xref: /dflybsd-src/sys/kern/usched_bsd4.c (revision e90a7c45c3303ed54c0fde732b2ba32dc80ffd9b)
1 /*
2  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.26 2008/11/01 23:31:19 dillon Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/lock.h>
33 #include <sys/queue.h>
34 #include <sys/proc.h>
35 #include <sys/rtprio.h>
36 #include <sys/uio.h>
37 #include <sys/sysctl.h>
38 #include <sys/resourcevar.h>
39 #include <sys/spinlock.h>
40 #include <machine/cpu.h>
41 #include <machine/smp.h>
42 
43 #include <sys/thread2.h>
44 #include <sys/spinlock2.h>
45 #include <sys/mplock2.h>
46 
47 /*
48  * Priorities.  Note that with 32 run queues per scheduler each queue
49  * represents four priority levels.
50  */
51 
52 #define MAXPRI			128
53 #define PRIMASK			(MAXPRI - 1)
54 #define PRIBASE_REALTIME	0
55 #define PRIBASE_NORMAL		MAXPRI
56 #define PRIBASE_IDLE		(MAXPRI * 2)
57 #define PRIBASE_THREAD		(MAXPRI * 3)
58 #define PRIBASE_NULL		(MAXPRI * 4)
59 
60 #define NQS	32			/* 32 run queues. */
61 #define PPQ	(MAXPRI / NQS)		/* priorities per queue */
62 #define PPQMASK	(PPQ - 1)
63 
64 /*
65  * NICEPPQ	- number of nice units per priority queue
66  * ESTCPURAMP	- number of scheduler ticks for estcpu to switch queues
67  *
68  * ESTCPUPPQ	- number of estcpu units per priority queue
69  * ESTCPUMAX	- number of estcpu units
70  * ESTCPUINCR	- amount we have to increment p_estcpu per scheduling tick at
71  *		  100% cpu.
72  */
73 #define NICEPPQ		2
74 #define ESTCPURAMP	4
75 #define ESTCPUPPQ	512
76 #define ESTCPUMAX	(ESTCPUPPQ * NQS)
77 #define ESTCPUINCR	(ESTCPUPPQ / ESTCPURAMP)
78 #define PRIO_RANGE	(PRIO_MAX - PRIO_MIN + 1)
79 
80 #define ESTCPULIM(v)	min((v), ESTCPUMAX)
81 
82 TAILQ_HEAD(rq, lwp);
83 
84 #define lwp_priority	lwp_usdata.bsd4.priority
85 #define lwp_rqindex	lwp_usdata.bsd4.rqindex
86 #define lwp_origcpu	lwp_usdata.bsd4.origcpu
87 #define lwp_estcpu	lwp_usdata.bsd4.estcpu
88 #define lwp_rqtype	lwp_usdata.bsd4.rqtype
89 
90 static void bsd4_acquire_curproc(struct lwp *lp);
91 static void bsd4_release_curproc(struct lwp *lp);
92 static void bsd4_select_curproc(globaldata_t gd);
93 static void bsd4_setrunqueue(struct lwp *lp);
94 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period,
95 				sysclock_t cpstamp);
96 static void bsd4_recalculate_estcpu(struct lwp *lp);
97 static void bsd4_resetpriority(struct lwp *lp);
98 static void bsd4_forking(struct lwp *plp, struct lwp *lp);
99 static void bsd4_exiting(struct lwp *plp, struct lwp *lp);
100 static void bsd4_yield(struct lwp *lp);
101 
102 #ifdef SMP
103 static void need_user_resched_remote(void *dummy);
104 #endif
105 static struct lwp *chooseproc_locked(struct lwp *chklp);
106 static void bsd4_remrunqueue_locked(struct lwp *lp);
107 static void bsd4_setrunqueue_locked(struct lwp *lp);
108 
109 struct usched usched_bsd4 = {
110 	{ NULL },
111 	"bsd4", "Original DragonFly Scheduler",
112 	NULL,			/* default registration */
113 	NULL,			/* default deregistration */
114 	bsd4_acquire_curproc,
115 	bsd4_release_curproc,
116 	bsd4_setrunqueue,
117 	bsd4_schedulerclock,
118 	bsd4_recalculate_estcpu,
119 	bsd4_resetpriority,
120 	bsd4_forking,
121 	bsd4_exiting,
122 	NULL,			/* setcpumask not supported */
123 	bsd4_yield
124 };
125 
126 struct usched_bsd4_pcpu {
127 	struct thread helper_thread;
128 	short	rrcount;
129 	short	upri;
130 	struct lwp *uschedcp;
131 };
132 
133 typedef struct usched_bsd4_pcpu	*bsd4_pcpu_t;
134 
135 /*
136  * We have NQS (32) run queues per scheduling class.  For the normal
137  * class, there are 128 priorities scaled onto these 32 queues.  New
138  * processes are added to the last entry in each queue, and processes
139  * are selected for running by taking them from the head and maintaining
140  * a simple FIFO arrangement.  Realtime and Idle priority processes have
141  * and explicit 0-31 priority which maps directly onto their class queue
142  * index.  When a queue has something in it, the corresponding bit is
143  * set in the queuebits variable, allowing a single read to determine
144  * the state of all 32 queues and then a ffs() to find the first busy
145  * queue.
146  */
147 static struct rq bsd4_queues[NQS];
148 static struct rq bsd4_rtqueues[NQS];
149 static struct rq bsd4_idqueues[NQS];
150 static u_int32_t bsd4_queuebits;
151 static u_int32_t bsd4_rtqueuebits;
152 static u_int32_t bsd4_idqueuebits;
153 static cpumask_t bsd4_curprocmask = -1;	/* currently running a user process */
154 static cpumask_t bsd4_rdyprocmask;	/* ready to accept a user process */
155 static int	 bsd4_runqcount;
156 #ifdef SMP
157 static volatile int bsd4_scancpu;
158 #endif
159 static struct spinlock bsd4_spin;
160 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU];
161 
162 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0,
163     "Number of run queues");
164 #ifdef INVARIANTS
165 static int usched_nonoptimal;
166 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW,
167         &usched_nonoptimal, 0, "acquire_curproc() was not optimal");
168 static int usched_optimal;
169 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW,
170         &usched_optimal, 0, "acquire_curproc() was optimal");
171 #endif
172 static int usched_debug = -1;
173 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0,
174     "Print debug information for this pid");
175 #ifdef SMP
176 static int remote_resched_nonaffinity;
177 static int remote_resched_affinity;
178 static int choose_affinity;
179 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD,
180         &remote_resched_nonaffinity, 0, "Number of remote rescheds");
181 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD,
182         &remote_resched_affinity, 0, "Number of remote rescheds");
183 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD,
184         &choose_affinity, 0, "chooseproc() was smart");
185 #endif
186 
187 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10;
188 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW,
189         &usched_bsd4_rrinterval, 0, "");
190 static int usched_bsd4_decay = ESTCPUINCR / 2;
191 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW,
192         &usched_bsd4_decay, 0, "");
193 
194 /*
195  * Initialize the run queues at boot time.
196  */
197 static void
198 rqinit(void *dummy)
199 {
200 	int i;
201 
202 	spin_init(&bsd4_spin);
203 	for (i = 0; i < NQS; i++) {
204 		TAILQ_INIT(&bsd4_queues[i]);
205 		TAILQ_INIT(&bsd4_rtqueues[i]);
206 		TAILQ_INIT(&bsd4_idqueues[i]);
207 	}
208 	atomic_clear_cpumask(&bsd4_curprocmask, 1);
209 }
210 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, rqinit, NULL)
211 
212 /*
213  * BSD4_ACQUIRE_CURPROC
214  *
215  * This function is called when the kernel intends to return to userland.
216  * It is responsible for making the thread the current designated userland
217  * thread for this cpu, blocking if necessary.
218  *
219  * The kernel has already depressed our LWKT priority so we must not switch
220  * until we have either assigned or disposed of the thread.
221  *
222  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
223  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
224  * occur, this function is called only under very controlled circumstances.
225  *
226  * MPSAFE
227  */
228 static void
229 bsd4_acquire_curproc(struct lwp *lp)
230 {
231 	globaldata_t gd;
232 	bsd4_pcpu_t dd;
233 	struct lwp *olp;
234 
235 	crit_enter();
236 	bsd4_recalculate_estcpu(lp);
237 
238 	/*
239 	 * If a reschedule was requested give another thread the
240 	 * driver's seat.
241 	 */
242 	if (user_resched_wanted()) {
243 		clear_user_resched();
244 		bsd4_release_curproc(lp);
245 	}
246 
247 	/*
248 	 * Loop until we are the current user thread
249 	 */
250 	do {
251 		/*
252 		 * Reload after a switch or setrunqueue/switch possibly
253 		 * moved us to another cpu.
254 		 */
255 		/*clear_lwkt_resched();*/
256 		gd = mycpu;
257 		dd = &bsd4_pcpu[gd->gd_cpuid];
258 
259 		/*
260 		 * Become the currently scheduled user thread for this cpu
261 		 * if we can do so trivially.
262 		 *
263 		 * We can steal another thread's current thread designation
264 		 * on this cpu since if we are running that other thread
265 		 * must not be, so we can safely deschedule it.
266 		 */
267 		if (dd->uschedcp == lp) {
268 			/*
269 			 * We are already the current lwp (hot path).
270 			 */
271 			dd->upri = lp->lwp_priority;
272 		} else if (dd->uschedcp == NULL) {
273 			/*
274 			 * We can trivially become the current lwp.
275 			 */
276 			atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
277 			dd->uschedcp = lp;
278 			dd->upri = lp->lwp_priority;
279 		} else if (dd->upri > lp->lwp_priority) {
280 			/*
281 			 * We can steal the current lwp designation from the
282 			 * olp that was previously assigned to this cpu.
283 			 */
284 			olp = dd->uschedcp;
285 			dd->uschedcp = lp;
286 			dd->upri = lp->lwp_priority;
287 			lwkt_deschedule(olp->lwp_thread);
288 			bsd4_setrunqueue(olp);
289 		} else {
290 			/*
291 			 * We cannot become the current lwp, place the lp
292 			 * on the bsd4 run-queue and deschedule ourselves.
293 			 */
294 			lwkt_deschedule(lp->lwp_thread);
295 			bsd4_setrunqueue(lp);
296 			lwkt_switch();
297 		}
298 
299 		/*
300 		 * Other threads at our current user priority have already
301 		 * put in their bids, but we must run any kernel threads
302 		 * at higher priorities, and we could lose our bid to
303 		 * another thread trying to return to user mode in the
304 		 * process.
305 		 *
306 		 * If we lose our bid we will be descheduled and put on
307 		 * the run queue.  When we are reactivated we will have
308 		 * another chance.
309 		 */
310 		if (lwkt_resched_wanted() ||
311 		    lp->lwp_thread->td_fairq_accum < 0) {
312 			lwkt_switch();
313 		}
314 	} while (dd->uschedcp != lp);
315 
316 	crit_exit();
317 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
318 }
319 
320 /*
321  * BSD4_RELEASE_CURPROC
322  *
323  * This routine detaches the current thread from the userland scheduler,
324  * usually because the thread needs to run or block in the kernel (at
325  * kernel priority) for a while.
326  *
327  * This routine is also responsible for selecting a new thread to
328  * make the current thread.
329  *
330  * NOTE: This implementation differs from the dummy example in that
331  * bsd4_select_curproc() is able to select the current process, whereas
332  * dummy_select_curproc() is not able to select the current process.
333  * This means we have to NULL out uschedcp.
334  *
335  * Additionally, note that we may already be on a run queue if releasing
336  * via the lwkt_switch() in bsd4_setrunqueue().
337  *
338  * MPSAFE
339  */
340 static void
341 bsd4_release_curproc(struct lwp *lp)
342 {
343 	globaldata_t gd = mycpu;
344 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
345 
346 	if (dd->uschedcp == lp) {
347 		crit_enter();
348 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
349 		dd->uschedcp = NULL;	/* don't let lp be selected */
350 		dd->upri = PRIBASE_NULL;
351 		atomic_clear_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
352 		bsd4_select_curproc(gd);
353 		crit_exit();
354 	}
355 }
356 
357 /*
358  * BSD4_SELECT_CURPROC
359  *
360  * Select a new current process for this cpu and clear any pending user
361  * reschedule request.  The cpu currently has no current process.
362  *
363  * This routine is also responsible for equal-priority round-robining,
364  * typically triggered from bsd4_schedulerclock().  In our dummy example
365  * all the 'user' threads are LWKT scheduled all at once and we just
366  * call lwkt_switch().
367  *
368  * The calling process is not on the queue and cannot be selected.
369  *
370  * MPSAFE
371  */
372 static
373 void
374 bsd4_select_curproc(globaldata_t gd)
375 {
376 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
377 	struct lwp *nlp;
378 	int cpuid = gd->gd_cpuid;
379 
380 	crit_enter_gd(gd);
381 
382 	spin_lock(&bsd4_spin);
383 	if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
384 		atomic_set_cpumask(&bsd4_curprocmask, CPUMASK(cpuid));
385 		dd->upri = nlp->lwp_priority;
386 		dd->uschedcp = nlp;
387 		spin_unlock(&bsd4_spin);
388 #ifdef SMP
389 		lwkt_acquire(nlp->lwp_thread);
390 #endif
391 		lwkt_schedule(nlp->lwp_thread);
392 	} else {
393 		spin_unlock(&bsd4_spin);
394 	}
395 #if 0
396 	} else if (bsd4_runqcount && (bsd4_rdyprocmask & CPUMASK(cpuid))) {
397 		atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
398 		spin_unlock(&bsd4_spin);
399 		lwkt_schedule(&dd->helper_thread);
400 	} else {
401 		spin_unlock(&bsd4_spin);
402 	}
403 #endif
404 	crit_exit_gd(gd);
405 }
406 
407 /*
408  * BSD4_SETRUNQUEUE
409  *
410  * Place the specified lwp on the user scheduler's run queue.  This routine
411  * must be called with the thread descheduled.  The lwp must be runnable.
412  *
413  * The thread may be the current thread as a special case.
414  *
415  * MPSAFE
416  */
417 static void
418 bsd4_setrunqueue(struct lwp *lp)
419 {
420 	globaldata_t gd;
421 	bsd4_pcpu_t dd;
422 #ifdef SMP
423 	int cpuid;
424 	cpumask_t mask;
425 	cpumask_t tmpmask;
426 #endif
427 
428 	/*
429 	 * First validate the process state relative to the current cpu.
430 	 * We don't need the spinlock for this, just a critical section.
431 	 * We are in control of the process.
432 	 */
433 	crit_enter();
434 	KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
435 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0,
436 	    ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
437 	     lp->lwp_tid, lp->lwp_proc->p_flag, lp->lwp_flag));
438 	KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
439 
440 	/*
441 	 * Note: gd and dd are relative to the target thread's last cpu,
442 	 * NOT our current cpu.
443 	 */
444 	gd = lp->lwp_thread->td_gd;
445 	dd = &bsd4_pcpu[gd->gd_cpuid];
446 
447 	/*
448 	 * This process is not supposed to be scheduled anywhere or assigned
449 	 * as the current process anywhere.  Assert the condition.
450 	 */
451 	KKASSERT(dd->uschedcp != lp);
452 
453 #ifndef SMP
454 	/*
455 	 * If we are not SMP we do not have a scheduler helper to kick
456 	 * and must directly activate the process if none are scheduled.
457 	 *
458 	 * This is really only an issue when bootstrapping init since
459 	 * the caller in all other cases will be a user process, and
460 	 * even if released (dd->uschedcp == NULL), that process will
461 	 * kickstart the scheduler when it returns to user mode from
462 	 * the kernel.
463 	 */
464 	if (dd->uschedcp == NULL) {
465 		atomic_set_cpumask(&bsd4_curprocmask, gd->gd_cpumask);
466 		dd->uschedcp = lp;
467 		dd->upri = lp->lwp_priority;
468 		lwkt_schedule(lp->lwp_thread);
469 		crit_exit();
470 		return;
471 	}
472 #endif
473 
474 #ifdef SMP
475 	/*
476 	 * XXX fixme.  Could be part of a remrunqueue/setrunqueue
477 	 * operation when the priority is recalculated, so TDF_MIGRATING
478 	 * may already be set.
479 	 */
480 	if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
481 		lwkt_giveaway(lp->lwp_thread);
482 #endif
483 
484 	/*
485 	 * We lose control of lp the moment we release the spinlock after
486 	 * having placed lp on the queue.  i.e. another cpu could pick it
487 	 * up and it could exit, or its priority could be further adjusted,
488 	 * or something like that.
489 	 */
490 	spin_lock(&bsd4_spin);
491 	bsd4_setrunqueue_locked(lp);
492 
493 #ifdef SMP
494 	/*
495 	 * Kick the scheduler helper on one of the other cpu's
496 	 * and request a reschedule if appropriate.
497 	 *
498 	 * NOTE: We check all cpus whos rdyprocmask is set.  First we
499 	 *	 look for cpus without designated lps, then we look for
500 	 *	 cpus with designated lps with a worse priority than our
501 	 *	 process.
502 	 */
503 	++bsd4_scancpu;
504 	cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
505 	mask = ~bsd4_curprocmask & bsd4_rdyprocmask & lp->lwp_cpumask &
506 	       smp_active_mask & usched_global_cpumask;
507 
508 	while (mask) {
509 		tmpmask = ~(CPUMASK(cpuid) - 1);
510 		if (mask & tmpmask)
511 			cpuid = BSFCPUMASK(mask & tmpmask);
512 		else
513 			cpuid = BSFCPUMASK(mask);
514 		gd = globaldata_find(cpuid);
515 		dd = &bsd4_pcpu[cpuid];
516 
517 		if ((dd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK))
518 			goto found;
519 		mask &= ~CPUMASK(cpuid);
520 	}
521 
522 	/*
523 	 * Then cpus which might have a currently running lp
524 	 */
525 	mask = bsd4_curprocmask & bsd4_rdyprocmask &
526 	       lp->lwp_cpumask & smp_active_mask & usched_global_cpumask;
527 
528 	while (mask) {
529 		tmpmask = ~(CPUMASK(cpuid) - 1);
530 		if (mask & tmpmask)
531 			cpuid = BSFCPUMASK(mask & tmpmask);
532 		else
533 			cpuid = BSFCPUMASK(mask);
534 		gd = globaldata_find(cpuid);
535 		dd = &bsd4_pcpu[cpuid];
536 
537 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
538 			goto found;
539 		mask &= ~CPUMASK(cpuid);
540 	}
541 
542 	/*
543 	 * If we cannot find a suitable cpu we reload from bsd4_scancpu
544 	 * and round-robin.  Other cpus will pickup as they release their
545 	 * current lwps or become ready.
546 	 *
547 	 * Avoid a degenerate system lockup case if usched_global_cpumask
548 	 * is set to 0 or otherwise does not cover lwp_cpumask.
549 	 *
550 	 * We only kick the target helper thread in this case, we do not
551 	 * set the user resched flag because
552 	 */
553 	cpuid = (bsd4_scancpu & 0xFFFF) % ncpus;
554 	if ((CPUMASK(cpuid) & usched_global_cpumask) == 0) {
555 		cpuid = 0;
556 	}
557 	gd = globaldata_find(cpuid);
558 	dd = &bsd4_pcpu[cpuid];
559 found:
560 	if (gd == mycpu) {
561 		spin_unlock(&bsd4_spin);
562 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
563 			if (dd->uschedcp == NULL) {
564 				lwkt_schedule(&dd->helper_thread);
565 			} else {
566 				need_user_resched();
567 			}
568 		}
569 	} else {
570 		atomic_clear_cpumask(&bsd4_rdyprocmask, CPUMASK(cpuid));
571 		spin_unlock(&bsd4_spin);
572 		if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
573 			lwkt_send_ipiq(gd, need_user_resched_remote, NULL);
574 		else
575 			lwkt_schedule(&dd->helper_thread);
576 	}
577 #else
578 	/*
579 	 * Request a reschedule if appropriate.
580 	 */
581 	spin_unlock(&bsd4_spin);
582 	if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) {
583 		need_user_resched();
584 	}
585 #endif
586 	crit_exit();
587 }
588 
589 /*
590  * This routine is called from a systimer IPI.  It MUST be MP-safe and
591  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
592  * each cpu.
593  *
594  * MPSAFE
595  */
596 static
597 void
598 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
599 {
600 	globaldata_t gd = mycpu;
601 	bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid];
602 
603 	/*
604 	 * Do we need to round-robin?  We round-robin 10 times a second.
605 	 * This should only occur for cpu-bound batch processes.
606 	 */
607 	if (++dd->rrcount >= usched_bsd4_rrinterval) {
608 		dd->rrcount = 0;
609 		need_user_resched();
610 	}
611 
612 	/*
613 	 * As the process accumulates cpu time p_estcpu is bumped and may
614 	 * push the process into another scheduling queue.  It typically
615 	 * takes 4 ticks to bump the queue.
616 	 */
617 	lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
618 
619 	/*
620 	 * Reducing p_origcpu over time causes more of our estcpu to be
621 	 * returned to the parent when we exit.  This is a small tweak
622 	 * for the batch detection heuristic.
623 	 */
624 	if (lp->lwp_origcpu)
625 		--lp->lwp_origcpu;
626 
627 	/*
628 	 * Spinlocks also hold a critical section so there should not be
629 	 * any active.
630 	 */
631 	KKASSERT(gd->gd_spinlocks_wr == 0);
632 
633 	bsd4_resetpriority(lp);
634 #if 0
635 	/*
636 	* if we can't call bsd4_resetpriority for some reason we must call
637 	 * need user_resched().
638 	 */
639 	need_user_resched();
640 #endif
641 }
642 
643 /*
644  * Called from acquire and from kern_synch's one-second timer (one of the
645  * callout helper threads) with a critical section held.
646  *
647  * Decay p_estcpu based on the number of ticks we haven't been running
648  * and our p_nice.  As the load increases each process observes a larger
649  * number of idle ticks (because other processes are running in them).
650  * This observation leads to a larger correction which tends to make the
651  * system more 'batchy'.
652  *
653  * Note that no recalculation occurs for a process which sleeps and wakes
654  * up in the same tick.  That is, a system doing thousands of context
655  * switches per second will still only do serious estcpu calculations
656  * ESTCPUFREQ times per second.
657  *
658  * MPSAFE
659  */
660 static
661 void
662 bsd4_recalculate_estcpu(struct lwp *lp)
663 {
664 	globaldata_t gd = mycpu;
665 	sysclock_t cpbase;
666 	int loadfac;
667 	int ndecay;
668 	int nticks;
669 	int nleft;
670 
671 	/*
672 	 * We have to subtract periodic to get the last schedclock
673 	 * timeout time, otherwise we would get the upcoming timeout.
674 	 * Keep in mind that a process can migrate between cpus and
675 	 * while the scheduler clock should be very close, boundary
676 	 * conditions could lead to a small negative delta.
677 	 */
678 	cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
679 
680 	if (lp->lwp_slptime > 1) {
681 		/*
682 		 * Too much time has passed, do a coarse correction.
683 		 */
684 		lp->lwp_estcpu = lp->lwp_estcpu >> 1;
685 		bsd4_resetpriority(lp);
686 		lp->lwp_cpbase = cpbase;
687 		lp->lwp_cpticks = 0;
688 	} else if (lp->lwp_cpbase != cpbase) {
689 		/*
690 		 * Adjust estcpu if we are in a different tick.  Don't waste
691 		 * time if we are in the same tick.
692 		 *
693 		 * First calculate the number of ticks in the measurement
694 		 * interval.  The nticks calculation can wind up 0 due to
695 		 * a bug in the handling of lwp_slptime  (as yet not found),
696 		 * so make sure we do not get a divide by 0 panic.
697 		 */
698 		nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic;
699 		if (nticks <= 0)
700 			nticks = 1;
701 		updatepcpu(lp, lp->lwp_cpticks, nticks);
702 
703 		if ((nleft = nticks - lp->lwp_cpticks) < 0)
704 			nleft = 0;
705 		if (usched_debug == lp->lwp_proc->p_pid) {
706 			kprintf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d",
707 				lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu,
708 				lp->lwp_cpticks, nticks, nleft);
709 		}
710 
711 		/*
712 		 * Calculate a decay value based on ticks remaining scaled
713 		 * down by the instantanious load and p_nice.
714 		 */
715 		if ((loadfac = bsd4_runqcount) < 2)
716 			loadfac = 2;
717 		ndecay = nleft * usched_bsd4_decay * 2 *
718 			(PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2);
719 
720 		/*
721 		 * Adjust p_estcpu.  Handle a border case where batch jobs
722 		 * can get stalled long enough to decay to zero when they
723 		 * shouldn't.
724 		 */
725 		if (lp->lwp_estcpu > ndecay * 2)
726 			lp->lwp_estcpu -= ndecay;
727 		else
728 			lp->lwp_estcpu >>= 1;
729 
730 		if (usched_debug == lp->lwp_proc->p_pid)
731 			kprintf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu);
732 		bsd4_resetpriority(lp);
733 		lp->lwp_cpbase = cpbase;
734 		lp->lwp_cpticks = 0;
735 	}
736 }
737 
738 /*
739  * Compute the priority of a process when running in user mode.
740  * Arrange to reschedule if the resulting priority is better
741  * than that of the current process.
742  *
743  * This routine may be called with any process.
744  *
745  * This routine is called by fork1() for initial setup with the process
746  * of the run queue, and also may be called normally with the process on or
747  * off the run queue.
748  *
749  * MPSAFE
750  */
751 static void
752 bsd4_resetpriority(struct lwp *lp)
753 {
754 	bsd4_pcpu_t dd;
755 	int newpriority;
756 	u_short newrqtype;
757 	int reschedcpu;
758 
759 	/*
760 	 * Calculate the new priority and queue type
761 	 */
762 	crit_enter();
763 	spin_lock(&bsd4_spin);
764 
765 	newrqtype = lp->lwp_rtprio.type;
766 
767 	switch(newrqtype) {
768 	case RTP_PRIO_REALTIME:
769 	case RTP_PRIO_FIFO:
770 		newpriority = PRIBASE_REALTIME +
771 			     (lp->lwp_rtprio.prio & PRIMASK);
772 		break;
773 	case RTP_PRIO_NORMAL:
774 		newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
775 		newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ;
776 		newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
777 			      NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
778 		newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
779 		break;
780 	case RTP_PRIO_IDLE:
781 		newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
782 		break;
783 	case RTP_PRIO_THREAD:
784 		newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
785 		break;
786 	default:
787 		panic("Bad RTP_PRIO %d", newrqtype);
788 		/* NOT REACHED */
789 	}
790 
791 	/*
792 	 * The newpriority incorporates the queue type so do a simple masked
793 	 * check to determine if the process has moved to another queue.  If
794 	 * it has, and it is currently on a run queue, then move it.
795 	 */
796 	if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
797 		lp->lwp_priority = newpriority;
798 		if (lp->lwp_flag & LWP_ONRUNQ) {
799 			bsd4_remrunqueue_locked(lp);
800 			lp->lwp_rqtype = newrqtype;
801 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
802 			bsd4_setrunqueue_locked(lp);
803 			reschedcpu = lp->lwp_thread->td_gd->gd_cpuid;
804 		} else {
805 			lp->lwp_rqtype = newrqtype;
806 			lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
807 			reschedcpu = -1;
808 		}
809 	} else {
810 		lp->lwp_priority = newpriority;
811 		reschedcpu = -1;
812 	}
813 
814 	/*
815 	 * Determine if we need to reschedule the target cpu.  This only
816 	 * occurs if the LWP is already on a scheduler queue, which means
817 	 * that idle cpu notification has already occured.  At most we
818 	 * need only issue a need_user_resched() on the appropriate cpu.
819 	 *
820 	 * The LWP may be owned by a CPU different from the current one,
821 	 * in which case dd->uschedcp may be modified without an MP lock
822 	 * or a spinlock held.  The worst that happens is that the code
823 	 * below causes a spurious need_user_resched() on the target CPU
824 	 * and dd->pri to be wrong for a short period of time, both of
825 	 * which are harmless.
826 	 */
827 	if (reschedcpu >= 0) {
828 		dd = &bsd4_pcpu[reschedcpu];
829 		if ((bsd4_rdyprocmask & CPUMASK(reschedcpu)) &&
830 		    (dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) {
831 #ifdef SMP
832 			if (reschedcpu == mycpu->gd_cpuid) {
833 				spin_unlock(&bsd4_spin);
834 				need_user_resched();
835 			} else {
836 				spin_unlock(&bsd4_spin);
837 				atomic_clear_cpumask(&bsd4_rdyprocmask,
838 						     CPUMASK(reschedcpu));
839 				lwkt_send_ipiq(lp->lwp_thread->td_gd,
840 					       need_user_resched_remote, NULL);
841 			}
842 #else
843 			spin_unlock(&bsd4_spin);
844 			need_user_resched();
845 #endif
846 		} else {
847 			spin_unlock(&bsd4_spin);
848 		}
849 	} else {
850 		spin_unlock(&bsd4_spin);
851 	}
852 	crit_exit();
853 }
854 
855 /*
856  * MPSAFE
857  */
858 static
859 void
860 bsd4_yield(struct lwp *lp)
861 {
862 #if 0
863 	/* FUTURE (or something similar) */
864 	switch(lp->lwp_rqtype) {
865 	case RTP_PRIO_NORMAL:
866 		lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR);
867 		break;
868 	default:
869 		break;
870 	}
871 #endif
872         need_user_resched();
873 }
874 
875 /*
876  * Called from fork1() when a new child process is being created.
877  *
878  * Give the child process an initial estcpu that is more batch then
879  * its parent and dock the parent for the fork (but do not
880  * reschedule the parent).   This comprises the main part of our batch
881  * detection heuristic for both parallel forking and sequential execs.
882  *
883  * Interactive processes will decay the boosted estcpu quickly while batch
884  * processes will tend to compound it.
885  * XXX lwp should be "spawning" instead of "forking"
886  *
887  * MPSAFE
888  */
889 static void
890 bsd4_forking(struct lwp *plp, struct lwp *lp)
891 {
892 	lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
893 	lp->lwp_origcpu = lp->lwp_estcpu;
894 	plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ);
895 }
896 
897 /*
898  * Called when the parent reaps a child.   Propogate cpu use by the child
899  * back to the parent.
900  *
901  * MPSAFE
902  */
903 static void
904 bsd4_exiting(struct lwp *plp, struct lwp *lp)
905 {
906 	int delta;
907 
908 	if (plp->lwp_proc->p_pid != 1) {
909 		delta = lp->lwp_estcpu - lp->lwp_origcpu;
910 		if (delta > 0)
911 			plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta);
912 	}
913 }
914 
915 
916 /*
917  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
918  * it selects a user process and returns it.  If chklp is non-NULL and chklp
919  * has a better or equal priority then the process that would otherwise be
920  * chosen, NULL is returned.
921  *
922  * Until we fix the RUNQ code the chklp test has to be strict or we may
923  * bounce between processes trying to acquire the current process designation.
924  *
925  * MPSAFE - must be called with bsd4_spin exclusive held.  The spinlock is
926  *	    left intact through the entire routine.
927  */
928 static
929 struct lwp *
930 chooseproc_locked(struct lwp *chklp)
931 {
932 	struct lwp *lp;
933 	struct rq *q;
934 	u_int32_t *which, *which2;
935 	u_int32_t pri;
936 	u_int32_t rtqbits;
937 	u_int32_t tsqbits;
938 	u_int32_t idqbits;
939 	cpumask_t cpumask;
940 
941 	rtqbits = bsd4_rtqueuebits;
942 	tsqbits = bsd4_queuebits;
943 	idqbits = bsd4_idqueuebits;
944 	cpumask = mycpu->gd_cpumask;
945 
946 #ifdef SMP
947 again:
948 #endif
949 	if (rtqbits) {
950 		pri = bsfl(rtqbits);
951 		q = &bsd4_rtqueues[pri];
952 		which = &bsd4_rtqueuebits;
953 		which2 = &rtqbits;
954 	} else if (tsqbits) {
955 		pri = bsfl(tsqbits);
956 		q = &bsd4_queues[pri];
957 		which = &bsd4_queuebits;
958 		which2 = &tsqbits;
959 	} else if (idqbits) {
960 		pri = bsfl(idqbits);
961 		q = &bsd4_idqueues[pri];
962 		which = &bsd4_idqueuebits;
963 		which2 = &idqbits;
964 	} else {
965 		return NULL;
966 	}
967 	lp = TAILQ_FIRST(q);
968 	KASSERT(lp, ("chooseproc: no lwp on busy queue"));
969 
970 #ifdef SMP
971 	while ((lp->lwp_cpumask & cpumask) == 0) {
972 		lp = TAILQ_NEXT(lp, lwp_procq);
973 		if (lp == NULL) {
974 			*which2 &= ~(1 << pri);
975 			goto again;
976 		}
977 	}
978 #endif
979 
980 	/*
981 	 * If the passed lwp <chklp> is reasonably close to the selected
982 	 * lwp <lp>, return NULL (indicating that <chklp> should be kept).
983 	 *
984 	 * Note that we must error on the side of <chklp> to avoid bouncing
985 	 * between threads in the acquire code.
986 	 */
987 	if (chklp) {
988 		if (chklp->lwp_priority < lp->lwp_priority + PPQ)
989 			return(NULL);
990 	}
991 
992 #ifdef SMP
993 	/*
994 	 * If the chosen lwp does not reside on this cpu spend a few
995 	 * cycles looking for a better candidate at the same priority level.
996 	 * This is a fallback check, setrunqueue() tries to wakeup the
997 	 * correct cpu and is our front-line affinity.
998 	 */
999 	if (lp->lwp_thread->td_gd != mycpu &&
1000 	    (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL
1001 	) {
1002 		if (chklp->lwp_thread->td_gd == mycpu) {
1003 			++choose_affinity;
1004 			lp = chklp;
1005 		}
1006 	}
1007 #endif
1008 
1009 	TAILQ_REMOVE(q, lp, lwp_procq);
1010 	--bsd4_runqcount;
1011 	if (TAILQ_EMPTY(q))
1012 		*which &= ~(1 << pri);
1013 	KASSERT((lp->lwp_flag & LWP_ONRUNQ) != 0, ("not on runq6!"));
1014 	lp->lwp_flag &= ~LWP_ONRUNQ;
1015 	return lp;
1016 }
1017 
1018 #ifdef SMP
1019 
1020 static
1021 void
1022 need_user_resched_remote(void *dummy)
1023 {
1024 	globaldata_t gd = mycpu;
1025 	bsd4_pcpu_t  dd = &bsd4_pcpu[gd->gd_cpuid];
1026 
1027 	need_user_resched();
1028 	lwkt_schedule(&dd->helper_thread);
1029 }
1030 
1031 #endif
1032 
1033 /*
1034  * bsd4_remrunqueue_locked() removes a given process from the run queue
1035  * that it is on, clearing the queue busy bit if it becomes empty.
1036  *
1037  * Note that user process scheduler is different from the LWKT schedule.
1038  * The user process scheduler only manages user processes but it uses LWKT
1039  * underneath, and a user process operating in the kernel will often be
1040  * 'released' from our management.
1041  *
1042  * MPSAFE - bsd4_spin must be held exclusively on call
1043  */
1044 static void
1045 bsd4_remrunqueue_locked(struct lwp *lp)
1046 {
1047 	struct rq *q;
1048 	u_int32_t *which;
1049 	u_int8_t pri;
1050 
1051 	KKASSERT(lp->lwp_flag & LWP_ONRUNQ);
1052 	lp->lwp_flag &= ~LWP_ONRUNQ;
1053 	--bsd4_runqcount;
1054 	KKASSERT(bsd4_runqcount >= 0);
1055 
1056 	pri = lp->lwp_rqindex;
1057 	switch(lp->lwp_rqtype) {
1058 	case RTP_PRIO_NORMAL:
1059 		q = &bsd4_queues[pri];
1060 		which = &bsd4_queuebits;
1061 		break;
1062 	case RTP_PRIO_REALTIME:
1063 	case RTP_PRIO_FIFO:
1064 		q = &bsd4_rtqueues[pri];
1065 		which = &bsd4_rtqueuebits;
1066 		break;
1067 	case RTP_PRIO_IDLE:
1068 		q = &bsd4_idqueues[pri];
1069 		which = &bsd4_idqueuebits;
1070 		break;
1071 	default:
1072 		panic("remrunqueue: invalid rtprio type");
1073 		/* NOT REACHED */
1074 	}
1075 	TAILQ_REMOVE(q, lp, lwp_procq);
1076 	if (TAILQ_EMPTY(q)) {
1077 		KASSERT((*which & (1 << pri)) != 0,
1078 			("remrunqueue: remove from empty queue"));
1079 		*which &= ~(1 << pri);
1080 	}
1081 }
1082 
1083 /*
1084  * bsd4_setrunqueue_locked()
1085  *
1086  * Add a process whos rqtype and rqindex had previously been calculated
1087  * onto the appropriate run queue.   Determine if the addition requires
1088  * a reschedule on a cpu and return the cpuid or -1.
1089  *
1090  * NOTE: Lower priorities are better priorities.
1091  *
1092  * MPSAFE - bsd4_spin must be held exclusively on call
1093  */
1094 static void
1095 bsd4_setrunqueue_locked(struct lwp *lp)
1096 {
1097 	struct rq *q;
1098 	u_int32_t *which;
1099 	int pri;
1100 
1101 	KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
1102 	lp->lwp_flag |= LWP_ONRUNQ;
1103 	++bsd4_runqcount;
1104 
1105 	pri = lp->lwp_rqindex;
1106 
1107 	switch(lp->lwp_rqtype) {
1108 	case RTP_PRIO_NORMAL:
1109 		q = &bsd4_queues[pri];
1110 		which = &bsd4_queuebits;
1111 		break;
1112 	case RTP_PRIO_REALTIME:
1113 	case RTP_PRIO_FIFO:
1114 		q = &bsd4_rtqueues[pri];
1115 		which = &bsd4_rtqueuebits;
1116 		break;
1117 	case RTP_PRIO_IDLE:
1118 		q = &bsd4_idqueues[pri];
1119 		which = &bsd4_idqueuebits;
1120 		break;
1121 	default:
1122 		panic("remrunqueue: invalid rtprio type");
1123 		/* NOT REACHED */
1124 	}
1125 
1126 	/*
1127 	 * Add to the correct queue and set the appropriate bit.  If no
1128 	 * lower priority (i.e. better) processes are in the queue then
1129 	 * we want a reschedule, calculate the best cpu for the job.
1130 	 *
1131 	 * Always run reschedules on the LWPs original cpu.
1132 	 */
1133 	TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1134 	*which |= 1 << pri;
1135 }
1136 
1137 #ifdef SMP
1138 
1139 /*
1140  * For SMP systems a user scheduler helper thread is created for each
1141  * cpu and is used to allow one cpu to wakeup another for the purposes of
1142  * scheduling userland threads from setrunqueue().
1143  *
1144  * UP systems do not need the helper since there is only one cpu.
1145  *
1146  * We can't use the idle thread for this because we might block.
1147  * Additionally, doing things this way allows us to HLT idle cpus
1148  * on MP systems.
1149  *
1150  * MPSAFE
1151  */
1152 static void
1153 sched_thread(void *dummy)
1154 {
1155     globaldata_t gd;
1156     bsd4_pcpu_t  dd;
1157     struct lwp *nlp;
1158     cpumask_t mask;
1159     int cpuid;
1160 #ifdef SMP
1161     cpumask_t tmpmask;
1162     int tmpid;
1163 #endif
1164 
1165     gd = mycpu;
1166     cpuid = gd->gd_cpuid;	/* doesn't change */
1167     mask = gd->gd_cpumask;	/* doesn't change */
1168     dd = &bsd4_pcpu[cpuid];
1169 
1170     /*
1171      * Since we are woken up only when no user processes are scheduled
1172      * on a cpu, we can run at an ultra low priority.
1173      */
1174     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
1175 
1176     for (;;) {
1177 	/*
1178 	 * We use the LWKT deschedule-interlock trick to avoid racing
1179 	 * bsd4_rdyprocmask.  This means we cannot block through to the
1180 	 * manual lwkt_switch() call we make below.
1181 	 */
1182 	crit_enter_gd(gd);
1183 	lwkt_deschedule_self(gd->gd_curthread);
1184 	spin_lock(&bsd4_spin);
1185 	atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1186 
1187 	clear_user_resched();	/* This satisfied the reschedule request */
1188 	dd->rrcount = 0;	/* Reset the round-robin counter */
1189 
1190 	if ((bsd4_curprocmask & mask) == 0) {
1191 		/*
1192 		 * No thread is currently scheduled.
1193 		 */
1194 		KKASSERT(dd->uschedcp == NULL);
1195 		if ((nlp = chooseproc_locked(NULL)) != NULL) {
1196 			atomic_set_cpumask(&bsd4_curprocmask, mask);
1197 			dd->upri = nlp->lwp_priority;
1198 			dd->uschedcp = nlp;
1199 			spin_unlock(&bsd4_spin);
1200 			lwkt_acquire(nlp->lwp_thread);
1201 			lwkt_schedule(nlp->lwp_thread);
1202 		} else {
1203 			spin_unlock(&bsd4_spin);
1204 		}
1205 	} else if (bsd4_runqcount) {
1206 		if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) {
1207 			dd->upri = nlp->lwp_priority;
1208 			dd->uschedcp = nlp;
1209 			spin_unlock(&bsd4_spin);
1210 			lwkt_acquire(nlp->lwp_thread);
1211 			lwkt_schedule(nlp->lwp_thread);
1212 		} else {
1213 			/*
1214 			 * CHAINING CONDITION TRAIN
1215 			 *
1216 			 * We could not deal with the scheduler wakeup
1217 			 * request on this cpu, locate a ready scheduler
1218 			 * with no current lp assignment and chain to it.
1219 			 *
1220 			 * This ensures that a wakeup race which fails due
1221 			 * to priority test does not leave other unscheduled
1222 			 * cpus idle when the runqueue is not empty.
1223 			 */
1224 			tmpmask = ~bsd4_curprocmask & bsd4_rdyprocmask &
1225 				  smp_active_mask;
1226 			if (tmpmask) {
1227 				tmpid = BSFCPUMASK(tmpmask);
1228 				gd = globaldata_find(cpuid);
1229 				dd = &bsd4_pcpu[cpuid];
1230 				atomic_clear_cpumask(&bsd4_rdyprocmask,
1231 						     CPUMASK(tmpid));
1232 				spin_unlock(&bsd4_spin);
1233 				lwkt_schedule(&dd->helper_thread);
1234 			} else {
1235 				spin_unlock(&bsd4_spin);
1236 			}
1237 		}
1238 	} else {
1239 		/*
1240 		 * The runq is empty.
1241 		 */
1242 		spin_unlock(&bsd4_spin);
1243 	}
1244 	crit_exit_gd(gd);
1245 	lwkt_switch();
1246     }
1247 }
1248 
1249 /*
1250  * Setup our scheduler helpers.  Note that curprocmask bit 0 has already
1251  * been cleared by rqinit() and we should not mess with it further.
1252  */
1253 static void
1254 sched_thread_cpu_init(void)
1255 {
1256     int i;
1257 
1258     if (bootverbose)
1259 	kprintf("start scheduler helpers on cpus:");
1260 
1261     for (i = 0; i < ncpus; ++i) {
1262 	bsd4_pcpu_t dd = &bsd4_pcpu[i];
1263 	cpumask_t mask = CPUMASK(i);
1264 
1265 	if ((mask & smp_active_mask) == 0)
1266 	    continue;
1267 
1268 	if (bootverbose)
1269 	    kprintf(" %d", i);
1270 
1271 	lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread,
1272 		    TDF_STOPREQ, i, "usched %d", i);
1273 
1274 	/*
1275 	 * Allow user scheduling on the target cpu.  cpu #0 has already
1276 	 * been enabled in rqinit().
1277 	 */
1278 	if (i)
1279 	    atomic_clear_cpumask(&bsd4_curprocmask, mask);
1280 	atomic_set_cpumask(&bsd4_rdyprocmask, mask);
1281 	dd->upri = PRIBASE_NULL;
1282     }
1283     if (bootverbose)
1284 	kprintf("\n");
1285 }
1286 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
1287 	sched_thread_cpu_init, NULL)
1288 
1289 #endif
1290 
1291