1 /* 2 * Copyright (c) 2005 Jeffrey M. Hsu. All rights reserved. 3 * Copyright (c) 1982, 1986, 1988, 1990, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by the University of 17 * California, Berkeley and its contributors. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 35 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $ 36 * $DragonFly: src/sys/kern/uipc_socket2.c,v 1.33 2008/09/02 16:17:52 dillon Exp $ 37 */ 38 39 #include "opt_param.h" 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/domain.h> 43 #include <sys/file.h> /* for maxfiles */ 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/protosw.h> 49 #include <sys/resourcevar.h> 50 #include <sys/stat.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/signalvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/aio.h> /* for aio_swake proto */ 56 #include <sys/event.h> 57 58 #include <sys/thread2.h> 59 #include <sys/msgport2.h> 60 #include <sys/socketvar2.h> 61 62 int maxsockets; 63 64 /* 65 * Primitive routines for operating on sockets and socket buffers 66 */ 67 68 u_long sb_max = SB_MAX; 69 u_long sb_max_adj = 70 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ 71 72 static u_long sb_efficiency = 8; /* parameter for sbreserve() */ 73 74 /************************************************************************ 75 * signalsockbuf procedures * 76 ************************************************************************/ 77 78 /* 79 * Wait for data to arrive at/drain from a socket buffer. 80 * 81 * NOTE: Caller must generally hold the ssb_lock (client side lock) since 82 * WAIT/WAKEUP only works for one client at a time. 83 * 84 * NOTE: Caller always retries whatever operation it was waiting on. 85 */ 86 int 87 ssb_wait(struct signalsockbuf *ssb) 88 { 89 uint32_t flags; 90 int pflags; 91 int error; 92 93 pflags = (ssb->ssb_flags & SSB_NOINTR) ? 0 : PCATCH; 94 95 for (;;) { 96 flags = ssb->ssb_flags; 97 cpu_ccfence(); 98 99 /* 100 * WAKEUP and WAIT interlock eachother. We can catch the 101 * race by checking to see if WAKEUP has already been set, 102 * and only setting WAIT if WAKEUP is clear. 103 */ 104 if (flags & SSB_WAKEUP) { 105 if (atomic_cmpset_int(&ssb->ssb_flags, flags, 106 flags & ~SSB_WAKEUP)) { 107 error = 0; 108 break; 109 } 110 continue; 111 } 112 113 /* 114 * Only set WAIT if WAKEUP is clear. 115 */ 116 tsleep_interlock(&ssb->ssb_cc, pflags); 117 if (atomic_cmpset_int(&ssb->ssb_flags, flags, 118 flags | SSB_WAIT)) { 119 error = tsleep(&ssb->ssb_cc, pflags | PINTERLOCKED, 120 "sbwait", ssb->ssb_timeo); 121 break; 122 } 123 } 124 return (error); 125 } 126 127 /* 128 * Lock a sockbuf already known to be locked; 129 * return any error returned from sleep (EINTR). 130 */ 131 int 132 _ssb_lock(struct signalsockbuf *ssb) 133 { 134 uint32_t flags; 135 int pflags; 136 int error; 137 138 pflags = (ssb->ssb_flags & SSB_NOINTR) ? 0 : PCATCH; 139 140 for (;;) { 141 flags = ssb->ssb_flags; 142 cpu_ccfence(); 143 if (flags & SSB_LOCK) { 144 tsleep_interlock(&ssb->ssb_flags, pflags); 145 if (atomic_cmpset_int(&ssb->ssb_flags, flags, 146 flags | SSB_WANT)) { 147 error = tsleep(&ssb->ssb_flags, 148 pflags | PINTERLOCKED, 149 "sblock", 0); 150 if (error) 151 break; 152 } 153 } else { 154 if (atomic_cmpset_int(&ssb->ssb_flags, flags, 155 flags | SSB_LOCK)) { 156 lwkt_gettoken(&ssb->ssb_token); 157 error = 0; 158 break; 159 } 160 } 161 } 162 return (error); 163 } 164 165 /* 166 * This does the same for sockbufs. Note that the xsockbuf structure, 167 * since it is always embedded in a socket, does not include a self 168 * pointer nor a length. We make this entry point public in case 169 * some other mechanism needs it. 170 */ 171 void 172 ssbtoxsockbuf(struct signalsockbuf *ssb, struct xsockbuf *xsb) 173 { 174 xsb->sb_cc = ssb->ssb_cc; 175 xsb->sb_hiwat = ssb->ssb_hiwat; 176 xsb->sb_mbcnt = ssb->ssb_mbcnt; 177 xsb->sb_mbmax = ssb->ssb_mbmax; 178 xsb->sb_lowat = ssb->ssb_lowat; 179 xsb->sb_flags = ssb->ssb_flags; 180 xsb->sb_timeo = ssb->ssb_timeo; 181 } 182 183 184 /************************************************************************ 185 * Procedures which manipulate socket state flags, wakeups, etc. * 186 ************************************************************************ 187 * 188 * Normal sequence from the active (originating) side is that 189 * soisconnecting() is called during processing of connect() call, resulting 190 * in an eventual call to soisconnected() if/when the connection is 191 * established. When the connection is torn down soisdisconnecting() is 192 * called during processing of disconnect() call, and soisdisconnected() is 193 * called when the connection to the peer is totally severed. 194 * 195 * The semantics of these routines are such that connectionless protocols 196 * can call soisconnected() and soisdisconnected() only, bypassing the 197 * in-progress calls when setting up a ``connection'' takes no time. 198 * 199 * From the passive side, a socket is created with two queues of sockets: 200 * so_incomp for connections in progress and so_comp for connections 201 * already made and awaiting user acceptance. As a protocol is preparing 202 * incoming connections, it creates a socket structure queued on so_incomp 203 * by calling sonewconn(). When the connection is established, 204 * soisconnected() is called, and transfers the socket structure to so_comp, 205 * making it available to accept(). 206 * 207 * If a socket is closed with sockets on either so_incomp or so_comp, these 208 * sockets are dropped. 209 * 210 * If higher level protocols are implemented in the kernel, the wakeups 211 * done here will sometimes cause software-interrupt process scheduling. 212 */ 213 214 void 215 soisconnecting(struct socket *so) 216 { 217 soclrstate(so, SS_ISCONNECTED | SS_ISDISCONNECTING); 218 sosetstate(so, SS_ISCONNECTING); 219 } 220 221 void 222 soisconnected(struct socket *so) 223 { 224 struct socket *head = so->so_head; 225 226 soclrstate(so, SS_ISCONNECTING | SS_ISDISCONNECTING | SS_ISCONFIRMING); 227 sosetstate(so, SS_ISCONNECTED); 228 if (head && (so->so_state & SS_INCOMP)) { 229 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 230 so->so_upcall = head->so_accf->so_accept_filter->accf_callback; 231 so->so_upcallarg = head->so_accf->so_accept_filter_arg; 232 atomic_set_int(&so->so_rcv.ssb_flags, SSB_UPCALL); 233 so->so_options &= ~SO_ACCEPTFILTER; 234 so->so_upcall(so, so->so_upcallarg, 0); 235 return; 236 } 237 238 /* 239 * Listen socket are not per-cpu. 240 */ 241 lwkt_gettoken(&head->so_rcv.ssb_token); 242 TAILQ_REMOVE(&head->so_incomp, so, so_list); 243 head->so_incqlen--; 244 soclrstate(so, SS_INCOMP); 245 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 246 head->so_qlen++; 247 sosetstate(so, SS_COMP); 248 lwkt_reltoken(&head->so_rcv.ssb_token); 249 250 sorwakeup(head); 251 wakeup_one(&head->so_timeo); 252 } else { 253 wakeup(&so->so_timeo); 254 sorwakeup(so); 255 sowwakeup(so); 256 } 257 } 258 259 void 260 soisdisconnecting(struct socket *so) 261 { 262 soclrstate(so, SS_ISCONNECTING); 263 sosetstate(so, SS_ISDISCONNECTING | SS_CANTRCVMORE | SS_CANTSENDMORE); 264 wakeup((caddr_t)&so->so_timeo); 265 sowwakeup(so); 266 sorwakeup(so); 267 } 268 269 void 270 soisdisconnected(struct socket *so) 271 { 272 soclrstate(so, SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING); 273 sosetstate(so, SS_CANTRCVMORE | SS_CANTSENDMORE | SS_ISDISCONNECTED); 274 wakeup((caddr_t)&so->so_timeo); 275 sbdrop(&so->so_snd.sb, so->so_snd.ssb_cc); 276 sowwakeup(so); 277 sorwakeup(so); 278 } 279 280 void 281 soisreconnecting(struct socket *so) 282 { 283 soclrstate(so, SS_ISDISCONNECTING | SS_ISDISCONNECTED | 284 SS_CANTRCVMORE | SS_CANTSENDMORE); 285 sosetstate(so, SS_ISCONNECTING); 286 } 287 288 void 289 soisreconnected(struct socket *so) 290 { 291 soclrstate(so, SS_ISDISCONNECTED | SS_CANTRCVMORE | SS_CANTSENDMORE); 292 soisconnected(so); 293 } 294 295 /* 296 * Set or change the message port a socket receives commands on. 297 * 298 * XXX 299 */ 300 void 301 sosetport(struct socket *so, lwkt_port_t port) 302 { 303 so->so_port = port; 304 } 305 306 /* 307 * When an attempt at a new connection is noted on a socket 308 * which accepts connections, sonewconn is called. If the 309 * connection is possible (subject to space constraints, etc.) 310 * then we allocate a new structure, propoerly linked into the 311 * data structure of the original socket, and return this. 312 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. 313 * 314 * The new socket is returned with one ref and so_pcb assigned. 315 * The reference is implied by so_pcb. 316 */ 317 struct socket * 318 sonewconn(struct socket *head, int connstatus) 319 { 320 struct socket *so; 321 struct socket *sp; 322 struct pru_attach_info ai; 323 324 if (head->so_qlen > 3 * head->so_qlimit / 2) 325 return (NULL); 326 so = soalloc(1); 327 if (so == NULL) 328 return (NULL); 329 if ((head->so_options & SO_ACCEPTFILTER) != 0) 330 connstatus = 0; 331 so->so_head = head; 332 so->so_type = head->so_type; 333 so->so_options = head->so_options &~ SO_ACCEPTCONN; 334 so->so_linger = head->so_linger; 335 336 /* 337 * NOTE: Clearing NOFDREF implies referencing the so with 338 * soreference(). 339 */ 340 so->so_state = head->so_state | SS_NOFDREF; 341 so->so_proto = head->so_proto; 342 so->so_cred = crhold(head->so_cred); 343 ai.sb_rlimit = NULL; 344 ai.p_ucred = NULL; 345 ai.fd_rdir = NULL; /* jail code cruft XXX JH */ 346 347 /* 348 * Reserve space and call pru_attach. We can directl call the 349 * function since we're already in the protocol thread. 350 */ 351 if (soreserve(so, head->so_snd.ssb_hiwat, 352 head->so_rcv.ssb_hiwat, NULL) || 353 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, &ai)) { 354 so->so_head = NULL; 355 sofree(so); /* remove implied pcb ref */ 356 return (NULL); 357 } 358 KKASSERT(so->so_refs == 2); /* attach + our base ref */ 359 sofree(so); 360 KKASSERT(so->so_port != NULL); 361 so->so_rcv.ssb_lowat = head->so_rcv.ssb_lowat; 362 so->so_snd.ssb_lowat = head->so_snd.ssb_lowat; 363 so->so_rcv.ssb_timeo = head->so_rcv.ssb_timeo; 364 so->so_snd.ssb_timeo = head->so_snd.ssb_timeo; 365 so->so_rcv.ssb_flags |= head->so_rcv.ssb_flags & 366 (SSB_AUTOSIZE | SSB_AUTOLOWAT); 367 so->so_snd.ssb_flags |= head->so_snd.ssb_flags & 368 (SSB_AUTOSIZE | SSB_AUTOLOWAT); 369 lwkt_gettoken(&head->so_rcv.ssb_token); 370 if (connstatus) { 371 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); 372 sosetstate(so, SS_COMP); 373 head->so_qlen++; 374 } else { 375 if (head->so_incqlen > head->so_qlimit) { 376 sp = TAILQ_FIRST(&head->so_incomp); 377 TAILQ_REMOVE(&head->so_incomp, sp, so_list); 378 head->so_incqlen--; 379 soclrstate(sp, SS_INCOMP); 380 sp->so_head = NULL; 381 soaborta(sp); 382 } 383 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); 384 sosetstate(so, SS_INCOMP); 385 head->so_incqlen++; 386 } 387 lwkt_reltoken(&head->so_rcv.ssb_token); 388 if (connstatus) { 389 sorwakeup(head); 390 wakeup((caddr_t)&head->so_timeo); 391 sosetstate(so, connstatus); 392 } 393 return (so); 394 } 395 396 /* 397 * Socantsendmore indicates that no more data will be sent on the 398 * socket; it would normally be applied to a socket when the user 399 * informs the system that no more data is to be sent, by the protocol 400 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 401 * will be received, and will normally be applied to the socket by a 402 * protocol when it detects that the peer will send no more data. 403 * Data queued for reading in the socket may yet be read. 404 */ 405 void 406 socantsendmore(struct socket *so) 407 { 408 sosetstate(so, SS_CANTSENDMORE); 409 sowwakeup(so); 410 } 411 412 void 413 socantrcvmore(struct socket *so) 414 { 415 sosetstate(so, SS_CANTRCVMORE); 416 sorwakeup(so); 417 } 418 419 /* 420 * Wakeup processes waiting on a socket buffer. Do asynchronous notification 421 * via SIGIO if the socket has the SS_ASYNC flag set. 422 * 423 * For users waiting on send/recv try to avoid unnecessary context switch 424 * thrashing. Particularly for senders of large buffers (needs to be 425 * extended to sel and aio? XXX) 426 */ 427 void 428 sowakeup(struct socket *so, struct signalsockbuf *ssb) 429 { 430 struct kqinfo *kqinfo = &ssb->ssb_kq; 431 uint32_t flags; 432 433 /* 434 * Check conditions, set the WAKEUP flag, and clear and signal if 435 * the WAIT flag is found to be set. This interlocks against the 436 * client side. 437 */ 438 for (;;) { 439 flags = ssb->ssb_flags; 440 cpu_ccfence(); 441 442 if ((ssb == &so->so_snd && ssb_space(ssb) >= ssb->ssb_lowat) || 443 (ssb == &so->so_rcv && ssb->ssb_cc >= ssb->ssb_lowat) || 444 (ssb == &so->so_snd && (so->so_state & SS_CANTSENDMORE)) || 445 (ssb == &so->so_rcv && (so->so_state & SS_CANTRCVMORE)) 446 ) { 447 if (atomic_cmpset_int(&ssb->ssb_flags, flags, 448 (flags | SSB_WAKEUP) & ~SSB_WAIT)) { 449 if (flags & SSB_WAIT) 450 wakeup(&ssb->ssb_cc); 451 break; 452 } 453 } else { 454 break; 455 } 456 } 457 458 /* 459 * Misc other events 460 */ 461 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) 462 pgsigio(so->so_sigio, SIGIO, 0); 463 if (ssb->ssb_flags & SSB_UPCALL) 464 (*so->so_upcall)(so, so->so_upcallarg, MB_DONTWAIT); 465 if (ssb->ssb_flags & SSB_AIO) 466 aio_swake(so, ssb); 467 KNOTE(&kqinfo->ki_note, 0); 468 if (ssb->ssb_flags & SSB_MEVENT) { 469 struct netmsg_so_notify *msg, *nmsg; 470 471 TAILQ_FOREACH_MUTABLE(msg, &kqinfo->ki_mlist, nm_list, nmsg) { 472 if (msg->nm_predicate(&msg->nm_netmsg)) { 473 TAILQ_REMOVE(&kqinfo->ki_mlist, msg, nm_list); 474 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 475 msg->nm_netmsg.nm_lmsg.ms_error); 476 } 477 } 478 if (TAILQ_EMPTY(&ssb->ssb_kq.ki_mlist)) 479 atomic_clear_int(&ssb->ssb_flags, SSB_MEVENT); 480 } 481 } 482 483 /* 484 * Socket buffer (struct signalsockbuf) utility routines. 485 * 486 * Each socket contains two socket buffers: one for sending data and 487 * one for receiving data. Each buffer contains a queue of mbufs, 488 * information about the number of mbufs and amount of data in the 489 * queue, and other fields allowing kevent()/select()/poll() statements 490 * and notification on data availability to be implemented. 491 * 492 * Data stored in a socket buffer is maintained as a list of records. 493 * Each record is a list of mbufs chained together with the m_next 494 * field. Records are chained together with the m_nextpkt field. The upper 495 * level routine soreceive() expects the following conventions to be 496 * observed when placing information in the receive buffer: 497 * 498 * 1. If the protocol requires each message be preceded by the sender's 499 * name, then a record containing that name must be present before 500 * any associated data (mbuf's must be of type MT_SONAME). 501 * 2. If the protocol supports the exchange of ``access rights'' (really 502 * just additional data associated with the message), and there are 503 * ``rights'' to be received, then a record containing this data 504 * should be present (mbuf's must be of type MT_RIGHTS). 505 * 3. If a name or rights record exists, then it must be followed by 506 * a data record, perhaps of zero length. 507 * 508 * Before using a new socket structure it is first necessary to reserve 509 * buffer space to the socket, by calling sbreserve(). This should commit 510 * some of the available buffer space in the system buffer pool for the 511 * socket (currently, it does nothing but enforce limits). The space 512 * should be released by calling ssb_release() when the socket is destroyed. 513 */ 514 int 515 soreserve(struct socket *so, u_long sndcc, u_long rcvcc, struct rlimit *rl) 516 { 517 if (so->so_snd.ssb_lowat == 0) 518 atomic_set_int(&so->so_snd.ssb_flags, SSB_AUTOLOWAT); 519 if (ssb_reserve(&so->so_snd, sndcc, so, rl) == 0) 520 goto bad; 521 if (ssb_reserve(&so->so_rcv, rcvcc, so, rl) == 0) 522 goto bad2; 523 if (so->so_rcv.ssb_lowat == 0) 524 so->so_rcv.ssb_lowat = 1; 525 if (so->so_snd.ssb_lowat == 0) 526 so->so_snd.ssb_lowat = MCLBYTES; 527 if (so->so_snd.ssb_lowat > so->so_snd.ssb_hiwat) 528 so->so_snd.ssb_lowat = so->so_snd.ssb_hiwat; 529 return (0); 530 bad2: 531 ssb_release(&so->so_snd, so); 532 bad: 533 return (ENOBUFS); 534 } 535 536 static int 537 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) 538 { 539 int error = 0; 540 u_long old_sb_max = sb_max; 541 542 error = SYSCTL_OUT(req, arg1, sizeof(int)); 543 if (error || !req->newptr) 544 return (error); 545 error = SYSCTL_IN(req, arg1, sizeof(int)); 546 if (error) 547 return (error); 548 if (sb_max < MSIZE + MCLBYTES) { 549 sb_max = old_sb_max; 550 return (EINVAL); 551 } 552 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); 553 return (0); 554 } 555 556 /* 557 * Allot mbufs to a signalsockbuf. 558 * 559 * Attempt to scale mbmax so that mbcnt doesn't become limiting 560 * if buffering efficiency is near the normal case. 561 * 562 * sb_max only applies to user-sockets (where rl != NULL). It does 563 * not apply to kernel sockets or kernel-controlled sockets. Note 564 * that NFS overrides the sockbuf limits created when nfsd creates 565 * a socket. 566 */ 567 int 568 ssb_reserve(struct signalsockbuf *ssb, u_long cc, struct socket *so, 569 struct rlimit *rl) 570 { 571 /* 572 * rl will only be NULL when we're in an interrupt (eg, in tcp_input) 573 * or when called from netgraph (ie, ngd_attach) 574 */ 575 if (rl && cc > sb_max_adj) 576 cc = sb_max_adj; 577 if (!chgsbsize(so->so_cred->cr_uidinfo, &ssb->ssb_hiwat, cc, 578 rl ? rl->rlim_cur : RLIM_INFINITY)) { 579 return (0); 580 } 581 if (rl) 582 ssb->ssb_mbmax = min(cc * sb_efficiency, sb_max); 583 else 584 ssb->ssb_mbmax = cc * sb_efficiency; 585 586 /* 587 * AUTOLOWAT is set on send buffers and prevents large writes 588 * from generating a huge number of context switches. 589 */ 590 if (ssb->ssb_flags & SSB_AUTOLOWAT) { 591 ssb->ssb_lowat = ssb->ssb_hiwat / 2; 592 if (ssb->ssb_lowat < MCLBYTES) 593 ssb->ssb_lowat = MCLBYTES; 594 } 595 if (ssb->ssb_lowat > ssb->ssb_hiwat) 596 ssb->ssb_lowat = ssb->ssb_hiwat; 597 return (1); 598 } 599 600 /* 601 * Free mbufs held by a socket, and reserved mbuf space. 602 */ 603 void 604 ssb_release(struct signalsockbuf *ssb, struct socket *so) 605 { 606 sbflush(&ssb->sb); 607 (void)chgsbsize(so->so_cred->cr_uidinfo, &ssb->ssb_hiwat, 0, 608 RLIM_INFINITY); 609 ssb->ssb_mbmax = 0; 610 } 611 612 /* 613 * Some routines that return EOPNOTSUPP for entry points that are not 614 * supported by a protocol. Fill in as needed. 615 */ 616 int 617 pru_accept_notsupp(struct socket *so, struct sockaddr **nam) 618 { 619 return EOPNOTSUPP; 620 } 621 622 int 623 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 624 { 625 return EOPNOTSUPP; 626 } 627 628 int 629 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) 630 { 631 return EOPNOTSUPP; 632 } 633 634 int 635 pru_connect2_notsupp(struct socket *so1, struct socket *so2) 636 { 637 return EOPNOTSUPP; 638 } 639 640 int 641 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, 642 struct ifnet *ifp, struct thread *td) 643 { 644 return EOPNOTSUPP; 645 } 646 647 int 648 pru_disconnect_notsupp(struct socket *so) 649 { 650 return EOPNOTSUPP; 651 } 652 653 int 654 pru_listen_notsupp(struct socket *so, struct thread *td) 655 { 656 return EOPNOTSUPP; 657 } 658 659 int 660 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) 661 { 662 return EOPNOTSUPP; 663 } 664 665 int 666 pru_rcvd_notsupp(struct socket *so, int flags) 667 { 668 return EOPNOTSUPP; 669 } 670 671 int 672 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) 673 { 674 return EOPNOTSUPP; 675 } 676 677 int 678 pru_shutdown_notsupp(struct socket *so) 679 { 680 return EOPNOTSUPP; 681 } 682 683 int 684 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) 685 { 686 return EOPNOTSUPP; 687 } 688 689 int 690 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, 691 struct mbuf *top, struct mbuf *control, int flags, 692 struct thread *td) 693 { 694 if (top) 695 m_freem(top); 696 if (control) 697 m_freem(control); 698 return (EOPNOTSUPP); 699 } 700 701 int 702 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, 703 struct uio *uio, struct sockbuf *sio, 704 struct mbuf **controlp, int *flagsp) 705 { 706 return (EOPNOTSUPP); 707 } 708 709 int 710 pru_ctloutput_notsupp(struct socket *so, struct sockopt *sopt) 711 { 712 return (EOPNOTSUPP); 713 } 714 715 /* 716 * This isn't really a ``null'' operation, but it's the default one 717 * and doesn't do anything destructive. 718 */ 719 int 720 pru_sense_null(struct socket *so, struct stat *sb) 721 { 722 sb->st_blksize = so->so_snd.ssb_hiwat; 723 return 0; 724 } 725 726 /* 727 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. Callers 728 * of this routine assume that it always succeeds, so we have to use a 729 * blockable allocation even though we might be called from a critical thread. 730 */ 731 struct sockaddr * 732 dup_sockaddr(const struct sockaddr *sa) 733 { 734 struct sockaddr *sa2; 735 736 sa2 = kmalloc(sa->sa_len, M_SONAME, M_INTWAIT); 737 bcopy(sa, sa2, sa->sa_len); 738 return (sa2); 739 } 740 741 /* 742 * Create an external-format (``xsocket'') structure using the information 743 * in the kernel-format socket structure pointed to by so. This is done 744 * to reduce the spew of irrelevant information over this interface, 745 * to isolate user code from changes in the kernel structure, and 746 * potentially to provide information-hiding if we decide that 747 * some of this information should be hidden from users. 748 */ 749 void 750 sotoxsocket(struct socket *so, struct xsocket *xso) 751 { 752 xso->xso_len = sizeof *xso; 753 xso->xso_so = so; 754 xso->so_type = so->so_type; 755 xso->so_options = so->so_options; 756 xso->so_linger = so->so_linger; 757 xso->so_state = so->so_state; 758 xso->so_pcb = so->so_pcb; 759 xso->xso_protocol = so->so_proto->pr_protocol; 760 xso->xso_family = so->so_proto->pr_domain->dom_family; 761 xso->so_qlen = so->so_qlen; 762 xso->so_incqlen = so->so_incqlen; 763 xso->so_qlimit = so->so_qlimit; 764 xso->so_timeo = so->so_timeo; 765 xso->so_error = so->so_error; 766 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; 767 xso->so_oobmark = so->so_oobmark; 768 ssbtoxsockbuf(&so->so_snd, &xso->so_snd); 769 ssbtoxsockbuf(&so->so_rcv, &xso->so_rcv); 770 xso->so_uid = so->so_cred->cr_uid; 771 } 772 773 /* 774 * Here is the definition of some of the basic objects in the kern.ipc 775 * branch of the MIB. 776 */ 777 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); 778 779 /* 780 * This takes the place of kern.maxsockbuf, which moved to kern.ipc. 781 * 782 * NOTE! sb_max only applies to user-created socket buffers. 783 */ 784 static int dummy; 785 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); 786 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW, 787 &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size"); 788 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, 789 &maxsockets, 0, "Maximum number of sockets available"); 790 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, 791 &sb_efficiency, 0, ""); 792 793 /* 794 * Initialize maxsockets 795 */ 796 static void 797 init_maxsockets(void *ignored) 798 { 799 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); 800 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); 801 } 802 SYSINIT(param, SI_BOOT1_TUNABLES, SI_ORDER_ANY, 803 init_maxsockets, NULL); 804 805