1 /* 2 * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $DragonFly: src/sys/kern/usched_bsd4.c,v 1.26 2008/11/01 23:31:19 dillon Exp $ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/kernel.h> 32 #include <sys/lock.h> 33 #include <sys/queue.h> 34 #include <sys/proc.h> 35 #include <sys/rtprio.h> 36 #include <sys/uio.h> 37 #include <sys/sysctl.h> 38 #include <sys/resourcevar.h> 39 #include <sys/spinlock.h> 40 #include <machine/cpu.h> 41 #include <machine/smp.h> 42 43 #include <sys/thread2.h> 44 #include <sys/spinlock2.h> 45 #include <sys/mplock2.h> 46 47 /* 48 * Priorities. Note that with 32 run queues per scheduler each queue 49 * represents four priority levels. 50 */ 51 52 #define MAXPRI 128 53 #define PRIMASK (MAXPRI - 1) 54 #define PRIBASE_REALTIME 0 55 #define PRIBASE_NORMAL MAXPRI 56 #define PRIBASE_IDLE (MAXPRI * 2) 57 #define PRIBASE_THREAD (MAXPRI * 3) 58 #define PRIBASE_NULL (MAXPRI * 4) 59 60 #define NQS 32 /* 32 run queues. */ 61 #define PPQ (MAXPRI / NQS) /* priorities per queue */ 62 #define PPQMASK (PPQ - 1) 63 64 /* 65 * NICEPPQ - number of nice units per priority queue 66 * ESTCPURAMP - number of scheduler ticks for estcpu to switch queues 67 * 68 * ESTCPUPPQ - number of estcpu units per priority queue 69 * ESTCPUMAX - number of estcpu units 70 * ESTCPUINCR - amount we have to increment p_estcpu per scheduling tick at 71 * 100% cpu. 72 */ 73 #define NICEPPQ 2 74 #define ESTCPURAMP 4 75 #define ESTCPUPPQ 512 76 #define ESTCPUMAX (ESTCPUPPQ * NQS) 77 #define ESTCPUINCR (ESTCPUPPQ / ESTCPURAMP) 78 #define PRIO_RANGE (PRIO_MAX - PRIO_MIN + 1) 79 80 #define ESTCPULIM(v) min((v), ESTCPUMAX) 81 82 TAILQ_HEAD(rq, lwp); 83 84 #define lwp_priority lwp_usdata.bsd4.priority 85 #define lwp_rqindex lwp_usdata.bsd4.rqindex 86 #define lwp_origcpu lwp_usdata.bsd4.origcpu 87 #define lwp_estcpu lwp_usdata.bsd4.estcpu 88 #define lwp_rqtype lwp_usdata.bsd4.rqtype 89 90 static void bsd4_acquire_curproc(struct lwp *lp); 91 static void bsd4_release_curproc(struct lwp *lp); 92 static void bsd4_select_curproc(globaldata_t gd); 93 static void bsd4_setrunqueue(struct lwp *lp); 94 static void bsd4_schedulerclock(struct lwp *lp, sysclock_t period, 95 sysclock_t cpstamp); 96 static void bsd4_recalculate_estcpu(struct lwp *lp); 97 static void bsd4_resetpriority(struct lwp *lp); 98 static void bsd4_forking(struct lwp *plp, struct lwp *lp); 99 static void bsd4_exiting(struct lwp *plp, struct lwp *lp); 100 static void bsd4_yield(struct lwp *lp); 101 102 #ifdef SMP 103 static void need_user_resched_remote(void *dummy); 104 #endif 105 static struct lwp *chooseproc_locked(struct lwp *chklp); 106 static void bsd4_remrunqueue_locked(struct lwp *lp); 107 static void bsd4_setrunqueue_locked(struct lwp *lp); 108 109 struct usched usched_bsd4 = { 110 { NULL }, 111 "bsd4", "Original DragonFly Scheduler", 112 NULL, /* default registration */ 113 NULL, /* default deregistration */ 114 bsd4_acquire_curproc, 115 bsd4_release_curproc, 116 bsd4_setrunqueue, 117 bsd4_schedulerclock, 118 bsd4_recalculate_estcpu, 119 bsd4_resetpriority, 120 bsd4_forking, 121 bsd4_exiting, 122 NULL, /* setcpumask not supported */ 123 bsd4_yield 124 }; 125 126 struct usched_bsd4_pcpu { 127 struct thread helper_thread; 128 short rrcount; 129 short upri; 130 struct lwp *uschedcp; 131 }; 132 133 typedef struct usched_bsd4_pcpu *bsd4_pcpu_t; 134 135 /* 136 * We have NQS (32) run queues per scheduling class. For the normal 137 * class, there are 128 priorities scaled onto these 32 queues. New 138 * processes are added to the last entry in each queue, and processes 139 * are selected for running by taking them from the head and maintaining 140 * a simple FIFO arrangement. Realtime and Idle priority processes have 141 * and explicit 0-31 priority which maps directly onto their class queue 142 * index. When a queue has something in it, the corresponding bit is 143 * set in the queuebits variable, allowing a single read to determine 144 * the state of all 32 queues and then a ffs() to find the first busy 145 * queue. 146 */ 147 static struct rq bsd4_queues[NQS]; 148 static struct rq bsd4_rtqueues[NQS]; 149 static struct rq bsd4_idqueues[NQS]; 150 static u_int32_t bsd4_queuebits; 151 static u_int32_t bsd4_rtqueuebits; 152 static u_int32_t bsd4_idqueuebits; 153 static cpumask_t bsd4_curprocmask = -1; /* currently running a user process */ 154 static cpumask_t bsd4_rdyprocmask; /* ready to accept a user process */ 155 static int bsd4_runqcount; 156 #ifdef SMP 157 static volatile int bsd4_scancpu; 158 #endif 159 static struct spinlock bsd4_spin; 160 static struct usched_bsd4_pcpu bsd4_pcpu[MAXCPU]; 161 162 SYSCTL_INT(_debug, OID_AUTO, bsd4_runqcount, CTLFLAG_RD, &bsd4_runqcount, 0, ""); 163 #ifdef INVARIANTS 164 static int usched_nonoptimal; 165 SYSCTL_INT(_debug, OID_AUTO, usched_nonoptimal, CTLFLAG_RW, 166 &usched_nonoptimal, 0, "acquire_curproc() was not optimal"); 167 static int usched_optimal; 168 SYSCTL_INT(_debug, OID_AUTO, usched_optimal, CTLFLAG_RW, 169 &usched_optimal, 0, "acquire_curproc() was optimal"); 170 #endif 171 static int usched_debug = -1; 172 SYSCTL_INT(_debug, OID_AUTO, scdebug, CTLFLAG_RW, &usched_debug, 0, ""); 173 #ifdef SMP 174 static int remote_resched_nonaffinity; 175 static int remote_resched_affinity; 176 static int choose_affinity; 177 SYSCTL_INT(_debug, OID_AUTO, remote_resched_nonaffinity, CTLFLAG_RD, 178 &remote_resched_nonaffinity, 0, "Number of remote rescheds"); 179 SYSCTL_INT(_debug, OID_AUTO, remote_resched_affinity, CTLFLAG_RD, 180 &remote_resched_affinity, 0, "Number of remote rescheds"); 181 SYSCTL_INT(_debug, OID_AUTO, choose_affinity, CTLFLAG_RD, 182 &choose_affinity, 0, "chooseproc() was smart"); 183 #endif 184 185 static int usched_bsd4_rrinterval = (ESTCPUFREQ + 9) / 10; 186 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_rrinterval, CTLFLAG_RW, 187 &usched_bsd4_rrinterval, 0, ""); 188 static int usched_bsd4_decay = ESTCPUINCR / 2; 189 SYSCTL_INT(_kern, OID_AUTO, usched_bsd4_decay, CTLFLAG_RW, 190 &usched_bsd4_decay, 0, ""); 191 192 /* 193 * Initialize the run queues at boot time. 194 */ 195 static void 196 rqinit(void *dummy) 197 { 198 int i; 199 200 spin_init(&bsd4_spin); 201 for (i = 0; i < NQS; i++) { 202 TAILQ_INIT(&bsd4_queues[i]); 203 TAILQ_INIT(&bsd4_rtqueues[i]); 204 TAILQ_INIT(&bsd4_idqueues[i]); 205 } 206 atomic_clear_int(&bsd4_curprocmask, 1); 207 } 208 SYSINIT(runqueue, SI_BOOT2_USCHED, SI_ORDER_FIRST, rqinit, NULL) 209 210 /* 211 * BSD4_ACQUIRE_CURPROC 212 * 213 * This function is called when the kernel intends to return to userland. 214 * It is responsible for making the thread the current designated userland 215 * thread for this cpu, blocking if necessary. 216 * 217 * The kernel has already depressed our LWKT priority so we must not switch 218 * until we have either assigned or disposed of the thread. 219 * 220 * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE 221 * TO ANOTHER CPU! Because most of the kernel assumes that no migration will 222 * occur, this function is called only under very controlled circumstances. 223 * 224 * MPSAFE 225 */ 226 static void 227 bsd4_acquire_curproc(struct lwp *lp) 228 { 229 globaldata_t gd; 230 bsd4_pcpu_t dd; 231 struct lwp *olp; 232 233 crit_enter(); 234 bsd4_recalculate_estcpu(lp); 235 236 /* 237 * If a reschedule was requested give another thread the 238 * driver's seat. 239 */ 240 if (user_resched_wanted()) { 241 clear_user_resched(); 242 bsd4_release_curproc(lp); 243 } 244 245 /* 246 * Loop until we are the current user thread 247 */ 248 do { 249 /* 250 * Reload after a switch or setrunqueue/switch possibly 251 * moved us to another cpu. 252 */ 253 clear_lwkt_resched(); 254 gd = mycpu; 255 dd = &bsd4_pcpu[gd->gd_cpuid]; 256 257 /* 258 * Become the currently scheduled user thread for this cpu 259 * if we can do so trivially. 260 * 261 * We can steal another thread's current thread designation 262 * on this cpu since if we are running that other thread 263 * must not be, so we can safely deschedule it. 264 */ 265 if (dd->uschedcp == lp) { 266 dd->upri = lp->lwp_priority; 267 } else if (dd->uschedcp == NULL) { 268 atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask); 269 dd->uschedcp = lp; 270 dd->upri = lp->lwp_priority; 271 } else if (dd->upri > lp->lwp_priority) { 272 olp = dd->uschedcp; 273 dd->uschedcp = lp; 274 dd->upri = lp->lwp_priority; 275 lwkt_deschedule(olp->lwp_thread); 276 bsd4_setrunqueue(olp); 277 } else { 278 lwkt_deschedule(lp->lwp_thread); 279 bsd4_setrunqueue(lp); 280 lwkt_switch(); 281 } 282 283 /* 284 * Other threads at our current user priority have already 285 * put in their bids, but we must run any kernel threads 286 * at higher priorities, and we could lose our bid to 287 * another thread trying to return to user mode in the 288 * process. 289 * 290 * If we lose our bid we will be descheduled and put on 291 * the run queue. When we are reactivated we will have 292 * another chance. 293 */ 294 lwkt_switch(); 295 } while (dd->uschedcp != lp); 296 297 crit_exit(); 298 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0); 299 } 300 301 /* 302 * BSD4_RELEASE_CURPROC 303 * 304 * This routine detaches the current thread from the userland scheduler, 305 * usually because the thread needs to run or block in the kernel (at 306 * kernel priority) for a while. 307 * 308 * This routine is also responsible for selecting a new thread to 309 * make the current thread. 310 * 311 * NOTE: This implementation differs from the dummy example in that 312 * bsd4_select_curproc() is able to select the current process, whereas 313 * dummy_select_curproc() is not able to select the current process. 314 * This means we have to NULL out uschedcp. 315 * 316 * Additionally, note that we may already be on a run queue if releasing 317 * via the lwkt_switch() in bsd4_setrunqueue(). 318 * 319 * WARNING! The MP lock may be in an unsynchronized state due to the 320 * way get_mplock() works and the fact that this function may be called 321 * from a passive release during a lwkt_switch(). try_mplock() will deal 322 * with this for us but you should be aware that td_mpcount may not be 323 * useable. 324 * 325 * MPSAFE 326 */ 327 static void 328 bsd4_release_curproc(struct lwp *lp) 329 { 330 globaldata_t gd = mycpu; 331 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid]; 332 333 if (dd->uschedcp == lp) { 334 crit_enter(); 335 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0); 336 dd->uschedcp = NULL; /* don't let lp be selected */ 337 dd->upri = PRIBASE_NULL; 338 atomic_clear_int(&bsd4_curprocmask, gd->gd_cpumask); 339 bsd4_select_curproc(gd); 340 crit_exit(); 341 } 342 } 343 344 /* 345 * BSD4_SELECT_CURPROC 346 * 347 * Select a new current process for this cpu and clear any pending user 348 * reschedule request. The cpu currently has no current process. 349 * 350 * This routine is also responsible for equal-priority round-robining, 351 * typically triggered from bsd4_schedulerclock(). In our dummy example 352 * all the 'user' threads are LWKT scheduled all at once and we just 353 * call lwkt_switch(). 354 * 355 * The calling process is not on the queue and cannot be selected. 356 * 357 * MPSAFE 358 */ 359 static 360 void 361 bsd4_select_curproc(globaldata_t gd) 362 { 363 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid]; 364 struct lwp *nlp; 365 int cpuid = gd->gd_cpuid; 366 367 crit_enter_gd(gd); 368 369 spin_lock(&bsd4_spin); 370 if ((nlp = chooseproc_locked(dd->uschedcp)) != NULL) { 371 atomic_set_int(&bsd4_curprocmask, 1 << cpuid); 372 dd->upri = nlp->lwp_priority; 373 dd->uschedcp = nlp; 374 spin_unlock(&bsd4_spin); 375 #ifdef SMP 376 lwkt_acquire(nlp->lwp_thread); 377 #endif 378 lwkt_schedule(nlp->lwp_thread); 379 } else if (bsd4_runqcount && (bsd4_rdyprocmask & (1 << cpuid))) { 380 atomic_clear_int(&bsd4_rdyprocmask, 1 << cpuid); 381 spin_unlock(&bsd4_spin); 382 lwkt_schedule(&dd->helper_thread); 383 } else { 384 spin_unlock(&bsd4_spin); 385 } 386 crit_exit_gd(gd); 387 } 388 389 /* 390 * BSD4_SETRUNQUEUE 391 * 392 * Place the specified lwp on the user scheduler's run queue. This routine 393 * must be called with the thread descheduled. The lwp must be runnable. 394 * 395 * The thread may be the current thread as a special case. 396 * 397 * MPSAFE 398 */ 399 static void 400 bsd4_setrunqueue(struct lwp *lp) 401 { 402 globaldata_t gd; 403 bsd4_pcpu_t dd; 404 #ifdef SMP 405 int cpuid; 406 cpumask_t mask; 407 cpumask_t tmpmask; 408 #endif 409 410 /* 411 * First validate the process state relative to the current cpu. 412 * We don't need the spinlock for this, just a critical section. 413 * We are in control of the process. 414 */ 415 crit_enter(); 416 KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN")); 417 KASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0, 418 ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid, 419 lp->lwp_tid, lp->lwp_proc->p_flag, lp->lwp_flag)); 420 KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0); 421 422 /* 423 * Note: gd and dd are relative to the target thread's last cpu, 424 * NOT our current cpu. 425 */ 426 gd = lp->lwp_thread->td_gd; 427 dd = &bsd4_pcpu[gd->gd_cpuid]; 428 429 /* 430 * This process is not supposed to be scheduled anywhere or assigned 431 * as the current process anywhere. Assert the condition. 432 */ 433 KKASSERT(dd->uschedcp != lp); 434 435 #ifndef SMP 436 /* 437 * If we are not SMP we do not have a scheduler helper to kick 438 * and must directly activate the process if none are scheduled. 439 * 440 * This is really only an issue when bootstrapping init since 441 * the caller in all other cases will be a user process, and 442 * even if released (dd->uschedcp == NULL), that process will 443 * kickstart the scheduler when it returns to user mode from 444 * the kernel. 445 */ 446 if (dd->uschedcp == NULL) { 447 atomic_set_int(&bsd4_curprocmask, gd->gd_cpumask); 448 dd->uschedcp = lp; 449 dd->upri = lp->lwp_priority; 450 lwkt_schedule(lp->lwp_thread); 451 crit_exit(); 452 return; 453 } 454 #endif 455 456 #ifdef SMP 457 /* 458 * XXX fixme. Could be part of a remrunqueue/setrunqueue 459 * operation when the priority is recalculated, so TDF_MIGRATING 460 * may already be set. 461 */ 462 if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0) 463 lwkt_giveaway(lp->lwp_thread); 464 #endif 465 466 /* 467 * We lose control of lp the moment we release the spinlock after 468 * having placed lp on the queue. i.e. another cpu could pick it 469 * up and it could exit, or its priority could be further adjusted, 470 * or something like that. 471 */ 472 spin_lock(&bsd4_spin); 473 bsd4_setrunqueue_locked(lp); 474 475 #ifdef SMP 476 /* 477 * Kick the scheduler helper on one of the other cpu's 478 * and request a reschedule if appropriate. 479 */ 480 cpuid = (bsd4_scancpu & 0xFFFF) % ncpus; 481 ++bsd4_scancpu; 482 mask = ~bsd4_curprocmask & bsd4_rdyprocmask & 483 lp->lwp_cpumask & smp_active_mask; 484 spin_unlock(&bsd4_spin); 485 486 while (mask) { 487 tmpmask = ~((1 << cpuid) - 1); 488 if (mask & tmpmask) 489 cpuid = bsfl(mask & tmpmask); 490 else 491 cpuid = bsfl(mask); 492 gd = globaldata_find(cpuid); 493 dd = &bsd4_pcpu[cpuid]; 494 495 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) { 496 if (gd == mycpu) 497 need_user_resched_remote(NULL); 498 else 499 lwkt_send_ipiq(gd, need_user_resched_remote, NULL); 500 break; 501 } 502 mask &= ~(1 << cpuid); 503 } 504 #else 505 /* 506 * Request a reschedule if appropriate. 507 */ 508 spin_unlock(&bsd4_spin); 509 if ((dd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK)) { 510 need_user_resched(); 511 } 512 #endif 513 crit_exit(); 514 } 515 516 /* 517 * This routine is called from a systimer IPI. It MUST be MP-safe and 518 * the BGL IS NOT HELD ON ENTRY. This routine is called at ESTCPUFREQ on 519 * each cpu. 520 * 521 * MPSAFE 522 */ 523 static 524 void 525 bsd4_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp) 526 { 527 globaldata_t gd = mycpu; 528 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid]; 529 530 /* 531 * Do we need to round-robin? We round-robin 10 times a second. 532 * This should only occur for cpu-bound batch processes. 533 */ 534 if (++dd->rrcount >= usched_bsd4_rrinterval) { 535 dd->rrcount = 0; 536 need_user_resched(); 537 } 538 539 /* 540 * As the process accumulates cpu time p_estcpu is bumped and may 541 * push the process into another scheduling queue. It typically 542 * takes 4 ticks to bump the queue. 543 */ 544 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR); 545 546 /* 547 * Reducing p_origcpu over time causes more of our estcpu to be 548 * returned to the parent when we exit. This is a small tweak 549 * for the batch detection heuristic. 550 */ 551 if (lp->lwp_origcpu) 552 --lp->lwp_origcpu; 553 554 /* 555 * Spinlocks also hold a critical section so there should not be 556 * any active. 557 */ 558 KKASSERT(gd->gd_spinlocks_wr == 0); 559 560 bsd4_resetpriority(lp); 561 #if 0 562 /* 563 * if we can't call bsd4_resetpriority for some reason we must call 564 * need user_resched(). 565 */ 566 need_user_resched(); 567 #endif 568 } 569 570 /* 571 * Called from acquire and from kern_synch's one-second timer (one of the 572 * callout helper threads) with a critical section held. 573 * 574 * Decay p_estcpu based on the number of ticks we haven't been running 575 * and our p_nice. As the load increases each process observes a larger 576 * number of idle ticks (because other processes are running in them). 577 * This observation leads to a larger correction which tends to make the 578 * system more 'batchy'. 579 * 580 * Note that no recalculation occurs for a process which sleeps and wakes 581 * up in the same tick. That is, a system doing thousands of context 582 * switches per second will still only do serious estcpu calculations 583 * ESTCPUFREQ times per second. 584 * 585 * MPSAFE 586 */ 587 static 588 void 589 bsd4_recalculate_estcpu(struct lwp *lp) 590 { 591 globaldata_t gd = mycpu; 592 sysclock_t cpbase; 593 int loadfac; 594 int ndecay; 595 int nticks; 596 int nleft; 597 598 /* 599 * We have to subtract periodic to get the last schedclock 600 * timeout time, otherwise we would get the upcoming timeout. 601 * Keep in mind that a process can migrate between cpus and 602 * while the scheduler clock should be very close, boundary 603 * conditions could lead to a small negative delta. 604 */ 605 cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic; 606 607 if (lp->lwp_slptime > 1) { 608 /* 609 * Too much time has passed, do a coarse correction. 610 */ 611 lp->lwp_estcpu = lp->lwp_estcpu >> 1; 612 bsd4_resetpriority(lp); 613 lp->lwp_cpbase = cpbase; 614 lp->lwp_cpticks = 0; 615 } else if (lp->lwp_cpbase != cpbase) { 616 /* 617 * Adjust estcpu if we are in a different tick. Don't waste 618 * time if we are in the same tick. 619 * 620 * First calculate the number of ticks in the measurement 621 * interval. The nticks calculation can wind up 0 due to 622 * a bug in the handling of lwp_slptime (as yet not found), 623 * so make sure we do not get a divide by 0 panic. 624 */ 625 nticks = (cpbase - lp->lwp_cpbase) / gd->gd_schedclock.periodic; 626 if (nticks <= 0) 627 nticks = 1; 628 updatepcpu(lp, lp->lwp_cpticks, nticks); 629 630 if ((nleft = nticks - lp->lwp_cpticks) < 0) 631 nleft = 0; 632 if (usched_debug == lp->lwp_proc->p_pid) { 633 kprintf("pid %d tid %d estcpu %d cpticks %d nticks %d nleft %d", 634 lp->lwp_proc->p_pid, lp->lwp_tid, lp->lwp_estcpu, 635 lp->lwp_cpticks, nticks, nleft); 636 } 637 638 /* 639 * Calculate a decay value based on ticks remaining scaled 640 * down by the instantanious load and p_nice. 641 */ 642 if ((loadfac = bsd4_runqcount) < 2) 643 loadfac = 2; 644 ndecay = nleft * usched_bsd4_decay * 2 * 645 (PRIO_MAX * 2 - lp->lwp_proc->p_nice) / (loadfac * PRIO_MAX * 2); 646 647 /* 648 * Adjust p_estcpu. Handle a border case where batch jobs 649 * can get stalled long enough to decay to zero when they 650 * shouldn't. 651 */ 652 if (lp->lwp_estcpu > ndecay * 2) 653 lp->lwp_estcpu -= ndecay; 654 else 655 lp->lwp_estcpu >>= 1; 656 657 if (usched_debug == lp->lwp_proc->p_pid) 658 kprintf(" ndecay %d estcpu %d\n", ndecay, lp->lwp_estcpu); 659 bsd4_resetpriority(lp); 660 lp->lwp_cpbase = cpbase; 661 lp->lwp_cpticks = 0; 662 } 663 } 664 665 /* 666 * Compute the priority of a process when running in user mode. 667 * Arrange to reschedule if the resulting priority is better 668 * than that of the current process. 669 * 670 * This routine may be called with any process. 671 * 672 * This routine is called by fork1() for initial setup with the process 673 * of the run queue, and also may be called normally with the process on or 674 * off the run queue. 675 * 676 * MPSAFE 677 */ 678 static void 679 bsd4_resetpriority(struct lwp *lp) 680 { 681 bsd4_pcpu_t dd; 682 int newpriority; 683 u_short newrqtype; 684 int reschedcpu; 685 686 /* 687 * Calculate the new priority and queue type 688 */ 689 crit_enter(); 690 spin_lock(&bsd4_spin); 691 692 newrqtype = lp->lwp_rtprio.type; 693 694 switch(newrqtype) { 695 case RTP_PRIO_REALTIME: 696 case RTP_PRIO_FIFO: 697 newpriority = PRIBASE_REALTIME + 698 (lp->lwp_rtprio.prio & PRIMASK); 699 break; 700 case RTP_PRIO_NORMAL: 701 newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ; 702 newpriority += lp->lwp_estcpu * PPQ / ESTCPUPPQ; 703 newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ / 704 NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ); 705 newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK); 706 break; 707 case RTP_PRIO_IDLE: 708 newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK); 709 break; 710 case RTP_PRIO_THREAD: 711 newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK); 712 break; 713 default: 714 panic("Bad RTP_PRIO %d", newrqtype); 715 /* NOT REACHED */ 716 } 717 718 /* 719 * The newpriority incorporates the queue type so do a simple masked 720 * check to determine if the process has moved to another queue. If 721 * it has, and it is currently on a run queue, then move it. 722 */ 723 if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) { 724 lp->lwp_priority = newpriority; 725 if (lp->lwp_flag & LWP_ONRUNQ) { 726 bsd4_remrunqueue_locked(lp); 727 lp->lwp_rqtype = newrqtype; 728 lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ; 729 bsd4_setrunqueue_locked(lp); 730 reschedcpu = lp->lwp_thread->td_gd->gd_cpuid; 731 } else { 732 lp->lwp_rqtype = newrqtype; 733 lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ; 734 reschedcpu = -1; 735 } 736 } else { 737 lp->lwp_priority = newpriority; 738 reschedcpu = -1; 739 } 740 spin_unlock(&bsd4_spin); 741 742 /* 743 * Determine if we need to reschedule the target cpu. This only 744 * occurs if the LWP is already on a scheduler queue, which means 745 * that idle cpu notification has already occured. At most we 746 * need only issue a need_user_resched() on the appropriate cpu. 747 * 748 * The LWP may be owned by a CPU different from the current one, 749 * in which case dd->uschedcp may be modified without an MP lock 750 * or a spinlock held. The worst that happens is that the code 751 * below causes a spurious need_user_resched() on the target CPU 752 * and dd->pri to be wrong for a short period of time, both of 753 * which are harmless. 754 */ 755 if (reschedcpu >= 0) { 756 dd = &bsd4_pcpu[reschedcpu]; 757 if ((dd->upri & ~PRIMASK) > (lp->lwp_priority & ~PRIMASK)) { 758 dd->upri = lp->lwp_priority; 759 #ifdef SMP 760 if (reschedcpu == mycpu->gd_cpuid) { 761 need_user_resched(); 762 } else { 763 lwkt_send_ipiq(lp->lwp_thread->td_gd, 764 need_user_resched_remote, NULL); 765 } 766 #else 767 need_user_resched(); 768 #endif 769 } 770 } 771 crit_exit(); 772 } 773 774 /* 775 * MPSAFE 776 */ 777 static 778 void 779 bsd4_yield(struct lwp *lp) 780 { 781 #if 0 782 /* FUTURE (or something similar) */ 783 switch(lp->lwp_rqtype) { 784 case RTP_PRIO_NORMAL: 785 lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUINCR); 786 break; 787 default: 788 break; 789 } 790 #endif 791 need_user_resched(); 792 } 793 794 /* 795 * Called from fork1() when a new child process is being created. 796 * 797 * Give the child process an initial estcpu that is more batch then 798 * its parent and dock the parent for the fork (but do not 799 * reschedule the parent). This comprises the main part of our batch 800 * detection heuristic for both parallel forking and sequential execs. 801 * 802 * Interactive processes will decay the boosted estcpu quickly while batch 803 * processes will tend to compound it. 804 * XXX lwp should be "spawning" instead of "forking" 805 * 806 * MPSAFE 807 */ 808 static void 809 bsd4_forking(struct lwp *plp, struct lwp *lp) 810 { 811 lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ); 812 lp->lwp_origcpu = lp->lwp_estcpu; 813 plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ); 814 } 815 816 /* 817 * Called when the parent reaps a child. Propogate cpu use by the child 818 * back to the parent. 819 * 820 * MPSAFE 821 */ 822 static void 823 bsd4_exiting(struct lwp *plp, struct lwp *lp) 824 { 825 int delta; 826 827 if (plp->lwp_proc->p_pid != 1) { 828 delta = lp->lwp_estcpu - lp->lwp_origcpu; 829 if (delta > 0) 830 plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + delta); 831 } 832 } 833 834 835 /* 836 * chooseproc() is called when a cpu needs a user process to LWKT schedule, 837 * it selects a user process and returns it. If chklp is non-NULL and chklp 838 * has a better or equal priority then the process that would otherwise be 839 * chosen, NULL is returned. 840 * 841 * Until we fix the RUNQ code the chklp test has to be strict or we may 842 * bounce between processes trying to acquire the current process designation. 843 * 844 * MPSAFE - must be called with bsd4_spin exclusive held. The spinlock is 845 * left intact through the entire routine. 846 */ 847 static 848 struct lwp * 849 chooseproc_locked(struct lwp *chklp) 850 { 851 struct lwp *lp; 852 struct rq *q; 853 u_int32_t *which, *which2; 854 u_int32_t pri; 855 u_int32_t rtqbits; 856 u_int32_t tsqbits; 857 u_int32_t idqbits; 858 cpumask_t cpumask; 859 860 rtqbits = bsd4_rtqueuebits; 861 tsqbits = bsd4_queuebits; 862 idqbits = bsd4_idqueuebits; 863 cpumask = mycpu->gd_cpumask; 864 865 #ifdef SMP 866 again: 867 #endif 868 if (rtqbits) { 869 pri = bsfl(rtqbits); 870 q = &bsd4_rtqueues[pri]; 871 which = &bsd4_rtqueuebits; 872 which2 = &rtqbits; 873 } else if (tsqbits) { 874 pri = bsfl(tsqbits); 875 q = &bsd4_queues[pri]; 876 which = &bsd4_queuebits; 877 which2 = &tsqbits; 878 } else if (idqbits) { 879 pri = bsfl(idqbits); 880 q = &bsd4_idqueues[pri]; 881 which = &bsd4_idqueuebits; 882 which2 = &idqbits; 883 } else { 884 return NULL; 885 } 886 lp = TAILQ_FIRST(q); 887 KASSERT(lp, ("chooseproc: no lwp on busy queue")); 888 889 #ifdef SMP 890 while ((lp->lwp_cpumask & cpumask) == 0) { 891 lp = TAILQ_NEXT(lp, lwp_procq); 892 if (lp == NULL) { 893 *which2 &= ~(1 << pri); 894 goto again; 895 } 896 } 897 #endif 898 899 /* 900 * If the passed lwp <chklp> is reasonably close to the selected 901 * lwp <lp>, return NULL (indicating that <chklp> should be kept). 902 * 903 * Note that we must error on the side of <chklp> to avoid bouncing 904 * between threads in the acquire code. 905 */ 906 if (chklp) { 907 if (chklp->lwp_priority < lp->lwp_priority + PPQ) 908 return(NULL); 909 } 910 911 #ifdef SMP 912 /* 913 * If the chosen lwp does not reside on this cpu spend a few 914 * cycles looking for a better candidate at the same priority level. 915 * This is a fallback check, setrunqueue() tries to wakeup the 916 * correct cpu and is our front-line affinity. 917 */ 918 if (lp->lwp_thread->td_gd != mycpu && 919 (chklp = TAILQ_NEXT(lp, lwp_procq)) != NULL 920 ) { 921 if (chklp->lwp_thread->td_gd == mycpu) { 922 ++choose_affinity; 923 lp = chklp; 924 } 925 } 926 #endif 927 928 TAILQ_REMOVE(q, lp, lwp_procq); 929 --bsd4_runqcount; 930 if (TAILQ_EMPTY(q)) 931 *which &= ~(1 << pri); 932 KASSERT((lp->lwp_flag & LWP_ONRUNQ) != 0, ("not on runq6!")); 933 lp->lwp_flag &= ~LWP_ONRUNQ; 934 return lp; 935 } 936 937 #ifdef SMP 938 939 /* 940 * Called via an ipi message to reschedule on another cpu. If no 941 * user thread is active on the target cpu we wake the scheduler 942 * helper thread up to help schedule one. 943 * 944 * MPSAFE 945 */ 946 static 947 void 948 need_user_resched_remote(void *dummy) 949 { 950 globaldata_t gd = mycpu; 951 bsd4_pcpu_t dd = &bsd4_pcpu[gd->gd_cpuid]; 952 953 if (dd->uschedcp == NULL && (bsd4_rdyprocmask & gd->gd_cpumask)) { 954 atomic_clear_int(&bsd4_rdyprocmask, gd->gd_cpumask); 955 lwkt_schedule(&dd->helper_thread); 956 } else { 957 need_user_resched(); 958 } 959 } 960 961 #endif 962 963 /* 964 * bsd4_remrunqueue_locked() removes a given process from the run queue 965 * that it is on, clearing the queue busy bit if it becomes empty. 966 * 967 * Note that user process scheduler is different from the LWKT schedule. 968 * The user process scheduler only manages user processes but it uses LWKT 969 * underneath, and a user process operating in the kernel will often be 970 * 'released' from our management. 971 * 972 * MPSAFE - bsd4_spin must be held exclusively on call 973 */ 974 static void 975 bsd4_remrunqueue_locked(struct lwp *lp) 976 { 977 struct rq *q; 978 u_int32_t *which; 979 u_int8_t pri; 980 981 KKASSERT(lp->lwp_flag & LWP_ONRUNQ); 982 lp->lwp_flag &= ~LWP_ONRUNQ; 983 --bsd4_runqcount; 984 KKASSERT(bsd4_runqcount >= 0); 985 986 pri = lp->lwp_rqindex; 987 switch(lp->lwp_rqtype) { 988 case RTP_PRIO_NORMAL: 989 q = &bsd4_queues[pri]; 990 which = &bsd4_queuebits; 991 break; 992 case RTP_PRIO_REALTIME: 993 case RTP_PRIO_FIFO: 994 q = &bsd4_rtqueues[pri]; 995 which = &bsd4_rtqueuebits; 996 break; 997 case RTP_PRIO_IDLE: 998 q = &bsd4_idqueues[pri]; 999 which = &bsd4_idqueuebits; 1000 break; 1001 default: 1002 panic("remrunqueue: invalid rtprio type"); 1003 /* NOT REACHED */ 1004 } 1005 TAILQ_REMOVE(q, lp, lwp_procq); 1006 if (TAILQ_EMPTY(q)) { 1007 KASSERT((*which & (1 << pri)) != 0, 1008 ("remrunqueue: remove from empty queue")); 1009 *which &= ~(1 << pri); 1010 } 1011 } 1012 1013 /* 1014 * bsd4_setrunqueue_locked() 1015 * 1016 * Add a process whos rqtype and rqindex had previously been calculated 1017 * onto the appropriate run queue. Determine if the addition requires 1018 * a reschedule on a cpu and return the cpuid or -1. 1019 * 1020 * NOTE: Lower priorities are better priorities. 1021 * 1022 * MPSAFE - bsd4_spin must be held exclusively on call 1023 */ 1024 static void 1025 bsd4_setrunqueue_locked(struct lwp *lp) 1026 { 1027 struct rq *q; 1028 u_int32_t *which; 1029 int pri; 1030 1031 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0); 1032 lp->lwp_flag |= LWP_ONRUNQ; 1033 ++bsd4_runqcount; 1034 1035 pri = lp->lwp_rqindex; 1036 1037 switch(lp->lwp_rqtype) { 1038 case RTP_PRIO_NORMAL: 1039 q = &bsd4_queues[pri]; 1040 which = &bsd4_queuebits; 1041 break; 1042 case RTP_PRIO_REALTIME: 1043 case RTP_PRIO_FIFO: 1044 q = &bsd4_rtqueues[pri]; 1045 which = &bsd4_rtqueuebits; 1046 break; 1047 case RTP_PRIO_IDLE: 1048 q = &bsd4_idqueues[pri]; 1049 which = &bsd4_idqueuebits; 1050 break; 1051 default: 1052 panic("remrunqueue: invalid rtprio type"); 1053 /* NOT REACHED */ 1054 } 1055 1056 /* 1057 * Add to the correct queue and set the appropriate bit. If no 1058 * lower priority (i.e. better) processes are in the queue then 1059 * we want a reschedule, calculate the best cpu for the job. 1060 * 1061 * Always run reschedules on the LWPs original cpu. 1062 */ 1063 TAILQ_INSERT_TAIL(q, lp, lwp_procq); 1064 *which |= 1 << pri; 1065 } 1066 1067 #ifdef SMP 1068 1069 /* 1070 * For SMP systems a user scheduler helper thread is created for each 1071 * cpu and is used to allow one cpu to wakeup another for the purposes of 1072 * scheduling userland threads from setrunqueue(). 1073 * 1074 * UP systems do not need the helper since there is only one cpu. 1075 * 1076 * We can't use the idle thread for this because we might block. 1077 * Additionally, doing things this way allows us to HLT idle cpus 1078 * on MP systems. 1079 * 1080 * MPSAFE 1081 */ 1082 static void 1083 sched_thread(void *dummy) 1084 { 1085 globaldata_t gd; 1086 bsd4_pcpu_t dd; 1087 struct lwp *nlp; 1088 cpumask_t cpumask; 1089 int cpuid; 1090 #if 0 1091 cpumask_t tmpmask; 1092 int tmpid; 1093 #endif 1094 1095 gd = mycpu; 1096 cpuid = gd->gd_cpuid; /* doesn't change */ 1097 cpumask = gd->gd_cpumask; /* doesn't change */ 1098 dd = &bsd4_pcpu[cpuid]; 1099 1100 /* 1101 * Since we are woken up only when no user processes are scheduled 1102 * on a cpu, we can run at an ultra low priority. 1103 */ 1104 lwkt_setpri_self(TDPRI_USER_SCHEDULER); 1105 1106 for (;;) { 1107 /* 1108 * We use the LWKT deschedule-interlock trick to avoid racing 1109 * bsd4_rdyprocmask. This means we cannot block through to the 1110 * manual lwkt_switch() call we make below. 1111 */ 1112 crit_enter_gd(gd); 1113 lwkt_deschedule_self(gd->gd_curthread); 1114 spin_lock(&bsd4_spin); 1115 atomic_set_int(&bsd4_rdyprocmask, cpumask); 1116 1117 clear_user_resched(); /* This satisfied the reschedule request */ 1118 dd->rrcount = 0; /* Reset the round-robin counter */ 1119 1120 if ((bsd4_curprocmask & cpumask) == 0) { 1121 /* 1122 * No thread is currently scheduled. 1123 */ 1124 KKASSERT(dd->uschedcp == NULL); 1125 if ((nlp = chooseproc_locked(NULL)) != NULL) { 1126 atomic_set_int(&bsd4_curprocmask, cpumask); 1127 dd->upri = nlp->lwp_priority; 1128 dd->uschedcp = nlp; 1129 spin_unlock(&bsd4_spin); 1130 lwkt_acquire(nlp->lwp_thread); 1131 lwkt_schedule(nlp->lwp_thread); 1132 } else { 1133 spin_unlock(&bsd4_spin); 1134 } 1135 #if 0 1136 /* 1137 * Disabled for now, this can create an infinite loop. 1138 */ 1139 } else if (bsd4_runqcount) { 1140 /* 1141 * Someone scheduled us but raced. In order to not lose 1142 * track of the fact that there may be a LWP ready to go, 1143 * forward the request to another cpu if available. 1144 * 1145 * Rotate through cpus starting with cpuid + 1. Since cpuid 1146 * is already masked out by gd_other_cpus, just use ~cpumask. 1147 */ 1148 tmpmask = bsd4_rdyprocmask & mycpu->gd_other_cpus & 1149 ~bsd4_curprocmask; 1150 if (tmpmask) { 1151 if (tmpmask & ~(cpumask - 1)) 1152 tmpid = bsfl(tmpmask & ~(cpumask - 1)); 1153 else 1154 tmpid = bsfl(tmpmask); 1155 bsd4_scancpu = tmpid; 1156 atomic_clear_int(&bsd4_rdyprocmask, 1 << tmpid); 1157 spin_unlock_wr(&bsd4_spin); 1158 lwkt_schedule(&bsd4_pcpu[tmpid].helper_thread); 1159 } else { 1160 spin_unlock_wr(&bsd4_spin); 1161 } 1162 #endif 1163 } else { 1164 /* 1165 * The runq is empty. 1166 */ 1167 spin_unlock(&bsd4_spin); 1168 } 1169 crit_exit_gd(gd); 1170 lwkt_switch(); 1171 } 1172 } 1173 1174 /* 1175 * Setup our scheduler helpers. Note that curprocmask bit 0 has already 1176 * been cleared by rqinit() and we should not mess with it further. 1177 */ 1178 static void 1179 sched_thread_cpu_init(void) 1180 { 1181 int i; 1182 1183 if (bootverbose) 1184 kprintf("start scheduler helpers on cpus:"); 1185 1186 for (i = 0; i < ncpus; ++i) { 1187 bsd4_pcpu_t dd = &bsd4_pcpu[i]; 1188 cpumask_t mask = 1 << i; 1189 1190 if ((mask & smp_active_mask) == 0) 1191 continue; 1192 1193 if (bootverbose) 1194 kprintf(" %d", i); 1195 1196 lwkt_create(sched_thread, NULL, NULL, &dd->helper_thread, 1197 TDF_STOPREQ, i, "usched %d", i); 1198 1199 /* 1200 * Allow user scheduling on the target cpu. cpu #0 has already 1201 * been enabled in rqinit(). 1202 */ 1203 if (i) 1204 atomic_clear_int(&bsd4_curprocmask, mask); 1205 atomic_set_int(&bsd4_rdyprocmask, mask); 1206 dd->upri = PRIBASE_NULL; 1207 } 1208 if (bootverbose) 1209 kprintf("\n"); 1210 } 1211 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND, 1212 sched_thread_cpu_init, NULL) 1213 1214 #endif 1215 1216