1 /* 2 * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. 3 * Copyright (c) 2004 The DragonFly Project. All rights reserved. 4 * 5 * This code is derived from software contributed to The DragonFly Project 6 * by Jeffrey M. Hsu. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of The DragonFly Project nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific, prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. 36 * 37 * License terms: all terms for the DragonFly license above plus the following: 38 * 39 * 4. All advertising materials mentioning features or use of this software 40 * must display the following acknowledgement: 41 * 42 * This product includes software developed by Jeffrey M. Hsu 43 * for the DragonFly Project. 44 * 45 * This requirement may be waived with permission from Jeffrey Hsu. 46 * This requirement will sunset and may be removed on July 8 2005, 47 * after which the standard DragonFly license (as shown above) will 48 * apply. 49 */ 50 51 /* 52 * Copyright (c) 1982, 1986, 1988, 1990, 1993 53 * The Regents of the University of California. All rights reserved. 54 * 55 * Redistribution and use in source and binary forms, with or without 56 * modification, are permitted provided that the following conditions 57 * are met: 58 * 1. Redistributions of source code must retain the above copyright 59 * notice, this list of conditions and the following disclaimer. 60 * 2. Redistributions in binary form must reproduce the above copyright 61 * notice, this list of conditions and the following disclaimer in the 62 * documentation and/or other materials provided with the distribution. 63 * 3. All advertising materials mentioning features or use of this software 64 * must display the following acknowledgement: 65 * This product includes software developed by the University of 66 * California, Berkeley and its contributors. 67 * 4. Neither the name of the University nor the names of its contributors 68 * may be used to endorse or promote products derived from this software 69 * without specific prior written permission. 70 * 71 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 72 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 74 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 77 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 78 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 80 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 81 * SUCH DAMAGE. 82 * 83 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 84 * $FreeBSD: src/sys/kern/uipc_socket.c,v 1.68.2.24 2003/11/11 17:18:18 silby Exp $ 85 * $DragonFly: src/sys/kern/uipc_socket.c,v 1.34 2005/06/07 19:08:55 hsu Exp $ 86 */ 87 88 #include "opt_inet.h" 89 90 #include <sys/param.h> 91 #include <sys/systm.h> 92 #include <sys/fcntl.h> 93 #include <sys/malloc.h> 94 #include <sys/mbuf.h> 95 #include <sys/domain.h> 96 #include <sys/file.h> /* for struct knote */ 97 #include <sys/kernel.h> 98 #include <sys/malloc.h> 99 #include <sys/event.h> 100 #include <sys/poll.h> 101 #include <sys/proc.h> 102 #include <sys/protosw.h> 103 #include <sys/socket.h> 104 #include <sys/socketvar.h> 105 #include <sys/socketops.h> 106 #include <sys/resourcevar.h> 107 #include <sys/signalvar.h> 108 #include <sys/sysctl.h> 109 #include <sys/uio.h> 110 #include <sys/jail.h> 111 #include <vm/vm_zone.h> 112 113 #include <sys/thread2.h> 114 115 #include <machine/limits.h> 116 117 #ifdef INET 118 static int do_setopt_accept_filter(struct socket *so, struct sockopt *sopt); 119 #endif /* INET */ 120 121 static void filt_sordetach(struct knote *kn); 122 static int filt_soread(struct knote *kn, long hint); 123 static void filt_sowdetach(struct knote *kn); 124 static int filt_sowrite(struct knote *kn, long hint); 125 static int filt_solisten(struct knote *kn, long hint); 126 127 static struct filterops solisten_filtops = 128 { 1, NULL, filt_sordetach, filt_solisten }; 129 static struct filterops soread_filtops = 130 { 1, NULL, filt_sordetach, filt_soread }; 131 static struct filterops sowrite_filtops = 132 { 1, NULL, filt_sowdetach, filt_sowrite }; 133 134 struct vm_zone *socket_zone; 135 so_gen_t so_gencnt; /* generation count for sockets */ 136 137 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 138 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 139 140 141 static int somaxconn = SOMAXCONN; 142 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW, 143 &somaxconn, 0, "Maximum pending socket connection queue size"); 144 145 /* 146 * Socket operation routines. 147 * These routines are called by the routines in 148 * sys_socket.c or from a system process, and 149 * implement the semantics of socket operations by 150 * switching out to the protocol specific routines. 151 */ 152 153 /* 154 * Get a socket structure from our zone, and initialize it. 155 * We don't implement `waitok' yet (see comments in uipc_domain.c). 156 * Note that it would probably be better to allocate socket 157 * and PCB at the same time, but I'm not convinced that all 158 * the protocols can be easily modified to do this. 159 */ 160 struct socket * 161 soalloc(waitok) 162 int waitok; 163 { 164 struct socket *so; 165 166 so = zalloc(socket_zone); 167 if (so) { 168 /* XXX race condition for reentrant kernel */ 169 bzero(so, sizeof *so); 170 so->so_gencnt = ++so_gencnt; 171 TAILQ_INIT(&so->so_aiojobq); 172 TAILQ_INIT(&so->so_rcv.sb_sel.si_mlist); 173 TAILQ_INIT(&so->so_snd.sb_sel.si_mlist); 174 } 175 return so; 176 } 177 178 int 179 socreate(int dom, struct socket **aso, int type, 180 int proto, struct thread *td) 181 { 182 struct proc *p = td->td_proc; 183 struct protosw *prp; 184 struct socket *so; 185 struct pru_attach_info ai; 186 int error; 187 188 if (proto) 189 prp = pffindproto(dom, proto, type); 190 else 191 prp = pffindtype(dom, type); 192 193 if (prp == 0 || prp->pr_usrreqs->pru_attach == 0) 194 return (EPROTONOSUPPORT); 195 196 if (p->p_ucred->cr_prison && jail_socket_unixiproute_only && 197 prp->pr_domain->dom_family != PF_LOCAL && 198 prp->pr_domain->dom_family != PF_INET && 199 prp->pr_domain->dom_family != PF_ROUTE) { 200 return (EPROTONOSUPPORT); 201 } 202 203 if (prp->pr_type != type) 204 return (EPROTOTYPE); 205 so = soalloc(p != 0); 206 if (so == 0) 207 return (ENOBUFS); 208 209 TAILQ_INIT(&so->so_incomp); 210 TAILQ_INIT(&so->so_comp); 211 so->so_type = type; 212 so->so_cred = crhold(p->p_ucred); 213 so->so_proto = prp; 214 ai.sb_rlimit = &p->p_rlimit[RLIMIT_SBSIZE]; 215 ai.p_ucred = p->p_ucred; 216 ai.fd_rdir = p->p_fd->fd_rdir; 217 error = so_pru_attach(so, proto, &ai); 218 if (error) { 219 so->so_state |= SS_NOFDREF; 220 sofree(so); 221 return (error); 222 } 223 *aso = so; 224 return (0); 225 } 226 227 int 228 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 229 { 230 int error; 231 232 crit_enter(); 233 error = so_pru_bind(so, nam, td); 234 crit_exit(); 235 return (error); 236 } 237 238 void 239 sodealloc(struct socket *so) 240 { 241 242 so->so_gencnt = ++so_gencnt; 243 if (so->so_rcv.sb_hiwat) 244 (void)chgsbsize(so->so_cred->cr_uidinfo, 245 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 246 if (so->so_snd.sb_hiwat) 247 (void)chgsbsize(so->so_cred->cr_uidinfo, 248 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 249 #ifdef INET 250 /* remove accept filter if present */ 251 if (so->so_accf != NULL) 252 do_setopt_accept_filter(so, NULL); 253 #endif /* INET */ 254 crfree(so->so_cred); 255 zfree(socket_zone, so); 256 } 257 258 int 259 solisten(struct socket *so, int backlog, struct thread *td) 260 { 261 int error; 262 263 crit_enter(); 264 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) { 265 crit_exit(); 266 return (EINVAL); 267 } 268 269 error = so_pru_listen(so, td); 270 if (error) { 271 crit_exit(); 272 return (error); 273 } 274 if (TAILQ_EMPTY(&so->so_comp)) 275 so->so_options |= SO_ACCEPTCONN; 276 if (backlog < 0 || backlog > somaxconn) 277 backlog = somaxconn; 278 so->so_qlimit = backlog; 279 crit_exit(); 280 return (0); 281 } 282 283 void 284 sofree(struct socket *so) 285 { 286 struct socket *head = so->so_head; 287 288 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) 289 return; 290 if (head != NULL) { 291 if (so->so_state & SS_INCOMP) { 292 TAILQ_REMOVE(&head->so_incomp, so, so_list); 293 head->so_incqlen--; 294 } else if (so->so_state & SS_COMP) { 295 /* 296 * We must not decommission a socket that's 297 * on the accept(2) queue. If we do, then 298 * accept(2) may hang after select(2) indicated 299 * that the listening socket was ready. 300 */ 301 return; 302 } else { 303 panic("sofree: not queued"); 304 } 305 so->so_state &= ~SS_INCOMP; 306 so->so_head = NULL; 307 } 308 sbrelease(&so->so_snd, so); 309 sorflush(so); 310 sodealloc(so); 311 } 312 313 /* 314 * Close a socket on last file table reference removal. 315 * Initiate disconnect if connected. 316 * Free socket when disconnect complete. 317 */ 318 int 319 soclose(struct socket *so) 320 { 321 int error = 0; 322 323 crit_enter(); 324 funsetown(so->so_sigio); 325 if (so->so_pcb == NULL) 326 goto discard; 327 if (so->so_state & SS_ISCONNECTED) { 328 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 329 error = sodisconnect(so); 330 if (error) 331 goto drop; 332 } 333 if (so->so_options & SO_LINGER) { 334 if ((so->so_state & SS_ISDISCONNECTING) && 335 (so->so_state & SS_NBIO)) 336 goto drop; 337 while (so->so_state & SS_ISCONNECTED) { 338 error = tsleep((caddr_t)&so->so_timeo, 339 PCATCH, "soclos", so->so_linger * hz); 340 if (error) 341 break; 342 } 343 } 344 } 345 drop: 346 if (so->so_pcb) { 347 int error2; 348 349 error2 = so_pru_detach(so); 350 if (error == 0) 351 error = error2; 352 } 353 discard: 354 if (so->so_options & SO_ACCEPTCONN) { 355 struct socket *sp, *sonext; 356 357 sp = TAILQ_FIRST(&so->so_incomp); 358 for (; sp != NULL; sp = sonext) { 359 sonext = TAILQ_NEXT(sp, so_list); 360 (void) soabort(sp); 361 } 362 for (sp = TAILQ_FIRST(&so->so_comp); sp != NULL; sp = sonext) { 363 sonext = TAILQ_NEXT(sp, so_list); 364 /* Dequeue from so_comp since sofree() won't do it */ 365 TAILQ_REMOVE(&so->so_comp, sp, so_list); 366 so->so_qlen--; 367 sp->so_state &= ~SS_COMP; 368 sp->so_head = NULL; 369 (void) soabort(sp); 370 } 371 } 372 if (so->so_state & SS_NOFDREF) 373 panic("soclose: NOFDREF"); 374 so->so_state |= SS_NOFDREF; 375 sofree(so); 376 crit_exit(); 377 return (error); 378 } 379 380 /* 381 * Must be called from a critical section. 382 */ 383 int 384 soabort(so) 385 struct socket *so; 386 { 387 int error; 388 389 error = so_pru_abort(so); 390 if (error) { 391 sofree(so); 392 return error; 393 } 394 return (0); 395 } 396 397 int 398 soaccept(struct socket *so, struct sockaddr **nam) 399 { 400 int error; 401 402 crit_enter(); 403 if ((so->so_state & SS_NOFDREF) == 0) 404 panic("soaccept: !NOFDREF"); 405 so->so_state &= ~SS_NOFDREF; 406 error = so_pru_accept(so, nam); 407 crit_exit(); 408 return (error); 409 } 410 411 int 412 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 413 { 414 int error; 415 416 if (so->so_options & SO_ACCEPTCONN) 417 return (EOPNOTSUPP); 418 crit_enter(); 419 /* 420 * If protocol is connection-based, can only connect once. 421 * Otherwise, if connected, try to disconnect first. 422 * This allows user to disconnect by connecting to, e.g., 423 * a null address. 424 */ 425 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 426 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 427 (error = sodisconnect(so)))) { 428 error = EISCONN; 429 } else { 430 /* 431 * Prevent accumulated error from previous connection 432 * from biting us. 433 */ 434 so->so_error = 0; 435 error = so_pru_connect(so, nam, td); 436 } 437 crit_exit(); 438 return (error); 439 } 440 441 int 442 soconnect2(struct socket *so1, struct socket *so2) 443 { 444 int error; 445 446 crit_enter(); 447 error = so_pru_connect2(so1, so2); 448 crit_exit(); 449 return (error); 450 } 451 452 int 453 sodisconnect(struct socket *so) 454 { 455 int error; 456 457 crit_enter(); 458 if ((so->so_state & SS_ISCONNECTED) == 0) { 459 error = ENOTCONN; 460 goto bad; 461 } 462 if (so->so_state & SS_ISDISCONNECTING) { 463 error = EALREADY; 464 goto bad; 465 } 466 error = so_pru_disconnect(so); 467 bad: 468 crit_exit(); 469 return (error); 470 } 471 472 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 473 /* 474 * Send on a socket. 475 * If send must go all at once and message is larger than 476 * send buffering, then hard error. 477 * Lock against other senders. 478 * If must go all at once and not enough room now, then 479 * inform user that this would block and do nothing. 480 * Otherwise, if nonblocking, send as much as possible. 481 * The data to be sent is described by "uio" if nonzero, 482 * otherwise by the mbuf chain "top" (which must be null 483 * if uio is not). Data provided in mbuf chain must be small 484 * enough to send all at once. 485 * 486 * Returns nonzero on error, timeout or signal; callers 487 * must check for short counts if EINTR/ERESTART are returned. 488 * Data and control buffers are freed on return. 489 */ 490 int 491 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 492 struct mbuf *top, struct mbuf *control, int flags, 493 struct thread *td) 494 { 495 struct mbuf **mp; 496 struct mbuf *m; 497 long space, len, resid; 498 int clen = 0, error, dontroute, mlen; 499 int atomic = sosendallatonce(so) || top; 500 int pru_flags; 501 502 if (uio) 503 resid = uio->uio_resid; 504 else 505 resid = top->m_pkthdr.len; 506 /* 507 * In theory resid should be unsigned. 508 * However, space must be signed, as it might be less than 0 509 * if we over-committed, and we must use a signed comparison 510 * of space and resid. On the other hand, a negative resid 511 * causes us to loop sending 0-length segments to the protocol. 512 * 513 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 514 * type sockets since that's an error. 515 */ 516 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 517 error = EINVAL; 518 goto out; 519 } 520 521 dontroute = 522 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 523 (so->so_proto->pr_flags & PR_ATOMIC); 524 if (td->td_proc && td->td_proc->p_stats) 525 td->td_proc->p_stats->p_ru.ru_msgsnd++; 526 if (control) 527 clen = control->m_len; 528 #define gotoerr(errno) { error = errno; crit_exit(); goto release; } 529 530 restart: 531 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 532 if (error) 533 goto out; 534 do { 535 crit_enter(); 536 if (so->so_state & SS_CANTSENDMORE) 537 gotoerr(EPIPE); 538 if (so->so_error) { 539 error = so->so_error; 540 so->so_error = 0; 541 crit_exit(); 542 goto release; 543 } 544 if ((so->so_state & SS_ISCONNECTED) == 0) { 545 /* 546 * `sendto' and `sendmsg' is allowed on a connection- 547 * based socket if it supports implied connect. 548 * Return ENOTCONN if not connected and no address is 549 * supplied. 550 */ 551 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 552 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 553 if ((so->so_state & SS_ISCONFIRMING) == 0 && 554 !(resid == 0 && clen != 0)) 555 gotoerr(ENOTCONN); 556 } else if (addr == 0) 557 gotoerr(so->so_proto->pr_flags & PR_CONNREQUIRED ? 558 ENOTCONN : EDESTADDRREQ); 559 } 560 space = sbspace(&so->so_snd); 561 if (flags & MSG_OOB) 562 space += 1024; 563 if ((atomic && resid > so->so_snd.sb_hiwat) || 564 clen > so->so_snd.sb_hiwat) 565 gotoerr(EMSGSIZE); 566 if (space < resid + clen && uio && 567 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 568 if (so->so_state & SS_NBIO) 569 gotoerr(EWOULDBLOCK); 570 sbunlock(&so->so_snd); 571 error = sbwait(&so->so_snd); 572 crit_exit(); 573 if (error) 574 goto out; 575 goto restart; 576 } 577 crit_exit(); 578 mp = ⊤ 579 space -= clen; 580 do { 581 if (uio == NULL) { 582 /* 583 * Data is prepackaged in "top". 584 */ 585 resid = 0; 586 if (flags & MSG_EOR) 587 top->m_flags |= M_EOR; 588 } else do { 589 m = m_getl(resid, MB_WAIT, MT_DATA, 590 top == NULL ? M_PKTHDR : 0, &mlen); 591 if (top == NULL) { 592 m->m_pkthdr.len = 0; 593 m->m_pkthdr.rcvif = (struct ifnet *)0; 594 } 595 len = min(min(mlen, resid), space); 596 if (resid < MINCLSIZE) { 597 /* 598 * For datagram protocols, leave room 599 * for protocol headers in first mbuf. 600 */ 601 if (atomic && top == 0 && len < mlen) 602 MH_ALIGN(m, len); 603 } 604 space -= len; 605 error = uiomove(mtod(m, caddr_t), (int)len, uio); 606 resid = uio->uio_resid; 607 m->m_len = len; 608 *mp = m; 609 top->m_pkthdr.len += len; 610 if (error) 611 goto release; 612 mp = &m->m_next; 613 if (resid <= 0) { 614 if (flags & MSG_EOR) 615 top->m_flags |= M_EOR; 616 break; 617 } 618 } while (space > 0 && atomic); 619 if (dontroute) 620 so->so_options |= SO_DONTROUTE; 621 if (flags & MSG_OOB) { 622 pru_flags = PRUS_OOB; 623 } else if ((flags & MSG_EOF) && 624 (so->so_proto->pr_flags & PR_IMPLOPCL) && 625 (resid <= 0)) { 626 /* 627 * If the user set MSG_EOF, the protocol 628 * understands this flag and nothing left to 629 * send then use PRU_SEND_EOF instead of PRU_SEND. 630 */ 631 pru_flags = PRUS_EOF; 632 } else if (resid > 0 && space > 0) { 633 /* If there is more to send, set PRUS_MORETOCOME */ 634 pru_flags = PRUS_MORETOCOME; 635 } else { 636 pru_flags = 0; 637 } 638 crit_enter(); 639 /* 640 * XXX all the SS_CANTSENDMORE checks previously 641 * done could be out of date. We could have recieved 642 * a reset packet in an interrupt or maybe we slept 643 * while doing page faults in uiomove() etc. We could 644 * probably recheck again inside the splnet() protection 645 * here, but there are probably other places that this 646 * also happens. We must rethink this. 647 */ 648 error = so_pru_send(so, pru_flags, top, addr, control, td); 649 crit_exit(); 650 if (dontroute) 651 so->so_options &= ~SO_DONTROUTE; 652 clen = 0; 653 control = 0; 654 top = 0; 655 mp = ⊤ 656 if (error) 657 goto release; 658 } while (resid && space > 0); 659 } while (resid); 660 661 release: 662 sbunlock(&so->so_snd); 663 out: 664 if (top) 665 m_freem(top); 666 if (control) 667 m_freem(control); 668 return (error); 669 } 670 671 /* 672 * A specialization of sosend() for UDP based on protocol-specific knowledge: 673 * so->so_proto->pr_flags has the PR_ATOMIC field set. This means that 674 * sosendallatonce() returns true, 675 * the "atomic" variable is true, 676 * and sosendudp() blocks until space is available for the entire send. 677 * so->so_proto->pr_flags does not have the PR_CONNREQUIRED or 678 * PR_IMPLOPCL flags set. 679 * UDP has no out-of-band data. 680 * UDP has no control data. 681 * UDP does not support MSG_EOR. 682 */ 683 int 684 sosendudp(struct socket *so, struct sockaddr *addr, struct uio *uio, 685 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 686 { 687 int resid, error; 688 boolean_t dontroute; /* temporary SO_DONTROUTE setting */ 689 690 if (td->td_proc && td->td_proc->p_stats) 691 td->td_proc->p_stats->p_ru.ru_msgsnd++; 692 if (control) 693 m_freem(control); 694 695 KASSERT((uio && !top) || (top && !uio), ("bad arguments to sosendudp")); 696 resid = uio ? uio->uio_resid : top->m_pkthdr.len; 697 698 restart: 699 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 700 if (error) 701 goto out; 702 703 crit_enter(); 704 if (so->so_state & SS_CANTSENDMORE) 705 gotoerr(EPIPE); 706 if (so->so_error) { 707 error = so->so_error; 708 so->so_error = 0; 709 crit_exit(); 710 goto release; 711 } 712 if (!(so->so_state & SS_ISCONNECTED) && addr == NULL) 713 gotoerr(EDESTADDRREQ); 714 if (resid > so->so_snd.sb_hiwat) 715 gotoerr(EMSGSIZE); 716 if (uio && sbspace(&so->so_snd) < resid) { 717 if (so->so_state & SS_NBIO) 718 gotoerr(EWOULDBLOCK); 719 sbunlock(&so->so_snd); 720 error = sbwait(&so->so_snd); 721 crit_exit(); 722 if (error) 723 goto out; 724 goto restart; 725 } 726 crit_exit(); 727 728 if (uio) { 729 top = m_uiomove(uio); 730 if (top == NULL) 731 goto release; 732 } 733 734 dontroute = (flags & MSG_DONTROUTE) && !(so->so_options & SO_DONTROUTE); 735 if (dontroute) 736 so->so_options |= SO_DONTROUTE; 737 738 error = so_pru_send(so, 0, top, addr, NULL, td); 739 top = NULL; /* sent or freed in lower layer */ 740 741 if (dontroute) 742 so->so_options &= ~SO_DONTROUTE; 743 744 release: 745 sbunlock(&so->so_snd); 746 out: 747 if (top) 748 m_freem(top); 749 return (error); 750 } 751 752 /* 753 * Implement receive operations on a socket. 754 * We depend on the way that records are added to the sockbuf 755 * by sbappend*. In particular, each record (mbufs linked through m_next) 756 * must begin with an address if the protocol so specifies, 757 * followed by an optional mbuf or mbufs containing ancillary data, 758 * and then zero or more mbufs of data. 759 * In order to avoid blocking network interrupts for the entire time here, 760 * we exit the critical section while doing the actual copy to user space. 761 * Although the sockbuf is locked, new data may still be appended, 762 * and thus we must maintain consistency of the sockbuf during that time. 763 * 764 * The caller may receive the data as a single mbuf chain by supplying 765 * an mbuf **mp0 for use in returning the chain. The uio is then used 766 * only for the count in uio_resid. 767 */ 768 int 769 soreceive(so, psa, uio, mp0, controlp, flagsp) 770 struct socket *so; 771 struct sockaddr **psa; 772 struct uio *uio; 773 struct mbuf **mp0; 774 struct mbuf **controlp; 775 int *flagsp; 776 { 777 struct mbuf *m, **mp; 778 int flags, len, error, offset; 779 struct protosw *pr = so->so_proto; 780 struct mbuf *nextrecord; 781 int moff, type = 0; 782 int orig_resid = uio->uio_resid; 783 784 mp = mp0; 785 if (psa) 786 *psa = 0; 787 if (controlp) 788 *controlp = 0; 789 if (flagsp) 790 flags = *flagsp &~ MSG_EOR; 791 else 792 flags = 0; 793 if (flags & MSG_OOB) { 794 m = m_get(MB_WAIT, MT_DATA); 795 if (m == NULL) 796 return (ENOBUFS); 797 error = so_pru_rcvoob(so, m, flags & MSG_PEEK); 798 if (error) 799 goto bad; 800 do { 801 error = uiomove(mtod(m, caddr_t), 802 (int) min(uio->uio_resid, m->m_len), uio); 803 m = m_free(m); 804 } while (uio->uio_resid && error == 0 && m); 805 bad: 806 if (m) 807 m_freem(m); 808 return (error); 809 } 810 if (mp) 811 *mp = (struct mbuf *)0; 812 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 813 so_pru_rcvd(so, 0); 814 815 restart: 816 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 817 if (error) 818 return (error); 819 crit_enter(); 820 821 m = so->so_rcv.sb_mb; 822 /* 823 * If we have less data than requested, block awaiting more 824 * (subject to any timeout) if: 825 * 1. the current count is less than the low water mark, or 826 * 2. MSG_WAITALL is set, and it is possible to do the entire 827 * receive operation at once if we block (resid <= hiwat). 828 * 3. MSG_DONTWAIT is not set 829 * If MSG_WAITALL is set but resid is larger than the receive buffer, 830 * we have to do the receive in sections, and thus risk returning 831 * a short count if a timeout or signal occurs after we start. 832 */ 833 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 && 834 so->so_rcv.sb_cc < uio->uio_resid) && 835 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 836 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 837 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) { 838 KASSERT(m != 0 || !so->so_rcv.sb_cc, ("receive 1")); 839 if (so->so_error) { 840 if (m) 841 goto dontblock; 842 error = so->so_error; 843 if ((flags & MSG_PEEK) == 0) 844 so->so_error = 0; 845 goto release; 846 } 847 if (so->so_state & SS_CANTRCVMORE) { 848 if (m) 849 goto dontblock; 850 else 851 goto release; 852 } 853 for (; m; m = m->m_next) 854 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 855 m = so->so_rcv.sb_mb; 856 goto dontblock; 857 } 858 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 859 (pr->pr_flags & PR_CONNREQUIRED)) { 860 error = ENOTCONN; 861 goto release; 862 } 863 if (uio->uio_resid == 0) 864 goto release; 865 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) { 866 error = EWOULDBLOCK; 867 goto release; 868 } 869 sbunlock(&so->so_rcv); 870 error = sbwait(&so->so_rcv); 871 crit_exit(); 872 if (error) 873 return (error); 874 goto restart; 875 } 876 dontblock: 877 if (uio->uio_td && uio->uio_td->td_proc) 878 uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++; 879 nextrecord = m->m_nextpkt; 880 if (pr->pr_flags & PR_ADDR) { 881 KASSERT(m->m_type == MT_SONAME, ("receive 1a")); 882 orig_resid = 0; 883 if (psa) 884 *psa = dup_sockaddr(mtod(m, struct sockaddr *)); 885 if (flags & MSG_PEEK) { 886 m = m->m_next; 887 } else { 888 sbfree(&so->so_rcv, m); 889 m->m_nextpkt = NULL; 890 so->so_rcv.sb_mb = m_free(m); 891 m = so->so_rcv.sb_mb; 892 } 893 } 894 while (m && m->m_type == MT_CONTROL && error == 0) { 895 if (flags & MSG_PEEK) { 896 if (controlp) 897 *controlp = m_copy(m, 0, m->m_len); 898 m = m->m_next; 899 } else { 900 sbfree(&so->so_rcv, m); 901 m->m_nextpkt = NULL; 902 if (controlp) { 903 if (pr->pr_domain->dom_externalize && 904 mtod(m, struct cmsghdr *)->cmsg_type == 905 SCM_RIGHTS) 906 error = (*pr->pr_domain->dom_externalize)(m); 907 *controlp = m; 908 so->so_rcv.sb_mb = m->m_next; 909 m->m_next = NULL; 910 m = so->so_rcv.sb_mb; 911 } else { 912 so->so_rcv.sb_mb = m_free(m); 913 m = so->so_rcv.sb_mb; 914 } 915 } 916 if (controlp) { 917 orig_resid = 0; 918 controlp = &(*controlp)->m_next; 919 } 920 } 921 if (m) { 922 if ((flags & MSG_PEEK) == 0) 923 m->m_nextpkt = nextrecord; 924 type = m->m_type; 925 if (type == MT_OOBDATA) 926 flags |= MSG_OOB; 927 } 928 moff = 0; 929 offset = 0; 930 while (m && uio->uio_resid > 0 && error == 0) { 931 if (m->m_type == MT_OOBDATA) { 932 if (type != MT_OOBDATA) 933 break; 934 } else if (type == MT_OOBDATA) 935 break; 936 else 937 KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER, 938 ("receive 3")); 939 so->so_state &= ~SS_RCVATMARK; 940 len = uio->uio_resid; 941 if (so->so_oobmark && len > so->so_oobmark - offset) 942 len = so->so_oobmark - offset; 943 if (len > m->m_len - moff) 944 len = m->m_len - moff; 945 /* 946 * If mp is set, just pass back the mbufs. 947 * Otherwise copy them out via the uio, then free. 948 * Sockbuf must be consistent here (points to current mbuf, 949 * it points to next record) when we drop priority; 950 * we must note any additions to the sockbuf when we 951 * block interrupts again. 952 */ 953 if (mp == 0) { 954 crit_exit(); 955 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio); 956 crit_enter(); 957 if (error) 958 goto release; 959 } else 960 uio->uio_resid -= len; 961 if (len == m->m_len - moff) { 962 if (m->m_flags & M_EOR) 963 flags |= MSG_EOR; 964 if (flags & MSG_PEEK) { 965 m = m->m_next; 966 moff = 0; 967 } else { 968 nextrecord = m->m_nextpkt; 969 m->m_nextpkt = NULL; 970 sbfree(&so->so_rcv, m); 971 if (mp) { 972 *mp = m; 973 mp = &m->m_next; 974 so->so_rcv.sb_mb = m = m->m_next; 975 *mp = (struct mbuf *)0; 976 } else { 977 so->so_rcv.sb_mb = m = m_free(m); 978 } 979 if (m) 980 m->m_nextpkt = nextrecord; 981 else 982 so->so_rcv.sb_lastmbuf = NULL; 983 } 984 } else { 985 if (flags & MSG_PEEK) 986 moff += len; 987 else { 988 if (mp) 989 *mp = m_copym(m, 0, len, MB_WAIT); 990 m->m_data += len; 991 m->m_len -= len; 992 so->so_rcv.sb_cc -= len; 993 } 994 } 995 if (so->so_oobmark) { 996 if ((flags & MSG_PEEK) == 0) { 997 so->so_oobmark -= len; 998 if (so->so_oobmark == 0) { 999 so->so_state |= SS_RCVATMARK; 1000 break; 1001 } 1002 } else { 1003 offset += len; 1004 if (offset == so->so_oobmark) 1005 break; 1006 } 1007 } 1008 if (flags & MSG_EOR) 1009 break; 1010 /* 1011 * If the MSG_WAITALL flag is set (for non-atomic socket), 1012 * we must not quit until "uio->uio_resid == 0" or an error 1013 * termination. If a signal/timeout occurs, return 1014 * with a short count but without error. 1015 * Keep sockbuf locked against other readers. 1016 */ 1017 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 && 1018 !sosendallatonce(so) && !nextrecord) { 1019 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1020 break; 1021 /* 1022 * The window might have closed to zero, make 1023 * sure we send an ack now that we've drained 1024 * the buffer or we might end up blocking until 1025 * the idle takes over (5 seconds). 1026 */ 1027 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1028 so_pru_rcvd(so, flags); 1029 error = sbwait(&so->so_rcv); 1030 if (error) { 1031 sbunlock(&so->so_rcv); 1032 crit_exit(); 1033 return (0); 1034 } 1035 m = so->so_rcv.sb_mb; 1036 if (m) 1037 nextrecord = m->m_nextpkt; 1038 } 1039 } 1040 1041 if (m && pr->pr_flags & PR_ATOMIC) 1042 flags |= MSG_TRUNC; 1043 if (!(flags & MSG_PEEK)) { 1044 if (m == NULL) { 1045 so->so_rcv.sb_mb = nextrecord; 1046 so->so_rcv.sb_lastmbuf = NULL; 1047 } else { 1048 if (pr->pr_flags & PR_ATOMIC) 1049 sbdroprecord(&so->so_rcv); 1050 else if (m->m_nextpkt == NULL) { 1051 KASSERT(so->so_rcv.sb_mb == m, 1052 ("sb_mb %p != m %p", so->so_rcv.sb_mb, m)); 1053 so->so_rcv.sb_lastrecord = m; 1054 } 1055 } 1056 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1057 so_pru_rcvd(so, flags); 1058 } 1059 1060 if (orig_resid == uio->uio_resid && orig_resid && 1061 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1062 sbunlock(&so->so_rcv); 1063 crit_exit(); 1064 goto restart; 1065 } 1066 1067 if (flagsp) 1068 *flagsp |= flags; 1069 release: 1070 sbunlock(&so->so_rcv); 1071 crit_exit(); 1072 return (error); 1073 } 1074 1075 int 1076 soshutdown(so, how) 1077 struct socket *so; 1078 int how; 1079 { 1080 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1081 return (EINVAL); 1082 1083 if (how != SHUT_WR) 1084 sorflush(so); 1085 if (how != SHUT_RD) 1086 return (so_pru_shutdown(so)); 1087 return (0); 1088 } 1089 1090 void 1091 sorflush(so) 1092 struct socket *so; 1093 { 1094 struct sockbuf *sb = &so->so_rcv; 1095 struct protosw *pr = so->so_proto; 1096 struct sockbuf asb; 1097 1098 sb->sb_flags |= SB_NOINTR; 1099 (void) sblock(sb, M_WAITOK); 1100 1101 crit_enter(); 1102 socantrcvmore(so); 1103 sbunlock(sb); 1104 asb = *sb; 1105 bzero((caddr_t)sb, sizeof (*sb)); 1106 if (asb.sb_flags & SB_KNOTE) { 1107 sb->sb_sel.si_note = asb.sb_sel.si_note; 1108 sb->sb_flags = SB_KNOTE; 1109 } 1110 crit_exit(); 1111 1112 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) 1113 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1114 sbrelease(&asb, so); 1115 } 1116 1117 #ifdef INET 1118 static int 1119 do_setopt_accept_filter(so, sopt) 1120 struct socket *so; 1121 struct sockopt *sopt; 1122 { 1123 struct accept_filter_arg *afap = NULL; 1124 struct accept_filter *afp; 1125 struct so_accf *af = so->so_accf; 1126 int error = 0; 1127 1128 /* do not set/remove accept filters on non listen sockets */ 1129 if ((so->so_options & SO_ACCEPTCONN) == 0) { 1130 error = EINVAL; 1131 goto out; 1132 } 1133 1134 /* removing the filter */ 1135 if (sopt == NULL) { 1136 if (af != NULL) { 1137 if (af->so_accept_filter != NULL && 1138 af->so_accept_filter->accf_destroy != NULL) { 1139 af->so_accept_filter->accf_destroy(so); 1140 } 1141 if (af->so_accept_filter_str != NULL) { 1142 FREE(af->so_accept_filter_str, M_ACCF); 1143 } 1144 FREE(af, M_ACCF); 1145 so->so_accf = NULL; 1146 } 1147 so->so_options &= ~SO_ACCEPTFILTER; 1148 return (0); 1149 } 1150 /* adding a filter */ 1151 /* must remove previous filter first */ 1152 if (af != NULL) { 1153 error = EINVAL; 1154 goto out; 1155 } 1156 /* don't put large objects on the kernel stack */ 1157 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), M_TEMP, M_WAITOK); 1158 error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap); 1159 afap->af_name[sizeof(afap->af_name)-1] = '\0'; 1160 afap->af_arg[sizeof(afap->af_arg)-1] = '\0'; 1161 if (error) 1162 goto out; 1163 afp = accept_filt_get(afap->af_name); 1164 if (afp == NULL) { 1165 error = ENOENT; 1166 goto out; 1167 } 1168 MALLOC(af, struct so_accf *, sizeof(*af), M_ACCF, M_WAITOK); 1169 bzero(af, sizeof(*af)); 1170 if (afp->accf_create != NULL) { 1171 if (afap->af_name[0] != '\0') { 1172 int len = strlen(afap->af_name) + 1; 1173 1174 MALLOC(af->so_accept_filter_str, char *, len, M_ACCF, M_WAITOK); 1175 strcpy(af->so_accept_filter_str, afap->af_name); 1176 } 1177 af->so_accept_filter_arg = afp->accf_create(so, afap->af_arg); 1178 if (af->so_accept_filter_arg == NULL) { 1179 FREE(af->so_accept_filter_str, M_ACCF); 1180 FREE(af, M_ACCF); 1181 so->so_accf = NULL; 1182 error = EINVAL; 1183 goto out; 1184 } 1185 } 1186 af->so_accept_filter = afp; 1187 so->so_accf = af; 1188 so->so_options |= SO_ACCEPTFILTER; 1189 out: 1190 if (afap != NULL) 1191 FREE(afap, M_TEMP); 1192 return (error); 1193 } 1194 #endif /* INET */ 1195 1196 /* 1197 * Perhaps this routine, and sooptcopyout(), below, ought to come in 1198 * an additional variant to handle the case where the option value needs 1199 * to be some kind of integer, but not a specific size. 1200 * In addition to their use here, these functions are also called by the 1201 * protocol-level pr_ctloutput() routines. 1202 */ 1203 int 1204 sooptcopyin(sopt, buf, len, minlen) 1205 struct sockopt *sopt; 1206 void *buf; 1207 size_t len; 1208 size_t minlen; 1209 { 1210 size_t valsize; 1211 1212 /* 1213 * If the user gives us more than we wanted, we ignore it, 1214 * but if we don't get the minimum length the caller 1215 * wants, we return EINVAL. On success, sopt->sopt_valsize 1216 * is set to however much we actually retrieved. 1217 */ 1218 if ((valsize = sopt->sopt_valsize) < minlen) 1219 return EINVAL; 1220 if (valsize > len) 1221 sopt->sopt_valsize = valsize = len; 1222 1223 if (sopt->sopt_td != NULL) 1224 return (copyin(sopt->sopt_val, buf, valsize)); 1225 1226 bcopy(sopt->sopt_val, buf, valsize); 1227 return 0; 1228 } 1229 1230 int 1231 sosetopt(so, sopt) 1232 struct socket *so; 1233 struct sockopt *sopt; 1234 { 1235 int error, optval; 1236 struct linger l; 1237 struct timeval tv; 1238 u_long val; 1239 1240 error = 0; 1241 sopt->sopt_dir = SOPT_SET; 1242 if (sopt->sopt_level != SOL_SOCKET) { 1243 if (so->so_proto && so->so_proto->pr_ctloutput) { 1244 return (so_pr_ctloutput(so, sopt)); 1245 } 1246 error = ENOPROTOOPT; 1247 } else { 1248 switch (sopt->sopt_name) { 1249 #ifdef INET 1250 case SO_ACCEPTFILTER: 1251 error = do_setopt_accept_filter(so, sopt); 1252 if (error) 1253 goto bad; 1254 break; 1255 #endif /* INET */ 1256 case SO_LINGER: 1257 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 1258 if (error) 1259 goto bad; 1260 1261 so->so_linger = l.l_linger; 1262 if (l.l_onoff) 1263 so->so_options |= SO_LINGER; 1264 else 1265 so->so_options &= ~SO_LINGER; 1266 break; 1267 1268 case SO_DEBUG: 1269 case SO_KEEPALIVE: 1270 case SO_DONTROUTE: 1271 case SO_USELOOPBACK: 1272 case SO_BROADCAST: 1273 case SO_REUSEADDR: 1274 case SO_REUSEPORT: 1275 case SO_OOBINLINE: 1276 case SO_TIMESTAMP: 1277 error = sooptcopyin(sopt, &optval, sizeof optval, 1278 sizeof optval); 1279 if (error) 1280 goto bad; 1281 if (optval) 1282 so->so_options |= sopt->sopt_name; 1283 else 1284 so->so_options &= ~sopt->sopt_name; 1285 break; 1286 1287 case SO_SNDBUF: 1288 case SO_RCVBUF: 1289 case SO_SNDLOWAT: 1290 case SO_RCVLOWAT: 1291 error = sooptcopyin(sopt, &optval, sizeof optval, 1292 sizeof optval); 1293 if (error) 1294 goto bad; 1295 1296 /* 1297 * Values < 1 make no sense for any of these 1298 * options, so disallow them. 1299 */ 1300 if (optval < 1) { 1301 error = EINVAL; 1302 goto bad; 1303 } 1304 1305 switch (sopt->sopt_name) { 1306 case SO_SNDBUF: 1307 case SO_RCVBUF: 1308 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 1309 &so->so_snd : &so->so_rcv, (u_long)optval, 1310 so, 1311 &curproc->p_rlimit[RLIMIT_SBSIZE]) == 0) { 1312 error = ENOBUFS; 1313 goto bad; 1314 } 1315 break; 1316 1317 /* 1318 * Make sure the low-water is never greater than 1319 * the high-water. 1320 */ 1321 case SO_SNDLOWAT: 1322 so->so_snd.sb_lowat = 1323 (optval > so->so_snd.sb_hiwat) ? 1324 so->so_snd.sb_hiwat : optval; 1325 break; 1326 case SO_RCVLOWAT: 1327 so->so_rcv.sb_lowat = 1328 (optval > so->so_rcv.sb_hiwat) ? 1329 so->so_rcv.sb_hiwat : optval; 1330 break; 1331 } 1332 break; 1333 1334 case SO_SNDTIMEO: 1335 case SO_RCVTIMEO: 1336 error = sooptcopyin(sopt, &tv, sizeof tv, 1337 sizeof tv); 1338 if (error) 1339 goto bad; 1340 1341 /* assert(hz > 0); */ 1342 if (tv.tv_sec < 0 || tv.tv_sec > SHRT_MAX / hz || 1343 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1344 error = EDOM; 1345 goto bad; 1346 } 1347 /* assert(tick > 0); */ 1348 /* assert(ULONG_MAX - SHRT_MAX >= 1000000); */ 1349 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 1350 if (val > SHRT_MAX) { 1351 error = EDOM; 1352 goto bad; 1353 } 1354 if (val == 0 && tv.tv_usec != 0) 1355 val = 1; 1356 1357 switch (sopt->sopt_name) { 1358 case SO_SNDTIMEO: 1359 so->so_snd.sb_timeo = val; 1360 break; 1361 case SO_RCVTIMEO: 1362 so->so_rcv.sb_timeo = val; 1363 break; 1364 } 1365 break; 1366 default: 1367 error = ENOPROTOOPT; 1368 break; 1369 } 1370 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) { 1371 (void) so_pr_ctloutput(so, sopt); 1372 } 1373 } 1374 bad: 1375 return (error); 1376 } 1377 1378 /* Helper routine for getsockopt */ 1379 int 1380 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 1381 { 1382 int error; 1383 size_t valsize; 1384 1385 error = 0; 1386 1387 /* 1388 * Documented get behavior is that we always return a value, 1389 * possibly truncated to fit in the user's buffer. 1390 * Traditional behavior is that we always tell the user 1391 * precisely how much we copied, rather than something useful 1392 * like the total amount we had available for her. 1393 * Note that this interface is not idempotent; the entire answer must 1394 * generated ahead of time. 1395 */ 1396 valsize = min(len, sopt->sopt_valsize); 1397 sopt->sopt_valsize = valsize; 1398 if (sopt->sopt_val != 0) { 1399 if (sopt->sopt_td != NULL) 1400 error = copyout(buf, sopt->sopt_val, valsize); 1401 else 1402 bcopy(buf, sopt->sopt_val, valsize); 1403 } 1404 return error; 1405 } 1406 1407 int 1408 sogetopt(so, sopt) 1409 struct socket *so; 1410 struct sockopt *sopt; 1411 { 1412 int error, optval; 1413 struct linger l; 1414 struct timeval tv; 1415 #ifdef INET 1416 struct accept_filter_arg *afap; 1417 #endif 1418 1419 error = 0; 1420 sopt->sopt_dir = SOPT_GET; 1421 if (sopt->sopt_level != SOL_SOCKET) { 1422 if (so->so_proto && so->so_proto->pr_ctloutput) { 1423 return (so_pr_ctloutput(so, sopt)); 1424 } else 1425 return (ENOPROTOOPT); 1426 } else { 1427 switch (sopt->sopt_name) { 1428 #ifdef INET 1429 case SO_ACCEPTFILTER: 1430 if ((so->so_options & SO_ACCEPTCONN) == 0) 1431 return (EINVAL); 1432 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), 1433 M_TEMP, M_WAITOK); 1434 bzero(afap, sizeof(*afap)); 1435 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 1436 strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name); 1437 if (so->so_accf->so_accept_filter_str != NULL) 1438 strcpy(afap->af_arg, so->so_accf->so_accept_filter_str); 1439 } 1440 error = sooptcopyout(sopt, afap, sizeof(*afap)); 1441 FREE(afap, M_TEMP); 1442 break; 1443 #endif /* INET */ 1444 1445 case SO_LINGER: 1446 l.l_onoff = so->so_options & SO_LINGER; 1447 l.l_linger = so->so_linger; 1448 error = sooptcopyout(sopt, &l, sizeof l); 1449 break; 1450 1451 case SO_USELOOPBACK: 1452 case SO_DONTROUTE: 1453 case SO_DEBUG: 1454 case SO_KEEPALIVE: 1455 case SO_REUSEADDR: 1456 case SO_REUSEPORT: 1457 case SO_BROADCAST: 1458 case SO_OOBINLINE: 1459 case SO_TIMESTAMP: 1460 optval = so->so_options & sopt->sopt_name; 1461 integer: 1462 error = sooptcopyout(sopt, &optval, sizeof optval); 1463 break; 1464 1465 case SO_TYPE: 1466 optval = so->so_type; 1467 goto integer; 1468 1469 case SO_ERROR: 1470 optval = so->so_error; 1471 so->so_error = 0; 1472 goto integer; 1473 1474 case SO_SNDBUF: 1475 optval = so->so_snd.sb_hiwat; 1476 goto integer; 1477 1478 case SO_RCVBUF: 1479 optval = so->so_rcv.sb_hiwat; 1480 goto integer; 1481 1482 case SO_SNDLOWAT: 1483 optval = so->so_snd.sb_lowat; 1484 goto integer; 1485 1486 case SO_RCVLOWAT: 1487 optval = so->so_rcv.sb_lowat; 1488 goto integer; 1489 1490 case SO_SNDTIMEO: 1491 case SO_RCVTIMEO: 1492 optval = (sopt->sopt_name == SO_SNDTIMEO ? 1493 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1494 1495 tv.tv_sec = optval / hz; 1496 tv.tv_usec = (optval % hz) * tick; 1497 error = sooptcopyout(sopt, &tv, sizeof tv); 1498 break; 1499 1500 default: 1501 error = ENOPROTOOPT; 1502 break; 1503 } 1504 return (error); 1505 } 1506 } 1507 1508 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 1509 int 1510 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 1511 { 1512 struct mbuf *m, *m_prev; 1513 int sopt_size = sopt->sopt_valsize, msize; 1514 1515 m = m_getl(sopt_size, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_DATA, 1516 0, &msize); 1517 if (m == NULL) 1518 return (ENOBUFS); 1519 m->m_len = min(msize, sopt_size); 1520 sopt_size -= m->m_len; 1521 *mp = m; 1522 m_prev = m; 1523 1524 while (sopt_size > 0) { 1525 m = m_getl(sopt_size, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, 1526 MT_DATA, 0, &msize); 1527 if (m == NULL) { 1528 m_freem(*mp); 1529 return (ENOBUFS); 1530 } 1531 m->m_len = min(msize, sopt_size); 1532 sopt_size -= m->m_len; 1533 m_prev->m_next = m; 1534 m_prev = m; 1535 } 1536 return (0); 1537 } 1538 1539 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 1540 int 1541 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 1542 { 1543 struct mbuf *m0 = m; 1544 1545 if (sopt->sopt_val == NULL) 1546 return 0; 1547 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 1548 if (sopt->sopt_td != NULL) { 1549 int error; 1550 1551 error = copyin(sopt->sopt_val, mtod(m, char *), 1552 m->m_len); 1553 if (error != 0) { 1554 m_freem(m0); 1555 return (error); 1556 } 1557 } else 1558 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 1559 sopt->sopt_valsize -= m->m_len; 1560 sopt->sopt_val = (caddr_t)sopt->sopt_val + m->m_len; 1561 m = m->m_next; 1562 } 1563 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 1564 panic("ip6_sooptmcopyin"); 1565 return 0; 1566 } 1567 1568 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 1569 int 1570 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 1571 { 1572 struct mbuf *m0 = m; 1573 size_t valsize = 0; 1574 1575 if (sopt->sopt_val == NULL) 1576 return 0; 1577 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 1578 if (sopt->sopt_td != NULL) { 1579 int error; 1580 1581 error = copyout(mtod(m, char *), sopt->sopt_val, 1582 m->m_len); 1583 if (error != 0) { 1584 m_freem(m0); 1585 return (error); 1586 } 1587 } else 1588 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 1589 sopt->sopt_valsize -= m->m_len; 1590 sopt->sopt_val = (caddr_t)sopt->sopt_val + m->m_len; 1591 valsize += m->m_len; 1592 m = m->m_next; 1593 } 1594 if (m != NULL) { 1595 /* enough soopt buffer should be given from user-land */ 1596 m_freem(m0); 1597 return (EINVAL); 1598 } 1599 sopt->sopt_valsize = valsize; 1600 return 0; 1601 } 1602 1603 void 1604 sohasoutofband(so) 1605 struct socket *so; 1606 { 1607 if (so->so_sigio != NULL) 1608 pgsigio(so->so_sigio, SIGURG, 0); 1609 selwakeup(&so->so_rcv.sb_sel); 1610 } 1611 1612 int 1613 sopoll(struct socket *so, int events, struct ucred *cred, struct thread *td) 1614 { 1615 int revents = 0; 1616 1617 crit_enter(); 1618 1619 if (events & (POLLIN | POLLRDNORM)) 1620 if (soreadable(so)) 1621 revents |= events & (POLLIN | POLLRDNORM); 1622 1623 if (events & POLLINIGNEOF) 1624 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 1625 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 1626 revents |= POLLINIGNEOF; 1627 1628 if (events & (POLLOUT | POLLWRNORM)) 1629 if (sowriteable(so)) 1630 revents |= events & (POLLOUT | POLLWRNORM); 1631 1632 if (events & (POLLPRI | POLLRDBAND)) 1633 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 1634 revents |= events & (POLLPRI | POLLRDBAND); 1635 1636 if (revents == 0) { 1637 if (events & 1638 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 1639 POLLRDBAND)) { 1640 selrecord(td, &so->so_rcv.sb_sel); 1641 so->so_rcv.sb_flags |= SB_SEL; 1642 } 1643 1644 if (events & (POLLOUT | POLLWRNORM)) { 1645 selrecord(td, &so->so_snd.sb_sel); 1646 so->so_snd.sb_flags |= SB_SEL; 1647 } 1648 } 1649 1650 crit_exit(); 1651 return (revents); 1652 } 1653 1654 int 1655 sokqfilter(struct file *fp, struct knote *kn) 1656 { 1657 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1658 struct sockbuf *sb; 1659 1660 switch (kn->kn_filter) { 1661 case EVFILT_READ: 1662 if (so->so_options & SO_ACCEPTCONN) 1663 kn->kn_fop = &solisten_filtops; 1664 else 1665 kn->kn_fop = &soread_filtops; 1666 sb = &so->so_rcv; 1667 break; 1668 case EVFILT_WRITE: 1669 kn->kn_fop = &sowrite_filtops; 1670 sb = &so->so_snd; 1671 break; 1672 default: 1673 return (1); 1674 } 1675 1676 crit_enter(); 1677 SLIST_INSERT_HEAD(&sb->sb_sel.si_note, kn, kn_selnext); 1678 sb->sb_flags |= SB_KNOTE; 1679 crit_exit(); 1680 return (0); 1681 } 1682 1683 static void 1684 filt_sordetach(struct knote *kn) 1685 { 1686 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1687 1688 crit_enter(); 1689 SLIST_REMOVE(&so->so_rcv.sb_sel.si_note, kn, knote, kn_selnext); 1690 if (SLIST_EMPTY(&so->so_rcv.sb_sel.si_note)) 1691 so->so_rcv.sb_flags &= ~SB_KNOTE; 1692 crit_exit(); 1693 } 1694 1695 /*ARGSUSED*/ 1696 static int 1697 filt_soread(struct knote *kn, long hint) 1698 { 1699 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1700 1701 kn->kn_data = so->so_rcv.sb_cc; 1702 if (so->so_state & SS_CANTRCVMORE) { 1703 kn->kn_flags |= EV_EOF; 1704 kn->kn_fflags = so->so_error; 1705 return (1); 1706 } 1707 if (so->so_error) /* temporary udp error */ 1708 return (1); 1709 if (kn->kn_sfflags & NOTE_LOWAT) 1710 return (kn->kn_data >= kn->kn_sdata); 1711 return (kn->kn_data >= so->so_rcv.sb_lowat); 1712 } 1713 1714 static void 1715 filt_sowdetach(struct knote *kn) 1716 { 1717 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1718 1719 crit_enter(); 1720 SLIST_REMOVE(&so->so_snd.sb_sel.si_note, kn, knote, kn_selnext); 1721 if (SLIST_EMPTY(&so->so_snd.sb_sel.si_note)) 1722 so->so_snd.sb_flags &= ~SB_KNOTE; 1723 crit_exit(); 1724 } 1725 1726 /*ARGSUSED*/ 1727 static int 1728 filt_sowrite(struct knote *kn, long hint) 1729 { 1730 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1731 1732 kn->kn_data = sbspace(&so->so_snd); 1733 if (so->so_state & SS_CANTSENDMORE) { 1734 kn->kn_flags |= EV_EOF; 1735 kn->kn_fflags = so->so_error; 1736 return (1); 1737 } 1738 if (so->so_error) /* temporary udp error */ 1739 return (1); 1740 if (((so->so_state & SS_ISCONNECTED) == 0) && 1741 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 1742 return (0); 1743 if (kn->kn_sfflags & NOTE_LOWAT) 1744 return (kn->kn_data >= kn->kn_sdata); 1745 return (kn->kn_data >= so->so_snd.sb_lowat); 1746 } 1747 1748 /*ARGSUSED*/ 1749 static int 1750 filt_solisten(struct knote *kn, long hint) 1751 { 1752 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1753 1754 kn->kn_data = so->so_qlen; 1755 return (! TAILQ_EMPTY(&so->so_comp)); 1756 } 1757