1 /* 2 * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.26 2008/11/01 23:31:19 dillon Exp $ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/kernel.h> 32 #include <sys/lock.h> 33 #include <sys/queue.h> 34 #include <sys/proc.h> 35 #include <sys/rtprio.h> 36 #include <sys/uio.h> 37 #include <sys/sysctl.h> 38 #include <sys/resourcevar.h> 39 #include <sys/spinlock.h> 40 #include <machine/cpu.h> 41 #include <machine/smp.h> 42 43 #include <sys/thread2.h> 44 #include <sys/spinlock2.h> 45 #include <sys/mplock2.h> 46 47 /* 48 * Priorities. Note that with 32 run queues per scheduler each queue 49 * represents four priority levels. 50 */ 51 52 #define MAXPRI 128 53 #define PRIMASK (MAXPRI - 1) 54 #define PRIBASE_REALTIME 0 55 #define PRIBASE_NORMAL MAXPRI 56 #define PRIBASE_IDLE (MAXPRI * 2) 57 #define PRIBASE_THREAD (MAXPRI * 3) 58 #define PRIBASE_NULL (MAXPRI * 4) 59 60 #define NQS 32 /* 32 run queues. */ 61 #define PPQ (MAXPRI / NQS) /* priorities per queue */ 62 #define PPQMASK (PPQ - 1) 63 64 /* 65 * NICEPPQ - number of nice units per priority queue 66 * ESTCPURAMP - number of scheduler ticks for estcpu to switch queues 67 * 68 * ESTCPUPPQ - number of estcpu units per priority queue 69 * ESTCPUMAX - number of estcpu units 70 * ESTCPUINCR - amount we have to increment p_estcpu per scheduling tick at 71 * 100% cpu. 72 */ 73 #define NICEPPQ 2 74 #define ESTCPURAMP 4 75 #define ESTCPUPPQ 512 76 #define ESTCPUMAX (ESTCPUPPQ * NQS) 77 #define ESTCPUINCR (ESTCPUPPQ / ESTCPURAMP) 78 #define PRIO_RANGE (PRIO_MAX - PRIO_MIN + 1) 79 80 #define ESTCPULIM(v) min((v), ESTCPUMAX) 81 82 TAILQ_HEAD(rq, lwp); 83 84 #define lwp_priority lwp_usdata.bsd4.priority 85 #define lwp_rqindex lwp_usdata.bsd4.rqindex 86 #define lwp_origcpu lwp_usdata.bsd4.origcpu 87 #define lwp_estcpu lwp_usdata.bsd4.estcpu 88 #define lwp_rqtype lwp_usdata.bsd4.rqtype 89 90 static void bsd4_acquire_curproc(struct lwp *lp); 91 static void bsd4_release_curproc(struct lwp *lp); 92 static void bsd4_select_curproc(globaldata_t gd); 93 static void bsd4_setrunqueue(struct lwp *lp); 94 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period, 95 sysclock_t cpstamp); 96 static void bsd4_recalculate_estcpu(struct lwp *lp); 97 static void bsd4_resetpriority(struct lwp *lp); 98 static void bsd4_forking(struct lwp *plp, struct lwp *lp); 99 static void bsd4_exiting(struct lwp *plp, struct lwp *lp); 100 static void bsd4_yield(struct lwp *lp); 101 102 #ifdef SMP 103 static void need_user_resched_remote(void *dummy); 104 #endif 105 static struct lwp *chooseproc_locked(struct lwp *chklp); 106 static void bsd4_remrunqueue_locked(struct lwp *lp); 107 static void bsd4_setrunqueue_locked(struct lwp *lp); 108 109 struct usched usched_bsd4 = { 110 { NULL }, 111 "bsd4", "Original DragonFly Scheduler", 112 NULL, /* default registration */ 113 NULL, /* default deregistration */ 114 bsd4_acquire_curproc, 115 bsd4_release_curproc, 116 bsd4_setrunqueue, 117 bsd4_schedulerclock, 118 bsd4_recalculate_estcpu, 119 bsd4_resetpriority, 120 bsd4_forking, 121 bsd4_exiting, 122 NULL, /* setcpumask not supported */ 123 bsd4_yield 124 }; 125 126 struct usched_bsd4_pcpu { 127 struct thread helper_thread; 128 short rrcount; 129 short upri; 130 struct lwp *uschedcp; 131 }; 132 133 typedef struct usched_bsd4_pcpu *bsd4_pcpu_t; 134 135 /* 136 * We have NQS (32) run queues per scheduling class. For the normal 137 * class, there are 128 priorities scaled onto these 32 queues. New 138 * processes are added to the last entry in each queue, and processes 139 * are selected for running by taking them from the head and maintaining 140 * a simple FIFO arrangement. Realtime and Idle priority processes have 141 * and explicit 0-31 priority which maps directly onto their class queue 142 * index. When a queue has something in it, the corresponding bit is 143 * set in the queuebits variable, allowing a single read to determine 144 * the state of all 32 queues and then a ffs() to find the first busy 145 * queue. 146 */ 147 static struct rq bsd4_queues[NQS]; 148 static struct rq bsd4_rtqueues[NQS]; 149 static struct rq bsd4_idqueues[NQS]; 150 static u_int32_t bsd4_queuebits; 151 static u_int32_t bsd4_rtqueuebits; 152 static u_int32_t bsd4_idqueuebits; 153 static cpumask_t bsd4_curprocmask = -1; /* currently running a user process */ 154 static cpumask_t bsd4_rdyprocmask; /* ready to accept a user process */ 155 static int bsd4_runqcount; 156 #ifdef SMP 157 static volatile int bsd4_scancpu; 158 #endif 159 static struct spinlock bsd4_spin; 160 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU]; 161 162 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0, 163 "Number of run queues"); 164 #ifdef INVARIANTS 165 static int usched_nonoptimal; 166 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW, 167 &usched_nonoptimal, 0, "acquire_curproc() was not optimal"); 168 static int usched_optimal; 169 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW, 170 &usched_optimal, 0, "acquire_curproc() was optimal"); 171 #endif 172 static int usched_debug = -1; 173 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0, 174 "Print debug information for this pid"); 175 #ifdef SMP 176 static int remote_resched_nonaffinity; 177 static int remote_resched_affinity; 178 static int choose_affinity; 179 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD, 180 &remote_resched_nonaffinity, 0, "Number of remote rescheds"); 181 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD, 182 &remote_resched_affinity, 0, "Number of remote rescheds"); 183 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD, 184 &choose_affinity, 0, "chooseproc() was smart"); 185 #endif 186 187 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10; 188 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW, 189 &usched_bsd4_rrinterval, 0, ""); 190 static int usched_bsd4_decay = ESTCPUINCR / 2; 191 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW, 192 &usched_bsd4_decay, 0, ""); 193 194 /* 195 * Initialize the run queues at boot time. 196 */ 197 static void 198 rqinit(void *dummy) 199 { 200 int i; 201 202 spin_init(&bsd4_spin); 203 for (i = 0; i < NQS; i++) { 204 TAILQ_INIT(&bsd4_queues[i]); 205 TAILQ_INIT(&bsd4_rtqueues[i]); 206 TAILQ_INIT(&bsd4_idqueues[i]); 207 } 208 atomic_clear_cpumask(&bsd4_curprocmask, 1); 209 } 210 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, rqinit, NULL) 211 212 /* 213 * BSD4_ACQUIRE_CURPROC 214 * 215 * This function is called when the kernel intends to return to userland. 216 * It is responsible for making the thread the current designated userland 217 * thread for this cpu, blocking if necessary. 218 * 219 * The kernel has already depressed our LWKT priority so we must not switch 220 * until we have either assigned or disposed of the thread. 221 * 222 * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE 223 * TO ANOTHER CPU! Because most of the kernel assumes that no migration will 224 * occur, this function is called only under very controlled circumstances. 225 * 226 * MPSAFE 227 */ 228 static void 229 bsd4_acquire_curproc(struct lwp *lp) 230 { 231 globaldata_t gd; 232 bsd4_pcpu_t dd; 233 struct lwp *olp; 234 235 crit_enter(); 236 bsd4_recalculate_estcpu(lp); 237 238 /* 239 * If a reschedule was requested give another thread the 240 * driver's seat. 241 */ 242 if (user_resched_wanted()) { 243 clear_user_resched(); 244 bsd4_release_curproc(lp); 245 } 246 247 /* 248 * Loop until we are the current user thread 249 */ 250 do { 251 /* 252 * Reload after a switch or setrunqueue/switch possibly 253 * moved us to another cpu. 254 */ 255 /*clear_lwkt_resched();*/ 256 gd = mycpu; 257 dd = &bsd4_pcpu[gd->gd_cpuid]; 258 259 /* 260 * Become the currently scheduled user thread for this cpu 261 * if we can do so trivially. 262 * 263 * We can steal another thread's current thread designation 264 * on this cpu since if we are running that other thread 265 * must not be, so we can safely deschedule it. 266 */ 267 if (dd->uschedcp == lp) { 268 /* 269 * We are already the current lwp (hot path). 270 */ 271 dd->upri = lp->lwp_priority; 272 } else if (dd->uschedcp == NULL) { 273 /* 274 * We can trivially become the current lwp. 275 */ 276 atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask); 277 dd->uschedcp = lp; 278 dd->upri = lp->lwp_priority; 279 } else if (dd->upri > lp->lwp_priority) { 280 /* 281 * We can steal the current lwp designation from the 282 * olp that was previously assigned to this cpu. 283 */ 284 olp = dd->uschedcp; 285 dd->uschedcp = lp; 286 dd->upri = lp->lwp_priority; 287 lwkt_deschedule(olp->lwp_thread); 288 bsd4_setrunqueue(olp); 289 } else { 290 /* 291 * We cannot become the current lwp, place the lp 292 * on the bsd4 run-queue and deschedule ourselves. 293 */ 294 lwkt_deschedule(lp->lwp_thread); 295 bsd4_setrunqueue(lp); 296 lwkt_switch(); 297 } 298 299 /* 300 * Other threads at our current user priority have already 301 * put in their bids, but we must run any kernel threads 302 * at higher priorities, and we could lose our bid to 303 * another thread trying to return to user mode in the 304 * process. 305 * 306 * If we lose our bid we will be descheduled and put on 307 * the run queue. When we are reactivated we will have 308 * another chance. 309 */ 310 if (lwkt_resched_wanted() || 311 lp->lwp_thread->td_fairq_accum < 0) { 312 lwkt_switch(); 313 } 314 } while (dd->uschedcp != lp); 315 316 crit_exit(); 317 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0); 318 } 319 320 /* 321 * BSD4_RELEASE_CURPROC 322 * 323 * This routine detaches the current thread from the userland scheduler, 324 * usually because the thread needs to run or block in the kernel (at 325 * kernel priority) for a while. 326 * 327 * This routine is also responsible for selecting a new thread to 328 * make the current thread. 329 * 330 * NOTE: This implementation differs from the dummy example in that 331 * bsd4_select_curproc() is able to select the current process, whereas 332 * dummy_select_curproc() is not able to select the current process. 333 * This means we have to NULL out uschedcp. 334 * 335 * Additionally, note that we may already be on a run queue if releasing 336 * via the lwkt_switch() in bsd4_setrunqueue(). 337 * 338 * MPSAFE 339 */ 340 static void 341 bsd4_release_curproc(struct lwp *lp) 342 { 343 globaldata_t gd = mycpu; 344 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid]; 345 346 if (dd->uschedcp == lp) { 347 crit_enter(); 348 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0); 349 dd->uschedcp = NULL; /* don't let lp be selected */ 350 dd->upri = PRIBASE_NULL; 351 atomic_clear_cpumask(&bsd4_curprocmask, gd->gd_cpumask); 352 bsd4_select_curproc(gd); 353 crit_exit(); 354 } 355 } 356 357 /* 358 * BSD4_SELECT_CURPROC 359 * 360 * Select a new current process for this cpu and clear any pending user 361 * reschedule request. The cpu currently has no current process. 362 * 363 * This routine is also responsible for equal-priority round-robining, 364 * typically triggered from bsd4_schedulerclock(). In our dummy example 365 * all the 'user' threads are LWKT scheduled all at once and we just 366 * call lwkt_switch(). 367 * 368 * The calling process is not on the queue and cannot be selected. 369 * 370 * MPSAFE 371 */ 372 static 373 void 374 bsd4_select_curproc(globaldata_t gd) 375 { 376 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid]; 377 struct lwp *nlp; 378 int cpuid = gd->gd_cpuid; 379 380 crit_enter_gd(gd); 381 382 spin_lock(&bsd4_spin); 383 if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) { 384 atomic_set_cpumask(&bsd4_curprocmask, CPUMASK(cpuid)); 385 dd->upri = nlp->lwp_priority; 386 dd->uschedcp = nlp; 387 spin_unlock(&bsd4_spin); 388 #ifdef SMP 389 lwkt_acquire(nlp->lwp_thread); 390 #endif 391 lwkt_schedule(nlp->lwp_thread); 392 } else { 393 spin_unlock(&bsd4_spin); 394 } 395 #if 0 396 } else if (bsd4_runqcount && (bsd4_rdyprocmask & CPUMASK(cpuid))) { 397 atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid)); 398 spin_unlock(&bsd4_spin); 399 lwkt_schedule(&dd->helper_thread); 400 } else { 401 spin_unlock(&bsd4_spin); 402 } 403 #endif 404 crit_exit_gd(gd); 405 } 406 407 /* 408 * BSD4_SETRUNQUEUE 409 * 410 * Place the specified lwp on the user scheduler's run queue. This routine 411 * must be called with the thread descheduled. The lwp must be runnable. 412 * 413 * The thread may be the current thread as a special case. 414 * 415 * MPSAFE 416 */ 417 static void 418 bsd4_setrunqueue(struct lwp *lp) 419 { 420 globaldata_t gd; 421 bsd4_pcpu_t dd; 422 #ifdef SMP 423 int cpuid; 424 cpumask_t mask; 425 cpumask_t tmpmask; 426 #endif 427 428 /* 429 * First validate the process state relative to the current cpu. 430 * We don't need the spinlock for this, just a critical section. 431 * We are in control of the process. 432 */ 433 crit_enter(); 434 KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN")); 435 KASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0, 436 ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid, 437 lp->lwp_tid, lp->lwp_proc->p_flag, lp->lwp_flag)); 438 KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0); 439 440 /* 441 * Note: gd and dd are relative to the target thread's last cpu, 442 * NOT our current cpu. 443 */ 444 gd = lp->lwp_thread->td_gd; 445 dd = &bsd4_pcpu[gd->gd_cpuid]; 446 447 /* 448 * This process is not supposed to be scheduled anywhere or assigned 449 * as the current process anywhere. Assert the condition. 450 */ 451 KKASSERT(dd->uschedcp != lp); 452 453 #ifndef SMP 454 /* 455 * If we are not SMP we do not have a scheduler helper to kick 456 * and must directly activate the process if none are scheduled. 457 * 458 * This is really only an issue when bootstrapping init since 459 * the caller in all other cases will be a user process, and 460 * even if released (dd->uschedcp == NULL), that process will 461 * kickstart the scheduler when it returns to user mode from 462 * the kernel. 463 */ 464 if (dd->uschedcp == NULL) { 465 atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask); 466 dd->uschedcp = lp; 467 dd->upri = lp->lwp_priority; 468 lwkt_schedule(lp->lwp_thread); 469 crit_exit(); 470 return; 471 } 472 #endif 473 474 #ifdef SMP 475 /* 476 * XXX fixme. Could be part of a remrunqueue/setrunqueue 477 * operation when the priority is recalculated, so TDF_MIGRATING 478 * may already be set. 479 */ 480 if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0) 481 lwkt_giveaway(lp->lwp_thread); 482 #endif 483 484 /* 485 * We lose control of lp the moment we release the spinlock after 486 * having placed lp on the queue. i.e. another cpu could pick it 487 * up and it could exit, or its priority could be further adjusted, 488 * or something like that. 489 */ 490 spin_lock(&bsd4_spin); 491 bsd4_setrunqueue_locked(lp); 492 493 #ifdef SMP 494 /* 495 * Kick the scheduler helper on one of the other cpu's 496 * and request a reschedule if appropriate. 497 * 498 * NOTE: We check all cpus whos rdyprocmask is set. First we 499 * look for cpus without designated lps, then we look for 500 * cpus with designated lps with a worse priority than our 501 * process. 502 */ 503 ++bsd4_scancpu; 504 cpuid = (bsd4_scancpu & 0xFFFF) % ncpus; 505 mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask & 506 smp_active_mask & usched_global_cpumask; 507 508 while (mask) { 509 tmpmask = ~(CPUMASK(cpuid) - 1); 510 if (mask & tmpmask) 511 cpuid = BSFCPUMASK(mask & tmpmask); 512 else 513 cpuid = BSFCPUMASK(mask); 514 gd = globaldata_find(cpuid); 515 dd = &bsd4_pcpu[cpuid]; 516 517 if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK)) 518 goto found; 519 mask &= ~CPUMASK(cpuid); 520 } 521 522 /* 523 * Then cpus which might have a currently running lp 524 */ 525 mask = bsd4_curprocmask & bsd4_rdyprocmask & 526 lp->lwp_cpumask & smp_active_mask & usched_global_cpumask; 527 528 while (mask) { 529 tmpmask = ~(CPUMASK(cpuid) - 1); 530 if (mask & tmpmask) 531 cpuid = BSFCPUMASK(mask & tmpmask); 532 else 533 cpuid = BSFCPUMASK(mask); 534 gd = globaldata_find(cpuid); 535 dd = &bsd4_pcpu[cpuid]; 536 537 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) 538 goto found; 539 mask &= ~CPUMASK(cpuid); 540 } 541 542 /* 543 * If we cannot find a suitable cpu we reload from bsd4_scancpu 544 * and round-robin. Other cpus will pickup as they release their 545 * current lwps or become ready. 546 * 547 * Avoid a degenerate system lockup case if usched_global_cpumask 548 * is set to 0 or otherwise does not cover lwp_cpumask. 549 * 550 * We only kick the target helper thread in this case, we do not 551 * set the user resched flag because 552 */ 553 cpuid = (bsd4_scancpu & 0xFFFF) % ncpus; 554 if ((CPUMASK(cpuid) & usched_global_cpumask) == 0) { 555 cpuid = 0; 556 } 557 gd = globaldata_find(cpuid); 558 dd = &bsd4_pcpu[cpuid]; 559 found: 560 if (gd == mycpu) { 561 spin_unlock(&bsd4_spin); 562 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) { 563 if (dd->uschedcp == NULL) { 564 lwkt_schedule(&dd->helper_thread); 565 } else { 566 need_user_resched(); 567 } 568 } 569 } else { 570 atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid)); 571 spin_unlock(&bsd4_spin); 572 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) 573 lwkt_send_ipiq(gd, need_user_resched_remote, NULL); 574 else 575 lwkt_schedule(&dd->helper_thread); 576 } 577 #else 578 /* 579 * Request a reschedule if appropriate. 580 */ 581 spin_unlock(&bsd4_spin); 582 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) { 583 need_user_resched(); 584 } 585 #endif 586 crit_exit(); 587 } 588 589 /* 590 * This routine is called from a systimer IPI. It MUST be MP-safe and 591 * the BGL IS NOT HELD ON ENTRY. This routine is called at ESTCPUFREQ on 592 * each cpu. 593 * 594 * MPSAFE 595 */ 596 static 597 void 598 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp) 599 { 600 globaldata_t gd = mycpu; 601 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid]; 602 603 /* 604 * Do we need to round-robin? We round-robin 10 times a second. 605 * This should only occur for cpu-bound batch processes. 606 */ 607 if (++dd->rrcount >= usched_bsd4_rrinterval) { 608 dd->rrcount = 0; 609 need_user_resched(); 610 } 611 612 /* 613 * As the process accumulates cpu time p_estcpu is bumped and may 614 * push the process into another scheduling queue. It typically 615 * takes 4 ticks to bump the queue. 616 */ 617 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR); 618 619 /* 620 * Reducing p_origcpu over time causes more of our estcpu to be 621 * returned to the parent when we exit. This is a small tweak 622 * for the batch detection heuristic. 623 */ 624 if (lp->lwp_origcpu) 625 --lp->lwp_origcpu; 626 627 /* 628 * Spinlocks also hold a critical section so there should not be 629 * any active. 630 */ 631 KKASSERT(gd->gd_spinlocks_wr == 0); 632 633 bsd4_resetpriority(lp); 634 #if 0 635 /* 636 * if we can't call bsd4_resetpriority for some reason we must call 637 * need user_resched(). 638 */ 639 need_user_resched(); 640 #endif 641 } 642 643 /* 644 * Called from acquire and from kern_synch's one-second timer (one of the 645 * callout helper threads) with a critical section held. 646 * 647 * Decay p_estcpu based on the number of ticks we haven't been running 648 * and our p_nice. As the load increases each process observes a larger 649 * number of idle ticks (because other processes are running in them). 650 * This observation leads to a larger correction which tends to make the 651 * system more 'batchy'. 652 * 653 * Note that no recalculation occurs for a process which sleeps and wakes 654 * up in the same tick. That is, a system doing thousands of context 655 * switches per second will still only do serious estcpu calculations 656 * ESTCPUFREQ times per second. 657 * 658 * MPSAFE 659 */ 660 static 661 void 662 bsd4_recalculate_estcpu(struct lwp *lp) 663 { 664 globaldata_t gd = mycpu; 665 sysclock_t cpbase; 666 int loadfac; 667 int ndecay; 668 int nticks; 669 int nleft; 670 671 /* 672 * We have to subtract periodic to get the last schedclock 673 * timeout time, otherwise we would get the upcoming timeout. 674 * Keep in mind that a process can migrate between cpus and 675 * while the scheduler clock should be very close, boundary 676 * conditions could lead to a small negative delta. 677 */ 678 cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic; 679 680 if (lp->lwp_slptime > 1) { 681 /* 682 * Too much time has passed, do a coarse correction. 683 */ 684 lp->lwp_estcpu = lp->lwp_estcpu >> 1; 685 bsd4_resetpriority(lp); 686 lp->lwp_cpbase = cpbase; 687 lp->lwp_cpticks = 0; 688 } else if (lp->lwp_cpbase != cpbase) { 689 /* 690 * Adjust estcpu if we are in a different tick. Don't waste 691 * time if we are in the same tick. 692 * 693 * First calculate the number of ticks in the measurement 694 * interval. The nticks calculation can wind up 0 due to 695 * a bug in the handling of lwp_slptime (as yet not found), 696 * so make sure we do not get a divide by 0 panic. 697 */ 698 nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic; 699 if (nticks <= 0) 700 nticks = 1; 701 updatepcpu(lp, lp->lwp_cpticks, nticks); 702 703 if ((nleft = nticks - lp->lwp_cpticks) < 0) 704 nleft = 0; 705 if (usched_debug == lp->lwp_proc->p_pid) { 706 kprintf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d", 707 lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu, 708 lp->lwp_cpticks, nticks, nleft); 709 } 710 711 /* 712 * Calculate a decay value based on ticks remaining scaled 713 * down by the instantanious load and p_nice. 714 */ 715 if ((loadfac = bsd4_runqcount) < 2) 716 loadfac = 2; 717 ndecay = nleft * usched_bsd4_decay * 2 * 718 (PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2); 719 720 /* 721 * Adjust p_estcpu. Handle a border case where batch jobs 722 * can get stalled long enough to decay to zero when they 723 * shouldn't. 724 */ 725 if (lp->lwp_estcpu > ndecay * 2) 726 lp->lwp_estcpu -= ndecay; 727 else 728 lp->lwp_estcpu >>= 1; 729 730 if (usched_debug == lp->lwp_proc->p_pid) 731 kprintf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu); 732 bsd4_resetpriority(lp); 733 lp->lwp_cpbase = cpbase; 734 lp->lwp_cpticks = 0; 735 } 736 } 737 738 /* 739 * Compute the priority of a process when running in user mode. 740 * Arrange to reschedule if the resulting priority is better 741 * than that of the current process. 742 * 743 * This routine may be called with any process. 744 * 745 * This routine is called by fork1() for initial setup with the process 746 * of the run queue, and also may be called normally with the process on or 747 * off the run queue. 748 * 749 * MPSAFE 750 */ 751 static void 752 bsd4_resetpriority(struct lwp *lp) 753 { 754 bsd4_pcpu_t dd; 755 int newpriority; 756 u_short newrqtype; 757 int reschedcpu; 758 759 /* 760 * Calculate the new priority and queue type 761 */ 762 crit_enter(); 763 spin_lock(&bsd4_spin); 764 765 newrqtype = lp->lwp_rtprio.type; 766 767 switch(newrqtype) { 768 case RTP_PRIO_REALTIME: 769 case RTP_PRIO_FIFO: 770 newpriority = PRIBASE_REALTIME + 771 (lp->lwp_rtprio.prio & PRIMASK); 772 break; 773 case RTP_PRIO_NORMAL: 774 newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ; 775 newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ; 776 newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ / 777 NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ); 778 newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK); 779 break; 780 case RTP_PRIO_IDLE: 781 newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK); 782 break; 783 case RTP_PRIO_THREAD: 784 newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK); 785 break; 786 default: 787 panic("Bad RTP_PRIO %d", newrqtype); 788 /* NOT REACHED */ 789 } 790 791 /* 792 * The newpriority incorporates the queue type so do a simple masked 793 * check to determine if the process has moved to another queue. If 794 * it has, and it is currently on a run queue, then move it. 795 */ 796 if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) { 797 lp->lwp_priority = newpriority; 798 if (lp->lwp_flag & LWP_ONRUNQ) { 799 bsd4_remrunqueue_locked(lp); 800 lp->lwp_rqtype = newrqtype; 801 lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ; 802 bsd4_setrunqueue_locked(lp); 803 reschedcpu = lp->lwp_thread->td_gd->gd_cpuid; 804 } else { 805 lp->lwp_rqtype = newrqtype; 806 lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ; 807 reschedcpu = -1; 808 } 809 } else { 810 lp->lwp_priority = newpriority; 811 reschedcpu = -1; 812 } 813 814 /* 815 * Determine if we need to reschedule the target cpu. This only 816 * occurs if the LWP is already on a scheduler queue, which means 817 * that idle cpu notification has already occured. At most we 818 * need only issue a need_user_resched() on the appropriate cpu. 819 * 820 * The LWP may be owned by a CPU different from the current one, 821 * in which case dd->uschedcp may be modified without an MP lock 822 * or a spinlock held. The worst that happens is that the code 823 * below causes a spurious need_user_resched() on the target CPU 824 * and dd->pri to be wrong for a short period of time, both of 825 * which are harmless. 826 */ 827 if (reschedcpu >= 0) { 828 dd = &bsd4_pcpu[reschedcpu]; 829 if ((bsd4_rdyprocmask & CPUMASK(reschedcpu)) && 830 (dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) { 831 #ifdef SMP 832 if (reschedcpu == mycpu->gd_cpuid) { 833 spin_unlock(&bsd4_spin); 834 need_user_resched(); 835 } else { 836 spin_unlock(&bsd4_spin); 837 atomic_clear_cpumask(&bsd4_rdyprocmask, 838 CPUMASK(reschedcpu)); 839 lwkt_send_ipiq(lp->lwp_thread->td_gd, 840 need_user_resched_remote, NULL); 841 } 842 #else 843 spin_unlock(&bsd4_spin); 844 need_user_resched(); 845 #endif 846 } else { 847 spin_unlock(&bsd4_spin); 848 } 849 } else { 850 spin_unlock(&bsd4_spin); 851 } 852 crit_exit(); 853 } 854 855 /* 856 * MPSAFE 857 */ 858 static 859 void 860 bsd4_yield(struct lwp *lp) 861 { 862 #if 0 863 /* FUTURE (or something similar) */ 864 switch(lp->lwp_rqtype) { 865 case RTP_PRIO_NORMAL: 866 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR); 867 break; 868 default: 869 break; 870 } 871 #endif 872 need_user_resched(); 873 } 874 875 /* 876 * Called from fork1() when a new child process is being created. 877 * 878 * Give the child process an initial estcpu that is more batch then 879 * its parent and dock the parent for the fork (but do not 880 * reschedule the parent). This comprises the main part of our batch 881 * detection heuristic for both parallel forking and sequential execs. 882 * 883 * Interactive processes will decay the boosted estcpu quickly while batch 884 * processes will tend to compound it. 885 * XXX lwp should be "spawning" instead of "forking" 886 * 887 * MPSAFE 888 */ 889 static void 890 bsd4_forking(struct lwp *plp, struct lwp *lp) 891 { 892 lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ); 893 lp->lwp_origcpu = lp->lwp_estcpu; 894 plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ); 895 } 896 897 /* 898 * Called when the parent reaps a child. Propogate cpu use by the child 899 * back to the parent. 900 * 901 * MPSAFE 902 */ 903 static void 904 bsd4_exiting(struct lwp *plp, struct lwp *lp) 905 { 906 int delta; 907 908 if (plp->lwp_proc->p_pid != 1) { 909 delta = lp->lwp_estcpu - lp->lwp_origcpu; 910 if (delta > 0) 911 plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta); 912 } 913 } 914 915 916 /* 917 * chooseproc() is called when a cpu needs a user process to LWKT schedule, 918 * it selects a user process and returns it. If chklp is non-NULL and chklp 919 * has a better or equal priority then the process that would otherwise be 920 * chosen, NULL is returned. 921 * 922 * Until we fix the RUNQ code the chklp test has to be strict or we may 923 * bounce between processes trying to acquire the current process designation. 924 * 925 * MPSAFE - must be called with bsd4_spin exclusive held. The spinlock is 926 * left intact through the entire routine. 927 */ 928 static 929 struct lwp * 930 chooseproc_locked(struct lwp *chklp) 931 { 932 struct lwp *lp; 933 struct rq *q; 934 u_int32_t *which, *which2; 935 u_int32_t pri; 936 u_int32_t rtqbits; 937 u_int32_t tsqbits; 938 u_int32_t idqbits; 939 cpumask_t cpumask; 940 941 rtqbits = bsd4_rtqueuebits; 942 tsqbits = bsd4_queuebits; 943 idqbits = bsd4_idqueuebits; 944 cpumask = mycpu->gd_cpumask; 945 946 #ifdef SMP 947 again: 948 #endif 949 if (rtqbits) { 950 pri = bsfl(rtqbits); 951 q = &bsd4_rtqueues[pri]; 952 which = &bsd4_rtqueuebits; 953 which2 = &rtqbits; 954 } else if (tsqbits) { 955 pri = bsfl(tsqbits); 956 q = &bsd4_queues[pri]; 957 which = &bsd4_queuebits; 958 which2 = &tsqbits; 959 } else if (idqbits) { 960 pri = bsfl(idqbits); 961 q = &bsd4_idqueues[pri]; 962 which = &bsd4_idqueuebits; 963 which2 = &idqbits; 964 } else { 965 return NULL; 966 } 967 lp = TAILQ_FIRST(q); 968 KASSERT(lp, ("chooseproc: no lwp on busy queue")); 969 970 #ifdef SMP 971 while ((lp->lwp_cpumask & cpumask) == 0) { 972 lp = TAILQ_NEXT(lp, lwp_procq); 973 if (lp == NULL) { 974 *which2 &= ~(1 << pri); 975 goto again; 976 } 977 } 978 #endif 979 980 /* 981 * If the passed lwp <chklp> is reasonably close to the selected 982 * lwp <lp>, return NULL (indicating that <chklp> should be kept). 983 * 984 * Note that we must error on the side of <chklp> to avoid bouncing 985 * between threads in the acquire code. 986 */ 987 if (chklp) { 988 if (chklp->lwp_priority < lp->lwp_priority + PPQ) 989 return(NULL); 990 } 991 992 #ifdef SMP 993 /* 994 * If the chosen lwp does not reside on this cpu spend a few 995 * cycles looking for a better candidate at the same priority level. 996 * This is a fallback check, setrunqueue() tries to wakeup the 997 * correct cpu and is our front-line affinity. 998 */ 999 if (lp->lwp_thread->td_gd != mycpu && 1000 (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL 1001 ) { 1002 if (chklp->lwp_thread->td_gd == mycpu) { 1003 ++choose_affinity; 1004 lp = chklp; 1005 } 1006 } 1007 #endif 1008 1009 TAILQ_REMOVE(q, lp, lwp_procq); 1010 --bsd4_runqcount; 1011 if (TAILQ_EMPTY(q)) 1012 *which &= ~(1 << pri); 1013 KASSERT((lp->lwp_flag & LWP_ONRUNQ) != 0, ("not on runq6!")); 1014 lp->lwp_flag &= ~LWP_ONRUNQ; 1015 return lp; 1016 } 1017 1018 #ifdef SMP 1019 1020 static 1021 void 1022 need_user_resched_remote(void *dummy) 1023 { 1024 globaldata_t gd = mycpu; 1025 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid]; 1026 1027 need_user_resched(); 1028 lwkt_schedule(&dd->helper_thread); 1029 } 1030 1031 #endif 1032 1033 /* 1034 * bsd4_remrunqueue_locked() removes a given process from the run queue 1035 * that it is on, clearing the queue busy bit if it becomes empty. 1036 * 1037 * Note that user process scheduler is different from the LWKT schedule. 1038 * The user process scheduler only manages user processes but it uses LWKT 1039 * underneath, and a user process operating in the kernel will often be 1040 * 'released' from our management. 1041 * 1042 * MPSAFE - bsd4_spin must be held exclusively on call 1043 */ 1044 static void 1045 bsd4_remrunqueue_locked(struct lwp *lp) 1046 { 1047 struct rq *q; 1048 u_int32_t *which; 1049 u_int8_t pri; 1050 1051 KKASSERT(lp->lwp_flag & LWP_ONRUNQ); 1052 lp->lwp_flag &= ~LWP_ONRUNQ; 1053 --bsd4_runqcount; 1054 KKASSERT(bsd4_runqcount >= 0); 1055 1056 pri = lp->lwp_rqindex; 1057 switch(lp->lwp_rqtype) { 1058 case RTP_PRIO_NORMAL: 1059 q = &bsd4_queues[pri]; 1060 which = &bsd4_queuebits; 1061 break; 1062 case RTP_PRIO_REALTIME: 1063 case RTP_PRIO_FIFO: 1064 q = &bsd4_rtqueues[pri]; 1065 which = &bsd4_rtqueuebits; 1066 break; 1067 case RTP_PRIO_IDLE: 1068 q = &bsd4_idqueues[pri]; 1069 which = &bsd4_idqueuebits; 1070 break; 1071 default: 1072 panic("remrunqueue: invalid rtprio type"); 1073 /* NOT REACHED */ 1074 } 1075 TAILQ_REMOVE(q, lp, lwp_procq); 1076 if (TAILQ_EMPTY(q)) { 1077 KASSERT((*which & (1 << pri)) != 0, 1078 ("remrunqueue: remove from empty queue")); 1079 *which &= ~(1 << pri); 1080 } 1081 } 1082 1083 /* 1084 * bsd4_setrunqueue_locked() 1085 * 1086 * Add a process whos rqtype and rqindex had previously been calculated 1087 * onto the appropriate run queue. Determine if the addition requires 1088 * a reschedule on a cpu and return the cpuid or -1. 1089 * 1090 * NOTE: Lower priorities are better priorities. 1091 * 1092 * MPSAFE - bsd4_spin must be held exclusively on call 1093 */ 1094 static void 1095 bsd4_setrunqueue_locked(struct lwp *lp) 1096 { 1097 struct rq *q; 1098 u_int32_t *which; 1099 int pri; 1100 1101 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0); 1102 lp->lwp_flag |= LWP_ONRUNQ; 1103 ++bsd4_runqcount; 1104 1105 pri = lp->lwp_rqindex; 1106 1107 switch(lp->lwp_rqtype) { 1108 case RTP_PRIO_NORMAL: 1109 q = &bsd4_queues[pri]; 1110 which = &bsd4_queuebits; 1111 break; 1112 case RTP_PRIO_REALTIME: 1113 case RTP_PRIO_FIFO: 1114 q = &bsd4_rtqueues[pri]; 1115 which = &bsd4_rtqueuebits; 1116 break; 1117 case RTP_PRIO_IDLE: 1118 q = &bsd4_idqueues[pri]; 1119 which = &bsd4_idqueuebits; 1120 break; 1121 default: 1122 panic("remrunqueue: invalid rtprio type"); 1123 /* NOT REACHED */ 1124 } 1125 1126 /* 1127 * Add to the correct queue and set the appropriate bit. If no 1128 * lower priority (i.e. better) processes are in the queue then 1129 * we want a reschedule, calculate the best cpu for the job. 1130 * 1131 * Always run reschedules on the LWPs original cpu. 1132 */ 1133 TAILQ_INSERT_TAIL(q, lp, lwp_procq); 1134 *which |= 1 << pri; 1135 } 1136 1137 #ifdef SMP 1138 1139 /* 1140 * For SMP systems a user scheduler helper thread is created for each 1141 * cpu and is used to allow one cpu to wakeup another for the purposes of 1142 * scheduling userland threads from setrunqueue(). 1143 * 1144 * UP systems do not need the helper since there is only one cpu. 1145 * 1146 * We can't use the idle thread for this because we might block. 1147 * Additionally, doing things this way allows us to HLT idle cpus 1148 * on MP systems. 1149 * 1150 * MPSAFE 1151 */ 1152 static void 1153 sched_thread(void *dummy) 1154 { 1155 globaldata_t gd; 1156 bsd4_pcpu_t dd; 1157 struct lwp *nlp; 1158 cpumask_t mask; 1159 int cpuid; 1160 #ifdef SMP 1161 cpumask_t tmpmask; 1162 int tmpid; 1163 #endif 1164 1165 gd = mycpu; 1166 cpuid = gd->gd_cpuid; /* doesn't change */ 1167 mask = gd->gd_cpumask; /* doesn't change */ 1168 dd = &bsd4_pcpu[cpuid]; 1169 1170 /* 1171 * Since we are woken up only when no user processes are scheduled 1172 * on a cpu, we can run at an ultra low priority. 1173 */ 1174 lwkt_setpri_self(TDPRI_USER_SCHEDULER); 1175 1176 for (;;) { 1177 /* 1178 * We use the LWKT deschedule-interlock trick to avoid racing 1179 * bsd4_rdyprocmask. This means we cannot block through to the 1180 * manual lwkt_switch() call we make below. 1181 */ 1182 crit_enter_gd(gd); 1183 lwkt_deschedule_self(gd->gd_curthread); 1184 spin_lock(&bsd4_spin); 1185 atomic_set_cpumask(&bsd4_rdyprocmask, mask); 1186 1187 clear_user_resched(); /* This satisfied the reschedule request */ 1188 dd->rrcount = 0; /* Reset the round-robin counter */ 1189 1190 if ((bsd4_curprocmask & mask) == 0) { 1191 /* 1192 * No thread is currently scheduled. 1193 */ 1194 KKASSERT(dd->uschedcp == NULL); 1195 if ((nlp = chooseproc_locked(NULL)) != NULL) { 1196 atomic_set_cpumask(&bsd4_curprocmask, mask); 1197 dd->upri = nlp->lwp_priority; 1198 dd->uschedcp = nlp; 1199 spin_unlock(&bsd4_spin); 1200 lwkt_acquire(nlp->lwp_thread); 1201 lwkt_schedule(nlp->lwp_thread); 1202 } else { 1203 spin_unlock(&bsd4_spin); 1204 } 1205 } else if (bsd4_runqcount) { 1206 if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) { 1207 dd->upri = nlp->lwp_priority; 1208 dd->uschedcp = nlp; 1209 spin_unlock(&bsd4_spin); 1210 lwkt_acquire(nlp->lwp_thread); 1211 lwkt_schedule(nlp->lwp_thread); 1212 } else { 1213 /* 1214 * CHAINING CONDITION TRAIN 1215 * 1216 * We could not deal with the scheduler wakeup 1217 * request on this cpu, locate a ready scheduler 1218 * with no current lp assignment and chain to it. 1219 * 1220 * This ensures that a wakeup race which fails due 1221 * to priority test does not leave other unscheduled 1222 * cpus idle when the runqueue is not empty. 1223 */ 1224 tmpmask = ~bsd4_curprocmask & bsd4_rdyprocmask & 1225 smp_active_mask; 1226 if (tmpmask) { 1227 tmpid = BSFCPUMASK(tmpmask); 1228 gd = globaldata_find(cpuid); 1229 dd = &bsd4_pcpu[cpuid]; 1230 atomic_clear_cpumask(&bsd4_rdyprocmask, 1231 CPUMASK(tmpid)); 1232 spin_unlock(&bsd4_spin); 1233 lwkt_schedule(&dd->helper_thread); 1234 } else { 1235 spin_unlock(&bsd4_spin); 1236 } 1237 } 1238 } else { 1239 /* 1240 * The runq is empty. 1241 */ 1242 spin_unlock(&bsd4_spin); 1243 } 1244 crit_exit_gd(gd); 1245 lwkt_switch(); 1246 } 1247 } 1248 1249 /* 1250 * Setup our scheduler helpers. Note that curprocmask bit 0 has already 1251 * been cleared by rqinit() and we should not mess with it further. 1252 */ 1253 static void 1254 sched_thread_cpu_init(void) 1255 { 1256 int i; 1257 1258 if (bootverbose) 1259 kprintf("start scheduler helpers on cpus:"); 1260 1261 for (i = 0; i < ncpus; ++i) { 1262 bsd4_pcpu_t dd = &bsd4_pcpu[i]; 1263 cpumask_t mask = CPUMASK(i); 1264 1265 if ((mask & smp_active_mask) == 0) 1266 continue; 1267 1268 if (bootverbose) 1269 kprintf(" %d", i); 1270 1271 lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread, 1272 TDF_STOPREQ, i, "usched %d", i); 1273 1274 /* 1275 * Allow user scheduling on the target cpu. cpu #0 has already 1276 * been enabled in rqinit(). 1277 */ 1278 if (i) 1279 atomic_clear_cpumask(&bsd4_curprocmask, mask); 1280 atomic_set_cpumask(&bsd4_rdyprocmask, mask); 1281 dd->upri = PRIBASE_NULL; 1282 } 1283 if (bootverbose) 1284 kprintf("\n"); 1285 } 1286 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND, 1287 sched_thread_cpu_init, NULL) 1288 1289 #endif 1290 1291