1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD: src/sys/kern/uipc_usrreq.c,v 1.54.2.10 2003/03/04 17:28:09 nectar Exp $ 35 * $DragonFly: src/sys/kern/uipc_usrreq.c,v 1.43 2008/08/15 21:39:04 nth Exp $ 36 */ 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/domain.h> 42 #include <sys/fcntl.h> 43 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */ 44 #include <sys/proc.h> 45 #include <sys/file.h> 46 #include <sys/filedesc.h> 47 #include <sys/mbuf.h> 48 #include <sys/nlookup.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/resourcevar.h> 53 #include <sys/stat.h> 54 #include <sys/mount.h> 55 #include <sys/sysctl.h> 56 #include <sys/un.h> 57 #include <sys/unpcb.h> 58 #include <sys/vnode.h> 59 #include <sys/file2.h> 60 #include <sys/spinlock2.h> 61 62 63 static MALLOC_DEFINE(M_UNPCB, "unpcb", "unpcb struct"); 64 static unp_gen_t unp_gencnt; 65 static u_int unp_count; 66 67 static struct unp_head unp_shead, unp_dhead; 68 69 /* 70 * Unix communications domain. 71 * 72 * TODO: 73 * RDM 74 * rethink name space problems 75 * need a proper out-of-band 76 * lock pushdown 77 */ 78 static struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; 79 static ino_t unp_ino; /* prototype for fake inode numbers */ 80 81 static int unp_attach (struct socket *, struct pru_attach_info *); 82 static void unp_detach (struct unpcb *); 83 static int unp_bind (struct unpcb *,struct sockaddr *, struct thread *); 84 static int unp_connect (struct socket *,struct sockaddr *, 85 struct thread *); 86 static void unp_disconnect (struct unpcb *); 87 static void unp_shutdown (struct unpcb *); 88 static void unp_drop (struct unpcb *, int); 89 static void unp_gc (void); 90 static int unp_gc_clearmarks(struct file *, void *); 91 static int unp_gc_checkmarks(struct file *, void *); 92 static int unp_gc_checkrefs(struct file *, void *); 93 static void unp_scan (struct mbuf *, void (*)(struct file *, void *), 94 void *data); 95 static void unp_mark (struct file *, void *data); 96 static void unp_discard (struct file *, void *); 97 static int unp_internalize (struct mbuf *, struct thread *); 98 static int unp_listen (struct unpcb *, struct thread *); 99 100 static int 101 uipc_abort(struct socket *so) 102 { 103 struct unpcb *unp = so->so_pcb; 104 105 if (unp == NULL) 106 return EINVAL; 107 unp_drop(unp, ECONNABORTED); 108 unp_detach(unp); 109 sofree(so); 110 return 0; 111 } 112 113 static int 114 uipc_accept(struct socket *so, struct sockaddr **nam) 115 { 116 struct unpcb *unp = so->so_pcb; 117 118 if (unp == NULL) 119 return EINVAL; 120 121 /* 122 * Pass back name of connected socket, 123 * if it was bound and we are still connected 124 * (our peer may have closed already!). 125 */ 126 if (unp->unp_conn && unp->unp_conn->unp_addr) { 127 *nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr); 128 } else { 129 *nam = dup_sockaddr((struct sockaddr *)&sun_noname); 130 } 131 return 0; 132 } 133 134 static int 135 uipc_attach(struct socket *so, int proto, struct pru_attach_info *ai) 136 { 137 struct unpcb *unp = so->so_pcb; 138 139 if (unp != NULL) 140 return EISCONN; 141 return unp_attach(so, ai); 142 } 143 144 static int 145 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 146 { 147 struct unpcb *unp = so->so_pcb; 148 149 if (unp == NULL) 150 return EINVAL; 151 return unp_bind(unp, nam, td); 152 } 153 154 static int 155 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 156 { 157 struct unpcb *unp = so->so_pcb; 158 159 if (unp == NULL) 160 return EINVAL; 161 return unp_connect(so, nam, td); 162 } 163 164 static int 165 uipc_connect2(struct socket *so1, struct socket *so2) 166 { 167 struct unpcb *unp = so1->so_pcb; 168 169 if (unp == NULL) 170 return EINVAL; 171 172 return unp_connect2(so1, so2); 173 } 174 175 /* control is EOPNOTSUPP */ 176 177 static int 178 uipc_detach(struct socket *so) 179 { 180 struct unpcb *unp = so->so_pcb; 181 182 if (unp == NULL) 183 return EINVAL; 184 185 unp_detach(unp); 186 return 0; 187 } 188 189 static int 190 uipc_disconnect(struct socket *so) 191 { 192 struct unpcb *unp = so->so_pcb; 193 194 if (unp == NULL) 195 return EINVAL; 196 unp_disconnect(unp); 197 return 0; 198 } 199 200 static int 201 uipc_listen(struct socket *so, struct thread *td) 202 { 203 struct unpcb *unp = so->so_pcb; 204 205 if (unp == NULL || unp->unp_vnode == NULL) 206 return EINVAL; 207 return unp_listen(unp, td); 208 } 209 210 static int 211 uipc_peeraddr(struct socket *so, struct sockaddr **nam) 212 { 213 struct unpcb *unp = so->so_pcb; 214 215 if (unp == NULL) 216 return EINVAL; 217 if (unp->unp_conn && unp->unp_conn->unp_addr) 218 *nam = dup_sockaddr((struct sockaddr *)unp->unp_conn->unp_addr); 219 else { 220 /* 221 * XXX: It seems that this test always fails even when 222 * connection is established. So, this else clause is 223 * added as workaround to return PF_LOCAL sockaddr. 224 */ 225 *nam = dup_sockaddr((struct sockaddr *)&sun_noname); 226 } 227 return 0; 228 } 229 230 static int 231 uipc_rcvd(struct socket *so, int flags) 232 { 233 struct unpcb *unp = so->so_pcb; 234 struct socket *so2; 235 236 if (unp == NULL) 237 return EINVAL; 238 switch (so->so_type) { 239 case SOCK_DGRAM: 240 panic("uipc_rcvd DGRAM?"); 241 /*NOTREACHED*/ 242 243 case SOCK_STREAM: 244 case SOCK_SEQPACKET: 245 if (unp->unp_conn == NULL) 246 break; 247 /* 248 * Because we are transfering mbufs directly to the 249 * peer socket we have to use SSB_STOP on the sender 250 * to prevent it from building up infinite mbufs. 251 */ 252 so2 = unp->unp_conn->unp_socket; 253 if (so->so_rcv.ssb_cc < so2->so_snd.ssb_hiwat && 254 so->so_rcv.ssb_mbcnt < so2->so_snd.ssb_mbmax 255 ) { 256 so2->so_snd.ssb_flags &= ~SSB_STOP; 257 sowwakeup(so2); 258 } 259 break; 260 261 default: 262 panic("uipc_rcvd unknown socktype"); 263 } 264 return 0; 265 } 266 267 /* pru_rcvoob is EOPNOTSUPP */ 268 269 static int 270 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 271 struct mbuf *control, struct thread *td) 272 { 273 int error = 0; 274 struct unpcb *unp = so->so_pcb; 275 struct socket *so2; 276 277 if (unp == NULL) { 278 error = EINVAL; 279 goto release; 280 } 281 if (flags & PRUS_OOB) { 282 error = EOPNOTSUPP; 283 goto release; 284 } 285 286 if (control && (error = unp_internalize(control, td))) 287 goto release; 288 289 switch (so->so_type) { 290 case SOCK_DGRAM: 291 { 292 struct sockaddr *from; 293 294 if (nam) { 295 if (unp->unp_conn) { 296 error = EISCONN; 297 break; 298 } 299 error = unp_connect(so, nam, td); 300 if (error) 301 break; 302 } else { 303 if (unp->unp_conn == NULL) { 304 error = ENOTCONN; 305 break; 306 } 307 } 308 so2 = unp->unp_conn->unp_socket; 309 if (unp->unp_addr) 310 from = (struct sockaddr *)unp->unp_addr; 311 else 312 from = &sun_noname; 313 if (ssb_appendaddr(&so2->so_rcv, from, m, control)) { 314 sorwakeup(so2); 315 m = NULL; 316 control = NULL; 317 } else { 318 error = ENOBUFS; 319 } 320 if (nam) 321 unp_disconnect(unp); 322 break; 323 } 324 325 case SOCK_STREAM: 326 case SOCK_SEQPACKET: 327 /* Connect if not connected yet. */ 328 /* 329 * Note: A better implementation would complain 330 * if not equal to the peer's address. 331 */ 332 if (!(so->so_state & SS_ISCONNECTED)) { 333 if (nam) { 334 error = unp_connect(so, nam, td); 335 if (error) 336 break; /* XXX */ 337 } else { 338 error = ENOTCONN; 339 break; 340 } 341 } 342 343 if (so->so_state & SS_CANTSENDMORE) { 344 error = EPIPE; 345 break; 346 } 347 if (unp->unp_conn == NULL) 348 panic("uipc_send connected but no connection?"); 349 so2 = unp->unp_conn->unp_socket; 350 /* 351 * Send to paired receive port, and then reduce 352 * send buffer hiwater marks to maintain backpressure. 353 * Wake up readers. 354 */ 355 if (control) { 356 if (ssb_appendcontrol(&so2->so_rcv, m, control)) { 357 control = NULL; 358 m = NULL; 359 } 360 } else if (so->so_type == SOCK_SEQPACKET) { 361 sbappendrecord(&so2->so_rcv.sb, m); 362 m = NULL; 363 } else { 364 sbappend(&so2->so_rcv.sb, m); 365 m = NULL; 366 } 367 368 /* 369 * Because we are transfering mbufs directly to the 370 * peer socket we have to use SSB_STOP on the sender 371 * to prevent it from building up infinite mbufs. 372 */ 373 if (so2->so_rcv.ssb_cc >= so->so_snd.ssb_hiwat || 374 so2->so_rcv.ssb_mbcnt >= so->so_snd.ssb_mbmax 375 ) { 376 so->so_snd.ssb_flags |= SSB_STOP; 377 } 378 sorwakeup(so2); 379 break; 380 381 default: 382 panic("uipc_send unknown socktype"); 383 } 384 385 /* 386 * SEND_EOF is equivalent to a SEND followed by a SHUTDOWN. 387 */ 388 if (flags & PRUS_EOF) { 389 socantsendmore(so); 390 unp_shutdown(unp); 391 } 392 393 if (control && error != 0) 394 unp_dispose(control); 395 396 release: 397 if (control) 398 m_freem(control); 399 if (m) 400 m_freem(m); 401 return error; 402 } 403 404 static int 405 uipc_sense(struct socket *so, struct stat *sb) 406 { 407 struct unpcb *unp = so->so_pcb; 408 409 if (unp == NULL) 410 return EINVAL; 411 sb->st_blksize = so->so_snd.ssb_hiwat; 412 sb->st_dev = NOUDEV; 413 if (unp->unp_ino == 0) /* make up a non-zero inode number */ 414 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino; 415 sb->st_ino = unp->unp_ino; 416 return (0); 417 } 418 419 static int 420 uipc_shutdown(struct socket *so) 421 { 422 struct unpcb *unp = so->so_pcb; 423 424 if (unp == NULL) 425 return EINVAL; 426 socantsendmore(so); 427 unp_shutdown(unp); 428 return 0; 429 } 430 431 static int 432 uipc_sockaddr(struct socket *so, struct sockaddr **nam) 433 { 434 struct unpcb *unp = so->so_pcb; 435 436 if (unp == NULL) 437 return EINVAL; 438 if (unp->unp_addr) 439 *nam = dup_sockaddr((struct sockaddr *)unp->unp_addr); 440 return 0; 441 } 442 443 struct pr_usrreqs uipc_usrreqs = { 444 .pru_abort = uipc_abort, 445 .pru_accept = uipc_accept, 446 .pru_attach = uipc_attach, 447 .pru_bind = uipc_bind, 448 .pru_connect = uipc_connect, 449 .pru_connect2 = uipc_connect2, 450 .pru_control = pru_control_notsupp, 451 .pru_detach = uipc_detach, 452 .pru_disconnect = uipc_disconnect, 453 .pru_listen = uipc_listen, 454 .pru_peeraddr = uipc_peeraddr, 455 .pru_rcvd = uipc_rcvd, 456 .pru_rcvoob = pru_rcvoob_notsupp, 457 .pru_send = uipc_send, 458 .pru_sense = uipc_sense, 459 .pru_shutdown = uipc_shutdown, 460 .pru_sockaddr = uipc_sockaddr, 461 .pru_sosend = sosend, 462 .pru_soreceive = soreceive, 463 .pru_sopoll = sopoll 464 }; 465 466 int 467 uipc_ctloutput(struct socket *so, struct sockopt *sopt) 468 { 469 struct unpcb *unp = so->so_pcb; 470 int error = 0; 471 472 switch (sopt->sopt_dir) { 473 case SOPT_GET: 474 switch (sopt->sopt_name) { 475 case LOCAL_PEERCRED: 476 if (unp->unp_flags & UNP_HAVEPC) 477 soopt_from_kbuf(sopt, &unp->unp_peercred, 478 sizeof(unp->unp_peercred)); 479 else { 480 if (so->so_type == SOCK_STREAM) 481 error = ENOTCONN; 482 else if (so->so_type == SOCK_SEQPACKET) 483 error = ENOTCONN; 484 else 485 error = EINVAL; 486 } 487 break; 488 default: 489 error = EOPNOTSUPP; 490 break; 491 } 492 break; 493 case SOPT_SET: 494 default: 495 error = EOPNOTSUPP; 496 break; 497 } 498 return (error); 499 } 500 501 /* 502 * Both send and receive buffers are allocated PIPSIZ bytes of buffering 503 * for stream sockets, although the total for sender and receiver is 504 * actually only PIPSIZ. 505 * Datagram sockets really use the sendspace as the maximum datagram size, 506 * and don't really want to reserve the sendspace. Their recvspace should 507 * be large enough for at least one max-size datagram plus address. 508 */ 509 #ifndef PIPSIZ 510 #define PIPSIZ 8192 511 #endif 512 static u_long unpst_sendspace = PIPSIZ; 513 static u_long unpst_recvspace = PIPSIZ; 514 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 515 static u_long unpdg_recvspace = 4*1024; 516 517 static int unp_rights; /* file descriptors in flight */ 518 static struct spinlock unp_spin = SPINLOCK_INITIALIZER(&unp_spin); 519 520 SYSCTL_DECL(_net_local_seqpacket); 521 SYSCTL_DECL(_net_local_stream); 522 SYSCTL_INT(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, 523 &unpst_sendspace, 0, ""); 524 SYSCTL_INT(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, 525 &unpst_recvspace, 0, ""); 526 527 SYSCTL_DECL(_net_local_dgram); 528 SYSCTL_INT(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, 529 &unpdg_sendspace, 0, ""); 530 SYSCTL_INT(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, 531 &unpdg_recvspace, 0, ""); 532 533 SYSCTL_DECL(_net_local); 534 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, ""); 535 536 static int 537 unp_attach(struct socket *so, struct pru_attach_info *ai) 538 { 539 struct unpcb *unp; 540 int error; 541 542 if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) { 543 switch (so->so_type) { 544 545 case SOCK_STREAM: 546 case SOCK_SEQPACKET: 547 error = soreserve(so, unpst_sendspace, unpst_recvspace, 548 ai->sb_rlimit); 549 break; 550 551 case SOCK_DGRAM: 552 error = soreserve(so, unpdg_sendspace, unpdg_recvspace, 553 ai->sb_rlimit); 554 break; 555 556 default: 557 panic("unp_attach"); 558 } 559 if (error) 560 return (error); 561 } 562 unp = kmalloc(sizeof(*unp), M_UNPCB, M_NOWAIT|M_ZERO); 563 if (unp == NULL) 564 return (ENOBUFS); 565 unp->unp_gencnt = ++unp_gencnt; 566 unp_count++; 567 LIST_INIT(&unp->unp_refs); 568 unp->unp_socket = so; 569 unp->unp_rvnode = ai->fd_rdir; /* jail cruft XXX JH */ 570 LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead 571 : &unp_shead, unp, unp_link); 572 so->so_pcb = (caddr_t)unp; 573 return (0); 574 } 575 576 static void 577 unp_detach(struct unpcb *unp) 578 { 579 LIST_REMOVE(unp, unp_link); 580 unp->unp_gencnt = ++unp_gencnt; 581 --unp_count; 582 if (unp->unp_vnode) { 583 unp->unp_vnode->v_socket = NULL; 584 vrele(unp->unp_vnode); 585 unp->unp_vnode = NULL; 586 } 587 if (unp->unp_conn) 588 unp_disconnect(unp); 589 while (!LIST_EMPTY(&unp->unp_refs)) 590 unp_drop(LIST_FIRST(&unp->unp_refs), ECONNRESET); 591 soisdisconnected(unp->unp_socket); 592 unp->unp_socket->so_pcb = NULL; 593 if (unp_rights) { 594 /* 595 * Normally the receive buffer is flushed later, 596 * in sofree, but if our receive buffer holds references 597 * to descriptors that are now garbage, we will dispose 598 * of those descriptor references after the garbage collector 599 * gets them (resulting in a "panic: closef: count < 0"). 600 */ 601 sorflush(unp->unp_socket); 602 unp_gc(); 603 } 604 if (unp->unp_addr) 605 kfree(unp->unp_addr, M_SONAME); 606 kfree(unp, M_UNPCB); 607 } 608 609 static int 610 unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td) 611 { 612 struct proc *p = td->td_proc; 613 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 614 struct vnode *vp; 615 struct vattr vattr; 616 int error, namelen; 617 struct nlookupdata nd; 618 char buf[SOCK_MAXADDRLEN]; 619 620 if (unp->unp_vnode != NULL) 621 return (EINVAL); 622 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); 623 if (namelen <= 0) 624 return (EINVAL); 625 strncpy(buf, soun->sun_path, namelen); 626 buf[namelen] = 0; /* null-terminate the string */ 627 error = nlookup_init(&nd, buf, UIO_SYSSPACE, 628 NLC_LOCKVP | NLC_CREATE | NLC_REFDVP); 629 if (error == 0) 630 error = nlookup(&nd); 631 if (error == 0 && nd.nl_nch.ncp->nc_vp != NULL) 632 error = EADDRINUSE; 633 if (error) 634 goto done; 635 636 VATTR_NULL(&vattr); 637 vattr.va_type = VSOCK; 638 vattr.va_mode = (ACCESSPERMS & ~p->p_fd->fd_cmask); 639 error = VOP_NCREATE(&nd.nl_nch, nd.nl_dvp, &vp, nd.nl_cred, &vattr); 640 if (error == 0) { 641 vp->v_socket = unp->unp_socket; 642 unp->unp_vnode = vp; 643 unp->unp_addr = (struct sockaddr_un *)dup_sockaddr(nam); 644 vn_unlock(vp); 645 } 646 done: 647 nlookup_done(&nd); 648 return (error); 649 } 650 651 static int 652 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 653 { 654 struct proc *p = td->td_proc; 655 struct sockaddr_un *soun = (struct sockaddr_un *)nam; 656 struct vnode *vp; 657 struct socket *so2, *so3; 658 struct unpcb *unp, *unp2, *unp3; 659 int error, len; 660 struct nlookupdata nd; 661 char buf[SOCK_MAXADDRLEN]; 662 663 KKASSERT(p); 664 665 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); 666 if (len <= 0) 667 return EINVAL; 668 strncpy(buf, soun->sun_path, len); 669 buf[len] = 0; 670 671 vp = NULL; 672 error = nlookup_init(&nd, buf, UIO_SYSSPACE, NLC_FOLLOW); 673 if (error == 0) 674 error = nlookup(&nd); 675 if (error == 0) 676 error = cache_vget(&nd.nl_nch, nd.nl_cred, LK_EXCLUSIVE, &vp); 677 nlookup_done(&nd); 678 if (error) 679 return (error); 680 681 if (vp->v_type != VSOCK) { 682 error = ENOTSOCK; 683 goto bad; 684 } 685 error = VOP_ACCESS(vp, VWRITE, p->p_ucred); 686 if (error) 687 goto bad; 688 so2 = vp->v_socket; 689 if (so2 == NULL) { 690 error = ECONNREFUSED; 691 goto bad; 692 } 693 if (so->so_type != so2->so_type) { 694 error = EPROTOTYPE; 695 goto bad; 696 } 697 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 698 if (!(so2->so_options & SO_ACCEPTCONN) || 699 (so3 = sonewconn(so2, 0)) == NULL) { 700 error = ECONNREFUSED; 701 goto bad; 702 } 703 unp = so->so_pcb; 704 unp2 = so2->so_pcb; 705 unp3 = so3->so_pcb; 706 if (unp2->unp_addr) 707 unp3->unp_addr = (struct sockaddr_un *) 708 dup_sockaddr((struct sockaddr *)unp2->unp_addr); 709 710 /* 711 * unp_peercred management: 712 * 713 * The connecter's (client's) credentials are copied 714 * from its process structure at the time of connect() 715 * (which is now). 716 */ 717 cru2x(p->p_ucred, &unp3->unp_peercred); 718 unp3->unp_flags |= UNP_HAVEPC; 719 /* 720 * The receiver's (server's) credentials are copied 721 * from the unp_peercred member of socket on which the 722 * former called listen(); unp_listen() cached that 723 * process's credentials at that time so we can use 724 * them now. 725 */ 726 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED, 727 ("unp_connect: listener without cached peercred")); 728 memcpy(&unp->unp_peercred, &unp2->unp_peercred, 729 sizeof(unp->unp_peercred)); 730 unp->unp_flags |= UNP_HAVEPC; 731 732 so2 = so3; 733 } 734 error = unp_connect2(so, so2); 735 bad: 736 vput(vp); 737 return (error); 738 } 739 740 int 741 unp_connect2(struct socket *so, struct socket *so2) 742 { 743 struct unpcb *unp = so->so_pcb; 744 struct unpcb *unp2; 745 746 if (so2->so_type != so->so_type) 747 return (EPROTOTYPE); 748 unp2 = so2->so_pcb; 749 unp->unp_conn = unp2; 750 switch (so->so_type) { 751 752 case SOCK_DGRAM: 753 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); 754 soisconnected(so); 755 break; 756 757 case SOCK_STREAM: 758 case SOCK_SEQPACKET: 759 unp2->unp_conn = unp; 760 soisconnected(so); 761 soisconnected(so2); 762 break; 763 764 default: 765 panic("unp_connect2"); 766 } 767 return (0); 768 } 769 770 static void 771 unp_disconnect(struct unpcb *unp) 772 { 773 struct unpcb *unp2 = unp->unp_conn; 774 775 if (unp2 == NULL) 776 return; 777 778 unp->unp_conn = NULL; 779 780 switch (unp->unp_socket->so_type) { 781 case SOCK_DGRAM: 782 LIST_REMOVE(unp, unp_reflink); 783 unp->unp_socket->so_state &= ~SS_ISCONNECTED; 784 break; 785 case SOCK_STREAM: 786 case SOCK_SEQPACKET: 787 soisdisconnected(unp->unp_socket); 788 unp2->unp_conn = NULL; 789 soisdisconnected(unp2->unp_socket); 790 break; 791 } 792 } 793 794 #ifdef notdef 795 void 796 unp_abort(struct unpcb *unp) 797 { 798 799 unp_detach(unp); 800 } 801 #endif 802 803 static int 804 prison_unpcb(struct thread *td, struct unpcb *unp) 805 { 806 struct proc *p; 807 808 if (td == NULL) 809 return (0); 810 if ((p = td->td_proc) == NULL) 811 return (0); 812 if (!p->p_ucred->cr_prison) 813 return (0); 814 if (p->p_fd->fd_rdir == unp->unp_rvnode) 815 return (0); 816 return (1); 817 } 818 819 static int 820 unp_pcblist(SYSCTL_HANDLER_ARGS) 821 { 822 int error, i, n; 823 struct unpcb *unp, **unp_list; 824 unp_gen_t gencnt; 825 struct unp_head *head; 826 827 head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead); 828 829 KKASSERT(curproc != NULL); 830 831 /* 832 * The process of preparing the PCB list is too time-consuming and 833 * resource-intensive to repeat twice on every request. 834 */ 835 if (req->oldptr == NULL) { 836 n = unp_count; 837 req->oldidx = (n + n/8) * sizeof(struct xunpcb); 838 return 0; 839 } 840 841 if (req->newptr != NULL) 842 return EPERM; 843 844 /* 845 * OK, now we're committed to doing something. 846 */ 847 gencnt = unp_gencnt; 848 n = unp_count; 849 850 unp_list = kmalloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); 851 852 for (unp = LIST_FIRST(head), i = 0; unp && i < n; 853 unp = LIST_NEXT(unp, unp_link)) { 854 if (unp->unp_gencnt <= gencnt && !prison_unpcb(req->td, unp)) 855 unp_list[i++] = unp; 856 } 857 n = i; /* in case we lost some during malloc */ 858 859 error = 0; 860 for (i = 0; i < n; i++) { 861 unp = unp_list[i]; 862 if (unp->unp_gencnt <= gencnt) { 863 struct xunpcb xu; 864 xu.xu_len = sizeof xu; 865 xu.xu_unpp = unp; 866 /* 867 * XXX - need more locking here to protect against 868 * connect/disconnect races for SMP. 869 */ 870 if (unp->unp_addr) 871 bcopy(unp->unp_addr, &xu.xu_addr, 872 unp->unp_addr->sun_len); 873 if (unp->unp_conn && unp->unp_conn->unp_addr) 874 bcopy(unp->unp_conn->unp_addr, 875 &xu.xu_caddr, 876 unp->unp_conn->unp_addr->sun_len); 877 bcopy(unp, &xu.xu_unp, sizeof *unp); 878 sotoxsocket(unp->unp_socket, &xu.xu_socket); 879 error = SYSCTL_OUT(req, &xu, sizeof xu); 880 } 881 } 882 kfree(unp_list, M_TEMP); 883 return error; 884 } 885 886 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD, 887 (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", 888 "List of active local datagram sockets"); 889 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD, 890 (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", 891 "List of active local stream sockets"); 892 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist, CTLFLAG_RD, 893 (caddr_t)(long)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb", 894 "List of active local seqpacket stream sockets"); 895 896 static void 897 unp_shutdown(struct unpcb *unp) 898 { 899 struct socket *so; 900 901 if ((unp->unp_socket->so_type == SOCK_STREAM || 902 unp->unp_socket->so_type == SOCK_SEQPACKET) && 903 unp->unp_conn != NULL && (so = unp->unp_conn->unp_socket)) { 904 socantrcvmore(so); 905 } 906 } 907 908 static void 909 unp_drop(struct unpcb *unp, int err) 910 { 911 struct socket *so = unp->unp_socket; 912 913 so->so_error = err; 914 unp_disconnect(unp); 915 } 916 917 #ifdef notdef 918 void 919 unp_drain(void) 920 { 921 922 } 923 #endif 924 925 int 926 unp_externalize(struct mbuf *rights) 927 { 928 struct proc *p = curproc; /* XXX */ 929 int i; 930 struct cmsghdr *cm = mtod(rights, struct cmsghdr *); 931 int *fdp; 932 struct file **rp; 933 struct file *fp; 934 int newfds = (cm->cmsg_len - (CMSG_DATA(cm) - (u_char *)cm)) 935 / sizeof (struct file *); 936 int f; 937 938 /* 939 * if the new FD's will not fit, then we free them all 940 */ 941 if (!fdavail(p, newfds)) { 942 rp = (struct file **)CMSG_DATA(cm); 943 for (i = 0; i < newfds; i++) { 944 fp = *rp; 945 /* 946 * zero the pointer before calling unp_discard, 947 * since it may end up in unp_gc().. 948 */ 949 *rp++ = 0; 950 unp_discard(fp, NULL); 951 } 952 return (EMSGSIZE); 953 } 954 /* 955 * now change each pointer to an fd in the global table to 956 * an integer that is the index to the local fd table entry 957 * that we set up to point to the global one we are transferring. 958 * If sizeof (struct file *) is bigger than or equal to sizeof int, 959 * then do it in forward order. In that case, an integer will 960 * always come in the same place or before its corresponding 961 * struct file pointer. 962 * If sizeof (struct file *) is smaller than sizeof int, then 963 * do it in reverse order. 964 */ 965 if (sizeof (struct file *) >= sizeof (int)) { 966 fdp = (int *)(cm + 1); 967 rp = (struct file **)CMSG_DATA(cm); 968 for (i = 0; i < newfds; i++) { 969 if (fdalloc(p, 0, &f)) 970 panic("unp_externalize"); 971 fp = *rp++; 972 fsetfd(p, fp, f); 973 fdrop(fp); 974 spin_lock_wr(&unp_spin); 975 fp->f_msgcount--; 976 unp_rights--; 977 spin_unlock_wr(&unp_spin); 978 *fdp++ = f; 979 } 980 } else { 981 fdp = (int *)(cm + 1) + newfds - 1; 982 rp = (struct file **)CMSG_DATA(cm) + newfds - 1; 983 for (i = 0; i < newfds; i++) { 984 if (fdalloc(p, 0, &f)) 985 panic("unp_externalize"); 986 fp = *rp--; 987 fsetfd(p, fp, f); 988 fdrop(fp); 989 spin_lock_wr(&unp_spin); 990 fp->f_msgcount--; 991 unp_rights--; 992 spin_unlock_wr(&unp_spin); 993 *fdp-- = f; 994 } 995 } 996 997 /* 998 * Adjust length, in case sizeof(struct file *) and sizeof(int) 999 * differs. 1000 */ 1001 cm->cmsg_len = CMSG_LEN(newfds * sizeof(int)); 1002 rights->m_len = cm->cmsg_len; 1003 return (0); 1004 } 1005 1006 void 1007 unp_init(void) 1008 { 1009 LIST_INIT(&unp_dhead); 1010 LIST_INIT(&unp_shead); 1011 spin_init(&unp_spin); 1012 } 1013 1014 static int 1015 unp_internalize(struct mbuf *control, struct thread *td) 1016 { 1017 struct proc *p = td->td_proc; 1018 struct filedesc *fdescp; 1019 struct cmsghdr *cm = mtod(control, struct cmsghdr *); 1020 struct file **rp; 1021 struct file *fp; 1022 int i, fd, *fdp; 1023 struct cmsgcred *cmcred; 1024 int oldfds; 1025 u_int newlen; 1026 1027 KKASSERT(p); 1028 fdescp = p->p_fd; 1029 if ((cm->cmsg_type != SCM_RIGHTS && cm->cmsg_type != SCM_CREDS) || 1030 cm->cmsg_level != SOL_SOCKET || cm->cmsg_len != control->m_len) 1031 return (EINVAL); 1032 1033 /* 1034 * Fill in credential information. 1035 */ 1036 if (cm->cmsg_type == SCM_CREDS) { 1037 cmcred = (struct cmsgcred *)(cm + 1); 1038 cmcred->cmcred_pid = p->p_pid; 1039 cmcred->cmcred_uid = p->p_ucred->cr_ruid; 1040 cmcred->cmcred_gid = p->p_ucred->cr_rgid; 1041 cmcred->cmcred_euid = p->p_ucred->cr_uid; 1042 cmcred->cmcred_ngroups = MIN(p->p_ucred->cr_ngroups, 1043 CMGROUP_MAX); 1044 for (i = 0; i < cmcred->cmcred_ngroups; i++) 1045 cmcred->cmcred_groups[i] = p->p_ucred->cr_groups[i]; 1046 return(0); 1047 } 1048 1049 oldfds = (cm->cmsg_len - sizeof (*cm)) / sizeof (int); 1050 /* 1051 * check that all the FDs passed in refer to legal OPEN files 1052 * If not, reject the entire operation. 1053 */ 1054 fdp = (int *)(cm + 1); 1055 for (i = 0; i < oldfds; i++) { 1056 fd = *fdp++; 1057 if ((unsigned)fd >= fdescp->fd_nfiles || 1058 fdescp->fd_files[fd].fp == NULL) 1059 return (EBADF); 1060 if (fdescp->fd_files[fd].fp->f_type == DTYPE_KQUEUE) 1061 return (EOPNOTSUPP); 1062 } 1063 /* 1064 * Now replace the integer FDs with pointers to 1065 * the associated global file table entry.. 1066 * Allocate a bigger buffer as necessary. But if an cluster is not 1067 * enough, return E2BIG. 1068 */ 1069 newlen = CMSG_LEN(oldfds * sizeof(struct file *)); 1070 if (newlen > MCLBYTES) 1071 return (E2BIG); 1072 if (newlen - control->m_len > M_TRAILINGSPACE(control)) { 1073 if (control->m_flags & M_EXT) 1074 return (E2BIG); 1075 MCLGET(control, MB_WAIT); 1076 if (!(control->m_flags & M_EXT)) 1077 return (ENOBUFS); 1078 1079 /* copy the data to the cluster */ 1080 memcpy(mtod(control, char *), cm, cm->cmsg_len); 1081 cm = mtod(control, struct cmsghdr *); 1082 } 1083 1084 /* 1085 * Adjust length, in case sizeof(struct file *) and sizeof(int) 1086 * differs. 1087 */ 1088 control->m_len = cm->cmsg_len = newlen; 1089 1090 /* 1091 * Transform the file descriptors into struct file pointers. 1092 * If sizeof (struct file *) is bigger than or equal to sizeof int, 1093 * then do it in reverse order so that the int won't get until 1094 * we're done. 1095 * If sizeof (struct file *) is smaller than sizeof int, then 1096 * do it in forward order. 1097 */ 1098 if (sizeof (struct file *) >= sizeof (int)) { 1099 fdp = (int *)(cm + 1) + oldfds - 1; 1100 rp = (struct file **)CMSG_DATA(cm) + oldfds - 1; 1101 for (i = 0; i < oldfds; i++) { 1102 fp = fdescp->fd_files[*fdp--].fp; 1103 *rp-- = fp; 1104 fhold(fp); 1105 spin_lock_wr(&unp_spin); 1106 fp->f_msgcount++; 1107 unp_rights++; 1108 spin_unlock_wr(&unp_spin); 1109 } 1110 } else { 1111 fdp = (int *)(cm + 1); 1112 rp = (struct file **)CMSG_DATA(cm); 1113 for (i = 0; i < oldfds; i++) { 1114 fp = fdescp->fd_files[*fdp++].fp; 1115 *rp++ = fp; 1116 fhold(fp); 1117 spin_lock_wr(&unp_spin); 1118 fp->f_msgcount++; 1119 unp_rights++; 1120 spin_unlock_wr(&unp_spin); 1121 } 1122 } 1123 return (0); 1124 } 1125 1126 /* 1127 * Garbage collect in-transit file descriptors that get lost due to 1128 * loops (i.e. when a socket is sent to another process over itself, 1129 * and more complex situations). 1130 * 1131 * NOT MPSAFE - TODO socket flush code and maybe closef. Rest is MPSAFE. 1132 */ 1133 1134 struct unp_gc_info { 1135 struct file **extra_ref; 1136 struct file *locked_fp; 1137 int defer; 1138 int index; 1139 int maxindex; 1140 }; 1141 1142 static void 1143 unp_gc(void) 1144 { 1145 struct unp_gc_info info; 1146 static boolean_t unp_gcing; 1147 struct file **fpp; 1148 int i; 1149 1150 spin_lock_wr(&unp_spin); 1151 if (unp_gcing) { 1152 spin_unlock_wr(&unp_spin); 1153 return; 1154 } 1155 unp_gcing = TRUE; 1156 spin_unlock_wr(&unp_spin); 1157 1158 /* 1159 * before going through all this, set all FDs to 1160 * be NOT defered and NOT externally accessible 1161 */ 1162 info.defer = 0; 1163 allfiles_scan_exclusive(unp_gc_clearmarks, NULL); 1164 do { 1165 allfiles_scan_exclusive(unp_gc_checkmarks, &info); 1166 } while (info.defer); 1167 1168 /* 1169 * We grab an extra reference to each of the file table entries 1170 * that are not otherwise accessible and then free the rights 1171 * that are stored in messages on them. 1172 * 1173 * The bug in the orginal code is a little tricky, so I'll describe 1174 * what's wrong with it here. 1175 * 1176 * It is incorrect to simply unp_discard each entry for f_msgcount 1177 * times -- consider the case of sockets A and B that contain 1178 * references to each other. On a last close of some other socket, 1179 * we trigger a gc since the number of outstanding rights (unp_rights) 1180 * is non-zero. If during the sweep phase the gc code un_discards, 1181 * we end up doing a (full) closef on the descriptor. A closef on A 1182 * results in the following chain. Closef calls soo_close, which 1183 * calls soclose. Soclose calls first (through the switch 1184 * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply 1185 * returns because the previous instance had set unp_gcing, and 1186 * we return all the way back to soclose, which marks the socket 1187 * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush 1188 * to free up the rights that are queued in messages on the socket A, 1189 * i.e., the reference on B. The sorflush calls via the dom_dispose 1190 * switch unp_dispose, which unp_scans with unp_discard. This second 1191 * instance of unp_discard just calls closef on B. 1192 * 1193 * Well, a similar chain occurs on B, resulting in a sorflush on B, 1194 * which results in another closef on A. Unfortunately, A is already 1195 * being closed, and the descriptor has already been marked with 1196 * SS_NOFDREF, and soclose panics at this point. 1197 * 1198 * Here, we first take an extra reference to each inaccessible 1199 * descriptor. Then, we call sorflush ourself, since we know 1200 * it is a Unix domain socket anyhow. After we destroy all the 1201 * rights carried in messages, we do a last closef to get rid 1202 * of our extra reference. This is the last close, and the 1203 * unp_detach etc will shut down the socket. 1204 * 1205 * 91/09/19, bsy@cs.cmu.edu 1206 */ 1207 info.extra_ref = kmalloc(256 * sizeof(struct file *), M_FILE, M_WAITOK); 1208 info.maxindex = 256; 1209 1210 do { 1211 /* 1212 * Look for matches 1213 */ 1214 info.index = 0; 1215 allfiles_scan_exclusive(unp_gc_checkrefs, &info); 1216 1217 /* 1218 * For each FD on our hit list, do the following two things 1219 */ 1220 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) { 1221 struct file *tfp = *fpp; 1222 if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL) 1223 sorflush((struct socket *)(tfp->f_data)); 1224 } 1225 for (i = info.index, fpp = info.extra_ref; --i >= 0; ++fpp) 1226 closef(*fpp, NULL); 1227 } while (info.index == info.maxindex); 1228 kfree((caddr_t)info.extra_ref, M_FILE); 1229 unp_gcing = FALSE; 1230 } 1231 1232 /* 1233 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry 1234 */ 1235 static int 1236 unp_gc_checkrefs(struct file *fp, void *data) 1237 { 1238 struct unp_gc_info *info = data; 1239 1240 if (fp->f_count == 0) 1241 return(0); 1242 if (info->index == info->maxindex) 1243 return(-1); 1244 1245 /* 1246 * If all refs are from msgs, and it's not marked accessible 1247 * then it must be referenced from some unreachable cycle 1248 * of (shut-down) FDs, so include it in our 1249 * list of FDs to remove 1250 */ 1251 if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) { 1252 info->extra_ref[info->index++] = fp; 1253 fhold(fp); 1254 } 1255 return(0); 1256 } 1257 1258 /* 1259 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry 1260 */ 1261 static int 1262 unp_gc_clearmarks(struct file *fp, void *data __unused) 1263 { 1264 fp->f_flag &= ~(FMARK|FDEFER); 1265 return(0); 1266 } 1267 1268 /* 1269 * MPSAFE - NOTE: filehead list and file pointer spinlocked on entry 1270 */ 1271 static int 1272 unp_gc_checkmarks(struct file *fp, void *data) 1273 { 1274 struct unp_gc_info *info = data; 1275 struct socket *so; 1276 1277 /* 1278 * If the file is not open, skip it 1279 */ 1280 if (fp->f_count == 0) 1281 return(0); 1282 /* 1283 * If we already marked it as 'defer' in a 1284 * previous pass, then try process it this time 1285 * and un-mark it 1286 */ 1287 if (fp->f_flag & FDEFER) { 1288 fp->f_flag &= ~FDEFER; 1289 --info->defer; 1290 } else { 1291 /* 1292 * if it's not defered, then check if it's 1293 * already marked.. if so skip it 1294 */ 1295 if (fp->f_flag & FMARK) 1296 return(0); 1297 /* 1298 * If all references are from messages 1299 * in transit, then skip it. it's not 1300 * externally accessible. 1301 */ 1302 if (fp->f_count == fp->f_msgcount) 1303 return(0); 1304 /* 1305 * If it got this far then it must be 1306 * externally accessible. 1307 */ 1308 fp->f_flag |= FMARK; 1309 } 1310 /* 1311 * either it was defered, or it is externally 1312 * accessible and not already marked so. 1313 * Now check if it is possibly one of OUR sockets. 1314 */ 1315 if (fp->f_type != DTYPE_SOCKET || 1316 (so = (struct socket *)fp->f_data) == NULL) 1317 return(0); 1318 if (so->so_proto->pr_domain != &localdomain || 1319 !(so->so_proto->pr_flags & PR_RIGHTS)) 1320 return(0); 1321 #ifdef notdef 1322 XXX note: exclusive fp->f_spin lock held 1323 if (so->so_rcv.sb_flags & SB_LOCK) { 1324 /* 1325 * This is problematical; it's not clear 1326 * we need to wait for the sockbuf to be 1327 * unlocked (on a uniprocessor, at least), 1328 * and it's also not clear what to do 1329 * if sbwait returns an error due to receipt 1330 * of a signal. If sbwait does return 1331 * an error, we'll go into an infinite 1332 * loop. Delete all of this for now. 1333 */ 1334 sbwait(&so->so_rcv); 1335 goto restart; 1336 } 1337 #endif 1338 /* 1339 * So, Ok, it's one of our sockets and it IS externally 1340 * accessible (or was defered). Now we look 1341 * to see if we hold any file descriptors in its 1342 * message buffers. Follow those links and mark them 1343 * as accessible too. 1344 */ 1345 info->locked_fp = fp; 1346 /* spin_lock_wr(&so->so_rcv.sb_spin); */ 1347 unp_scan(so->so_rcv.ssb_mb, unp_mark, info); 1348 /* spin_unlock_wr(&so->so_rcv.sb_spin);*/ 1349 return (0); 1350 } 1351 1352 void 1353 unp_dispose(struct mbuf *m) 1354 { 1355 if (m) 1356 unp_scan(m, unp_discard, NULL); 1357 } 1358 1359 static int 1360 unp_listen(struct unpcb *unp, struct thread *td) 1361 { 1362 struct proc *p = td->td_proc; 1363 1364 KKASSERT(p); 1365 cru2x(p->p_ucred, &unp->unp_peercred); 1366 unp->unp_flags |= UNP_HAVEPCCACHED; 1367 return (0); 1368 } 1369 1370 static void 1371 unp_scan(struct mbuf *m0, void (*op)(struct file *, void *), void *data) 1372 { 1373 struct mbuf *m; 1374 struct file **rp; 1375 struct cmsghdr *cm; 1376 int i; 1377 int qfds; 1378 1379 while (m0) { 1380 for (m = m0; m; m = m->m_next) { 1381 if (m->m_type == MT_CONTROL && 1382 m->m_len >= sizeof(*cm)) { 1383 cm = mtod(m, struct cmsghdr *); 1384 if (cm->cmsg_level != SOL_SOCKET || 1385 cm->cmsg_type != SCM_RIGHTS) 1386 continue; 1387 qfds = (cm->cmsg_len - 1388 (CMSG_DATA(cm) - (u_char *)cm)) 1389 / sizeof (struct file *); 1390 rp = (struct file **)CMSG_DATA(cm); 1391 for (i = 0; i < qfds; i++) 1392 (*op)(*rp++, data); 1393 break; /* XXX, but saves time */ 1394 } 1395 } 1396 m0 = m0->m_nextpkt; 1397 } 1398 } 1399 1400 static void 1401 unp_mark(struct file *fp, void *data) 1402 { 1403 struct unp_gc_info *info = data; 1404 1405 if (info->locked_fp != fp) 1406 spin_lock_wr(&fp->f_spin); 1407 if ((fp->f_flag & FMARK) == 0) { 1408 ++info->defer; 1409 fp->f_flag |= (FMARK|FDEFER); 1410 } 1411 if (info->locked_fp != fp) 1412 spin_unlock_wr(&fp->f_spin); 1413 } 1414 1415 static void 1416 unp_discard(struct file *fp, void *data __unused) 1417 { 1418 spin_lock_wr(&unp_spin); 1419 fp->f_msgcount--; 1420 unp_rights--; 1421 spin_unlock_wr(&unp_spin); 1422 closef(fp, NULL); 1423 } 1424 1425