400 		splx(s);
2401 		bp->b_flags &= ~B_DONE;
2402 	}
2403 	return (bp);
2404 }
2405 
2406 /*
2407  * Get an empty, disassociated buffer of given size.  The buffer is initially
2408  * set to B_INVAL.
2409  *
2410  * spl protection is not required for the allocbuf() call because races are
2411  * impossible here.
2412  */
2413 struct buf *
2414 geteblk(int size)
2415 {
2416 	struct buf *bp;
2417 	int s;
2418 	int maxsize;
2419 
2420 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2421 
2422 	s = splbio();
2423 	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2424 	splx(s);
2425 	allocbuf(bp, size);
2426 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2427 	return (bp);
2428 }
2429 
2430 
2431 /*
2432  * This code constitutes the buffer memory from either anonymous system
2433  * memory (in the case of non-VMIO operations) or from an associated
2434  * VM object (in the case of VMIO operations).  This code is able to
2435  * resize a buffer up or down.
2436  *
2437  * Note that this code is tricky, and has many complications to resolve
2438  * deadlock or inconsistant data situations.  Tread lightly!!!
2439  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2440  * the caller.  Calling this code willy nilly can result in the loss of data.
2441  *
2442  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2443  * B_CACHE for the non-VMIO case.
2444  *
2445  * This routine does not need to be called at splbio() but you must own the
2446  * buffer.
2447  */
2448 int
2449 allocbuf(struct buf *bp, int size)
2450 {
2451 	int newbsize, mbsize;
2452 	int i;
2453 
2454 	if (BUF_REFCNT(bp) == 0)
2455 		panic("allocbuf: buffer not busy");
2456 
2457 	if (bp->b_kvasize < size)
2458 		panic("allocbuf: buffer too small");
2459 
2460 	if ((bp->b_flags & B_VMIO) == 0) {
2461 		caddr_t origbuf;
2462 		int origbufsize;
2463 		/*
2464 		 * Just get anonymous memory from the kernel.  Don't
2465 		 * mess with B_CACHE.
2466 		 */
2467 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2468 #if !defined(NO_B_MALLOC)
2469 		if (bp->b_flags & B_MALLOC)
2470 			newbsize = mbsize;
2471 		else
2472 #endif
2473 			newbsize = round_page(size);
2474 
2475 		if (newbsize < bp->b_bufsize) {
2476 #if !defined(NO_B_MALLOC)
2477 			/*
2478 			 * malloced buffers are not shrunk
2479 			 */
2480 			if (bp->b_flags & B_MALLOC) {
2481 				if (newbsize) {
2482 					bp->b_bcount = size;
2483 				} else {
2484 					free(bp->b_data, M_BIOBUF);
2485 					if (bp->b_bufsize) {
2486 						bufmallocspace -= bp->b_bufsize;
2487 						bufspacewakeup();
2488 						bp->b_bufsize = 0;
2489 					}
2490 					bp->b_data = bp->b_kvabase;
2491 					bp->b_bcount = 0;
2492 					bp->b_flags &= ~B_MALLOC;
2493 				}
2494 				return 1;
2495 			}
2496 #endif
2497 			vm_hold_free_pages(
2498 			    bp,
2499 			    (vm_offset_t) bp->b_data + newbsize,
2500 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2501 		} else if (newbsize > bp->b_bufsize) {
2502 #if !defined(NO_B_MALLOC)
2503 			/*
2504 			 * We only use malloced memory on the first allocation.
2505 			 * and revert to page-allocated memory when the buffer
2506 			 * grows.
2507 			 */
2508 			if ( (bufmallocspace < maxbufmallocspace) &&
2509 				(bp->b_bufsize == 0) &&
2510 				(mbsize <= PAGE_SIZE/2)) {
2511 
2512 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2513 				bp->b_bufsize = mbsize;
2514 				bp->b_bcount = size;
2515 				bp->b_flags |= B_MALLOC;
2516 				bufmallocspace += mbsize;
2517 				return 1;
2518 			}
2519 #endif
2520 			origbuf = NULL;
2521 			origbufsize = 0;
2522 #if !defined(NO_B_MALLOC)
2523 			/*
2524 			 * If the buffer is growing on its other-than-first allocation,
2525 			 * then we revert to the page-allocation scheme.
2526 			 */
2527 			if (bp->b_flags & B_MALLOC) {
2528 				origbuf = bp->b_data;
2529 				origbufsize = bp->b_bufsize;
2530 				bp->b_data = bp->b_kvabase;
2531 				if (bp->b_bufsize) {
2532 					bufmallocspace -= bp->b_bufsize;
2533 					bufspacewakeup();
2534 					bp->b_bufsize = 0;
2535 				}
2536 				bp->b_flags &= ~B_MALLOC;
2537 				newbsize = round_page(newbsize);
2538 			}
2539 #endif
2540 			vm_hold_load_pages(
2541 			    bp,
2542 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2543 			    (vm_offset_t) bp->b_data + newbsize);
2544 #if !defined(NO_B_MALLOC)
2545 			if (origbuf) {
2546 				bcopy(origbuf, bp->b_data, origbufsize);
2547 				free(origbuf, M_BIOBUF);
2548 			}
2549 #endif
2550 		}
2551 	} else {
2552 		vm_page_t m;
2553 		int desiredpages;
2554 
2555 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2556 		desiredpages = (size == 0) ? 0 :
2557 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2558 
2559 #if !defined(NO_B_MALLOC)
2560 		if (bp->b_flags & B_MALLOC)
2561 			panic("allocbuf: VMIO buffer can't be malloced");
2562 #endif
2563 		/*
2564 		 * Set B_CACHE initially if buffer is 0 length or will become
2565 		 * 0-length.
2566 		 */
2567 		if (size == 0 || bp->b_bufsize == 0)
2568 			bp->b_flags |= B_CACHE;
2569 
2570 		if (newbsize < bp->b_bufsize) {
2571 			/*
2572 			 * DEV_BSIZE aligned new buffer size is less then the
2573 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2574 			 * if we have to remove any pages.
2575 			 */
2576 			if (desiredpages < bp->b_xio.xio_npages) {
2577 				for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2578 					/*
2579 					 * the page is not freed here -- it
2580 					 * is the responsibility of
2581 					 * vnode_pager_setsize
2582 					 */
2583 					m = bp->b_xio.xio_pages[i];
2584 					KASSERT(m != bogus_page,
2585 					    ("allocbuf: bogus page found"));
2586 					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2587 						;
2588 
2589 					bp->b_xio.xio_pages[i] = NULL;
2590 					vm_page_unwire(m, 0);
2591 				}
2592 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2593 				    (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2594 				bp->b_xio.xio_npages = desiredpages;
2595 			}
2596 		} else if (size > bp->b_bcount) {
2597 			/*
2598 			 * We are growing the buffer, possibly in a
2599 			 * byte-granular fashion.
2600 			 */
2601 			struct vnode *vp;
2602 			vm_object_t obj;
2603 			vm_offset_t toff;
2604 			vm_offset_t tinc;
2605 
2606 			/*
2607 			 * Step 1, bring in the VM pages from the object,
2608 			 * allocating them if necessary.  We must clear
2609 			 * B_CACHE if these pages are not valid for the
2610 			 * range covered by the buffer.
2611 			 *
2612 			 * spl protection is required to protect against
2613 			 * interrupts unbusying and freeing pages between
2614 			 * our vm_page_lookup() and our busycheck/wiring
2615 			 * call.
2616 			 */
2617 			vp = bp->b_vp;
2618 			VOP_GETVOBJECT(vp, &obj);
2619 
2620 			crit_enter();
2621 			while (bp->b_xio.xio_npages < desiredpages) {
2622 				vm_page_t m;
2623 				vm_pindex_t pi;
2624 
2625 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_xio.xio_npages;
2626 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2627 					/*
2628 					 * note: must allocate system pages
2629 					 * since blocking here could intefere
2630 					 * with paging I/O, no matter which
2631 					 * process we are.
2632 					 */
2633 					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2634 					if (m == NULL) {
2635 						vm_wait();
2636 						vm_pageout_deficit += desiredpages -
2637 							bp->b_xio.xio_npages;
2638 					} else {
2639 						vm_page_wire(m);
2640 						vm_page_wakeup(m);
2641 						bp->b_flags &= ~B_CACHE;
2642 						bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2643 						++bp->b_xio.xio_npages;
2644 					}
2645 					continue;
2646 				}
2647 
2648 				/*
2649 				 * We found a page.  If we have to sleep on it,
2650 				 * retry because it might have gotten freed out
2651 				 * from under us.
2652 				 *
2653 				 * We can only test PG_BUSY here.  Blocking on
2654 				 * m->busy might lead to a deadlock:
2655 				 *
2656 				 *  vm_fault->getpages->cluster_read->allocbuf
2657 				 *
2658 				 */
2659 
2660 				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2661 					continue;
2662 
2663 				/*
2664 				 * We have a good page.  Should we wakeup the
2665 				 * page daemon?
2666 				 */
2667 				if ((curthread != pagethread) &&
2668 				    ((m->queue - m->pc) == PQ_CACHE) &&
2669 				    ((vmstats.v_free_count + vmstats.v_cache_count) <
2670 					(vmstats.v_free_min + vmstats.v_cache_min))) {
2671 					pagedaemon_wakeup();
2672 				}
2673 				vm_page_flag_clear(m, PG_ZERO);
2674 				vm_page_wire(m);
2675 				bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2676 				++bp->b_xio.xio_npages;
2677 			}
2678 			crit_exit();
2679 
2680 			/*
2681 			 * Step 2.  We've loaded the pages into the buffer,
2682 			 * we have to figure out if we can still have B_CACHE
2683 			 * set.  Note that B_CACHE is set according to the
2684 			 * byte-granular range ( bcount and size ), new the
2685 			 * aligned range ( newbsize ).
2686 			 *
2687 			 * The VM test is against m->valid, which is DEV_BSIZE
2688 			 * aligned.  Needless to say, the validity of the data
2689 			 * needs to also be DEV_BSIZE aligned.  Note that this
2690 			 * fails with NFS if the server or some other client
2691 			 * extends the file's EOF.  If our buffer is resized,
2692 			 * B_CACHE may remain set! XXX
2693 			 */
2694 
2695 			toff = bp->b_bcount;
2696 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2697 
2698 			while ((bp->b_flags & B_CACHE) && toff < size) {
2699 				vm_pindex_t pi;
2700 
2701 				if (tinc > (size - toff))
2702 					tinc = size - toff;
2703 
2704 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2705 				    PAGE_SHIFT;
2706 
2707 				vfs_buf_test_cache(
2708 				    bp,
2709 				    bp->b_offset,
2710 				    toff,
2711 				    tinc,
2712 				    bp->b_xio.xio_pages[pi]
2713 				);
2714 				toff += tinc;
2715 				tinc = PAGE_SIZE;
2716 			}
2717 
2718 			/*
2719 			 * Step 3, fixup the KVM pmap.  Remember that
2720 			 * bp->b_data is relative to bp->b_offset, but
2721 			 * bp->b_offset may be offset into the first page.
2722 			 */
2723 
2724 			bp->b_data = (caddr_t)
2725 			    trunc_page((vm_offset_t)bp->b_data);
2726 			pmap_qenter(
2727 			    (vm_offset_t)bp->b_data,
2728 			    bp->b_xio.xio_pages,
2729 			    bp->b_xio.xio_npages
2730 			);
2731 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2732 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2733 		}
2734 	}
2735 	if (newbsize < bp->b_bufsize)
2736 		bufspacewakeup();
2737 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2738 	bp->b_bcount = size;		/* requested buffer size	*/
2739 	return 1;
2740 }
2741 
2742 /*
2743  *	biowait:
2744  *
2745  *	Wait for buffer I/O completion, returning error status.  The buffer
2746  *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2747  *	error and cleared.
2748  */
2749 int
2750 biowait(struct buf * bp)
2751 {
2752 	int s;
2753 
2754 	s = splbio();
2755 	while ((bp->b_flags & B_DONE) == 0) {
2756 #if defined(NO_SCHEDULE_MODS)
2757 		tsleep(bp, 0, "biowait", 0);
2758 #else
2759 		if (bp->b_flags & B_READ)
2760 			tsleep(bp, 0, "biord", 0);
2761 		else
2762 			tsleep(bp, 0, "biowr", 0);
2763 #endif
2764 	}
2765 	splx(s);
2766 	if (bp->b_flags & B_EINTR) {
2767 		bp->b_flags &= ~B_EINTR;
2768 		return (EINTR);
2769 	}
2770 	if (bp->b_flags & B_ERROR) {
2771 		return (bp->b_error ? bp->b_error : EIO);
2772 	} else {
2773 		return (0);
2774 	}
2775 }
2776 
2777 /*
2778  *	biodone:
2779  *
2780  *	Finish I/O on a buffer, optionally calling a completion function.
2781  *	This is usually called from an interrupt so process blocking is
2782  *	not allowed.
2783  *
2784  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2785  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2786  *	assuming B_INVAL is clear.
2787  *
2788  *	For the VMIO case, we set B_CACHE if the op was a read and no
2789  *	read error occured, or if the op was a write.  B_CACHE is never
2790  *	set if the buffer is invalid or otherwise uncacheable.
2791  *
2792  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2793  *	initiator to leave B_INVAL set to brelse the buffer out of existance
2794  *	in the biodone routine.
2795  *
2796  *	b_dev is required to be reinitialized prior to the top level strategy
2797  *	call in a device stack.  To avoid improper reuse, biodone() sets
2798  *	b_dev to NODEV.
2799  */
2800 void
2801 biodone(struct buf *bp)
2802 {
2803 	int s, error;
2804 
2805 	s = splbio();
2806 
2807 	KASSERT(BUF_REFCNTNB(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2808 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2809 
2810 	bp->b_flags |= B_DONE;
2811 	bp->b_dev = NODEV;
2812 	runningbufwakeup(bp);
2813 
2814 	if (bp->b_flags & B_FREEBUF) {
2815 		brelse(bp);
2816 		splx(s);
2817 		return;
2818 	}
2819 
2820 	if ((bp->b_flags & B_READ) == 0) {
2821 		vwakeup(bp);
2822 	}
2823 
2824 	/* call optional completion function if requested */
2825 	if (bp->b_flags & B_CALL) {
2826 		bp->b_flags &= ~B_CALL;
2827 		(*bp->b_iodone) (bp);
2828 		splx(s);
2829 		return;
2830 	}
2831 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2832 		(*bioops.io_complete)(bp);
2833 
2834 	if (bp->b_flags & B_VMIO) {
2835 		int i;
2836 		vm_ooffset_t foff;
2837 		vm_page_t m;
2838 		vm_object_t obj;
2839 		int iosize;
2840 		struct vnode *vp = bp->b_vp;
2841 
2842 		error = VOP_GETVOBJECT(vp, &obj);
2843 
2844 #if defined(VFS_BIO_DEBUG)
2845 		if (vp->v_holdcnt == 0) {
2846 			panic("biodone: zero vnode hold count");
2847 		}
2848 
2849 		if (error) {
2850 			panic("biodone: missing VM object");
2851 		}
2852 
2853 		if ((vp->v_flag & VOBJBUF) == 0) {
2854 			panic("biodone: vnode is not setup for merged cache");
2855 		}
2856 #endif
2857 
2858 		foff = bp->b_offset;
2859 		KASSERT(bp->b_offset != NOOFFSET,
2860 		    ("biodone: no buffer offset"));
2861 
2862 		if (error) {
2863 			panic("biodone: no object");
2864 		}
2865 #if defined(VFS_BIO_DEBUG)
2866 		if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2867 			printf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2868 			    obj->paging_in_progress, bp->b_xio.xio_npages);
2869 		}
2870 #endif
2871 
2872 		/*
2873 		 * Set B_CACHE if the op was a normal read and no error
2874 		 * occured.  B_CACHE is set for writes in the b*write()
2875 		 * routines.
2876 		 */
2877 		iosize = bp->b_bcount - bp->b_resid;
2878 		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2879 			bp->b_flags |= B_CACHE;
2880 		}
2881 
2882 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2883 			int bogusflag = 0;
2884 			int resid;
2885 
2886 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2887 			if (resid > iosize)
2888 				resid = iosize;
2889 
2890 			/*
2891 			 * cleanup bogus pages, restoring the originals.  Since
2892 			 * the originals should still be wired, we don't have
2893 			 * to worry about interrupt/freeing races destroying
2894 			 * the VM object association.
2895 			 */
2896 			m = bp->b_xio.xio_pages[i];
2897 			if (m == bogus_page) {
2898 				bogusflag = 1;
2899 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2900 				if (m == NULL)
2901 					panic("biodone: page disappeared");
2902 				bp->b_xio.xio_pages[i] = m;
2903 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2904 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2905 			}
2906 #if defined(VFS_BIO_DEBUG)
2907 			if (OFF_TO_IDX(foff) != m->pindex) {
2908 				printf(
2909 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2910 				    (unsigned long)foff, m->pindex);
2911 			}
2912 #endif
2913 
2914 			/*
2915 			 * In the write case, the valid and clean bits are
2916 			 * already changed correctly ( see bdwrite() ), so we
2917 			 * only need to do this here in the read case.
2918 			 */
2919 			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2920 				vfs_page_set_valid(bp, foff, i, m);
2921 			}
2922 			vm_page_flag_clear(m, PG_ZERO);
2923 
2924 			/*
2925 			 * when debugging new filesystems or buffer I/O methods, this
2926 			 * is the most common error that pops up.  if you see this, you
2927 			 * have not set the page busy flag correctly!!!
2928 			 */
2929 			if (m->busy == 0) {
2930 				printf("biodone: page busy < 0, "
2931 				    "pindex: %d, foff: 0x(%x,%x), "
2932 				    "resid: %d, index: %d\n",
2933 				    (int) m->pindex, (int)(foff >> 32),
2934 						(int) foff & 0xffffffff, resid, i);
2935 				if (!vn_isdisk(vp, NULL))
2936 					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2937 					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2938 					    (int) bp->b_lblkno,
2939 					    bp->b_flags, bp->b_xio.xio_npages);
2940 				else
2941 					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2942 					    (int) bp->b_lblkno,
2943 					    bp->b_flags, bp->b_xio.xio_npages);
2944 				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2945 				    m->valid, m->dirty, m->wire_count);
2946 				panic("biodone: page busy < 0");
2947 			}
2948 			vm_page_io_finish(m);
2949 			vm_object_pip_subtract(obj, 1);
2950 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2951 			iosize -= resid;
2952 		}
2953 		if (obj)
2954 			vm_object_pip_wakeupn(obj, 0);
2955 	}
2956 
2957 	/*
2958 	 * For asynchronous completions, release the buffer now. The brelse
2959 	 * will do a wakeup there if necessary - so no need to do a wakeup
2960 	 * here in the async case. The sync case always needs to do a wakeup.
2961 	 */
2962 
2963 	if (bp->b_flags & B_ASYNC) {
2964 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2965 			brelse(bp);
2966 		else
2967 			bqrelse(bp);
2968 	} else {
2969 		wakeup(bp);
2970 	}
2971 	splx(s);
2972 }
2973 
2974 /*
2975  * This routine is called in lieu of iodone in the case of
2976  * incomplete I/O.  This keeps the busy status for pages
2977  * consistant.
2978  */
2979 void
2980 vfs_unbusy_pages(struct buf *bp)
2981 {
2982 	int i;
2983 
2984 	runningbufwakeup(bp);
2985 	if (bp->b_flags & B_VMIO) {
2986 		struct vnode *vp = bp->b_vp;
2987 		vm_object_t obj;
2988 
2989 		VOP_GETVOBJECT(vp, &obj);
2990 
2991 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
2992 			vm_page_t m = bp->b_xio.xio_pages[i];
2993 
2994 			/*
2995 			 * When restoring bogus changes the original pages
2996 			 * should still be wired, so we are in no danger of
2997 			 * losing the object association and do not need
2998 			 * spl protection particularly.
2999 			 */
3000 			if (m == bogus_page) {
3001 				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3002 				if (!m) {
3003 					panic("vfs_unbusy_pages: page missing");
3004 				}
3005 				bp->b_xio.xio_pages[i] = m;
3006 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3007 					bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3008 			}
3009 			vm_object_pip_subtract(obj, 1);
3010 			vm_page_flag_clear(m, PG_ZERO);
3011 			vm_page_io_finish(m);
3012 		}
3013 		vm_object_pip_wakeupn(obj, 0);
3014 	}
3015 }
3016 
3017 /*
3018  * vfs_page_set_valid:
3019  *
3020  *	Set the valid bits in a page based on the supplied offset.   The
3021  *	range is restricted to the buffer's size.
3022  *
3023  *	This routine is typically called after a read completes.
3024  */
3025 static void
3026 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3027 {
3028 	vm_ooffset_t soff, eoff;
3029 
3030 	/*
3031 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3032 	 * page boundry or cross the end of the buffer.  The end of the
3033 	 * buffer, in this case, is our file EOF, not the allocation size
3034 	 * of the buffer.
3035 	 */
3036 	soff = off;
3037 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3038 	if (eoff > bp->b_offset + bp->b_bcount)
3039 		eoff = bp->b_offset + bp->b_bcount;
3040 
3041 	/*
3042 	 * Set valid range.  This is typically the entire buffer and thus the
3043 	 * entire page.
3044 	 */
3045 	if (eoff > soff) {
3046 		vm_page_set_validclean(
3047 		    m,
3048 		   (vm_offset_t) (soff & PAGE_MASK),
3049 		   (vm_offset_t) (eoff - soff)
3050 		);
3051 	}
3052 }
3053 
3054 /*
3055  * This routine is called before a device strategy routine.
3056  * It is used to tell the VM system that paging I/O is in
3057  * progress, and treat the pages associated with the buffer
3058  * almost as being PG_BUSY.  Also the object paging_in_progress
3059  * flag is handled to make sure that the object doesn't become
3060  * inconsistant.
3061  *
3062  * Since I/O has not been initiated yet, certain buffer flags
3063  * such as B_ERROR or B_INVAL may be in an inconsistant state
3064  * and should be ignored.
3065  */
3066 void
3067 vfs_busy_pages(struct buf *bp, int clear_modify)
3068 {
3069 	int i, bogus;
3070 
3071 	if (bp->b_flags & B_VMIO) {
3072 		struct vnode *vp = bp->b_vp;
3073 		vm_object_t obj;
3074 		vm_ooffset_t foff;
3075 
3076 		VOP_GETVOBJECT(vp, &obj);
3077 		foff = bp->b_offset;
3078 		KASSERT(bp->b_offset != NOOFFSET,
3079 		    ("vfs_busy_pages: no buffer offset"));
3080 		vfs_setdirty(bp);
3081 
3082 retry:
3083 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3084 			vm_page_t m = bp->b_xio.xio_pages[i];
3085 			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3086 				goto retry;
3087 		}
3088 
3089 		bogus = 0;
3090 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3091 			vm_page_t m = bp->b_xio.xio_pages[i];
3092 
3093 			vm_page_flag_clear(m, PG_ZERO);
3094 			if ((bp->b_flags & B_CLUSTER) == 0) {
3095 				vm_object_pip_add(obj, 1);
3096 				vm_page_io_start(m);
3097 			}
3098 
3099 			/*
3100 			 * When readying a buffer for a read ( i.e
3101 			 * clear_modify == 0 ), it is important to do
3102 			 * bogus_page replacement for valid pages in
3103 			 * partially instantiated buffers.  Partially
3104 			 * instantiated buffers can, in turn, occur when
3105 			 * reconstituting a buffer from its VM backing store
3106 			 * base.  We only have to do this if B_CACHE is
3107 			 * clear ( which causes the I/O to occur in the
3108 			 * first place ).  The replacement prevents the read
3109 			 * I/O from overwriting potentially dirty VM-backed
3110 			 * pages.  XXX bogus page replacement is, uh, bogus.
3111 			 * It may not work properly with small-block devices.
3112 			 * We need to find a better way.
3113 			 */
3114 
3115 			vm_page_protect(m, VM_PROT_NONE);
3116 			if (clear_modify)
3117 				vfs_page_set_valid(bp, foff, i, m);
3118 			else if (m->valid == VM_PAGE_BITS_ALL &&
3119 				(bp->b_flags & B_CACHE) == 0) {
3120 				bp->b_xio.xio_pages[i] = bogus_page;
3121 				bogus++;
3122 			}
3123 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3124 		}
3125 		if (bogus)
3126 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3127 				bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3128 	}
3129 
3130 	/*
3131 	 * This is the easiest place to put the process accounting for the I/O
3132 	 * for now.
3133 	 */
3134 	{
3135 		struct proc *p;
3136 
3137 		if ((p = curthread->td_proc) != NULL) {
3138 			if (bp->b_flags & B_READ)
3139 				p->p_stats->p_ru.ru_inblock++;
3140 			else
3141 				p->p_stats->p_ru.ru_oublock++;
3142 		}
3143 	}
3144 }
3145 
3146 /*
3147  * Tell the VM system that the pages associated with this buffer
3148  * are clean.  This is used for delayed writes where the data is
3149  * going to go to disk eventually without additional VM intevention.
3150  *
3151  * Note that while we only really need to clean through to b_bcount, we
3152  * just go ahead and clean through to b_bufsize.
3153  */
3154 static void
3155 vfs_clean_pages(struct buf *bp)
3156 {
3157 	int i;
3158 
3159 	if (bp->b_flags & B_VMIO) {
3160 		vm_ooffset_t foff;
3161 
3162 		foff = bp->b_offset;
3163 		KASSERT(bp->b_offset != NOOFFSET,
3164 		    ("vfs_clean_pages: no buffer offset"));
3165 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3166 			vm_page_t m = bp->b_xio.xio_pages[i];
3167 			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3168 			vm_ooffset_t eoff = noff;
3169 
3170 			if (eoff > bp->b_offset + bp->b_bufsize)
3171 				eoff = bp->b_offset + bp->b_bufsize;
3172 			vfs_page_set_valid(bp, foff, i, m);
3173 			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3174 			foff = noff;
3175 		}
3176 	}
3177 }
3178 
3179 /*
3180  *	vfs_bio_set_validclean:
3181  *
3182  *	Set the range within the buffer to valid and clean.  The range is
3183  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3184  *	itself may be offset from the beginning of the first page.
3185  */
3186 
3187 void
3188 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3189 {
3190 	if (bp->b_flags & B_VMIO) {
3191 		int i;
3192 		int n;
3193 
3194 		/*
3195 		 * Fixup base to be relative to beginning of first page.
3196 		 * Set initial n to be the maximum number of bytes in the
3197 		 * first page that can be validated.
3198 		 */
3199 
3200 		base += (bp->b_offset & PAGE_MASK);
3201 		n = PAGE_SIZE - (base & PAGE_MASK);
3202 
3203 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3204 			vm_page_t m = bp->b_xio.xio_pages[i];
3205 
3206 			if (n > size)
3207 				n = size;
3208 
3209 			vm_page_set_validclean(m, base & PAGE_MASK, n);
3210 			base += n;
3211 			size -= n;
3212 			n = PAGE_SIZE;
3213 		}
3214 	}
3215 }
3216 
3217 /*
3218  *	vfs_bio_clrbuf:
3219  *
3220  *	clear a buffer.  This routine essentially fakes an I/O, so we need
3221  *	to clear B_ERROR and B_INVAL.
3222  *
3223  *	Note that while we only theoretically need to clear through b_bcount,
3224  *	we go ahead and clear through b_bufsize.
3225  */
3226 
3227 void
3228 vfs_bio_clrbuf(struct buf *bp)
3229 {
3230 	int i, mask = 0;
3231 	caddr_t sa, ea;
3232 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3233 		bp->b_flags &= ~(B_INVAL|B_ERROR);
3234 		if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3235 		    (bp->b_offset & PAGE_MASK) == 0) {
3236 			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3237 			if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3238 				bp->b_resid = 0;
3239 				return;
3240 			}
3241 			if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3242 			    ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3243 				bzero(bp->b_data, bp->b_bufsize);
3244 				bp->b_xio.xio_pages[0]->valid |= mask;
3245 				bp->b_resid = 0;
3246 				return;
3247 			}
3248 		}
3249 		ea = sa = bp->b_data;
3250 		for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3251 			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3252 			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3253 			ea = (caddr_t)(vm_offset_t)ulmin(
3254 			    (u_long)(vm_offset_t)ea,
3255 			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3256 			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3257 			if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3258 				continue;
3259 			if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3260 				if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3261 					bzero(sa, ea - sa);
3262 				}
3263 			} else {
3264 				for (; sa < ea; sa += DEV_BSIZE, j++) {
3265 					if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3266 						(bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3267 						bzero(sa, DEV_BSIZE);
3268 				}
3269 			}
3270 			bp->b_xio.xio_pages[i]->valid |= mask;
3271 			vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3272 		}
3273 		bp->b_resid = 0;
3274 	} else {
3275 		clrbuf(bp);
3276 	}
3277 }
3278 
3279 /*
3280  * vm_hold_load_pages and vm_hold_unload pages get pages into
3281  * a buffers address space.  The pages are anonymous and are
3282  * not associated with a file object.
3283  */
3284 void
3285 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3286 {
3287 	vm_offset_t pg;
3288 	vm_page_t p;
3289 	int index;
3290 
3291 	to = round_page(to);
3292 	from = round_page(from);
3293 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3294 
3295 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3296 
3297 tryagain:
3298 
3299 		/*
3300 		 * note: must allocate system pages since blocking here
3301 		 * could intefere with paging I/O, no matter which
3302 		 * process we are.
3303 		 */
3304 		p = vm_page_alloc(kernel_object,
3305 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3306 			VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3307 		if (!p) {
3308 			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3309 			vm_wait();
3310 			goto tryagain;
3311 		}
3312 		vm_page_wire(p);
3313 		p->valid = VM_PAGE_BITS_ALL;
3314 		vm_page_flag_clear(p, PG_ZERO);
3315 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3316 		bp->b_xio.xio_pages[index] = p;
3317 		vm_page_wakeup(p);
3318 	}
3319 	bp->b_xio.xio_npages = index;
3320 }
3321 
3322 void
3323 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3324 {
3325 	vm_offset_t pg;
3326 	vm_page_t p;
3327 	int index, newnpages;
3328 
3329 	from = round_page(from);
3330 	to = round_page(to);
3331 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3332 
3333 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3334 		p = bp->b_xio.xio_pages[index];
3335 		if (p && (index < bp->b_xio.xio_npages)) {
3336 			if (p->busy) {
3337 				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3338 					bp->b_blkno, bp->b_lblkno);
3339 			}
3340 			bp->b_xio.xio_pages[index] = NULL;
3341 			pmap_kremove(pg);
3342 			vm_page_busy(p);
3343 			vm_page_unwire(p, 0);
3344 			vm_page_free(p);
3345 		}
3346 	}
3347 	bp->b_xio.xio_npages = newnpages;
3348 }
3349 
3350 /*
3351  * Map an IO request into kernel virtual address space.
3352  *
3353  * All requests are (re)mapped into kernel VA space.
3354  * Notice that we use b_bufsize for the size of the buffer
3355  * to be mapped.  b_bcount might be modified by the driver.
3356  */
3357 int
3358 vmapbuf(struct buf *bp)
3359 {
3360 	caddr_t addr, v, kva;
3361 	vm_paddr_t pa;
3362 	int pidx;
3363 	int i;
3364 	struct vm_page *m;
3365 
3366 	if ((bp->b_flags & B_PHYS) == 0)
3367 		panic("vmapbuf");
3368 	if (bp->b_bufsize < 0)
3369 		return (-1);
3370 	for (v = bp->b_saveaddr,
3371 		     addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data),
3372 		     pidx = 0;
3373 	     addr < bp->b_data + bp->b_bufsize;
3374 	     addr += PAGE_SIZE, v += PAGE_SIZE, pidx++) {
3375 		/*
3376 		 * Do the vm_fault if needed; do the copy-on-write thing
3377 		 * when reading stuff off device into memory.
3378 		 */
3379 retry:
3380 		i = vm_fault_quick((addr >= bp->b_data) ? addr : bp->b_data,
3381 			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
3382 		if (i < 0) {
3383 			for (i = 0; i < pidx; ++i) {
3384 			    vm_page_unhold(bp->b_xio.xio_pages[i]);
3385 			    bp->b_xio.xio_pages[i] = NULL;
3386 			}
3387 			return(-1);
3388 		}
3389 
3390 		/*
3391 		 * WARNING!  If sparc support is MFCd in the future this will
3392 		 * have to be changed from pmap_kextract() to pmap_extract()
3393 		 * ala -current.
3394 		 */
3395 #ifdef __sparc64__
3396 #error "If MFCing sparc support use pmap_extract"
3397 #endif
3398 		pa = pmap_kextract((vm_offset_t)addr);
3399 		if (pa == 0) {
3400 			printf("vmapbuf: warning, race against user address during I/O");
3401 			goto retry;
3402 		}
3403 		m = PHYS_TO_VM_PAGE(pa);
3404 		vm_page_hold(m);
3405 		bp->b_xio.xio_pages[pidx] = m;
3406 	}
3407 	if (pidx > btoc(MAXPHYS))
3408 		panic("vmapbuf: mapped more than MAXPHYS");
3409 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_xio.xio_pages, pidx);
3410 
3411 	kva = bp->b_saveaddr;
3412 	bp->b_xio.xio_npages = pidx;
3413 	bp->b_saveaddr = bp->b_data;
3414 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3415 	return(0);
3416 }
3417 
3418 /*
3419  * Free the io map PTEs associated with this IO operation.
3420  * We also invalidate the TLB entries and restore the original b_addr.
3421  */
3422 void
3423 vunmapbuf(struct buf *bp)
3424 {
3425 	int pidx;
3426 	int npages;
3427 	vm_page_t *m;
3428 
3429 	if ((bp->b_flags & B_PHYS) == 0)
3430 		panic("vunmapbuf");
3431 
3432 	npages = bp->b_xio.xio_npages;
3433 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3434 		     npages);
3435 	m = bp->b_xio.xio_pages;
3436 	for (pidx = 0; pidx < npages; pidx++)
3437 		vm_page_unhold(*m++);
3438 
3439 	bp->b_data = bp->b_saveaddr;
3440 }
3441 
3442 #include "opt_ddb.h"
3443 #ifdef DDB
3444 #include <ddb/ddb.h>
3445 
3446 DB_SHOW_COMMAND(buffer, db_show_buffer)
3447 {
3448 	/* get args */
3449 	struct buf *bp = (struct buf *)addr;
3450 
3451 	if (!have_addr) {
3452 		db_printf("usage: show buffer <addr>\n");
3453 		return;
3454 	}
3455 
3456 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3457 	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3458 		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3459 		  "b_blkno = %d, b_pblkno = %d\n",
3460 		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3461 		  major(bp->b_dev), minor(bp->b_dev),
3462 		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3463 	if (bp->b_xio.xio_npages) {
3464 		int i;
3465 		db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3466 			bp->b_xio.xio_npages);
3467 		for (i = 0; i < bp->b_xio.xio_npages; i++) {
3468 			vm_page_t m;
3469 			m = bp->b_xio.xio_pages[i];
3470 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3471 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3472 			if ((i + 1) < bp->b_xio.xio_npages)
3473 				db_printf(",");
3474 		}
3475 		db_printf("\n");
3476 	}
3477 }
3478 #endif /* DDB */
3479