xref: /dflybsd-src/sys/kern/uipc_socket.c (revision cfc9634056ea0cd181df744a3d243a686e85bab3)
1 /*
2  * Copyright (c) 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
67  * $FreeBSD: src/sys/kern/uipc_socket.c,v 1.68.2.24 2003/11/11 17:18:18 silby Exp $
68  */
69 
70 #include "opt_inet.h"
71 #include "opt_sctp.h"
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/fcntl.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/domain.h>
79 #include <sys/file.h>			/* for struct knote */
80 #include <sys/kernel.h>
81 #include <sys/event.h>
82 #include <sys/proc.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/socketops.h>
87 #include <sys/resourcevar.h>
88 #include <sys/signalvar.h>
89 #include <sys/sysctl.h>
90 #include <sys/uio.h>
91 #include <sys/jail.h>
92 #include <vm/vm_zone.h>
93 #include <vm/pmap.h>
94 #include <net/netmsg2.h>
95 
96 #include <sys/thread2.h>
97 #include <sys/socketvar2.h>
98 #include <sys/spinlock2.h>
99 
100 #include <machine/limits.h>
101 
102 #ifdef INET
103 extern int tcp_sosend_agglim;
104 extern int tcp_sosend_async;
105 extern int udp_sosend_async;
106 extern int udp_sosend_prepend;
107 
108 static int	 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt);
109 #endif /* INET */
110 
111 static void 	filt_sordetach(struct knote *kn);
112 static int 	filt_soread(struct knote *kn, long hint);
113 static void 	filt_sowdetach(struct knote *kn);
114 static int	filt_sowrite(struct knote *kn, long hint);
115 static int	filt_solisten(struct knote *kn, long hint);
116 
117 static void	sodiscard(struct socket *so);
118 static int	soclose_sync(struct socket *so, int fflag);
119 static void	soclose_fast(struct socket *so);
120 
121 static struct filterops solisten_filtops =
122 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_solisten };
123 static struct filterops soread_filtops =
124 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
125 static struct filterops sowrite_filtops =
126 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sowdetach, filt_sowrite };
127 static struct filterops soexcept_filtops =
128 	{ FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, filt_sordetach, filt_soread };
129 
130 MALLOC_DEFINE(M_SOCKET, "socket", "socket struct");
131 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
132 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
133 
134 
135 static int somaxconn = SOMAXCONN;
136 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW,
137     &somaxconn, 0, "Maximum pending socket connection queue size");
138 
139 static int use_soclose_fast = 1;
140 SYSCTL_INT(_kern_ipc, OID_AUTO, soclose_fast, CTLFLAG_RW,
141     &use_soclose_fast, 0, "Fast socket close");
142 
143 int use_soaccept_pred_fast = 1;
144 SYSCTL_INT(_kern_ipc, OID_AUTO, soaccept_pred_fast, CTLFLAG_RW,
145     &use_soaccept_pred_fast, 0, "Fast socket accept predication");
146 
147 int use_sendfile_async = 1;
148 SYSCTL_INT(_kern_ipc, OID_AUTO, sendfile_async, CTLFLAG_RW,
149     &use_sendfile_async, 0, "sendfile uses asynchronized pru_send");
150 
151 /*
152  * Socket operation routines.
153  * These routines are called by the routines in
154  * sys_socket.c or from a system process, and
155  * implement the semantics of socket operations by
156  * switching out to the protocol specific routines.
157  */
158 
159 /*
160  * Get a socket structure, and initialize it.
161  * Note that it would probably be better to allocate socket
162  * and PCB at the same time, but I'm not convinced that all
163  * the protocols can be easily modified to do this.
164  */
165 struct socket *
166 soalloc(int waitok, struct protosw *pr)
167 {
168 	struct socket *so;
169 	unsigned waitmask;
170 
171 	waitmask = waitok ? M_WAITOK : M_NOWAIT;
172 	so = kmalloc(sizeof(struct socket), M_SOCKET, M_ZERO|waitmask);
173 	if (so) {
174 		/* XXX race condition for reentrant kernel */
175 		so->so_proto = pr;
176 		TAILQ_INIT(&so->so_aiojobq);
177 		TAILQ_INIT(&so->so_rcv.ssb_kq.ki_mlist);
178 		TAILQ_INIT(&so->so_snd.ssb_kq.ki_mlist);
179 		lwkt_token_init(&so->so_rcv.ssb_token, "rcvtok");
180 		lwkt_token_init(&so->so_snd.ssb_token, "sndtok");
181 		spin_init(&so->so_rcvd_spin);
182 		netmsg_init(&so->so_rcvd_msg.base, so, &netisr_adone_rport,
183 		    MSGF_DROPABLE, so->so_proto->pr_usrreqs->pru_rcvd);
184 		so->so_rcvd_msg.nm_pru_flags |= PRUR_ASYNC;
185 		so->so_state = SS_NOFDREF;
186 		so->so_refs = 1;
187 	}
188 	return so;
189 }
190 
191 int
192 socreate(int dom, struct socket **aso, int type,
193 	int proto, struct thread *td)
194 {
195 	struct proc *p = td->td_proc;
196 	struct protosw *prp;
197 	struct socket *so;
198 	struct pru_attach_info ai;
199 	int error;
200 
201 	if (proto)
202 		prp = pffindproto(dom, proto, type);
203 	else
204 		prp = pffindtype(dom, type);
205 
206 	if (prp == NULL || prp->pr_usrreqs->pru_attach == 0)
207 		return (EPROTONOSUPPORT);
208 
209 	if (p->p_ucred->cr_prison && jail_socket_unixiproute_only &&
210 	    prp->pr_domain->dom_family != PF_LOCAL &&
211 	    prp->pr_domain->dom_family != PF_INET &&
212 	    prp->pr_domain->dom_family != PF_INET6 &&
213 	    prp->pr_domain->dom_family != PF_ROUTE) {
214 		return (EPROTONOSUPPORT);
215 	}
216 
217 	if (prp->pr_type != type)
218 		return (EPROTOTYPE);
219 	so = soalloc(p != NULL, prp);
220 	if (so == NULL)
221 		return (ENOBUFS);
222 
223 	/*
224 	 * Callers of socreate() presumably will connect up a descriptor
225 	 * and call soclose() if they cannot.  This represents our so_refs
226 	 * (which should be 1) from soalloc().
227 	 */
228 	soclrstate(so, SS_NOFDREF);
229 
230 	/*
231 	 * Set a default port for protocol processing.  No action will occur
232 	 * on the socket on this port until an inpcb is attached to it and
233 	 * is able to match incoming packets, or until the socket becomes
234 	 * available to userland.
235 	 *
236 	 * We normally default the socket to the protocol thread on cpu 0.
237 	 * If PR_SYNC_PORT is set (unix domain sockets) there is no protocol
238 	 * thread and all pr_*()/pru_*() calls are executed synchronously.
239 	 */
240 	if (prp->pr_flags & PR_SYNC_PORT)
241 		so->so_port = &netisr_sync_port;
242 	else
243 		so->so_port = netisr_portfn(0);
244 
245 	TAILQ_INIT(&so->so_incomp);
246 	TAILQ_INIT(&so->so_comp);
247 	so->so_type = type;
248 	so->so_cred = crhold(p->p_ucred);
249 	ai.sb_rlimit = &p->p_rlimit[RLIMIT_SBSIZE];
250 	ai.p_ucred = p->p_ucred;
251 	ai.fd_rdir = p->p_fd->fd_rdir;
252 
253 	/*
254 	 * Auto-sizing of socket buffers is managed by the protocols and
255 	 * the appropriate flags must be set in the pru_attach function.
256 	 */
257 	error = so_pru_attach(so, proto, &ai);
258 	if (error) {
259 		sosetstate(so, SS_NOFDREF);
260 		sofree(so);	/* from soalloc */
261 		return error;
262 	}
263 
264 	/*
265 	 * NOTE: Returns referenced socket.
266 	 */
267 	*aso = so;
268 	return (0);
269 }
270 
271 int
272 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
273 {
274 	int error;
275 
276 	error = so_pru_bind(so, nam, td);
277 	return (error);
278 }
279 
280 static void
281 sodealloc(struct socket *so)
282 {
283 	if (so->so_rcv.ssb_hiwat)
284 		(void)chgsbsize(so->so_cred->cr_uidinfo,
285 		    &so->so_rcv.ssb_hiwat, 0, RLIM_INFINITY);
286 	if (so->so_snd.ssb_hiwat)
287 		(void)chgsbsize(so->so_cred->cr_uidinfo,
288 		    &so->so_snd.ssb_hiwat, 0, RLIM_INFINITY);
289 #ifdef INET
290 	/* remove accept filter if present */
291 	if (so->so_accf != NULL)
292 		do_setopt_accept_filter(so, NULL);
293 #endif /* INET */
294 	crfree(so->so_cred);
295 	if (so->so_faddr != NULL)
296 		kfree(so->so_faddr, M_SONAME);
297 	kfree(so, M_SOCKET);
298 }
299 
300 int
301 solisten(struct socket *so, int backlog, struct thread *td)
302 {
303 	int error;
304 #ifdef SCTP
305 	short oldopt, oldqlimit;
306 #endif /* SCTP */
307 
308 	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING))
309 		return (EINVAL);
310 
311 #ifdef SCTP
312 	oldopt = so->so_options;
313 	oldqlimit = so->so_qlimit;
314 #endif /* SCTP */
315 
316 	lwkt_gettoken(&so->so_rcv.ssb_token);
317 	if (TAILQ_EMPTY(&so->so_comp))
318 		so->so_options |= SO_ACCEPTCONN;
319 	lwkt_reltoken(&so->so_rcv.ssb_token);
320 	if (backlog < 0 || backlog > somaxconn)
321 		backlog = somaxconn;
322 	so->so_qlimit = backlog;
323 	/* SCTP needs to look at tweak both the inbound backlog parameter AND
324 	 * the so_options (UDP model both connect's and gets inbound
325 	 * connections .. implicitly).
326 	 */
327 	error = so_pru_listen(so, td);
328 	if (error) {
329 #ifdef SCTP
330 		/* Restore the params */
331 		so->so_options = oldopt;
332 		so->so_qlimit = oldqlimit;
333 #endif /* SCTP */
334 		return (error);
335 	}
336 	return (0);
337 }
338 
339 /*
340  * Destroy a disconnected socket.  This routine is a NOP if entities
341  * still have a reference on the socket:
342  *
343  *	so_pcb -	The protocol stack still has a reference
344  *	SS_NOFDREF -	There is no longer a file pointer reference
345  */
346 void
347 sofree(struct socket *so)
348 {
349 	struct socket *head;
350 
351 	/*
352 	 * This is a bit hackish at the moment.  We need to interlock
353 	 * any accept queue we are on before we potentially lose the
354 	 * last reference to avoid races against a re-reference from
355 	 * someone operating on the queue.
356 	 */
357 	while ((head = so->so_head) != NULL) {
358 		lwkt_getpooltoken(head);
359 		if (so->so_head == head)
360 			break;
361 		lwkt_relpooltoken(head);
362 	}
363 
364 	/*
365 	 * Arbitrage the last free.
366 	 */
367 	KKASSERT(so->so_refs > 0);
368 	if (atomic_fetchadd_int(&so->so_refs, -1) != 1) {
369 		if (head)
370 			lwkt_relpooltoken(head);
371 		return;
372 	}
373 
374 	KKASSERT(so->so_pcb == NULL && (so->so_state & SS_NOFDREF));
375 	KKASSERT((so->so_state & SS_ASSERTINPROG) == 0);
376 
377 	/*
378 	 * We're done, remove ourselves from the accept queue we are
379 	 * on, if we are on one.
380 	 */
381 	if (head != NULL) {
382 		if (so->so_state & SS_INCOMP) {
383 			TAILQ_REMOVE(&head->so_incomp, so, so_list);
384 			head->so_incqlen--;
385 		} else if (so->so_state & SS_COMP) {
386 			/*
387 			 * We must not decommission a socket that's
388 			 * on the accept(2) queue.  If we do, then
389 			 * accept(2) may hang after select(2) indicated
390 			 * that the listening socket was ready.
391 			 */
392 			lwkt_relpooltoken(head);
393 			return;
394 		} else {
395 			panic("sofree: not queued");
396 		}
397 		soclrstate(so, SS_INCOMP);
398 		so->so_head = NULL;
399 		lwkt_relpooltoken(head);
400 	}
401 	ssb_release(&so->so_snd, so);
402 	sorflush(so);
403 	sodealloc(so);
404 }
405 
406 /*
407  * Close a socket on last file table reference removal.
408  * Initiate disconnect if connected.
409  * Free socket when disconnect complete.
410  */
411 int
412 soclose(struct socket *so, int fflag)
413 {
414 	int error;
415 
416 	funsetown(&so->so_sigio);
417 	if (!use_soclose_fast ||
418 	    (so->so_proto->pr_flags & PR_SYNC_PORT) ||
419 	    (so->so_options & SO_LINGER)) {
420 		error = soclose_sync(so, fflag);
421 	} else {
422 		soclose_fast(so);
423 		error = 0;
424 	}
425 	return error;
426 }
427 
428 static void
429 sodiscard(struct socket *so)
430 {
431 	lwkt_getpooltoken(so);
432 	if (so->so_options & SO_ACCEPTCONN) {
433 		struct socket *sp;
434 
435 		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
436 			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
437 			soclrstate(sp, SS_INCOMP);
438 			sp->so_head = NULL;
439 			so->so_incqlen--;
440 			soaborta(sp);
441 		}
442 		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
443 			TAILQ_REMOVE(&so->so_comp, sp, so_list);
444 			soclrstate(sp, SS_COMP);
445 			sp->so_head = NULL;
446 			so->so_qlen--;
447 			soaborta(sp);
448 		}
449 	}
450 	lwkt_relpooltoken(so);
451 
452 	if (so->so_state & SS_NOFDREF)
453 		panic("soclose: NOFDREF");
454 	sosetstate(so, SS_NOFDREF);	/* take ref */
455 }
456 
457 static int
458 soclose_sync(struct socket *so, int fflag)
459 {
460 	int error = 0;
461 
462 	if (so->so_pcb == NULL)
463 		goto discard;
464 	if (so->so_state & SS_ISCONNECTED) {
465 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
466 			error = sodisconnect(so);
467 			if (error)
468 				goto drop;
469 		}
470 		if (so->so_options & SO_LINGER) {
471 			if ((so->so_state & SS_ISDISCONNECTING) &&
472 			    (fflag & FNONBLOCK))
473 				goto drop;
474 			while (so->so_state & SS_ISCONNECTED) {
475 				error = tsleep(&so->so_timeo, PCATCH,
476 					       "soclos", so->so_linger * hz);
477 				if (error)
478 					break;
479 			}
480 		}
481 	}
482 drop:
483 	if (so->so_pcb) {
484 		int error2;
485 
486 		error2 = so_pru_detach(so);
487 		if (error == 0)
488 			error = error2;
489 	}
490 discard:
491 	sodiscard(so);
492 	so_pru_sync(so);	/* unpend async sending */
493 	sofree(so);		/* dispose of ref */
494 
495 	return (error);
496 }
497 
498 static void
499 soclose_sofree_async_handler(netmsg_t msg)
500 {
501 	sofree(msg->base.nm_so);
502 }
503 
504 static void
505 soclose_sofree_async(struct socket *so)
506 {
507 	struct netmsg_base *base = &so->so_clomsg;
508 
509 	netmsg_init(base, so, &netisr_apanic_rport, 0,
510 	    soclose_sofree_async_handler);
511 	lwkt_sendmsg(so->so_port, &base->lmsg);
512 }
513 
514 static void
515 soclose_disconn_async_handler(netmsg_t msg)
516 {
517 	struct socket *so = msg->base.nm_so;
518 
519 	if ((so->so_state & SS_ISCONNECTED) &&
520 	    (so->so_state & SS_ISDISCONNECTING) == 0)
521 		so_pru_disconnect_direct(so);
522 
523 	if (so->so_pcb)
524 		so_pru_detach_direct(so);
525 
526 	sodiscard(so);
527 	sofree(so);
528 }
529 
530 static void
531 soclose_disconn_async(struct socket *so)
532 {
533 	struct netmsg_base *base = &so->so_clomsg;
534 
535 	netmsg_init(base, so, &netisr_apanic_rport, 0,
536 	    soclose_disconn_async_handler);
537 	lwkt_sendmsg(so->so_port, &base->lmsg);
538 }
539 
540 static void
541 soclose_detach_async_handler(netmsg_t msg)
542 {
543 	struct socket *so = msg->base.nm_so;
544 
545 	if (so->so_pcb)
546 		so_pru_detach_direct(so);
547 
548 	sodiscard(so);
549 	sofree(so);
550 }
551 
552 static void
553 soclose_detach_async(struct socket *so)
554 {
555 	struct netmsg_base *base = &so->so_clomsg;
556 
557 	netmsg_init(base, so, &netisr_apanic_rport, 0,
558 	    soclose_detach_async_handler);
559 	lwkt_sendmsg(so->so_port, &base->lmsg);
560 }
561 
562 static void
563 soclose_fast(struct socket *so)
564 {
565 	if (so->so_pcb == NULL)
566 		goto discard;
567 
568 	if ((so->so_state & SS_ISCONNECTED) &&
569 	    (so->so_state & SS_ISDISCONNECTING) == 0) {
570 		soclose_disconn_async(so);
571 		return;
572 	}
573 
574 	if (so->so_pcb) {
575 		soclose_detach_async(so);
576 		return;
577 	}
578 
579 discard:
580 	sodiscard(so);
581 	soclose_sofree_async(so);
582 }
583 
584 /*
585  * Abort and destroy a socket.  Only one abort can be in progress
586  * at any given moment.
587  */
588 void
589 soabort(struct socket *so)
590 {
591 	soreference(so);
592 	so_pru_abort(so);
593 }
594 
595 void
596 soaborta(struct socket *so)
597 {
598 	soreference(so);
599 	so_pru_aborta(so);
600 }
601 
602 void
603 soabort_oncpu(struct socket *so)
604 {
605 	soreference(so);
606 	so_pru_abort_oncpu(so);
607 }
608 
609 /*
610  * so is passed in ref'd, which becomes owned by
611  * the cleared SS_NOFDREF flag.
612  */
613 void
614 soaccept_generic(struct socket *so)
615 {
616 	if ((so->so_state & SS_NOFDREF) == 0)
617 		panic("soaccept: !NOFDREF");
618 	soclrstate(so, SS_NOFDREF);	/* owned by lack of SS_NOFDREF */
619 }
620 
621 int
622 soaccept(struct socket *so, struct sockaddr **nam)
623 {
624 	int error;
625 
626 	soaccept_generic(so);
627 	error = so_pru_accept(so, nam);
628 	return (error);
629 }
630 
631 int
632 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
633 {
634 	int error;
635 
636 	if (so->so_options & SO_ACCEPTCONN)
637 		return (EOPNOTSUPP);
638 	/*
639 	 * If protocol is connection-based, can only connect once.
640 	 * Otherwise, if connected, try to disconnect first.
641 	 * This allows user to disconnect by connecting to, e.g.,
642 	 * a null address.
643 	 */
644 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
645 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
646 	    (error = sodisconnect(so)))) {
647 		error = EISCONN;
648 	} else {
649 		/*
650 		 * Prevent accumulated error from previous connection
651 		 * from biting us.
652 		 */
653 		so->so_error = 0;
654 		error = so_pru_connect(so, nam, td);
655 	}
656 	return (error);
657 }
658 
659 int
660 soconnect2(struct socket *so1, struct socket *so2)
661 {
662 	int error;
663 
664 	error = so_pru_connect2(so1, so2);
665 	return (error);
666 }
667 
668 int
669 sodisconnect(struct socket *so)
670 {
671 	int error;
672 
673 	if ((so->so_state & SS_ISCONNECTED) == 0) {
674 		error = ENOTCONN;
675 		goto bad;
676 	}
677 	if (so->so_state & SS_ISDISCONNECTING) {
678 		error = EALREADY;
679 		goto bad;
680 	}
681 	error = so_pru_disconnect(so);
682 bad:
683 	return (error);
684 }
685 
686 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
687 /*
688  * Send on a socket.
689  * If send must go all at once and message is larger than
690  * send buffering, then hard error.
691  * Lock against other senders.
692  * If must go all at once and not enough room now, then
693  * inform user that this would block and do nothing.
694  * Otherwise, if nonblocking, send as much as possible.
695  * The data to be sent is described by "uio" if nonzero,
696  * otherwise by the mbuf chain "top" (which must be null
697  * if uio is not).  Data provided in mbuf chain must be small
698  * enough to send all at once.
699  *
700  * Returns nonzero on error, timeout or signal; callers
701  * must check for short counts if EINTR/ERESTART are returned.
702  * Data and control buffers are freed on return.
703  */
704 int
705 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
706 	struct mbuf *top, struct mbuf *control, int flags,
707 	struct thread *td)
708 {
709 	struct mbuf **mp;
710 	struct mbuf *m;
711 	size_t resid;
712 	int space, len;
713 	int clen = 0, error, dontroute, mlen;
714 	int atomic = sosendallatonce(so) || top;
715 	int pru_flags;
716 
717 	if (uio) {
718 		resid = uio->uio_resid;
719 	} else {
720 		resid = (size_t)top->m_pkthdr.len;
721 #ifdef INVARIANTS
722 		len = 0;
723 		for (m = top; m; m = m->m_next)
724 			len += m->m_len;
725 		KKASSERT(top->m_pkthdr.len == len);
726 #endif
727 	}
728 
729 	/*
730 	 * WARNING!  resid is unsigned, space and len are signed.  space
731 	 * 	     can wind up negative if the sockbuf is overcommitted.
732 	 *
733 	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
734 	 * type sockets since that's an error.
735 	 */
736 	if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
737 		error = EINVAL;
738 		goto out;
739 	}
740 
741 	dontroute =
742 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
743 	    (so->so_proto->pr_flags & PR_ATOMIC);
744 	if (td->td_lwp != NULL)
745 		td->td_lwp->lwp_ru.ru_msgsnd++;
746 	if (control)
747 		clen = control->m_len;
748 #define	gotoerr(errcode)	{ error = errcode; goto release; }
749 
750 restart:
751 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
752 	if (error)
753 		goto out;
754 
755 	do {
756 		if (so->so_state & SS_CANTSENDMORE)
757 			gotoerr(EPIPE);
758 		if (so->so_error) {
759 			error = so->so_error;
760 			so->so_error = 0;
761 			goto release;
762 		}
763 		if ((so->so_state & SS_ISCONNECTED) == 0) {
764 			/*
765 			 * `sendto' and `sendmsg' is allowed on a connection-
766 			 * based socket if it supports implied connect.
767 			 * Return ENOTCONN if not connected and no address is
768 			 * supplied.
769 			 */
770 			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
771 			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
772 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
773 				    !(resid == 0 && clen != 0))
774 					gotoerr(ENOTCONN);
775 			} else if (addr == NULL)
776 			    gotoerr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
777 				   ENOTCONN : EDESTADDRREQ);
778 		}
779 		if ((atomic && resid > so->so_snd.ssb_hiwat) ||
780 		    clen > so->so_snd.ssb_hiwat) {
781 			gotoerr(EMSGSIZE);
782 		}
783 		space = ssb_space(&so->so_snd);
784 		if (flags & MSG_OOB)
785 			space += 1024;
786 		if ((space < 0 || (size_t)space < resid + clen) && uio &&
787 		    (atomic || space < so->so_snd.ssb_lowat || space < clen)) {
788 			if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
789 				gotoerr(EWOULDBLOCK);
790 			ssb_unlock(&so->so_snd);
791 			error = ssb_wait(&so->so_snd);
792 			if (error)
793 				goto out;
794 			goto restart;
795 		}
796 		mp = &top;
797 		space -= clen;
798 		do {
799 		    if (uio == NULL) {
800 			/*
801 			 * Data is prepackaged in "top".
802 			 */
803 			resid = 0;
804 			if (flags & MSG_EOR)
805 				top->m_flags |= M_EOR;
806 		    } else do {
807 			if (resid > INT_MAX)
808 				resid = INT_MAX;
809 			m = m_getl((int)resid, MB_WAIT, MT_DATA,
810 				   top == NULL ? M_PKTHDR : 0, &mlen);
811 			if (top == NULL) {
812 				m->m_pkthdr.len = 0;
813 				m->m_pkthdr.rcvif = NULL;
814 			}
815 			len = imin((int)szmin(mlen, resid), space);
816 			if (resid < MINCLSIZE) {
817 				/*
818 				 * For datagram protocols, leave room
819 				 * for protocol headers in first mbuf.
820 				 */
821 				if (atomic && top == NULL && len < mlen)
822 					MH_ALIGN(m, len);
823 			}
824 			space -= len;
825 			error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
826 			resid = uio->uio_resid;
827 			m->m_len = len;
828 			*mp = m;
829 			top->m_pkthdr.len += len;
830 			if (error)
831 				goto release;
832 			mp = &m->m_next;
833 			if (resid == 0) {
834 				if (flags & MSG_EOR)
835 					top->m_flags |= M_EOR;
836 				break;
837 			}
838 		    } while (space > 0 && atomic);
839 		    if (dontroute)
840 			    so->so_options |= SO_DONTROUTE;
841 		    if (flags & MSG_OOB) {
842 		    	    pru_flags = PRUS_OOB;
843 		    } else if ((flags & MSG_EOF) &&
844 		    	       (so->so_proto->pr_flags & PR_IMPLOPCL) &&
845 			       (resid == 0)) {
846 			    /*
847 			     * If the user set MSG_EOF, the protocol
848 			     * understands this flag and nothing left to
849 			     * send then use PRU_SEND_EOF instead of PRU_SEND.
850 			     */
851 		    	    pru_flags = PRUS_EOF;
852 		    } else if (resid > 0 && space > 0) {
853 			    /* If there is more to send, set PRUS_MORETOCOME */
854 		    	    pru_flags = PRUS_MORETOCOME;
855 		    } else {
856 		    	    pru_flags = 0;
857 		    }
858 		    /*
859 		     * XXX all the SS_CANTSENDMORE checks previously
860 		     * done could be out of date.  We could have recieved
861 		     * a reset packet in an interrupt or maybe we slept
862 		     * while doing page faults in uiomove() etc. We could
863 		     * probably recheck again inside the splnet() protection
864 		     * here, but there are probably other places that this
865 		     * also happens.  We must rethink this.
866 		     */
867 		    error = so_pru_send(so, pru_flags, top, addr, control, td);
868 		    if (dontroute)
869 			    so->so_options &= ~SO_DONTROUTE;
870 		    clen = 0;
871 		    control = NULL;
872 		    top = NULL;
873 		    mp = &top;
874 		    if (error)
875 			    goto release;
876 		} while (resid && space > 0);
877 	} while (resid);
878 
879 release:
880 	ssb_unlock(&so->so_snd);
881 out:
882 	if (top)
883 		m_freem(top);
884 	if (control)
885 		m_freem(control);
886 	return (error);
887 }
888 
889 #ifdef INET
890 /*
891  * A specialization of sosend() for UDP based on protocol-specific knowledge:
892  *   so->so_proto->pr_flags has the PR_ATOMIC field set.  This means that
893  *	sosendallatonce() returns true,
894  *	the "atomic" variable is true,
895  *	and sosendudp() blocks until space is available for the entire send.
896  *   so->so_proto->pr_flags does not have the PR_CONNREQUIRED or
897  *	PR_IMPLOPCL flags set.
898  *   UDP has no out-of-band data.
899  *   UDP has no control data.
900  *   UDP does not support MSG_EOR.
901  */
902 int
903 sosendudp(struct socket *so, struct sockaddr *addr, struct uio *uio,
904 	  struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
905 {
906 	size_t resid;
907 	int error, pru_flags = 0;
908 	int space;
909 
910 	if (td->td_lwp != NULL)
911 		td->td_lwp->lwp_ru.ru_msgsnd++;
912 	if (control)
913 		m_freem(control);
914 
915 	KASSERT((uio && !top) || (top && !uio), ("bad arguments to sosendudp"));
916 	resid = uio ? uio->uio_resid : (size_t)top->m_pkthdr.len;
917 
918 restart:
919 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
920 	if (error)
921 		goto out;
922 
923 	if (so->so_state & SS_CANTSENDMORE)
924 		gotoerr(EPIPE);
925 	if (so->so_error) {
926 		error = so->so_error;
927 		so->so_error = 0;
928 		goto release;
929 	}
930 	if (!(so->so_state & SS_ISCONNECTED) && addr == NULL)
931 		gotoerr(EDESTADDRREQ);
932 	if (resid > so->so_snd.ssb_hiwat)
933 		gotoerr(EMSGSIZE);
934 	space = ssb_space(&so->so_snd);
935 	if (uio && (space < 0 || (size_t)space < resid)) {
936 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
937 			gotoerr(EWOULDBLOCK);
938 		ssb_unlock(&so->so_snd);
939 		error = ssb_wait(&so->so_snd);
940 		if (error)
941 			goto out;
942 		goto restart;
943 	}
944 
945 	if (uio) {
946 		int hdrlen = max_hdr;
947 
948 		/*
949 		 * We try to optimize out the additional mbuf
950 		 * allocations in M_PREPEND() on output path, e.g.
951 		 * - udp_output(), when it tries to prepend protocol
952 		 *   headers.
953 		 * - Link layer output function, when it tries to
954 		 *   prepend link layer header.
955 		 *
956 		 * This probably will not benefit any data that will
957 		 * be fragmented, so this optimization is only performed
958 		 * when the size of data and max size of protocol+link
959 		 * headers fit into one mbuf cluster.
960 		 */
961 		if (uio->uio_resid > MCLBYTES - hdrlen ||
962 		    !udp_sosend_prepend) {
963 			top = m_uiomove(uio);
964 			if (top == NULL)
965 				goto release;
966 		} else {
967 			int nsize;
968 
969 			top = m_getl(uio->uio_resid + hdrlen, MB_WAIT,
970 			    MT_DATA, M_PKTHDR, &nsize);
971 			KASSERT(nsize >= uio->uio_resid + hdrlen,
972 			    ("sosendudp invalid nsize %d, "
973 			     "resid %zu, hdrlen %d",
974 			     nsize, uio->uio_resid, hdrlen));
975 
976 			top->m_len = uio->uio_resid;
977 			top->m_pkthdr.len = uio->uio_resid;
978 			top->m_data += hdrlen;
979 
980 			error = uiomove(mtod(top, caddr_t), top->m_len, uio);
981 			if (error)
982 				goto out;
983 		}
984 	}
985 
986 	if (flags & MSG_DONTROUTE)
987 		pru_flags |= PRUS_DONTROUTE;
988 
989 	if (udp_sosend_async && (flags & MSG_SYNC) == 0) {
990 		so_pru_send_async(so, pru_flags, top, addr, NULL, td);
991 		error = 0;
992 	} else {
993 		error = so_pru_send(so, pru_flags, top, addr, NULL, td);
994 	}
995 	top = NULL;		/* sent or freed in lower layer */
996 
997 release:
998 	ssb_unlock(&so->so_snd);
999 out:
1000 	if (top)
1001 		m_freem(top);
1002 	return (error);
1003 }
1004 
1005 int
1006 sosendtcp(struct socket *so, struct sockaddr *addr, struct uio *uio,
1007 	struct mbuf *top, struct mbuf *control, int flags,
1008 	struct thread *td)
1009 {
1010 	struct mbuf **mp;
1011 	struct mbuf *m;
1012 	size_t resid;
1013 	int space, len;
1014 	int error, mlen;
1015 	int allatonce;
1016 	int pru_flags;
1017 
1018 	if (uio) {
1019 		KKASSERT(top == NULL);
1020 		allatonce = 0;
1021 		resid = uio->uio_resid;
1022 	} else {
1023 		allatonce = 1;
1024 		resid = (size_t)top->m_pkthdr.len;
1025 #ifdef INVARIANTS
1026 		len = 0;
1027 		for (m = top; m; m = m->m_next)
1028 			len += m->m_len;
1029 		KKASSERT(top->m_pkthdr.len == len);
1030 #endif
1031 	}
1032 
1033 	/*
1034 	 * WARNING!  resid is unsigned, space and len are signed.  space
1035 	 * 	     can wind up negative if the sockbuf is overcommitted.
1036 	 *
1037 	 * Also check to make sure that MSG_EOR isn't used on TCP
1038 	 */
1039 	if (flags & MSG_EOR) {
1040 		error = EINVAL;
1041 		goto out;
1042 	}
1043 
1044 	if (control) {
1045 		/* TCP doesn't do control messages (rights, creds, etc) */
1046 		if (control->m_len) {
1047 			error = EINVAL;
1048 			goto out;
1049 		}
1050 		m_freem(control);	/* empty control, just free it */
1051 		control = NULL;
1052 	}
1053 
1054 	if (td->td_lwp != NULL)
1055 		td->td_lwp->lwp_ru.ru_msgsnd++;
1056 
1057 #define	gotoerr(errcode)	{ error = errcode; goto release; }
1058 
1059 restart:
1060 	error = ssb_lock(&so->so_snd, SBLOCKWAIT(flags));
1061 	if (error)
1062 		goto out;
1063 
1064 	do {
1065 		if (so->so_state & SS_CANTSENDMORE)
1066 			gotoerr(EPIPE);
1067 		if (so->so_error) {
1068 			error = so->so_error;
1069 			so->so_error = 0;
1070 			goto release;
1071 		}
1072 		if ((so->so_state & SS_ISCONNECTED) == 0 &&
1073 		    (so->so_state & SS_ISCONFIRMING) == 0)
1074 			gotoerr(ENOTCONN);
1075 		if (allatonce && resid > so->so_snd.ssb_hiwat)
1076 			gotoerr(EMSGSIZE);
1077 
1078 		space = ssb_space_prealloc(&so->so_snd);
1079 		if (flags & MSG_OOB)
1080 			space += 1024;
1081 		if ((space < 0 || (size_t)space < resid) && !allatonce &&
1082 		    space < so->so_snd.ssb_lowat) {
1083 			if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT))
1084 				gotoerr(EWOULDBLOCK);
1085 			ssb_unlock(&so->so_snd);
1086 			error = ssb_wait(&so->so_snd);
1087 			if (error)
1088 				goto out;
1089 			goto restart;
1090 		}
1091 		mp = &top;
1092 		do {
1093 		    int cnt = 0, async = 0;
1094 
1095 		    if (uio == NULL) {
1096 			/*
1097 			 * Data is prepackaged in "top".
1098 			 */
1099 			resid = 0;
1100 		    } else do {
1101 			if (resid > INT_MAX)
1102 				resid = INT_MAX;
1103 			m = m_getl((int)resid, MB_WAIT, MT_DATA,
1104 				   top == NULL ? M_PKTHDR : 0, &mlen);
1105 			if (top == NULL) {
1106 				m->m_pkthdr.len = 0;
1107 				m->m_pkthdr.rcvif = NULL;
1108 			}
1109 			len = imin((int)szmin(mlen, resid), space);
1110 			space -= len;
1111 			error = uiomove(mtod(m, caddr_t), (size_t)len, uio);
1112 			resid = uio->uio_resid;
1113 			m->m_len = len;
1114 			*mp = m;
1115 			top->m_pkthdr.len += len;
1116 			if (error)
1117 				goto release;
1118 			mp = &m->m_next;
1119 			if (resid == 0)
1120 				break;
1121 			++cnt;
1122 		    } while (space > 0 && cnt < tcp_sosend_agglim);
1123 
1124 		    if (tcp_sosend_async)
1125 			    async = 1;
1126 
1127 		    if (flags & MSG_OOB) {
1128 		    	    pru_flags = PRUS_OOB;
1129 			    async = 0;
1130 		    } else if ((flags & MSG_EOF) && resid == 0) {
1131 			    pru_flags = PRUS_EOF;
1132 		    } else if (resid > 0 && space > 0) {
1133 			    /* If there is more to send, set PRUS_MORETOCOME */
1134 		    	    pru_flags = PRUS_MORETOCOME;
1135 			    async = 1;
1136 		    } else {
1137 		    	    pru_flags = 0;
1138 		    }
1139 
1140 		    if (flags & MSG_SYNC)
1141 			    async = 0;
1142 
1143 		    /*
1144 		     * XXX all the SS_CANTSENDMORE checks previously
1145 		     * done could be out of date.  We could have recieved
1146 		     * a reset packet in an interrupt or maybe we slept
1147 		     * while doing page faults in uiomove() etc. We could
1148 		     * probably recheck again inside the splnet() protection
1149 		     * here, but there are probably other places that this
1150 		     * also happens.  We must rethink this.
1151 		     */
1152 		    for (m = top; m; m = m->m_next)
1153 			    ssb_preallocstream(&so->so_snd, m);
1154 		    if (!async) {
1155 			    error = so_pru_send(so, pru_flags, top,
1156 			        NULL, NULL, td);
1157 		    } else {
1158 			    so_pru_send_async(so, pru_flags, top,
1159 			        NULL, NULL, td);
1160 			    error = 0;
1161 		    }
1162 
1163 		    top = NULL;
1164 		    mp = &top;
1165 		    if (error)
1166 			    goto release;
1167 		} while (resid && space > 0);
1168 	} while (resid);
1169 
1170 release:
1171 	ssb_unlock(&so->so_snd);
1172 out:
1173 	if (top)
1174 		m_freem(top);
1175 	if (control)
1176 		m_freem(control);
1177 	return (error);
1178 }
1179 #endif
1180 
1181 /*
1182  * Implement receive operations on a socket.
1183  *
1184  * We depend on the way that records are added to the signalsockbuf
1185  * by sbappend*.  In particular, each record (mbufs linked through m_next)
1186  * must begin with an address if the protocol so specifies,
1187  * followed by an optional mbuf or mbufs containing ancillary data,
1188  * and then zero or more mbufs of data.
1189  *
1190  * Although the signalsockbuf is locked, new data may still be appended.
1191  * A token inside the ssb_lock deals with MP issues and still allows
1192  * the network to access the socket if we block in a uio.
1193  *
1194  * The caller may receive the data as a single mbuf chain by supplying
1195  * an mbuf **mp0 for use in returning the chain.  The uio is then used
1196  * only for the count in uio_resid.
1197  */
1198 int
1199 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
1200 	  struct sockbuf *sio, struct mbuf **controlp, int *flagsp)
1201 {
1202 	struct mbuf *m, *n;
1203 	struct mbuf *free_chain = NULL;
1204 	int flags, len, error, offset;
1205 	struct protosw *pr = so->so_proto;
1206 	int moff, type = 0;
1207 	size_t resid, orig_resid;
1208 
1209 	if (uio)
1210 		resid = uio->uio_resid;
1211 	else
1212 		resid = (size_t)(sio->sb_climit - sio->sb_cc);
1213 	orig_resid = resid;
1214 
1215 	if (psa)
1216 		*psa = NULL;
1217 	if (controlp)
1218 		*controlp = NULL;
1219 	if (flagsp)
1220 		flags = *flagsp &~ MSG_EOR;
1221 	else
1222 		flags = 0;
1223 	if (flags & MSG_OOB) {
1224 		m = m_get(MB_WAIT, MT_DATA);
1225 		if (m == NULL)
1226 			return (ENOBUFS);
1227 		error = so_pru_rcvoob(so, m, flags & MSG_PEEK);
1228 		if (error)
1229 			goto bad;
1230 		if (sio) {
1231 			do {
1232 				sbappend(sio, m);
1233 				KKASSERT(resid >= (size_t)m->m_len);
1234 				resid -= (size_t)m->m_len;
1235 			} while (resid > 0 && m);
1236 		} else {
1237 			do {
1238 				uio->uio_resid = resid;
1239 				error = uiomove(mtod(m, caddr_t),
1240 						(int)szmin(resid, m->m_len),
1241 						uio);
1242 				resid = uio->uio_resid;
1243 				m = m_free(m);
1244 			} while (uio->uio_resid && error == 0 && m);
1245 		}
1246 bad:
1247 		if (m)
1248 			m_freem(m);
1249 		return (error);
1250 	}
1251 	if ((so->so_state & SS_ISCONFIRMING) && resid)
1252 		so_pru_rcvd(so, 0);
1253 
1254 	/*
1255 	 * The token interlocks against the protocol thread while
1256 	 * ssb_lock is a blocking lock against other userland entities.
1257 	 */
1258 	lwkt_gettoken(&so->so_rcv.ssb_token);
1259 restart:
1260 	error = ssb_lock(&so->so_rcv, SBLOCKWAIT(flags));
1261 	if (error)
1262 		goto done;
1263 
1264 	m = so->so_rcv.ssb_mb;
1265 	/*
1266 	 * If we have less data than requested, block awaiting more
1267 	 * (subject to any timeout) if:
1268 	 *   1. the current count is less than the low water mark, or
1269 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1270 	 *	receive operation at once if we block (resid <= hiwat).
1271 	 *   3. MSG_DONTWAIT is not set
1272 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1273 	 * we have to do the receive in sections, and thus risk returning
1274 	 * a short count if a timeout or signal occurs after we start.
1275 	 */
1276 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1277 	    (size_t)so->so_rcv.ssb_cc < resid) &&
1278 	    (so->so_rcv.ssb_cc < so->so_rcv.ssb_lowat ||
1279 	    ((flags & MSG_WAITALL) && resid <= (size_t)so->so_rcv.ssb_hiwat)) &&
1280 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1281 		KASSERT(m != NULL || !so->so_rcv.ssb_cc, ("receive 1"));
1282 		if (so->so_error) {
1283 			if (m)
1284 				goto dontblock;
1285 			error = so->so_error;
1286 			if ((flags & MSG_PEEK) == 0)
1287 				so->so_error = 0;
1288 			goto release;
1289 		}
1290 		if (so->so_state & SS_CANTRCVMORE) {
1291 			if (m)
1292 				goto dontblock;
1293 			else
1294 				goto release;
1295 		}
1296 		for (; m; m = m->m_next) {
1297 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1298 				m = so->so_rcv.ssb_mb;
1299 				goto dontblock;
1300 			}
1301 		}
1302 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1303 		    (pr->pr_flags & PR_CONNREQUIRED)) {
1304 			error = ENOTCONN;
1305 			goto release;
1306 		}
1307 		if (resid == 0)
1308 			goto release;
1309 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT)) {
1310 			error = EWOULDBLOCK;
1311 			goto release;
1312 		}
1313 		ssb_unlock(&so->so_rcv);
1314 		error = ssb_wait(&so->so_rcv);
1315 		if (error)
1316 			goto done;
1317 		goto restart;
1318 	}
1319 dontblock:
1320 	if (uio && uio->uio_td && uio->uio_td->td_proc)
1321 		uio->uio_td->td_lwp->lwp_ru.ru_msgrcv++;
1322 
1323 	/*
1324 	 * note: m should be == sb_mb here.  Cache the next record while
1325 	 * cleaning up.  Note that calling m_free*() will break out critical
1326 	 * section.
1327 	 */
1328 	KKASSERT(m == so->so_rcv.ssb_mb);
1329 
1330 	/*
1331 	 * Skip any address mbufs prepending the record.
1332 	 */
1333 	if (pr->pr_flags & PR_ADDR) {
1334 		KASSERT(m->m_type == MT_SONAME, ("receive 1a"));
1335 		orig_resid = 0;
1336 		if (psa)
1337 			*psa = dup_sockaddr(mtod(m, struct sockaddr *));
1338 		if (flags & MSG_PEEK)
1339 			m = m->m_next;
1340 		else
1341 			m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1342 	}
1343 
1344 	/*
1345 	 * Skip any control mbufs prepending the record.
1346 	 */
1347 #ifdef SCTP
1348 	if (pr->pr_flags & PR_ADDR_OPT) {
1349 		/*
1350 		 * For SCTP we may be getting a
1351 		 * whole message OR a partial delivery.
1352 		 */
1353 		if (m && m->m_type == MT_SONAME) {
1354 			orig_resid = 0;
1355 			if (psa)
1356 				*psa = dup_sockaddr(mtod(m, struct sockaddr *));
1357 			if (flags & MSG_PEEK)
1358 				m = m->m_next;
1359 			else
1360 				m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1361 		}
1362 	}
1363 #endif /* SCTP */
1364 	while (m && m->m_type == MT_CONTROL && error == 0) {
1365 		if (flags & MSG_PEEK) {
1366 			if (controlp)
1367 				*controlp = m_copy(m, 0, m->m_len);
1368 			m = m->m_next;	/* XXX race */
1369 		} else {
1370 			if (controlp) {
1371 				n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1372 				if (pr->pr_domain->dom_externalize &&
1373 				    mtod(m, struct cmsghdr *)->cmsg_type ==
1374 				    SCM_RIGHTS)
1375 				   error = (*pr->pr_domain->dom_externalize)(m);
1376 				*controlp = m;
1377 				m = n;
1378 			} else {
1379 				m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1380 			}
1381 		}
1382 		if (controlp && *controlp) {
1383 			orig_resid = 0;
1384 			controlp = &(*controlp)->m_next;
1385 		}
1386 	}
1387 
1388 	/*
1389 	 * flag OOB data.
1390 	 */
1391 	if (m) {
1392 		type = m->m_type;
1393 		if (type == MT_OOBDATA)
1394 			flags |= MSG_OOB;
1395 	}
1396 
1397 	/*
1398 	 * Copy to the UIO or mbuf return chain (*mp).
1399 	 */
1400 	moff = 0;
1401 	offset = 0;
1402 	while (m && resid > 0 && error == 0) {
1403 		if (m->m_type == MT_OOBDATA) {
1404 			if (type != MT_OOBDATA)
1405 				break;
1406 		} else if (type == MT_OOBDATA)
1407 			break;
1408 		else
1409 		    KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1410 			("receive 3"));
1411 		soclrstate(so, SS_RCVATMARK);
1412 		len = (resid > INT_MAX) ? INT_MAX : resid;
1413 		if (so->so_oobmark && len > so->so_oobmark - offset)
1414 			len = so->so_oobmark - offset;
1415 		if (len > m->m_len - moff)
1416 			len = m->m_len - moff;
1417 
1418 		/*
1419 		 * Copy out to the UIO or pass the mbufs back to the SIO.
1420 		 * The SIO is dealt with when we eat the mbuf, but deal
1421 		 * with the resid here either way.
1422 		 */
1423 		if (uio) {
1424 			uio->uio_resid = resid;
1425 			error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1426 			resid = uio->uio_resid;
1427 			if (error)
1428 				goto release;
1429 		} else {
1430 			resid -= (size_t)len;
1431 		}
1432 
1433 		/*
1434 		 * Eat the entire mbuf or just a piece of it
1435 		 */
1436 		if (len == m->m_len - moff) {
1437 			if (m->m_flags & M_EOR)
1438 				flags |= MSG_EOR;
1439 #ifdef SCTP
1440 			if (m->m_flags & M_NOTIFICATION)
1441 				flags |= MSG_NOTIFICATION;
1442 #endif /* SCTP */
1443 			if (flags & MSG_PEEK) {
1444 				m = m->m_next;
1445 				moff = 0;
1446 			} else {
1447 				if (sio) {
1448 					n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1449 					sbappend(sio, m);
1450 					m = n;
1451 				} else {
1452 					m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1453 				}
1454 			}
1455 		} else {
1456 			if (flags & MSG_PEEK) {
1457 				moff += len;
1458 			} else {
1459 				if (sio) {
1460 					n = m_copym(m, 0, len, MB_WAIT);
1461 					if (n)
1462 						sbappend(sio, n);
1463 				}
1464 				m->m_data += len;
1465 				m->m_len -= len;
1466 				so->so_rcv.ssb_cc -= len;
1467 			}
1468 		}
1469 		if (so->so_oobmark) {
1470 			if ((flags & MSG_PEEK) == 0) {
1471 				so->so_oobmark -= len;
1472 				if (so->so_oobmark == 0) {
1473 					sosetstate(so, SS_RCVATMARK);
1474 					break;
1475 				}
1476 			} else {
1477 				offset += len;
1478 				if (offset == so->so_oobmark)
1479 					break;
1480 			}
1481 		}
1482 		if (flags & MSG_EOR)
1483 			break;
1484 		/*
1485 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1486 		 * we must not quit until resid == 0 or an error
1487 		 * termination.  If a signal/timeout occurs, return
1488 		 * with a short count but without error.
1489 		 * Keep signalsockbuf locked against other readers.
1490 		 */
1491 		while ((flags & MSG_WAITALL) && m == NULL &&
1492 		       resid > 0 && !sosendallatonce(so) &&
1493 		       so->so_rcv.ssb_mb == NULL) {
1494 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
1495 				break;
1496 			/*
1497 			 * The window might have closed to zero, make
1498 			 * sure we send an ack now that we've drained
1499 			 * the buffer or we might end up blocking until
1500 			 * the idle takes over (5 seconds).
1501 			 */
1502 			if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1503 				so_pru_rcvd(so, flags);
1504 			error = ssb_wait(&so->so_rcv);
1505 			if (error) {
1506 				ssb_unlock(&so->so_rcv);
1507 				error = 0;
1508 				goto done;
1509 			}
1510 			m = so->so_rcv.ssb_mb;
1511 		}
1512 	}
1513 
1514 	/*
1515 	 * If an atomic read was requested but unread data still remains
1516 	 * in the record, set MSG_TRUNC.
1517 	 */
1518 	if (m && pr->pr_flags & PR_ATOMIC)
1519 		flags |= MSG_TRUNC;
1520 
1521 	/*
1522 	 * Cleanup.  If an atomic read was requested drop any unread data.
1523 	 */
1524 	if ((flags & MSG_PEEK) == 0) {
1525 		if (m && (pr->pr_flags & PR_ATOMIC))
1526 			sbdroprecord(&so->so_rcv.sb);
1527 		if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1528 			so_pru_rcvd(so, flags);
1529 	}
1530 
1531 	if (orig_resid == resid && orig_resid &&
1532 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1533 		ssb_unlock(&so->so_rcv);
1534 		goto restart;
1535 	}
1536 
1537 	if (flagsp)
1538 		*flagsp |= flags;
1539 release:
1540 	ssb_unlock(&so->so_rcv);
1541 done:
1542 	lwkt_reltoken(&so->so_rcv.ssb_token);
1543 	if (free_chain)
1544 		m_freem(free_chain);
1545 	return (error);
1546 }
1547 
1548 int
1549 sorecvtcp(struct socket *so, struct sockaddr **psa, struct uio *uio,
1550 	  struct sockbuf *sio, struct mbuf **controlp, int *flagsp)
1551 {
1552 	struct mbuf *m, *n;
1553 	struct mbuf *free_chain = NULL;
1554 	int flags, len, error, offset;
1555 	struct protosw *pr = so->so_proto;
1556 	int moff;
1557 	size_t resid, orig_resid;
1558 
1559 	if (uio)
1560 		resid = uio->uio_resid;
1561 	else
1562 		resid = (size_t)(sio->sb_climit - sio->sb_cc);
1563 	orig_resid = resid;
1564 
1565 	if (psa)
1566 		*psa = NULL;
1567 	if (controlp)
1568 		*controlp = NULL;
1569 	if (flagsp)
1570 		flags = *flagsp &~ MSG_EOR;
1571 	else
1572 		flags = 0;
1573 	if (flags & MSG_OOB) {
1574 		m = m_get(MB_WAIT, MT_DATA);
1575 		if (m == NULL)
1576 			return (ENOBUFS);
1577 		error = so_pru_rcvoob(so, m, flags & MSG_PEEK);
1578 		if (error)
1579 			goto bad;
1580 		if (sio) {
1581 			do {
1582 				sbappend(sio, m);
1583 				KKASSERT(resid >= (size_t)m->m_len);
1584 				resid -= (size_t)m->m_len;
1585 			} while (resid > 0 && m);
1586 		} else {
1587 			do {
1588 				uio->uio_resid = resid;
1589 				error = uiomove(mtod(m, caddr_t),
1590 						(int)szmin(resid, m->m_len),
1591 						uio);
1592 				resid = uio->uio_resid;
1593 				m = m_free(m);
1594 			} while (uio->uio_resid && error == 0 && m);
1595 		}
1596 bad:
1597 		if (m)
1598 			m_freem(m);
1599 		return (error);
1600 	}
1601 
1602 	/*
1603 	 * The token interlocks against the protocol thread while
1604 	 * ssb_lock is a blocking lock against other userland entities.
1605 	 */
1606 	lwkt_gettoken(&so->so_rcv.ssb_token);
1607 restart:
1608 	error = ssb_lock(&so->so_rcv, SBLOCKWAIT(flags));
1609 	if (error)
1610 		goto done;
1611 
1612 	m = so->so_rcv.ssb_mb;
1613 	/*
1614 	 * If we have less data than requested, block awaiting more
1615 	 * (subject to any timeout) if:
1616 	 *   1. the current count is less than the low water mark, or
1617 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
1618 	 *	receive operation at once if we block (resid <= hiwat).
1619 	 *   3. MSG_DONTWAIT is not set
1620 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1621 	 * we have to do the receive in sections, and thus risk returning
1622 	 * a short count if a timeout or signal occurs after we start.
1623 	 */
1624 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1625 	    (size_t)so->so_rcv.ssb_cc < resid) &&
1626 	    (so->so_rcv.ssb_cc < so->so_rcv.ssb_lowat ||
1627 	   ((flags & MSG_WAITALL) && resid <= (size_t)so->so_rcv.ssb_hiwat)))) {
1628 		KASSERT(m != NULL || !so->so_rcv.ssb_cc, ("receive 1"));
1629 		if (so->so_error) {
1630 			if (m)
1631 				goto dontblock;
1632 			error = so->so_error;
1633 			if ((flags & MSG_PEEK) == 0)
1634 				so->so_error = 0;
1635 			goto release;
1636 		}
1637 		if (so->so_state & SS_CANTRCVMORE) {
1638 			if (m)
1639 				goto dontblock;
1640 			else
1641 				goto release;
1642 		}
1643 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1644 		    (pr->pr_flags & PR_CONNREQUIRED)) {
1645 			error = ENOTCONN;
1646 			goto release;
1647 		}
1648 		if (resid == 0)
1649 			goto release;
1650 		if (flags & (MSG_FNONBLOCKING|MSG_DONTWAIT)) {
1651 			error = EWOULDBLOCK;
1652 			goto release;
1653 		}
1654 		ssb_unlock(&so->so_rcv);
1655 		error = ssb_wait(&so->so_rcv);
1656 		if (error)
1657 			goto done;
1658 		goto restart;
1659 	}
1660 dontblock:
1661 	if (uio && uio->uio_td && uio->uio_td->td_proc)
1662 		uio->uio_td->td_lwp->lwp_ru.ru_msgrcv++;
1663 
1664 	/*
1665 	 * note: m should be == sb_mb here.  Cache the next record while
1666 	 * cleaning up.  Note that calling m_free*() will break out critical
1667 	 * section.
1668 	 */
1669 	KKASSERT(m == so->so_rcv.ssb_mb);
1670 
1671 	/*
1672 	 * Copy to the UIO or mbuf return chain (*mp).
1673 	 */
1674 	moff = 0;
1675 	offset = 0;
1676 	while (m && resid > 0 && error == 0) {
1677 		KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1678 		    ("receive 3"));
1679 
1680 		soclrstate(so, SS_RCVATMARK);
1681 		len = (resid > INT_MAX) ? INT_MAX : resid;
1682 		if (so->so_oobmark && len > so->so_oobmark - offset)
1683 			len = so->so_oobmark - offset;
1684 		if (len > m->m_len - moff)
1685 			len = m->m_len - moff;
1686 
1687 		/*
1688 		 * Copy out to the UIO or pass the mbufs back to the SIO.
1689 		 * The SIO is dealt with when we eat the mbuf, but deal
1690 		 * with the resid here either way.
1691 		 */
1692 		if (uio) {
1693 			uio->uio_resid = resid;
1694 			error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1695 			resid = uio->uio_resid;
1696 			if (error)
1697 				goto release;
1698 		} else {
1699 			resid -= (size_t)len;
1700 		}
1701 
1702 		/*
1703 		 * Eat the entire mbuf or just a piece of it
1704 		 */
1705 		if (len == m->m_len - moff) {
1706 			if (flags & MSG_PEEK) {
1707 				m = m->m_next;
1708 				moff = 0;
1709 			} else {
1710 				if (sio) {
1711 					n = sbunlinkmbuf(&so->so_rcv.sb, m, NULL);
1712 					sbappend(sio, m);
1713 					m = n;
1714 				} else {
1715 					m = sbunlinkmbuf(&so->so_rcv.sb, m, &free_chain);
1716 				}
1717 			}
1718 		} else {
1719 			if (flags & MSG_PEEK) {
1720 				moff += len;
1721 			} else {
1722 				if (sio) {
1723 					n = m_copym(m, 0, len, MB_WAIT);
1724 					if (n)
1725 						sbappend(sio, n);
1726 				}
1727 				m->m_data += len;
1728 				m->m_len -= len;
1729 				so->so_rcv.ssb_cc -= len;
1730 			}
1731 		}
1732 		if (so->so_oobmark) {
1733 			if ((flags & MSG_PEEK) == 0) {
1734 				so->so_oobmark -= len;
1735 				if (so->so_oobmark == 0) {
1736 					sosetstate(so, SS_RCVATMARK);
1737 					break;
1738 				}
1739 			} else {
1740 				offset += len;
1741 				if (offset == so->so_oobmark)
1742 					break;
1743 			}
1744 		}
1745 		/*
1746 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1747 		 * we must not quit until resid == 0 or an error
1748 		 * termination.  If a signal/timeout occurs, return
1749 		 * with a short count but without error.
1750 		 * Keep signalsockbuf locked against other readers.
1751 		 */
1752 		while ((flags & MSG_WAITALL) && m == NULL &&
1753 		       resid > 0 && !sosendallatonce(so) &&
1754 		       so->so_rcv.ssb_mb == NULL) {
1755 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
1756 				break;
1757 			/*
1758 			 * The window might have closed to zero, make
1759 			 * sure we send an ack now that we've drained
1760 			 * the buffer or we might end up blocking until
1761 			 * the idle takes over (5 seconds).
1762 			 */
1763 			if (so->so_pcb)
1764 				so_pru_rcvd_async(so);
1765 			error = ssb_wait(&so->so_rcv);
1766 			if (error) {
1767 				ssb_unlock(&so->so_rcv);
1768 				error = 0;
1769 				goto done;
1770 			}
1771 			m = so->so_rcv.ssb_mb;
1772 		}
1773 	}
1774 
1775 	/*
1776 	 * Cleanup.  If an atomic read was requested drop any unread data.
1777 	 */
1778 	if ((flags & MSG_PEEK) == 0) {
1779 		if (so->so_pcb)
1780 			so_pru_rcvd_async(so);
1781 	}
1782 
1783 	if (orig_resid == resid && orig_resid &&
1784 	    (so->so_state & SS_CANTRCVMORE) == 0) {
1785 		ssb_unlock(&so->so_rcv);
1786 		goto restart;
1787 	}
1788 
1789 	if (flagsp)
1790 		*flagsp |= flags;
1791 release:
1792 	ssb_unlock(&so->so_rcv);
1793 done:
1794 	lwkt_reltoken(&so->so_rcv.ssb_token);
1795 	if (free_chain)
1796 		m_freem(free_chain);
1797 	return (error);
1798 }
1799 
1800 /*
1801  * Shut a socket down.  Note that we do not get a frontend lock as we
1802  * want to be able to shut the socket down even if another thread is
1803  * blocked in a read(), thus waking it up.
1804  */
1805 int
1806 soshutdown(struct socket *so, int how)
1807 {
1808 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1809 		return (EINVAL);
1810 
1811 	if (how != SHUT_WR) {
1812 		/*ssb_lock(&so->so_rcv, M_WAITOK);*/
1813 		sorflush(so);
1814 		/*ssb_unlock(&so->so_rcv);*/
1815 	}
1816 	if (how != SHUT_RD)
1817 		return (so_pru_shutdown(so));
1818 	return (0);
1819 }
1820 
1821 void
1822 sorflush(struct socket *so)
1823 {
1824 	struct signalsockbuf *ssb = &so->so_rcv;
1825 	struct protosw *pr = so->so_proto;
1826 	struct signalsockbuf asb;
1827 
1828 	atomic_set_int(&ssb->ssb_flags, SSB_NOINTR);
1829 
1830 	lwkt_gettoken(&ssb->ssb_token);
1831 	socantrcvmore(so);
1832 	asb = *ssb;
1833 
1834 	/*
1835 	 * Can't just blow up the ssb structure here
1836 	 */
1837 	bzero(&ssb->sb, sizeof(ssb->sb));
1838 	ssb->ssb_timeo = 0;
1839 	ssb->ssb_lowat = 0;
1840 	ssb->ssb_hiwat = 0;
1841 	ssb->ssb_mbmax = 0;
1842 	atomic_clear_int(&ssb->ssb_flags, SSB_CLEAR_MASK);
1843 
1844 	if ((pr->pr_flags & PR_RIGHTS) && pr->pr_domain->dom_dispose)
1845 		(*pr->pr_domain->dom_dispose)(asb.ssb_mb);
1846 	ssb_release(&asb, so);
1847 
1848 	lwkt_reltoken(&ssb->ssb_token);
1849 }
1850 
1851 #ifdef INET
1852 static int
1853 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt)
1854 {
1855 	struct accept_filter_arg	*afap = NULL;
1856 	struct accept_filter	*afp;
1857 	struct so_accf	*af = so->so_accf;
1858 	int	error = 0;
1859 
1860 	/* do not set/remove accept filters on non listen sockets */
1861 	if ((so->so_options & SO_ACCEPTCONN) == 0) {
1862 		error = EINVAL;
1863 		goto out;
1864 	}
1865 
1866 	/* removing the filter */
1867 	if (sopt == NULL) {
1868 		if (af != NULL) {
1869 			if (af->so_accept_filter != NULL &&
1870 				af->so_accept_filter->accf_destroy != NULL) {
1871 				af->so_accept_filter->accf_destroy(so);
1872 			}
1873 			if (af->so_accept_filter_str != NULL) {
1874 				kfree(af->so_accept_filter_str, M_ACCF);
1875 			}
1876 			kfree(af, M_ACCF);
1877 			so->so_accf = NULL;
1878 		}
1879 		so->so_options &= ~SO_ACCEPTFILTER;
1880 		return (0);
1881 	}
1882 	/* adding a filter */
1883 	/* must remove previous filter first */
1884 	if (af != NULL) {
1885 		error = EINVAL;
1886 		goto out;
1887 	}
1888 	/* don't put large objects on the kernel stack */
1889 	afap = kmalloc(sizeof(*afap), M_TEMP, M_WAITOK);
1890 	error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap);
1891 	afap->af_name[sizeof(afap->af_name)-1] = '\0';
1892 	afap->af_arg[sizeof(afap->af_arg)-1] = '\0';
1893 	if (error)
1894 		goto out;
1895 	afp = accept_filt_get(afap->af_name);
1896 	if (afp == NULL) {
1897 		error = ENOENT;
1898 		goto out;
1899 	}
1900 	af = kmalloc(sizeof(*af), M_ACCF, M_WAITOK | M_ZERO);
1901 	if (afp->accf_create != NULL) {
1902 		if (afap->af_name[0] != '\0') {
1903 			int len = strlen(afap->af_name) + 1;
1904 
1905 			af->so_accept_filter_str = kmalloc(len, M_ACCF,
1906 							   M_WAITOK);
1907 			strcpy(af->so_accept_filter_str, afap->af_name);
1908 		}
1909 		af->so_accept_filter_arg = afp->accf_create(so, afap->af_arg);
1910 		if (af->so_accept_filter_arg == NULL) {
1911 			kfree(af->so_accept_filter_str, M_ACCF);
1912 			kfree(af, M_ACCF);
1913 			so->so_accf = NULL;
1914 			error = EINVAL;
1915 			goto out;
1916 		}
1917 	}
1918 	af->so_accept_filter = afp;
1919 	so->so_accf = af;
1920 	so->so_options |= SO_ACCEPTFILTER;
1921 out:
1922 	if (afap != NULL)
1923 		kfree(afap, M_TEMP);
1924 	return (error);
1925 }
1926 #endif /* INET */
1927 
1928 /*
1929  * Perhaps this routine, and sooptcopyout(), below, ought to come in
1930  * an additional variant to handle the case where the option value needs
1931  * to be some kind of integer, but not a specific size.
1932  * In addition to their use here, these functions are also called by the
1933  * protocol-level pr_ctloutput() routines.
1934  */
1935 int
1936 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
1937 {
1938 	return soopt_to_kbuf(sopt, buf, len, minlen);
1939 }
1940 
1941 int
1942 soopt_to_kbuf(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
1943 {
1944 	size_t	valsize;
1945 
1946 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
1947 	KKASSERT(kva_p(buf));
1948 
1949 	/*
1950 	 * If the user gives us more than we wanted, we ignore it,
1951 	 * but if we don't get the minimum length the caller
1952 	 * wants, we return EINVAL.  On success, sopt->sopt_valsize
1953 	 * is set to however much we actually retrieved.
1954 	 */
1955 	if ((valsize = sopt->sopt_valsize) < minlen)
1956 		return EINVAL;
1957 	if (valsize > len)
1958 		sopt->sopt_valsize = valsize = len;
1959 
1960 	bcopy(sopt->sopt_val, buf, valsize);
1961 	return 0;
1962 }
1963 
1964 
1965 int
1966 sosetopt(struct socket *so, struct sockopt *sopt)
1967 {
1968 	int	error, optval;
1969 	struct	linger l;
1970 	struct	timeval tv;
1971 	u_long  val;
1972 	struct signalsockbuf *sotmp;
1973 
1974 	error = 0;
1975 	sopt->sopt_dir = SOPT_SET;
1976 	if (sopt->sopt_level != SOL_SOCKET) {
1977 		if (so->so_proto && so->so_proto->pr_ctloutput) {
1978 			return (so_pr_ctloutput(so, sopt));
1979 		}
1980 		error = ENOPROTOOPT;
1981 	} else {
1982 		switch (sopt->sopt_name) {
1983 #ifdef INET
1984 		case SO_ACCEPTFILTER:
1985 			error = do_setopt_accept_filter(so, sopt);
1986 			if (error)
1987 				goto bad;
1988 			break;
1989 #endif /* INET */
1990 		case SO_LINGER:
1991 			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1992 			if (error)
1993 				goto bad;
1994 
1995 			so->so_linger = l.l_linger;
1996 			if (l.l_onoff)
1997 				so->so_options |= SO_LINGER;
1998 			else
1999 				so->so_options &= ~SO_LINGER;
2000 			break;
2001 
2002 		case SO_DEBUG:
2003 		case SO_KEEPALIVE:
2004 		case SO_DONTROUTE:
2005 		case SO_USELOOPBACK:
2006 		case SO_BROADCAST:
2007 		case SO_REUSEADDR:
2008 		case SO_REUSEPORT:
2009 		case SO_OOBINLINE:
2010 		case SO_TIMESTAMP:
2011 		case SO_NOSIGPIPE:
2012 			error = sooptcopyin(sopt, &optval, sizeof optval,
2013 					    sizeof optval);
2014 			if (error)
2015 				goto bad;
2016 			if (optval)
2017 				so->so_options |= sopt->sopt_name;
2018 			else
2019 				so->so_options &= ~sopt->sopt_name;
2020 			break;
2021 
2022 		case SO_SNDBUF:
2023 		case SO_RCVBUF:
2024 		case SO_SNDLOWAT:
2025 		case SO_RCVLOWAT:
2026 			error = sooptcopyin(sopt, &optval, sizeof optval,
2027 					    sizeof optval);
2028 			if (error)
2029 				goto bad;
2030 
2031 			/*
2032 			 * Values < 1 make no sense for any of these
2033 			 * options, so disallow them.
2034 			 */
2035 			if (optval < 1) {
2036 				error = EINVAL;
2037 				goto bad;
2038 			}
2039 
2040 			switch (sopt->sopt_name) {
2041 			case SO_SNDBUF:
2042 			case SO_RCVBUF:
2043 				if (ssb_reserve(sopt->sopt_name == SO_SNDBUF ?
2044 				    &so->so_snd : &so->so_rcv, (u_long)optval,
2045 				    so,
2046 				    &curproc->p_rlimit[RLIMIT_SBSIZE]) == 0) {
2047 					error = ENOBUFS;
2048 					goto bad;
2049 				}
2050 				sotmp = (sopt->sopt_name == SO_SNDBUF) ?
2051 						&so->so_snd : &so->so_rcv;
2052 				atomic_clear_int(&sotmp->ssb_flags,
2053 						 SSB_AUTOSIZE);
2054 				break;
2055 
2056 			/*
2057 			 * Make sure the low-water is never greater than
2058 			 * the high-water.
2059 			 */
2060 			case SO_SNDLOWAT:
2061 				so->so_snd.ssb_lowat =
2062 				    (optval > so->so_snd.ssb_hiwat) ?
2063 				    so->so_snd.ssb_hiwat : optval;
2064 				atomic_clear_int(&so->so_snd.ssb_flags,
2065 						 SSB_AUTOLOWAT);
2066 				break;
2067 			case SO_RCVLOWAT:
2068 				so->so_rcv.ssb_lowat =
2069 				    (optval > so->so_rcv.ssb_hiwat) ?
2070 				    so->so_rcv.ssb_hiwat : optval;
2071 				atomic_clear_int(&so->so_rcv.ssb_flags,
2072 						 SSB_AUTOLOWAT);
2073 				break;
2074 			}
2075 			break;
2076 
2077 		case SO_SNDTIMEO:
2078 		case SO_RCVTIMEO:
2079 			error = sooptcopyin(sopt, &tv, sizeof tv,
2080 					    sizeof tv);
2081 			if (error)
2082 				goto bad;
2083 
2084 			/* assert(hz > 0); */
2085 			if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
2086 			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
2087 				error = EDOM;
2088 				goto bad;
2089 			}
2090 			/* assert(tick > 0); */
2091 			/* assert(ULONG_MAX - INT_MAX >= 1000000); */
2092 			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / ustick;
2093 			if (val > INT_MAX) {
2094 				error = EDOM;
2095 				goto bad;
2096 			}
2097 			if (val == 0 && tv.tv_usec != 0)
2098 				val = 1;
2099 
2100 			switch (sopt->sopt_name) {
2101 			case SO_SNDTIMEO:
2102 				so->so_snd.ssb_timeo = val;
2103 				break;
2104 			case SO_RCVTIMEO:
2105 				so->so_rcv.ssb_timeo = val;
2106 				break;
2107 			}
2108 			break;
2109 		default:
2110 			error = ENOPROTOOPT;
2111 			break;
2112 		}
2113 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
2114 			(void) so_pr_ctloutput(so, sopt);
2115 		}
2116 	}
2117 bad:
2118 	return (error);
2119 }
2120 
2121 /* Helper routine for getsockopt */
2122 int
2123 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2124 {
2125 	soopt_from_kbuf(sopt, buf, len);
2126 	return 0;
2127 }
2128 
2129 void
2130 soopt_from_kbuf(struct sockopt *sopt, const void *buf, size_t len)
2131 {
2132 	size_t	valsize;
2133 
2134 	if (len == 0) {
2135 		sopt->sopt_valsize = 0;
2136 		return;
2137 	}
2138 
2139 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2140 	KKASSERT(kva_p(buf));
2141 
2142 	/*
2143 	 * Documented get behavior is that we always return a value,
2144 	 * possibly truncated to fit in the user's buffer.
2145 	 * Traditional behavior is that we always tell the user
2146 	 * precisely how much we copied, rather than something useful
2147 	 * like the total amount we had available for her.
2148 	 * Note that this interface is not idempotent; the entire answer must
2149 	 * generated ahead of time.
2150 	 */
2151 	valsize = szmin(len, sopt->sopt_valsize);
2152 	sopt->sopt_valsize = valsize;
2153 	if (sopt->sopt_val != 0) {
2154 		bcopy(buf, sopt->sopt_val, valsize);
2155 	}
2156 }
2157 
2158 int
2159 sogetopt(struct socket *so, struct sockopt *sopt)
2160 {
2161 	int	error, optval;
2162 	long	optval_l;
2163 	struct	linger l;
2164 	struct	timeval tv;
2165 #ifdef INET
2166 	struct accept_filter_arg *afap;
2167 #endif
2168 
2169 	error = 0;
2170 	sopt->sopt_dir = SOPT_GET;
2171 	if (sopt->sopt_level != SOL_SOCKET) {
2172 		if (so->so_proto && so->so_proto->pr_ctloutput) {
2173 			return (so_pr_ctloutput(so, sopt));
2174 		} else
2175 			return (ENOPROTOOPT);
2176 	} else {
2177 		switch (sopt->sopt_name) {
2178 #ifdef INET
2179 		case SO_ACCEPTFILTER:
2180 			if ((so->so_options & SO_ACCEPTCONN) == 0)
2181 				return (EINVAL);
2182 			afap = kmalloc(sizeof(*afap), M_TEMP,
2183 				       M_WAITOK | M_ZERO);
2184 			if ((so->so_options & SO_ACCEPTFILTER) != 0) {
2185 				strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name);
2186 				if (so->so_accf->so_accept_filter_str != NULL)
2187 					strcpy(afap->af_arg, so->so_accf->so_accept_filter_str);
2188 			}
2189 			error = sooptcopyout(sopt, afap, sizeof(*afap));
2190 			kfree(afap, M_TEMP);
2191 			break;
2192 #endif /* INET */
2193 
2194 		case SO_LINGER:
2195 			l.l_onoff = so->so_options & SO_LINGER;
2196 			l.l_linger = so->so_linger;
2197 			error = sooptcopyout(sopt, &l, sizeof l);
2198 			break;
2199 
2200 		case SO_USELOOPBACK:
2201 		case SO_DONTROUTE:
2202 		case SO_DEBUG:
2203 		case SO_KEEPALIVE:
2204 		case SO_REUSEADDR:
2205 		case SO_REUSEPORT:
2206 		case SO_BROADCAST:
2207 		case SO_OOBINLINE:
2208 		case SO_TIMESTAMP:
2209 		case SO_NOSIGPIPE:
2210 			optval = so->so_options & sopt->sopt_name;
2211 integer:
2212 			error = sooptcopyout(sopt, &optval, sizeof optval);
2213 			break;
2214 
2215 		case SO_TYPE:
2216 			optval = so->so_type;
2217 			goto integer;
2218 
2219 		case SO_ERROR:
2220 			optval = so->so_error;
2221 			so->so_error = 0;
2222 			goto integer;
2223 
2224 		case SO_SNDBUF:
2225 			optval = so->so_snd.ssb_hiwat;
2226 			goto integer;
2227 
2228 		case SO_RCVBUF:
2229 			optval = so->so_rcv.ssb_hiwat;
2230 			goto integer;
2231 
2232 		case SO_SNDLOWAT:
2233 			optval = so->so_snd.ssb_lowat;
2234 			goto integer;
2235 
2236 		case SO_RCVLOWAT:
2237 			optval = so->so_rcv.ssb_lowat;
2238 			goto integer;
2239 
2240 		case SO_SNDTIMEO:
2241 		case SO_RCVTIMEO:
2242 			optval = (sopt->sopt_name == SO_SNDTIMEO ?
2243 				  so->so_snd.ssb_timeo : so->so_rcv.ssb_timeo);
2244 
2245 			tv.tv_sec = optval / hz;
2246 			tv.tv_usec = (optval % hz) * ustick;
2247 			error = sooptcopyout(sopt, &tv, sizeof tv);
2248 			break;
2249 
2250 		case SO_SNDSPACE:
2251 			optval_l = ssb_space(&so->so_snd);
2252 			error = sooptcopyout(sopt, &optval_l, sizeof(optval_l));
2253 			break;
2254 
2255 		default:
2256 			error = ENOPROTOOPT;
2257 			break;
2258 		}
2259 		return (error);
2260 	}
2261 }
2262 
2263 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2264 int
2265 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2266 {
2267 	struct mbuf *m, *m_prev;
2268 	int sopt_size = sopt->sopt_valsize, msize;
2269 
2270 	m = m_getl(sopt_size, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_DATA,
2271 		   0, &msize);
2272 	if (m == NULL)
2273 		return (ENOBUFS);
2274 	m->m_len = min(msize, sopt_size);
2275 	sopt_size -= m->m_len;
2276 	*mp = m;
2277 	m_prev = m;
2278 
2279 	while (sopt_size > 0) {
2280 		m = m_getl(sopt_size, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT,
2281 			   MT_DATA, 0, &msize);
2282 		if (m == NULL) {
2283 			m_freem(*mp);
2284 			return (ENOBUFS);
2285 		}
2286 		m->m_len = min(msize, sopt_size);
2287 		sopt_size -= m->m_len;
2288 		m_prev->m_next = m;
2289 		m_prev = m;
2290 	}
2291 	return (0);
2292 }
2293 
2294 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2295 int
2296 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2297 {
2298 	soopt_to_mbuf(sopt, m);
2299 	return 0;
2300 }
2301 
2302 void
2303 soopt_to_mbuf(struct sockopt *sopt, struct mbuf *m)
2304 {
2305 	size_t valsize;
2306 	void *val;
2307 
2308 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2309 	KKASSERT(kva_p(m));
2310 	if (sopt->sopt_val == NULL)
2311 		return;
2312 	val = sopt->sopt_val;
2313 	valsize = sopt->sopt_valsize;
2314 	while (m != NULL && valsize >= m->m_len) {
2315 		bcopy(val, mtod(m, char *), m->m_len);
2316 		valsize -= m->m_len;
2317 		val = (caddr_t)val + m->m_len;
2318 		m = m->m_next;
2319 	}
2320 	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2321 		panic("ip6_sooptmcopyin");
2322 }
2323 
2324 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2325 int
2326 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2327 {
2328 	return soopt_from_mbuf(sopt, m);
2329 }
2330 
2331 int
2332 soopt_from_mbuf(struct sockopt *sopt, struct mbuf *m)
2333 {
2334 	struct mbuf *m0 = m;
2335 	size_t valsize = 0;
2336 	size_t maxsize;
2337 	void *val;
2338 
2339 	KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
2340 	KKASSERT(kva_p(m));
2341 	if (sopt->sopt_val == NULL)
2342 		return 0;
2343 	val = sopt->sopt_val;
2344 	maxsize = sopt->sopt_valsize;
2345 	while (m != NULL && maxsize >= m->m_len) {
2346 		bcopy(mtod(m, char *), val, m->m_len);
2347 	       maxsize -= m->m_len;
2348 	       val = (caddr_t)val + m->m_len;
2349 	       valsize += m->m_len;
2350 	       m = m->m_next;
2351 	}
2352 	if (m != NULL) {
2353 		/* enough soopt buffer should be given from user-land */
2354 		m_freem(m0);
2355 		return (EINVAL);
2356 	}
2357 	sopt->sopt_valsize = valsize;
2358 	return 0;
2359 }
2360 
2361 void
2362 sohasoutofband(struct socket *so)
2363 {
2364 	if (so->so_sigio != NULL)
2365 		pgsigio(so->so_sigio, SIGURG, 0);
2366 	KNOTE(&so->so_rcv.ssb_kq.ki_note, NOTE_OOB);
2367 }
2368 
2369 int
2370 sokqfilter(struct file *fp, struct knote *kn)
2371 {
2372 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2373 	struct signalsockbuf *ssb;
2374 
2375 	switch (kn->kn_filter) {
2376 	case EVFILT_READ:
2377 		if (so->so_options & SO_ACCEPTCONN)
2378 			kn->kn_fop = &solisten_filtops;
2379 		else
2380 			kn->kn_fop = &soread_filtops;
2381 		ssb = &so->so_rcv;
2382 		break;
2383 	case EVFILT_WRITE:
2384 		kn->kn_fop = &sowrite_filtops;
2385 		ssb = &so->so_snd;
2386 		break;
2387 	case EVFILT_EXCEPT:
2388 		kn->kn_fop = &soexcept_filtops;
2389 		ssb = &so->so_rcv;
2390 		break;
2391 	default:
2392 		return (EOPNOTSUPP);
2393 	}
2394 
2395 	knote_insert(&ssb->ssb_kq.ki_note, kn);
2396 	atomic_set_int(&ssb->ssb_flags, SSB_KNOTE);
2397 	return (0);
2398 }
2399 
2400 static void
2401 filt_sordetach(struct knote *kn)
2402 {
2403 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2404 
2405 	knote_remove(&so->so_rcv.ssb_kq.ki_note, kn);
2406 	if (SLIST_EMPTY(&so->so_rcv.ssb_kq.ki_note))
2407 		atomic_clear_int(&so->so_rcv.ssb_flags, SSB_KNOTE);
2408 }
2409 
2410 /*ARGSUSED*/
2411 static int
2412 filt_soread(struct knote *kn, long hint)
2413 {
2414 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2415 
2416 	if (kn->kn_sfflags & NOTE_OOB) {
2417 		if ((so->so_oobmark || (so->so_state & SS_RCVATMARK))) {
2418 			kn->kn_fflags |= NOTE_OOB;
2419 			return (1);
2420 		}
2421 		return (0);
2422 	}
2423 	kn->kn_data = so->so_rcv.ssb_cc;
2424 
2425 	if (so->so_state & SS_CANTRCVMORE) {
2426 		/*
2427 		 * Only set NODATA if all data has been exhausted.
2428 		 */
2429 		if (kn->kn_data == 0)
2430 			kn->kn_flags |= EV_NODATA;
2431 		kn->kn_flags |= EV_EOF;
2432 		kn->kn_fflags = so->so_error;
2433 		return (1);
2434 	}
2435 	if (so->so_error)	/* temporary udp error */
2436 		return (1);
2437 	if (kn->kn_sfflags & NOTE_LOWAT)
2438 		return (kn->kn_data >= kn->kn_sdata);
2439 	return ((kn->kn_data >= so->so_rcv.ssb_lowat) ||
2440 		!TAILQ_EMPTY(&so->so_comp));
2441 }
2442 
2443 static void
2444 filt_sowdetach(struct knote *kn)
2445 {
2446 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2447 
2448 	knote_remove(&so->so_snd.ssb_kq.ki_note, kn);
2449 	if (SLIST_EMPTY(&so->so_snd.ssb_kq.ki_note))
2450 		atomic_clear_int(&so->so_snd.ssb_flags, SSB_KNOTE);
2451 }
2452 
2453 /*ARGSUSED*/
2454 static int
2455 filt_sowrite(struct knote *kn, long hint)
2456 {
2457 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2458 
2459 	kn->kn_data = ssb_space(&so->so_snd);
2460 	if (so->so_state & SS_CANTSENDMORE) {
2461 		kn->kn_flags |= (EV_EOF | EV_NODATA);
2462 		kn->kn_fflags = so->so_error;
2463 		return (1);
2464 	}
2465 	if (so->so_error)	/* temporary udp error */
2466 		return (1);
2467 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
2468 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2469 		return (0);
2470 	if (kn->kn_sfflags & NOTE_LOWAT)
2471 		return (kn->kn_data >= kn->kn_sdata);
2472 	return (kn->kn_data >= so->so_snd.ssb_lowat);
2473 }
2474 
2475 /*ARGSUSED*/
2476 static int
2477 filt_solisten(struct knote *kn, long hint)
2478 {
2479 	struct socket *so = (struct socket *)kn->kn_fp->f_data;
2480 
2481 	kn->kn_data = so->so_qlen;
2482 	return (! TAILQ_EMPTY(&so->so_comp));
2483 }
2484