1 /* 2 * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. 3 * Copyright (c) 2004 The DragonFly Project. All rights reserved. 4 * 5 * This code is derived from software contributed to The DragonFly Project 6 * by Jeffrey M. Hsu. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of The DragonFly Project nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific, prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. 36 * 37 * License terms: all terms for the DragonFly license above plus the following: 38 * 39 * 4. All advertising materials mentioning features or use of this software 40 * must display the following acknowledgement: 41 * 42 * This product includes software developed by Jeffrey M. Hsu 43 * for the DragonFly Project. 44 * 45 * This requirement may be waived with permission from Jeffrey Hsu. 46 * This requirement will sunset and may be removed on July 8 2005, 47 * after which the standard DragonFly license (as shown above) will 48 * apply. 49 */ 50 51 /* 52 * Copyright (c) 1982, 1986, 1988, 1990, 1993 53 * The Regents of the University of California. All rights reserved. 54 * 55 * Redistribution and use in source and binary forms, with or without 56 * modification, are permitted provided that the following conditions 57 * are met: 58 * 1. Redistributions of source code must retain the above copyright 59 * notice, this list of conditions and the following disclaimer. 60 * 2. Redistributions in binary form must reproduce the above copyright 61 * notice, this list of conditions and the following disclaimer in the 62 * documentation and/or other materials provided with the distribution. 63 * 3. All advertising materials mentioning features or use of this software 64 * must display the following acknowledgement: 65 * This product includes software developed by the University of 66 * California, Berkeley and its contributors. 67 * 4. Neither the name of the University nor the names of its contributors 68 * may be used to endorse or promote products derived from this software 69 * without specific prior written permission. 70 * 71 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 72 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 74 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 77 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 78 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 80 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 81 * SUCH DAMAGE. 82 * 83 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 84 * $FreeBSD: src/sys/kern/uipc_socket.c,v 1.68.2.24 2003/11/11 17:18:18 silby Exp $ 85 * $DragonFly: src/sys/kern/uipc_socket.c,v 1.27 2005/01/13 23:05:32 dillon Exp $ 86 */ 87 88 #include "opt_inet.h" 89 90 #include <sys/param.h> 91 #include <sys/systm.h> 92 #include <sys/fcntl.h> 93 #include <sys/malloc.h> 94 #include <sys/mbuf.h> 95 #include <sys/domain.h> 96 #include <sys/file.h> /* for struct knote */ 97 #include <sys/kernel.h> 98 #include <sys/malloc.h> 99 #include <sys/event.h> 100 #include <sys/poll.h> 101 #include <sys/proc.h> 102 #include <sys/protosw.h> 103 #include <sys/socket.h> 104 #include <sys/socketvar.h> 105 #include <sys/socketops.h> 106 #include <sys/resourcevar.h> 107 #include <sys/signalvar.h> 108 #include <sys/sysctl.h> 109 #include <sys/uio.h> 110 #include <sys/jail.h> 111 #include <vm/vm_zone.h> 112 113 #include <machine/limits.h> 114 115 #ifdef INET 116 static int do_setopt_accept_filter(struct socket *so, struct sockopt *sopt); 117 #endif /* INET */ 118 119 static void filt_sordetach(struct knote *kn); 120 static int filt_soread(struct knote *kn, long hint); 121 static void filt_sowdetach(struct knote *kn); 122 static int filt_sowrite(struct knote *kn, long hint); 123 static int filt_solisten(struct knote *kn, long hint); 124 125 static struct filterops solisten_filtops = 126 { 1, NULL, filt_sordetach, filt_solisten }; 127 static struct filterops soread_filtops = 128 { 1, NULL, filt_sordetach, filt_soread }; 129 static struct filterops sowrite_filtops = 130 { 1, NULL, filt_sowdetach, filt_sowrite }; 131 132 struct vm_zone *socket_zone; 133 so_gen_t so_gencnt; /* generation count for sockets */ 134 135 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 136 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); 137 138 139 static int somaxconn = SOMAXCONN; 140 SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW, 141 &somaxconn, 0, "Maximum pending socket connection queue size"); 142 143 /* 144 * Socket operation routines. 145 * These routines are called by the routines in 146 * sys_socket.c or from a system process, and 147 * implement the semantics of socket operations by 148 * switching out to the protocol specific routines. 149 */ 150 151 /* 152 * Get a socket structure from our zone, and initialize it. 153 * We don't implement `waitok' yet (see comments in uipc_domain.c). 154 * Note that it would probably be better to allocate socket 155 * and PCB at the same time, but I'm not convinced that all 156 * the protocols can be easily modified to do this. 157 */ 158 struct socket * 159 soalloc(waitok) 160 int waitok; 161 { 162 struct socket *so; 163 164 so = zalloc(socket_zone); 165 if (so) { 166 /* XXX race condition for reentrant kernel */ 167 bzero(so, sizeof *so); 168 so->so_gencnt = ++so_gencnt; 169 TAILQ_INIT(&so->so_aiojobq); 170 TAILQ_INIT(&so->so_rcv.sb_sel.si_mlist); 171 TAILQ_INIT(&so->so_snd.sb_sel.si_mlist); 172 } 173 return so; 174 } 175 176 int 177 socreate(int dom, struct socket **aso, int type, 178 int proto, struct thread *td) 179 { 180 struct proc *p = td->td_proc; 181 struct protosw *prp; 182 struct socket *so; 183 struct pru_attach_info ai; 184 int error; 185 186 if (proto) 187 prp = pffindproto(dom, proto, type); 188 else 189 prp = pffindtype(dom, type); 190 191 if (prp == 0 || prp->pr_usrreqs->pru_attach == 0) 192 return (EPROTONOSUPPORT); 193 194 if (p->p_ucred->cr_prison && jail_socket_unixiproute_only && 195 prp->pr_domain->dom_family != PF_LOCAL && 196 prp->pr_domain->dom_family != PF_INET && 197 prp->pr_domain->dom_family != PF_ROUTE) { 198 return (EPROTONOSUPPORT); 199 } 200 201 if (prp->pr_type != type) 202 return (EPROTOTYPE); 203 so = soalloc(p != 0); 204 if (so == 0) 205 return (ENOBUFS); 206 207 TAILQ_INIT(&so->so_incomp); 208 TAILQ_INIT(&so->so_comp); 209 so->so_type = type; 210 so->so_cred = crhold(p->p_ucred); 211 so->so_proto = prp; 212 ai.sb_rlimit = &p->p_rlimit[RLIMIT_SBSIZE]; 213 ai.p_ucred = p->p_ucred; 214 ai.fd_rdir = p->p_fd->fd_rdir; 215 error = so_pru_attach(so, proto, &ai); 216 if (error) { 217 so->so_state |= SS_NOFDREF; 218 sofree(so); 219 return (error); 220 } 221 *aso = so; 222 return (0); 223 } 224 225 int 226 sobind(struct socket *so, struct sockaddr *nam, struct thread *td) 227 { 228 int s = splnet(); 229 int error; 230 231 error = so_pru_bind(so, nam, td); 232 splx(s); 233 return (error); 234 } 235 236 void 237 sodealloc(struct socket *so) 238 { 239 240 so->so_gencnt = ++so_gencnt; 241 if (so->so_rcv.sb_hiwat) 242 (void)chgsbsize(so->so_cred->cr_uidinfo, 243 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); 244 if (so->so_snd.sb_hiwat) 245 (void)chgsbsize(so->so_cred->cr_uidinfo, 246 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); 247 #ifdef INET 248 /* remove accept filter if present */ 249 if (so->so_accf != NULL) 250 do_setopt_accept_filter(so, NULL); 251 #endif /* INET */ 252 crfree(so->so_cred); 253 zfree(socket_zone, so); 254 } 255 256 int 257 solisten(struct socket *so, int backlog, struct thread *td) 258 { 259 int s, error; 260 261 s = splnet(); 262 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) { 263 splx(s); 264 return (EINVAL); 265 } 266 267 error = so_pru_listen(so, td); 268 if (error) { 269 splx(s); 270 return (error); 271 } 272 if (TAILQ_EMPTY(&so->so_comp)) 273 so->so_options |= SO_ACCEPTCONN; 274 if (backlog < 0 || backlog > somaxconn) 275 backlog = somaxconn; 276 so->so_qlimit = backlog; 277 splx(s); 278 return (0); 279 } 280 281 void 282 sofree(struct socket *so) 283 { 284 struct socket *head = so->so_head; 285 286 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) 287 return; 288 if (head != NULL) { 289 if (so->so_state & SS_INCOMP) { 290 TAILQ_REMOVE(&head->so_incomp, so, so_list); 291 head->so_incqlen--; 292 } else if (so->so_state & SS_COMP) { 293 /* 294 * We must not decommission a socket that's 295 * on the accept(2) queue. If we do, then 296 * accept(2) may hang after select(2) indicated 297 * that the listening socket was ready. 298 */ 299 return; 300 } else { 301 panic("sofree: not queued"); 302 } 303 so->so_state &= ~SS_INCOMP; 304 so->so_head = NULL; 305 } 306 sbrelease(&so->so_snd, so); 307 sorflush(so); 308 sodealloc(so); 309 } 310 311 /* 312 * Close a socket on last file table reference removal. 313 * Initiate disconnect if connected. 314 * Free socket when disconnect complete. 315 */ 316 int 317 soclose(struct socket *so) 318 { 319 int s = splnet(); /* conservative */ 320 int error = 0; 321 322 funsetown(so->so_sigio); 323 if (so->so_pcb == NULL) 324 goto discard; 325 if (so->so_state & SS_ISCONNECTED) { 326 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 327 error = sodisconnect(so); 328 if (error) 329 goto drop; 330 } 331 if (so->so_options & SO_LINGER) { 332 if ((so->so_state & SS_ISDISCONNECTING) && 333 (so->so_state & SS_NBIO)) 334 goto drop; 335 while (so->so_state & SS_ISCONNECTED) { 336 error = tsleep((caddr_t)&so->so_timeo, 337 PCATCH, "soclos", so->so_linger * hz); 338 if (error) 339 break; 340 } 341 } 342 } 343 drop: 344 if (so->so_pcb) { 345 int error2; 346 347 error2 = so_pru_detach(so); 348 if (error == 0) 349 error = error2; 350 } 351 discard: 352 if (so->so_options & SO_ACCEPTCONN) { 353 struct socket *sp, *sonext; 354 355 sp = TAILQ_FIRST(&so->so_incomp); 356 for (; sp != NULL; sp = sonext) { 357 sonext = TAILQ_NEXT(sp, so_list); 358 (void) soabort(sp); 359 } 360 for (sp = TAILQ_FIRST(&so->so_comp); sp != NULL; sp = sonext) { 361 sonext = TAILQ_NEXT(sp, so_list); 362 /* Dequeue from so_comp since sofree() won't do it */ 363 TAILQ_REMOVE(&so->so_comp, sp, so_list); 364 so->so_qlen--; 365 sp->so_state &= ~SS_COMP; 366 sp->so_head = NULL; 367 (void) soabort(sp); 368 } 369 } 370 if (so->so_state & SS_NOFDREF) 371 panic("soclose: NOFDREF"); 372 so->so_state |= SS_NOFDREF; 373 sofree(so); 374 splx(s); 375 return (error); 376 } 377 378 /* 379 * Must be called at splnet... 380 */ 381 int 382 soabort(so) 383 struct socket *so; 384 { 385 int error; 386 387 error = so_pru_abort(so); 388 if (error) { 389 sofree(so); 390 return error; 391 } 392 return (0); 393 } 394 395 int 396 soaccept(struct socket *so, struct sockaddr **nam) 397 { 398 int s = splnet(); 399 int error; 400 401 if ((so->so_state & SS_NOFDREF) == 0) 402 panic("soaccept: !NOFDREF"); 403 so->so_state &= ~SS_NOFDREF; 404 error = so_pru_accept(so, nam); 405 splx(s); 406 return (error); 407 } 408 409 int 410 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) 411 { 412 int s; 413 int error; 414 415 if (so->so_options & SO_ACCEPTCONN) 416 return (EOPNOTSUPP); 417 s = splnet(); 418 /* 419 * If protocol is connection-based, can only connect once. 420 * Otherwise, if connected, try to disconnect first. 421 * This allows user to disconnect by connecting to, e.g., 422 * a null address. 423 */ 424 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 425 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 426 (error = sodisconnect(so)))) { 427 error = EISCONN; 428 } else { 429 /* 430 * Prevent accumulated error from previous connection 431 * from biting us. 432 */ 433 so->so_error = 0; 434 error = so_pru_connect(so, nam, td); 435 } 436 splx(s); 437 return (error); 438 } 439 440 int 441 soconnect2(struct socket *so1, struct socket *so2) 442 { 443 int s = splnet(); 444 int error; 445 446 error = so_pru_connect2(so1, so2); 447 splx(s); 448 return (error); 449 } 450 451 int 452 sodisconnect(struct socket *so) 453 { 454 int s = splnet(); 455 int error; 456 457 if ((so->so_state & SS_ISCONNECTED) == 0) { 458 error = ENOTCONN; 459 goto bad; 460 } 461 if (so->so_state & SS_ISDISCONNECTING) { 462 error = EALREADY; 463 goto bad; 464 } 465 error = so_pru_disconnect(so); 466 bad: 467 splx(s); 468 return (error); 469 } 470 471 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 472 /* 473 * Send on a socket. 474 * If send must go all at once and message is larger than 475 * send buffering, then hard error. 476 * Lock against other senders. 477 * If must go all at once and not enough room now, then 478 * inform user that this would block and do nothing. 479 * Otherwise, if nonblocking, send as much as possible. 480 * The data to be sent is described by "uio" if nonzero, 481 * otherwise by the mbuf chain "top" (which must be null 482 * if uio is not). Data provided in mbuf chain must be small 483 * enough to send all at once. 484 * 485 * Returns nonzero on error, timeout or signal; callers 486 * must check for short counts if EINTR/ERESTART are returned. 487 * Data and control buffers are freed on return. 488 */ 489 int 490 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 491 struct mbuf *top, struct mbuf *control, int flags, 492 struct thread *td) 493 { 494 struct mbuf **mp; 495 struct mbuf *m; 496 long space, len, resid; 497 int clen = 0, error, s, dontroute, mlen; 498 int atomic = sosendallatonce(so) || top; 499 int pru_flags; 500 501 if (uio) 502 resid = uio->uio_resid; 503 else 504 resid = top->m_pkthdr.len; 505 /* 506 * In theory resid should be unsigned. 507 * However, space must be signed, as it might be less than 0 508 * if we over-committed, and we must use a signed comparison 509 * of space and resid. On the other hand, a negative resid 510 * causes us to loop sending 0-length segments to the protocol. 511 * 512 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM 513 * type sockets since that's an error. 514 */ 515 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { 516 error = EINVAL; 517 goto out; 518 } 519 520 dontroute = 521 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 522 (so->so_proto->pr_flags & PR_ATOMIC); 523 if (td->td_proc && td->td_proc->p_stats) 524 td->td_proc->p_stats->p_ru.ru_msgsnd++; 525 if (control) 526 clen = control->m_len; 527 #define gotoerr(errno) { error = errno; splx(s); goto release; } 528 529 restart: 530 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 531 if (error) 532 goto out; 533 do { 534 s = splnet(); 535 if (so->so_state & SS_CANTSENDMORE) 536 gotoerr(EPIPE); 537 if (so->so_error) { 538 error = so->so_error; 539 so->so_error = 0; 540 splx(s); 541 goto release; 542 } 543 if ((so->so_state & SS_ISCONNECTED) == 0) { 544 /* 545 * `sendto' and `sendmsg' is allowed on a connection- 546 * based socket if it supports implied connect. 547 * Return ENOTCONN if not connected and no address is 548 * supplied. 549 */ 550 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && 551 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { 552 if ((so->so_state & SS_ISCONFIRMING) == 0 && 553 !(resid == 0 && clen != 0)) 554 gotoerr(ENOTCONN); 555 } else if (addr == 0) 556 gotoerr(so->so_proto->pr_flags & PR_CONNREQUIRED ? 557 ENOTCONN : EDESTADDRREQ); 558 } 559 space = sbspace(&so->so_snd); 560 if (flags & MSG_OOB) 561 space += 1024; 562 if ((atomic && resid > so->so_snd.sb_hiwat) || 563 clen > so->so_snd.sb_hiwat) 564 gotoerr(EMSGSIZE); 565 if (space < resid + clen && uio && 566 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 567 if (so->so_state & SS_NBIO) 568 gotoerr(EWOULDBLOCK); 569 sbunlock(&so->so_snd); 570 error = sbwait(&so->so_snd); 571 splx(s); 572 if (error) 573 goto out; 574 goto restart; 575 } 576 splx(s); 577 mp = ⊤ 578 space -= clen; 579 do { 580 if (uio == NULL) { 581 /* 582 * Data is prepackaged in "top". 583 */ 584 resid = 0; 585 if (flags & MSG_EOR) 586 top->m_flags |= M_EOR; 587 } else do { 588 if (top == 0) { 589 MGETHDR(m, MB_WAIT, MT_DATA); 590 if (m == NULL) { 591 error = ENOBUFS; 592 goto release; 593 } 594 mlen = MHLEN; 595 m->m_pkthdr.len = 0; 596 m->m_pkthdr.rcvif = (struct ifnet *)0; 597 } else { 598 MGET(m, MB_WAIT, MT_DATA); 599 if (m == NULL) { 600 error = ENOBUFS; 601 goto release; 602 } 603 mlen = MLEN; 604 } 605 if (resid >= MINCLSIZE) { 606 MCLGET(m, MB_WAIT); 607 if ((m->m_flags & M_EXT) == 0) 608 goto nopages; 609 mlen = MCLBYTES; 610 len = min(min(mlen, resid), space); 611 } else { 612 nopages: 613 len = min(min(mlen, resid), space); 614 /* 615 * For datagram protocols, leave room 616 * for protocol headers in first mbuf. 617 */ 618 if (atomic && top == 0 && len < mlen) 619 MH_ALIGN(m, len); 620 } 621 space -= len; 622 error = uiomove(mtod(m, caddr_t), (int)len, uio); 623 resid = uio->uio_resid; 624 m->m_len = len; 625 *mp = m; 626 top->m_pkthdr.len += len; 627 if (error) 628 goto release; 629 mp = &m->m_next; 630 if (resid <= 0) { 631 if (flags & MSG_EOR) 632 top->m_flags |= M_EOR; 633 break; 634 } 635 } while (space > 0 && atomic); 636 if (dontroute) 637 so->so_options |= SO_DONTROUTE; 638 if (flags & MSG_OOB) { 639 pru_flags = PRUS_OOB; 640 } else if ((flags & MSG_EOF) && 641 (so->so_proto->pr_flags & PR_IMPLOPCL) && 642 (resid <= 0)) { 643 /* 644 * If the user set MSG_EOF, the protocol 645 * understands this flag and nothing left to 646 * send then use PRU_SEND_EOF instead of PRU_SEND. 647 */ 648 pru_flags = PRUS_EOF; 649 } else if (resid > 0 && space > 0) { 650 /* If there is more to send, set PRUS_MORETOCOME */ 651 pru_flags = PRUS_MORETOCOME; 652 } else { 653 pru_flags = 0; 654 } 655 s = splnet(); /* XXX */ 656 /* 657 * XXX all the SS_CANTSENDMORE checks previously 658 * done could be out of date. We could have recieved 659 * a reset packet in an interrupt or maybe we slept 660 * while doing page faults in uiomove() etc. We could 661 * probably recheck again inside the splnet() protection 662 * here, but there are probably other places that this 663 * also happens. We must rethink this. 664 */ 665 error = so_pru_send(so, pru_flags, top, addr, control, td); 666 splx(s); 667 if (dontroute) 668 so->so_options &= ~SO_DONTROUTE; 669 clen = 0; 670 control = 0; 671 top = 0; 672 mp = ⊤ 673 if (error) 674 goto release; 675 } while (resid && space > 0); 676 } while (resid); 677 678 release: 679 sbunlock(&so->so_snd); 680 out: 681 if (top) 682 m_freem(top); 683 if (control) 684 m_freem(control); 685 return (error); 686 } 687 688 /* 689 * A specialization of sosend() for UDP based on protocol-specific knowledge: 690 * so->so_proto->pr_flags has the PR_ATOMIC field set. This means that 691 * sosendallatonce() returns true, 692 * the "atomic" variable is true, 693 * and sosendudp() blocks until space is available for the entire send. 694 * so->so_proto->pr_flags does not have the PR_CONNREQUIRED or 695 * PR_IMPLOPCL flags set. 696 * UDP has no out-of-band data. 697 * UDP has no control data. 698 * UDP does not support MSG_EOR. 699 */ 700 int 701 sosendudp(struct socket *so, struct sockaddr *addr, struct uio *uio, 702 struct mbuf *top, struct mbuf *control, int flags, struct thread *td) 703 { 704 int resid, error, s; 705 boolean_t dontroute; /* temporary SO_DONTROUTE setting */ 706 707 if (td->td_proc && td->td_proc->p_stats) 708 td->td_proc->p_stats->p_ru.ru_msgsnd++; 709 if (control) 710 m_freem(control); 711 712 KASSERT((uio && !top) || (top && !uio), ("bad arguments to sosendudp")); 713 resid = uio ? uio->uio_resid : top->m_pkthdr.len; 714 715 restart: 716 error = sblock(&so->so_snd, SBLOCKWAIT(flags)); 717 if (error) 718 goto out; 719 720 s = splnet(); 721 if (so->so_state & SS_CANTSENDMORE) 722 gotoerr(EPIPE); 723 if (so->so_error) { 724 error = so->so_error; 725 so->so_error = 0; 726 splx(s); 727 goto release; 728 } 729 if (!(so->so_state & SS_ISCONNECTED) && addr == NULL) 730 gotoerr(EDESTADDRREQ); 731 if (resid > so->so_snd.sb_hiwat) 732 gotoerr(EMSGSIZE); 733 if (uio && sbspace(&so->so_snd) < resid) { 734 if (so->so_state & SS_NBIO) 735 gotoerr(EWOULDBLOCK); 736 sbunlock(&so->so_snd); 737 error = sbwait(&so->so_snd); 738 splx(s); 739 if (error) 740 goto out; 741 goto restart; 742 } 743 splx(s); 744 745 if (uio) { 746 top = m_uiomove(uio, MB_WAIT, 0); 747 if (top == NULL) 748 goto release; 749 } 750 751 dontroute = (flags & MSG_DONTROUTE) && !(so->so_options & SO_DONTROUTE); 752 if (dontroute) 753 so->so_options |= SO_DONTROUTE; 754 755 error = so_pru_send(so, 0, top, addr, NULL, td); 756 top = NULL; /* sent or freed in lower layer */ 757 758 if (dontroute) 759 so->so_options &= ~SO_DONTROUTE; 760 761 release: 762 sbunlock(&so->so_snd); 763 out: 764 if (top) 765 m_freem(top); 766 return (error); 767 } 768 769 /* 770 * Implement receive operations on a socket. 771 * We depend on the way that records are added to the sockbuf 772 * by sbappend*. In particular, each record (mbufs linked through m_next) 773 * must begin with an address if the protocol so specifies, 774 * followed by an optional mbuf or mbufs containing ancillary data, 775 * and then zero or more mbufs of data. 776 * In order to avoid blocking network interrupts for the entire time here, 777 * we splx() while doing the actual copy to user space. 778 * Although the sockbuf is locked, new data may still be appended, 779 * and thus we must maintain consistency of the sockbuf during that time. 780 * 781 * The caller may receive the data as a single mbuf chain by supplying 782 * an mbuf **mp0 for use in returning the chain. The uio is then used 783 * only for the count in uio_resid. 784 */ 785 int 786 soreceive(so, psa, uio, mp0, controlp, flagsp) 787 struct socket *so; 788 struct sockaddr **psa; 789 struct uio *uio; 790 struct mbuf **mp0; 791 struct mbuf **controlp; 792 int *flagsp; 793 { 794 struct mbuf *m, **mp; 795 int flags, len, error, s, offset; 796 struct protosw *pr = so->so_proto; 797 struct mbuf *nextrecord; 798 int moff, type = 0; 799 int orig_resid = uio->uio_resid; 800 801 mp = mp0; 802 if (psa) 803 *psa = 0; 804 if (controlp) 805 *controlp = 0; 806 if (flagsp) 807 flags = *flagsp &~ MSG_EOR; 808 else 809 flags = 0; 810 if (flags & MSG_OOB) { 811 m = m_get(MB_WAIT, MT_DATA); 812 if (m == NULL) 813 return (ENOBUFS); 814 error = so_pru_rcvoob(so, m, flags & MSG_PEEK); 815 if (error) 816 goto bad; 817 do { 818 error = uiomove(mtod(m, caddr_t), 819 (int) min(uio->uio_resid, m->m_len), uio); 820 m = m_free(m); 821 } while (uio->uio_resid && error == 0 && m); 822 bad: 823 if (m) 824 m_freem(m); 825 return (error); 826 } 827 if (mp) 828 *mp = (struct mbuf *)0; 829 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 830 so_pru_rcvd(so, 0); 831 832 restart: 833 error = sblock(&so->so_rcv, SBLOCKWAIT(flags)); 834 if (error) 835 return (error); 836 s = splnet(); 837 838 m = so->so_rcv.sb_mb; 839 /* 840 * If we have less data than requested, block awaiting more 841 * (subject to any timeout) if: 842 * 1. the current count is less than the low water mark, or 843 * 2. MSG_WAITALL is set, and it is possible to do the entire 844 * receive operation at once if we block (resid <= hiwat). 845 * 3. MSG_DONTWAIT is not set 846 * If MSG_WAITALL is set but resid is larger than the receive buffer, 847 * we have to do the receive in sections, and thus risk returning 848 * a short count if a timeout or signal occurs after we start. 849 */ 850 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 && 851 so->so_rcv.sb_cc < uio->uio_resid) && 852 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 853 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 854 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) { 855 KASSERT(m != 0 || !so->so_rcv.sb_cc, ("receive 1")); 856 if (so->so_error) { 857 if (m) 858 goto dontblock; 859 error = so->so_error; 860 if ((flags & MSG_PEEK) == 0) 861 so->so_error = 0; 862 goto release; 863 } 864 if (so->so_state & SS_CANTRCVMORE) { 865 if (m) 866 goto dontblock; 867 else 868 goto release; 869 } 870 for (; m; m = m->m_next) 871 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 872 m = so->so_rcv.sb_mb; 873 goto dontblock; 874 } 875 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 876 (pr->pr_flags & PR_CONNREQUIRED)) { 877 error = ENOTCONN; 878 goto release; 879 } 880 if (uio->uio_resid == 0) 881 goto release; 882 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) { 883 error = EWOULDBLOCK; 884 goto release; 885 } 886 sbunlock(&so->so_rcv); 887 error = sbwait(&so->so_rcv); 888 splx(s); 889 if (error) 890 return (error); 891 goto restart; 892 } 893 dontblock: 894 if (uio->uio_td && uio->uio_td->td_proc) 895 uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++; 896 nextrecord = m->m_nextpkt; 897 if (pr->pr_flags & PR_ADDR) { 898 KASSERT(m->m_type == MT_SONAME, ("receive 1a")); 899 orig_resid = 0; 900 if (psa) 901 *psa = dup_sockaddr(mtod(m, struct sockaddr *)); 902 if (flags & MSG_PEEK) { 903 m = m->m_next; 904 } else { 905 sbfree(&so->so_rcv, m); 906 so->so_rcv.sb_mb = m_free(m); 907 m = so->so_rcv.sb_mb; 908 } 909 } 910 while (m && m->m_type == MT_CONTROL && error == 0) { 911 if (flags & MSG_PEEK) { 912 if (controlp) 913 *controlp = m_copy(m, 0, m->m_len); 914 m = m->m_next; 915 } else { 916 sbfree(&so->so_rcv, m); 917 if (controlp) { 918 if (pr->pr_domain->dom_externalize && 919 mtod(m, struct cmsghdr *)->cmsg_type == 920 SCM_RIGHTS) 921 error = (*pr->pr_domain->dom_externalize)(m); 922 *controlp = m; 923 so->so_rcv.sb_mb = m->m_next; 924 m->m_next = 0; 925 m = so->so_rcv.sb_mb; 926 } else { 927 so->so_rcv.sb_mb = m_free(m); 928 m = so->so_rcv.sb_mb; 929 } 930 } 931 if (controlp) { 932 orig_resid = 0; 933 controlp = &(*controlp)->m_next; 934 } 935 } 936 if (m) { 937 if ((flags & MSG_PEEK) == 0) 938 m->m_nextpkt = nextrecord; 939 type = m->m_type; 940 if (type == MT_OOBDATA) 941 flags |= MSG_OOB; 942 } 943 moff = 0; 944 offset = 0; 945 while (m && uio->uio_resid > 0 && error == 0) { 946 if (m->m_type == MT_OOBDATA) { 947 if (type != MT_OOBDATA) 948 break; 949 } else if (type == MT_OOBDATA) 950 break; 951 else 952 KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER, 953 ("receive 3")); 954 so->so_state &= ~SS_RCVATMARK; 955 len = uio->uio_resid; 956 if (so->so_oobmark && len > so->so_oobmark - offset) 957 len = so->so_oobmark - offset; 958 if (len > m->m_len - moff) 959 len = m->m_len - moff; 960 /* 961 * If mp is set, just pass back the mbufs. 962 * Otherwise copy them out via the uio, then free. 963 * Sockbuf must be consistent here (points to current mbuf, 964 * it points to next record) when we drop priority; 965 * we must note any additions to the sockbuf when we 966 * block interrupts again. 967 */ 968 if (mp == 0) { 969 splx(s); 970 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio); 971 s = splnet(); 972 if (error) 973 goto release; 974 } else 975 uio->uio_resid -= len; 976 if (len == m->m_len - moff) { 977 if (m->m_flags & M_EOR) 978 flags |= MSG_EOR; 979 if (flags & MSG_PEEK) { 980 m = m->m_next; 981 moff = 0; 982 } else { 983 nextrecord = m->m_nextpkt; 984 sbfree(&so->so_rcv, m); 985 if (mp) { 986 *mp = m; 987 mp = &m->m_next; 988 so->so_rcv.sb_mb = m = m->m_next; 989 *mp = (struct mbuf *)0; 990 } else { 991 so->so_rcv.sb_mb = m = m_free(m); 992 } 993 if (m) 994 m->m_nextpkt = nextrecord; 995 else 996 so->so_rcv.sb_lastmbuf = NULL; 997 } 998 } else { 999 if (flags & MSG_PEEK) 1000 moff += len; 1001 else { 1002 if (mp) 1003 *mp = m_copym(m, 0, len, MB_WAIT); 1004 m->m_data += len; 1005 m->m_len -= len; 1006 so->so_rcv.sb_cc -= len; 1007 } 1008 } 1009 if (so->so_oobmark) { 1010 if ((flags & MSG_PEEK) == 0) { 1011 so->so_oobmark -= len; 1012 if (so->so_oobmark == 0) { 1013 so->so_state |= SS_RCVATMARK; 1014 break; 1015 } 1016 } else { 1017 offset += len; 1018 if (offset == so->so_oobmark) 1019 break; 1020 } 1021 } 1022 if (flags & MSG_EOR) 1023 break; 1024 /* 1025 * If the MSG_WAITALL flag is set (for non-atomic socket), 1026 * we must not quit until "uio->uio_resid == 0" or an error 1027 * termination. If a signal/timeout occurs, return 1028 * with a short count but without error. 1029 * Keep sockbuf locked against other readers. 1030 */ 1031 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 && 1032 !sosendallatonce(so) && !nextrecord) { 1033 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1034 break; 1035 /* 1036 * The window might have closed to zero, make 1037 * sure we send an ack now that we've drained 1038 * the buffer or we might end up blocking until 1039 * the idle takes over (5 seconds). 1040 */ 1041 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1042 so_pru_rcvd(so, flags); 1043 error = sbwait(&so->so_rcv); 1044 if (error) { 1045 sbunlock(&so->so_rcv); 1046 splx(s); 1047 return (0); 1048 } 1049 m = so->so_rcv.sb_mb; 1050 if (m) 1051 nextrecord = m->m_nextpkt; 1052 } 1053 } 1054 1055 if (m && pr->pr_flags & PR_ATOMIC) { 1056 flags |= MSG_TRUNC; 1057 if ((flags & MSG_PEEK) == 0) 1058 (void) sbdroprecord(&so->so_rcv); 1059 } 1060 if ((flags & MSG_PEEK) == 0) { 1061 if (m == 0) { 1062 so->so_rcv.sb_mb = nextrecord; 1063 so->so_rcv.sb_lastmbuf = NULL; 1064 } 1065 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1066 so_pru_rcvd(so, flags); 1067 } 1068 if (orig_resid == uio->uio_resid && orig_resid && 1069 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1070 sbunlock(&so->so_rcv); 1071 splx(s); 1072 goto restart; 1073 } 1074 1075 if (flagsp) 1076 *flagsp |= flags; 1077 release: 1078 sbunlock(&so->so_rcv); 1079 splx(s); 1080 return (error); 1081 } 1082 1083 int 1084 soshutdown(so, how) 1085 struct socket *so; 1086 int how; 1087 { 1088 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1089 return (EINVAL); 1090 1091 if (how != SHUT_WR) 1092 sorflush(so); 1093 if (how != SHUT_RD) 1094 return (so_pru_shutdown(so)); 1095 return (0); 1096 } 1097 1098 void 1099 sorflush(so) 1100 struct socket *so; 1101 { 1102 struct sockbuf *sb = &so->so_rcv; 1103 struct protosw *pr = so->so_proto; 1104 int s; 1105 struct sockbuf asb; 1106 1107 sb->sb_flags |= SB_NOINTR; 1108 (void) sblock(sb, M_WAITOK); 1109 s = splimp(); 1110 socantrcvmore(so); 1111 sbunlock(sb); 1112 asb = *sb; 1113 bzero((caddr_t)sb, sizeof (*sb)); 1114 if (asb.sb_flags & SB_KNOTE) { 1115 sb->sb_sel.si_note = asb.sb_sel.si_note; 1116 sb->sb_flags = SB_KNOTE; 1117 } 1118 splx(s); 1119 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) 1120 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1121 sbrelease(&asb, so); 1122 } 1123 1124 #ifdef INET 1125 static int 1126 do_setopt_accept_filter(so, sopt) 1127 struct socket *so; 1128 struct sockopt *sopt; 1129 { 1130 struct accept_filter_arg *afap = NULL; 1131 struct accept_filter *afp; 1132 struct so_accf *af = so->so_accf; 1133 int error = 0; 1134 1135 /* do not set/remove accept filters on non listen sockets */ 1136 if ((so->so_options & SO_ACCEPTCONN) == 0) { 1137 error = EINVAL; 1138 goto out; 1139 } 1140 1141 /* removing the filter */ 1142 if (sopt == NULL) { 1143 if (af != NULL) { 1144 if (af->so_accept_filter != NULL && 1145 af->so_accept_filter->accf_destroy != NULL) { 1146 af->so_accept_filter->accf_destroy(so); 1147 } 1148 if (af->so_accept_filter_str != NULL) { 1149 FREE(af->so_accept_filter_str, M_ACCF); 1150 } 1151 FREE(af, M_ACCF); 1152 so->so_accf = NULL; 1153 } 1154 so->so_options &= ~SO_ACCEPTFILTER; 1155 return (0); 1156 } 1157 /* adding a filter */ 1158 /* must remove previous filter first */ 1159 if (af != NULL) { 1160 error = EINVAL; 1161 goto out; 1162 } 1163 /* don't put large objects on the kernel stack */ 1164 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), M_TEMP, M_WAITOK); 1165 error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap); 1166 afap->af_name[sizeof(afap->af_name)-1] = '\0'; 1167 afap->af_arg[sizeof(afap->af_arg)-1] = '\0'; 1168 if (error) 1169 goto out; 1170 afp = accept_filt_get(afap->af_name); 1171 if (afp == NULL) { 1172 error = ENOENT; 1173 goto out; 1174 } 1175 MALLOC(af, struct so_accf *, sizeof(*af), M_ACCF, M_WAITOK); 1176 bzero(af, sizeof(*af)); 1177 if (afp->accf_create != NULL) { 1178 if (afap->af_name[0] != '\0') { 1179 int len = strlen(afap->af_name) + 1; 1180 1181 MALLOC(af->so_accept_filter_str, char *, len, M_ACCF, M_WAITOK); 1182 strcpy(af->so_accept_filter_str, afap->af_name); 1183 } 1184 af->so_accept_filter_arg = afp->accf_create(so, afap->af_arg); 1185 if (af->so_accept_filter_arg == NULL) { 1186 FREE(af->so_accept_filter_str, M_ACCF); 1187 FREE(af, M_ACCF); 1188 so->so_accf = NULL; 1189 error = EINVAL; 1190 goto out; 1191 } 1192 } 1193 af->so_accept_filter = afp; 1194 so->so_accf = af; 1195 so->so_options |= SO_ACCEPTFILTER; 1196 out: 1197 if (afap != NULL) 1198 FREE(afap, M_TEMP); 1199 return (error); 1200 } 1201 #endif /* INET */ 1202 1203 /* 1204 * Perhaps this routine, and sooptcopyout(), below, ought to come in 1205 * an additional variant to handle the case where the option value needs 1206 * to be some kind of integer, but not a specific size. 1207 * In addition to their use here, these functions are also called by the 1208 * protocol-level pr_ctloutput() routines. 1209 */ 1210 int 1211 sooptcopyin(sopt, buf, len, minlen) 1212 struct sockopt *sopt; 1213 void *buf; 1214 size_t len; 1215 size_t minlen; 1216 { 1217 size_t valsize; 1218 1219 /* 1220 * If the user gives us more than we wanted, we ignore it, 1221 * but if we don't get the minimum length the caller 1222 * wants, we return EINVAL. On success, sopt->sopt_valsize 1223 * is set to however much we actually retrieved. 1224 */ 1225 if ((valsize = sopt->sopt_valsize) < minlen) 1226 return EINVAL; 1227 if (valsize > len) 1228 sopt->sopt_valsize = valsize = len; 1229 1230 if (sopt->sopt_td != NULL) 1231 return (copyin(sopt->sopt_val, buf, valsize)); 1232 1233 bcopy(sopt->sopt_val, buf, valsize); 1234 return 0; 1235 } 1236 1237 int 1238 sosetopt(so, sopt) 1239 struct socket *so; 1240 struct sockopt *sopt; 1241 { 1242 int error, optval; 1243 struct linger l; 1244 struct timeval tv; 1245 u_long val; 1246 1247 error = 0; 1248 if (sopt->sopt_level != SOL_SOCKET) { 1249 if (so->so_proto && so->so_proto->pr_ctloutput) { 1250 return (so_pr_ctloutput(so, sopt)); 1251 } 1252 error = ENOPROTOOPT; 1253 } else { 1254 switch (sopt->sopt_name) { 1255 #ifdef INET 1256 case SO_ACCEPTFILTER: 1257 error = do_setopt_accept_filter(so, sopt); 1258 if (error) 1259 goto bad; 1260 break; 1261 #endif /* INET */ 1262 case SO_LINGER: 1263 error = sooptcopyin(sopt, &l, sizeof l, sizeof l); 1264 if (error) 1265 goto bad; 1266 1267 so->so_linger = l.l_linger; 1268 if (l.l_onoff) 1269 so->so_options |= SO_LINGER; 1270 else 1271 so->so_options &= ~SO_LINGER; 1272 break; 1273 1274 case SO_DEBUG: 1275 case SO_KEEPALIVE: 1276 case SO_DONTROUTE: 1277 case SO_USELOOPBACK: 1278 case SO_BROADCAST: 1279 case SO_REUSEADDR: 1280 case SO_REUSEPORT: 1281 case SO_OOBINLINE: 1282 case SO_TIMESTAMP: 1283 error = sooptcopyin(sopt, &optval, sizeof optval, 1284 sizeof optval); 1285 if (error) 1286 goto bad; 1287 if (optval) 1288 so->so_options |= sopt->sopt_name; 1289 else 1290 so->so_options &= ~sopt->sopt_name; 1291 break; 1292 1293 case SO_SNDBUF: 1294 case SO_RCVBUF: 1295 case SO_SNDLOWAT: 1296 case SO_RCVLOWAT: 1297 error = sooptcopyin(sopt, &optval, sizeof optval, 1298 sizeof optval); 1299 if (error) 1300 goto bad; 1301 1302 /* 1303 * Values < 1 make no sense for any of these 1304 * options, so disallow them. 1305 */ 1306 if (optval < 1) { 1307 error = EINVAL; 1308 goto bad; 1309 } 1310 1311 switch (sopt->sopt_name) { 1312 case SO_SNDBUF: 1313 case SO_RCVBUF: 1314 if (sbreserve(sopt->sopt_name == SO_SNDBUF ? 1315 &so->so_snd : &so->so_rcv, (u_long)optval, 1316 so, 1317 &curproc->p_rlimit[RLIMIT_SBSIZE]) == 0) { 1318 error = ENOBUFS; 1319 goto bad; 1320 } 1321 break; 1322 1323 /* 1324 * Make sure the low-water is never greater than 1325 * the high-water. 1326 */ 1327 case SO_SNDLOWAT: 1328 so->so_snd.sb_lowat = 1329 (optval > so->so_snd.sb_hiwat) ? 1330 so->so_snd.sb_hiwat : optval; 1331 break; 1332 case SO_RCVLOWAT: 1333 so->so_rcv.sb_lowat = 1334 (optval > so->so_rcv.sb_hiwat) ? 1335 so->so_rcv.sb_hiwat : optval; 1336 break; 1337 } 1338 break; 1339 1340 case SO_SNDTIMEO: 1341 case SO_RCVTIMEO: 1342 error = sooptcopyin(sopt, &tv, sizeof tv, 1343 sizeof tv); 1344 if (error) 1345 goto bad; 1346 1347 /* assert(hz > 0); */ 1348 if (tv.tv_sec < 0 || tv.tv_sec > SHRT_MAX / hz || 1349 tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1350 error = EDOM; 1351 goto bad; 1352 } 1353 /* assert(tick > 0); */ 1354 /* assert(ULONG_MAX - SHRT_MAX >= 1000000); */ 1355 val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick; 1356 if (val > SHRT_MAX) { 1357 error = EDOM; 1358 goto bad; 1359 } 1360 if (val == 0 && tv.tv_usec != 0) 1361 val = 1; 1362 1363 switch (sopt->sopt_name) { 1364 case SO_SNDTIMEO: 1365 so->so_snd.sb_timeo = val; 1366 break; 1367 case SO_RCVTIMEO: 1368 so->so_rcv.sb_timeo = val; 1369 break; 1370 } 1371 break; 1372 default: 1373 error = ENOPROTOOPT; 1374 break; 1375 } 1376 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) { 1377 (void) so_pr_ctloutput(so, sopt); 1378 } 1379 } 1380 bad: 1381 return (error); 1382 } 1383 1384 /* Helper routine for getsockopt */ 1385 int 1386 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) 1387 { 1388 int error; 1389 size_t valsize; 1390 1391 error = 0; 1392 1393 /* 1394 * Documented get behavior is that we always return a value, 1395 * possibly truncated to fit in the user's buffer. 1396 * Traditional behavior is that we always tell the user 1397 * precisely how much we copied, rather than something useful 1398 * like the total amount we had available for her. 1399 * Note that this interface is not idempotent; the entire answer must 1400 * generated ahead of time. 1401 */ 1402 valsize = min(len, sopt->sopt_valsize); 1403 sopt->sopt_valsize = valsize; 1404 if (sopt->sopt_val != 0) { 1405 if (sopt->sopt_td != NULL) 1406 error = copyout(buf, sopt->sopt_val, valsize); 1407 else 1408 bcopy(buf, sopt->sopt_val, valsize); 1409 } 1410 return error; 1411 } 1412 1413 int 1414 sogetopt(so, sopt) 1415 struct socket *so; 1416 struct sockopt *sopt; 1417 { 1418 int error, optval; 1419 struct linger l; 1420 struct timeval tv; 1421 #ifdef INET 1422 struct accept_filter_arg *afap; 1423 #endif 1424 1425 error = 0; 1426 if (sopt->sopt_level != SOL_SOCKET) { 1427 if (so->so_proto && so->so_proto->pr_ctloutput) { 1428 return (so_pr_ctloutput(so, sopt)); 1429 } else 1430 return (ENOPROTOOPT); 1431 } else { 1432 switch (sopt->sopt_name) { 1433 #ifdef INET 1434 case SO_ACCEPTFILTER: 1435 if ((so->so_options & SO_ACCEPTCONN) == 0) 1436 return (EINVAL); 1437 MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), 1438 M_TEMP, M_WAITOK); 1439 bzero(afap, sizeof(*afap)); 1440 if ((so->so_options & SO_ACCEPTFILTER) != 0) { 1441 strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name); 1442 if (so->so_accf->so_accept_filter_str != NULL) 1443 strcpy(afap->af_arg, so->so_accf->so_accept_filter_str); 1444 } 1445 error = sooptcopyout(sopt, afap, sizeof(*afap)); 1446 FREE(afap, M_TEMP); 1447 break; 1448 #endif /* INET */ 1449 1450 case SO_LINGER: 1451 l.l_onoff = so->so_options & SO_LINGER; 1452 l.l_linger = so->so_linger; 1453 error = sooptcopyout(sopt, &l, sizeof l); 1454 break; 1455 1456 case SO_USELOOPBACK: 1457 case SO_DONTROUTE: 1458 case SO_DEBUG: 1459 case SO_KEEPALIVE: 1460 case SO_REUSEADDR: 1461 case SO_REUSEPORT: 1462 case SO_BROADCAST: 1463 case SO_OOBINLINE: 1464 case SO_TIMESTAMP: 1465 optval = so->so_options & sopt->sopt_name; 1466 integer: 1467 error = sooptcopyout(sopt, &optval, sizeof optval); 1468 break; 1469 1470 case SO_TYPE: 1471 optval = so->so_type; 1472 goto integer; 1473 1474 case SO_ERROR: 1475 optval = so->so_error; 1476 so->so_error = 0; 1477 goto integer; 1478 1479 case SO_SNDBUF: 1480 optval = so->so_snd.sb_hiwat; 1481 goto integer; 1482 1483 case SO_RCVBUF: 1484 optval = so->so_rcv.sb_hiwat; 1485 goto integer; 1486 1487 case SO_SNDLOWAT: 1488 optval = so->so_snd.sb_lowat; 1489 goto integer; 1490 1491 case SO_RCVLOWAT: 1492 optval = so->so_rcv.sb_lowat; 1493 goto integer; 1494 1495 case SO_SNDTIMEO: 1496 case SO_RCVTIMEO: 1497 optval = (sopt->sopt_name == SO_SNDTIMEO ? 1498 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1499 1500 tv.tv_sec = optval / hz; 1501 tv.tv_usec = (optval % hz) * tick; 1502 error = sooptcopyout(sopt, &tv, sizeof tv); 1503 break; 1504 1505 default: 1506 error = ENOPROTOOPT; 1507 break; 1508 } 1509 return (error); 1510 } 1511 } 1512 1513 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */ 1514 int 1515 soopt_getm(struct sockopt *sopt, struct mbuf **mp) 1516 { 1517 struct mbuf *m, *m_prev; 1518 int sopt_size = sopt->sopt_valsize; 1519 1520 MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_DATA); 1521 if (m == 0) 1522 return ENOBUFS; 1523 if (sopt_size > MLEN) { 1524 MCLGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT); 1525 if ((m->m_flags & M_EXT) == 0) { 1526 m_free(m); 1527 return ENOBUFS; 1528 } 1529 m->m_len = min(MCLBYTES, sopt_size); 1530 } else { 1531 m->m_len = min(MLEN, sopt_size); 1532 } 1533 sopt_size -= m->m_len; 1534 *mp = m; 1535 m_prev = m; 1536 1537 while (sopt_size) { 1538 MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_DATA); 1539 if (m == 0) { 1540 m_freem(*mp); 1541 return ENOBUFS; 1542 } 1543 if (sopt_size > MLEN) { 1544 MCLGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT); 1545 if ((m->m_flags & M_EXT) == 0) { 1546 m_freem(*mp); 1547 return ENOBUFS; 1548 } 1549 m->m_len = min(MCLBYTES, sopt_size); 1550 } else { 1551 m->m_len = min(MLEN, sopt_size); 1552 } 1553 sopt_size -= m->m_len; 1554 m_prev->m_next = m; 1555 m_prev = m; 1556 } 1557 return 0; 1558 } 1559 1560 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */ 1561 int 1562 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) 1563 { 1564 struct mbuf *m0 = m; 1565 1566 if (sopt->sopt_val == NULL) 1567 return 0; 1568 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 1569 if (sopt->sopt_td != NULL) { 1570 int error; 1571 1572 error = copyin(sopt->sopt_val, mtod(m, char *), 1573 m->m_len); 1574 if (error != 0) { 1575 m_freem(m0); 1576 return(error); 1577 } 1578 } else 1579 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); 1580 sopt->sopt_valsize -= m->m_len; 1581 sopt->sopt_val = (caddr_t)sopt->sopt_val + m->m_len; 1582 m = m->m_next; 1583 } 1584 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ 1585 panic("ip6_sooptmcopyin"); 1586 return 0; 1587 } 1588 1589 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */ 1590 int 1591 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) 1592 { 1593 struct mbuf *m0 = m; 1594 size_t valsize = 0; 1595 1596 if (sopt->sopt_val == NULL) 1597 return 0; 1598 while (m != NULL && sopt->sopt_valsize >= m->m_len) { 1599 if (sopt->sopt_td != NULL) { 1600 int error; 1601 1602 error = copyout(mtod(m, char *), sopt->sopt_val, 1603 m->m_len); 1604 if (error != 0) { 1605 m_freem(m0); 1606 return(error); 1607 } 1608 } else 1609 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); 1610 sopt->sopt_valsize -= m->m_len; 1611 sopt->sopt_val = (caddr_t)sopt->sopt_val + m->m_len; 1612 valsize += m->m_len; 1613 m = m->m_next; 1614 } 1615 if (m != NULL) { 1616 /* enough soopt buffer should be given from user-land */ 1617 m_freem(m0); 1618 return(EINVAL); 1619 } 1620 sopt->sopt_valsize = valsize; 1621 return 0; 1622 } 1623 1624 void 1625 sohasoutofband(so) 1626 struct socket *so; 1627 { 1628 if (so->so_sigio != NULL) 1629 pgsigio(so->so_sigio, SIGURG, 0); 1630 selwakeup(&so->so_rcv.sb_sel); 1631 } 1632 1633 int 1634 sopoll(struct socket *so, int events, struct ucred *cred, struct thread *td) 1635 { 1636 int revents = 0; 1637 int s = splnet(); 1638 1639 if (events & (POLLIN | POLLRDNORM)) 1640 if (soreadable(so)) 1641 revents |= events & (POLLIN | POLLRDNORM); 1642 1643 if (events & POLLINIGNEOF) 1644 if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || 1645 !TAILQ_EMPTY(&so->so_comp) || so->so_error) 1646 revents |= POLLINIGNEOF; 1647 1648 if (events & (POLLOUT | POLLWRNORM)) 1649 if (sowriteable(so)) 1650 revents |= events & (POLLOUT | POLLWRNORM); 1651 1652 if (events & (POLLPRI | POLLRDBAND)) 1653 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 1654 revents |= events & (POLLPRI | POLLRDBAND); 1655 1656 if (revents == 0) { 1657 if (events & 1658 (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | 1659 POLLRDBAND)) { 1660 selrecord(td, &so->so_rcv.sb_sel); 1661 so->so_rcv.sb_flags |= SB_SEL; 1662 } 1663 1664 if (events & (POLLOUT | POLLWRNORM)) { 1665 selrecord(td, &so->so_snd.sb_sel); 1666 so->so_snd.sb_flags |= SB_SEL; 1667 } 1668 } 1669 1670 splx(s); 1671 return (revents); 1672 } 1673 1674 int 1675 sokqfilter(struct file *fp, struct knote *kn) 1676 { 1677 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1678 struct sockbuf *sb; 1679 int s; 1680 1681 switch (kn->kn_filter) { 1682 case EVFILT_READ: 1683 if (so->so_options & SO_ACCEPTCONN) 1684 kn->kn_fop = &solisten_filtops; 1685 else 1686 kn->kn_fop = &soread_filtops; 1687 sb = &so->so_rcv; 1688 break; 1689 case EVFILT_WRITE: 1690 kn->kn_fop = &sowrite_filtops; 1691 sb = &so->so_snd; 1692 break; 1693 default: 1694 return (1); 1695 } 1696 1697 s = splnet(); 1698 SLIST_INSERT_HEAD(&sb->sb_sel.si_note, kn, kn_selnext); 1699 sb->sb_flags |= SB_KNOTE; 1700 splx(s); 1701 return (0); 1702 } 1703 1704 static void 1705 filt_sordetach(struct knote *kn) 1706 { 1707 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1708 int s = splnet(); 1709 1710 SLIST_REMOVE(&so->so_rcv.sb_sel.si_note, kn, knote, kn_selnext); 1711 if (SLIST_EMPTY(&so->so_rcv.sb_sel.si_note)) 1712 so->so_rcv.sb_flags &= ~SB_KNOTE; 1713 splx(s); 1714 } 1715 1716 /*ARGSUSED*/ 1717 static int 1718 filt_soread(struct knote *kn, long hint) 1719 { 1720 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1721 1722 kn->kn_data = so->so_rcv.sb_cc; 1723 if (so->so_state & SS_CANTRCVMORE) { 1724 kn->kn_flags |= EV_EOF; 1725 kn->kn_fflags = so->so_error; 1726 return (1); 1727 } 1728 if (so->so_error) /* temporary udp error */ 1729 return (1); 1730 if (kn->kn_sfflags & NOTE_LOWAT) 1731 return (kn->kn_data >= kn->kn_sdata); 1732 return (kn->kn_data >= so->so_rcv.sb_lowat); 1733 } 1734 1735 static void 1736 filt_sowdetach(struct knote *kn) 1737 { 1738 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1739 int s = splnet(); 1740 1741 SLIST_REMOVE(&so->so_snd.sb_sel.si_note, kn, knote, kn_selnext); 1742 if (SLIST_EMPTY(&so->so_snd.sb_sel.si_note)) 1743 so->so_snd.sb_flags &= ~SB_KNOTE; 1744 splx(s); 1745 } 1746 1747 /*ARGSUSED*/ 1748 static int 1749 filt_sowrite(struct knote *kn, long hint) 1750 { 1751 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1752 1753 kn->kn_data = sbspace(&so->so_snd); 1754 if (so->so_state & SS_CANTSENDMORE) { 1755 kn->kn_flags |= EV_EOF; 1756 kn->kn_fflags = so->so_error; 1757 return (1); 1758 } 1759 if (so->so_error) /* temporary udp error */ 1760 return (1); 1761 if (((so->so_state & SS_ISCONNECTED) == 0) && 1762 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 1763 return (0); 1764 if (kn->kn_sfflags & NOTE_LOWAT) 1765 return (kn->kn_data >= kn->kn_sdata); 1766 return (kn->kn_data >= so->so_snd.sb_lowat); 1767 } 1768 1769 /*ARGSUSED*/ 1770 static int 1771 filt_solisten(struct knote *kn, long hint) 1772 { 1773 struct socket *so = (struct socket *)kn->kn_fp->f_data; 1774 1775 kn->kn_data = so->so_qlen; 1776 return (! TAILQ_EMPTY(&so->so_comp)); 1777 } 1778