xref: /dflybsd-src/sys/kern/uipc_socket2.c (revision ac2e3f5effc58aa364c7e5c199f35ebbae7cda81)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
35  * $DragonFly: src/sys/kern/uipc_socket2.c,v 1.5 2003/07/26 19:42:11 rob Exp $
36  */
37 
38 #include "opt_param.h"
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/domain.h>
42 #include <sys/file.h>	/* for maxfiles */
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/protosw.h>
48 #include <sys/resourcevar.h>
49 #include <sys/stat.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/signalvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/aio.h> /* for aio_swake proto */
55 #include <sys/event.h>
56 
57 int	maxsockets;
58 
59 /*
60  * Primitive routines for operating on sockets and socket buffers
61  */
62 
63 u_long	sb_max = SB_MAX;
64 u_long	sb_max_adj =
65     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
66 
67 static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
68 
69 /*
70  * Procedures to manipulate state flags of socket
71  * and do appropriate wakeups.  Normal sequence from the
72  * active (originating) side is that soisconnecting() is
73  * called during processing of connect() call,
74  * resulting in an eventual call to soisconnected() if/when the
75  * connection is established.  When the connection is torn down
76  * soisdisconnecting() is called during processing of disconnect() call,
77  * and soisdisconnected() is called when the connection to the peer
78  * is totally severed.  The semantics of these routines are such that
79  * connectionless protocols can call soisconnected() and soisdisconnected()
80  * only, bypassing the in-progress calls when setting up a ``connection''
81  * takes no time.
82  *
83  * From the passive side, a socket is created with
84  * two queues of sockets: so_incomp for connections in progress
85  * and so_comp for connections already made and awaiting user acceptance.
86  * As a protocol is preparing incoming connections, it creates a socket
87  * structure queued on so_incomp by calling sonewconn().  When the connection
88  * is established, soisconnected() is called, and transfers the
89  * socket structure to so_comp, making it available to accept().
90  *
91  * If a socket is closed with sockets on either
92  * so_incomp or so_comp, these sockets are dropped.
93  *
94  * If higher level protocols are implemented in
95  * the kernel, the wakeups done here will sometimes
96  * cause software-interrupt process scheduling.
97  */
98 
99 void
100 soisconnecting(so)
101 	struct socket *so;
102 {
103 
104 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
105 	so->so_state |= SS_ISCONNECTING;
106 }
107 
108 void
109 soisconnected(so)
110 	struct socket *so;
111 {
112 	struct socket *head = so->so_head;
113 
114 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
115 	so->so_state |= SS_ISCONNECTED;
116 	if (head && (so->so_state & SS_INCOMP)) {
117 		if ((so->so_options & SO_ACCEPTFILTER) != 0) {
118 			so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
119 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
120 			so->so_rcv.sb_flags |= SB_UPCALL;
121 			so->so_options &= ~SO_ACCEPTFILTER;
122 			so->so_upcall(so, so->so_upcallarg, 0);
123 			return;
124 		}
125 		TAILQ_REMOVE(&head->so_incomp, so, so_list);
126 		head->so_incqlen--;
127 		so->so_state &= ~SS_INCOMP;
128 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
129 		head->so_qlen++;
130 		so->so_state |= SS_COMP;
131 		sorwakeup(head);
132 		wakeup_one(&head->so_timeo);
133 	} else {
134 		wakeup(&so->so_timeo);
135 		sorwakeup(so);
136 		sowwakeup(so);
137 	}
138 }
139 
140 void
141 soisdisconnecting(so)
142 	struct socket *so;
143 {
144 
145 	so->so_state &= ~SS_ISCONNECTING;
146 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
147 	wakeup((caddr_t)&so->so_timeo);
148 	sowwakeup(so);
149 	sorwakeup(so);
150 }
151 
152 void
153 soisdisconnected(so)
154 	struct socket *so;
155 {
156 
157 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
158 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
159 	wakeup((caddr_t)&so->so_timeo);
160 	sbdrop(&so->so_snd, so->so_snd.sb_cc);
161 	sowwakeup(so);
162 	sorwakeup(so);
163 }
164 
165 /*
166  * When an attempt at a new connection is noted on a socket
167  * which accepts connections, sonewconn is called.  If the
168  * connection is possible (subject to space constraints, etc.)
169  * then we allocate a new structure, propoerly linked into the
170  * data structure of the original socket, and return this.
171  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
172  */
173 struct socket *
174 sonewconn(struct socket *head, int connstatus)
175 {
176 	struct socket *so;
177 
178 	if (head->so_qlen > 3 * head->so_qlimit / 2)
179 		return ((struct socket *)0);
180 	so = soalloc(0);
181 	if (so == NULL)
182 		return ((struct socket *)0);
183 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
184 		connstatus = 0;
185 	so->so_head = head;
186 	so->so_type = head->so_type;
187 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
188 	so->so_linger = head->so_linger;
189 	so->so_state = head->so_state | SS_NOFDREF;
190 	so->so_proto = head->so_proto;
191 	so->so_timeo = head->so_timeo;
192 	so->so_cred = crhold(head->so_cred);
193 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
194 	    (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
195 		sodealloc(so);
196 		return ((struct socket *)0);
197 	}
198 
199 	if (connstatus) {
200 		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
201 		so->so_state |= SS_COMP;
202 		head->so_qlen++;
203 	} else {
204 		if (head->so_incqlen > head->so_qlimit) {
205 			struct socket *sp;
206 			sp = TAILQ_FIRST(&head->so_incomp);
207 			(void) soabort(sp);
208 		}
209 		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
210 		so->so_state |= SS_INCOMP;
211 		head->so_incqlen++;
212 	}
213 	if (connstatus) {
214 		sorwakeup(head);
215 		wakeup((caddr_t)&head->so_timeo);
216 		so->so_state |= connstatus;
217 	}
218 	return (so);
219 }
220 
221 /*
222  * Socantsendmore indicates that no more data will be sent on the
223  * socket; it would normally be applied to a socket when the user
224  * informs the system that no more data is to be sent, by the protocol
225  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
226  * will be received, and will normally be applied to the socket by a
227  * protocol when it detects that the peer will send no more data.
228  * Data queued for reading in the socket may yet be read.
229  */
230 
231 void
232 socantsendmore(so)
233 	struct socket *so;
234 {
235 
236 	so->so_state |= SS_CANTSENDMORE;
237 	sowwakeup(so);
238 }
239 
240 void
241 socantrcvmore(so)
242 	struct socket *so;
243 {
244 
245 	so->so_state |= SS_CANTRCVMORE;
246 	sorwakeup(so);
247 }
248 
249 /*
250  * Wait for data to arrive at/drain from a socket buffer.
251  */
252 int
253 sbwait(sb)
254 	struct sockbuf *sb;
255 {
256 
257 	sb->sb_flags |= SB_WAIT;
258 	return (tsleep((caddr_t)&sb->sb_cc,
259 			((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
260 			"sbwait",
261 			sb->sb_timeo));
262 }
263 
264 /*
265  * Lock a sockbuf already known to be locked;
266  * return any error returned from sleep (EINTR).
267  */
268 int
269 sb_lock(sb)
270 	struct sockbuf *sb;
271 {
272 	int error;
273 
274 	while (sb->sb_flags & SB_LOCK) {
275 		sb->sb_flags |= SB_WANT;
276 		error = tsleep((caddr_t)&sb->sb_flags,
277 			    ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
278 			    "sblock", 0);
279 		if (error)
280 			return (error);
281 	}
282 	sb->sb_flags |= SB_LOCK;
283 	return (0);
284 }
285 
286 /*
287  * Wakeup processes waiting on a socket buffer.
288  * Do asynchronous notification via SIGIO
289  * if the socket has the SS_ASYNC flag set.
290  */
291 void
292 sowakeup(so, sb)
293 	struct socket *so;
294 	struct sockbuf *sb;
295 {
296 	selwakeup(&sb->sb_sel);
297 	sb->sb_flags &= ~SB_SEL;
298 	if (sb->sb_flags & SB_WAIT) {
299 		sb->sb_flags &= ~SB_WAIT;
300 		wakeup((caddr_t)&sb->sb_cc);
301 	}
302 	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
303 		pgsigio(so->so_sigio, SIGIO, 0);
304 	if (sb->sb_flags & SB_UPCALL)
305 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
306 	if (sb->sb_flags & SB_AIO)
307 		aio_swake(so, sb);
308 	KNOTE(&sb->sb_sel.si_note, 0);
309 }
310 
311 /*
312  * Socket buffer (struct sockbuf) utility routines.
313  *
314  * Each socket contains two socket buffers: one for sending data and
315  * one for receiving data.  Each buffer contains a queue of mbufs,
316  * information about the number of mbufs and amount of data in the
317  * queue, and other fields allowing select() statements and notification
318  * on data availability to be implemented.
319  *
320  * Data stored in a socket buffer is maintained as a list of records.
321  * Each record is a list of mbufs chained together with the m_next
322  * field.  Records are chained together with the m_nextpkt field. The upper
323  * level routine soreceive() expects the following conventions to be
324  * observed when placing information in the receive buffer:
325  *
326  * 1. If the protocol requires each message be preceded by the sender's
327  *    name, then a record containing that name must be present before
328  *    any associated data (mbuf's must be of type MT_SONAME).
329  * 2. If the protocol supports the exchange of ``access rights'' (really
330  *    just additional data associated with the message), and there are
331  *    ``rights'' to be received, then a record containing this data
332  *    should be present (mbuf's must be of type MT_RIGHTS).
333  * 3. If a name or rights record exists, then it must be followed by
334  *    a data record, perhaps of zero length.
335  *
336  * Before using a new socket structure it is first necessary to reserve
337  * buffer space to the socket, by calling sbreserve().  This should commit
338  * some of the available buffer space in the system buffer pool for the
339  * socket (currently, it does nothing but enforce limits).  The space
340  * should be released by calling sbrelease() when the socket is destroyed.
341  */
342 
343 int
344 soreserve(so, sndcc, rcvcc)
345 	struct socket *so;
346 	u_long sndcc, rcvcc;
347 {
348 	struct proc *p = curproc;
349 
350 	if (sbreserve(&so->so_snd, sndcc, so, p) == 0)
351 		goto bad;
352 	if (sbreserve(&so->so_rcv, rcvcc, so, p) == 0)
353 		goto bad2;
354 	if (so->so_rcv.sb_lowat == 0)
355 		so->so_rcv.sb_lowat = 1;
356 	if (so->so_snd.sb_lowat == 0)
357 		so->so_snd.sb_lowat = MCLBYTES;
358 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
359 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
360 	return (0);
361 bad2:
362 	sbrelease(&so->so_snd, so);
363 bad:
364 	return (ENOBUFS);
365 }
366 
367 static int
368 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
369 {
370 	int error = 0;
371 	u_long old_sb_max = sb_max;
372 
373 	error = SYSCTL_OUT(req, arg1, sizeof(int));
374 	if (error || !req->newptr)
375 		return (error);
376 	error = SYSCTL_IN(req, arg1, sizeof(int));
377 	if (error)
378 		return (error);
379 	if (sb_max < MSIZE + MCLBYTES) {
380 		sb_max = old_sb_max;
381 		return (EINVAL);
382 	}
383 	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
384 	return (0);
385 }
386 
387 /*
388  * Allot mbufs to a sockbuf.
389  * Attempt to scale mbmax so that mbcnt doesn't become limiting
390  * if buffering efficiency is near the normal case.
391  */
392 int
393 sbreserve(sb, cc, so, p)
394 	struct sockbuf *sb;
395 	u_long cc;
396 	struct socket *so;
397 	struct proc *p;
398 {
399 
400 	/*
401 	 * p will only be NULL when we're in an interrupt
402 	 * (e.g. in tcp_input())
403 	 */
404 	if (cc > sb_max_adj)
405 		return (0);
406 	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
407 	    p ? p->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) {
408 		return (0);
409 	}
410 	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
411 	if (sb->sb_lowat > sb->sb_hiwat)
412 		sb->sb_lowat = sb->sb_hiwat;
413 	return (1);
414 }
415 
416 /*
417  * Free mbufs held by a socket, and reserved mbuf space.
418  */
419 void
420 sbrelease(sb, so)
421 	struct sockbuf *sb;
422 	struct socket *so;
423 {
424 
425 	sbflush(sb);
426 	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
427 	    RLIM_INFINITY);
428 	sb->sb_mbmax = 0;
429 }
430 
431 /*
432  * Routines to add and remove
433  * data from an mbuf queue.
434  *
435  * The routines sbappend() or sbappendrecord() are normally called to
436  * append new mbufs to a socket buffer, after checking that adequate
437  * space is available, comparing the function sbspace() with the amount
438  * of data to be added.  sbappendrecord() differs from sbappend() in
439  * that data supplied is treated as the beginning of a new record.
440  * To place a sender's address, optional access rights, and data in a
441  * socket receive buffer, sbappendaddr() should be used.  To place
442  * access rights and data in a socket receive buffer, sbappendrights()
443  * should be used.  In either case, the new data begins a new record.
444  * Note that unlike sbappend() and sbappendrecord(), these routines check
445  * for the caller that there will be enough space to store the data.
446  * Each fails if there is not enough space, or if it cannot find mbufs
447  * to store additional information in.
448  *
449  * Reliable protocols may use the socket send buffer to hold data
450  * awaiting acknowledgement.  Data is normally copied from a socket
451  * send buffer in a protocol with m_copy for output to a peer,
452  * and then removing the data from the socket buffer with sbdrop()
453  * or sbdroprecord() when the data is acknowledged by the peer.
454  */
455 
456 /*
457  * Append mbuf chain m to the last record in the
458  * socket buffer sb.  The additional space associated
459  * the mbuf chain is recorded in sb.  Empty mbufs are
460  * discarded and mbufs are compacted where possible.
461  */
462 void
463 sbappend(sb, m)
464 	struct sockbuf *sb;
465 	struct mbuf *m;
466 {
467 	struct mbuf *n;
468 
469 	if (m == 0)
470 		return;
471 	n = sb->sb_mb;
472 	if (n) {
473 		while (n->m_nextpkt)
474 			n = n->m_nextpkt;
475 		do {
476 			if (n->m_flags & M_EOR) {
477 				sbappendrecord(sb, m); /* XXXXXX!!!! */
478 				return;
479 			}
480 		} while (n->m_next && (n = n->m_next));
481 	}
482 	sbcompress(sb, m, n);
483 }
484 
485 #ifdef SOCKBUF_DEBUG
486 void
487 sbcheck(sb)
488 	struct sockbuf *sb;
489 {
490 	struct mbuf *m;
491 	struct mbuf *n = 0;
492 	u_long len = 0, mbcnt = 0;
493 
494 	for (m = sb->sb_mb; m; m = n) {
495 	    n = m->m_nextpkt;
496 	    for (; m; m = m->m_next) {
497 		len += m->m_len;
498 		mbcnt += MSIZE;
499 		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
500 			mbcnt += m->m_ext.ext_size;
501 	    }
502 	}
503 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
504 		printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
505 		    mbcnt, sb->sb_mbcnt);
506 		panic("sbcheck");
507 	}
508 }
509 #endif
510 
511 /*
512  * As above, except the mbuf chain
513  * begins a new record.
514  */
515 void
516 sbappendrecord(sb, m0)
517 	struct sockbuf *sb;
518 	struct mbuf *m0;
519 {
520 	struct mbuf *m;
521 
522 	if (m0 == 0)
523 		return;
524 	m = sb->sb_mb;
525 	if (m)
526 		while (m->m_nextpkt)
527 			m = m->m_nextpkt;
528 	/*
529 	 * Put the first mbuf on the queue.
530 	 * Note this permits zero length records.
531 	 */
532 	sballoc(sb, m0);
533 	if (m)
534 		m->m_nextpkt = m0;
535 	else
536 		sb->sb_mb = m0;
537 	m = m0->m_next;
538 	m0->m_next = 0;
539 	if (m && (m0->m_flags & M_EOR)) {
540 		m0->m_flags &= ~M_EOR;
541 		m->m_flags |= M_EOR;
542 	}
543 	sbcompress(sb, m, m0);
544 }
545 
546 /*
547  * As above except that OOB data
548  * is inserted at the beginning of the sockbuf,
549  * but after any other OOB data.
550  */
551 void
552 sbinsertoob(sb, m0)
553 	struct sockbuf *sb;
554 	struct mbuf *m0;
555 {
556 	struct mbuf *m;
557 	struct mbuf **mp;
558 
559 	if (m0 == 0)
560 		return;
561 	for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
562 	    m = *mp;
563 	    again:
564 		switch (m->m_type) {
565 
566 		case MT_OOBDATA:
567 			continue;		/* WANT next train */
568 
569 		case MT_CONTROL:
570 			m = m->m_next;
571 			if (m)
572 				goto again;	/* inspect THIS train further */
573 		}
574 		break;
575 	}
576 	/*
577 	 * Put the first mbuf on the queue.
578 	 * Note this permits zero length records.
579 	 */
580 	sballoc(sb, m0);
581 	m0->m_nextpkt = *mp;
582 	*mp = m0;
583 	m = m0->m_next;
584 	m0->m_next = 0;
585 	if (m && (m0->m_flags & M_EOR)) {
586 		m0->m_flags &= ~M_EOR;
587 		m->m_flags |= M_EOR;
588 	}
589 	sbcompress(sb, m, m0);
590 }
591 
592 /*
593  * Append address and data, and optionally, control (ancillary) data
594  * to the receive queue of a socket.  If present,
595  * m0 must include a packet header with total length.
596  * Returns 0 if no space in sockbuf or insufficient mbufs.
597  */
598 int
599 sbappendaddr(sb, asa, m0, control)
600 	struct sockbuf *sb;
601 	struct sockaddr *asa;
602 	struct mbuf *m0, *control;
603 {
604 	struct mbuf *m, *n;
605 	int space = asa->sa_len;
606 
607 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
608 panic("sbappendaddr");
609 	if (m0)
610 		space += m0->m_pkthdr.len;
611 	for (n = control; n; n = n->m_next) {
612 		space += n->m_len;
613 		if (n->m_next == 0)	/* keep pointer to last control buf */
614 			break;
615 	}
616 	if (space > sbspace(sb))
617 		return (0);
618 	if (asa->sa_len > MLEN)
619 		return (0);
620 	MGET(m, M_DONTWAIT, MT_SONAME);
621 	if (m == 0)
622 		return (0);
623 	m->m_len = asa->sa_len;
624 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
625 	if (n)
626 		n->m_next = m0;		/* concatenate data to control */
627 	else
628 		control = m0;
629 	m->m_next = control;
630 	for (n = m; n; n = n->m_next)
631 		sballoc(sb, n);
632 	n = sb->sb_mb;
633 	if (n) {
634 		while (n->m_nextpkt)
635 			n = n->m_nextpkt;
636 		n->m_nextpkt = m;
637 	} else
638 		sb->sb_mb = m;
639 	return (1);
640 }
641 
642 int
643 sbappendcontrol(sb, m0, control)
644 	struct sockbuf *sb;
645 	struct mbuf *control, *m0;
646 {
647 	struct mbuf *m, *n;
648 	int space = 0;
649 
650 	if (control == 0)
651 		panic("sbappendcontrol");
652 	for (m = control; ; m = m->m_next) {
653 		space += m->m_len;
654 		if (m->m_next == 0)
655 			break;
656 	}
657 	n = m;			/* save pointer to last control buffer */
658 	for (m = m0; m; m = m->m_next)
659 		space += m->m_len;
660 	if (space > sbspace(sb))
661 		return (0);
662 	n->m_next = m0;			/* concatenate data to control */
663 	for (m = control; m; m = m->m_next)
664 		sballoc(sb, m);
665 	n = sb->sb_mb;
666 	if (n) {
667 		while (n->m_nextpkt)
668 			n = n->m_nextpkt;
669 		n->m_nextpkt = control;
670 	} else
671 		sb->sb_mb = control;
672 	return (1);
673 }
674 
675 /*
676  * Compress mbuf chain m into the socket
677  * buffer sb following mbuf n.  If n
678  * is null, the buffer is presumed empty.
679  */
680 void
681 sbcompress(sb, m, n)
682 	struct sockbuf *sb;
683 	struct mbuf *m, *n;
684 {
685 	int eor = 0;
686 	struct mbuf *o;
687 
688 	while (m) {
689 		eor |= m->m_flags & M_EOR;
690 		if (m->m_len == 0 &&
691 		    (eor == 0 ||
692 		     (((o = m->m_next) || (o = n)) &&
693 		      o->m_type == m->m_type))) {
694 			m = m_free(m);
695 			continue;
696 		}
697 		if (n && (n->m_flags & M_EOR) == 0 &&
698 		    M_WRITABLE(n) &&
699 		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
700 		    m->m_len <= M_TRAILINGSPACE(n) &&
701 		    n->m_type == m->m_type) {
702 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
703 			    (unsigned)m->m_len);
704 			n->m_len += m->m_len;
705 			sb->sb_cc += m->m_len;
706 			m = m_free(m);
707 			continue;
708 		}
709 		if (n)
710 			n->m_next = m;
711 		else
712 			sb->sb_mb = m;
713 		sballoc(sb, m);
714 		n = m;
715 		m->m_flags &= ~M_EOR;
716 		m = m->m_next;
717 		n->m_next = 0;
718 	}
719 	if (eor) {
720 		if (n)
721 			n->m_flags |= eor;
722 		else
723 			printf("semi-panic: sbcompress\n");
724 	}
725 }
726 
727 /*
728  * Free all mbufs in a sockbuf.
729  * Check that all resources are reclaimed.
730  */
731 void
732 sbflush(sb)
733 	struct sockbuf *sb;
734 {
735 
736 	if (sb->sb_flags & SB_LOCK)
737 		panic("sbflush: locked");
738 	while (sb->sb_mbcnt) {
739 		/*
740 		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
741 		 * we would loop forever. Panic instead.
742 		 */
743 		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
744 			break;
745 		sbdrop(sb, (int)sb->sb_cc);
746 	}
747 	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
748 		panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
749 }
750 
751 /*
752  * Drop data from (the front of) a sockbuf.
753  */
754 void
755 sbdrop(sb, len)
756 	struct sockbuf *sb;
757 	int len;
758 {
759 	struct mbuf *m;
760 	struct mbuf *next;
761 
762 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
763 	while (len > 0) {
764 		if (m == 0) {
765 			if (next == 0)
766 				panic("sbdrop");
767 			m = next;
768 			next = m->m_nextpkt;
769 			continue;
770 		}
771 		if (m->m_len > len) {
772 			m->m_len -= len;
773 			m->m_data += len;
774 			sb->sb_cc -= len;
775 			break;
776 		}
777 		len -= m->m_len;
778 		sbfree(sb, m);
779 		m = m_free(m);
780 	}
781 	while (m && m->m_len == 0) {
782 		sbfree(sb, m);
783 		m = m_free(m);
784 	}
785 	if (m) {
786 		sb->sb_mb = m;
787 		m->m_nextpkt = next;
788 	} else
789 		sb->sb_mb = next;
790 }
791 
792 /*
793  * Drop a record off the front of a sockbuf
794  * and move the next record to the front.
795  */
796 void
797 sbdroprecord(sb)
798 	struct sockbuf *sb;
799 {
800 	struct mbuf *m;
801 
802 	m = sb->sb_mb;
803 	if (m) {
804 		sb->sb_mb = m->m_nextpkt;
805 		do {
806 			sbfree(sb, m);
807 			m = m_free(m);
808 		} while (m);
809 	}
810 }
811 
812 /*
813  * Create a "control" mbuf containing the specified data
814  * with the specified type for presentation on a socket buffer.
815  */
816 struct mbuf *
817 sbcreatecontrol(p, size, type, level)
818 	caddr_t p;
819 	int size;
820 	int type, level;
821 {
822 	struct cmsghdr *cp;
823 	struct mbuf *m;
824 
825 	if (CMSG_SPACE((u_int)size) > MCLBYTES)
826 		return ((struct mbuf *) NULL);
827 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
828 		return ((struct mbuf *) NULL);
829 	if (CMSG_SPACE((u_int)size) > MLEN) {
830 		MCLGET(m, M_DONTWAIT);
831 		if ((m->m_flags & M_EXT) == 0) {
832 			m_free(m);
833 			return ((struct mbuf *) NULL);
834 		}
835 	}
836 	cp = mtod(m, struct cmsghdr *);
837 	m->m_len = 0;
838 	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
839 	    ("sbcreatecontrol: short mbuf"));
840 	if (p != NULL)
841 		(void)memcpy(CMSG_DATA(cp), p, size);
842 	m->m_len = CMSG_SPACE(size);
843 	cp->cmsg_len = CMSG_LEN(size);
844 	cp->cmsg_level = level;
845 	cp->cmsg_type = type;
846 	return (m);
847 }
848 
849 /*
850  * Some routines that return EOPNOTSUPP for entry points that are not
851  * supported by a protocol.  Fill in as needed.
852  */
853 int
854 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
855 {
856 	return EOPNOTSUPP;
857 }
858 
859 int
860 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
861 {
862 	return EOPNOTSUPP;
863 }
864 
865 int
866 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
867 {
868 	return EOPNOTSUPP;
869 }
870 
871 int
872 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
873 		    struct ifnet *ifp, struct thread *td)
874 {
875 	return EOPNOTSUPP;
876 }
877 
878 int
879 pru_listen_notsupp(struct socket *so, struct thread *td)
880 {
881 	return EOPNOTSUPP;
882 }
883 
884 int
885 pru_rcvd_notsupp(struct socket *so, int flags)
886 {
887 	return EOPNOTSUPP;
888 }
889 
890 int
891 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
892 {
893 	return EOPNOTSUPP;
894 }
895 
896 /*
897  * This isn't really a ``null'' operation, but it's the default one
898  * and doesn't do anything destructive.
899  */
900 int
901 pru_sense_null(struct socket *so, struct stat *sb)
902 {
903 	sb->st_blksize = so->so_snd.sb_hiwat;
904 	return 0;
905 }
906 
907 /*
908  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
909  */
910 struct sockaddr *
911 dup_sockaddr(sa, canwait)
912 	struct sockaddr *sa;
913 	int canwait;
914 {
915 	struct sockaddr *sa2;
916 
917 	MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
918 	       canwait ? M_WAITOK : M_NOWAIT);
919 	if (sa2)
920 		bcopy(sa, sa2, sa->sa_len);
921 	return sa2;
922 }
923 
924 /*
925  * Create an external-format (``xsocket'') structure using the information
926  * in the kernel-format socket structure pointed to by so.  This is done
927  * to reduce the spew of irrelevant information over this interface,
928  * to isolate user code from changes in the kernel structure, and
929  * potentially to provide information-hiding if we decide that
930  * some of this information should be hidden from users.
931  */
932 void
933 sotoxsocket(struct socket *so, struct xsocket *xso)
934 {
935 	xso->xso_len = sizeof *xso;
936 	xso->xso_so = so;
937 	xso->so_type = so->so_type;
938 	xso->so_options = so->so_options;
939 	xso->so_linger = so->so_linger;
940 	xso->so_state = so->so_state;
941 	xso->so_pcb = so->so_pcb;
942 	xso->xso_protocol = so->so_proto->pr_protocol;
943 	xso->xso_family = so->so_proto->pr_domain->dom_family;
944 	xso->so_qlen = so->so_qlen;
945 	xso->so_incqlen = so->so_incqlen;
946 	xso->so_qlimit = so->so_qlimit;
947 	xso->so_timeo = so->so_timeo;
948 	xso->so_error = so->so_error;
949 	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
950 	xso->so_oobmark = so->so_oobmark;
951 	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
952 	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
953 	xso->so_uid = so->so_cred->cr_uid;
954 }
955 
956 /*
957  * This does the same for sockbufs.  Note that the xsockbuf structure,
958  * since it is always embedded in a socket, does not include a self
959  * pointer nor a length.  We make this entry point public in case
960  * some other mechanism needs it.
961  */
962 void
963 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
964 {
965 	xsb->sb_cc = sb->sb_cc;
966 	xsb->sb_hiwat = sb->sb_hiwat;
967 	xsb->sb_mbcnt = sb->sb_mbcnt;
968 	xsb->sb_mbmax = sb->sb_mbmax;
969 	xsb->sb_lowat = sb->sb_lowat;
970 	xsb->sb_flags = sb->sb_flags;
971 	xsb->sb_timeo = sb->sb_timeo;
972 }
973 
974 /*
975  * Here is the definition of some of the basic objects in the kern.ipc
976  * branch of the MIB.
977  */
978 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
979 
980 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
981 static int dummy;
982 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
983 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
984     &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
985 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
986     &maxsockets, 0, "Maximum number of sockets avaliable");
987 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
988     &sb_efficiency, 0, "");
989 
990 /*
991  * Initialise maxsockets
992  */
993 static void init_maxsockets(void *ignored)
994 {
995     TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
996     maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
997 }
998 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
999