xref: /dflybsd-src/sys/kern/usched_bsd4.c (revision f3834e0d94a74d42752caa878a0d9060f94545d2)
1 /*
2  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.26 2008/11/01 23:31:19 dillon Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/queue.h>
34 #include <sys/proc.h>
35 #include <sys/rtprio.h>
36 #include <sys/uio.h>
37 #include <sys/sysctl.h>
38 #include <sys/resourcevar.h>
39 #include <sys/spinlock.h>
40 #include <machine/cpu.h>
41 #include <machine/smp.h>
42 
43 #include <sys/thread2.h>
44 #include <sys/spinlock2.h>
45 #include <sys/mplock2.h>
46 
47 /*
48  * Priorities.  Note that with 32 run queues per scheduler each queue
49  * represents four priority levels.
50  */
51 
52 #define MAXPRI			128
53 #define PRIMASK			(MAXPRI - 1)
54 #define PRIBASE_REALTIME	0
55 #define PRIBASE_NORMAL		MAXPRI
56 #define PRIBASE_IDLE		(MAXPRI * 2)
57 #define PRIBASE_THREAD		(MAXPRI * 3)
58 #define PRIBASE_NULL		(MAXPRI * 4)
59 
60 #define NQS	32			/* 32 run queues. */
61 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
62 #define PPQMASK	(PPQ - 1)
63 
64 /*
65  * NICEPPQ	- number of nice units per priority queue
66  * ESTCPURAMP	- number of scheduler ticks for estcpu to switch queues
67  *
68  * ESTCPUPPQ	- number of estcpu units per priority queue
69  * ESTCPUMAX	- number of estcpu units
70  * ESTCPUINCR	- amount we have to increment p_estcpu per scheduling tick at
71  *		  100% cpu.
72  */
73 #define NICEPPQ		2
74 #define ESTCPURAMP	4
75 #define ESTCPUPPQ	512
76 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
77 #define ESTCPUINCR	(ESTCPUPPQ / ESTCPURAMP)
78 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
79 
80 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
81 
82 TAILQ_HEAD(rq, lwp);
83 
84 #define lwp_priority	lwp_usdata.bsd4.priority
85 #define lwp_rqindex	lwp_usdata.bsd4.rqindex
86 #define lwp_origcpu	lwp_usdata.bsd4.origcpu
87 #define lwp_estcpu	lwp_usdata.bsd4.estcpu
88 #define lwp_rqtype	lwp_usdata.bsd4.rqtype
89 
90 static void bsd4_acquire_curproc(struct lwp *lp);
91 static void bsd4_release_curproc(struct lwp *lp);
92 static void bsd4_select_curproc(globaldata_t gd);
93 static void bsd4_setrunqueue(struct lwp *lp);
94 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
95 				sysclock_t cpstamp);
96 static void bsd4_recalculate_estcpu(struct lwp *lp);
97 static void bsd4_resetpriority(struct lwp *lp);
98 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
99 static void bsd4_exiting(struct lwp *plp, struct lwp *lp);
100 static void bsd4_yield(struct lwp *lp);
101 
102 #ifdef SMP
103 static void need_user_resched_remote(void *dummy);
104 #endif
105 static struct lwp *chooseproc_locked(struct lwp *chklp);
106 static void bsd4_remrunqueue_locked(struct lwp *lp);
107 static void bsd4_setrunqueue_locked(struct lwp *lp);
108 
109 struct usched usched_bsd4 = {
110 	{ NULL },
111 	"bsd4", "Original DragonFly Scheduler",
112 	NULL,			/* default registration */
113 	NULL,			/* default deregistration */
114 	bsd4_acquire_curproc,
115 	bsd4_release_curproc,
116 	bsd4_setrunqueue,
117 	bsd4_schedulerclock,
118 	bsd4_recalculate_estcpu,
119 	bsd4_resetpriority,
120 	bsd4_forking,
121 	bsd4_exiting,
122 	NULL,			/* setcpumask not supported */
123 	bsd4_yield
124 };
125 
126 struct usched_bsd4_pcpu {
127 	struct thread helper_thread;
128 	short	rrcount;
129 	short	upri;
130 	struct lwp *uschedcp;
131 };
132 
133 typedef struct usched_bsd4_pcpu	*bsd4_pcpu_t;
134 
135 /*
136  * We have NQS (32) run queues per scheduling class.  For the normal
137  * class, there are 128 priorities scaled onto these 32 queues.  New
138  * processes are added to the last entry in each queue, and processes
139  * are selected for running by taking them from the head and maintaining
140  * a simple FIFO arrangement.  Realtime and Idle priority processes have
141  * and explicit 0-31 priority which maps directly onto their class queue
142  * index.  When a queue has something in it, the corresponding bit is
143  * set in the queuebits variable, allowing a single read to determine
144  * the state of all 32 queues and then a ffs() to find the first busy
145  * queue.
146  */
147 static struct rq bsd4_queues[NQS];
148 static struct rq bsd4_rtqueues[NQS];
149 static struct rq bsd4_idqueues[NQS];
150 static u_int32_t bsd4_queuebits;
151 static u_int32_t bsd4_rtqueuebits;
152 static u_int32_t bsd4_idqueuebits;
153 static cpumask_t bsd4_curprocmask = -1;	/* currently running a user process */
154 static cpumask_t bsd4_rdyprocmask;	/* ready to accept a user process */
155 static int	 bsd4_runqcount;
156 #ifdef SMP
157 static volatile int bsd4_scancpu;
158 #endif
159 static struct spinlock bsd4_spin;
160 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
161 
162 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0,
163     "Number of run queues");
164 #ifdef INVARIANTS
165 static int usched_nonoptimal;
166 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW,
167         &usched_nonoptimal, 0, "acquire_curproc() was not optimal");
168 static int usched_optimal;
169 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW,
170         &usched_optimal, 0, "acquire_curproc() was optimal");
171 #endif
172 static int usched_debug = -1;
173 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0,
174     "Print debug information for this pid");
175 #ifdef SMP
176 static int remote_resched_nonaffinity;
177 static int remote_resched_affinity;
178 static int choose_affinity;
179 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD,
180         &remote_resched_nonaffinity, 0, "Number of remote rescheds");
181 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD,
182         &remote_resched_affinity, 0, "Number of remote rescheds");
183 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD,
184         &choose_affinity, 0, "chooseproc() was smart");
185 #endif
186 
187 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
188 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW,
189         &usched_bsd4_rrinterval, 0, "");
190 static int usched_bsd4_decay = ESTCPUINCR / 2;
191 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW,
192         &usched_bsd4_decay, 0, "");
193 
194 /*
195  * Initialize the run queues at boot time.
196  */
197 static void
198 rqinit(void *dummy)
199 {
200 	int i;
201 
202 	spin_init(&bsd4_spin);
203 	for (i = 0; i < NQS; i++) {
204 		TAILQ_INIT(&bsd4_queues[i]);
205 		TAILQ_INIT(&bsd4_rtqueues[i]);
206 		TAILQ_INIT(&bsd4_idqueues[i]);
207 	}
208 	atomic_clear_cpumask(&bsd4_curprocmask, 1);
209 }
210 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, rqinit, NULL)
211 
212 /*
213  * BSD4_ACQUIRE_CURPROC
214  *
215  * This function is called when the kernel intends to return to userland.
216  * It is responsible for making the thread the current designated userland
217  * thread for this cpu, blocking if necessary.
218  *
219  * The kernel has already depressed our LWKT priority so we must not switch
220  * until we have either assigned or disposed of the thread.
221  *
222  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
223  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
224  * occur, this function is called only under very controlled circumstances.
225  *
226  * MPSAFE
227  */
228 static void
229 bsd4_acquire_curproc(struct lwp *lp)
230 {
231 	globaldata_t gd;
232 	bsd4_pcpu_t dd;
233 	struct lwp *olp;
234 
235 	crit_enter();
236 	bsd4_recalculate_estcpu(lp);
237 
238 	/*
239 	 * If a reschedule was requested give another thread the
240 	 * driver's seat.
241 	 */
242 	if (user_resched_wanted()) {
243 		clear_user_resched();
244 		bsd4_release_curproc(lp);
245 	}
246 
247 	/*
248 	 * Loop until we are the current user thread
249 	 */
250 	do {
251 		/*
252 		 * Reload after a switch or setrunqueue/switch possibly
253 		 * moved us to another cpu.
254 		 */
255 		/*clear_lwkt_resched();*/
256 		gd = mycpu;
257 		dd = &bsd4_pcpu[gd->gd_cpuid];
258 
259 		/*
260 		 * Become the currently scheduled user thread for this cpu
261 		 * if we can do so trivially.
262 		 *
263 		 * We can steal another thread's current thread designation
264 		 * on this cpu since if we are running that other thread
265 		 * must not be, so we can safely deschedule it.
266 		 */
267 		if (dd->uschedcp == lp) {
268 			/*
269 			 * We are already the current lwp (hot path).
270 			 */
271 			dd->upri = lp->lwp_priority;
272 		} else if (dd->uschedcp == NULL) {
273 			/*
274 			 * We can trivially become the current lwp.
275 			 */
276 			atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
277 			dd->uschedcp = lp;
278 			dd->upri = lp->lwp_priority;
279 		} else if (dd->upri > lp->lwp_priority) {
280 			/*
281 			 * We can steal the current lwp designation from the
282 			 * olp that was previously assigned to this cpu.
283 			 */
284 			olp = dd->uschedcp;
285 			dd->uschedcp = lp;
286 			dd->upri = lp->lwp_priority;
287 			lwkt_deschedule(olp->lwp_thread);
288 			bsd4_setrunqueue(olp);
289 		} else {
290 			/*
291 			 * We cannot become the current lwp, place the lp
292 			 * on the bsd4 run-queue and deschedule ourselves.
293 			 */
294 			lwkt_deschedule(lp->lwp_thread);
295 			bsd4_setrunqueue(lp);
296 			lwkt_switch();
297 		}
298 
299 		/*
300 		 * Other threads at our current user priority have already
301 		 * put in their bids, but we must run any kernel threads
302 		 * at higher priorities, and we could lose our bid to
303 		 * another thread trying to return to user mode in the
304 		 * process.
305 		 *
306 		 * If we lose our bid we will be descheduled and put on
307 		 * the run queue.  When we are reactivated we will have
308 		 * another chance.
309 		 */
310 		if (lwkt_resched_wanted() ||
311 		    lp->lwp_thread->td_fairq_accum < 0) {
312 			lwkt_switch();
313 		}
314 	} while (dd->uschedcp != lp);
315 
316 	crit_exit();
317 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
318 }
319 
320 /*
321  * BSD4_RELEASE_CURPROC
322  *
323  * This routine detaches the current thread from the userland scheduler,
324  * usually because the thread needs to run or block in the kernel (at
325  * kernel priority) for a while.
326  *
327  * This routine is also responsible for selecting a new thread to
328  * make the current thread.
329  *
330  * NOTE: This implementation differs from the dummy example in that
331  * bsd4_select_curproc() is able to select the current process, whereas
332  * dummy_select_curproc() is not able to select the current process.
333  * This means we have to NULL out uschedcp.
334  *
335  * Additionally, note that we may already be on a run queue if releasing
336  * via the lwkt_switch() in bsd4_setrunqueue().
337  *
338  * MPSAFE
339  */
340 static void
341 bsd4_release_curproc(struct lwp *lp)
342 {
343 	globaldata_t gd = mycpu;
344 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
345 
346 	if (dd->uschedcp == lp) {
347 		crit_enter();
348 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
349 		dd->uschedcp = NULL;	/* don't let lp be selected */
350 		dd->upri = PRIBASE_NULL;
351 		atomic_clear_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
352 		bsd4_select_curproc(gd);
353 		crit_exit();
354 	}
355 }
356 
357 /*
358  * BSD4_SELECT_CURPROC
359  *
360  * Select a new current process for this cpu and clear any pending user
361  * reschedule request.  The cpu currently has no current process.
362  *
363  * This routine is also responsible for equal-priority round-robining,
364  * typically triggered from bsd4_schedulerclock().  In our dummy example
365  * all the 'user' threads are LWKT scheduled all at once and we just
366  * call lwkt_switch().
367  *
368  * The calling process is not on the queue and cannot be selected.
369  *
370  * MPSAFE
371  */
372 static
373 void
374 bsd4_select_curproc(globaldata_t gd)
375 {
376 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
377 	struct lwp *nlp;
378 	int cpuid = gd->gd_cpuid;
379 
380 	crit_enter_gd(gd);
381 
382 	spin_lock(&bsd4_spin);
383 	if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
384 		atomic_set_cpumask(&bsd4_curprocmask, CPUMASK(cpuid));
385 		dd->upri = nlp->lwp_priority;
386 		dd->uschedcp = nlp;
387 		spin_unlock(&bsd4_spin);
388 #ifdef SMP
389 		lwkt_acquire(nlp->lwp_thread);
390 #endif
391 		lwkt_schedule(nlp->lwp_thread);
392 	} else {
393 		spin_unlock(&bsd4_spin);
394 	}
395 #if 0
396 	} else if (bsd4_runqcount && (bsd4_rdyprocmask & CPUMASK(cpuid))) {
397 		atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
398 		spin_unlock(&bsd4_spin);
399 		lwkt_schedule(&dd->helper_thread);
400 	} else {
401 		spin_unlock(&bsd4_spin);
402 	}
403 #endif
404 	crit_exit_gd(gd);
405 }
406 
407 /*
408  * BSD4_SETRUNQUEUE
409  *
410  * Place the specified lwp on the user scheduler's run queue.  This routine
411  * must be called with the thread descheduled.  The lwp must be runnable.
412  *
413  * The thread may be the current thread as a special case.
414  *
415  * MPSAFE
416  */
417 static void
418 bsd4_setrunqueue(struct lwp *lp)
419 {
420 	globaldata_t gd;
421 	bsd4_pcpu_t dd;
422 #ifdef SMP
423 	int cpuid;
424 	cpumask_t mask;
425 	cpumask_t tmpmask;
426 #endif
427 
428 	/*
429 	 * First validate the process state relative to the current cpu.
430 	 * We don't need the spinlock for this, just a critical section.
431 	 * We are in control of the process.
432 	 */
433 	crit_enter();
434 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
435 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0,
436 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
437 	     lp->lwp_tid, lp->lwp_proc->p_flag, lp->lwp_flag));
438 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
439 
440 	/*
441 	 * Note: gd and dd are relative to the target thread's last cpu,
442 	 * NOT our current cpu.
443 	 */
444 	gd = lp->lwp_thread->td_gd;
445 	dd = &bsd4_pcpu[gd->gd_cpuid];
446 
447 	/*
448 	 * This process is not supposed to be scheduled anywhere or assigned
449 	 * as the current process anywhere.  Assert the condition.
450 	 */
451 	KKASSERT(dd->uschedcp != lp);
452 
453 #ifndef SMP
454 	/*
455 	 * If we are not SMP we do not have a scheduler helper to kick
456 	 * and must directly activate the process if none are scheduled.
457 	 *
458 	 * This is really only an issue when bootstrapping init since
459 	 * the caller in all other cases will be a user process, and
460 	 * even if released (dd->uschedcp == NULL), that process will
461 	 * kickstart the scheduler when it returns to user mode from
462 	 * the kernel.
463 	 */
464 	if (dd->uschedcp == NULL) {
465 		atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
466 		dd->uschedcp = lp;
467 		dd->upri = lp->lwp_priority;
468 		lwkt_schedule(lp->lwp_thread);
469 		crit_exit();
470 		return;
471 	}
472 #endif
473 
474 #ifdef SMP
475 	/*
476 	 * XXX fixme.  Could be part of a remrunqueue/setrunqueue
477 	 * operation when the priority is recalculated, so TDF_MIGRATING
478 	 * may already be set.
479 	 */
480 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
481 		lwkt_giveaway(lp->lwp_thread);
482 #endif
483 
484 	/*
485 	 * We lose control of lp the moment we release the spinlock after
486 	 * having placed lp on the queue.  i.e. another cpu could pick it
487 	 * up and it could exit, or its priority could be further adjusted,
488 	 * or something like that.
489 	 */
490 	spin_lock(&bsd4_spin);
491 	bsd4_setrunqueue_locked(lp);
492 
493 #ifdef SMP
494 	/*
495 	 * Kick the scheduler helper on one of the other cpu's
496 	 * and request a reschedule if appropriate.
497 	 *
498 	 * NOTE: We check all cpus whos rdyprocmask is set.  First we
499 	 *	 look for cpus without designated lps, then we look for
500 	 *	 cpus with designated lps with a worse priority than our
501 	 *	 process.
502 	 */
503 	++bsd4_scancpu;
504 	cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
505 	mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask &
506 	       smp_active_mask;
507 
508 	while (mask) {
509 		tmpmask = ~(CPUMASK(cpuid) - 1);
510 		if (mask & tmpmask)
511 			cpuid = BSFCPUMASK(mask & tmpmask);
512 		else
513 			cpuid = BSFCPUMASK(mask);
514 		gd = globaldata_find(cpuid);
515 		dd = &bsd4_pcpu[cpuid];
516 
517 		if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK))
518 			goto found;
519 		mask &= ~CPUMASK(cpuid);
520 	}
521 
522 	/*
523 	 * Then cpus which might have a currently running lp
524 	 */
525 	mask = bsd4_curprocmask & bsd4_rdyprocmask &
526 	       lp->lwp_cpumask & smp_active_mask;
527 
528 	while (mask) {
529 		tmpmask = ~(CPUMASK(cpuid) - 1);
530 		if (mask & tmpmask)
531 			cpuid = BSFCPUMASK(mask & tmpmask);
532 		else
533 			cpuid = BSFCPUMASK(mask);
534 		gd = globaldata_find(cpuid);
535 		dd = &bsd4_pcpu[cpuid];
536 
537 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
538 			goto found;
539 		mask &= ~CPUMASK(cpuid);
540 	}
541 
542 	/*
543 	 * If we cannot find a suitable cpu we reload from bsd4_scancpu
544 	 * and round-robin.  Other cpus will pickup as they release their
545 	 * current lwps or become ready.
546 	 *
547 	 * We only kick the target helper thread in this case, we do not
548 	 * set the user resched flag because
549 	 */
550 	cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
551 	gd = globaldata_find(cpuid);
552 	dd = &bsd4_pcpu[cpuid];
553 found:
554 	if (gd == mycpu) {
555 		spin_unlock(&bsd4_spin);
556 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
557 			if (dd->uschedcp == NULL) {
558 				lwkt_schedule(&dd->helper_thread);
559 			} else {
560 				need_user_resched();
561 			}
562 		}
563 	} else {
564 		atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
565 		spin_unlock(&bsd4_spin);
566 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
567 			lwkt_send_ipiq(gd, need_user_resched_remote, NULL);
568 		else
569 			lwkt_schedule(&dd->helper_thread);
570 	}
571 #else
572 	/*
573 	 * Request a reschedule if appropriate.
574 	 */
575 	spin_unlock(&bsd4_spin);
576 	if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
577 		need_user_resched();
578 	}
579 #endif
580 	crit_exit();
581 }
582 
583 /*
584  * This routine is called from a systimer IPI.  It MUST be MP-safe and
585  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
586  * each cpu.
587  *
588  * MPSAFE
589  */
590 static
591 void
592 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
593 {
594 	globaldata_t gd = mycpu;
595 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
596 
597 	/*
598 	 * Do we need to round-robin?  We round-robin 10 times a second.
599 	 * This should only occur for cpu-bound batch processes.
600 	 */
601 	if (++dd->rrcount >= usched_bsd4_rrinterval) {
602 		dd->rrcount = 0;
603 		need_user_resched();
604 	}
605 
606 	/*
607 	 * As the process accumulates cpu time p_estcpu is bumped and may
608 	 * push the process into another scheduling queue.  It typically
609 	 * takes 4 ticks to bump the queue.
610 	 */
611 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
612 
613 	/*
614 	 * Reducing p_origcpu over time causes more of our estcpu to be
615 	 * returned to the parent when we exit.  This is a small tweak
616 	 * for the batch detection heuristic.
617 	 */
618 	if (lp->lwp_origcpu)
619 		--lp->lwp_origcpu;
620 
621 	/*
622 	 * Spinlocks also hold a critical section so there should not be
623 	 * any active.
624 	 */
625 	KKASSERT(gd->gd_spinlocks_wr == 0);
626 
627 	bsd4_resetpriority(lp);
628 #if 0
629 	/*
630 	* if we can't call bsd4_resetpriority for some reason we must call
631 	 * need user_resched().
632 	 */
633 	need_user_resched();
634 #endif
635 }
636 
637 /*
638  * Called from acquire and from kern_synch's one-second timer (one of the
639  * callout helper threads) with a critical section held.
640  *
641  * Decay p_estcpu based on the number of ticks we haven't been running
642  * and our p_nice.  As the load increases each process observes a larger
643  * number of idle ticks (because other processes are running in them).
644  * This observation leads to a larger correction which tends to make the
645  * system more 'batchy'.
646  *
647  * Note that no recalculation occurs for a process which sleeps and wakes
648  * up in the same tick.  That is, a system doing thousands of context
649  * switches per second will still only do serious estcpu calculations
650  * ESTCPUFREQ times per second.
651  *
652  * MPSAFE
653  */
654 static
655 void
656 bsd4_recalculate_estcpu(struct lwp *lp)
657 {
658 	globaldata_t gd = mycpu;
659 	sysclock_t cpbase;
660 	int loadfac;
661 	int ndecay;
662 	int nticks;
663 	int nleft;
664 
665 	/*
666 	 * We have to subtract periodic to get the last schedclock
667 	 * timeout time, otherwise we would get the upcoming timeout.
668 	 * Keep in mind that a process can migrate between cpus and
669 	 * while the scheduler clock should be very close, boundary
670 	 * conditions could lead to a small negative delta.
671 	 */
672 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
673 
674 	if (lp->lwp_slptime > 1) {
675 		/*
676 		 * Too much time has passed, do a coarse correction.
677 		 */
678 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
679 		bsd4_resetpriority(lp);
680 		lp->lwp_cpbase = cpbase;
681 		lp->lwp_cpticks = 0;
682 	} else if (lp->lwp_cpbase != cpbase) {
683 		/*
684 		 * Adjust estcpu if we are in a different tick.  Don't waste
685 		 * time if we are in the same tick.
686 		 *
687 		 * First calculate the number of ticks in the measurement
688 		 * interval.  The nticks calculation can wind up 0 due to
689 		 * a bug in the handling of lwp_slptime  (as yet not found),
690 		 * so make sure we do not get a divide by 0 panic.
691 		 */
692 		nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic;
693 		if (nticks <= 0)
694 			nticks = 1;
695 		updatepcpu(lp, lp->lwp_cpticks, nticks);
696 
697 		if ((nleft = nticks - lp->lwp_cpticks) < 0)
698 			nleft = 0;
699 		if (usched_debug == lp->lwp_proc->p_pid) {
700 			kprintf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d",
701 				lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu,
702 				lp->lwp_cpticks, nticks, nleft);
703 		}
704 
705 		/*
706 		 * Calculate a decay value based on ticks remaining scaled
707 		 * down by the instantanious load and p_nice.
708 		 */
709 		if ((loadfac = bsd4_runqcount) < 2)
710 			loadfac = 2;
711 		ndecay = nleft * usched_bsd4_decay * 2 *
712 			(PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2);
713 
714 		/*
715 		 * Adjust p_estcpu.  Handle a border case where batch jobs
716 		 * can get stalled long enough to decay to zero when they
717 		 * shouldn't.
718 		 */
719 		if (lp->lwp_estcpu > ndecay * 2)
720 			lp->lwp_estcpu -= ndecay;
721 		else
722 			lp->lwp_estcpu >>= 1;
723 
724 		if (usched_debug == lp->lwp_proc->p_pid)
725 			kprintf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu);
726 		bsd4_resetpriority(lp);
727 		lp->lwp_cpbase = cpbase;
728 		lp->lwp_cpticks = 0;
729 	}
730 }
731 
732 /*
733  * Compute the priority of a process when running in user mode.
734  * Arrange to reschedule if the resulting priority is better
735  * than that of the current process.
736  *
737  * This routine may be called with any process.
738  *
739  * This routine is called by fork1() for initial setup with the process
740  * of the run queue, and also may be called normally with the process on or
741  * off the run queue.
742  *
743  * MPSAFE
744  */
745 static void
746 bsd4_resetpriority(struct lwp *lp)
747 {
748 	bsd4_pcpu_t dd;
749 	int newpriority;
750 	u_short newrqtype;
751 	int reschedcpu;
752 
753 	/*
754 	 * Calculate the new priority and queue type
755 	 */
756 	crit_enter();
757 	spin_lock(&bsd4_spin);
758 
759 	newrqtype = lp->lwp_rtprio.type;
760 
761 	switch(newrqtype) {
762 	case RTP_PRIO_REALTIME:
763 	case RTP_PRIO_FIFO:
764 		newpriority = PRIBASE_REALTIME +
765 			     (lp->lwp_rtprio.prio & PRIMASK);
766 		break;
767 	case RTP_PRIO_NORMAL:
768 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
769 		newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ;
770 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
771 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
772 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
773 		break;
774 	case RTP_PRIO_IDLE:
775 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
776 		break;
777 	case RTP_PRIO_THREAD:
778 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
779 		break;
780 	default:
781 		panic("Bad RTP_PRIO %d", newrqtype);
782 		/* NOT REACHED */
783 	}
784 
785 	/*
786 	 * The newpriority incorporates the queue type so do a simple masked
787 	 * check to determine if the process has moved to another queue.  If
788 	 * it has, and it is currently on a run queue, then move it.
789 	 */
790 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
791 		lp->lwp_priority = newpriority;
792 		if (lp->lwp_flag & LWP_ONRUNQ) {
793 			bsd4_remrunqueue_locked(lp);
794 			lp->lwp_rqtype = newrqtype;
795 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
796 			bsd4_setrunqueue_locked(lp);
797 			reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
798 		} else {
799 			lp->lwp_rqtype = newrqtype;
800 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
801 			reschedcpu = -1;
802 		}
803 	} else {
804 		lp->lwp_priority = newpriority;
805 		reschedcpu = -1;
806 	}
807 
808 	/*
809 	 * Determine if we need to reschedule the target cpu.  This only
810 	 * occurs if the LWP is already on a scheduler queue, which means
811 	 * that idle cpu notification has already occured.  At most we
812 	 * need only issue a need_user_resched() on the appropriate cpu.
813 	 *
814 	 * The LWP may be owned by a CPU different from the current one,
815 	 * in which case dd->uschedcp may be modified without an MP lock
816 	 * or a spinlock held.  The worst that happens is that the code
817 	 * below causes a spurious need_user_resched() on the target CPU
818 	 * and dd->pri to be wrong for a short period of time, both of
819 	 * which are harmless.
820 	 */
821 	if (reschedcpu >= 0) {
822 		dd = &bsd4_pcpu[reschedcpu];
823 		if ((bsd4_rdyprocmask & CPUMASK(reschedcpu)) &&
824 		    (dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
825 #ifdef SMP
826 			if (reschedcpu == mycpu->gd_cpuid) {
827 				spin_unlock(&bsd4_spin);
828 				need_user_resched();
829 			} else {
830 				spin_unlock(&bsd4_spin);
831 				atomic_clear_cpumask(&bsd4_rdyprocmask,
832 						     CPUMASK(reschedcpu));
833 				lwkt_send_ipiq(lp->lwp_thread->td_gd,
834 					       need_user_resched_remote, NULL);
835 			}
836 #else
837 			spin_unlock(&bsd4_spin);
838 			need_user_resched();
839 #endif
840 		} else {
841 			spin_unlock(&bsd4_spin);
842 		}
843 	} else {
844 		spin_unlock(&bsd4_spin);
845 	}
846 	crit_exit();
847 }
848 
849 /*
850  * MPSAFE
851  */
852 static
853 void
854 bsd4_yield(struct lwp *lp)
855 {
856 #if 0
857 	/* FUTURE (or something similar) */
858 	switch(lp->lwp_rqtype) {
859 	case RTP_PRIO_NORMAL:
860 		lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
861 		break;
862 	default:
863 		break;
864 	}
865 #endif
866         need_user_resched();
867 }
868 
869 /*
870  * Called from fork1() when a new child process is being created.
871  *
872  * Give the child process an initial estcpu that is more batch then
873  * its parent and dock the parent for the fork (but do not
874  * reschedule the parent).   This comprises the main part of our batch
875  * detection heuristic for both parallel forking and sequential execs.
876  *
877  * Interactive processes will decay the boosted estcpu quickly while batch
878  * processes will tend to compound it.
879  * XXX lwp should be "spawning" instead of "forking"
880  *
881  * MPSAFE
882  */
883 static void
884 bsd4_forking(struct lwp *plp, struct lwp *lp)
885 {
886 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
887 	lp->lwp_origcpu = lp->lwp_estcpu;
888 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
889 }
890 
891 /*
892  * Called when the parent reaps a child.   Propogate cpu use by the child
893  * back to the parent.
894  *
895  * MPSAFE
896  */
897 static void
898 bsd4_exiting(struct lwp *plp, struct lwp *lp)
899 {
900 	int delta;
901 
902 	if (plp->lwp_proc->p_pid != 1) {
903 		delta = lp->lwp_estcpu - lp->lwp_origcpu;
904 		if (delta > 0)
905 			plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta);
906 	}
907 }
908 
909 
910 /*
911  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
912  * it selects a user process and returns it.  If chklp is non-NULL and chklp
913  * has a better or equal priority then the process that would otherwise be
914  * chosen, NULL is returned.
915  *
916  * Until we fix the RUNQ code the chklp test has to be strict or we may
917  * bounce between processes trying to acquire the current process designation.
918  *
919  * MPSAFE - must be called with bsd4_spin exclusive held.  The spinlock is
920  *	    left intact through the entire routine.
921  */
922 static
923 struct lwp *
924 chooseproc_locked(struct lwp *chklp)
925 {
926 	struct lwp *lp;
927 	struct rq *q;
928 	u_int32_t *which, *which2;
929 	u_int32_t pri;
930 	u_int32_t rtqbits;
931 	u_int32_t tsqbits;
932 	u_int32_t idqbits;
933 	cpumask_t cpumask;
934 
935 	rtqbits = bsd4_rtqueuebits;
936 	tsqbits = bsd4_queuebits;
937 	idqbits = bsd4_idqueuebits;
938 	cpumask = mycpu->gd_cpumask;
939 
940 #ifdef SMP
941 again:
942 #endif
943 	if (rtqbits) {
944 		pri = bsfl(rtqbits);
945 		q = &bsd4_rtqueues[pri];
946 		which = &bsd4_rtqueuebits;
947 		which2 = &rtqbits;
948 	} else if (tsqbits) {
949 		pri = bsfl(tsqbits);
950 		q = &bsd4_queues[pri];
951 		which = &bsd4_queuebits;
952 		which2 = &tsqbits;
953 	} else if (idqbits) {
954 		pri = bsfl(idqbits);
955 		q = &bsd4_idqueues[pri];
956 		which = &bsd4_idqueuebits;
957 		which2 = &idqbits;
958 	} else {
959 		return NULL;
960 	}
961 	lp = TAILQ_FIRST(q);
962 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
963 
964 #ifdef SMP
965 	while ((lp->lwp_cpumask & cpumask) == 0) {
966 		lp = TAILQ_NEXT(lp, lwp_procq);
967 		if (lp == NULL) {
968 			*which2 &= ~(1 << pri);
969 			goto again;
970 		}
971 	}
972 #endif
973 
974 	/*
975 	 * If the passed lwp <chklp> is reasonably close to the selected
976 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
977 	 *
978 	 * Note that we must error on the side of <chklp> to avoid bouncing
979 	 * between threads in the acquire code.
980 	 */
981 	if (chklp) {
982 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
983 			return(NULL);
984 	}
985 
986 #ifdef SMP
987 	/*
988 	 * If the chosen lwp does not reside on this cpu spend a few
989 	 * cycles looking for a better candidate at the same priority level.
990 	 * This is a fallback check, setrunqueue() tries to wakeup the
991 	 * correct cpu and is our front-line affinity.
992 	 */
993 	if (lp->lwp_thread->td_gd != mycpu &&
994 	    (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
995 	) {
996 		if (chklp->lwp_thread->td_gd == mycpu) {
997 			++choose_affinity;
998 			lp = chklp;
999 		}
1000 	}
1001 #endif
1002 
1003 	TAILQ_REMOVE(q, lp, lwp_procq);
1004 	--bsd4_runqcount;
1005 	if (TAILQ_EMPTY(q))
1006 		*which &= ~(1 << pri);
1007 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) != 0, ("not on runq6!"));
1008 	lp->lwp_flag &= ~LWP_ONRUNQ;
1009 	return lp;
1010 }
1011 
1012 #ifdef SMP
1013 
1014 static
1015 void
1016 need_user_resched_remote(void *dummy)
1017 {
1018 	globaldata_t gd = mycpu;
1019 	bsd4_pcpu_t  dd = &bsd4_pcpu[gd->gd_cpuid];
1020 
1021 	need_user_resched();
1022 	lwkt_schedule(&dd->helper_thread);
1023 }
1024 
1025 #endif
1026 
1027 /*
1028  * bsd4_remrunqueue_locked() removes a given process from the run queue
1029  * that it is on, clearing the queue busy bit if it becomes empty.
1030  *
1031  * Note that user process scheduler is different from the LWKT schedule.
1032  * The user process scheduler only manages user processes but it uses LWKT
1033  * underneath, and a user process operating in the kernel will often be
1034  * 'released' from our management.
1035  *
1036  * MPSAFE - bsd4_spin must be held exclusively on call
1037  */
1038 static void
1039 bsd4_remrunqueue_locked(struct lwp *lp)
1040 {
1041 	struct rq *q;
1042 	u_int32_t *which;
1043 	u_int8_t pri;
1044 
1045 	KKASSERT(lp->lwp_flag & LWP_ONRUNQ);
1046 	lp->lwp_flag &= ~LWP_ONRUNQ;
1047 	--bsd4_runqcount;
1048 	KKASSERT(bsd4_runqcount >= 0);
1049 
1050 	pri = lp->lwp_rqindex;
1051 	switch(lp->lwp_rqtype) {
1052 	case RTP_PRIO_NORMAL:
1053 		q = &bsd4_queues[pri];
1054 		which = &bsd4_queuebits;
1055 		break;
1056 	case RTP_PRIO_REALTIME:
1057 	case RTP_PRIO_FIFO:
1058 		q = &bsd4_rtqueues[pri];
1059 		which = &bsd4_rtqueuebits;
1060 		break;
1061 	case RTP_PRIO_IDLE:
1062 		q = &bsd4_idqueues[pri];
1063 		which = &bsd4_idqueuebits;
1064 		break;
1065 	default:
1066 		panic("remrunqueue: invalid rtprio type");
1067 		/* NOT REACHED */
1068 	}
1069 	TAILQ_REMOVE(q, lp, lwp_procq);
1070 	if (TAILQ_EMPTY(q)) {
1071 		KASSERT((*which & (1 << pri)) != 0,
1072 			("remrunqueue: remove from empty queue"));
1073 		*which &= ~(1 << pri);
1074 	}
1075 }
1076 
1077 /*
1078  * bsd4_setrunqueue_locked()
1079  *
1080  * Add a process whos rqtype and rqindex had previously been calculated
1081  * onto the appropriate run queue.   Determine if the addition requires
1082  * a reschedule on a cpu and return the cpuid or -1.
1083  *
1084  * NOTE: Lower priorities are better priorities.
1085  *
1086  * MPSAFE - bsd4_spin must be held exclusively on call
1087  */
1088 static void
1089 bsd4_setrunqueue_locked(struct lwp *lp)
1090 {
1091 	struct rq *q;
1092 	u_int32_t *which;
1093 	int pri;
1094 
1095 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
1096 	lp->lwp_flag |= LWP_ONRUNQ;
1097 	++bsd4_runqcount;
1098 
1099 	pri = lp->lwp_rqindex;
1100 
1101 	switch(lp->lwp_rqtype) {
1102 	case RTP_PRIO_NORMAL:
1103 		q = &bsd4_queues[pri];
1104 		which = &bsd4_queuebits;
1105 		break;
1106 	case RTP_PRIO_REALTIME:
1107 	case RTP_PRIO_FIFO:
1108 		q = &bsd4_rtqueues[pri];
1109 		which = &bsd4_rtqueuebits;
1110 		break;
1111 	case RTP_PRIO_IDLE:
1112 		q = &bsd4_idqueues[pri];
1113 		which = &bsd4_idqueuebits;
1114 		break;
1115 	default:
1116 		panic("remrunqueue: invalid rtprio type");
1117 		/* NOT REACHED */
1118 	}
1119 
1120 	/*
1121 	 * Add to the correct queue and set the appropriate bit.  If no
1122 	 * lower priority (i.e. better) processes are in the queue then
1123 	 * we want a reschedule, calculate the best cpu for the job.
1124 	 *
1125 	 * Always run reschedules on the LWPs original cpu.
1126 	 */
1127 	TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1128 	*which |= 1 << pri;
1129 }
1130 
1131 #ifdef SMP
1132 
1133 /*
1134  * For SMP systems a user scheduler helper thread is created for each
1135  * cpu and is used to allow one cpu to wakeup another for the purposes of
1136  * scheduling userland threads from setrunqueue().
1137  *
1138  * UP systems do not need the helper since there is only one cpu.
1139  *
1140  * We can't use the idle thread for this because we might block.
1141  * Additionally, doing things this way allows us to HLT idle cpus
1142  * on MP systems.
1143  *
1144  * MPSAFE
1145  */
1146 static void
1147 sched_thread(void *dummy)
1148 {
1149     globaldata_t gd;
1150     bsd4_pcpu_t  dd;
1151     struct lwp *nlp;
1152     cpumask_t mask;
1153     int cpuid;
1154 #ifdef SMP
1155     cpumask_t tmpmask;
1156     int tmpid;
1157 #endif
1158 
1159     gd = mycpu;
1160     cpuid = gd->gd_cpuid;	/* doesn't change */
1161     mask = gd->gd_cpumask;	/* doesn't change */
1162     dd = &bsd4_pcpu[cpuid];
1163 
1164     /*
1165      * Since we are woken up only when no user processes are scheduled
1166      * on a cpu, we can run at an ultra low priority.
1167      */
1168     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1169 
1170     for (;;) {
1171 	/*
1172 	 * We use the LWKT deschedule-interlock trick to avoid racing
1173 	 * bsd4_rdyprocmask.  This means we cannot block through to the
1174 	 * manual lwkt_switch() call we make below.
1175 	 */
1176 	crit_enter_gd(gd);
1177 	lwkt_deschedule_self(gd->gd_curthread);
1178 	spin_lock(&bsd4_spin);
1179 	atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1180 
1181 	clear_user_resched();	/* This satisfied the reschedule request */
1182 	dd->rrcount = 0;	/* Reset the round-robin counter */
1183 
1184 	if ((bsd4_curprocmask & mask) == 0) {
1185 		/*
1186 		 * No thread is currently scheduled.
1187 		 */
1188 		KKASSERT(dd->uschedcp == NULL);
1189 		if ((nlp = chooseproc_locked(NULL)) != NULL) {
1190 			atomic_set_cpumask(&bsd4_curprocmask, mask);
1191 			dd->upri = nlp->lwp_priority;
1192 			dd->uschedcp = nlp;
1193 			spin_unlock(&bsd4_spin);
1194 			lwkt_acquire(nlp->lwp_thread);
1195 			lwkt_schedule(nlp->lwp_thread);
1196 		} else {
1197 			spin_unlock(&bsd4_spin);
1198 		}
1199 	} else if (bsd4_runqcount) {
1200 		if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
1201 			dd->upri = nlp->lwp_priority;
1202 			dd->uschedcp = nlp;
1203 			spin_unlock(&bsd4_spin);
1204 			lwkt_acquire(nlp->lwp_thread);
1205 			lwkt_schedule(nlp->lwp_thread);
1206 		} else {
1207 			/*
1208 			 * CHAINING CONDITION TRAIN
1209 			 *
1210 			 * We could not deal with the scheduler wakeup
1211 			 * request on this cpu, locate a ready scheduler
1212 			 * with no current lp assignment and chain to it.
1213 			 *
1214 			 * This ensures that a wakeup race which fails due
1215 			 * to priority test does not leave other unscheduled
1216 			 * cpus idle when the runqueue is not empty.
1217 			 */
1218 			tmpmask = ~bsd4_curprocmask & bsd4_rdyprocmask &
1219 				  smp_active_mask;
1220 			if (tmpmask) {
1221 				tmpid = BSFCPUMASK(tmpmask);
1222 				gd = globaldata_find(cpuid);
1223 				dd = &bsd4_pcpu[cpuid];
1224 				atomic_clear_cpumask(&bsd4_rdyprocmask,
1225 						     CPUMASK(tmpid));
1226 				spin_unlock(&bsd4_spin);
1227 				lwkt_schedule(&dd->helper_thread);
1228 			} else {
1229 				spin_unlock(&bsd4_spin);
1230 			}
1231 		}
1232 	} else {
1233 		/*
1234 		 * The runq is empty.
1235 		 */
1236 		spin_unlock(&bsd4_spin);
1237 	}
1238 	crit_exit_gd(gd);
1239 	lwkt_switch();
1240     }
1241 }
1242 
1243 /*
1244  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
1245  * been cleared by rqinit() and we should not mess with it further.
1246  */
1247 static void
1248 sched_thread_cpu_init(void)
1249 {
1250     int i;
1251 
1252     if (bootverbose)
1253 	kprintf("start scheduler helpers on cpus:");
1254 
1255     for (i = 0; i < ncpus; ++i) {
1256 	bsd4_pcpu_t dd = &bsd4_pcpu[i];
1257 	cpumask_t mask = CPUMASK(i);
1258 
1259 	if ((mask & smp_active_mask) == 0)
1260 	    continue;
1261 
1262 	if (bootverbose)
1263 	    kprintf(" %d", i);
1264 
1265 	lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1266 		    TDF_STOPREQ, i, "usched %d", i);
1267 
1268 	/*
1269 	 * Allow user scheduling on the target cpu.  cpu #0 has already
1270 	 * been enabled in rqinit().
1271 	 */
1272 	if (i)
1273 	    atomic_clear_cpumask(&bsd4_curprocmask, mask);
1274 	atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1275 	dd->upri = PRIBASE_NULL;
1276     }
1277     if (bootverbose)
1278 	kprintf("\n");
1279 }
1280 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
1281 	sched_thread_cpu_init, NULL)
1282 
1283 #endif
1284 
1285