xref: /dflybsd-src/sys/kern/uipc_socket2.c (revision b5b0912b1891e95ccc48cad83f09239ccb7ffc16)
1 /*
2  * Copyright (c) 2005 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 1982, 1986, 1988, 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
35  * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
36  * $DragonFly: src/sys/kern/uipc_socket2.c,v 1.20 2005/05/29 15:52:26 hsu Exp $
37  */
38 
39 #include "opt_param.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/domain.h>
43 #include <sys/file.h>	/* for maxfiles */
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/protosw.h>
49 #include <sys/resourcevar.h>
50 #include <sys/stat.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/signalvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/aio.h> /* for aio_swake proto */
56 #include <sys/event.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/msgport2.h>
60 
61 int	maxsockets;
62 
63 /*
64  * Primitive routines for operating on sockets and socket buffers
65  */
66 
67 u_long	sb_max = SB_MAX;
68 u_long	sb_max_adj =
69     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
70 
71 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
72 
73 /*
74  * Procedures to manipulate state flags of socket
75  * and do appropriate wakeups.  Normal sequence from the
76  * active (originating) side is that soisconnecting() is
77  * called during processing of connect() call,
78  * resulting in an eventual call to soisconnected() if/when the
79  * connection is established.  When the connection is torn down
80  * soisdisconnecting() is called during processing of disconnect() call,
81  * and soisdisconnected() is called when the connection to the peer
82  * is totally severed.  The semantics of these routines are such that
83  * connectionless protocols can call soisconnected() and soisdisconnected()
84  * only, bypassing the in-progress calls when setting up a ``connection''
85  * takes no time.
86  *
87  * From the passive side, a socket is created with
88  * two queues of sockets: so_incomp for connections in progress
89  * and so_comp for connections already made and awaiting user acceptance.
90  * As a protocol is preparing incoming connections, it creates a socket
91  * structure queued on so_incomp by calling sonewconn().  When the connection
92  * is established, soisconnected() is called, and transfers the
93  * socket structure to so_comp, making it available to accept().
94  *
95  * If a socket is closed with sockets on either
96  * so_incomp or so_comp, these sockets are dropped.
97  *
98  * If higher level protocols are implemented in
99  * the kernel, the wakeups done here will sometimes
100  * cause software-interrupt process scheduling.
101  */
102 
103 void
104 soisconnecting(so)
105 	struct socket *so;
106 {
107 
108 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
109 	so->so_state |= SS_ISCONNECTING;
110 }
111 
112 void
113 soisconnected(so)
114 	struct socket *so;
115 {
116 	struct socket *head = so->so_head;
117 
118 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
119 	so->so_state |= SS_ISCONNECTED;
120 	if (head && (so->so_state & SS_INCOMP)) {
121 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
122 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
123 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
124 			so->so_rcv.sb_flags |= SB_UPCALL;
125 			so->so_options &= ~SO_ACCEPTFILTER;
126 			so->so_upcall(so, so->so_upcallarg, 0);
127 			return;
128 		}
129 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
130 		head->so_incqlen--;
131 		so->so_state &= ~SS_INCOMP;
132 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
133 		head->so_qlen++;
134 		so->so_state |= SS_COMP;
135 		sorwakeup(head);
136 		wakeup_one(&head->so_timeo);
137 	} else {
138 		wakeup(&so->so_timeo);
139 		sorwakeup(so);
140 		sowwakeup(so);
141 	}
142 }
143 
144 void
145 soisdisconnecting(so)
146 	struct socket *so;
147 {
148 
149 	so->so_state &= ~SS_ISCONNECTING;
150 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
151 	wakeup((caddr_t)&so->so_timeo);
152 	sowwakeup(so);
153 	sorwakeup(so);
154 }
155 
156 void
157 soisdisconnected(so)
158 	struct socket *so;
159 {
160 
161 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
162 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
163 	wakeup((caddr_t)&so->so_timeo);
164 	sbdrop(&so->so_snd, so->so_snd.sb_cc);
165 	sowwakeup(so);
166 	sorwakeup(so);
167 }
168 
169 /*
170  * When an attempt at a new connection is noted on a socket
171  * which accepts connections, sonewconn is called.  If the
172  * connection is possible (subject to space constraints, etc.)
173  * then we allocate a new structure, propoerly linked into the
174  * data structure of the original socket, and return this.
175  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
176  */
177 struct socket *
178 sonewconn(struct socket *head, int connstatus)
179 {
180 	struct socket *so;
181 	struct pru_attach_info ai;
182 
183 	if (head->so_qlen > 3 * head->so_qlimit / 2)
184 		return ((struct socket *)0);
185 	so = soalloc(0);
186 	if (so == NULL)
187 		return ((struct socket *)0);
188 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
189 		connstatus = 0;
190 	so->so_head = head;
191 	so->so_type = head->so_type;
192 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
193 	so->so_linger = head->so_linger;
194 	so->so_state = head->so_state | SS_NOFDREF;
195 	so->so_proto = head->so_proto;
196 	so->so_timeo = head->so_timeo;
197 	so->so_cred = crhold(head->so_cred);
198 	ai.sb_rlimit = NULL;
199 	ai.p_ucred = NULL;
200 	ai.fd_rdir = NULL;		/* jail code cruft XXX JH */
201 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat, NULL) ||
202 	    /* Directly call function since we're already at protocol level. */
203 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, &ai)) {
204 		sodealloc(so);
205 		return ((struct socket *)0);
206 	}
207 
208 	if (connstatus) {
209 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
210 		so->so_state |= SS_COMP;
211 		head->so_qlen++;
212 	} else {
213 		if (head->so_incqlen > head->so_qlimit) {
214 			struct socket *sp;
215 			sp = TAILQ_FIRST(&head->so_incomp);
216 			(void) soabort(sp);
217 		}
218 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
219 		so->so_state |= SS_INCOMP;
220 		head->so_incqlen++;
221 	}
222 	if (connstatus) {
223 		sorwakeup(head);
224 		wakeup((caddr_t)&head->so_timeo);
225 		so->so_state |= connstatus;
226 	}
227 	return (so);
228 }
229 
230 /*
231  * Socantsendmore indicates that no more data will be sent on the
232  * socket; it would normally be applied to a socket when the user
233  * informs the system that no more data is to be sent, by the protocol
234  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
235  * will be received, and will normally be applied to the socket by a
236  * protocol when it detects that the peer will send no more data.
237  * Data queued for reading in the socket may yet be read.
238  */
239 
240 void
241 socantsendmore(so)
242 	struct socket *so;
243 {
244 
245 	so->so_state |= SS_CANTSENDMORE;
246 	sowwakeup(so);
247 }
248 
249 void
250 socantrcvmore(so)
251 	struct socket *so;
252 {
253 
254 	so->so_state |= SS_CANTRCVMORE;
255 	sorwakeup(so);
256 }
257 
258 /*
259  * Wait for data to arrive at/drain from a socket buffer.
260  */
261 int
262 sbwait(sb)
263 	struct sockbuf *sb;
264 {
265 
266 	sb->sb_flags |= SB_WAIT;
267 	return (tsleep((caddr_t)&sb->sb_cc,
268 			((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
269 			"sbwait",
270 			sb->sb_timeo));
271 }
272 
273 /*
274  * Lock a sockbuf already known to be locked;
275  * return any error returned from sleep (EINTR).
276  */
277 int
278 sb_lock(sb)
279 	struct sockbuf *sb;
280 {
281 	int error;
282 
283 	while (sb->sb_flags & SB_LOCK) {
284 		sb->sb_flags |= SB_WANT;
285 		error = tsleep((caddr_t)&sb->sb_flags,
286 			    ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
287 			    "sblock", 0);
288 		if (error)
289 			return (error);
290 	}
291 	sb->sb_flags |= SB_LOCK;
292 	return (0);
293 }
294 
295 /*
296  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
297  * via SIGIO if the socket has the SS_ASYNC flag set.
298  */
299 void
300 sowakeup(so, sb)
301 	struct socket *so;
302 	struct sockbuf *sb;
303 {
304 	struct selinfo *selinfo = &sb->sb_sel;
305 
306 	selwakeup(selinfo);
307 	sb->sb_flags &= ~SB_SEL;
308 	if (sb->sb_flags & SB_WAIT) {
309 		sb->sb_flags &= ~SB_WAIT;
310 		wakeup((caddr_t)&sb->sb_cc);
311 	}
312 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
313 		pgsigio(so->so_sigio, SIGIO, 0);
314 	if (sb->sb_flags & SB_UPCALL)
315 		(*so->so_upcall)(so, so->so_upcallarg, MB_DONTWAIT);
316 	if (sb->sb_flags & SB_AIO)
317 		aio_swake(so, sb);
318 	KNOTE(&selinfo->si_note, 0);
319 	if (sb->sb_flags & SB_MEVENT) {
320 		struct netmsg_so_notify *msg, *nmsg;
321 
322 		TAILQ_FOREACH_MUTABLE(msg, &selinfo->si_mlist, nm_list, nmsg) {
323 			if (msg->nm_predicate((struct netmsg *)msg)) {
324 				TAILQ_REMOVE(&selinfo->si_mlist, msg, nm_list);
325 				lwkt_replymsg(&msg->nm_lmsg,
326 						msg->nm_lmsg.ms_error);
327 			}
328 		}
329 		if (TAILQ_EMPTY(&sb->sb_sel.si_mlist))
330 			sb->sb_flags &= ~SB_MEVENT;
331 	}
332 }
333 
334 /*
335  * Socket buffer (struct sockbuf) utility routines.
336  *
337  * Each socket contains two socket buffers: one for sending data and
338  * one for receiving data.  Each buffer contains a queue of mbufs,
339  * information about the number of mbufs and amount of data in the
340  * queue, and other fields allowing select() statements and notification
341  * on data availability to be implemented.
342  *
343  * Data stored in a socket buffer is maintained as a list of records.
344  * Each record is a list of mbufs chained together with the m_next
345  * field.  Records are chained together with the m_nextpkt field. The upper
346  * level routine soreceive() expects the following conventions to be
347  * observed when placing information in the receive buffer:
348  *
349  * 1. If the protocol requires each message be preceded by the sender's
350  *    name, then a record containing that name must be present before
351  *    any associated data (mbuf's must be of type MT_SONAME).
352  * 2. If the protocol supports the exchange of ``access rights'' (really
353  *    just additional data associated with the message), and there are
354  *    ``rights'' to be received, then a record containing this data
355  *    should be present (mbuf's must be of type MT_RIGHTS).
356  * 3. If a name or rights record exists, then it must be followed by
357  *    a data record, perhaps of zero length.
358  *
359  * Before using a new socket structure it is first necessary to reserve
360  * buffer space to the socket, by calling sbreserve().  This should commit
361  * some of the available buffer space in the system buffer pool for the
362  * socket (currently, it does nothing but enforce limits).  The space
363  * should be released by calling sbrelease() when the socket is destroyed.
364  */
365 
366 int
367 soreserve(struct socket *so, u_long sndcc, u_long rcvcc, struct rlimit *rl)
368 {
369 	if (sbreserve(&so->so_snd, sndcc, so, rl) == 0)
370 		goto bad;
371 	if (sbreserve(&so->so_rcv, rcvcc, so, rl) == 0)
372 		goto bad2;
373 	if (so->so_rcv.sb_lowat == 0)
374 		so->so_rcv.sb_lowat = 1;
375 	if (so->so_snd.sb_lowat == 0)
376 		so->so_snd.sb_lowat = MCLBYTES;
377 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
378 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
379 	return (0);
380 bad2:
381 	sbrelease(&so->so_snd, so);
382 bad:
383 	return (ENOBUFS);
384 }
385 
386 static int
387 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
388 {
389 	int error = 0;
390 	u_long old_sb_max = sb_max;
391 
392 	error = SYSCTL_OUT(req, arg1, sizeof(int));
393 	if (error || !req->newptr)
394 		return (error);
395 	error = SYSCTL_IN(req, arg1, sizeof(int));
396 	if (error)
397 		return (error);
398 	if (sb_max < MSIZE + MCLBYTES) {
399 		sb_max = old_sb_max;
400 		return (EINVAL);
401 	}
402 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
403 	return (0);
404 }
405 
406 /*
407  * Allot mbufs to a sockbuf.
408  * Attempt to scale mbmax so that mbcnt doesn't become limiting
409  * if buffering efficiency is near the normal case.
410  */
411 int
412 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so, struct rlimit *rl)
413 {
414 
415 	/*
416 	 * rl will only be NULL when we're in an interrupt (eg, in tcp_input)
417 	 * or when called from netgraph (ie, ngd_attach)
418 	 */
419 	if (cc > sb_max_adj)
420 		return (0);
421 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
422 		       rl ? rl->rlim_cur : RLIM_INFINITY)) {
423 		return (0);
424 	}
425 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
426 	if (sb->sb_lowat > sb->sb_hiwat)
427 		sb->sb_lowat = sb->sb_hiwat;
428 	return (1);
429 }
430 
431 /*
432  * Free mbufs held by a socket, and reserved mbuf space.
433  */
434 void
435 sbrelease(sb, so)
436 	struct sockbuf *sb;
437 	struct socket *so;
438 {
439 
440 	sbflush(sb);
441 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
442 	    RLIM_INFINITY);
443 	sb->sb_mbmax = 0;
444 }
445 
446 /*
447  * Routines to add and remove
448  * data from an mbuf queue.
449  *
450  * The routines sbappend() or sbappendrecord() are normally called to
451  * append new mbufs to a socket buffer, after checking that adequate
452  * space is available, comparing the function sbspace() with the amount
453  * of data to be added.  sbappendrecord() differs from sbappend() in
454  * that data supplied is treated as the beginning of a new record.
455  * To place a sender's address, optional access rights, and data in a
456  * socket receive buffer, sbappendaddr() should be used.  To place
457  * access rights and data in a socket receive buffer, sbappendrights()
458  * should be used.  In either case, the new data begins a new record.
459  * Note that unlike sbappend() and sbappendrecord(), these routines check
460  * for the caller that there will be enough space to store the data.
461  * Each fails if there is not enough space, or if it cannot find mbufs
462  * to store additional information in.
463  *
464  * Reliable protocols may use the socket send buffer to hold data
465  * awaiting acknowledgement.  Data is normally copied from a socket
466  * send buffer in a protocol with m_copy for output to a peer,
467  * and then removing the data from the socket buffer with sbdrop()
468  * or sbdroprecord() when the data is acknowledged by the peer.
469  */
470 
471 /*
472  * Append mbuf chain m to the last record in the
473  * socket buffer sb.  The additional space associated
474  * the mbuf chain is recorded in sb.  Empty mbufs are
475  * discarded and mbufs are compacted where possible.
476  */
477 void
478 sbappend(struct sockbuf *sb, struct mbuf *m)
479 {
480 	struct mbuf *n;
481 
482 	if (m == NULL)
483 		return;
484 	n = sb->sb_mb;
485 	if (n) {
486 		while (n->m_nextpkt)
487 			n = n->m_nextpkt;
488 		do {
489 			if (n->m_flags & M_EOR) {
490 				sbappendrecord(sb, m); /* XXXXXX!!!! */
491 				return;
492 			}
493 		} while (n->m_next && (n = n->m_next));
494 	}
495 	sbcompress(sb, m, n);
496 	if (n == NULL)
497 		sb->sb_lastrecord = sb->sb_mb;
498 }
499 
500 /*
501  * sbappendstream() is an optimized form of sbappend() for protocols
502  * such as TCP that only have one record in the socket buffer, are
503  * not PR_ATOMIC, nor allow MT_CONTROL data.  A protocol that uses
504  * sbappendstream() must use sbappendstream() exclusively.
505  */
506 void
507 sbappendstream(struct sockbuf *sb, struct mbuf *m)
508 {
509 	KKASSERT(m->m_nextpkt == NULL);
510 	sbcompress(sb, m, sb->sb_lastmbuf);
511 }
512 
513 #ifdef SOCKBUF_DEBUG
514 void
515 sbcheck(sb)
516 	struct sockbuf *sb;
517 {
518 	struct mbuf *m;
519 	struct mbuf *n = 0;
520 	u_long len = 0, mbcnt = 0;
521 
522 	for (m = sb->sb_mb; m; m = n) {
523 	    n = m->m_nextpkt;
524 	    for (; m; m = m->m_next) {
525 		len += m->m_len;
526 		mbcnt += MSIZE;
527 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
528 			mbcnt += m->m_ext.ext_size;
529 	    }
530 	}
531 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
532 		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
533 		    mbcnt, sb->sb_mbcnt);
534 		panic("sbcheck");
535 	}
536 }
537 #endif
538 
539 /*
540  * Same as sbappend(), except the mbuf chain begins a new record.
541  */
542 void
543 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
544 {
545 	struct mbuf *firstmbuf;
546 	struct mbuf *secondmbuf;
547 
548 	if (m0 == NULL)
549 		return;
550 
551 	/*
552 	 * Break the first mbuf off from the rest of the mbuf chain.
553 	 */
554 	firstmbuf = m0;
555 	secondmbuf = m0->m_next;
556 	m0->m_next = NULL;
557 
558 	/*
559 	 * Insert the first mbuf of the m0 mbuf chain as the last record of
560 	 * the sockbuf.  Note this permits zero length records!
561 	 */
562 	if (sb->sb_mb == NULL)
563 		sb->sb_mb = firstmbuf;
564 	else
565 		sb->sb_lastrecord->m_nextpkt = firstmbuf;
566 	sb->sb_lastrecord = firstmbuf;	/* update hint for new last record */
567 
568 	if ((firstmbuf->m_flags & M_EOR) && (secondmbuf != NULL)) {
569 		/* propagate the EOR flag */
570 		firstmbuf->m_flags &= ~M_EOR;
571 		secondmbuf->m_flags |= M_EOR;
572 	}
573 
574 	/*
575 	 * The succeeding call to sbcompress() omits accounting for
576 	 * the first mbuf, so do it here.
577 	 */
578 	sballoc(sb, firstmbuf);
579 
580 	/* Compact the rest of the mbuf chain in after the first mbuf. */
581 	sbcompress(sb, secondmbuf, firstmbuf);
582 }
583 
584 /*
585  * As above except that OOB data is inserted at the beginning of the sockbuf,
586  * but after any other OOB data.
587  */
588 void
589 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
590 {
591 	struct mbuf *m;
592 	struct mbuf **mp;
593 
594 	if (m0 == 0)
595 		return;
596 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
597 	    m = *mp;
598 	    again:
599 		switch (m->m_type) {
600 
601 		case MT_OOBDATA:
602 			continue;		/* WANT next train */
603 
604 		case MT_CONTROL:
605 			m = m->m_next;
606 			if (m)
607 				goto again;	/* inspect THIS train further */
608 		}
609 		break;
610 	}
611 	/*
612 	 * Put the first mbuf on the queue.
613 	 * Note this permits zero length records.
614 	 */
615 	sballoc(sb, m0);
616 	m0->m_nextpkt = *mp;
617 	*mp = m0;
618 	if (m0->m_nextpkt == NULL)
619 		sb->sb_lastrecord = m0;
620 
621 	m = m0->m_next;
622 	m0->m_next = 0;
623 	if (m && (m0->m_flags & M_EOR)) {
624 		m0->m_flags &= ~M_EOR;
625 		m->m_flags |= M_EOR;
626 	}
627 	sbcompress(sb, m, m0);
628 }
629 
630 /*
631  * Append address and data, and optionally, control (ancillary) data
632  * to the receive queue of a socket.  If present,
633  * m0 must include a packet header with total length.
634  * Returns 0 if no space in sockbuf or insufficient mbufs.
635  */
636 int
637 sbappendaddr(sb, asa, m0, control)
638 	struct sockbuf *sb;
639 	const struct sockaddr *asa;
640 	struct mbuf *m0, *control;
641 {
642 	struct mbuf *m, *n;
643 	int space = asa->sa_len;
644 
645 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
646 		panic("sbappendaddr");
647 
648 	if (m0)
649 		space += m0->m_pkthdr.len;
650 	for (n = control; n; n = n->m_next) {
651 		space += n->m_len;
652 		if (n->m_next == 0)	/* keep pointer to last control buf */
653 			break;
654 	}
655 	if (space > sbspace(sb))
656 		return (0);
657 	if (asa->sa_len > MLEN)
658 		return (0);
659 	MGET(m, MB_DONTWAIT, MT_SONAME);
660 	if (m == 0)
661 		return (0);
662 	m->m_len = asa->sa_len;
663 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
664 	if (n)
665 		n->m_next = m0;		/* concatenate data to control */
666 	else
667 		control = m0;
668 	m->m_next = control;
669 	for (n = m; n; n = n->m_next)
670 		sballoc(sb, n);
671 
672 	if (sb->sb_mb == NULL)
673 		sb->sb_mb = m;
674 	else
675 		sb->sb_lastrecord->m_nextpkt = m;
676 	sb->sb_lastrecord = m;
677 
678 	return (1);
679 }
680 
681 /*
682  * Append control information followed by data.
683  * control must be non-null.
684  */
685 int
686 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
687 {
688 	struct mbuf *n;
689 	u_int length, cmbcnt, m0mbcnt;
690 
691 	KASSERT(control != NULL, ("sbappendcontrol"));
692 
693 	length = m_countm(control, &n, &cmbcnt) + m_countm(m0, NULL, &m0mbcnt);
694 	if (length > sbspace(sb))
695 		return (0);
696 
697 	n->m_next = m0;			/* concatenate data to control */
698 
699 	if (sb->sb_mb == NULL)
700 		sb->sb_mb = control;
701 	else
702 		sb->sb_lastrecord->m_nextpkt = control;
703 	sb->sb_lastrecord = control;
704 
705 	sb->sb_cc += length;
706 	sb->sb_mbcnt += cmbcnt + m0mbcnt;
707 
708 	return (1);
709 }
710 
711 /*
712  * Compress mbuf chain m into the socket buffer sb following mbuf tailm.
713  * If tailm is null, the buffer is presumed empty.  Also, as a side-effect,
714  * increment the sockbuf counts for each mbuf in the chain.
715  */
716 void
717 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *tailm)
718 {
719 	int eor = 0;
720 
721 	while (m) {
722 		struct mbuf *o;
723 
724 		eor |= m->m_flags & M_EOR;
725 		/*
726 		 * Disregard empty mbufs as long as we don't encounter
727 		 * an end-of-record or there is a trailing mbuf of
728 		 * the same type to propagate the EOR flag to.
729 		 */
730 		if (m->m_len == 0 &&
731 		    (eor == 0 ||
732 		     (((o = m->m_next) || (o = tailm)) &&
733 		      o->m_type == m->m_type))) {
734 			m = m_free(m);
735 			continue;
736 		}
737 
738 		/* See if we can coalesce with preceding mbuf. */
739 		if (tailm && !(tailm->m_flags & M_EOR) && M_WRITABLE(tailm) &&
740 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
741 		    m->m_len <= M_TRAILINGSPACE(tailm) &&
742 		    tailm->m_type == m->m_type) {
743 			bcopy(mtod(m, caddr_t),
744 			      mtod(tailm, caddr_t) + tailm->m_len,
745 			      (unsigned)m->m_len);
746 			tailm->m_len += m->m_len;
747 			sb->sb_cc += m->m_len;		/* update sb counter */
748 			m = m_free(m);
749 			continue;
750 		}
751 
752 		/* Insert whole mbuf. */
753 		if (tailm == NULL) {
754 			KASSERT(sb->sb_mb == NULL,
755 				("sbcompress: sb_mb not NULL"));
756 			sb->sb_mb = m;		/* put at front of sockbuf */
757 		} else {
758 			tailm->m_next = m;	/* tack m on following tailm */
759 		}
760 		sb->sb_lastmbuf = m;	/* update last mbuf hint */
761 
762 		tailm = m;	/* just inserted mbuf becomes the new tail */
763 		m = m->m_next;		/* advance to next mbuf */
764 		tailm->m_next = NULL;	/* split inserted mbuf off from chain */
765 
766 		/* update sb counters for just added mbuf */
767 		sballoc(sb, tailm);
768 
769 		/* clear EOR on intermediate mbufs */
770 		tailm->m_flags &= ~M_EOR;
771 	}
772 
773 	if (eor) {
774 		if (tailm)
775 			tailm->m_flags |= eor;	/* propagate EOR to last mbuf */
776 		else
777 			printf("semi-panic: sbcompress");
778 	}
779 }
780 
781 /*
782  * Free all mbufs in a sockbuf.
783  * Check that all resources are reclaimed.
784  */
785 void
786 sbflush(sb)
787 	struct sockbuf *sb;
788 {
789 
790 	if (sb->sb_flags & SB_LOCK)
791 		panic("sbflush: locked");
792 	while (sb->sb_mbcnt) {
793 		/*
794 		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
795 		 * we would loop forever. Panic instead.
796 		 */
797 		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
798 			break;
799 		sbdrop(sb, (int)sb->sb_cc);
800 	}
801 	KASSERT(!(sb->sb_cc || sb->sb_mb || sb->sb_mbcnt || sb->sb_lastmbuf),
802 	    ("sbflush: cc %ld || mb %p || mbcnt %ld || lastmbuf %p",
803 	    sb->sb_cc, sb->sb_mb, sb->sb_mbcnt, sb->sb_lastmbuf));
804 }
805 
806 /*
807  * Drop data from (the front of) a sockbuf.
808  */
809 void
810 sbdrop(sb, len)
811 	struct sockbuf *sb;
812 	int len;
813 {
814 	struct mbuf *m;
815 	struct mbuf *nextpkt;
816 
817 	m = sb->sb_mb;
818 	nextpkt = (m != NULL) ? m->m_nextpkt : NULL;
819 	while (len > 0) {
820 		if (m == NULL) {
821 			if (nextpkt == NULL)
822 				panic("sbdrop");
823 			m = nextpkt;
824 			nextpkt = m->m_nextpkt;
825 			m->m_nextpkt = NULL;
826 			continue;
827 		}
828 		if (m->m_len > len) {
829 			m->m_len -= len;
830 			m->m_data += len;
831 			sb->sb_cc -= len;
832 			break;
833 		}
834 		len -= m->m_len;
835 		sbfree(sb, m);
836 		m = m_free(m);
837 	}
838 	while (m && m->m_len == 0) {
839 		sbfree(sb, m);
840 		m = m_free(m);
841 	}
842 	if (m != NULL) {
843 		sb->sb_mb = m;
844 		m->m_nextpkt = nextpkt;
845 	} else {
846 		sb->sb_mb = nextpkt;
847 		sb->sb_lastmbuf = NULL;		/* invalidate hint */
848 	}
849 }
850 
851 /*
852  * Drop a record off the front of a sockbuf
853  * and move the next record to the front.
854  */
855 void
856 sbdroprecord(sb)
857 	struct sockbuf *sb;
858 {
859 	struct mbuf *m;
860 
861 	m = sb->sb_mb;
862 	if (m) {
863 		sb->sb_mb = m->m_nextpkt;
864 		do {
865 			sbfree(sb, m);
866 			m = m_free(m);
867 		} while (m);
868 	}
869 }
870 
871 /*
872  * Create a "control" mbuf containing the specified data
873  * with the specified type for presentation on a socket buffer.
874  */
875 struct mbuf *
876 sbcreatecontrol(p, size, type, level)
877 	caddr_t p;
878 	int size;
879 	int type, level;
880 {
881 	struct cmsghdr *cp;
882 	struct mbuf *m;
883 
884 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
885 		return (NULL);
886 	m = m_getl(CMSG_SPACE((u_int)size), MB_DONTWAIT, MT_CONTROL, 0, NULL);
887 	if (m == NULL)
888 		return (NULL);
889 	m->m_len = CMSG_SPACE(size);
890 	cp = mtod(m, struct cmsghdr *);
891 	if (p != NULL)
892 		memcpy(CMSG_DATA(cp), p, size);
893 	cp->cmsg_len = CMSG_LEN(size);
894 	cp->cmsg_level = level;
895 	cp->cmsg_type = type;
896 	return (m);
897 }
898 
899 /*
900  * Some routines that return EOPNOTSUPP for entry points that are not
901  * supported by a protocol.  Fill in as needed.
902  */
903 int
904 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
905 {
906 	return EOPNOTSUPP;
907 }
908 
909 int
910 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
911 {
912 	return EOPNOTSUPP;
913 }
914 
915 int
916 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
917 {
918 	return EOPNOTSUPP;
919 }
920 
921 int
922 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
923 		    struct ifnet *ifp, struct thread *td)
924 {
925 	return EOPNOTSUPP;
926 }
927 
928 int
929 pru_listen_notsupp(struct socket *so, struct thread *td)
930 {
931 	return EOPNOTSUPP;
932 }
933 
934 int
935 pru_rcvd_notsupp(struct socket *so, int flags)
936 {
937 	return EOPNOTSUPP;
938 }
939 
940 int
941 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
942 {
943 	return EOPNOTSUPP;
944 }
945 
946 /*
947  * This isn't really a ``null'' operation, but it's the default one
948  * and doesn't do anything destructive.
949  */
950 int
951 pru_sense_null(struct socket *so, struct stat *sb)
952 {
953 	sb->st_blksize = so->so_snd.sb_hiwat;
954 	return 0;
955 }
956 
957 /*
958  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.  Callers
959  * of this routine assume that it always succeeds, so we have to use a
960  * blockable allocation even though we might be called from a critical thread.
961  */
962 struct sockaddr *
963 dup_sockaddr(const struct sockaddr *sa)
964 {
965 	struct sockaddr *sa2;
966 
967 	sa2 = malloc(sa->sa_len, M_SONAME, M_INTWAIT);
968 	bcopy(sa, sa2, sa->sa_len);
969 	return (sa2);
970 }
971 
972 /*
973  * Create an external-format (``xsocket'') structure using the information
974  * in the kernel-format socket structure pointed to by so.  This is done
975  * to reduce the spew of irrelevant information over this interface,
976  * to isolate user code from changes in the kernel structure, and
977  * potentially to provide information-hiding if we decide that
978  * some of this information should be hidden from users.
979  */
980 void
981 sotoxsocket(struct socket *so, struct xsocket *xso)
982 {
983 	xso->xso_len = sizeof *xso;
984 	xso->xso_so = so;
985 	xso->so_type = so->so_type;
986 	xso->so_options = so->so_options;
987 	xso->so_linger = so->so_linger;
988 	xso->so_state = so->so_state;
989 	xso->so_pcb = so->so_pcb;
990 	xso->xso_protocol = so->so_proto->pr_protocol;
991 	xso->xso_family = so->so_proto->pr_domain->dom_family;
992 	xso->so_qlen = so->so_qlen;
993 	xso->so_incqlen = so->so_incqlen;
994 	xso->so_qlimit = so->so_qlimit;
995 	xso->so_timeo = so->so_timeo;
996 	xso->so_error = so->so_error;
997 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
998 	xso->so_oobmark = so->so_oobmark;
999 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
1000 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
1001 	xso->so_uid = so->so_cred->cr_uid;
1002 }
1003 
1004 /*
1005  * This does the same for sockbufs.  Note that the xsockbuf structure,
1006  * since it is always embedded in a socket, does not include a self
1007  * pointer nor a length.  We make this entry point public in case
1008  * some other mechanism needs it.
1009  */
1010 void
1011 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1012 {
1013 	xsb->sb_cc = sb->sb_cc;
1014 	xsb->sb_hiwat = sb->sb_hiwat;
1015 	xsb->sb_mbcnt = sb->sb_mbcnt;
1016 	xsb->sb_mbmax = sb->sb_mbmax;
1017 	xsb->sb_lowat = sb->sb_lowat;
1018 	xsb->sb_flags = sb->sb_flags;
1019 	xsb->sb_timeo = sb->sb_timeo;
1020 }
1021 
1022 /*
1023  * Here is the definition of some of the basic objects in the kern.ipc
1024  * branch of the MIB.
1025  */
1026 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1027 
1028 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1029 static int dummy;
1030 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1031 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
1032     &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
1033 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
1034     &maxsockets, 0, "Maximum number of sockets avaliable");
1035 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1036     &sb_efficiency, 0, "");
1037 
1038 /*
1039  * Initialise maxsockets
1040  */
1041 static void init_maxsockets(void *ignored)
1042 {
1043     TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
1044     maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
1045 }
1046 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
1047